活塞环的基本材料

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

活塞环的基本材料

当今活塞环应用各种品质的铸铁材料和钢。首先考察铸铁材料,按照用材料强度、延伸率、疲劳强度和耐磨性等指标表征的承载能力,可选用的铸造品质的全部范围见表1。对于第一道压缩环应特别优先选用一种具有高抗弯强度和弹性模数的球墨铸铁,其基体为马氏体,以获得高的硬度,可使侧面具有较好的耐磨性。

第二道活塞环能应用无镀层环,开发了一种在调质热处理状态下呈现细化片状组织铸造品质的材料,通过生成铬、钒、锰和钨元素的特殊碳化物,以及马氏体基体组织,以获得良好的耐磨性。而GOE44可锻铸铁是一种在细化珠光体基体组织中有针对性地生成残余碳化物成分的材料,能将高抗切向力强度与良好的耐磨性结合起来。

由于对材料强度和疲劳强度以及良好耐磨性的要求越来越高,现在趋向于进一步优化球状石墨的生成,以便在静态(装配状态)和动态负荷下获得特别高的抗弯强度,同时用贝氏体基体组织来获得活塞环侧面和工作表面较低的磨损率。

由于汽油机和柴油机活塞结构高度降低,压缩环的轴向高度相应减小,特别是面对20MPa气缸爆发压力,对机械结构的要求越来越高,这一切都要求提高活塞环侧面的强度和耐磨性。钢材料特别适合于这些要求。与铸铁材料相比,钢具有良好的机械动态承载能力,因此在弯曲负荷增大的情况下具有高的疲劳强度。当然,通过表面镀层和表面处理的效果可部分地缩小铸铁和钢之间动态强度的差异。试验表明,通过附加的化学处理(CPS法)可使氮化钢活塞环的动态强度提高大约30%。

首先应用含铬量为13%或18%的高铬马氏体钢,这种材料通过生成精细分布的铬碳化物和附加生成的渗氮层使表面层硬度明显提高,从而获得良好的耐磨性。如果要使用调质处理的Cr-Si低合金钢的话,则环工作表面镀层是必需的。

在最近15年内,全世界汽油机第1道压缩环都由铸铁环改用钢环,其中特别是欧洲和日本偏爱于氮化钢环。在汽油机高转速的使用条件下,现在轴向高度低的第1道钢环已成为标准零件,在此期间开发的发动机的第1道环超过90%采用氮化钢环,而第2道环大多数采用成本较低的铸铁环,并根据各自的功能要求选择相应的结构型式和工作表面涂层。

在欧洲轿车柴油机,即升功率大于50k

W/的高负荷发动机上,第1道压缩环必须使用牌号为52/56的球墨铸铁,第2道环采用牌号为32的调质耐磨灰铸铁。通过采用强化的球墨铸铁(GOE56)或含铬18%铬钢来改善活塞环侧面特别是上侧面的耐磨性。当然,特别是在环轴向高度低的情况下,钢环包含着环槽磨损增大的风险,但是在每种情况下槽和环侧面总磨损量的差异并不大。

在柴油机上,由于活塞环的轴向高度较高,其材料向钢变化的倾向并不明显。这一方面是因为铸铁环和环槽镶圈材料之,间的材料配对非常好,另一方面是因为铸铁材料具有非常良好的加工性。

原则上,商用车柴油机第1道压缩环使用球墨铸铁已有非常丰富的经验,这从球墨铸铁环在欧洲柴油机上占有很高的分额就反映出来了。但是,自从上世纪60年代以来,具有非常低轴向磨损的含铬18%铬钢镀层压缩环在商用车柴油

机上的应用也具有相当丰富的批量生产使用经验。此外,随着气缸爆发压力明显超过20MPa,可望钢活塞环的应用会有所增长。

2.活塞环的结构型式

汽车汽油机第1道活塞环100%采用矩形环,其工作表面根据有关机油耗和曲轴箱通风方面的要求,采用对称球形、单边球形或锥形。大约30%的欧洲轿车汽油机,为了改善机油消耗,工作表面不是带有单边鼓形度就是带有锥度。

轿车柴油机大部分第1道活塞环同样也采用矩形环。在最近25年内,轿车柴油机第1道活塞环采用双梯形环的份额稳定在大约30%。随着气缸直径的增大,由于燃烧侧的影响,双梯形环的份额也随之增加(图2)。

3.活塞环的轴向高度

在最近20年过程中,全世界汽油机第1道压缩环明显趋向于低轴向高度。由于发动机转速的提高和由此而导致的活塞质量的减轻或尺寸的缩小,活塞环高度的降低在技术上是必要的。对于第1道活塞环必须应用轴向高度低的环而言,开发氮化钢环是一个前提条件。当今开发汽油机时,1.0mm和12mm环高是第1道活塞环优先选择的尺寸,而第2道活塞环优先选择1.2~1.75mm。

而在柴油机上,由于气缸爆发压力大大升高,不会出现活塞环轴向高度降低的趋势其中活塞环高度的降低很可能出现在缸径小于75mm的柴油机上,而在商用车柴油机上,甚至于由于爆发压力升高而倾向于加大活塞环高度。当考虑到应用轴向高度低的活塞环对降低摩擦功率有相当作用时,要特别注意对轴向耐磨性可能产生的影响。

工作表面的耐磨性

在现代喷油和燃烧策略下,第1道活塞环承受着明显提高的热负荷和工作负荷,因此通过下列方法改善活塞环工作表面的强化是开发工作的重点。

1.电化学镀层

现在,标准硬铬镀层优先选择用作第2道环和刮油环的耐磨层,这种多年来有效应用的铬碳化物层(CKS),由于其具有较高的热负荷承载能力和良好的耐磨性,与现代高负荷柴油机的开发成果卓有成效地结合起来。

为了满足更高的要求开发了一种新的镀层方法,这种镀层是在硬铬基体上由特殊的组织形成的极细微的裂纹网格中,牢固地固定着密集的极小的金刚石微粒。这种铬金刚石镀层在欧洲被命名为GDC,是目前市场上众所周知的镀层中自身磨损最低的。这种GDC镀层能形成尖锐的环下工作棱边,从而成为在高热负荷承载能力和耐磨性基础上降低机油耗和曲轴箱通风的一个要素,并以其,有利的综合性能为未来新一代发动机提供了一种创新的技术。

由于这种电化学镀层方法具有相对较高的析出率,因此在技术方法上具有很大的吸引力。在电化学镀层方面,针对新材料组合和表面金相组织,旨为进一步提高铬基体镀层的热负荷承载能力,欧洲的一些活塞环专业公司进行了长期卓有成效的研究工作,而在系统磨损和效率方面并无重大的缺陷。

2.热喷镀

多年来,在内燃机上热喷镀用于压缩环,特别是等离子喷镀中陶瓷占了很大的份额。应用陶瓷喷镀非常有利于减少因环和气缸壁之间大大增加的粘连磨损而引起的烧损痕迹,但是它并不适合于能促使进一步改善耐磨性的硬质合金类组织的析出。为此,开发了高速火焰喷镀(HVOF)技术,它能将超声波火焰中的粉末状碳化铬,碳化钨材料和金属状镍一铬一钼合金植入和烧结在活塞环工作表面,

相关文档
最新文档