函数值域求法(换元法,判别式法和万能K法)
函数值域讲解高中数学知识点
函数值域讲解高中数学知识点函数值域讲解高中数学知识点(1)配方法:若函数为一元二次函数,则可以用这种方法求值域,关键在于正确化成完全平方式。
(2)换元法:常用代数或三角代换法,把所给函数代换成值域容易确定的另一函数,从而得到原函数值域,如y=ax+b+_cx-d(a,b,c,d均为常数且ac不等于0)的函数常用此法求解。
(3)判别式法:若函数为分式结构,且分母中含有未知数x,则常用此法。
通常去掉分母转化为一元二次方程,再由判别式△0,确定y 的范围,即原函数的值域(4)不等式法:借助于重要不等式a+bab(a0)求函数的值域。
用不等式法求值域时,要注意均值不等式的使用条件“一正,二定,三相等。
”(5)反函数法:若原函数的值域不易直接求解,则可以考虑其反函数的定义域,根据互为反函数的两个函数定义域与值域互换的特点,确定原函数的值域,如y=cx+d/ax+b(a0)型函数的值域,可采用反函数法,也可用分离常数法。
(6)单调性法:首先确定函数的定义域,然后在根据其单调性求函数值域,常用到函数y=x+p/x(p0)的.单调性:增区间为(-,-p)的左开右闭区间和(p,+)的左闭右开区间,减区间为(-p,0)和(0,p)(7)数形结合法:分析函数解析式表达的集合意义,根据其图像特点确定值域。
注意:(1)用换元法求值域时,认真分析换元后变量的范围变化;用判别式法求函数值域时,一定要注意自变量x是否属于R。
(2)用不等式法求函数值域时,需要认真分析其等号能否成立;利用单调性求函数值域时,准确找出其单调区间是关键。
分段函数的值域应分段分析,再取并集。
(3)不管用哪种方法求函数值域,都一定要先确定其定义域,这是求函数的重要环节。
高中数学复习专题-函数值域的求法
学习必备 欢迎下载专题四、函数及其性质(二)函数值域的求法1.求函数值域的数学思想:( 1)利用函数单调性求函数值域:( 2)利用函数图像求函数值域;注意: 求函数值域时要先关注函数定义域,时刻体现“定义域优先” 原则。
2.求函数值域的方法: 观察法、判别式法、双勾函数法、换元法、平方法、分离常数法、数形结合法、单调性法、构造法。
( 1)观察法:适合于常见的基本函数。
例 1.已知函数 f (x)e x1,g( x)x 24x3 ,若 a 、bR ,且存在有f (a)g(b) ,则b 的取值范围为()A. [22, 22]B. (22, 22)C.[1,3]D.(1,3)kx bdx 2exf的分式函数, 适用条件须函( 2)判别式法:适合于形如y或 yax2bx cax 2 bx c数的定义域应为 R ,即 ax 2bx c0 ,所以b 2 4ac0 。
例 2. 求函数 y2x 2 x3x 2的值域。
x 1( 3)双勾函数法:适合于高中阶段所有的分式函数,比判别式法具有更广泛的应用。
2例 3. 求函数 y2x11x7(0 x 1) 的值域。
x 3( 4)换元法:适合于含有根式的函数。
例 4.求函数 y2x 4 1 x 的值域。
( 5)平方法:适合于平方变形后具有简化效果的函数。
例 5.求函数 yx 3 5 x 的值域。
学习必备欢迎下载( 6)数形结合法:利用数形结合的方法,根据函数图像求得函数值域。
例 6.(2014 湖北 )已知函数 f( x)是定义在 R 上的奇函数,当 x ≥ 0 时, f(x)= 1(|x - a 2|+ |x - 2a 2|- 3a 2),若对于任意 x ∈ R , f( x -1)≤ f(x)恒成立,2则实数 a 的取值范围为( ) A. -1,1 B.- 6, 6 C. -1,1 D.-3, 36 6 6 6 3 3 3 3( 7)单调性法:确定函数在定义域上的单调性,求出函数的值域。
函数值域的常见求法8大题型(解析版)
函数值域的求法8大题型命题趋势函数的值域是函数概念中三要素之一,是高考中的必考内容,具有较强的综合性,贯穿整个高中数学的始终。
在高考试卷中的形式千变万化,但万变不离其宗,真正实现了常考常新的考试要求,考生在复习过程中首先要掌握一些简单函数的值域求解的基本方法,其次要多看多练在其他板块中涉及值域类型的内容。
满分技巧一、求函数值域的常见方法1.直接法:对于简单函数的值域问题,可通过基本初等函数的图象、性质直接求解;2.逐层法:求f 1(f 2⋯f n (x ))型复合函数的值域,利用一些基本初等函数的值域,从内向外逐层求函数的值域;3.配方法:配方法是二次型函数值域的基本方法,即形如“y =ax x +bx +c (a ≠0)”或“y =a [f (x )]2+bf (x )+c (a ≠0)”的函数均可用配方法求值域;4.换元法:利用换元法将函数转化为易求值域的函数,常用的换元有(1)y =ax +b cx +d或y =cx +dax +b 的结构,可用“cx +d =t ”换元;(2)y =ax +b ±cx +d (a ,b ,c ,d 均为常数,a ≠0,c ≠0),可用“cx +d =t ”换元;(3)y =bx ±a 2-x 2型的函数,可用“x =a cos θ(θ∈[0,π])”或“x =a sin θθ∈-π2,π2”换元;5.分离常数法:形如y =ax +b cx +d (ac ≠0)的函数,应用分离常数法求值域,即y =ax +b cx +d=ac +bc -adc 2x +d c ,然后求值域;6.基本不等式法:形如y =ax +bx(ab >0)的函数,可用基本不等式法求值域,利用基本不等式法求函数的值域时,要注意条件“一正、二定、三相等”,即利用a +b ≥2ab 求函数的值域(或最值)时,应满足三个条件:①a >0,b >0;②a +b (或ab )为定值;③取等号的条件为a =b ,三个条件缺一不可;7.函数单调性法:确定函数在定义域上的单调性,根据函数单调性求出函数值域(或最值)(1)形如y =ax +b -cx +d (ac <0)的函数可用函数单调性求值域;(2)形如y =ax +bx的函数,当ab >0时,若利用基本不等式等号不能成立时,可考虑利用对勾函数求解;公众号:高中数学最新试题当ab <0时,y =ax +bx在(-∞,0)和(0,+∞)上为单调函数,可直接利用单调性求解。
函数值域求法大全
函数值域求法大全函数的值域是由定义域和对应法则共同确定。
确定函数的值域是研究函数不可缺少的重要一环。
本文介绍了十一种函数值域求法。
首先是直接观察法,对于一些简单的函数,可以通过观察得到其值域。
例如,对于函数y=1/x,由于x不等于0,因此函数的值域为(-∞,0)U(0,+∞)。
再比如,对于函数y=3-x,由于x的取值范围为(-∞,+∞),因此函数的值域为(-∞,3]。
其次是配方法,这是求二次函数值域最基本的方法之一。
例如,对于函数y=x^2-2x+5,将其配方得到y=(x-1)^2+4,由此可得出函数的值域为[4.+∞)。
还有判别式法,例如对于函数y=(1+x+x^2)/(1+x^2),可以将其化为关于x的一元二次方程,然后根据判别式的值来确定函数的值域。
除此之外,还有其他的函数值域求法,如利用导数、利用反函数、利用奇偶性等方法。
这些方法各有特点,应根据具体情况选择合适的方法来求解。
总之,确定函数的值域是研究函数的重要一环,掌握好函数值域的求法可以帮助我们简化运算过程,事半功倍。
换元法是一种数学方法,可以通过简单的换元将一个函数变为简单函数。
其中,函数解析式含有根式或三角函数公式模型是其题型特征之一。
换元法不仅在求函数的值域中发挥作用,也是数学方法中几种最主要方法之一。
例如,对于函数 $y=x+x^{-1}$,我们可以令 $x-1=t$,则$x=t+1$。
代入原函数,得到$y=t^2+t+1=(t+1)^2+\frac{1}{4}$。
由于 $t\geq 0$,根据二次函数的性质,当 $t=0$ 时,$y$ 取得最小值 $1$,当 $t$ 趋近于正无穷时,$y$ 也趋近于正无穷。
因此,函数的值域为 $[1,+\infty)$。
又如,对于函数 $y=x^2+2x+1-(x+1)^2$,我们可以将 $1-(x+1)^2$ 化简为 $\frac{1}{2}-\left(x+\frac{1}{2}\right)^2$,然后令 $x+1=\cos\beta$,则 $y=\sin\beta+\cos\beta+1$。
函数值域12种求法
函数值域的12种求法在函数的三要素中,定义域和对应法则起决定作用,而值域是由定义域和对应法则共同确定。
研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。
确定函数的值域是研究函数不可缺少的重要一环。
对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。
本文就函数值域求法归纳如下,供参考。
一、函数值域的12种求法1. 观察法对于一些比较简单的函数,其值域可通过直接观察即可得到。
例1. 求函数 x 1y =的值域。
解:∵0x ≠ ∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数 x 3y -=的值域。
解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 函数单调性法:根据函数单调性及定义域求函数值域例9. 求函数 )10x 2(1x log 2y 35x ≤≤-+=-的值域。
解:令1x l o g y ,2y 325x 1-==-则21y ,y 在[2,10]上都是增函数所以21y y y +=在[2,10]上是增函数当x=2时,8112l o g 2y 33m i n =-+=-当x=10时,339log 2y 35max =+=故所求函数的值域为:⎥⎦⎤⎢⎣⎡33,81例10. 求函数 1x 1x y --+=的值域。
解:原函数可化为:1x 1x 2y -++= 令1x y ,1x y 21-=+=,显然 21y ,y 在 ],1[+∞上为无上界的增函数所以1y y =,2y 在 ],1[+∞上也为无上界的增函数所以当x=1时,21y y y +=有最小值 2,原函数有最大值 222=显然 0y >,故原函数的值域为 ]2,0(3. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数 ]2,1[x ,5x 2x y 2-∈+-=的值域。
2022年高考数学判断函数值域的方法_函数值域的判断
2022年高考数学判断函数值域的方法_函数值域的判断高中数学知识点:常见函数值域y=kx+b(k≠0)的值域为Ry=k/x的值域为(-∞,0)∪(0,+∞)y=√x的值域为x≥0y=ax?+bx+c当a>0时,值域为[4ac-b?/4a,+∞);当a<0时,值域为(-∞,4ac-b?/4a]高中数学知识点:判断函数值域的方法1、配方法:利用二次函数的配方法求值域,需注意自变量的取值范围。
2、换元法:常用代数或三角代换法,把所给函数代换成值域容易确定的另一函数,从而得到原函数值域,如y=ax+b+_√cx-d(a,b,c,d均为常数且ac不等于0)的函数常用此法求解。
3、判别式法:若函数为分式结构,且分母中含有未知数x?,则常用此法。
通常去掉分母转化为一元二次方程,再由判别式△≥0,确定y的范围,即原函数的值域4、不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。
5、反函数法:若原函数的值域不易直接求解,则可以考虑其反函数的定义域,根据互为反函数的两个函数定义域与值域互换的特点,确定原函数的值域,如y=cx+d/ax+b(a≠0)型函数的值域,可采用反函数法,也可用分离常数法。
6、单调性法:首先确定函数的定义域,然后在根据其单调性求函数值域,常用到函数y=x+p/x(p>0)的单调性:增区间为(-∞,-√p)的左开右闭区间和(√p,+∞)的左闭右开区间,减区间为(-√p,0)和(0,√p)7、数形结合法:分析函数解析式表达的集合意义,根据其图像特点确定值域。
高中数学知识点:求函数值域的12种方法一、观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x)的值域。
点拨:根据算术平方根的性质,先求出√(2-3x)的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
【高中数学讲义】函数求值域的十种方法
前言:总有人求助如何学好数学,这个问题很宽泛,并非寥寥数语能够厘清。
有一点很明确,学好数学的必要条件是了解数学。
高中数学可以归结为两个“三位一体”:教学体系的三位一体和知识结构的三位一体。
知识结构的三位一体:数学思想,数学方法,典型习题。
三要素之间的关系:典型习题归纳数学思想,数学思想指导数学方法,数学方法解决典型习题。
数学思想举例:数形结合的思想等。
数学方法举例:配方法、反证法、倍差法等。
典型习题举例:恒成立问题、是否存在问题等。
教学体系的三位一体:教、学、练。
老师教什么:数学思想和数学方法。
熟练掌握各种方法的是优秀学生,深入理解各种思想的是顶尖学生。
学生怎么学:课堂紧跟老师,课下善于提问。
如何做练习:01,选题:中学数学最大的误区就是题海战术,有的老师不学无术只会告诉你多做题。
多做题没用,多做类型才有用。
典型习题,做一顶百。
02,做题:一题多解。
对于选定的习题,运用尽量多的方法去解决,然后比较各个方法的优劣,归纳出某类型题对应的最佳方法。
03,总结:针对错题。
大量统计表明,我们在考试中所犯的错误大多是重复性的。
通过总结,避免两次踏入同一条水沟。
由上可知,我讲数学的特点是方法论、重总结。
工欲善其事,必先利其器:各种数学方法就是我们解决难题的利器。
总喊看题就没思路的童鞋,回忆一下高中阶段你能说出多少种方法。
说不出?有思路才怪!言归正传,今天我们就来总结一下“函数求值域的十种方法”(高中数学最重要就是函数,函数之于高中数学好比力学之于高中物理。
高中数学函数的要点无非:三要素,四变换,五常见,六性质。
三要素中的求值域就是本讲的主题)方法一:配方法用于解决二次函数值域问题,考试中几乎不会单独考察配方法(太简单),但常与其他方法综合使用。
y=ax2+bx+c(a≠0)经过配方得到 y=a(x-m)2 +n 的形式,可直接观察出值域。
方法二:函数性质法高中阶段函数六性:奇偶性,单调性,周期性,对称性,凸凹性,有界性(前三为重点)。
怎样求函数值域
怎 样 求 函 数 值 域湖北省兴山一中 万忠国 (443700)函数的值域就是函数值的集合,与定义域一样都是非空数集,在研究函数值域时,既要重视对应法则的作用,又要特别注意定义域对值域的制约作用。
求函数值域在中学阶段既是重点又是难点。
掌握求值域的一些基本方法对于解决问题有帮助的。
求值域的常用方法有①配方法②换元法③单调性法④判别式法⑤逆求法⑥数形结合法。
下面结合一些例题讲解各种方法的具体应用。
一、配方法 主要用于二次函数求值域。
例1、求函数y=x 2-2x+3在下列区间上的值域⑴、[0,+∞] ⑵、[2,+∞] ⑶、[2,3] ⑷、[0,3] ⑸、(-∞,3] ⑹、[-1,2] 解:y=x 2-2x+3=(x-1)2+2在各区间上的值域分别为⑴、[1,+∞] ⑵、[3,+∞] ⑶、[3,6] ⑷、[1,6] ⑸、〔1,+∞) ⑹、[1,6] 例2、求函数y=245x x -+的值域解:y=245x x -+=9)2(2+--x ≤3 , 又 y≥0 ∴0≤y ≤3 故值域为[0,3]二、换元法 分为代数换元和三角换元。
主要用于含二次根式的函数,通过换元转化为二次函数求值域(注意:换元必须换范围)。
例3、求函数y=2x+4x -1的值域解:令t=x -1 则x=1-t 2 且t≥0 ∴函数y=2(1-t 2)+4t=-2(t-1)2+4 ∴y ≤4。
故值域为(-∞,4] 例4、求函数y=|x|21x -的值域解:方法一:∵y=|x|21x -的定义域是[-1,1],且为偶函数。
∴只需在[0,1]上求y 的值域。
令x=cosθ, θ∈[0,2π] 。
则y= cosθsinθ=21sin2θ, ∴0≤y ≤21, 故值域为[0,21] 方法二:利用均值不等式有:0≤y=|x|21x -≤2)1(||222x x -+=21 即0≤y ≤21 。
故值域为[0,21] 例5、求函数y= cosxsinx+sinx+cosx 的值域解:令t=sinx+cosx 则t 2=1+2sinxcosx ∴sinxcosx=212-t ,由t 2=1+2sin2x ≤2 得 -2≤t ≤2 ∴原函数y=212-t +t=21(t+1)2-2 ∴-2≤y ≤21+2,故值域为[-2,21+2]三、单调性法:主要用于在定义域单调性一致的函数。
求函数值域常见的五种方法
求函数值域常见的五种方法求函数的值域是函数学习的一个难点,求值域时涉及到的知识和方法较多,下面介绍几种常用的方法供参考.一、 判别式法思路:将函数式整理成一元二次方程的形式,借用判别式求值域.例1 求函数的4312--=x x y 值域. 解:原式整理成01432=---y yx yx , )4()41()1(∞+⋃-⋃--∞∈,,,x ,且0≠y ,∴0)14(492≥++=∆y y y .解得0≥y 或254-≤y . 当 254-=y 时,)41(23,-∈=x . 又0≠y , ∴所求函数的值域是),0(]254--+∞⋃∞,(. 二、 配方法例2 求函数x x y 21-+=的值域. 解:由已知得2121)21(21+-+--=x x y 1)121(212+---=x∴所求函数的值域是]1-,(∞. 三、 单调性法思路:利用函数的图象和性质求解.例3 当)0,21(-∈x 时,求函数)1lg()1lg(x x y -++=的值域.解:由已知得)1lg(2x y -=, ∵)0,21(-∈x ,∴)41,0(2∈x . 又2x -在)0,21(-∈x 上递增, ∴)1,43(12∈-x . 又u y lg =在)1,43(上递增, ∴)0,43(lg )1lg(2∈-x ,原函数的值域为)0,43(lg . 四、 反函数法例4 求函数xx y -+=11的值域. 解:∵函数的定义域是{}1,0|≠≥x x x 且,由原函数变形得011≥+-=y y x , ∴1≥y 或1-<y .∴函数的值域为),1[)1,(+∞⋃--∞.五、 换元法例5 求函数x x y --=1的值域。
解:令x t -=1,则)0(12≥-=t t x ,那么45)21(2++-=t y . ∵1≥t 时,y 在),0[+∞上递减, ∴当t ≥0时,]1,(-∞∈y .∴原函数的值域是]1,(-∞.。
高中数学函数值域的求法(9种)
函数值域的求法求函数的值域时,要明确两点:一是函数值域的概念,二是函数的定义域和对应关系。
常用的方法有:观察法、换元法、配方法、判别式法、数形结合法、分离常数法、反表示法、中间变量值域法等。
(1)观察法:有的函数结构并不复杂,可以通过对解析式的简单变形和观察,利用熟知的函数的值域求出函数的值域。
如函数211xy +=的值域{}10|≤<y y 。
(2)换元法:运用换元,将已知的函数转化为值域容易确定的另一函数,从而求得原函数的值域。
例如:形如d cx b ax y +±+=(d c b a ,,,均为常数,0≠ac )的函数常用此法。
(3)配方法:若函数是二次函数的形式,即可化为()02≠++=a c bx ax y 型的函数,则可通过配方后再结合二次函数的性质求值域,但要注意给定区间上二次函数最值得求法。
如求函数32+-=x x y 的值域,因为()2212≥+-=x y ,所以所求函数的值域为[)∞+,2。
(4)判别式法:求形如fex dx c bx ax y ++++=22(f e d c b a ,,,,,不同时为0)的值域,常利用去分母的形式,把函数转化为关于x 的一元二次方程,通过方程有实根,判别式0≥∆,求出y 的取值范围,即得到函数的值域。
(5)数形结合法:有些函数的图像比较容易画出,可以通过函数的图像得出函数的值域;或者分段函数也常用画出函数图像的方法判断出函数的值域。
例如:12--+=x x y 。
(6)分离常数法:形如()0≠++=a b ax d cx y 的函数,经常采用分离常数法,将bax d cx ++变形为()b ax a bc d a c b ax a bcd b ax ac +-+=+-++,再结合x 的取值范围确定b ax a bcd +-的取值范围,从而确定函数的值域。
如求函数112+-=x x y 的值域时,因为132+-=x y ,且013≠+x ,所以2≠y ,所以函数的值域为{}2,|≠∈y R y y 且。
求函数值域的常用方法
求函数值域(最值)的方法大全函数是中学数学的一个重点,而函数值域(最值)的求解方法更是一个常考点, 对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,因此能熟练掌握其值域(最值)求法就显得十分的重要,求解过程中若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。
本文旨在通过对典型例题的讲解来归纳函数值域(最值)的求法,希望对大家有所帮助。
一、值域的概念和常见函数的值域函数的值域取决于定义域和对应法则,不论采用什么方法球函数的值域均应考虑其定义域. 常见函数的值域:一次函数()0y kx b k =+≠的值域为R.二次函数()20y ax bx c a =++≠,当0a >时的值域为24,4ac b a ⎡⎫-+∞⎪⎢⎣⎭,当0a <时的值域为24,4ac b a ⎛⎤--∞ ⎥⎝⎦.,反比例函数()0ky k x=≠的值域为{}0y R y ∈≠. 指数函数()01x y a a a =>≠且的值域为{}0y y >. 对数函数()log 01a y x a a =>≠且的值域为R.正,余弦函数的值域为[]1,1-,正,余切函数的值域为R. 二、求函数值域(最值)的常用方法 1. 直接观察法适用类型:根据函数图象.性质能较容易得出值域(最值)的简单函数例1、求函数y =211x +的值域 解: 22111,011x x +≥∴<≤+ 显然函数的值域是:(]0,1例2、求函数y =2-x 的值域。
解: x ≥0 ∴-x ≤0 2-x ≤2故函数的值域是:[-∞,2 ] 2 、配方法适用类型:二次函数或可化为二次函数的复合函数的题型。
配方法是求二次函数值域最基本的方法之一。
对于形如()20y ax bx c a =++≠或()()()()20F x a f x bf x c a =++≠⎡⎤⎣⎦类的函数的值域问题,均可用配方法求解.例3、求函数y=2x -2*+5,*∈[-1,2]的值域。
高中数学求函数值域解题方法大全
高中数学求函数值域解题方法大全高中数学求函数值域解题方法大全一、观察法:从自变量x的范围出发,推出y=f(x)的取值范围。
例1:求函数y=x+1的值域。
解析:由于x≥-1,所以x+1≥0,因此函数y=x+1的值域为[1,+∞)。
例2:求函数y=1/x的值域。
解析:显然函数的定义域为(-∞,0)∪(0,+∞),当x>0时,y>0;当x<0时,y<0.因此函数的值域是:例3:已知函数y=(x-1)-1,x∈{-1,1,2},求函数的值域。
解析:因为x∈{-1,1,2},而f(-1)=f(3)=3,f(2)=-1,f(1)=-∞,所以:y∈{-1,3}。
注意:求函数的值域时,不能忽视定义域,如果该题的定义域为x∈R,则函数的值域为{y|y≥-1}。
二、配方法:配方法式求“二次函数类”值域的基本方法。
形如F(x)=af2(x)+bf(x)+c的函数的值域问题,均可使用配方法。
例1:求函数y=x2-2x+5,x∈[-1,2]的值域。
解析:将函数配方得:y=(x-1)2+4,当x=1∈[-1,2]时,y取得最小值4,当x=-1或x=2时,y取得最大值8,因此函数的值域是:[4,8]。
变式:已知f(x)=ax2+bx+c,其中a>0,且在区间[-1,1]内的最小值为1,求函数在[-2,2]上的最值。
解析:由已知,可得a>0,且f(x)在x=0处取得最小值1,即b=0.又因为在区间[-1,1]内的最小值为1,所以a≤4.将f(x)配方得:f(x)=a(x-1)2+1,当x=-2或x=2时,f(x)取得最大值5a+1;当x=1时,f(x)取得最小值1.因此,当a=4时,函数在[-2,2]上的最值分别为9和17.当a<4时,函数在[-2,2]上的最值分别为1和5a+1.三、其他方法:对于一些特殊的函数,可以采用其他方法求解。
例:已知函数f(x)=sinx+cosx,求函数的值域。
求函数值域的四种方法
求函数值域的四种方法一、观察法。
1.1 这种方法就像是我们用眼睛去打量一个人,直观又简单。
对于一些简单的函数,我们可以直接通过观察函数的性质来确定值域。
比如说一次函数y = 2x + 1,x 可以取任意实数,那随着x的变化,y也会相应地在实数范围内变化,所以这个一次函数的值域就是全体实数。
这就好比我们看一个一目了然的事情,不用费太多周折。
1.2 再看函数y = x²,因为任何实数的平方都大于等于0,所以这个函数的值域就是[0,+∞)。
这就像我们知道太阳总是从东边升起一样确定,一眼就能看出来这个函数值的范围。
二、配方法。
2.1 配方法就像是给函数做个“美容整形”。
拿二次函数y = x² 2x + 3来说,我们可以把它配方成y = (x 1)²+ 2。
因为(x 1)²大于等于0,所以y就大于等于2。
这就好比我们把一个有点杂乱的东西整理得井井有条,然后就能清楚地看到它的价值范围了。
2.2 还有函数y = -x²+ 4x 1,配方后得到y = -(x 2)²+ 3。
由于-(x 2)²小于等于0,所以这个函数的值域就是(-∞,3]。
这就像我们把一个原本模糊不清的东西,通过自己的巧手整理,让它的界限清晰起来。
2.3 配方法就像是一个神奇的魔法,能把复杂的二次函数变得简单易懂,让我们轻松地找出值域这个“宝藏”。
三、换元法。
3.1 换元法有点像“偷梁换柱”。
例如函数y = 2x + √(x 1),我们可以设t = √(x 1)(t≥0),那么x = t²+ 1。
这样原函数就变成了y = 2(t²+ 1)+ t = 2t²+ t + 2。
这就把原来带根号的复杂函数转化成了一个二次函数,然后我们就可以用配方法或者观察法来求值域了。
这就像我们在一个迷宫里,找到了一条新的通道,一下子豁然开朗。
3.2 再比如函数y = x + √(1 x²),我们设x = sinθ(-π/2≤θ≤π/2),那么原函数就变成了y = sinθ+ cosθ。
高一数学《函数的值域》的求法
高一数学《函数的值域》的求法函数的值域是函数的三要素之一,它是函数这部分内容中一个重要的知识点。
本文介绍高一数学中求函数值域的几种常见方法:1.直接法:从自变量$x$的范围出发,推出$y$的取值范围;2.二次函数法:利用换元法,将函数转化为二次函数求值域(或最值);3.反函数法:将求函数的值域转化为求它反函数的定义域;4.判别式法:使用方程思想,依据二次方程有实根,求出$y$的取值范围;5.单调性法:利用函数的单调性求值域;6.图象法:当一个函数图象可作时,通过图象可求其值域(或最值)。
例如,对于函数$y=x^2-2x-3$,我们可以通过以下几种方法求其值域:1.直接法:当$x=-1$时,$y=0$;当$x=0$时,$y=-3$;当$x=1$时,$y=-4$。
因此,所求值域为$\{0,-3,-4\}$。
2.二次函数法:将函数转化为$y=(x-1)^2-4$,然后求出最值。
当$y=-3$时,$y_{\max}=12$;当$x=1$时,$y_{\min}=-4$。
因此,所求值域为$[-4,12]$。
3.反函数法:将函数转化为$y=(x-1)^2-4\geq -4$。
因此,所求值域为$[-4,+\infty)$。
4.判别式法:将函数转化为$y=-x^2+2x+3$,然后求出判别式的取值范围。
由于判别式为$4-4\times (-1)\times 3=16>0$,因此$y$的取值范围为$(-\infty,-4]\cup [1,+\infty)$。
5.单调性法:当$x1$时,函数单调递增。
因此,所求值域为$[-4,+\infty)$。
6.图象法:函数$y=x^2-2x-3$的图象是一个开口向上的抛物线,顶点坐标为$(1,-4)$。
因此,所求值域为$[-4,+\infty)$。
除了以上这些方法,我们还可以通过改变$x$的范围来求函数的值域。
例如,将$x\in R$改为$x\in [-3,2]$或$x\in [-3,+\infty)$等。
函数定义域值域求法(全十一种)
函数定义域值域求法(全十一种)高中函数定义域和值域的求法总结一、常规型常规型是指已知函数的解析式,求函数的定义域和值域。
解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。
例如,对于函数 $y=\frac{x^2-2x-15}{|x+3|-8}$,要使函数有意义,则必须满足 $x^2-2x-15\geq 0$ 且 $|x+3|\neq 8$。
解得$x\leq -3$ 或 $x\geq 5$,且 $x\neq -11$ 或 $x\neq 5$。
将两个条件求交集得 $x\leq -3$ 且 $x\neq -11$ 或 $x>5$,即函数的定义域为 $\{x|x\leq -3\text{ 且 }x\neq -11\}\cup\{x|x>5\}$。
二、抽象函数型抽象函数型是指没有给出解析式的函数,需要根据已知条件求解。
一般有两种情况:1)已知 $f(x)$ 的定义域,求 $f[g(x)]$ 的定义域。
解法是:已知 $f(x)$ 的定义域为 $[a,b]$,则 $f[g(x)]$ 的定义域为解$a\leq g(x)\leq b$。
例如,已知 $f(x)$ 的定义域为 $[-2,2]$,求 $f(x^2-1)$ 的定义域。
令 $-2\leq x^2-1\leq 2$,得 $-1\leq x^2\leq 3$,即 $-|x|\leq x\leq |x|$。
因此,$-3\leq x\leq 3$,即函数的定义域为$\{x|-3\leq x\leq 3\}$。
2)已知 $f[g(x)]$ 的定义域,求 $f(x)$ 的定义域。
解法是:已知 $f[g(x)]$ 的定义域为 $[a,b]$,则 $f(x)$ 的定义域为$g(x)$ 的值域。
例如,已知 $f(2x+1)$ 的定义域为 $[1,2]$,求 $f(x)$ 的定义域。
因为 $1\leq x\leq 2$,所以 $2\leq 2x\leq 4$,$3\leq2x+1\leq 5$。
求解函数值域的三种典型方法
Җ㊀山东㊀马建国㊀㊀求解函数值域是函数学习的一个关键环节,正确求解值域对函数的运用和计算都十分重要,如果值域的求解错误,运用过程可能会受到阻碍.因此,在教学中应注重函数值域求解方法的选择,化繁为简,提高解题效率.本文从求解函数值域的三种典型方法着手进行研究.1㊀换元法换元法是指将函数中某个式子看成一个整体,用一个变量去替换它,从而将问题进行简化.在运用换元法求函数值域的过程中,通常是将复杂的复合函数进行换元,然后根据新函数的定义域对函数值域进行求解.例1㊀已知函数y=x2+x2-1,求解该函数的值域.分析㊀观察可知函数中存在根式,因此可以采用换元法,在本题中可以将x2-1整体换为t(tȡ0),将原函数转化为用t表示的函数,再根据tȡ0的条件得出原函数的值域.解㊀令x2-1=t,则x2=t2+1,所以y=t2+t+1.又因为tȡ0,所以y=t2+t+1=(t+12)2+34ȡ1,则函数y=x2+x2-1的值域是[1,+ɕ).例2㊀已知函数y=2x-x-1,求解该函数的值域.分析㊀观察可知函数中存在根式,因此可以采用换元法,在本题中可以将x-1整体换为t(tȡ0),将原函数转化为用t表示的函数,再根据tȡ0的条件,得出原函数的值域.解㊀因为x-1=t,x=t2+1,所以y=2(t2+1)-t=2(t-14)2+158.又因为tȡ0,所以yȡ158,则函数y=2x+x-1的值域是[158,+ɕ).2㊀判别式法判别式法是在一元二次方程中,判断方程有没有根以及有几个根的方法.当b2-4a c<0时,方程无实根;当b2-4a c=0时,方程有两个相等的实根;当b2-4a c>0时,方程有两个不相等的实根.在利用判别式法求值域的过程中,首先要构造出一个一元二次方程(将y看作常数),利用判别式Δȡ0,求得函数的值域.例3㊀已知函数y=2x1+x2,求解该函数的值域.分析㊀通过观察可知目标函数是分母为一元二次函数的分式函数,因此先将函数变形为一元二次方程,即y x2-2x+y=0,然后根据y=0和yʂ0的情况进行分析,同时利用判别式法对一元二次方程的根进行判断,从而可以得出函数的值域.解㊀因为y=2x1+x2,所以y(1+x2)=2x,即y x2-2x+y=0.当y=0时,-2x=0,则x=0.当yʂ0时,根据Δ=4-4y2ȡ0,得-1ɤyɤ1.综上所述,函数y=2x1+x2的值域是[-1,1].例4㊀已知函数y=3x2+3x+1x2+x+1,求解该函数的值域.分析㊀已知函数是分子㊁分母均为一元二次函数的分式函数,可以利用判别式法进行值域求解,先将函数变形为一元二次方程,即(y-3)x2+(y-3)x+y-1,再根据y-3=0和y-3ʂ0的情况分析,从而得出函数的值域.解㊀因为y=3x2+3x+1x2+x+1,所以(y-3)x2+(y-3)x+y-1=0.当y-3=0时,y=3,3-1=0不存在.当y-3ʂ0时,则Δ=(y-3)2-4(y-3)(y-1)ȡ0,13ɤy<3.综上所述,y=3x2+3x+1x2+x+1的值域是[13,3).3㊀分类讨论法分类讨论法指的是在求解一类问题时,有时会遇到多种情况,无法用同一种方法去解决,需要分类进行讨论,最后再归纳总结得出最终结论.求解函数值域4的分类讨论法通常是用在分段函数求值域或者是含绝对值函数求值域,其主要思路是分别根据定义域分类进行值域求解,最终再汇总结果.例5㊀已知函数y =|x +1|+|x -2|,求解该函数的值域.分析㊀通过观察可知函数带有绝对值符号,首先考虑去绝对值符号,从而发现分段区间函数的表达式不同,因此考虑分类讨论法,将函数的定义域求出后,分别代入函数式,就可以得出原函数的值域.解㊀该函数的定义域可分为x ɤ-1,-1<x ɤ2,x >2.在定义域内的函数表达式为y =-2x +1,x ɤ-1,3,-1<x ɤ2,2x -1,x >2.ìîíïïïï当x ɤ-1时,y =-2x +1ȡ3;当-1<x ɤ2时,y =3;当x >2时,y =2x -1>3.综上所述,函数y =|x +1|+|x -2|的值域是[3,+ɕ).例6㊀已知函数y =x 2-4x +3,0<x <5,x 2+4x +3,-3ɤx ɤ0,{求解该函数的值域.分析㊀观察已知函数,分段区间内函数的表达式不同,因此考虑分类讨论法,求得x 的取值范围,再代入函数式,就可以得出函数值域.解㊀令x 1=2,则y 1=-1,令x 2=-2,则y 2=-1.当0<x <5时,x 2-4x +3的值域为[-1,8);当-3ɤx ɤ0时,x 2+4x +3的值域为[-1,3].综上所述,y=x 2-4x +3,0<x <5,x 2+4x +3,-3ɤx ɤ0{的值域为[-1,8).换元法㊁判别式法㊁分类讨论法是函数求值域中典型的三种方法,使用这三种方法时,应注意换元后表达式的等价变形㊁判别式的正确使用㊁分段函数的定义域划分等.这三种方法是值域求解的重要方法,应该要求学生要对方法熟练掌握㊁融会贯通.(作者单位:山东临沂高新区高级中学)Җ㊀湖南㊀蒋迎芳㊀㊀高考对集合问题的考查多与函数㊁不等式进行交会,问题难度不大,只要准确理解集合的关系及运算即可. 集合 是高中生学习的第一个数学知识,为什么把它放在第一章?因为集合是学习其他模块的基础,与其他知识具有紧密的联系.下面谈一谈笔者的几点感悟,供读者参考.1㊀集合的关系和运算丰富了其他问题的求解视角1)集合之间的关系包括子集㊁真子集㊁相等.2)集合之间的运算包括交㊁并㊁补.集合的关系和运算可应用到其他知识的学习或问题的求解中.例如,集合的关系和运算与充分㊁必要条件之间的关系:若A 是B 的子集,即A ⊆B ,则A 是B 的充分条件;若A =B ,则A 与B 互为充要条件;若A ɘB =∅,则A ,B 之间既不是充分条件,也不是必要条件.再如,集合的关系和运算与概率之间的关系:若A ,B 为互斥事件,则A ɘB =∅;若A ,B 为对立事件,则A ɘB =∅,且B =∁U A ;事件A ,B 至少有一个发生,记为A ɣB ,称为A,B 的和事件;事件A ,B同时发生,记为A ɘB ,称为A ,B 的积事件.例1㊀某高校数学学院举行2020届毕业典礼,主席台上有并排的六个座位,出席典礼的甲㊁乙㊁丙等六位院系的教师可随意就座,则甲㊁乙两位教师的座位均不与丙相邻的概率为.设U ={六位教师任意就座的所有情况},A ={甲㊁丙两位教师的座位相邻的情况},B ={乙㊁丙两位教师的座位相邻的情况},则A ɘB ={全集U 中甲㊁乙两位教师的座位与丙相邻的情况},A ɣB ={全集U 中甲或乙两位教师的座位与丙相邻的情况},A ɣB ={全集U 中甲㊁乙两位教师的座位均不与丙相邻的情况}.本题即求P (A ɣB ),而P (A ɣB )=1-P (A ɣB ),故只需求P (A ɣB ).因为P (A ɣB )=P (A )+P (B )-P (A ɘB ),而5。
浅谈函数值域的求法
每一环节。熟练地应用英语,成为顺利完 成进出IZI业务的关键。从其课程的内容、
性质和任务来看,我们要既注重它的实践 性、涉外性,又强调其英语应用的熟练性。 为提高学生专业知识运用能力,以适应 新形势下国际贸易发展的需要,《国际贸
信息量大,在课堂上进行双语教学,无疑
对他们理解专业知识造成了很大的障 碍,影响了部分学生学习的积极性,这就 制约了教学进度,影响了教学效果。而且
/
. .
解:・.・、/荔丁≥1.・.该函数值域
为【4,+∞).
。
o. 一l I 2
3
k
二、配方法
当所给函数是二次函数或可化为二 次函数的复合函数时,可以利用配方法 求函数值域.
值域. 例5
惑Z女k
求函数尸蒜的值域.
例7求函数y=k+ll+X/1";2万的
值域.
’
解i・.’xZ+3x+6>0恒成立’...Y(xZ+ 3x+6)=x+2,
代入端点可得原函数的值域为【l, 、/F】.
而高考题中又经常考察该点知识,因此 在学习中必须引起我们重视.下面谈一些 求函数值域常用的方法:
解:定义域为茹e(一∞,彳1】,令f=
七、数形结合法
函数图象是掌握函数的重要手段, 运用数形结合的方法,根据函数的图象
一、观察法
函数的定义域和对应法则直接约束
(I≥o),则茗:乓巳,
生学习兴趣不高,影响了教学效果。
平不齐,领会程度不一,就会为双语教学 带来困难。
学面临的f司题
业=:墨黧易实务》双语教
1.缺乏合适的教材 选用合适的教材是双语教学中举足
足,不完全符合双语教学师资的要求。有
渊这蝴懒不 段实嚣赐实务煳语教学的分阶厶薹
函数值域求法十五种
函数值域求法十五种在函数中,定义域和值域都起着重要的决定作用。
值域是由定义域和对应法则共同确定的。
确定函数的值域是研究函数不可缺少的重要一环。
对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位。
本文就函数值域求法归纳如下,供参考。
基本知识1.定义:因变量y的取值范围叫做函数的值域(或函数值的集合)。
2.常见的函数值域求解思路包括:⑴划归为几类常见函数,利用这些函数的图象和性质求解。
⑵反解函数,将自变量x用函数y的代数式形式表示出来,利用定义域建立函数y的不等式,解不等式即可获解。
⑶可以从方程的角度理解函数的值域,从方程的角度讲,函数的值域即为使关于x的方程y=f(x)在定义域内有解的y得取值范围。
特别地,若函数可看成关于x的一元二次方程,则可通过一元二次方程在函数定义域内有解的条件,利用判别式求出函数的值域。
⑷可以用函数的单调性求值域。
⑸其他方法。
1.直接观察法对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,可以求得函数的值域。
例1.求函数的值域。
解:显然函数的值域是:2.配方法配方法是求二次函数值域最基本的方法之一。
例2.求函数解:将函数配方得:当x=-1时。
的值域。
由二次函数的性质可知:当x=1时。
故函数的值域是:[4,8]3.判别式法例3.求函数解:两边平方整理得:解得:但此时的函数的定义域由由,仅保证关于x的方程:在实数集R有实根,而不能确定此函数的值域的范围。
可以采取如下方法进一步确定原函数的值域。
代入方程(1)解得:原函数的值域为:即当时,注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
4.反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
例4.求函数值域。
解:由原函数式可得:则其反函数为。
其定义域为:故所求函数的值域为:函数有界性法:当求函数的值域困难时,可以利用已知的函数有界性来确定函数的值域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四类换元法
1、一般换元;
2、双换元;
2、三角换元; 4、整体换元。
一、一般换元
例1、求函数
1--=x x y 的值域。
二、三角换元
两个重要公式 1cos sin 22=+x x
x x 22cos 1tan 1=
+(常出现在竞赛中) 例2、求函数
22x x y -+=
例3、(2011高中联赛)函数1
1)(2-+=x x x f 的值域为_____________
三、双换元
例4、求函数
31++-=x x y 的值域
例5、求函数
x x y -+-=363的值域。
四、整体换元
例6、求函数
5)4)(3)(2)(1(+++++=x x x x y 的值域。
判别式法/万能K 法原理:
方程有解:
一、分式型的值域
形如f
ex dx c bx ax y ++++=22(d a ,不同时为零)的二次分式函数,可转化成如0)()()(2=++y c x y B x y A 的形式,视为关于x 的一元二次方程,对y 使用判别式0≥∆,可得y 的取值范围。
例1、求函数12222
++-=x x x y 的值域。
例2、求函数122+++=x x x
x y 的值域
例3、求函数x
x x x y ++-=2222在)2,2(-上的值域/最大、最小值。
例4、若函数1
8log )(223+++=x n x mx x f 的定义域为R ,值域为]2,0[,求n m ,的值。
二、可化为分式型的值域 形如222
2fy
exy dx cy bxy ax M ++++=(d a ,不同时为零)的式子,分子分母同除2y 齐次化后得到f y
x e y x d c y x b y x a M ++++=)()()()(22,令t y x =,则化为一元的二次型分式f et dt c bt at M ++++=22。
例5、设+
∈R y x ,,则代数式y x y y x x 222+++的最大值为______________.
例6、若对任意非零实数
y x ,不等式xy x y x a 4)5(222+≤+恒成立,则a 的最大值为___________
(两种方法)
例7、若R y x ∈,,求
561045),(22++-+-=y x y xy x y x f 最小值。
例8、(2016清华自招)已知12=+
y x ,求22y x x ++的最小值。
三、换元之后设K 带入型
例9、已知123222=++y xy x
,求xy y x ++的最小值。
判别式法/万能K 法五种适用类型
1、分式型
2、可化为分式型
3、整式型
4、设K 带入型
5、换元设K 带入型
总之: 得到某个字母的一元二次方程,对别的字母都可以使用判别式。
课后作业:
1、对于任意实数x ,)(2
b a
c bx ax y <++=恒为负数,求a b c b a -++的最小值。
2、(杭州二模)设R y x ∈,,y x y xy x M
+-+-=2232,则求M 的最小值。
3、若
24ππ<<x ,则函数x x y 2tan 2tan •=的最大值为_____________
4、求函数
)5)(3)(1)(1(+++-=x x x x y 的最大值。