八上数学第3章 中心对称图形(一)第2课时 中心对称与中心对称图形(1)
八上3.2中心对称与中心对称图形(2)
3.2中心对称与中心对称图形(2)[ 教案]班级姓名学号学习目标比照轴对称与轴对称图形的关系,认识中心对称图形,知道中心对称图形的性质学习难点⒈中心对称图形与轴对称图形的区别;⒉利用中心对称图形的有关概念和基本性质解决问题。
教学过程创设情景1.欣赏图片:问题:这些图形有什么共同的特征?共同回顾轴对称图形,某图形沿某条轴对折能重合,那么有没有什么图形绕着某点旋转也能重合呢?有没有什么图形绕着某点旋转180能够重合呢?二、新知探究⒈引出概念:你对线段有哪些认识?你对平行四边形有哪些认识?中心对称图形:平面内,如果把一个图形绕着某一点旋转180度后能与自身重合,那么这个图形叫做中心对称图形。
这个点就是它的对称中心。
练一练 1. 下面哪个图形是中心对称图形?2.把26个英文字母看成图案,哪些英文大写字母是中心对称图案?F G H I J M N O P S T W X Y Z3.下列几组图形中,既是中心对称图形,又是轴对称图形的是 ( )A.正方形、长方形、平行四边形B.正三角形、正方形、等腰梯形C.长方形、正方形、圆D.平行四边形、正方形、等边三角形4.如图,等边△ABC 的3个顶点都在圆上,请把这个图形补成一个中心对称图形.例:如图,AC=BD ,∠A=∠B ,点E 、F 在AB 上,且DE ∥CF ,试说明它是中心对称图形的理由.5、你能列举生活中的中心对称图形的例子吗?三、解决问题1.平行四边形是中心对称图形,现过对称中心任意画一直线将其分成两部分,这两部分面积有何关系?将平行四边形换成其它中心对称图形,刚才的结论还成立吗?2.张老汉有一块田地如图所示,他想田分给两个儿子,儿子提出:⑴分割的面积应相等;⑵最好把分割线做成一条水渠,便于灌溉,你能帮助张老汉画出这条分割线吗?3.如图,有一块长方形田地,田地内有一口井,现将这块土地平分给两家农户,要求两家合用这口井浇地,请问应如何分?在图中画出分界线.四、课堂小结本节课学到了哪些知识?中心对称图形的定义;中心对称图形的性质;中心对称图形的应用。
八(上)数学 第三章 3.2 中心对称与中心对称图形(1)
八年级数学上第三章中心对称图形(一)3.2 中心对称与中心对称图形第1课时中心对称与中心对称图形(1)1.关于中心对称的两个图形,对称点连线都经过_______,并且被_______平分.2.下列说法中,不正确的是( ) A.关于某一点中心对称的两个图形全等B.全等的图形一定关于某一点成中心对称C.圆是中心对称图形D.任何一条线段的两个端点关于这条线段的中点成中心对称3.国旗上的每颗五角星( ) A.是中心对称图形而不是轴对称图形B.是轴对称图形而不是中心对称图形C.既是中心对称图形,又是轴对称图形D.既不是中心对称图形,又不是轴对称图形4.已知线段AB,用圆规与直尺如何找到线段AB的两个端点的对称中心.5.如图,两个同样的三角形成中心对称,试确定它的对称中心.6.请你画出下图关于点A的中心对称图形.7.如图,O是三角形ABC边AB上的一点,请你画一个三角形,使它与三角形ABC关于点O成中心对称.8.如图,画出四边形ABCD关于点B的对称图形.9.如图,在△ABC与△EDF关于点O成中心对称,你能从图中找出哪些等量关系?10.以如图的正方形右边缘所在的直线为轴将该图形向右翻转180°后,再按顺时针声向旋转180°,所得到的图形是( )11.如图,在四边形ABCD中,AB∥CD,B C⊥CD,垂足为点C,E是AD的中点,连结BE并延长交CD的延长线于点F.(1)图中△EFD可以由△_______绕着点________旋转________度后得到;(2)写出图中的一对全等三角形__________;(3)若AB=4,BC=5,CD=6,求△BCF的面积.12.如图,在四边形ABCD中,AB∥CD,M是BC的中点.(1)连结DM并延长,交AB的延长线于点E,连结AM;(2)△CDM与△BEM关于点_________成__________对称;(3)如果AD=AB+CD,那么△ADE是什么三角形? AM是△ADE的什么线段?请说明理由.13.观察下列银行标志,从图案看是中心对称图形的有( )A.1个B.2个C.3个D.4个14.下面各图形中,是中心对称图形的是( )15.下列四张扑克牌的牌面,不是中心对称图形的是( )参考答案1.对称中心对称中心2.B 3.B 4.对称中心为段AB的中点,图略.5.连结对称点连线,其交点就是对称中心.6.图略7.图略8.图略9.OA=OE,OC=OF,OB=OD,AB=DE,CB=FD,AC=EF,∠ABC=∠FDE,∠BAC=∠FED,∠ACB=∠EFD.10.A11.(1)EBA E 180 (2)△FD E≌△BAE (3)S△BCF=S梯形ABCD=2512.(1)略(2)M 中心(3)等腰,AM是△ADE的DE边上的垂直平分线,又是∠DAE的角平分线.13.C 14.D 15.D。
第三章 中心对称图形(一)知识点
第三章中心对称图形(一)1、图形的旋转(1)图形的旋转:在平面内,将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角。
旋转问题的三要素:旋转中心、旋转方向、旋转角度。
(2)基本性质:旋转前、后的图形全等;对应点到旋转中心的距离相等;每一对对应点与旋转中心的连线所成的角彼此相等。
2、中心对称与中心对称图形(1)中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。
(2)中心对称图形:平面内,如果把一个图形绕着某一点旋转180度后能与自身重合,那么这个图形叫做中心对称图形。
这个点就是它的对称中心。
(3)确定关于某点成中心对称的两个图形的对称中心的方法:方法一:连接任意一对对称点,取这条线段的中点,则该点为对称中心;方法二: 任意连接两对对称点,则这两条线段的交点即是对称中心;(4)如何画对称图形关键:作多边形各顶点关于对称中心的对称点成中心对称的两个图形:对应角、对应边相等,对应边还互相平行(或在同一直线上)3、平行四边形(1)概念:两组对边分别平行的四边形叫做平行四边形。
(2)性质:平行四边形对角相等,对边平行且相等,邻角互补,对角线相互平分。
(3)判定:①两组对边分别平行的四边形是平行四边形。
②两组对边分别相等的四边形是平行四边形。
③一组对边平行且相等的四边形是平行四边形。
④对角线互相平分的四边形是平行四边形。
(4)平行四边形中常用辅助线的添法1、连结对角线或平移对角线。
2、过顶点作对边的垂线构成直角三角形。
3、连结对角线交点与一边中点,或过对角线交点作一边的平行线,构成线段平行或中位线。
4、连结顶点与对边上一点的线段或延长这条线段,构造相似三角形或等积三角形。
5、过顶点作对角线的垂线,构成线段平行或三角形全等。
4、矩形(1)概念:有一个角是直角的平行四边形是矩形。
八上数学第3章 中心对称图形(一)第3课时 中心对称与中心对称图形(2)
八年级数学(上)第三章中心对称图形(一)第3课时中心对称与中心对称图形(二)(附答案)1.下列图形中,既是轴对称图形又是中心对称图形的是( )2.下列四张扑克牌的牌面,不是中心对称图形的是( )3.观察下列银行标志,从图案看是中心对称图形的有( )A.1个B.2个C.3个D.4个4.下列四组图形中,中心对称的图形有( ) A.1组B.2组C.3组D.4组5.如图①所示的四张牌,若将其中一张牌旋转180°后得到图②,则旋转的牌是( )6.如图,下列图形:(1)是轴对称图形的是___________,它们的对称轴分别有______________条.(2)通过旋转能完全重合的图形是_________.请在图中标出各自的旋转中心,它们分别至少旋转___________才能与原图形重合.(3)是中心对称图形的是___________.7.找出下列各图中的旋转中心,说出至少旋转多少度能与原图形重合,并说出它们是不是中心对称图形.8.如图,AC与BD互相平分且相交于点O,点E、F分别在AB、CD上,且AE=CF.试利用“中心对称”的有关知识说明:点E、O、F在同一直线上,且OE=OF.9.如图是4×4的正方形网格,请在其中选取一个白色的正方形并涂上阴影,使图中阴影部分是一个中心对称图形.10.如图,在△ABC中,D是AB边的中点,AC=4,BC=6.(1)作出△CDB关于点D的中心对称图形.(2)利用“中心对称”的有关知识,求CD的取值范围.11.如图,点M、N分别是△ABC的边BC、AC的中点,点P是点A关于点M的对称点,点Q是点B关于点N的对称点.试说明P、C、Q三点在同一条直线上.12.按要求作图.(1)如图①是有5个大小相同的圆构成的图形,若想要画一条直线把它们分割成面积相等的两个部分,该如何画?(2)如图②是一块方角形钢板,请用一条直线将其分成面积相等的两部分.参考答案1.D 2.D 3.C 4.C 5.A6.(1)①②③④4、3、6、4 (2)①②③④画图略90°,120°,60°,90°(3)①③④7.略8.略9.略10.(1)如图所示(2)B、C点的对应点为点A、E,由中心对称的特征得CD=DE,BC=AE,在△EAC中,AC+AE>CE,AE-AC<CE.∵AC=4,AE=BC=6,∴2<CE<10.∴1<CD<511.连接PC、CQ.∵点M、N分别是△ABC的边BC、AC的中点,∴BM=CM,AN=CN.∴点C是点B关于点M的对称点,点C也是点A关于点N的对称点.又∵点P是A点关于点M的对称点,点Q是点B关于点N的对称点,∴△PCM是△ABM关于点M的对称三角形,△QCN是△BAN关于点N的对称三角形.∴∠ABM=∠PCM,∠BAN=∠QCN.∴∠PCM+∠ACB+∠QCN=∠ABM+∠ACB+∠BAM=180°.∴P、C、Q三点在同一条直线上12.(1)如图①,画辅助圆,设圆心为O6,圆O2与圆O5的公共点为点O,直线O1O6过点O,显然点O为下图的对称中心,这条直线把六个圆分成面积相等的两部分,也把圆O6分成面积相等的两部分.因此,直线O1O6即为所求直线(2)中心对称图形有一个性质:过中心对称图形的对称中心的每一条直线,都将这个中心对称图形分成面积相等的两部分.图中方角形钢板虽不是中心对称图形,但可采用“割”或“补”的方法将其分成两个中心对称的图形.共有三种解法,如图②、③、④所示。
八(上)数学 第三章 3.2 中心对称与中心对称图形(2)
八年级数学上第三章中心对称图形(一)3.2 中心对称与中心对称图形第2课时中心对称与中心对称图形(2)1.如图,□ABCD的对角线AC、BD相交于点O,用纸板验证:把□ABCD绕______旋转_______,旋转后的图形与旋转前的图形互相重合,根据这一过程,可以验证平行四边形的性质有:①_______;②________;③_________.2.在平面内,一个图形绕某个点旋转_________,如果旋转前后的图形______,那么这个图形叫做中心对称图形,这个点叫做它的_________.3.中心对称图形上的每一对对应点所连成的线段都被对称中心_______.4.下列图形中属于中心对称图形的是( )5.下列图形中,既是轴对称图形,又是中心对称图形的是( )6.下列图形中,是中心对称图形的是( )7.如图,四边形ABCD关于点O成中心对称图形.说明:四边形ABCD是平行四边形的理由.8.如图,MN⊥PQ,交点为O,点A、A′是以MN为对称轴的对称点,点A、A″是以PQ为对称轴的对称点,试说明点A′、A″是以点O为对称中心的对称点.9.如图,有一个圆(圆心为O)和一个平行四边形,请画出一条直线,同时把这两个图形分成面积相等的两个部分.10.如图,线段AB与A′B′关于某一点对称.(1)在图上作出对称中心O;(2)连结AB′,A′B,试判断AB′和A′B的关系,并说明理由.11.如图,图中出现的角都是直角.(1)画一条直线将这个图形分成面积相等的两个部分(给出三种画法);(2)符合(1)中要求的直线有多少条?如果只有三条,请说明理由;如果超过三条,请画出一种图出来.12.如图,菱形ABCD(图(1))与菱形EFGH(图(2))的形状、大小完全相同.(1)请从下列序号中选择正确选项的序号填写:①点E、F、G、H;②点G、F、E、H;③点E、H、G、F;④点G、H、E、F.如果图(1)经过一次平移后得到图(2),那么点A、B、C、D对应点分别是________;如果图(1)经过一次轴对称后得到图(2),那么点A、B、C、D对应点分别是________;如果图(1)经过一次旋转后得到图(2),那么点A、B、C、D对应点分别是________;(2)①图(1)、图(2)关于点O成中心对称,请画出对称中心(保留画图痕迹,不写画法);②写出两个图形成中心对称的一条..性质:__________.(可以结合所画图形叙述) 13.将下图按顺时针方向旋转90°后得到的是( )14.如图,在平面直角坐标系中,△ABC和△A1B1C1关于点E成中心对称.(1)画出对称中心E,并写出点E、A、C的坐标;(2)P(a,b)是△ABC的边AC上一点,△ABC经平移后,点P的对应点为P2(a+6,b+2),请画出上述平移后的△A2B2C2,并写出点A2、C2的坐标;(3)判断△A2B2C2和△A1B1C1的位置关系(直接写出结果).参考答案1.点O 180°对边相等对角相等对角线互相平分2.180°能够完全重合对称中心3.平分4.B 5.C 6.B7.∵四边形ABCD关于点O成中心对称图形,∴AC、BD都过点O,且OA=OC,OB=OD.∴∠AOD=∠BOC,∴△AO D≌△COB,∠DAO=∠BCO.∴AD∥BC.同理AB∥DC.∴四边形ABCD是平行四边形.8.如图,连结AA′、A A″、OA、OA′、O A″.∵A、A′是以MN为对称轴的对称点,∴MN是AA′的垂直平分线.∴OA=OA′,∠1=∠2.同理OA=O A″,∠3=∠4,∴OA′=O A″.∴∠1+∠4=∠2+∠3=∠MOQ=90°.∴∠1+∠2+∠3+∠4=180°.∴A′、O、A″在同一直线上,且OA′=O A″.∴点A′、A″是以点O为对称中心的对称点.9.10.(1)连结AA′,BB′,其交点即为对称中心O.(2)AB′∥A′B且AB′=A′B.11.这样的直线有无数条,比如我们可以利用图(1)来画出第四种图形.如图(4),取线段AB的中点O,过点O作直线l4,则直线l4也能将整个图形分成为面积相等的两个部分.因此这样的直线实际上有无数条.12.(1)①②③④(2)①图略②DC=DE等13 A14.(1)图略E(-3,-1)、A(-3,2)、C(-2,0)(2)A2(3,4)、C2(4,6)(3)以点O成中心对称。
中心对称和中心对称图形
中心对称和中心对称图形一、中心对称中心对称是数学中的基本概念之一,在几何学中有广泛的应用。
中心对称是指存在一个中心点,通过该中心点可以将图形分成两个部分,这两个部分相互镜像,并且对称点与中心点的距离相等。
换句话说,如果将图形绕着中心点旋转180度,那么图形还是与原图形完全重合。
二、中心对称图形中心对称图形是指具有中心对称性质的图形。
常见的中心对称图形包括正方形、圆形、五角星等。
1. 正方形正方形是一种具有中心对称性质的图形。
它有四个二等边的直角三角形组成,每个直角三角形的两条直角边都是正方形的一条边。
正方形的对称中心位于正方形的中心点,通过对称中心可以将正方形分成两个对称的部分。
2. 圆形圆形也是一种具有中心对称性质的图形。
圆形的对称中心位于圆心,通过对称中心可以将圆形分成两个对称的部分。
无论从任何角度看,圆形都具有中心对称性,因为无论如何旋转都可以使圆形与原来的位置完全重合。
3. 五角星五角星是一种常见的中心对称图形。
它由两个五边形组成,每个五边形的五个顶点与另一个五边形的对称顶点相连,形成一个具有中心对称性质的图形。
五角星的对称中心位于两个五边形的重心,通过对称中心可以将五角星分成两个对称的部分。
三、应用举例中心对称和中心对称图形在日常生活中有很多应用,下面举几个例子。
1. 建筑设计中心对称在建筑设计中得到了广泛运用。
比如,很多教堂、宫殿等建筑物采用中心对称布局,将整个建筑划分成两个对称的部分。
这样的布局不仅使建筑物更加美观,而且在视觉上给人一种稳定和和谐的感觉。
2. 服装设计中心对称也在服装设计中被广泛应用。
比如,一些裙子、外套等服装的剪裁会采用中心对称设计,使得服装的左右两侧完全对称。
这种设计不仅美观,而且方便穿着,给人带来舒适的感觉。
3. 艺术创作中心对称在艺术创作中也有重要地位。
很多绘画作品和雕塑作品都运用了中心对称来构图,使得作品更加平衡和谐。
例如,著名画家达芬奇的作品《蒙娜丽莎》就采用了中心对称的构图,使得人物形象更加生动和真实。
设计中心对称图案
①分析设计图案所给定的基本图形;
②初步设计,画出草图;
③根据设计的目标,用相关的知识检验;
④画出正式的设计图案.
七、教学反思:
本节课存在的问题相当多,学生一味的去画图,而对于认识中心对称图案在生活中的应用,会设计一些中心对称图案却错的很多,主要是没有明确题目的要求,也就是没有认真审题,没有画出草图然后验证是否是中心对称图案图案,在下节课上要在强调,本节课比较失视觉冲击,提高学生的兴奋点,激发学生的学习欲望,本0-10-09/48755.html
/20090810/YJ63T5065Y07.jpg
/uploadfilepic/shiliang/2009-04-03/OOOPIC_mihoutao_200904034a41e09d798af1c2.jpg
问题4:大家把正方体剪开所形成的平面图形形状是否完全相同?他们那些是轴对称图形,哪些既是中心对称图形又是轴对称图形,哪些两种都不是。
如:
围成(奖牌)
请展示你设计的图案,并与同学交流.
例2:为了美化校园,学校准备在一块圆形空地上建花坛,现征集设计方案。要求设计的图案由圆和等边三角形组成(圆和等边三角形的大小、个数不限),并且使整个圆形场地是一个中心对称图形。请画出你的设计方案。
(设计说明:由圆和线段设计中心对称图案过渡到由圆和等边三等形组成的中心对称图案,提高学生设计中心对称图案的水平。这类图形设计问题在于抓住要求设计的图形的特征,具有中心对称性,由于圆是中心对称图形,因此等边三角形的个数是解决本题的关键)
八、教师个人介绍
省份:江苏省学校:江苏省连云港市灌云县初级中学
姓名:程兆弟职称:中学一级教师
通讯地址:江苏省连云港市灌云县初级中学
苏科版八上 3.2中心对称与中心对称图形 案例1
中心对称与中心对称图形连云港市新海实验中学乔乃英义务教育课程标准实验教科书数学(苏科版)八年级上册第三章第2节第1课时一、教学目标:1.了解中心对称图形及其基本性质2.在探索的过程中培养学生有条理地表达,及与人交流合作的能力。
3.经历观察、操作、发现、探究中心对称图形的有关概念和基本性质的过程,培养学生观察能力和动手操作能力,感受对称、匀称、均衡的美感,积累一定的审美体验。
二、学情分析:学生刚学习了图形的旋转,知道图形旋转的性质。
中心对称是一种特殊的旋转,所以学生能理解它的概念和性质。
在日常生活中,也可以找到中心对称的实例。
学生对此有感性认识,因此中心对称的概念无论从知识储备还是从认知水平较能为学生所接受。
所以但学生在今后的学习中容易和轴对称概念混淆。
所以有必要在本节课把两种概念进行比较,加深学生对中心对称的理解。
也渗透类比思想方法。
三、教学重、难点:理解中心对称的概念及其基本性质。
四、教学准备:多媒体教学设备。
学生课前准备较透明的白纸、图钉。
五、教学过程:(一)创设问题情境1.利用课件展示几幅图片,(1)几幅轴对称的图片。
(2)几幅中心对称的图片师:(1)中的两个图形有什么特点? 生:都成轴对称。
师:什么样的两个图形成轴对称?生:……师:(2)中的两个图形是不是成轴对称?生:不是。
师:(2)中的两个图形有什么特点? 他们怎么才能重合呢?生:把其中一个图形绕着一个点旋转180°能和另一个图形重合。
(利用几组对称图片的播放,引导学生对轴对称进行复习,通过学生对轴对称概念、性质的回答来了解学生对该问题的掌握程度,也为下一步中心对称与轴对称概念的区别的教学作铺垫。
同时让学生自己发现,有几组图片也是对称,但却不是轴对称,这是一种新的对称,从而引出课题)2实践操作师:让我们一起来操作。
拿出课前准备的较透明的白纸,图钉,按书上的要求进行操作。
(通过实际操作活动,激发学生的好奇心,和主动学习的欲望,为学生能概括出中心对称的概念,作铺垫。
第三章中心对称图形(一)全章教案
【课题】9.1 图形的旋转【课标要求】⒈通过具体的实例认识旋转,探索它的性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质。
⒉能够按要求作出简单平面图形旋转后的图形。
⒊欣赏旋转在现实生活中的应用。
【教学目标】⒈经历对生活中旋转现象观察、分析过程,引导学生用数学的眼光看待生活中的有关问题。
⒉通过具体实例认识旋转,知道旋转的性质。
⒊经历对具有旋转特征的图形的观察、操作、画图等过程,掌握作图的技能。
【教学重点】⒈旋转图形的性质⒉旋转图形的画法【教学难点】旋转图形的画法【教学思路】从学生熟悉的生活中的旋转现象入手,帮助学生通过具体的旋转实例认识旋转,理解旋转的基本涵义,再通过观察,从而得出旋转图形的性质,最后通过画旋转图形,让学生掌握作图技能,进一步加深对旋转图形性质的认识。
【教学过程】一、创设情境日常生活中,经常看到以下情境:游乐场里的摩天轮绕着一个固定的点旋转;钟摆绕着一个固定的点摆动。
(有条件的学校可以用实物投影仪投放生活中的旋转实例)提出问题:⑴上述情境中的旋转现象有什么共同的特征?⑵生活还有类似的例子吗?【设计说明:从学生熟悉的生活中的旋转现象入手,帮助学生通过具体实例认识旋转,理解旋转的基本涵义。
同时引导学生用数学的眼光看待生活中的有关问题,发展学生的数学观。
】二、探索活动一⒈将一块三角尺ABC绕点C按逆时针方向旋转到DCB的位置问题: 度量∠ACD与∠BCE的度数,线段AC与DC、BC与EC的长度。
你发现了什么?⒉将绕点按顺时针方向旋转到的位置。
问题:度量∠AOA`、∠BOB`、∠COC`的度数,线段AO与A`O、BO与B`O、CO与C`O的长度。
你发现了什么?【设计说明:教学中,要引导学生根据课本的要求,实际度量相关角的度数、相关线段的长度。
通过对具体实例的观察和实际操作活动,帮助学生认识旋转,理解旋转的涵义,在此基础上,引入旋转的概念。
】三、新课讲授⒈在学生看了与做了的基础上,得出概念。
八上3.2中心对称与中心对称图形(2)
随堂练习 下列图形中是不是中心 对称图形?如果是中心对称图形的, 请说出它的对称中心.
如图,哪些是中心对称图形? 随堂练习
哪些是轴对称图形?请说出它们的 对称中心或对称轴.
下列扑克图案中,不是中 随堂练习
心对称图形的有_______个.
随堂练习 把26个英文字母看成图案,
哪些英文大写字母是中心对称图案?
中心对称与中心对称图形(2) --(课件)
思考
⑴轴对称与轴对称图形有怎样的
联系与区别?
⑵比照轴对称与轴对称图形的关
系,你认为什么样的图形是中心
对称图形?
你对线段有哪些认识? 你对平行四边形有哪些认识?
A
A B
B
D C
线段旋转 平旋转
中心对称图形
把一个平面图形绕某一点旋转 1800,如果它能够与原来图形重 合,那么这个图形叫做中心对称 图形.这个点就是它的对称中心.
F G H I J M N O P S T W X Y Z
随堂练习
把26个英文字母看成图
案,哪些英文大写字母是中心对称
图案?
F G H I J M N O P S T W X Y Z
随堂练习
下列几组图形中,既是中心对称图 形,又是轴对称图形的是 ( ) A.正方形、长方形、平行四边形 B.正三四边形、正方形、等边三角形
◆你对中心对称图形有哪些认识?
如图,等边△ABC的3个 顶点都在圆上,请把这个图形补成一 个中心对称图形.
A O B C
随堂练习
如图,AC=BD, ∠A=∠B,点E、F在AB上,且 DE∥CF,试说明它是中心对称 图形的理由.
A E O F C
例题精讲
D
B
相关链接 平行四边形是中心对称图形,
八上数学第3章 中心对称图形(一)第1课时 图形的旋转
八年级数学(上)第三章中心对称图形(一)(附答案)第1课时图形的旋转1.如图,线段AO绕点O顺时针旋转得到线段BO,存这个旋转过程中,旋转中心是_______,旋转角是_________.2.如图,将左边的矩形绕点B旋转一定角度后,位置如右边的矩形,则∠ABC=__________.3.如图,P是正△ABC内的一点,若将△PAB绕点A逆时针旋转到△P′AC,则∠PAP′=__________.4.如图,在网格图(每小格均是边长为1的正方形)中完成下列各题:(1)作出格点△ABC关于直线DE对称的△A1B1 C 1.(2)作出△A 1 B 1 C 1绕点B 1顺时针方向旋转90°后的△A2B1C2.(3)求△A2B1C2的周长.5.如图,把△ABC顺时针旋转60°后能与△A′BC′重合.(1)找出旋转中心.(2)指出对应顶点和对应边.(3)指出旋转角.(4)连接AA′、CC′,则△ABA′和△CBC′是什么三角形?为什么?6.下列运动属于旋转的是( ) A.篮球的运动B.气球升空的运动C.钟表钟摆的摆动D.一个图形沿某直线对折的过程7.如图,将正方形图案绕中心O旋转180°后,得到的图案是( )8.下列说法正确的是( ) A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以沿某方向平移一定的距离,也可以沿某方向旋转一定的距离D.在平移和旋转图形中,对应角相等,对应线段相等且平行9.如图,正方形A1B1C1D1是正方形ABCD按顺时针方向旋转一定的角度而形成的,其中∠CBC1=40°,则旋转中心是_________,旋转角的度数为_________.10.如图,△ABC是等腰直角三角形,BC是斜边,P是△ABC内一点,将△ABP绕点A 逆时针旋转后与△ACP′重合.如果AP=3,那么线段PP′的长为_______.11.如图,四边形ABCD是正方形,△DAE旋转后能与△DCF重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)连接EF,则△DEF是怎样的三角形?(4)若BC=7,CF=4,求BE的长.12.如图,在10×10的正方形网格中,每个小正方形的边长均为1个单位.将△ABC绕点P顺时针旋转180°,得到△A′B′C′,再将△A′B′C′绕点C′顺时针旋转90°,得到△A″B″C′,请你画出△A′B′C′和△A″B″C′(不要求写画法).13.如图,当半径为30 cm的转动轮转过90°时,传送带上的物体甲平移的距离是多少?转过120°呢?参考答案1.点O ∠AOB 2.90°3.60°4.(1)略(2)略(3)4+5.略6.C 7.C8.B 9.点B 40°10.11.(1)点D (2)90°(3)△DEF是等腰直角三角形(4)3 12.略13.15πcm 20πcm。
初中数学之中心对称与中心对称图形知识点
初中数学之中心对称与中心对称图形知识点中心对称的定义:把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,就说这两个图形关于这个点对称.中心对称的性质:(1)关于中心对称的两个图形是全等形(2)关于中心对称的两个图形,对称点连线都经过对称中心且被对称中心平分已知四边形ABCD和点O(下图),画四边形A’B’C’D’,使它与已知四边形关于点O对称.画法:(1).连结AO并延长到A’,使OA’=OA,得到点A的对称点A’.(2)同样画B、C、D的对称点B’、C’、D’.(3)顺次连结A’、B’、C’、D’各点.四边形A’B’C’D’就是所求的四边形.3.中心对称的判定:如果两个图形对应点连线都经过某一点,并且被在个点平分那么这两个图形关于这一点对称。
4.中心对称图形的定义把一个图形绕着某一点旋转180°,如果旋转后的图形能够和原来的图形相互重合,那么这个图形叫中心对称图形。
5.中心对称与中心对称图形的联系和区别区别:中心对称指两个全等图形的相互位置关系中心对称图形指一个图形本身成中心对称联系:如果将中心对称图形的两个图形看成一个整体,则它们是中心对称图形如果将中心对称图形,把对称的部分看成两个图形,则它们是关于中心对称。
6.中心对称图形与轴对称图形的不同之处为:1判断下列各图形是否是中心对称图形?为什么?⑴平行四边形⑵等边三角形⑶线段解:⑴∵平行四边形的对角线互相平分∴相对的两个顶点都关于对角线交点对称∴平行四边形是中心对称图形⑵∵等边三角形设有对称中心∴等边三角形不是中心对称图形⑶∵线段的中心是对称中心∴线段是中心对称图形。
八上3.3 设计中心对称图形
3.3设计中心对称图案班级姓名学号学习目标:通过中心对称图形的识别和理解,进一步理解中心对称图形的性质,进而设计构画出中心对称图案。
学习难点:中心对称图案的设计教学过程图案欣赏生活中,我们经常见到一些美丽的图案,下列图案有什么特点?生活中,你还见过哪些中心对称图案?举例说明.合作探索交流活动一1. 用6个全等的正方形组成中心对称图案2. 你能用6个全等的正方形再设计几个中心对称图案但不是轴对称图案吗?3.你能用6个全等的正方形设计既是中心对称,又是轴对称的图案吗?合作探索交流1.在计算器上按出两位数“69”,这个电子数字可以组成一个中心对称图案。
你还能写出几个能组成中心对称图案的两位数或三位数?两位数:11,88,96等;三位数:101,111,609,808,888,906等2、如图所示是一个中心对称图形的一半,你能补出另一半吗?3.如果把26个英文大写字母看成图案,那么哪些英文大写字母是中心对称图案有5×5的小正方形组成的图形,去掉中心的一个方格,余下24 格,要求把它分成大小相等、形状相同的四块,请设计一种分法.如图是两张全等的图案,它们完全重合地叠放在一起,现将上面的图案绕点O 顺时针旋转,至少旋转____度后,两张图案可以互相重合?A B C D E F G I J K L M P Q R S T U V W Y Z H N O X如图是两张全等的图案,它们完全重合地叠放在一起,现将上面的图案绕点O顺时针旋转,至少旋转度后,两张图案可以构成中心对称图形?从中你有什么发现?某地板厂要制作一批正六边形的地板砖,要求在地板砖上设计的图案能够把正六边形6等分(例如下图),你能设计出几种方案?在一个3m×4m的长方形地块上,欲开出一部分作花坛,其图案要为中心对称图形,且花坛的面积为长方形面积的一半,图示是两种设计方案,你还能提供两种不同的设计方案吗?活动二“数学实验室”1. 用圆和线段可以构造许多具有鲜明含义的中心对称图案。
八上第三章中心对称图形(复习)
有一块长方形的田地,天地内有一口井,现在将这 块土地平分给两户人家,要求两家合用这口井浇灌 土地,请问该如何分?在图中画出分界线.(规定不 能到对方的地里取水)
若一个平行四边形的一边长是8,一条对角 线 长是6,则另一条对角线a的取值范围 10<a<22 是_________.
平行四边形ABCD周长为16cm,AC、BD相交 于点O, OE⊥AC交AD于E,则△DCE的周长 8cm 是______
2
ห้องสมุดไป่ตู้H O
1
D
B
G
E C
两条对角线互相平分的四边形是平行四边形
知识结构
矩形:
(1)有三个角是直角;
(2)一个角是直角+平行四边形;
(3)对角线相等+平行四边形.
知识结构
菱形:
(1)四边都相等;
(2)一组邻边相等+平行四边形;
(3)对角线互相垂直+平行四边形.
知识结构
正方形:
(1)一组邻边相等+一个角是直角 +平行四边形; (2)一组邻边相等+矩形; (3)一个角是直角+菱形.
知识结构
4. 其它重要结论:
(1)关于旋转变换的性质: ①旋转前后的图形全等; ②对应点到旋转中心的距离相等; ③每一对对应点与旋转中心的连线所 成的角彼此相等.
知识结构
4. 其它重要结论:
(1)关于三角形中位线,梯形中位线: ①三角形的中位线平行于第三边,并 且等于它的一半; ②梯形的中位线平行于两底,并且等 于两底和的一半.
已知平行四边形两条邻边的高分别是6cm和4cm 它们的周长为40cm,则它的面积为-------( C ) A.12cm2 B.24cm2 C.48cm2 D.72cm2
八上第三章中心对称图形(复习)
中心对称图形(复习)(教案)班级姓名学号学习目标在探索了平行四边形的有关性质和四边形是平行四边形的条件后,以例题的讲解进一步掌握,培养学生有条理的表达能力,规范书写格式。
学习难点平行四边形的有关性质和四边形是平行四边形的条件的灵活的运用。
教学过程一、知识结构在虚线框内填写合适的条件,以反映图形的变化二、知识回顾与典型例题(一)图形的旋转:定义、性质、画法(二)中心对称、中心对称图形的概念以及这两个概念的联系与区别【例1】在天气预报图上,有各种各样表示天气的符号,下列表示天气符号的图形中,既是中心对称图形又是轴对称图形的是()(三)中心对称的性质:对称点连线都经过,且被平分晴(A)冰雹(B)雷阵雨(C)大雪(D)【例2】如图,两个三角形对中心对称,请确定其对称中心。
【例3】已知四边形ABCD 和O 点,画出四边形 ABCD 关于O 点的对称图形。
(四)设计中心对称图案【例4】图案设计:图例:小明在4×3的网格上,设计了由个数相同的白色方块与黑色方块组成的一幅图案,如左下图。
请你仿照此图案,在下列网格中分别设计出符合要求的图案。
(注:①不得与原图案相同;②黑、白方块的个数要相同)(五)几种特殊的中心对称图形的定义、性质、判定(1)是轴对称图形, 又是中心对称图形(2)是轴对称图形,但不是中心对称图形(3)是中心对称图形, 但不是轴对称图形BDA【例5】(1)能判断一个四边形是平行四边形的为( )A 、一组对边平行,另一组对边相等B 、一组对边平行,一组对角相等C 、一组对边平行,一组对角互补D 、一组对边平行,两条对角线相等(2)矩形的两条对角线所成的钝角为120°,若一条对角线的长是2,那么它的周长是( )A 、6 B 、32 C 、2(1+3) D 、1+3(3)若菱形ABCD 的周长为20,一条对角线AC 长为6,求菱形的面积 。
(4)如图,点E 是正方形ABCD 的边BC 延长线上的一点,且CE=AC ,若AE 交CD 于点F ,则∠E= °;∠AFC= °(5)图1是边长为4的正方形硬纸片ABCD ,点E 、F 分别是AB 、BC 的中点,若沿图1的虚线剪开并拼成图2的“小屋”,则图中阴影部分的面积 ( ) (A )2 ( B )4( C )8 ( D )10 (6)平行四边形ABCD 中,对角线AC 、BD 交于点O ,AC=6cm ,BD=8cm 则边AB 长度x 的取值范围是 。
苏教版八年级数学全册知识点总结
苏教版《数学》(八年级上册)知识点总结第一章 轴对称图形第二章 勾股定理与平方根一.勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
二、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等轴对称轴对称的性质轴对称图形线段 角 等腰三角形 轴对称的应用等腰梯形设计轴对称图案三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a ”,读作根号a 。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。
表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数a 的平方根的运算,叫做开平方。
0≥a注意a 的双重非负性:a ≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。
表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
八上3.2中心对称与中心对称图形(1)
第 1 页 共 3 页 3.2中心对称与中心对称图形(1) [ 教案]班级 姓名 学号学习目标经历观察.操作.分析等数学活动过程,通过具体实例认识中心对称,知道中心对称的性质.学习难点⒈中心对称的性质.⒉成中心对称的图形的画法教学过程一、情境引入利用课本提供的两个实物图,引导学生观察、探索:他们的形状、大小是否相同?如果将其中一个图形绕着某一点旋转1800,能与另一个重合吗?【设计说明:通过现实情境激发学生的好奇心和主动学习的欲望。
】二、新课讲授⒈ 引出概念:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点说一说:观察你生活的周围各处,指出几个中心对称的现象,并加以数学描述。
【设计说明:通过对生活中的中心对称现象的描述,加深了对中心对称的理解,锻练了用数学语言进行表达的能力】⒉ 探索活动活动一 用一张透明纸覆盖在图3-5上,描出四边形ABCD 。
用大头针钉在点O 处,将四边形ABCD 绕点O 旋转180度问题一:四边形ABCD 与四边形A 'B 'C 'D '关于点O 成中心对称吗?问题二:在图3-5中,分别连接关于点O 的对称点A 和A '、B 和B '、C 和C '、D 和D '。
你发现了什么?【设计说明:让学生在操作与观察的基础上,发现中心对称的两个图形具有(一般地)旋转的一切性质,且具有特殊的性质——对称点连线经过对称中心,且成中心对称的2个图形,对称点的连线都经过对称中心,并且被对称中心平分第 2 页 共 3 页 被对称中心平分】活动二 中心对称与轴对称进行类比【设计说明:中心对称与轴对称都是指两个图形按某种规则运动能互相重合的特殊位置关系,教学中,将他们进行类比,进一步加深对中心对称的理解】练一练 课本98页练习1【设计说明:学习概念后,把概念直接运用到题目中,这是一个从一般到特殊的过程,也是数学学习的一大特点。
3.2 中心对称与中心对称图形(1)
1.中心对称定义:把一个图形绕着某一点旋转______,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称。这个点叫做____________,图形中的对称点叫做__________。
2.四边形ABCD与四边形 关于点O对称,点O是____、D和___是关于中心O的对称点。分别连接点A和 、B和 、C和 、D和 。你发现了什么?
5、如图,等边三角形ABC的3个顶点都在⊙O上。请把这个图形补成一个中心对称图形。
7、如图,在梯形ABCD中,AD∥BC,E是CD的中点,连接AE并延长AE交BC延长线于点F.
(1)图中哪两个图形成中心对称?
(2)梯形ABCD的面积与图中哪个三角形的面积相等?
(3)若AB=AD+BC,∠B=70°,试求∠DAF的度数。
2.如图,正方形CDEF绕某点旋转后能与正方形ABCD重合,那么图形所在的平面上可以作为旋转中心的点共有 ( )个.
A、1个B、2个C、3个D、4个
3、利用中心对称基本性质作图:
(1)已知A点和O点,画出点A关于点O的对称点A′
(2)已知线段AB和O点,画出线段AB关于点O的对称线段A’B’
(3)已知△ABC和点O,画出△DEF,使△DEF与△ABC关于O成中心对称。
(4)若AD=3,AB=8,当BC=_____时,点B线段AF垂直平分线上,为什么?
当堂反馈:
1、D是ΔABC的边AC上的一点,画Δ ,使它与ΔABC关于点D成中心对称。
2、D是ΔABC内部的一点,画Δ ,使它与ΔABC关于点D成中心对称。
3、两个三角形成中心对称,请确定其对称中心。
4、下列说法正确的是( )
A.全等的两个图形成中心对称B.成中心对称的两个图形必须能完全重合
什么是中心对称图形和轴对称图形
几何部分一直都是数学学习的重点,一些图形是考试的常考问题。
那么,什么是什么是中心对称图形?什么是轴对称图形?
中心对称图形
在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
需要注意中心对称和中心对称图形不是一个概念。
中心对称是在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称
轴对称图形
数学术语,定义为平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形。
直线叫做对称轴,并且对称轴用点画线表示;这时,我们也说这个图形关于这条直线对称。
比如圆、正方形、等腰三角形、等边三角形、等腰梯形等。
中心对称图形和轴对称图形区别
轴对称图形关键抓两点:一是沿某直线折叠,二是两部分互相重合;
中心对称图形关键也是抓两点:一是绕某一点旋转,二是与原图形重合。
实际区别时轴对称图形要像折纸一样折叠能重合的是轴对称图形;中心对称图形只需把图形倒置,观察有无变化,没变的是中心对称图形。
常见的图形归类
既是轴对称图形又是中心对称图形的有:长方形,正方形,圆,菱形等。
只是轴对称图形的有:角,五角星,等腰三角形,等边三角形,等腰梯形等。
只是中心对称图形的有:平行四边形。
既不是轴对称图形又不是中心对称图形有:不等边三角形,非等腰梯形等。
以上就是一些中心对称图形与轴对称图形的相关信息,供大家参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学(上)第三章中心对称图形(一)(附答案)
第2课时中心对称与中心对称图形(一)
1.把一个图形绕着某一点旋转180°,如果它能够与另外一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成________,这个点叫做_______,_______叫做对称点.2.成中心对称的两个图形__________________________________________.
3.如图,两个三角形成中心对称,请确定其对称中心.
4.分别画出下列各图关于点O成中心对称的图形.
5.下图是由两个半圆组成,点B是AC的中点,画出此图形关于点B成中心对称的图形.
6.若两个图形关于某一点成中心对称,则下列说法:①这两个图形一定全等;②对称点的连线一定经过对称中心;③将一个图形绕对称中心旋转某个定角必定与另一个图形重合;
④一定存在某直线,沿该直线折叠后的两个图形互相重合.其中,正确的是________(填
序号).
7.如图,在四边形ABCD中,AD∥BC,E是CD的中点.
(1)画图:连接AE并延长,交BC的延长线于点F,连接BE;
(2)填空:点A与点F关于点________对称,△ADE与_______关于点______
成中心对称.若AB=AD+BC,则△ABF是_________三角形,BE是线段
AF的_________线;
(3)作图后,图中△_________的面积等于四边形ABCD的面积.
8.如图,线段AB与点O的位置关系如图所示,试画出线段AB关于点O对称的线段A′B′.
9.分别画出下图中与△ABC关于点O成中心对称的三角形A′B′C′.
10.如图,两个能重合的长方形关于某一点成中心对称,请画出其对称中心.
11.如图,D是△ABC边BC的中点,连接AD并延长,使DE=AD,连接BE.
(1)图中哪两个图形成中心对称?
(2)若△ADC的面积为4,求△ABE的面积.
参考答案
1.中心对称对称中心两个图形的对应点2.对称点的连线都经过对称中心,并且被对称中心平分3.略4.略5.略6.①②③7.(1)略(2)E △FCE E等腰
垂直平分(3)ABF 8.略9.略10.略11.(1)△ACD与△EBD (2)8。