九年级数学人教版练习册上答案(新)

合集下载

九年级上人教版数学练习册答案

九年级上人教版数学练习册答案

九年级上人教版数学练习册答案Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998数 学 · 九 年 级 上 · 人 教 版第 二 十 一 章 二 次 根 式 6 . (1 )2 ;(2 )- 6 槡57 . 1第 1 节 二 次 根 式8 .- 槡21 .C 2 .B 3 .A 4 .D 5 .A 6 .<7 . 槡7槡犪2+ 犫211 4 9 .8 .(1 )狓 ≥ - 1 ;(2 ) 任 何 实 数 ;(3 )犿 ≤练 习 二 (混 合 运 算 )0 ;(4 )犿 = 2 ;(5 )犪 > 0 ;(6 )犪 > 3 1 .D 2 .B 3 .A 4 .3 45 5 .3 槡29 .(1 )80 ;(2 ) 74;(3 )9 6 .(狓 2 + 3 )(狓 + 槡3 )(狓 - 槡3 )7 .1 -4 槡6 10 .4 11 .1 或 - 1 12 .2 犫 + 犮 - 犪8 .(1 )狓 = - 1 ;(2 )狓 ≤ 0第 2 节 二 次 根 式 的 乘 除9 .1+ 槡3 1 .D 2 .C 3 .C 4 .狓 ≥ 2 10 .甲 的 对 ,被 开 方 数 根 要 大 于零 5 . 48 32 3011 .2 0016 .8 狓狔 槡狔 - 槡- 犪 - 犫 槡犪 12 .∵ 槡犪 - 4 + 槡3犪 - 犫 = 07 . - 槡1 - 犪 8 . < < 9 .(1 )- 槡11 ;(2 ) (1 - 犪 ) 槡1 - 犪 ;(3 ) - 2犪犫10 . (1 )- 2 ;(2 )2而 槡犪 - 4 ≥ 0 , 槡3犪- 犫 ≥ 0∴ 槡犪 - 4=0,且槡3犪-犫=0解之得犪=4,犫=12∴犪+犫=4+12=160.222211.30槡6cm2提示:作一个腰为的等腰直角三13.112.(1)槡117;(2)8槡2;(3)5槡5角形,以其斜边为直角边作直角三犃犅犆犃犆13.0角形,其中则以点为圆心,犃犆犈犈犆=1.犃14.提示:平方后比较,槡2+槡6<槡3+槡5.以直角三角形的斜边长为半径画弧,犃犆犈第3节二次根式的加减它与数轴正半轴的交点即为表示的点,即槡3练习一(加减运算)可找到槡3+1的点.1.B2.02853.(1)-14槡2;(2)4.(1)0;(2)10169槡10;(3)槡35.(1)24槡6;(2)槡6-槡5图11人 教 版 · 数 学 · 九 年 级 ( 上 )第 二 十 二 章 一 元 二 次 方 程 (2 )第 一 种 方 法 出 现 分 式 犫2犪,配 方比 较第 1 节 一 元 二 次 方 程 1 . 4 狓 2 - 5狓 + 3 = 0 4 - 5 3 繁;两 边 开 方 时 分 子 、分 母 都 出 现 “± ”,相 除后 为 何 只 有 分 子 上 有 “± ”,不 好 理 解 ;还 易误认 为 槡4犪 2 = 2犪 .所 以 ,第 二种 方 法 好 . 2 . D 3 .C4 . C 5 .B 6 .狓 2 + 2狓 - 1 = 0 .13 .(1 )狓 2 + 7狓 + 6 = (狓 + 1 )(狓 + 6 );7 . 设 最 小 的 整 数 为 状 , 则 状 2 + 状 - 272 = 0 .(2 )狓 2 - 7狓 - 60 = (狓 - 12 )(狓 + 5 );8 . 设 这 个 人 行 道 的 宽 度 为 狓 m , 则 (3 )狆 2 + 7狆 - 18 = (狆 + 9 )(狆 - 2 ); (24 - 2狓 )(20 - 2狓 )= 32 . (4 )犫 2 + 11犫 + 28 = (犫 + 4 )(犫 + 7 ).9 . 设 中 粳 “6427 ”稻 谷 的 出 米 率 的 增 长 率 14 .(1 )犿 1 = - 1 ,犿 2 = - 2 ;为 狓 ,则 稻 谷 产 量 的 增 长 率 为 2狓 .根 据 题 意 ,得 (2 )狓 1 = 1 ,狓 2 = 6 ;500 (1 + 2 狓 )· 70 % (1 + 狓 ) = 462 ,化 简 (3 )犿 1 = 3 ,犿 2 = 4 ; 可 得 :50狓 2 + 75狓 - 8 = 0 . (4 )狓 1 = 4 ,狓2 = 2 . 10 . (1 )设 11 、12 月 的 平 均 月 增 长 率 为练 习 二狓 , 则 100 (1 + 狓 ) + 100 (1 + 狓 )2= 231 ; 1 .B 2 . 0 或 - 2 3 . 0 - 1 1 (2 )1100 吨 . 11 . 设 最 短 的 直 角 边 长 为 狓 ,则 长 直 角 4 .14 边 为 狓 + 14 ,可 得 狓 (狓 + 14 )= 120 .5 . 13 6 . 2 .5 m7 . 设 三 、四 月 份 平 均 每 月 增 长的 百 分 率 12 . 设 兔 舍 平 行 于 旧 墙 的 长 为 狓 m ,则宽 为 1 (35 - 狓 ) m .根据 题 意 ,得 ( ) , 35 - 狓 = 1502 狓 · 12为 狓 ,依 题 意 得 60 ×(1 - 10 % ) (1 + 狓 )2= 96 . 解 得 狓 = 13 ≈ 33 .3 % . 8 . 设 2007 年 年 获 利 率 为狓 , 则 2008 年化简得:狓2-35狓+300=0,的年获利率为(狓+0.1),100(1+狓)(1+狓解得狓1=15,狓2=20.+0.1)=156,解得狓=20%,0.1+狓第2节降次———解一元二次方程=30%.练习一9.因为8<狓<14,通过估算可知1.B2.C狓=10.3.(1)狓1=2,狓2=4;10.设应挖狓m,则(64-4狓)(162-(2)狓1=2,狓2=10.2狓)=9600,解得狓=1m.4.(1)狓1,2=1±槡63;11.A12.C13.C14.D15.C16.217.1018.犽>1(2)狓1=8,狓2=-193.19.(1)方程无实数根;(2)方程有两个不相等的实数根;5.(1)狓1=0,狓2=2;(2)狓=520.(1)答案不唯一.根据一元二次方6.狓1=-2,狓2=17.1s程根的判别式,只要满足犿<5的实数即8.13±槡347≈32分9.4或1.010.8,9可;如犿=1,得方程狓2+4狓=0,它有两个不等实数根:狓1=0,狓2=-4;11.若一元二次方程犪狓2+犫狓+犮=0(2)答案不唯一.要依赖(1)中的犿的的两个根是狓1、狓2,则二次三项式犪狓2+犫狓值,由根与系数的关系可得答案.α=0,+犮=(狓+狓1)(狓+狓2).12.(1)两种方法的本质是相同的,都β=4,α2+β2+αβ=0+16+0=16.21.(1)Δ=(犿-1)2-4(-2犿2+犿)运用的是配方法.2-6犿+1=(3犿-1)2=9犿2参 考 答 案 与 提 示要 使 狓1 ≠ 狓 2 , ∴ Δ > 0 ,得 犿 ≠2( ) + 犿 - 1 狓 - 2 犿另 解 :由 狓1 3 .2+ 犿 = 0即 (狓 1- 3 )(狓7 . 2所 以 犽 >2 - 3 )< 0得 狓 1 = 犿 ,狓 2 = 1 - 2 犿 ,由 狓 1 ≠ 狓 2 解 得 . 第 3 节 实 际 问 题 与 一 元 二 次 方 程(2 )∵ 狓 1 = 犿 ,狓 2 = 1 - 2 犿 ,狓 2 + 狓 12 2 = 2 练 习 一∴ 犿1 .C 2 .A2+ (1 - 2 犿 )2 = 2解 得 犿 1 = -15 ,犿 2 = 1 .3 . 设 这 两 年 平 均 增 长 的 百分 率 为 狓 ,则 8 (1 + 狓 )2 = 9 ,解 得 狓 ≈ 6 % .另 解 :也 可 用 韦 达 定 理 来 解 .4 . 设 三 、四 月 份 的 平 均 增长 率 为 狓 ,则 22 .(1 )狓 1 = - 1 ,狓 2 = - 1 ,狓1 + 狓 2 =1 000 (1 - 10 % )(1 + 狓 )2 = 1 296 , 解 得 狓 = 20 % .- 2 ,狓 1 · 狓 2 = 1 3 + 槡 13 = 12(2 )狓 ,狓 2 = 3 - 槡13 2 ,狓 1+ 狓 2 5 . 由 题 意 得 狓 = 5 .10 -狓 2 ( 10 )= 25 % , 解 得 = 3 ,狓 1 ·狓 2= - 16 .提 示 : 设 金 边 宽 为 狓 c m , 则 (60 +(3 )狓 1 = 1 ,狓2= -73 ,狓 1 + 狓 2= - 4 3 , 2 狓 )(40 + 2狓 )- 60 × 40 13 75 × 60 × 40 .=狓 1 · 狓2=-737 . 设 垂 直墙 面 的 边 长 为 狓 m ,则 另 一 边 长 为 (33 - 2狓 ) m ,猜 想 :犪狓 2+ 犫狓 + 犮 = 0 的 两 根 为 狓1 与 列 方 程 得 狓 (33 - 2狓 ) = 130 , 解 得狓 2 ,则 狓 1 + 狓 2 = - 犫 犪,狓 1 · 狓 2= 犮 犪 , 狓 1 = 6 .5 ,狓 2 = 10 . 当 狓 = 6 .5 时 ,33 - 2狓 = 20 > 18 不 符 应 用 :另 一 根 为 2 - 槡3 ,犮 = 1 合 要 求 ,舍 去 ; 23 . 依 题 意 有 :当 狓 = 10 时 ,33 - 2狓 = 13 < 18 符 合狓 1 + 狓 2 = - 2 (犿 + 2 ) ①烄要 求 .狓 1狓 2 = 犿 2 - 5 ② 烅 狓 1 2 + 狓 2 = 狓1狓 2 + 16③ 2故 花 坛 的 长 为 13 m ,宽 为 10 m . 8 . (1 )∵ 四 月 份 用 电 180 度 ,交 电 费 , Δ = 4 (犿 + 2 )2 - 4 (犿 2 - 5 )≥ 0恰 好 为 每 度 0 .2元 , ∴ 四 月 份 用 电 没 超 过 犪烆 ④由 ① ② ③ 解 得 :犿 = - 1 或 犿 = - 15 ,又 度 ,五 月 份 用 电 250 度 ,交 电 费 56 元 ,每 度 超94由 ④ 可 知 犿 ≥ - , ∴ 犿 = - 15 (舍 去 ),故 犿 = - 1 .过 0 .2 元 . ∴ 五 月 份 用 电 超 过 了 犪 度 . (2 ) 由 题 意 得 ,(250 - 犪 )· 犪 625 + 0 .2犪 24 .由 一 元 二 次 方 程 根 与 系 数 关 系 = 56 整 理 得 ,犪 2 -375犪 + 56 × 625 = 0 即 (犪 可 知 :- 200 )(犪 - 175 ) = 0 ,∴ 犪1 = 200 ,犪2= 175狓 1 + 狓 2 = 2犽 - 3 ,狓 1 ·狓 2 = 2犽 - 4 . 又 ∵ 犪 ≥ 180 , ∴犪 = 200 .9 . (1 ) 18 000 千 克 ;(1 ) 1 + 狓 2 > 0 ,狓 1 · 狓(2 )在 果 园 出 售 ,毛 收 入 为狓2>018000×1.1即2犽-3>0,2犽-4>0=19800元;在市场出售,毛收入为18000×1.3-所以犽>2;(2)狓1+狓2>0,狓1·狓2<018×8×25=19800元;虽然,两个收入相同,但市场出售还要即2犽-3>0,2犽-4<0所以32<犽<2;费人力、物力,所以选择在果园出售方式好;(3)设增长率为狓,则(19800-7800)(3)不妨设狓1>3,狓2<3,则狓1-3>0,[1+(1+狓)+(1+狓)2]=57000,解狓2-3<0,得狓=0.5=50%.3人 教 版 · 数 学 · 九 年 级 ( 上 )10 .(1 )狔 = (30 - 2狓 )狓 ;(2 )10 ,8 ; 连 28 条 不 同的 直 线 ,求 空 间 共 有 多 少 个 点(3 ) 不 是 ;狓 = 7 .5 时 ,最 大 为 112 .5 m 2 . (5 ) 平 面 上 有 28 条 直 线 ,若 任 意 两 条 不 练 习 二 平 行 ,任 意 三 条 不 共 点 ,则 有 多 少 个 交 点1 . 设 甬 路 宽 度 为 狓 m ,根 据 题 意 得 (40 -和 这 个 问 题 列 方 程 的 思 想 一 样 的 实 际2 狓 )(26 - 狓 ) = 144 × 6 ,解 得 狓 1 = 2 ,狓 2 = 44 问 题 很 多 ,如 : (不 合 题 意 ,舍 去 ),所 以 甬 路 宽 为 2 m . (1 ) 春 节 前 后 , 几 个 人 互 打 电 话 问 候 ,2 . 根 据 题 意 可 得 方 程 若 共 打 了 20 次 电 话 ,问 共 有 几 人(50 - 2 - 狓 ) × (30 - 2狓 ) = 50 × 302 ,(2 ) 元 旦 前 后 ,几 个 同 学 互 相 赠 送 贺 年 卡 ,若 共 赠 送 了 20 张 贺 年卡 ,问 共 有 几 人化 简 可 得 狓 2- 63狓 + 345 = 0 ,(3 ) 在 某 两 地 的 铁 路 线 上 ,共 有 20 个 不解 得 : 狓 1 ≈ 6 .06 ,狓 2 = 56 .94 , 同 的 火 车 站 ,问 这 条 铁 路 共 需 设 计 多 少 个 不 经 检 验 ,狓 2 不 合 题 意 舍 去 ,所 以 狓 的 值同 的 火 车票 约 取 6 .06 m .5 . (1 ) 由 题 意 设 2 月 ,3 月 每 月 增 长 的3 . 设 狓 s 后 两 只 蚂 百 分 率 为 狓 ,则 蚁 与 犗 点 组 成 的 三 角 形25 [1 + (1 + 狓 ) + (1 +狓 )2]= 91 ,面 积 等 于 450 c m 2 . 解 得 狓 = 0 .2 = 20 % . 即 2 月 、3 月 份 每(1 ) 若 这 只 蚂 蚁 在月 平 均 增 长 的 百 分 率为 20 % . 犗 犃 上 ,根 据 题 意 得(2 )显 然 ,3 月 份 的 生 产 收 入 为1 2 (50 - 2狓 )· 3狓 =( )· , 解 得 , 2狓 - 50 3狓 = 450 狋 = 30 1图 2450 ,解 得 狋1 = 10 ,狋 2 = 15 . (2 ) 若 这 只 蚂 蚁 在 犗 犅 上 ,根据 题 意 得1 2狋 2 = - 5 (不 合 题 意 ,舍 去 ).所 以 分 别 在 10 s ,15 s ,30s 时 两 只 蚂 蚁与 犗 点 组 成 的 三 角 形 面 积 等 于 450 c m2 .4 .设 有 状 个 人 参 加 聚 会 ,则在 这 状 个 人中 任 何 1 个 人 ,他 (她 ) 都 要 与 除 自 己 以 外 的 (状 - 1 ) 个 人 握 手 ; 又 因 为 甲 与 乙 握 手 与 乙与 甲 握 手 是 同 一 次 握 手 ,所 以 握 手 总 次 数 为1 2 状 (状 - 1 ).所 以 ,状 (状 - 1 ) = 56 .25 × (1 + 0 .2 )2 = 25 ×1 .44 = 36 (万 元 )设 治 理 状 个 月 后 所 投 资 金 开 始 见 效 ,则 有 91 + 36 (状 - 3 )- 111 ≥ 20 状 ,状 ≥ 8 .即 治 理 8 个 月 后 所 投 资 金开 始 见 效 . 6 . 设 商 品 降 低 了 狓 个 100 元 ,则 优 惠 价 是 (3 500 - 100 狓 )元 ,每 个 商 品 的 利 润 是[(3 500 - 100 狓 )- 2 500 ]元 ,销 售 量 为 (8+ 2 狓 )个 ,由 题 意 得[(3 500 - 100 狓 ) - 2 500 ](8 + 2狓 )=8 × (3 500 - 2 500 )(1 + 12 .5 % ),解 得 狓 1 = 1 ,狓 2 = 5 .所 以 ,优 惠 价 应 定 为 3 000 元 或 3 400元 . 到 底 定 为 多 钱 ,要 视 具 体 情 况 而 定 . 7 . (1 )70 ,4 ,2007 . (2 )设 2009 年 和 2010年 两 年 绿 地 面 积 和 这 个 问 题 所 列 方 程 相 同 的 实 际 问 题 的 年 平 均 增 长 率 为 狓 , 很 多 ,如 :根 据 题 意 ,得 70 (1 +狓 )2= 84 .7 . (1 )状 个 村 庄 , 每 两 个 之 间 都 有 一 条 公整 理 后 ,得 (1 + 狓 )2= 1 .21 . 路 ,若 有 人 统 计 共 有 28 条 公 路 ,问 共 有 多 少个 村 庄 解 这 个 方 程 , 得 狓 1 = 0 .1 ,狓 2= - 2 .1(不 合 题 意 ,舍 去 ). (2 ) 在 某 两 地 的 铁 路 线 上 ,共 有 28 个 不 同故所求平均增长率为10%.的火车站,问这条铁路共有多少个不同的票价(3)一次乒乓球循环赛,每个队都要见面,共举行了28场比赛,问共有多少个代表第二十三章旋转第1节图形的旋转队参加(4)空间状个点,任意三点不共线,可以1.C2.B3.D4.A4参考答案与提示5.相同相等旋转中心(3)分别以这两组图形为平移的“基本图形”,各平移两次,即可得到最终的6.45°90°7.犅犆犇犆60°8.底角是60°,腰与底相等的等腰梯形图形.9.图略10.五角星11.(1)不正确.例如图(1)的情况下不正确,但图(2)的情况下正确.(2)犅犈=犇犌成立.如图3,连结犅犈.∵四边形犃犅犆犇和犃犈犉犌都是正方形,∴犃犇=犃犅,犃犌图3图5图610.如图7所示,△犃″犅″犆″与△犃′犅′犆′是关于原点犗成中心对称的.=犃犈,∠犇犃犅=∠犌犃犈=90°.∴∠犇犃犌+∠犌犃犅=90°=∠犅犃犈+∠犌犃犅.∴∠犇犃犌=∠犅犃犈.∴△犇犃犌≌△犅犃犈.∴犅犈=犇犌.12.(1)犃犅=2m,犃犆=槡3m.(2)画出犃点经过的路径,如图4所示.图711.两个全等的正方形犃犅犆犇和犆犇犈犉组成矩形犃犅犉犈,它是中心对称图形,对称中心就是对角线犃犉与犅犈的交点犗,四边形犆犇犈犉绕犗顺时针(或逆时针)旋转180°后,能与四边形犃犅犆犇重合.注意到四边形犆犇犈犉绕点犇顺时针旋图4转90°后或绕点犆逆时针旋转90°后能与∵∠犃犅犃1=180°-60°=120°,正方形犃犅犆犇重合,所以可以作为旋转中犃1犃2=犃犆=槡3m,心(不是对称中心但包含对称中心)的点∴犃点所经过的路径长=120180×π×有3个,即犇、犗、犆.12.(1)以犅犆为对称轴作对称变换(如2+槡3=43π+槡3≈5.9(m).图8).(或以犅犆的中点犗把△犃犅犆绕犗点旋转180°)第2节中心对称1.B2.C3.C4.C5.关于原点对称6.37.48.(1)①④,(2)③④,(3)④,(4)④9.(1)以一个三角形的一条边为对称轴作与它轴对称的图形.(图5)图8(2)将得到的这组图形以一条边的中点(2)把△犃犅犆绕犃犆的中点犗旋转为旋转中心旋转.(图6)180°即可(如图9).5人 教 版 · 数 学 · 九 年 级 ( 上 )(2 )如 图 12 所 示 ,点 犃′ 与点 犃 关 于 直线 犔 成 轴 对 称 ,连 接 犃′ 犅 交 直 线 犔 于 点 犘 , 则 点 犘 为 所 求 .图 9 四 边 形 是 菱 形 ,平 行 四 边 形 .10 .答 案 不 唯 一 , 下 面 举 出 两 例 (如 图13 所 示 ). 13 .答 案 不 唯 一 , 下 面 举 出 三 例 , 如 图 10 所 示 .图 1311 .略图 10第 3 节 课 题 学 习 图 案 设 计 第 二 十 四 章圆1 .左 右 ,上 下第 1 节 圆2 .圆 心 逆 时 针 90°练 习一3 .4 5° (答 案 不 唯 一 )1 .A 2 .B3 .A4 .3 犗 90° 矩 形 犃 犅 犉 犎 犉 犎 5 .旋 转 变 换 ,平 移 变 换 (答 案 不 唯 一 )6 .平 移 变 换 ,旋 转 变 换 (答 案 不 唯 一 )4 .6 槡3 5 .30 6 .5 0° 7 .8 8 .200°7 . 提 示 :(1 )犃 犉 = 犆 犈 ;(2 )两 次 旋 转 变 换 (答 案 不 唯 一 )9 .5 0° 10 .1 5° ︵11 .6 4° 12 .3 0° 13 .犅 犇 的 中 点8 .图 案 如 图 11 所 示 ,四 边 形 犈 犗 犆 犎 的 14 . 以 犕 为 圆 心 ,以 大 于 犕 到 ⊙ 犗 的 最面 积 是 4 c m2 . 小 距 离 且 小 于 犕 到 ⊙ 犗 的 最大 距 离 为 半 径 画 圆 ,与 ⊙ 犗 的 交 点 即 分 别 为 犃 、犅 .15 .1 c m 或 7 c m 16 .25c m817.3槡5cm18.75°练习二1.B2.C3.B4.A5.9图116.2.5m9.(1)平移后的小船如图12所示.7.50°8.130°9.5槡3cm10.证明:如图14所示,作犗犌⊥犆犇于犌,则犆犌=犇犌.∵犈犆⊥犆犇,犇犉⊥犆犇,犗犌⊥犆犇,∴犈犆∥犇犉∥犗犌.图14∴犗犈=犗犉.又∵犗犃=犗犅,∴犃犈=犅犉.11.连结犃犆.由勾股定理得,犃犆=图126参 考 答 案 与 提 示14 .(1 )如 图 16 所 示 ,槡 犃 犅2+ 犅 犆槡2 =3 2 + 4 2 = 5 . 证 明 :连 结 犗 犇 .当 狉 = 犃 犅 = 3 时 ,⊙ 犃 经 过 点 犅 ,点 犆 、 ∵ 犃 犅 是 直 径 ,犃 犅 犇 在 ⊙ 犃 外 ;当狉 = 犃 犇 = 4 时 ,⊙ 犃 经 过 点 犇 ,点 犅 在 ⊙ 犃 内 ,点 犆 在 ⊙ 犃 外 ;当 狉 = 犃 犆= 5 时 ,⊙ 犃 经 过 点 犆 ,点 犅 、犇 在 ⊙ 犃 内 .⊥ 犆 犇 ,︵ ∴ 犅 犆 = ︵犅犇 . 所 以 ,(1 ) 当 狉 < 3 时 ,点 犅 、犆 、犇 均 在 圆 外 ;(2 ) 当 3 ≤ 狉 < 4 时 ,点 犅 、犆 、犇 中 有 两 点在 圆 外 ;(3 ) 当 4 ≤ 狉 < 5 时 ,点 犅 、犆 、犇 中 只= 12 ∴ ∠ 犆 犗 犅 = ∠ 犇 犗 犅 ∠ 犆 犗 犇 . 图 16有 一 点 在 圆 外 .12 . 如 图 15 所 示 , (1 ) 连 结 犅 犈 , 则 ∠ 犅 犈 犆 = 90° .∵ 犃 犅 = 犅 犆 , 犅 犈 平 分 ∠ 犃 犅 犆 , ∴ ∠ 犃 犅 犈 = ∠ 犆 犅 犈 .又 ∵ ∠ 犆 犘 犇 = 1∠ 犆 犗 犇 , 2 ∴ ∠ 犆 犘 犇 = ∠ 犆 犗 犅 . (2 )∠ 犆 犘′ 犇 与 ∠ 犆 犗 犅 的 数 量 关 系 是 :∠ 犆 犘′ 犇 + ∠ 犆 犗 犅 = 180 ° .∵ ∠ 犆 犘′ 犇 + ∠ 犆 犘 犇 = 180 ° ,∠ 犆 犘 犇= ∠ 犆 犗 犅 ,∴ ∠ 犆 犘′ 犇 + ∠ 犆 犗 犅 = 180 ° .第 2 节 点 、 直 线 、 圆 和 圆 的 位 置 关 系练 习 一图 15 ︵ ︵ ∴ 犇 犈 =犆 犈 ,∴ ∠ 犈 犇 犆 = ∠ 犈 犆 犇 .(2 )∵ 犇︵犈 = 犆︵犈 , ∴ 犇 犈 = 犆 1 .C 2 .C 3 .C 4 .D 5 .36 .∠ 犅 = ∠ 犆7 .∵ 犃 犆 = 犅 犆 ,∴ ∠ 犃 = ∠ 犅 .∵ 直 线 犇 犈 切 ⊙ 犗 于 点 犆 ,∴ ∠ 犃犈.犆犇=∠犅.∵犃犅=犅犆,犅犈⊥犃犆,∴犃犈=犆犈.∴犃犈=犆犈=犇犈=3cm,∴∠犃犆犇=∠犃.∴犇犈∥犃犅.8.(1)如图17所示,连结犗犆.犃犆=6cm.在Rt△犃犅犈中,犅犈=犃犅2-犃犈2又,,∠犃=∠犃∴△犃犅犈∽△犃犆犇()为的平分线,13.1∵犃犇∠犈犃犆槡=槡52-32=4,2-32=4,∵犅犆为⊙犗直径,∴∠犃犈犅=∠犃犇犆=90°.∴犃犅犃犆=犅犈犆犇,即56=4犆犇.∴犆犇=4.8cm.∴∠犈犃犇=∠犇犃犆.∵犘犆切⊙犗于点犆,∴∠犘犆犗=90°.图17∵∠犘犆犅=30°,∴∠犅犆犗=60°.∵犗犅=犗犆,∴△犅犗犆是等边三角形.∴∠犆犅犃=∠犅犗犆=60°.(2)在Rt△犗犆犘中,∵犗犆=犗犘cos∠犅犗犆=12,∴犗犘=2犗犆=6.∵四边形犃犅犆犇是圆内接四边形,∴犘犃=犗犘+犗犃=6+3=9.∴∠犈犃犇=∠犅犆犇.9.证明:如图18所示,连结犗犆.又∵∠犇犃犆=∠犇犅犆,∵犅犆∥犗犘,∴∠犅犆犇=∠犇犅犆.∴犅犇=犇犆.∴∠犘犗犆=∠犅犆犗,(2)补充下列条件中的任意一个,都能∠犘犗犃=∠犅.使直线犇犉经过圆心.∵犗犅=犗犆,①犅犉=犆犉;②犇犉⊥犅犆;③犇犉平分∴∠犅犆犗=∠犅.∠犅犇犆.(理由略)∴∠犘犗犆=∠犘犗犃.7人教版·数学·九年级(上)又∵犗犆=犗犃,犗犘∴∠犗犆犇=90°.=犗犘,∴∠犇犆犙+∴△犘犗犆∠犗犆犃=90°.≌△犘犗犃,∴∠犇犆犙+∴∠犘犆犗∠犘犃犙=90°.在Rt△犙犘犃中,=∠犘犃犗.∵犘犃⊥犃犅,∴∠犘犃犗=90°,图18∠犙犘犃=90°,∴∠犘犃犙+∠犙图21∴∠犘犆犗=90°=90°.∴犘犆是⊙犗的切线.∴∠犇犆犙=∠犙.∴犇犙=犇犆.10.(1)如图19即△犆犇犙是等腰三角形.所示,证明:连练习二结犗犕.1.B2.A3.2或64.30°∵犗犕=犗犃,∴∠犃=∠犗犕犃.∵犅犃=犅犆,图19∴∠犃=∠犆.∴∠犗犕犃=∠犆.∴犗犕∥犅犆.切于点,∵犕荦⊙犗犕15.π犪26.75°7.648.提示:连结三个圆的圆心构成等边三角形.最高点到地面的距离是2+槡3.9.证明:如图22所示,延长犆犗2交⊙犗2于点犉,交∴∠犗犕荦=90°.∵∠犕荦犆=∠犗犕荦=90°,犇犈于点犌,连结∴犕荦⊥犅犆.(2)当犗犃<犗犅时,上述结论成立.当犗犃>犗犅时,上述结论也成立.犃犅、犅犉.在⊙犗中,2∠犅犉犆=∠犅犃犆.图22如图20所示,以∵四边形犃犅犈犇是⊙犗1的内接四犗犃<犗犅为例证明如下:边形,∴∠犅犃犆=∠犈.∴∠犅犉犆=∠犈.证明:连结犗犕.∵犆犉是⊙犗2的直径,∴∠犉犅犆=90°.∵犗犕=犗犃,∴∠犅犆犉+∠犅犉犆=90°.∴∠犃=∠犗犕犃.∴∠犅犆犉+∠犈=90°.图20∵犅犃=犅犆,∴∠犆犌犈=90°,∴犗2犆⊥犇犈.10.证明:∴∠犃=∠犆.如图23所示,连∴∠犗犕犃=∠犆.接犕荦、荦犃,连∴犗犕∥犅犆.∵犕荦切⊙犗于点犕,接犅犕并延长交∴∠犗犕荦=90°.犆犇于点犈.∵∠犕荦犆=∠犗犕荦=90°,∵⊙犕与图23∴犕荦⊥犅犆.11.“△犆犇犙是等腰三角形”还成立.⊙荦外切于犘点,∴犕荦经过点犘.证明:如图21所示,连结犗犆.∴∠犅犘犕=∠犃犘荦.∵犗犃=犗犆,∴∠犗犃犆=∠犗犆犃.∵犕犅=犕犘,∴∠犅犘犕=∠犅.∵∠犗犃犆=∠犘犃犙,∵荦犃=荦犘,∴∠犃犘荦=∠犘犃荦.∴∠犗犆犃=∠犘犃犙.∵犆犇切⊙犗于犆点,∴∠犅=∠犘犃荦.∴犅犈∥荦犃.∵犃犇切⊙荦于点犃,∴荦犃⊥犃犇.8参考答案与提示∴犅犈⊥犃犇,即犅犈⊥犆犇,∴11.(1)如图24所示,︵犅犆=︵犅犇.则四边形犃犅犆犇为正方形,那么井盖半径犗犆=犃犅,这样就可求出井盖的直径.学生2:如图26(2),把角尺顶点犃放在连结犗犙.∵犚犙是⊙犗的切线,井盖边上某点,记角尺一边与井盖边缘交于点犅,另一边交于点犆(若角尺另一边无法达∴∠犗犙犘+∠犚犙犘到井盖的边上,把角尺当直尺用,延长另一=90°.∵犗犃⊥犗犅,边与井盖边缘交于点犆),度量犅犆长即∴∠犗犘犅+∠犅=90°.∵犗犅=犗犙,图24为直径.学生3:如图26(3),把角尺当直尺用,量出犃犅的长度,取犃犅中点犆,然后把角尺∴∠犗犙犘=∠犅.顶点与犆点重合.有一边与犆犅重合,让另一∴∠犚犙犘=∠犗犘犅=∠犚犘犙.边与井盖边交于犇点,延长犇犆交井盖边于∴犚犘=犚犙.(2)延长犅犗交⊙犗于点犆.连结犆犙.点犈,度量犇犈长即为直径.∵犅犆是⊙犗的直径,∴∠犅犙犆=90°.学生4:如图26(4),把井盖卡在角尺∵犗犃⊥犗犅,∴∠犅犗犘=90°.间,记录犅、犆的位置,再把角尺当作直尺用,∴∠犅犙犆=∠犅犗犘.可测得犅犆的长度.记圆心为犗,作犗犇⊥又∵∠犅=∠犅,∴△犅犙犆∽△犅犗犘.犅犆,犇为垂足,由垂径定理得犅犇=犇犆=∴犅犙犅犗=犅犆犅犘.12犅犆,且∠犅犗犇=∠犆犗犇.由作图知∵犗犘=犘犃=1,∴犅犗=犃犗=2.2+12=槡5,犅犆=2犅犗=4.∴犅犘=槡2∠犅犗犆=90°,∴∠犅犗犇=12×90°=45°.在犅犙4∴=2槡5∴犘犙=8槡55.∴犅犙=8槡553槡5-5=槡5..犅犇Rt△犅犗犇中,犅犗=,这样就可求出sin45°井盖的半径,进而求得直径.12.(1)∠犅犘犆=∠犆犘犇成立.(2)(1)中的结论仍然成立,如图25所示.过点犘作两圆的公切线犘犕,则∠犕犘犅=∠犃,图25∠犕犘犆=∠犅犆犘.∴∠犅犘犆=∠犕犘犆-∠犕犘犅=∠犅犆犘-∠犃=∠犆犘犃.∴∠犅犘犆=∠犆犘犇.第3节正多边形和圆1.C2.D3.B4.25.略6.120,槡3,π7.7槡38.学生1:如图26(1),把井盖卡在角度尺间,可测得犃犅的长.记井盖所在圆的圆心为犗,连接犗犅、犗犆,由切线的性质得犗犅⊥犃犅,犗犆⊥犃犆,又,犃犅⊥犃犆,犗犅=犗犆,图269人教版·数学·九年级(上)学生5:如图26(5),把角尺当作直尺用,△犅犗犇.先测得犃犅的长度,记录犃、犅的位置,再量(2)犁阴影=犁扇形犗犃犅-犁扇形犗犆犇=2π.犃犆=犃犅,记录犆的位置,然后测得犅犆的长11.方法1:仔细观察,不难发现:犃、犅、度.作等腰三角形犅犃犆底边犅犆上的高犃犇,犇犆阴影部分面积相等(正方形面积-圆的面为垂足.∵犃犇垂直平分犅犆,∴由垂径定理可积),由四选一型选择题的特点,只能选犇.求出犃犇,那么,在Rt△犅犇犗中,犗犅2=犅犇方法2:因为犃、犅、犆中圆弧的半径均为2+犗犇2=犅犇狉,则狉2=犅犇2+(犃犇-犃犗)2.设井盖半径为2+(犃犇-狉)2,∵犅犇、犃犇都已犪2,犇中圆弧的半径为犪,所以犃、犅、犆、犇的知.∴解一元二次方程就可求出井盖的半径狉,这样就可求出井盖的直径.9.(1)a、b、c,a、c;(2)略第4节弧长和扇形面积练习一2-π(犪面积分别为:犁犪244-π);=犁=犪犇)2犃=犁犅=犁犆=犪22-2π犪2-×犪×1[犪]=2犪2-421.C2.B3.C4.B5.A236.π7.1π犪22=犪2(4-π).2显然,犇最大.应选犇.练习二方法3:因为犃、犅、犆中圆弧的1.D2.13.2π124.160°5.57.326.π犪2(),=4πcm7.犾=状π犚180=120π×6180∵弧长犾等于圆锥的底面周长,即犆=4π,半径均为犪,所以犃、犅、犆的面积为:)22犪犁犃=犁犅=犁犆=犪2-π(2-π(2犪2(4-π);=4图28∴底面半径狉=犆2π=2(cm),∴犁底=犇中圆弧的半径为犪,可将原图形犇中白色区域对角线连结,然后将对角线上方的4π(cm2).图沿着逆时针方向旋转90°,重新拼成图238.π犪228,则π犪22=犪22(4-π).犁犇=犪×2犪-9.证明:如图27所示,连结犗犘、犗犆,设显然,犇最大.应选犇.∠犘犗犆=状°.由已知得状π×5180=图27第二十五章概率初步第1节随机事件与概率52π,解得状=90.∴∠犘犗犆=90°.1.162.12练习一123.234.1412∴∠犘犅犆=∠犘犗犆=45°.∵犃犅是直径,∴∠犃犆犅=90°.5.50.2%6.必然7.浅色8.犃9.B10.A11.B12.B13.3614.摸到红球、白球、黄球的可能性不相∴∠犆犕犅=45°.同.因为红球最多,所以摸到红球的可能性∴∠犘犅犆=∠犆犕犅.∴犕犆=犅犆.10.(1)证明:∵∠犆犗犇=∠犃犗犅=最大,而摸到黄球的可能性最小.练习二90°,∴∠犃犗犆=∠犅犗犇.又∵犗犃=犗犅,犗犆=犗犇,∴△犃犗犆≌11.522.2%10参考答案与提示3.(1)小;(2)一样大;(3)大(3)不一定4.大于5.大于6.A7.A8.B6.(1)131;(2)1205,10,15,209.D10.C11.候车不超过3分钟的可能性较大.7.(1)219(2)519(3)121912.这个游戏不公平,小明更容易获胜.8.280.569.0.31510.(1)表中数据:频数从上到下依次因为任意把两张卡片上的数字相加,和为为:9,21,50;频率从上到下依次为:0.42,奇数的更多.0.04;(2)0.76×400=304;(3)能,不能.13.(1)108,114,120;(2)不能.第2节用列举法求概率练习一11BD五牌糕按总25.535%3%、7.5进货19%.1.D2.B3.C4.C不合理,图钉落地后钉尖朝上和钉12.5.尖朝下的机会不均等.156.2517.188.3219.百万分之二13.(1)不可信.实验次数太少;(2)不10.可以用表格列举所有可能得到的牌好.改变了实验条件,啤酒瓶盖和可乐瓶盖面数字之和:共有16种情况,每种情况发生落地后正面朝上的机会不一定相同;(3)好.的可能性相同,而两张牌的牌面数字之和等这样既能提高速度又不会对实验结果造成于5的情况共出现4次,因此牌面数字之和影响,但应在瓶盖完全相同的条件下进等于5的概率为25%.行实验.11.(1)1个;(2)列举略,两次摸到不同颜色的球的14.可能性为34,这种说法是正确的.概率为犘=1012=56.15.24%第4节课题学习键盘上字母练习二的排列规律1.B2.D3.A4.D略5.13236.12121期中综合练习7.141131521.B2.C3.B4.C5.C6.C8.14组1187.A8.B9.210.-611.1和0槡9.(1)篮球:10%+12%+15%+5%=12.②13.犿≠-1且犿≠242%,足球:20%+12%+18%+5%=55%,乒乓球:15%+18%+15%+5%=53%;所以开展足球运动会有更多人参与;(2)抽到喜欢乒乓球的可能性较大.10.(1)犘(1等奖)=136;犘(2等奖)=槡14.3-515.略16.化简后为狓2+417.略18.19000只19.原式=2狓+4.当狓=槡2-2时,原式=2槡2.19,犘(3等奖)=16;(2)5000元.20.(1)-3,9;(2)是第十个;(3)狓2状狓-3状2=0.2-第3节利用频率估计概率21.提示:(犪-21)(350-10犪)=400,解之得犪1=25,犪1.A2.C3.C4.D2=31.5.(1)相同条件(2)实验的次数因为21×(1+20%)=25.2而犪=3111人教版·数学·九年级(上)不合题意,舍去.狓(11-狓)=30,即狓2-11狓+30=0,解所以350-10犪=100件得狓1=5,狓2=6.所以进货100件,定价为25元.故矩形的长和宽分别为6cm、5cm时,期末综合练习面积是30cm2.由狓(11-狓)=32,即狓2-11狓+32=0,犫2-4犪犮=121-4×1×1.A2.A3.C4.D5.C6.B32<0,方程无实数根,故不能折成面积是2的矩形.7.D8.D9.A10.D32cm25.不改变.11.±2槡2如图30所示,12.狓1=1,狓2=-313.114.5115.①③④⑤16.2717.65°连结犗犘,犗犆=犗犘烌18.略19.420.4(1+狓)2=7∠2=∠犘烍21.原式=槡2-1361222.(1)犘(指针指向奇数区域)=;=(2)方法一:如图29所示,自由转动转盘,当转盘停止时,指针指向阴影部分区域∠2=∠1烎∠1=∠犘犗犘∥犆犇犆犇⊥}犃犅︵犗犘⊥犃犅犘犃=图30︵犘犅犘点为中点.的概率为2;3方法二:自由转动转盘,当它停止时,指针指向的数字不小于3时,指针指26.(1)(方法1)连结犇犗,犗犇是△犃犅犆的中位线,运用中位线的性质.(方法2)连结犃犇,∵犃犅是⊙犗的直径,∴犃犇⊥犅犆.∵犅犇=犆犇,∴犃犅=犃犆.(2)连结犃犇,∵犃犅是⊙犗的直径,向的区域的概率是2.323.(1)可以通过逆时图29针旋转90°使△犃犅犈变到△犃犇犉的位置.(2)犅犈=犇犉.提示:证△犃犅犈≌△犃犇犉(SAS).24.设所折成矩形的长为狓cm,则有∴∠犃犇犅=90°,∴∠犅<∠犃犇犅=90°.∠犆<∠犃犇犆=90°.∴∠犅,∠犆为锐角.∵犃犆和⊙犗交于点犉,连接犅犉,∴∠犃<∠犅犉犆=90°.∴△犃犅犆为锐角三角形.檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪殏《练习册》参考答案下载请登陆:殏檪檪陕西师范大学教育出版集团网址:http://www.snupg.com檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪12。

人教版九年级数学上册课后习题参考答案

人教版九年级数学上册课后习题参考答案

第21章第4页练习第1题答案解:(1)5x2-4x-1=0,二次相系数为5,一次项系数为-4,常数项为-1 (2)4x2-81=0,二次项系数为4,一次项系数为0,常数项为-81(3)4x2+8x-25=0,二次项系数为4,一次项系数为8,常数项为-25 (4)3x2-7x+1=0,二次项系数为3,一次项系数为-7,常数项为1【规律方法:化为一般形式即把所有的项都移到方程的左边,右边化为0的行驶,在确定二次项系数,一次项系数和常数项时,要特别注意各项系数及常数项均包含前面的符号。

】第4页练习第2题答案解:(1)4x2=25, 4x2-25=0(2)x(x-2)=100,x2-2x-100=0(3)x∙1=(1-x)2-3x+1=0习题21.1第1题答案(1)3x2-6x+1=0,二次项系数为3,一次项系数-6,常数项为1(2)4x2+5x-81=0,二次项系数为4,一次项系数为5,常数项为-81(3)x2+5x=0,二次项系数为1,一次项系数为5,常数项为0(4)x2-2x+1=0,二次项系数为1,一次项系数为-2,常数项为1(5)x2+10=0,二次项系数为1,一次项系数为0,常数项为10(6)x2+2x-2=0,二次项系数为1,一次项系数为2,常数项为-2习题21.1第2题答案(1)设这个圆的半径为Rm,由圆的面积公式得πR2=6.28,∴πR2-6.28=0(2)设这个直角三角形较长的直角边长为x cm,由直角三角形的面积公式,得1/2x(x-3)=9,∴x2-3x-18=0习题21.1第3题答案方程x2+x-12=0的根是-4,3习题21.1第4题答案设矩形的宽为x cm,则矩形的长为(x+1)cm,由矩形的面积公式,得x∙(x+1)=132,∴x2+x-132=0习题21.1第5题答案解:设矩形的长为x m,则矩形的宽为(0.5-x)m,由矩形的面积公式得:(0.5-x)=0.06∴x2-0.5x+0.06=0习题21.1第6题答案解:设有n人参加聚会,根据题意可知:(n-1)+(n-2)+(n-3)+…+3+2+1=10,即(n(n-1))/2=10,n2-n-20=0习题21.2第1题答案(1)36x2-1=0,移项,得36x2=1,直接开平方,得6x=±1,,6x=1或6x=-1,∴原方程的解是x1=1/6,x2=-1/6(2)4x2=81,直接开平方,得2=±9,,2x=9或2x=-9,∴原方程的解是x1=9/2,x2=-9/2(3)(x+5)2=25,直接开平方,得x+5=±5,∴+5=5或x+5=-5,∴原方程的解是x1=0,x2=-10(4)x2+2x+1=4,原方程化为(x+1)2=4,直接开平方,得x+1=±2,∴x+1=2或x+1=-2,∴原方程的解是x1=1,x2=-3习题21.2第2题答案(1)9;3(2)1/4;1/2(3)1;1(4)1/25;1/5习题21.2第3题答案(1)x2+10x+16=0,移项,得x2+10x=-16,配方,得x2+10x+52=-16+52,即(x+5)2=9,开平方,得x+5=±3,∴+5=3或x+5=-3,∴原方程的解为x1=-2,x2=-8(2)x2-x-3/4=0,移项,得x2-x=3/4,配方,得x2-x=3/4,配方,得x2-x+1/4=3/4+1/4,即(x-1/2)2=1,开平方,得x- 1/2=±1,∴原方程的解为x1=3/2,x2=-1/2(3)3x2+6x-5=0,二次项系数化为1,得x2+2x-5/3=0,移项,得x2+2x=5/3,配方,得x2+2x+1=5/3+1,即(x+1)2=8/3,(4)4x2-x-9=0,二次项系数化为1,得x2-1/4x-9/4=0,移项,得x2-1/4 x= 9/4,配方,得x2-1/4x+1/64=9/4+1/64,即(x-1/8)2=145/64,习题21.2第4题答案(1)因为△=(-3)2-4×2×(-3/2)=21>0,所以原方程有两个不相等的实数根(2)因为△=(-24)2-4×16×9=0,所以与原方程有两个相等的实数根(3)因为△=-4×1×9=-4<0,因为△=(-8)2-4×10=24>0,所以原方程有两个不相等的实数根习题21.2第5题答案(1)x2+x-12=0,∵a=1,b=1,c=-12,∴b2-4ac=1-4×1×(-12)=49>0,∴原方程的根为x1=-4,x2=3.∴b2-4ac=2-4×1×(-1/4)=3>0,(3)x2+4x+8=2x+11,原方程化为x2+2x-3=0,∵a=1,b=2,c=-3,∴b2-4ac=22-4×1×(-3)=16>0,∴原方程的根为x1=-3,x2=1.(4)x(x-4)=2-8x,原方程化为x2+4x-2=0,∵a=1,b=4,c=-2,∴b2-4ac=42-4×1×(-2)=24>0,(5)x2+2x=0,∵a=1,b=2,c=0,∴b2-4ac=22-4×1×0=4>0,∴原方程的根为x1=0,x2=-2.(6) x2+2x+10=0,∵a=1,b=2,c=10,∴b2-4ac=(2)2-4×1×10=-20<0,∴原方程无实数根习题21.2第6题答案(1)3x2-12x=-12,原方程可化为x2-4x+4=0,即(x-2)2=0,∴原方程的根为x1=x2=2(2)4x2-144=0,原方程可化为4(x+6)(x-6),∴x+6=0或x-6=0,∴原方程的根为x1=-6,x2=6.(3)3x(x-1)=2(x-1),原方程可化为(x-1)∙(3x-2)=0∴x-1=0或3x-2=0∴原方程的根为x1=1,x2=2/3(4)(2x-1)2=(3-x)2,原方程可化为[(2x-1)+(3-x)][(2x-1)-(3-x)]=0,即(x+2)(3x-4)=0,∴x+2=0或3x-4=0∴原方程的根为x1=-2,x2=4/3习题21.2第7题答案设原方程的两根分别为x1,x2(1)原方程可化为x2-3x-8=0,所以x1+x2=3,x1·x2=-8(2)x1+x2=-1/5,x1·x2=-1(3)原方程可化为x2-4x-6=0,所以x1+x2=4,x1·x2=-6(4)原方程可化为7x2-x-13=0,所以x1+x2=1/7,x1·x2=-13/7习题21.2第8题答案解:设这个直角三角形的较短直角边长为 x cm,则较长直角边长为(x+5)cm,根据题意得:1/2 x(x+5)=7,所以x2+5x-14=0,解得x1=-7,x2=2,因为直角三角形的边长为:答:这个直角三角形斜边的长为cm习题21.2第9题答案解:设共有x家公司参加商品交易会,由题意可知:(x-1)+(x-2)+(x-3)+…+3+2+1=45,即x(x-1)/2=45,∴x2-x-90=0,即(x-10)(x+9)=0,∴x-10=0或x+9=0,∴x1=10,x2=-9,∵x必须是正整数,∴x=-9不符合题意,舍去∴x=10答:共有10家公司参加商品交易会习题21.2第10题答案解法1:(公式法)原方程可化为3x2-14x+16=0,∵a=3,b=-14,c=16,∴b2-4ac=(-14)2-4×3×16=4>0,∴x=[-(-14)±]/(2×3)=(14±2)/6,∴原方程的根为x1=2,x2=8/3解法2:(因式分解法)原方程可化为[(x-3)+(5-2x)][(x-3)-(5-2x)]=0,即(2-x)(3x-8)=0,∴2-x=0或3x-8=0,∴原方程的根为x1=2,x2=8/3习题21.2第11题答案解:设这个矩形的一边长为x m,则与其相邻的一边长为(20/2-x)m,根据题意得:x(20/2-x)=24,整理,得x2-10x+24=0,解得x1=4,x2=6.当x=4时,20/2-x=10-4=6当x=6时, 20/2-x=10-6=4.故这个矩形相邻两边的长分别为4m和6m,即可围城一个面积为24m2的矩形习题21.2第12题答案解设:这个凸多边形的边数为n,由题意可知:1/2n(n-3)=20解得n=8或n=-5因为凸多边形的变数不能为负数所以n=-5不合题意,舍去所以n=8所以这个凸多边形是八边形假设存在有18条对角线的多边形,设其边数为x,由题意得:1/2 x(x-3)=18解得x=(3±)/2因为x的值必须是正整数所以这个方程不存在符合题意的解故不存在有18条对角线的凸多边形习题21.2第13题答案解:无论p取何值,方程(x-3)(x-2)-p2=0总有两个不相等的实数根,理由如下:原方程可以化为:x2-5x+6-p2=0△=b2-4ac=(-5)2-4×1×(6-p2)=25-24+4p2=1+4p2∵p2≥0,,1+4p2>0∴△=1+4p2>0∴无论P取何值,原方程总有两个不相等的实数根习题21.3第1题答案(1)x2+10x+21=0,原方程化为(x+3)(x+7)=0,或x+7=0,∴x1=-3,x2=-7.(2) x2-x-1=0∵a=1,b=-1,c=-1,b2-4ac=(-1)2-4×1×(-1)=5>0,(3)3x2+6x-4=0,∵a=3,b=6,c=-4,b2-4ac=62-4×4×3×(-4)=84>0,(4)3x(x+1)=3x+3,原方程化为x2=1,直接开平方,得x=±1,∴x1=1,x2=-1(5)4x2-4x+1=x2+6x+9,原方程化为(2x-1)2=(x+3)2,∴[(2x-1)+(x+3)][(2x-1)-(x+3)]=0,即(3x+2)(x-4)=0,,3x+2=0或x-4=0,∴x1=-2/3,x2=4∴a=7,b=-,c=-5,b2-4ac=(-)2-4×7×(-5)=146>0∴x= [-(-)±]/(2×7)=(±)/14,∴x1=(+)/14,x2=(-)/14习题21.3第2题答案解:设相邻两个偶数中较小的一个是x,则另一个是(x+2).根据题意,得x(x+2)=168∴x2+2x-168=0∴x1=-14,x2=12.当x=-14时,x+2=-12当x=12时,x+2=14答:这两个偶数是-14,-12或12,14习题21.3第3题答案解:设直角三角形的一条直角边长为 xcm,由题意可知1/2x(14-x)=24,∴x2-14x+48=0∴x1=6,x2=8当x=6时,14-x=8当x=8时,14-x=6∴这个直角三角形的两条直角边的长分别为6cm,8cm习题21.3第4题答案解:设每个支干长出x个小分支,则1+x+x2=91整理得x2+x-90=0,(x-9)∙(x+10)=0。

新课程课堂同步练习册(九年级数学上册人教版)答案

新课程课堂同步练习册(九年级数学上册人教版)答案

《新课程课堂同步练习册·数学(人教版九年级上册)》参考答案 第二十一章 二次根式§21.1二次根式(一)一、1. C 2. D 3. D二、1.7±,23x ≤4. 1 三、1.50m 2.(1)2x ≥ (2)x >-1 (3)0m ≤ (4)0=m §21.1二次根式(二)一、1. C 2.B 3.D 4. D二、1.3π-,3π- 2.1 3.2)4(± ;2)7(±三、1.7-或-32.(1)5;(2)5; (3)4; (4)18; (5)0.01;(6)1x +; 3. 原式=2a b b a a --+-=- §21.2二次根式的乘除(一) 一、1.C 2. D 3.B二、1.< 2.1112+⨯-=-n n n (1,n n ≥为整数) 3.12s 4.三、1.(1)(2)(3)36 (4)–108 2.10cm 23§21.2二次根式的乘除(二)一、1.C 2.C 3.D二、1.a >3 2. 3.(1; 4. 6三、1.(1) (2) 2.(1)87(2)5(3)213.258528=÷nn ,因此是2倍. §21.2二次根式的乘除(三)一、1.D 2.A 3.B二、1.2=x 2.33, 3.1 4.33三、1.(1)1 (2)10 2. 33=x 3.(26-; 423=S §21.3二次根式的加减(一)一、1.C 2.A 3.C二、1.(答案不唯一,如:20、45) 2. 3<x <33 3. 1三、1.(1)34 (2)216- (3)2 (4)332. 10 §21.3二次根式的加减(二)一、1.A 2.A 3.B 4.A二、1. 1 2. 6+, 3. n m -三、1.(1)13- (2)253- (3)(4)22.因为25.45232284242324321824≈=⨯=++=++)()(>45 所以王师傅的钢材不够用. §21.3二次根式的加减(三) 一、1. C 2.B 3.D二、 1. 32; 2. 0, 3. 1 (4)(x x三、 1.(1)6 (2)5 2.(1) (2)92第二十二章 一元二次方程§22.1一元二次方程(一)一、1.C 2.D 3.D 二、1. 2 2. 3 3. –1三、1.略 2.222(4)(2)x x x -+-= 一般形式:212200x x -+= §22.1一元二次方程(二)一、1.C 2.D 3.C 二、1. 1(答案不唯一) 2.123. 2 三、1.(1)2,221-==x x (2)1233,44x x ==-(3)12t t ==- (4)1222x x ==- 2.以1为根的方程为2(1)0x -=, 以1和2为根的方程为(1)(2)0x x --= 3.依题意得212m +=,∴1m =± .∵1m =-不合题意,∴1m =. §22.2降次-解一元二次方程(一)一、1.C 2.C 3.D 二、1. 1233,22x x ==- 2. 1m ≥ 3. -1三、1.(1)43t =±(2)x =(3)1x =-± (4)1x =2.解:设靠墙一边的长为x 米,则401922xx -⋅= 整理,得 2403840x x -+=, 解得 1216,24x x == ∵墙长为25米, ∴1216,24x x ==都符合题意. 答:略. §22.2降次-解一元二次方程(二) 一、1.B 2.D 3. C二、1.(1)9,3 (2)-5 (3)24m ,2m2.3±3. 1或32-三、1.(1)1211x x ==2)12y y ==3)21,221==x x (4)124,3x x =-= 2.证明:2211313313()61212x x x --+=-++≤§22.2降次-解一元二次方程(三) 一、1.C 2.A 3.D二、1. 9m 4≤2. 243. 0三、1.(1)121x x 12==, (2)1222x x 33+==(3)121x 2x 3==, (4)12y 1y 2=-=,2.(1)依题意,得()222m+141m 0∆=--⨯⨯≥⎡⎤⎣⎦∴21-≥m ,即当21-≥m 时,原方程有两个实数根. (2)由题意可知()222m+141m ∆=--⨯⨯⎡⎤⎣⎦>0 ∴m >12-, 取m 0=,原方程为2x 2x 0-= 解这个方程,得12x 0x 2==,.§22.2降次-解一元二次方程(四) 一、1.B 2.D 3.B二、1.-2,2x = 2. 0或43 3. 10 三、1.(1)12305x x ==-, (2)3,2121-==x x (3)12113y y ==, (4)1,221==x x (5)1217x x == (6)19x =-,22x =2.把1x =代入方程得 ()222114132m m m +⨯+⨯+=,整理得2360m m +=∴120,2m m ==-§22.2降次-解一元二次方程(五) 一、1.C 2.A 3.A二、1.2660x x --=,1,1-,66-. 2、6或—2 3、4三、1.(1)12x 7x 3==, (2)12x x ==, (3)3121==x x (4) 12x 7x 2==-, 2.∵ 221=+x x ∴ 2=m 原方程为2230x x --= 解得 1x 3=,21x =-3.(1)()224(3)411b ac m -=--⨯⨯-944m =-+134m =->0 ∴ m <134(2)当方程有两个相等的实数根时,则1340m -=, ∴134m =, 此时方程为04932=+-x x , ∴1232x x == §22.2降次-解一元二次方程(六)一、1.B 2.D 3.B 二、1. 1 2. -3 3. -2 三、1.(1)51=x ,52-=x (2)21±=x (3)121==x x (4)没有实数根2.(1).4412,4112x x x x -=+∴=-+.21=∴x 经检验21=x 是原方程的解. 把21=x 代人方程0122=+-kx x ,解得3=k . (2)解01322=+-x x ,得.1,2121==x x ∴方程0122=+-kx x 的另一个解为1=x .3.(1)()22244114b ac k k -=-⨯⨯-=+>0,∴方程有两个不相等的实数根. (2)∵12x x k +=-,121x x ⋅=-,又1212x x x x +=⋅ ∴1k -=- ∴1k =§22.3实际问题与一元二次方程(一)一、1.B 2.D二、1.2)1()1(x a x a a -+-+ 2.222)1()1(+=-+x x x 3.()21a x +三、1.解:设这辆轿车第二年、第三年平均每年的折旧率为x ,则776.7)1%)(201(122=--x ,解得%101.01==x ,9.12=x (舍去). 答:略2.解:设年利率为x ,得1320)1](1000)1(2000[=+-+x x , 解得%101.01==x ,6.12-=x (舍去).答:略§22.3实际问题与一元二次方程(二)一、1.C 2.B二、1. 15,10 2. cm 20 3. 6三、1.解:设这种运输箱底部宽为x 米,则长为)2(+x 米,得151)2(=⨯+x x ,解得5,321-==x x (舍去),∴这种运输箱底部长为5米,宽为3米.由长方体展开图知,要购买矩形铁皮面积为:)(35)23()25(2m =+⨯+,∴要做一个这样的运输箱要花7002035=⨯(元).2.解:设道路宽为x 米,得50423220232202=+-⨯-⨯x x x , 解得34,221==x x (舍去).答:略§22.3实际问题与一元二次方程(三)一、1.B 2.D二、1. 1或2 2. 24 3. 15- 三、1.设这种台灯的售价为每盏x 元,得()()[]1000040x 1060030x =---, 解得80x 50x 21==,当50x =时,()50040x 10600=--;当80x =时,()20040x 10600=-- 答:略2.设从A 处开始经过x 小时侦察船最早能侦察到军舰,得22250)3090()20(=-+x x ,解得1328,221==x x ,1328>2,∴最早2小时后,能侦察到军舰. 第二十三章 旋 转§23.1图形的旋转(一)一、1.A 2.B 3.D二、1. 90 2. B 或C 或BC 的中点 3. A 60 4. 120°,30° 5 . 三、EC 与BG 相等 方法一:∵四边形ABDE 和ACFG 都是正方形 ∴AE=AB ,AC=AG∴∠EAB=∠CAG=90°∴把△EAC 绕着点A 逆时针旋转90°,可与△BAG 重合 ∴EC=BG 方法二:∵四边形ABDE 和ACFG 都是正方形 ∴AE=AB ,AC=AG ∠EAB=∠CAG=90° ∴∠EAB+∠BAC=∠CAG+∠BAC 即 ∠EAC=∠BAG ∴△EAC ≌△BAG ∴EC=BG §23.1图形的旋转(二)一、1.C 2.C 3.D 二、1. 2,120° 2. 120或240 3. 4三、1.如图 2.如图3.(1)旋转中心是时针与分针的交点; (2)分针旋转了108.4.解:(1)HG 与HB 相等. 连接AH ∵正方形ABCD 绕着点A 旋转得到正方形AEFG ∴AG=AD=AB=AE ,∠G=∠B=90°又∵AH=AH ∴△AGH ≌△ABH ∴HG=HB (2)∵△AGH ≌△ABH ∴∠GAH = ∠BAH∴214323()233AGH ABH S S cm ∆∆==⨯=由123223GH ⨯=得:233GH cm =在Rt △AGH 中,根据勾股定理得:2223432233AH cm GH ⎛⎫=+== ⎪ ⎪⎝⎭∴∠GAH=30°∴旋转角∠DAG = 90°-2∠GAH = 90°-2×30°= 30°§23.2中心对称(一)一、1.C 2.D 3.B二、1.对称中心 对称中心 2.关于点O 成中心对称3 .△CDO 与△EFO 三、1.(略)2.(1)A 1的坐标为(1,1),B 1的坐标为(5,1),C 1的坐标为(4,4).(2)A 2()1,1--, B 2的坐标为()5,1--, C 2的坐标为()4,4-- 画图如下: 3.画图如下:BB ′=2OB =5221222222=+=+BC OC§23.2中心对称(二)一、1.D 2.C 3.二、1.矩形、菱形、正方形 2.正六边形、正八边形(边数为偶数的正多边形均正确) 三、1.关于原点O 对称(图略) 2.解:∵矩形ABCD 和矩形AB 'C 'D '关于A 点对称∴AD=AD ',AB=AB ',DD '⊥BB ' ∴四边形BDB 'D '是菱形 3.解:(1)AE 与BF 平行且相等 ∵△ABC 与△FEC 关于点C 对称∴AB 平行且等于FE ∴四边形ABFE 是平行四边形 ∴AE 平行且等于BF (2)122cm (3)当∠ACB=60°,四边形ABFE 为矩形,理由如下: ∵∠ACB=60°,AB=AC ∴AB=AC=BC ∵四边形ABFE 是平行四边形∴AF=2AC ,BE=2BC ∴AF=BE ∴四边形ABFE 为矩形B′OCBAAB C D§23.2中心对称(三)一、1.B 2.D 3.D二、1. 四 2.3y x =(任一正比例函数) 3. 三 三、1.如图2、解:由已知得212x x +=-, 244y y += 解得1x =-,2y =∴()22120x y +=⨯-+= 3.(1)D 的坐标为(3,-4)或(-7,-4)或(-1,8) (2)C 的坐标为(-1,-2),D 的坐标为(4,-2), 画图如图:§23.3 课题学习 图案设计 一、1.D 2.C二、1.72° 2.基本图案绕(2)的O 点依次旋转60°、120°、180°、240°、300°而得到. 三、1.(略)2.如图3.(1)是,6条 (2)是(3)60°、120°、180°、240°、300°第二十四章 圆§24.1.1圆一、1.A 2.B 3.A二、1. 无数 经过这一点的直径 2. 303. 半径 圆上 三、1.提示:证对角线互相平分且相等 2.提示:证明:OCD OAB ∠=∠ §24.1.2 垂直与弦的直径一、1.B 2.C 3. D二、1.平分 弧 2. 3≤OM ≤53. 63三、1. 120 2. (1)、图略 (2)、10cm §24.1.3 弧、弦、圆心角一、1. D 2. C 3. C 二、1.(1) ∠AOB=∠COD,= (2) ∠AOB=∠COD, AB=CD (3) =, AB=CD2. 15°3. 2 三、1. 略2.(1)连结OM 、ON ,在Rt △OCM 和Rt △ODN 中OM=ON ,OA=OB ,∵AC=DB ,∴OC=OD ,∴Rt △OCM ≌Rt △ODN ,∴∠AOM=∠BON , ∴AM=BN0yx0yx⌒ ⌒§24.1.4圆周角一、1.B 2. B 3.C二、1.28 2. 43.60°或120°三、1.90o提示:连接AD 2.提示:连接AD §24.2.1点和圆的位置关系 一、1.B 2.C 3. B二、1.d <r d r = ,d >r 2. OP >63. 内部, 斜边上的中点, 外部 三、1.略 2. 5cm§24.2.2直线与圆的位置关系(一) 一、1. B 2. D 3. A二、1.相离, 相切 2.相切 3. 4三、1.(1)相交, 相切 §24. 2.2直线与圆的位置关系(二) 一、1.C 2.B二、1.过切点的半径 垂直于 2.3、30°三、1.提示: 作OC ⊥AQ 于C 点 2.(1)60o(2)§24.2.2直线与圆的位置关系(三)一、1.C 2.B 3.C二、1. 115o 2. 90o 10cm 3. 1﹕2 三、1. 14cm 2. 提示:连接OP ,交AB 与点C. §24.2.3圆与圆的位置关系一、1.A 2.C 3. D二、1. 相交 2. 83. 2 3 10三、1.提示:分别连接1212,,O O O B O B ;可得1216030OO O O B O AB ∠=∴∠=2.提示:半径相等,所以有AC=CO ,AO=BO ;另通过说明∠AEO=90°,则可得AE=ED. §24.3正多边形和圆(一)一、1. B 2. C 3.C二、1.内切圆 外接圆 同心圆 2.十五3.2cm 三、1.10和5 2. 连结OM ,∵MN ⊥OB 、OE =21OB =21OM ,∴∠EMO =30°,∴∠MOB =60°,∴∠MOC =30°,∠MOB =6360︒、∠MOC =12360︒.即MB 、MC 分别是⊙O 内接正六边形和正十二边形的边长.§24.3正多边形和圆(二) 一、1.C 2. B二、1. 72 2. 四 每条弧 连接各等分点3. 2a π三、1. 22. 边长为4,面积为32 §24.4.1 弧长和扇形的面积一、1. B 2. D 3.C二、1.o 3602π, 2. π3434- 3.83π三、1. 10.5 2. 112π(2cm )§24.4.2 圆锥的侧面积和全面积一、1.A 2. B 3.B 二、1. 130π2cm 2. 215cmπ3. 2π三、1. (1)20π (2)220 2. S 48π=全第二十五章 概率初步§25.1.1随机事件(一)一、1. B 2. C 3.C二、1. 随机 2.随机 3.随机事件,不可能事件 4.不可能三、1. B ; A 、C 、D 、E ; F 2.(1)随机事件 (2)必然事件 (3)不可能事件 §25.1.1随机事件(二) 一、1.D 2.B 3. B二、1.黑色扇形 2.判断题 3. C 4.飞机三、1.(1)不一样,摸到红球的可能性大 ;(2)他们的说法正确2.事件A >事件C >事件D >事件B §25.1.2概率的意义(一) 一、 1. D 2. D二、1. 折线在0.5左右波动, 0.5 2. 0.5,稳定 3. 1,0,0<P(A)<1 三、1. (1)B,D (2)略2.(1)0.68,0.74,0.68,0.692,0.705,0.701 (2)接近0.7 (3)70% (4)2520§25.1.2概率的意义(二) 一、1. D 2. C 二、1.明 2. 75 3.1584. 16三、1.(1)不正确 (2)不一定2.(1)201 (2) 201 3.(1)0.6 (2)60%,40% (3)白球12只,黑球8只. §25.2用列举法求概率(一) 一、1.B 2. C 3.B 二、1.31 2. 72 3. 51 4.41 三、1.(1)“摸出的球是白球”是不可能事件,它的概率为0;(2)“摸出的球是黄球”是随机事件,它的概率为0.4;(3)“摸出的球是红球或黄球”是必然事件,它的概率为1. 2.50000013. 不唯一,如放3只白球,1只红球等§25.2用列举法求概率(二) 一、1.B 2.C 3.C二、1.83 2.23 3.112 4.NM L N ++ 三、1.(1)31 (2)61 (3)212.摸出两张牌和为偶数的概率是95,摸出两张牌和为奇数的概率是94,所以游戏有利于小张,不公平;可以改为,如果摸出两张牌,牌面数字之和为3,小张胜.牌面数字之和为5,则小王胜. 3.(1)16 (2)12 (3)12§25.2用列举法求概率(三) 一、1.A 2. B 3. B 二、1.3652. 1613.214.31三、1.(1)12;(22.(1)由列表(略)可得:P (数字之和为5)14=;(2)因为P (甲胜)14=,P (乙胜)34=,甲胜一次得12分,要使这个游戏对双方公平,乙胜一次的得分应为:1234÷=分.3.(1)根据题意可列表或树状图如下:从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种,∴P(和为奇数)23=(2)不公平.∵小明先挑选的概率是P(和为奇数)23=,小亮先挑选的概率是P(和为偶数)13=,∵2133≠,∴不公平.§25.2用列举法求概率(四)一、1.A 2.D 3. D二、(1)红、白、白,(2)923. 94.13三、1.列表或树状图略:由表或图可知,点数之和共有36种可能的结果,其中6出现5次,7出现6次,故P(和为6)536=,P(和为7)636=.∴P(和为6)<P(和为7),∴小红获胜的概率大.2.(1)31(2)31(3)31.3.(1)树状图为:(2)由图可知评委给出A选手所有可能的结果有8种.对于A选手,“只有甲、乙两位评委给出相同结论”有2种,即“通过-通过-待定”、“待定-待定-通过”,所以对于A选手“只有甲、乙两位评委给出相同结论”的概率是14.(1,2)(1,3)(1,4)2 3 41(2,1)(2,3)(2,4)1 3 42(3,1)(3,2)(3,4)1 2 43(4,1)(4,2)(4,3)1 2 34第一次摸球第二次摸球通过通过待定待定通过通过待定通过待定通过待定通过待定甲乙丙§25.3利用频率估计概率(一) 一、1. B 2. C 二、1. 常数 2.25013. 210, 270 三、1. (1)0.025,0.063,0.058,0.050,0.050,0.050 (2) 0.050 (3)20002. (1)0.75,0.8,0.8,0.85,0.83,0.8,0.78 (2)0.8(3)不一定.投10次篮相当于做10次实验,每次实验的结果都是随机的,所以投10次篮的结果也是随机的,但随着投篮次数的增加,他进球的可能性为80%. 3.(1)0.25,0.33,0.28,0.33,0.32,0.30,0.33,0.31,0.31,0.31 (2)0.31 (3)0.31§25.3利用频率估计概率(二) 一、1.A 2. B二、1. 0.98 2. 3, 2, 1 3.271 三、1. (1)92(2)略 2.先随机从鱼塘中捞取a 条鱼,在鱼上做下记号,经过一段时间饲养后,再从中捞取b 条鱼,记录下其中有记号的鱼有c 条,则池塘中的鱼估计会有ab c§25.4 课题学习 一、1.D 2. B二、1.概率 2.Z 3.31三、1.(1) 91 (2) 31 (3) 322.(1)这个游戏的结果共有四种可能:正正. 正反. 反正. 反反,所以甲赢的概率为41,因乙赢的概率为21,因此这个游戏有利于乙,不公平; (2)若要使游戏公平只需使两人赢的概率相同,我们可以改规则为“若出现两个正面或两个反面,则甲赢;若出现一正一反,则乙赢”.。

人教版九年级数学上册课本练习题答案

人教版九年级数学上册课本练习题答案

第21章第4页练习第1题答案解:(1)5x2-4x-1=0,二次相系数为5,一次项系数为-4,常数项为-1 (2)4x2-81=0,二次项系数为4,一次项系数为0,常数项为-81(3)4x2+8x-25=0,二次项系数为4,一次项系数为8,常数项为-25 (4)3x2-7x+1=0,二次项系数为3,一次项系数为-7,常数项为1【规律方法:化为一般形式即把所有的项都移到方程的左边,右边化为0的行驶,在确定二次项系数,一次项系数和常数项时,要特别注意各项系数及常数项均包含前面的符号。

】第4页练习第2题答案解:(1)4x2=25, 4x2-25=0(2)x(x-2)=100,x2-2x-100=0(3)x∙1=(1-x)2-3x+1=0习题21.1第1题答案(1)3x2-6x+1=0,二次项系数为3,一次项系数-6,常数项为1(2)4x2+5x-81=0,二次项系数为4,一次项系数为5,常数项为-81(3)x2+5x=0,二次项系数为1,一次项系数为5,常数项为0(4)x2-2x+1=0,二次项系数为1,一次项系数为-2,常数项为1(5)x2+10=0,二次项系数为1,一次项系数为0,常数项为10(6)x2+2x-2=0,二次项系数为1,一次项系数为2,常数项为-2习题21.1第2题答案(1)设这个圆的半径为Rm,由圆的面积公式得πR2=6.28,∴πR2-6.28=0(2)设这个直角三角形较长的直角边长为x cm,由直角三角形的面积公式,得1/2x(x-3)=9,∴x2-3x-18=0习题21.1第3题答案方程x2+x-12=0的根是-4,3习题21.1第4题答案设矩形的宽为x cm,则矩形的长为(x+1)cm,由矩形的面积公式,得x∙(x+1)=132,∴x2+x-132=0习题21.1第5题答案解:设矩形的长为x m,则矩形的宽为(0.5-x)m,由矩形的面积公式得:(0.5-x)=0.06∴x2-0.5x+0.06=0习题21.1第6题答案解:设有n人参加聚会,根据题意可知:(n-1)+(n-2)+(n-3)+…+3+2+1=10,即(n(n-1))/2=10,n2-n-20=0习题21.2第1题答案(1)36x2-1=0,移项,得36x2=1,直接开平方,得6x=±1,,6x=1或6x=-1,∴原方程的解是x1=1/6,x2=-1/6(2)4x2=81,直接开平方,得2=±9,,2x=9或2x=-9,∴原方程的解是x1=9/2,x2=-9/2(3)(x+5)2=25,直接开平方,得x+5=±5,∴+5=5或x+5=-5,∴原方程的解是x1=0,x2=-10(4)x2+2x+1=4,原方程化为(x+1)2=4,直接开平方,得x+1=±2,∴x+1=2或x+1=-2,∴原方程的解是x1=1,x2=-3习题21.2第2题答案(1)9;3(2)1/4;1/2(3)1;1(4)1/25;1/5习题21.2第3题答案(1)x2+10x+16=0,移项,得x2+10x=-16,配方,得x2+10x+52=-16+52,即(x+5)2=9,开平方,得x+5=±3,∴+5=3或x+5=-3,∴原方程的解为x1=-2,x2=-8(2)x2-x-3/4=0,移项,得x2-x=3/4,配方,得x2-x=3/4,配方,得x2-x+1/4=3/4+1/4,即(x-1/2)2=1,开平方,得x- 1/2=±1,∴原方程的解为x1=3/2,x2=-1/2(3)3x2+6x-5=0,二次项系数化为1,得x2+2x-5/3=0,移项,得x2+2x=5/3,配方,得x2+2x+1=5/3+1,即(x+1)2=8/3,(4)4x2-x-9=0,二次项系数化为1,得x2-1/4x-9/4=0,移项,得x2-1/4 x= 9/4,配方,得x2-1/4x+1/64=9/4+1/64,即(x-1/8)2=145/64,习题21.2第4题答案(1)因为△=(-3)2-4×2×(-3/2)=21>0,所以原方程有两个不相等的实数根(2)因为△=(-24)2-4×16×9=0,所以与原方程有两个相等的实数根(3)因为△=-4×1×9=-4<0,因为△=(-8)2-4×10=24>0,所以原方程有两个不相等的实数根习题21.2第5题答案(1)x2+x-12=0,∵a=1,b=1,c=-12,∴b2-4ac=1-4×1×(-12)=49>0,∴原方程的根为x1=-4,x2=3.∴b2-4ac=2-4×1×(-1/4)=3>0,(3)x2+4x+8=2x+11,原方程化为x2+2x-3=0,∵a=1,b=2,c=-3,∴b2-4ac=22-4×1×(-3)=16>0,∴原方程的根为x1=-3,x2=1.(4)x(x-4)=2-8x,原方程化为x2+4x-2=0,∵a=1,b=4,c=-2,∴b2-4ac=42-4×1×(-2)=24>0,(5)x2+2x=0,∵a=1,b=2,c=0,∴b2-4ac=22-4×1×0=4>0,∴原方程的根为x1=0,x2=-2.(6) x2+2x+10=0,∵a=1,b=2,c=10,∴b2-4ac=(2)2-4×1×10=-20<0,∴原方程无实数根习题21.2第6题答案(1)3x2-12x=-12,原方程可化为x2-4x+4=0,即(x-2)2=0,∴原方程的根为x1=x2=2(2)4x2-144=0,原方程可化为4(x+6)(x-6),∴x+6=0或x-6=0,∴原方程的根为x1=-6,x2=6.(3)3x(x-1)=2(x-1),原方程可化为(x-1)∙(3x-2)=0∴x-1=0或3x-2=0∴原方程的根为x1=1,x2=2/3(4)(2x-1)2=(3-x)2,原方程可化为[(2x-1)+(3-x)][(2x-1)-(3-x)]=0,即(x+2)(3x-4)=0,∴x+2=0或3x-4=0∴原方程的根为x1=-2,x2=4/3习题21.2第7题答案设原方程的两根分别为x1,x2(1)原方程可化为x2-3x-8=0,所以x1+x2=3,x1·x2=-8(2)x1+x2=-1/5,x1·x2=-1(3)原方程可化为x2-4x-6=0,所以x1+x2=4,x1·x2=-6(4)原方程可化为7x2-x-13=0,所以x1+x2=1/7,x1·x2=-13/7习题21.2第8题答案解:设这个直角三角形的较短直角边长为 x cm,则较长直角边长为(x+5)cm,根据题意得:1/2 x(x+5)=7,所以x2+5x-14=0,解得x1=-7,x2=2,因为直角三角形的边长为:答:这个直角三角形斜边的长为cm习题21.2第9题答案解:设共有x家公司参加商品交易会,由题意可知:(x-1)+(x-2)+(x-3)+…+3+2+1=45,即x(x-1)/2=45,∴x2-x-90=0,即(x-10)(x+9)=0,∴x-10=0或x+9=0,∴x1=10,x2=-9,∵x必须是正整数,∴x=-9不符合题意,舍去∴x=10答:共有10家公司参加商品交易会习题21.2第10题答案解法1:(公式法)原方程可化为3x2-14x+16=0,∵a=3,b=-14,c=16,∴b2-4ac=(-14)2-4×3×16=4>0,∴x=[-(-14)±]/(2×3)=(14±2)/6,∴原方程的根为x1=2,x2=8/3解法2:(因式分解法)原方程可化为[(x-3)+(5-2x)][(x-3)-(5-2x)]=0,即(2-x)(3x-8)=0,∴2-x=0或3x-8=0,∴原方程的根为x1=2,x2=8/3习题21.2第11题答案解:设这个矩形的一边长为x m,则与其相邻的一边长为(20/2-x)m,根据题意得:x(20/2-x)=24,整理,得x2-10x+24=0,解得x1=4,x2=6.当x=4时,20/2-x=10-4=6当x=6时, 20/2-x=10-6=4.故这个矩形相邻两边的长分别为4m和6m,即可围城一个面积为24m2的矩形习题21.2第12题答案解设:这个凸多边形的边数为n,由题意可知:1/2n(n-3)=20解得n=8或n=-5因为凸多边形的变数不能为负数所以n=-5不合题意,舍去所以n=8所以这个凸多边形是八边形假设存在有18条对角线的多边形,设其边数为x,由题意得:1/2 x(x-3)=18解得x=(3±)/2因为x的值必须是正整数所以这个方程不存在符合题意的解故不存在有18条对角线的凸多边形习题21.2第13题答案解:无论p取何值,方程(x-3)(x-2)-p2=0总有两个不相等的实数根,理由如下:原方程可以化为:x2-5x+6-p2=0△=b2-4ac=(-5)2-4×1×(6-p2)=25-24+4p2=1+4p2∵p2≥0,,1+4p2>0∴△=1+4p2>0∴无论P取何值,原方程总有两个不相等的实数根习题21.3第1题答案(1)x2+10x+21=0,原方程化为(x+3)(x+7)=0,或x+7=0,∴x1=-3,x2=-7.(2) x2-x-1=0∵a=1,b=-1,c=-1,b2-4ac=(-1)2-4×1×(-1)=5>0,(3)3x2+6x-4=0,∵a=3,b=6,c=-4,b2-4ac=62-4×4×3×(-4)=84>0,(4)3x(x+1)=3x+3,原方程化为x2=1,直接开平方,得x=±1,∴x1=1,x2=-1(5)4x2-4x+1=x2+6x+9,原方程化为(2x-1)2=(x+3)2,∴[(2x-1)+(x+3)][(2x-1)-(x+3)]=0,即(3x+2)(x-4)=0,,3x+2=0或x-4=0,∴x1=-2/3,x2=4∴a=7,b=-,c=-5,b2-4ac=(-)2-4×7×(-5)=146>0∴x= [-(-)±]/(2×7)=(±)/14,∴x1=(+)/14,x2=(-)/14习题21.3第2题答案解:设相邻两个偶数中较小的一个是x,则另一个是(x+2).根据题意,得x(x+2)=168∴x2+2x-168=0∴x1=-14,x2=12.当x=-14时,x+2=-12当x=12时,x+2=14答:这两个偶数是-14,-12或12,14习题21.3第3题答案解:设直角三角形的一条直角边长为 xcm,由题意可知1/2x(14-x)=24,∴x2-14x+48=0∴x1=6,x2=8当x=6时,14-x=8当x=8时,14-x=6∴这个直角三角形的两条直角边的长分别为6cm,8cm习题21.3第4题答案解:设每个支干长出x个小分支,则1+x+x2=91整理得x2+x-90=0,(x-9)∙(x+10)=0解得x1=9,x2=-10(舍)答:每个支干长出来9个小分支习题21.3第5题答案解:设菱形的一条对角线长为 x cm,则另一条对角线长为(10-x)cm,由菱形的性质可知:1/2 x∙(10-x)=12,整理,的x2-10x+24=0,解得x1=4,x2=6.当x=4时,10-x=6当x=6时,10-x=4所以这个菱形的两条对角线长分别为6cm和4cm.由菱形的性质和勾股定理,得棱长的边长为:所以菱形的周长是4cm习题21.3第6题答案解:设共有x个队参加比赛,由题意可知(x-1)+(x-2)+(x-3)+…+3+2+1=90/2,即1/2x(x-1)=45整理,得x2-x-90=0解得x1=10,x2=-9因为x=-9不符合题意,舍去所以x=10答:共有10个队参加比赛习题21.3第7题答案解:设水稻每公顷产量的年平均增长率为x,则7200(1+x)2=8450解得x1=1/12,x2=-25/12因为x=- 25/12 不符合题意,舍去所以x= 1/12≈0.083=8.3%答:水稻每公顷产量的年平均增长率约为8.3%习题21.3第8题答案解:设镜框边的宽度应是x cm,根据题意得:(29+2x)(22+2x)-22×29=1/4×29×22整理,得8x2+204x-319=0解得x= [-204±]/16所以x1=[-204+)]/16,x2=[-204-)]/16因为x= [-204-)]/16<0不合题意,舍去所以x= [-204+)]/16≈1.5答:镜框边的宽度约 1.5cm习题21.3第9题答案解:设横彩条的宽度为3x cm,则竖彩条的宽为2x cm.根据题意得:30×20×1/4=30×20-(30-4x)(20-6x),整理,得12x2-130x+75=0解得x1=[65+5)]/12,x2=(65-5)/12因为30-4x>0,且20-6x>0所以x<10/3所以x= (65+5)/12不符合题意,舍去所以x=(65-5)/12≈0.6所以3x≈1.8,2x≈1.2答:设计横彩条的宽度约为1.8cm,竖彩条的宽度约为1.2cm习题21.3第10题答案(1)设线段AC的长度为x,则x2=(1-x)×1,解得x1=(-1+)/2,x2=(-1-)/2(舍),∴AC=(-1+)/2(2)设线段AD的长度为x,则x2=((-1+)/2-x)∙(1+)/2,解得x1=(3-)/2,x2=-1(舍),∴ AD=(3-)/2(3)设线段AE的长度为x,则x2=((3-)/2-x)∙(3-)/2,解得x1=-2+,x2=(1-)/2 (舍)∴AE=-2+【规律方法:若C为线段AB上一点,且满足AC2=BC∙AB,则 AC/AB=(-1)/2∙(-1)/2也叫作黄金比,C点为黄金分割点,一条线段上有两个黄金分割点.】第6页练习答案练习题答案复习题21第1题答案(1)196x2-1=0,移项,得196x2=1,直接开平方,得14x=±1,x=± 1/14,∴原方程的解为x1=1/14,x2=-1/14(2)4x2+12x+9=81,原方程化为x2+3x-18=0∵a=1,b=3,c=-18,b2-4ac=32-4×1×(-18)=81>0∴x1=-6,x2=3(3)x2-7x-1=0∵a=1,b=-7,c=-1,b2-4ac=(-7)2-4×1×(-1)=53>0,(4)2x2+3x=3,原方程化为2x2+3x-3=0,∵a=2,b=3,b=-3,b2-4ac=32-4×2×(-3)=33>0,∴x= (-3± )/(2×2)=(-3±)/4,∴x1=(-3+)/4,x2=(-3-)/4(5)x2-2x+1=25,原方程化为x2-2x-24=0,因式分解,得(x-6)(x+4)=0,∴x-6=0或x+4=0,∴x1=6,x2=-4(6)x(2x-5)=4x-10,原方程化为(2x-5)(x-2)=0,,2x-5=0或x-2=0,∴x1=5/2,x2=2(7)x2+5x+7=3x+11,原方程化为x2+2x-4=0,∵a=1,b=2,c=-4,b2-4ac=22-4×1×(-4)=20>0∴x= (-2±)/(2×1)=(-2±2)/2=-1±∴x1=-1+,x2=-1-(8)1-8x+16x2=2-8x,原方程化为(1-4x)(-1-4x)=0,1-4x=0或-1-4x=0,∴x1=1/4,x2=-1/4复习题21第2题答案解:设其中一个数为(8-x),根据题意,得x(8-x)=9.75,整理,得x2-8x+9.75=0,解得x1=6.5,x2=1.5当x=6.5时,8-x=1.5当x=1.5时,8-x=6.5答:这两个数是6.5和1.5复习题21第3题答案解:设矩形的宽为x cm,则长为(x+3)cm由矩形面积公式可得x(x+3)=4整理,得x2+3x-4=0解得x1=-4整理,得x2+3x-4=0解得x1=-4,x2=1因为矩形的边长是正数,所以x=-4不符合题意,舍去所以x=1所以x+3=1+3=4答:矩形的长是4cm,宽是1cm复习题21第4题答案解:设方程的两根分别为x1,x2(1)x1+x2=5,x1∙x2=-10(2) x1+x2=-7/2,x1∙x2=1/2(3)原方程化为3x2-2x-6=0,∴x1+x2=2/3,x1∙x2=-2(4)原方程化为x2-4x-7=0,∴x1+x2=4,x1∙x2=-7复习题21第5题答案解:设梯形的伤低长为x cm ,则下底长为(x+2)cm,高为(x-1)cm,根据题意,得1/2 [x+(x+2)]∙(x-1)=8,整理,得x2=9,解得x1=3,x2=-3.因为梯形的低边长不能为负数,所以x=-3不符合题意,舍去,所以x=3,所以x+2=5,x-1=2.画出这个直角梯形如下图所示:复习题21第6题答案解:设这个长方体的长为5x cm,则宽为2 x cm,根据题意,得2x2+7-4=0,解得x1=1/2,x2=-4.因为长方体的棱长不能为负数,所以x=-4不合题意,舍去,所以x= 1/2.所以这个长方体的长为5x=1/2×5=2.5(cm),宽为2x=1(cm).画这个长方体的一个展开图如下图所示.(注意:长方体的展开图不唯一)复习题21第7题答案解:设应邀请x个球队参加比赛,由题意可知:(x-1)+(x-2)+…+3+2+1=15,即1/2 x(x-1)=15解得x1=6,x2=-5因为球队的个数不能为负数所以x=-5不符合题意,应舍去所以x=6答:应邀请6个球队参加比赛复习题21第8题答案解:设与墙垂直的篱笆长为x m,则与墙平行的篱笆为(20-2x)m根据题意,得x(20-2x)=50整理,得x2-10x+25=0解得x1=x2=5所以20-2x=10(m)答:用20m长的篱笆围城一个长为10m,宽为5m的矩形场地.(其中一边长为10m,另两边均为5m)复习题21第9题答案解:设平均每次降息的百分率变为x,根据题意得:2.25%(1-x)2=1.98%整理,得(1-x)2=0.88解得x1=1 -x2=1+因为降息的百分率不能大于1所以x=1+不合题意,舍去所以x=1-≈0.0619=6.19%答:平均每次降息的百分率约是6.19%复习题21第10题答案解:设人均收入的年平均增长率为x,由题意可知:12000(x+1)2=14520,解这个方程,得x+1=±x=-1或x=--1又∵x=--1不合题意,舍去∴x=(-1)×100%=10%答:人均收入的年平均增长率是10%复习题21第11题答案解:设矩形的一边长为x cm,则与其相邻的一边长为(20-x)cm,由题意得:x(20-x)=75整理,得x2-20x+75=0解得x1=5,x2=15,从而可知矩形的一边长15cm,与其相邻的一边长为5cm当面积为101cm2时,可列方程x(20-x)=101,即x2-20x+101=0∵△=-4<0∴次方程无解∴不能围成面积为101cm2的矩形复习题21第12题答案解:设花坛中甬道的宽为x m.梯形的中位线长为1/2 (100+180)=140(m),根据题意得:1/2(100+180)×80×1/6=80∙x∙2+140x-2x2整理,得3x2-450x+2800=0解得x1=(450+)/6=75+5/3,x2=(450-)/6=75-5/3因为x=75+5/3不符合题意,舍去所以x=75-5/3≈6.50(m)故甬道的宽度约为6.50m复习题21第13题答案(1)5/4=1.25(m/s),所以平均每秒小球的滚动速度减少1.25m/s (2)设小球滚动5m用了x s·(5+(5-1.25x))/2x=5,即x2-8x+8=0解得x1=4+2(舍),x2=4-2≈1.2答:小球滚动5 m 约用了1.2s第9页练习答案练习第1题答案练习第2题答案第14页练习答案练习第1题答案练习第2题答案第16页练习答案练习题答案第22章习题22.1第1题答案解:设宽为x,面积为y,则y=2x2习题22.1第2题答案y=2(1-x)2习题22.1第3题答案列表:x ... -2 -1 0 1 2 ...y=4x2... 16 4 0 4 16 ...y=-4x2... -16 -4 0 -4 -16 ...y=(1/4)x2... 1 1/4 0 1/4 1 ... 描点、连线,如下图所示:习题22.1第4题答案解:抛物线y=5x2的开口向上,对称轴是y轴,顶点坐标是(0,0)抛物线y= -1/5x2的开口向下,对称轴是y轴,顶点坐标是(0,0)习题22.1第5题答案提示:图像略(1)对称轴都是y轴,顶点依次是(0,3)(0, -2)(2)对称轴依次是x=-2,x=1,顶点依次是(-2,-2)(1,2)习题22.1第6题答案(1)∵a=-3,b=12,c=-3∴-b/2a=-12/(2×(-3))=2,(4ac-b2)/4a=(4×(-3)×(-3)-122)/(4×(-3))=9∴抛物线y=-3x2+12x-3的开口向下,对称轴为直线x=2,顶点坐标是(2,9)(2)∵a=4,b=-24,c=26∴- b/2a=-(-24)/(2×4)=3, (4ac-b2)/4a=(4×4×26-(-24)2)/(4×4)=-10∴抛物线y=4x2 - 24x+26的开口向上,对称轴为直线x=3,顶点坐标是(3, -10)(3)∵a=2,b=8,c=-6∴- b/2a=-8/(2×2)=-2, (4ac-b2)/4a= (4×2×(-6)-82)/(4×2)= -14∴抛物线y=2x2 +8x-6的开口向上,对称轴是x=-2,顶点坐标为(-2,-14)(4)∵a=1/2,b =-2,c=-1∴- b/2a=-(-2)/(2×1/2)=2, (4ac-b2)/4a=(4×1/2×(-1)- (-2)2)/(4×1/2)=-3 ∴抛物线y=1/2x2-2x-1的开口向上,对称轴是x=2,顶点坐标是(2, -3).图略习题22.1第7题答案(1)-1;-1(2)1/4;1/4习题22.1第8题答案解:由题意,可知S=1/2×(12-2t)×4t=4t(6-t)∴S=-4t2+24t,即△PBQ的面积S与出发时间t之间的关系式是S=-4t2+24t 又∵线段的长度只能为正数∴∴0<t<6,即自变量t的取值范围是0<t<6习题22.1第9题答案解:∵s=9t+1/2t2∴当t=12时,s=9×12+1/2×122=180,即经过12s汽车行驶了180m当s=380时,380=9t+1/2t2∴t1=20,t2=-38(不合题意,舍去),即行驶380m需要20s习题22.1第10题答案(1)抛物线的对称轴为(-1+1)/2=0,设该抛物线的解析式为y=ax2+k(a≠0)将点(1,3)(2,6)代入得∴函数解析式为y=x2+2(2)设函数解析式为y=a x2+bx+c(a≠0),将点(-1,-1)(0,-2)(1,1)代入得∴函数解析式为y=2x2+x-2(3)设函数解析式为y=a(x+1)(x-3) (a≠0),将点(1,-5)代入,得-5=a(1+1)(1-3)解得a=5/4∴函数解析式为y=5/4(x+1)(x-3),即y=5/4x2-5/2x-15/4(4)设函数解析式为y=a x2+ bx+c(a≠0),将点(1,2)(3,0)(-2,20)代入得∴函数解析式为y=x2-5x+6习题22.1第11题答案解:把(-1,-22)(0,-8)(2,8)分别代入y=a x2+bx+c,得a=-2,b=12, c=-8所以抛物线的解析式为y=-2x2+12x-8将解析式配方,得y=-2(x-3)2+10又a=-2<0所以抛物线的开口向下,对称轴为直线x=3,顶点坐标为(3,10)习题22.1第12题答案(1)由已知vt=v0+at=0+1.5t=1.5t,s=vt=(v0+vt)/2t=1.5t/2t=3/4t2,即s=3/4t2(2)把s=3代入s=3/4t2中,得t=2(t=-2舍去),即钢球从斜面顶端滚到底端用2s第29页练习答案练习第1题答案练习第2题答案习题22.2第1题答案(1)图像如下图所示:(2)有图像可知,当x=1或x=3时,函数值为0 习题22.2第2题答案(1)如下图(1)所示:方程x2-3x+2=0的解是x1=1,x2=2(2)如下图所示:方程-x2-6x-9=0的解是x1=x2=-3习题22.2第3题答案(1)如下图所示:(2)由图像可知,铅球推出的距离是10m习题22.2第4题答案解法1:由抛物线的轴对称性可知抛物线的对称轴是直线x=(-1+3)/2=1 解法2:设抛物线的解析式为y=a(x+1)(x-3),即y=ax2-2ax-3a,∴x=-(-2a)/2a=1,即这条抛物线的对称轴是直线x=1习题22.2第5题答案提示:图像略(1)x1=3,x2=-1(2)x<-1或x>3(3)-1<x<3习题22.2第6题答案提示:(1)第三或第四象限或y轴负半轴上(2)x轴上(3)第一或第二象限或y轴正半轴上,当a<0时(1)第一或第二象限或y轴正半轴上(2)x轴上(3)第三或第四象限或y轴负半轴上第32页练习答案练习题答案习题22.3第1题答案(1)∵a=-4<0∴抛物线有最高点∵x=-3/[2×(-4)]=3/8,y=[4×(-4)×0-32]/[2×(-4)]=9/16∴抛物线最高点的坐标为(3/8,9/16)(2)∵a=3>0∴抛物线有最低点∵x=-1/(2×3)=-1/6,y=(4×3×6-12)/(4×3)=71/12∴抛物线最低点的坐标为(-1/6,71/12)习题22.3第2题答案解:设所获总利润为y元.由题意,可知y=(x-30)(100-x),即y=-x2+130x-3000 =-(x-65)2+1225∴当x=65时,y有最大值,最大值是1225,即以每件65元定价才能使所获利润最大习题22.3第3题答案解:s=60t-1.5t2=-1.5(t2-40t+400)+1.5×400=-1.5(t-20)2+600∴当t=20时,s取最大值,且最大值是600,即飞行着陆后滑行600m才能停下来习题22.3第4题答案解:设一条直角边长是x,那么另一条直角边长是8-x设面积为y,则y=1/2x•(8-x),即y=-(1/2)x2+4x对称轴为直线x=-b/2a=-4/(2×(-1/2))=4当x=4时,8-x=4,ymax=8∴当两条直角边长都为4时,面积有最大值8习题22.3第5题答案解:设AC的长为x,四边形ABCD 的面积为y.由题意,可知y=1/2AC•BD ∴y= 1/2 x(10-x), 即y=-1/2x2+5x=-1/2(x-5)2+25/2∴当x=5时,y有最大值,y最大值=25/2此时,10-x=10-5=5,故当AC=BD=5时,四边形ABCD的面积最大,最大面积为25/2习题22.3第6题答案解:∵∠A=30°,∠C=90°,且四边形CDEF是矩形∴FE//BC,ED//AC∴∠DEB=30°在Rt△AFE中,FE=1/2AE在Rt△EDB中,BD=1/2EB,设AE=x,则FE=1/2x令矩形CDEF的面积为S,则S=FE•ED= 1/2 x •/2(12-x)=/4(12x-x2)∴当x=6时,S最大值=9,此时AE=6,EB=12-x=6∴AE=EB,即点E是AB的中点时,剪出的矩形CDEF面积最大习题22.3第7题答案解:设AE=x,AB=a,正方形EFGH的面积为S,由正方形的性质可知AE=DH,即AH=a-x在Rt△AEH中:HE2=AH2+AE2=(a-x)2+x2=2x2-2ax+a2=2(x-1/2 a) 2+1/2a2∴当x=1/2a时,S有最小值,且S最小值=1/2a2,此时AE=1/2a,EB=1/2a,即点E是AB边的中点∴当点E是AB边的中点时,正方形EFGH的面积最小习题22.3第8题答案解:设房价定为每间每天增加x元,宾馆利润为y元由题意可知,y=(180+x-20)(50-x/10)=-1/10x2+34x+8000=-1/10(x-170)2+10890∴当x=170时,y取最大值,且y最大值=10890,此时180+x=350(元)∴房间每天每间定价为350元时,宾馆利润最大习题22.3第9题答案解:用定长为L的线段围成矩形时,设矩形的一边长为x则S矩形=x•(1/2L-x)=-x2+1/2 Lx=-(x-1/4L)2+1/16L2,当x=1/4 L时,S最大值=1/16L2用定长为L的线段围成圆时,设圆的半径为R,则2R=L,S圆=R2=(L/2)2=L2/4ᅲ∵1/16L2=/16L2,L2/4=4/16L2,且π<4∴1/16L2<L2/4∴S矩形<S圆∴用定长为L的线段围成圆的面积大第33页练习答案练习题答案复习题第1题答案解:由题意可知,y=(4+x)(4-x)= -x2+16,即y与x之间的关系式是y=-x2+16 复习题第2题答案解:由题意可知,y=5000(1+x)2=5000x2+10000x+5000,即y与x之间的函数关系式为:y=5000x2+10000x+5000复习题第3题答案D复习题第4题答案(1)∵a=1>0∴抛物线开口向上又∵x=-2/(2×1)=-1,y=(4×1×(-3)-22)/(4×1)=-4∴抛物线的对称轴是直线x=-1,顶点坐标是(-1,-4).图略(2)∵a=-1<0∴抛物线开口向下又∵x=-6/(2×(-1))=3,y=(4×(-1)×1-62)/(4×(-1))=10∴抛物线的对称轴是直线x=3,顶点坐标是(3,10).图略(3)∵a=1/2>0∴抛物线开口向上又∵x=-2/(2×1/2)=-2, y= (4×1/2×1-22)/(4×1/2)=-1∴抛物线的对称轴是直线x=-2,顶点坐标是(-2,-1).图略(4)∵a=-1/4<0∴抛物线开口向下又∵x=-1/(2×(-1/4))=2,y=(4×(-1/4)×(-4)-12)/(4×(-1/4))=-3∴抛物线的对称轴是直线x=2,顶点坐标是(2, -3).图略复习题第5题答案解:∵s=15t-6t2∴当t=-15/(2×(-6))=5/4时,s最大值=(4×(-6)×0-152)/(4×(-6))=75/8,即汽车刹车后到停下来前进了75/8m复习题第6题答案(1)分别把(-3,2),(-1,-1),(1,3)代入y=ax2+bx+c得a=7/8,b=2,c=1/8所以二次函数的解析式为y=7/8x2+2x+1/8(2)设二次函数的解析式为y=a(x+1/2)(x-3/2)把(0, -5)代入,得a=20/3所以二次函数的解析式为y=20/3x2-20/3 x-5复习题第7题答案解:设垂直于墙的矩形一边长为xm,则平行于墙的矩形的另一边长为(30-2x)m设矩形的面积为ym2,则y=x(30-2x)=-2x2+30x=-2(x-15/2)2+112.5∴当x=15/2时,y有最大值,最大值为112.5,此时30-2x=15∴当菜园垂直于墙的一边长为15/2m,平行于墙的另一边长为15m时,面积最大,最大面积为112.5m2复习题第8题答案解:设矩形的长为x cm,则宽为(18-x)cm,S侧=2x•(18-x)=-2x2+36x=-2(x-9)2+162当x=9时,圆柱的侧面积最大,此时18-x=18-9=9当矩形的长与宽都为9cm时旋转形成的圆柱的侧面积最大复习题第9题答案(1)证明:∵四边形ABCD是菱形∴AB=BC=CD=AD又∵BE=BF=DG=DH∴AH=AE=CG=CF∴∠AHE∠AEH,∠A+∠AEH+∠AHE=180,∠A+2∠AHE=180〬又∵∠A+∠D=180〬∴∠D=2∠AHE,同理可得∠A=2∠DHG∴2∠AHE+2∠DHG=180〬∴∠AHE+∠DHG=90〬∴∠EHG=90〬,同理可得∠HGF=∠GFE=90〬∴四边形EFGH是矩形(2)解:连接BD交EF于点K,如图7所示,设BE的长为x,BD=AB=a∴四边形ABCD为菱形,∠A=60〬∴∠EBK=60〬,∠KEB=30〬在Rt△BKE中,BE=x,则BK=1/2x,EK=/2xS矩形EFGH=EF•FG=2EK•(BD-2BK)=2×/2 x(a-2×1/2x)=x(a-x)=-(x2-ax)=-(x2-ax+a2/4-a2/4)=-(x-a/2)2+/4a2当x=a/2时,即BE=a/2时,矩形EFGH的面积最大第35页练习答案第37页练习答案第39页练习答案第40页练习答案练习第1题答案练习第2题答案第23章习题23.1第1题答案(1)如下图所示:(2)如下图所示:(3)如下图所示:(4)如下图所示:习题23.1第2题答案解:如下图所示,旋转中心为O点,旋转角为OA所转的角度习题23.1第3题答案解:如下图所示:习题23.1第4题答案解:旋转图形分别为△A₁B₁C₁,△A₂B₂C₂,如下图所示:习题23.1第5题答案(1)旋转中心为O₁点,旋转角为60〬,如下图所示:(2)旋转中心为O₂点,旋转角为90〬,如下图所示:习题23.1第6题答案提示:旋转角就是以旋转中心为顶点的周角被均匀地等分问题(360〬÷5=72〬 ,360〬÷3=120〬)解:(1)旋转角为72°,114°,216°,288°,360°时,旋转后的五角星与自身重合(2)等边三角形绕中心点O旋转120〬,240〬,360〬时与自身重合习题23.1第7题答案风车图案由四个全等的基本图形构成,可由其中一个基本图形绕中心旋转90〬,180〬,270〬得到习题23.1第8题答案提示:旋转中心在等腰三角形的外部解:五角星中间的点为旋转中心,旋转角为72〬,114〬,216〬,288〬习题23.1第9题答案(1)如下图所示:(2)∵BC=3,AC=4,∠C=90〬习题23.1第10题答案提示:线段BE与DC在形状完全相同的两个三角形中,可考虑旋转变换,点A是两个三角形的公共点,因此点A是旋转中心解:BE=DC,理由如下:因为△ABD与△ACE都是等边三角形所以AE=AC, AB=AD,∠DAB=∠CAE=60〬所以∠DAB+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE所以△BAE绕点A顺时针旋转60〬时,BA与DA重合,AE与AC重合,则△BAE与△DAC完全重合所以BE=DC第59页练习答案练习第1题答案练习第2题答案练习第3题答案习题23.2第1题答案如下图所示:习题23.2第2题答案解:依题可知,是中心对称图形的有:禁止标志、风轮叶片、正方形、正六边形它们的对称中心分别是圆心,叶片的轴心,正方形对角线的交点,正六边形任意两条最长的对角线的交点习题23.2第3题答案如下图所示,四边形ABCD关于原点O对称的四边形为A\\\\\'B\\\\\'C\\\\\'D\\\\\'习题23.2第4题答案解:∵A(a,1)与A\\\\\'(5,b)关于原点O对称习题23.2第5题答案解:依题意可知此图形时中心对称图形,对称中心是O₁O₂的中点习题23.2第6题答案解:如下图所示,做出△ABC以BC的中点O为旋转中心旋转180〬°后的图形△DCB,则四边形ABCD即为以AC,AB为一组邻边的平行四边形习题23.2第7题答案解:如下图(1)中的△DCE是由△ACB以C为旋转中心,顺时针旋转90〬得到的.在下图(2)中,先以AC为对称轴作△ABC的轴对称图形△AFC,再把△AFC以C为旋转中心,逆时针旋转90〬,即可得到△DCE习题23.2第8题答案解:依题意知这两个梯形是全等的因为菱形是以它的对角线的交点为对称中心的中心对称图形根据中心对称的性质过对称中心的任意一条直线都将图形分成两个全等的图形所以它们全等习题23.2第9题答案不一定当两个全等的梯形的上底与下底之和等于它的一条腰长的时候,这两个全等的梯形可以拼成一个菱形,其他情况不行习题23.2第10题答案解:如下图所示:连接BE,DF,EF,BD,AC,BD与EF交于点O∵四边形ABCD是平行四边形∴AD//BC,AD=BC∴∠1=∠2∵△ADE是等边三角形∴DE=AD,∠3=60〬∵△BCF为等边三角形∴BC=BF,∠4=60〬∴DE=BF∴∠1+∠3=∠2+∠4,即∠BDE=∠DBF∴DE//BF∴四边形BEDF为平行四边形∴BD与EF互相平分于点O又∵四边形BEDF为平行四边形∴BD与AC互相平分于点O,即OD=OB,OE=OF,OA=OC ∴△ADE和△BCF成中心对称第61页练习答案练习第1题答案练习第2题答案练习第3题答案。

新课程课堂同步练习册(九年级数学上册人教版)答案

新课程课堂同步练习册(九年级数学上册人教版)答案

《新课程课堂同步练习册·数学(人教版九年级上册)》参考答案第二十一章 二次根式§21.1二次根式(一)一、1. C 2. D 3. D二、1.7±,23x ≤ 4. 1三、1.50m 2.(1)2x ≥ (2)x >-1 (3)0m ≤ (4)0=m §21.1二次根式(二)一、1. C 2.B 3.D 4. D 二、1.3π-,3π- 2.1 3.2)4(± ;2)7(±三、1.7-或-32.(1)5;(2)5; (3)4; (4)18; (5)0.01;(6)1x +; 3. 原式=2a b b a a --+-=- §21.2二次根式的乘除(一) 一、1.C 2. D 3.B二、1.< 2.1112+⨯-=-n n n (1,n n ≥为整数) 3.12s 4.三、1.(1)(2)(3)36 (4)–108 2.10cm 23§21.2二次根式的乘除(二)一、1.C 2.C 3.D二、1.a >32. 3.(1三、1.(1) (2) 2.(1)87 3.258528=÷nn ,因此是2倍. §21.2二次根式的乘除(三)一、1.D 2.A 3.B二、1.2=x 2.33, 3.1 4.33三、1.(1)1 (2)10 2. 33=x 3.(26-; 423=S§21.3二次根式的加减(一)一、1.C 2.A 3.C二、1.(答案不唯一,如:20、45) 2. 3<x <33 3. 1三、1.(1)34 (2)216- (3)2 (4)332. 10 §21.3二次根式的加减(二)一、1.A 2.A 3.B 4.A二、1. 1 2. 63. n m -三、1.(1)13- (2)253- (3)(4)22.因为25.45232284242324321824≈=⨯=++=++)()(>45 所以王师傅的钢材不够用. §21.3二次根式的加减(三) 一、1. C 2.B 3.D二、 1. 32; 2. 0, 3. 1 (4)(x x +三、 1.(1)6 (2)5 2.(1) (2)92第二十二章 一元二次方程§22.1一元二次方程(一)一、1.C 2.D 3.D 二、1. 2 2. 3 3. –1三、1.略 2.222(4)(2)x x x -+-= 一般形式:212200x x -+=§22.1一元二次方程(二)一、1.C 2.D 3.C二、1. 1(答案不唯一)2.123. 2 三、1.(1)2,221-==x x (2)1233,44x x ==-(3)12t t ==-(4)1222x x ==-2.以1为根的方程为2(1)0x -=, 以1和2为根的方程为(1)(2)0x x --= 3.依题意得212m +=,∴1m =± .∵1m =-不合题意,∴1m =. §22.2降次-解一元二次方程(一)一、1.C 2.C 3.D 二、1. 1233,22x x ==- 2. 1m ≥ 3. -1三、1.(1)43t =±(2)32x ±= (3)1x =-±(4)1x =2.解:设靠墙一边的长为x 米,则401922xx -⋅= 整理,得2403840x x -+=, 解得1216,24x x ==∵墙长为25米, ∴1216,24x x ==都符合题意. 答:略. §22.2降次-解一元二次方程(二) 一、1.B 2.D 3. C二、1.(1)9,3 (2)-5 (3)24m ,2m2.3±3. 1或32-三、1.(1)1211x x ==2)12y y 3)21,221==x x (4)124,3x x =-= 2.证明:2211313313()61212x x x --+=-++≤§22.2降次-解一元二次方程(三) 一、1.C 2.A 3.D二、1.9m 4≤2. 243.0三、1.(1)121x x 12==, (2)12x x ==(3)121x 2x 3==, (4)12y 1y 2=-=,2.(1)依题意,得()222m+141m 0∆=--⨯⨯≥⎡⎤⎣⎦∴21-≥m ,即当21-≥m 时,原方程有两个实数根. (2)由题意可知()222m+141m ∆=--⨯⨯⎡⎤⎣⎦>0∴m >12-, 取m 0=,原方程为2x 2x 0-= 解这个方程,得12x 0x 2==,.§22.2降次-解一元二次方程(四) 一、1.B 2.D 3.B二、1.-2,2x = 2. 0或43 3. 10 三、1.(1)12305x x ==-, (2)3,2121-==x x (3)12113y y ==, (4)1,221==x x (5)1217x x ==(6)19x =-,22x = 2.把1x =代入方程得 ()222114132m m m +⨯+⨯+=,整理得2360m m +=∴120,2m m ==-§22.2降次-解一元二次方程(五) 一、1.C 2.A 3.A二、1.2660x x --=,1,1-,66-. 2、6或—2 3、4三、1.(1)12x 7x 3==, (2)12x x ==, (3)3121==x x (4)12x 7x 2==-, 2.∵221=+x x ∴2=m 原方程为2230x x --= 解得 1x 3=,21x =-3.(1)()224(3)411b ac m -=--⨯⨯-944m =-+134m =->0∴m <134(2)当方程有两个相等的实数根时,则1340m -=, ∴134m =, 此时方程为04932=+-x x , ∴1232x x == §22.2降次-解一元二次方程(六)一、1.B 2.D 3.B 二、1. 1 2. -3 3. -2三、1.(1)51=x ,52-=x (2)21±=x (3)121==x x (4)没有实数根2.(1).4412,4112x x x x -=+∴=-+.21=∴x 经检验21=x 是原方程的解. 把21=x 代人方程0122=+-kx x ,解得3=k . (2)解01322=+-x x ,得.1,2121==x x ∴方程0122=+-kx x 的另一个解为1=x .3.(1)()22244114b ac k k -=-⨯⨯-=+>0,∴方程有两个不相等的实数根. (2)∵12x x k +=-,121x x ⋅=-,又1212x x x x +=⋅∴1k -=-∴1k =§22.3实际问题与一元二次方程(一)一、1.B 2.D二、1.2)1()1(x a x a a -+-+ 2.222)1()1(+=-+x x x 3.()21a x +三、1.解:设这辆轿车第二年、第三年平均每年的折旧率为x ,则776.7)1%)(201(122=--x ,解得%101.01==x ,9.12=x (舍去). 答:略2.解:设年利率为x ,得1320)1](1000)1(2000[=+-+x x , 解得%101.01==x ,6.12-=x (舍去).答:略§22.3实际问题与一元二次方程(二)一、1.C 2.B二、1. 15,10 2. cm 20 3. 6三、1.解:设这种运输箱底部宽为x 米,则长为)2(+x 米,得151)2(=⨯+x x ,解得5,321-==x x (舍去),∴这种运输箱底部长为5米,宽为3米.由长方体展开图知,要购买矩形铁皮面积为:)(35)23()25(2m =+⨯+,∴要做一个这样的运输箱要花7002035=⨯(元).2.解:设道路宽为x 米,得50423220232202=+-⨯-⨯x x x , 解得34,221==x x (舍去).答:略§22.3实际问题与一元二次方程(三)一、1.B 2.D二、1. 1或2 2. 24 3. 15- 三、1.设这种台灯的售价为每盏x 元,得()()[]1000040x 1060030x =---, 解得80x 50x 21==,当50x =时,()50040x 10600=--;当80x =时,()20040x 10600=-- 答:略2.设从A 处开始经过x 小时侦察船最早能侦察到军舰,得22250)3090()20(=-+x x ,解得1328,221==x x ,1328>2,∴最早2小时后,能侦察到军舰. 第二十三章 旋 转§23.1图形的旋转(一)一、1.A 2.B 3.D二、1. 90 2. B 或C 或BC 的中点 3. A 60 4. 120°,30°5 .三、EC 与BG 相等 方法一:∵四边形ABDE 和ACFG 都是正方形 ∴AE=AB ,AC=AG∴∠EAB=∠CAG=90°∴把△EAC 绕着点A 逆时针旋转90°,可与△BAG 重合 ∴EC=BG 方法二:∵四边形ABDE 和ACFG 都是正方形 ∴AE=AB ,AC=AG ∠EAB=∠CAG=90°∴∠EAB+∠BAC=∠CAG+∠BAC 即 ∠EAC=∠BAG ∴△EAC ≌△BAG ∴EC=BG §23.1图形的旋转(二)一、1.C 2.C 3.D 二、1. 2,120° 2. 120或240 3. 4三、1.如图 2.如图3.(1)旋转中心是时针与分针的交点; (2)分针旋转了108.4.解:(1)HG 与HB 相等. 连接AH ∵正方形ABCD 绕着点A 旋转得到正方形AEFG ∴AG=AD=AB=AE ,∠G=∠B=90°又∵AH=AH ∴△AGH ≌△ABH ∴HG=HB (2)∵△AGH ≌△ABH ∴∠GAH = ∠BAH∴21)2AGH ABH S S cm ∆∆==由122GH ⨯=GH =在Rt △AGH中,根据勾股定理得:2AH GH =∴∠GAH=30°∴旋转角∠DAG = 90°-2∠GAH = 90°-2×30°= 30°§23.2中心对称(一)一、1.C 2.D 3.B二、1.对称中心 对称中心 2.关于点O 成中心对称3 .△CDO 与△EFO 三、1.(略)2.(1)A 1的坐标为(1,1),B 1的坐标为(5,1),C 1的坐标为(4,4).(2)A 2()1,1--, B 2的坐标为()5,1--, C 2的坐标为()4,4--画图如下: 3.画图如下:§23.2中心对称(二)一、1.D 2.C 3.二、1.矩形、菱形、正方形 2.正六边形、正八边形(边数为偶数的正多边形均正确) 三、1.关于原点O 对称(图略) 2.解:∵矩形ABCD 和矩形AB 'C 'D '关于A 点对称∴AD=AD ',AB=AB ',DD '⊥BB '∴四边形BDB 'D '是菱形 3.解:(1)AE 与BF 平行且相等 ∵△ABC 与△FEC 关于点C 对称∴AB 平行且等于FE ∴四边形ABFE 是平行四边形 ∴AE 平行且等于BF (2)122cm (3)当∠ACB=60°,四边形ABFE 为矩形,理由如下: ∵∠ACB=60°,AB=AC ∴AB=AC=BC ∵四边形ABFE 是平行四边形∴AF=2AC ,BE=2BC ∴AF=BE ∴四边形ABFE 为矩形B′B§23.2中心对称(三)一、1.B 2.D 3.D二、1. 四 2.3y x =(任一正比例函数) 3. 三 三、1.如图2、解:由已知得212x x +=-, 244y+= 解得1x =-,2y =∴()221x y +=⨯-3.(1)D 的坐标为(3,-4)或(-7,-4 (2)C 的坐标为(-1,-2),D 的坐标为(画图如图:§23.3 课题学习 图案设计 一、1.D 2.C二、1.72° 2.基本图案绕(2)的O 点依次旋转60°、120°、180°、240°、300°而得到. 三、1.(略)2.如图3.(1)是,6条 (2)是(3)60°、120°、180°、240°、300°第二十四章 圆§24.1.1圆一、1.A 2.B 3.A二、1. 无数 经过这一点的直径 2. 30 3. 半径 圆上三、1.提示:证对角线互相平分且相等 2.提示:证明:OCD OAB ∠=∠ §24.1.2 垂直与弦的直径一、1.B 2.C 3. D二、1.平分 弧 2. 3≤OM ≤5 3. 三、1. 120 2. (1)、图略 (2)、10cm §24.1.3 弧、弦、圆心角一、1. D 2. C 3. C 二、1.(1)∠AOB=∠COD,=(2)∠AOB=∠COD, AB=CD (3)=, AB=CD2. 15°3. 2 三、1. 略2.(1)连结OM 、ON ,在Rt △OCM 和Rt △ODN 中OM=ON ,OA=OB ,∵AC=DB ,∴OC=OD ,∴Rt △OCM ≌Rt △ODN ,∴∠AOM=∠BON , ∴AM=BN⌒ ⌒§24.1.4圆周角一、1.B 2. B 3.C二、1.28 2. 4 3.60°或120°三、1.90o提示:连接AD 2.提示:连接AD §24.2.1点和圆的位置关系 一、1.B 2.C 3. B二、1.d <r d r = ,d >r 2. OP >6 3. 内部, 斜边上的中点, 外部 三、1.略 2.5cm§24.2.2直线与圆的位置关系(一) 一、1. B 2. D 3. A 二、1.相离, 相切 2.相切 3. 4三、1.(1)相交, 相切 §24. 2.2直线与圆的位置关系(二) 一、1.C 2.B二、1.过切点的半径 垂直于 2.、30°三、1.提示: 作OC ⊥AQ 于C 点 2.(1)60o(2)§24.2.2直线与圆的位置关系(三)一、1.C 2.B 3.C二、1. 115o 2. 90o10cm 3. 1﹕2三、1. 14cm 2. 提示:连接OP ,交AB 与点C. §24.2.3圆与圆的位置关系一、1.A 2.C 3. D 二、1. 相交 2. 8 3. 2 3 10三、1.提示:分别连接1212,,OO O B O B ;可得1216030O OOO B O AB ∠=∴∠=2.提示:半径相等,所以有AC=CO ,AO=BO ;另通过说明∠AEO=90°,则可得AE=ED. §24.3正多边形和圆(一)一、1. B 2. C 3.C二、1.内切圆 外接圆 同心圆 2.十五3.2cm 三、1.10和5 2. 连结OM ,∵MN ⊥OB 、OE =21OB =21OM ,∴∠EMO =30°,∴∠MOB =60°,∴∠MOC =30°,∠MOB =6360︒、∠MOC =12360︒.即MB 、MC 分别是⊙O 内接正六边形和正十二边形的边长.§24.3正多边形和圆(二) 一、1.C 2. B二、1. 72 2. 四 每条弧 连接各等分点 3. 2a π三、1. 22. 边长为4,面积为32§24.4.1 弧长和扇形的面积一、1. B 2. D 3.C二、1.o 3602π, 2. π3434- 3.83π三、1. 10.5 2. 112π(2cm )§24.4.2 圆锥的侧面积和全面积一、1.A 2. B 3.B 二、1. 130π2cm 2. 215cm π 3. 2π三、1. (1)20π (2)220 2.S 48π=全第二十五章 概率初步§25.1.1随机事件(一)一、1. B 2. C 3.C二、1. 随机 2.随机 3.随机事件,不可能事件 4.不可能三、1. B ; A 、C 、D 、E ; F 2.(1)随机事件 (2)必然事件 (3)不可能事件 §25.1.1随机事件(二) 一、1.D 2.B 3. B二、1.黑色扇形 2.判断题 3. C 4.飞机三、1.(1)不一样,摸到红球的可能性大 ;(2)他们的说法正确2.事件A >事件C >事件D >事件B §25.1.2概率的意义(一) 一、 1. D 2. D二、1. 折线在0.5左右波动, 0.5 2. 0.5,稳定 3. 1,0,0<P(A)<1 三、1. (1)B,D (2)略2.(1)0.68,0.74,0.68,0.692,0.705,0.701 (2)接近0.7 (3)70% (4)2520§25.1.2概率的意义(二) 一、1. D 2. C 二、1.明 2. 75 3.1584. 16三、1.(1)不正确 (2)不一定2.(1)201 (2) 201 3.(1)0.6 (2)60%,40% (3)白球12只,黑球8只. §25.2用列举法求概率(一) 一、1.B 2. C 3.B 二、1.31 2.72 3.51 4.41 三、1.(1)“摸出的球是白球”是不可能事件,它的概率为0;(2)“摸出的球是黄球”是随机事件,它的概率为0.4;(3)“摸出的球是红球或黄球”是必然事件,它的概率为1. 2.50000013. 不唯一,如放3只白球,1只红球等§25.2用列举法求概率(二) 一、1.B 2.C 3.C二、1.83 2.23 3.112 4.NM L N ++ 三、1.(1)31 (2)61 (3)212.摸出两张牌和为偶数的概率是95,摸出两张牌和为奇数的概率是94,所以游戏有利于小张,不公平;可以改为,如果摸出两张牌,牌面数字之和为3,小张胜.牌面数字之和为5,则小王胜. 3.(1)16 (2)12 (3)12§25.2用列举法求概率(三) 一、1.A 2. B 3. B 二、1.365 2.161 3.21 4.31 三、1.(1)12;(22.(1)由列表(略)可得:P (数字之和为5)14=;(2)因为P (甲胜)14=,P (乙胜)34=,甲胜一次得12分,要使这个游戏对双方公平,乙胜一次的得分应为:1234÷=分.3.(1)根据题意可列表或树状图如下:从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种,∴P(和为奇数)23=(2)不公平.∵小明先挑选的概率是P(和为奇数)23=,小亮先挑选的概率是P(和为偶数)13=,∵2133≠,∴不公平.§25.2用列举法求概率(四)一、1.A 2.D 3. D二、(1)红、白、白,(2)923. 94.13三、1.列表或树状图略:由表或图可知,点数之和共有36种可能的结果,其中6出现5次,7出现6次,故P(和为6)536=,P(和为7)636=.∴P(和为6)<P(和为7),∴小红获胜的概率大.2.(1)31(2)31(3)31.3.(1)树状图为:(2)由图可知评委给出A选手所有可能的结果有8种.对于A选手,“只有甲、乙两位评委给出相同结论”有2种,即“通过-通过-待定”、“待定-待定-通过”,所以对于A选手“只有甲、乙两位评委给出相同结论”的概率是14.(1,2)(1,3)(1,4)2 3 41(2,1)(2,3)(2,4)1 3 42(3,1)(3,2)(3,4)1 2 43(4,1)(4,2)(4,3)1 2 34第一次摸球第二次摸球通过通过待定待定通过通过待定通过待定通过待定通过待定甲乙丙§25.3利用频率估计概率(一) 一、1. B 2. C 二、1. 常数 2.25013. 210, 270 三、1. (1)0.025,0.063,0.058,0.050,0.050,0.050 (2) 0.050 (3)20002. (1)0.75,0.8,0.8,0.85,0.83,0.8,0.78 (2)0.8(3)不一定.投10次篮相当于做10次实验,每次实验的结果都是随机的,所以投10次篮的结果也是随机的,但随着投篮次数的增加,他进球的可能性为80%. 3.(1)0.25,0.33,0.28,0.33,0.32,0.30,0.33,0.31,0.31,0.31 (2)0.31 (3)0.31§25.3利用频率估计概率(二) 一、1.A 2. B二、1. 0.98 2. 3, 2, 1 3.271 三、1.(1)92(2)略 2.先随机从鱼塘中捞取a 条鱼,在鱼上做下记号,经过一段时间饲养后,再从中捞取b 条鱼,记录下其中有记号的鱼有c 条,则池塘中的鱼估计会有ab c§25.4 课题学习 一、1.D 2. B二、1.概率 2.Z 3.31 三、1.(1)91 (2)31 (3)322.(1)这个游戏的结果共有四种可能:正正. 正反. 反正. 反反,所以甲赢的概率为41,因乙赢的概率为21,因此这个游戏有利于乙,不公平; (2)若要使游戏公平只需使两人赢的概率相同,我们可以改规则为“若出现两个正面或两个反面,则甲赢;若出现一正一反,则乙赢”.。

九年级上册(人教版)数学练习题含答案

九年级上册(人教版)数学练习题含答案

狼专刊(喀夏2013)知识改变命运,优秀材料帮助你、我、他成长人教版九年级上册数学测试《第二十一章二次根式》练习题一、填空题(每小题2分,共20分)221.在、、、、中是二次根式的个数有______个. 2.当= 时,二次根式取最小值,其最小值为。

3. 化简的结果是 4. 计算:= ·23 a 5. 实数在数轴上的位置如图所示:化简:a 2102.26. 已知三角形底边的边长是cm,面积是cm,则此边的高线长.6122若则.,201020108. 计算:122已知,则观察下列各式:,,,……,请你将334455猜想到的规律用含自然数的代数式表示出来是.n(n≥1)线二、选择题(每小题3分,共24分) 11. 下列式子一定是二次根式的是(). B. C. D.下列二次根式中,的取值范围是的是() 1狼专刊(喀夏2013)知识改变命运,优秀材料帮助你、我、他成长1A.2-x B.x+2 C.x-2 D. x-213. 实数在数轴上的对应点的位置如图所示,式子a,b,ca①②③④中c正确的有()A.1个B.2个C.3个D.4个 14. 下列根式中,是最简二次根式的是()222 A. B. C. D. 1下列各式中,一定能成立的是()2222A.B.22C. D.16.设的整数部分为,小数部分为,则的值为()b22A.B.C.D.222把根号外的因式移到根号内,得() m mA. B. C. D.2218. 若代数式的值是常数,则的取值范围是()A.B.C.D.或三、解答题(76分) 19. (12分)计算:212 (1) (2)2狼专刊(喀夏2013)知识改变命运,优秀材料帮助你、我、他成长11432820. (8分)先化简,再求值:,其中. 3狼专刊(喀夏2013)知识改变命运,优秀材料帮助你、我、他成长421. (8分)已知:,求:的值。

(y)22. (8分)如图所示,有一边长为8米的正方形大厅,它是由黑白完全相同的方砖密铺面成.求一块方砖的边长. 4狼专刊(喀夏2013)知识改变命运,优秀材料帮助你、我、他成长23. (8分)如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/•秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示)C QABP 5狼专刊(喀夏2013)知识改变命运,优秀材料帮助你、我、他成长24. (10分)阅读下面问题:;;,……。

新课程课堂同步练习册(九年级数学上册人教版)答案

新课程课堂同步练习册(九年级数学上册人教版)答案

《新课程课堂同步练习册·数学(人教版九年级上册)》参考答案第二十一章 二次根式§21.1二次根式(一)一、1. C 2. D 3. D二、1.7±,23x ≤ 4. 1三、1.50m 2.(1)2x ≥ (2)x >-1 (3)0m ≤ (4)0=m §21.1二次根式(二)一、1. C 2.B 3.D 4. D 二、1.3π-,3π- 2.1 3.2)4(± ;2)7(±三、1.7-或-32.(1)5;(2)5; (3)4; (4)18; (5)0.01;(6)1x +; 3. 原式=2a b b a a --+-=- §21.2二次根式的乘除(一) 一、1.C 2. D 3.B二、1.< 2.1112+⨯-=-n n n (1,n n ≥为整数) 3.12s 4.三、1.(1)(2)(3)36 (4)–108 2.10cm 23§21.2二次根式的乘除(二)一、1.C 2.C 3.D二、1.a >32. 3.(1三、1.(1) (2) 2.(1)87 3.258528=÷nn ,因此是2倍. §21.2二次根式的乘除(三)一、1.D 2.A 3.B二、1.2=x 2.33, 3.1 4.33三、1.(1)1 (2)10 2. 33=x 3.(26-; 423=S§21.3二次根式的加减(一)一、1.C 2.A 3.C二、1.(答案不唯一,如:20、45) 2. 3<x <33 3. 1三、1.(1)34 (2)216- (3)2 (4)332. 10 §21.3二次根式的加减(二)一、1.A 2.A 3.B 4.A二、1. 1 2. 63. n m -三、1.(1)13- (2)253- (3)(4)22.因为25.45232284242324321824≈=⨯=++=++)()(>45 所以王师傅的钢材不够用. §21.3二次根式的加减(三) 一、1. C 2.B 3.D二、 1. 32; 2. 0, 3. 1 (4)(x x +三、 1.(1)6 (2)5 2.(1) (2)92第二十二章 一元二次方程§22.1一元二次方程(一)一、1.C 2.D 3.D 二、1. 2 2. 3 3. –1三、1.略 2.222(4)(2)x x x -+-= 一般形式:212200x x -+=§22.1一元二次方程(二)一、1.C 2.D 3.C二、1. 1(答案不唯一)2.123. 2 三、1.(1)2,221-==x x (2)1233,44x x ==-(3)12t t ==-(4)1222x x ==-2.以1为根的方程为2(1)0x -=, 以1和2为根的方程为(1)(2)0x x --= 3.依题意得212m +=,∴1m =± .∵1m =-不合题意,∴1m =. §22.2降次-解一元二次方程(一)一、1.C 2.C 3.D 二、1. 1233,22x x ==- 2. 1m ≥ 3. -1三、1.(1)43t =±(2)32x ±= (3)1x =-±(4)1x =2.解:设靠墙一边的长为x 米,则401922xx -⋅= 整理,得2403840x x -+=, 解得1216,24x x ==∵墙长为25米, ∴1216,24x x ==都符合题意. 答:略. §22.2降次-解一元二次方程(二) 一、1.B 2.D 3. C二、1.(1)9,3 (2)-5 (3)24m ,2m2.3±3. 1或32-三、1.(1)1211x x ==2)12y y 3)21,221==x x (4)124,3x x =-= 2.证明:2211313313()61212x x x --+=-++≤§22.2降次-解一元二次方程(三) 一、1.C 2.A 3.D二、1.9m 4≤2. 243.0三、1.(1)121x x 12==, (2)12x x ==(3)121x 2x 3==, (4)12y 1y 2=-=,2.(1)依题意,得()222m+141m 0∆=--⨯⨯≥⎡⎤⎣⎦∴21-≥m ,即当21-≥m 时,原方程有两个实数根. (2)由题意可知()222m+141m ∆=--⨯⨯⎡⎤⎣⎦>0∴m >12-, 取m 0=,原方程为2x 2x 0-= 解这个方程,得12x 0x 2==,.§22.2降次-解一元二次方程(四) 一、1.B 2.D 3.B二、1.-2,2x = 2. 0或43 3. 10 三、1.(1)12305x x ==-, (2)3,2121-==x x (3)12113y y ==, (4)1,221==x x (5)1217x x ==(6)19x =-,22x = 2.把1x =代入方程得 ()222114132m m m +⨯+⨯+=,整理得2360m m +=∴120,2m m ==-§22.2降次-解一元二次方程(五) 一、1.C 2.A 3.A二、1.2660x x --=,1,1-,66-. 2、6或—2 3、4三、1.(1)12x 7x 3==, (2)12x x ==, (3)3121==x x (4)12x 7x 2==-, 2.∵221=+x x ∴2=m 原方程为2230x x --= 解得 1x 3=,21x =-3.(1)()224(3)411b ac m -=--⨯⨯-944m =-+134m =->0∴m <134(2)当方程有两个相等的实数根时,则1340m -=, ∴134m =, 此时方程为04932=+-x x , ∴1232x x == §22.2降次-解一元二次方程(六)一、1.B 2.D 3.B 二、1. 1 2. -3 3. -2三、1.(1)51=x ,52-=x (2)21±=x (3)121==x x (4)没有实数根2.(1).4412,4112x x x x -=+∴=-+.21=∴x 经检验21=x 是原方程的解. 把21=x 代人方程0122=+-kx x ,解得3=k . (2)解01322=+-x x ,得.1,2121==x x ∴方程0122=+-kx x 的另一个解为1=x .3.(1)()22244114b ac k k -=-⨯⨯-=+>0,∴方程有两个不相等的实数根. (2)∵12x x k +=-,121x x ⋅=-,又1212x x x x +=⋅∴1k -=-∴1k =§22.3实际问题与一元二次方程(一)一、1.B 2.D二、1.2)1()1(x a x a a -+-+ 2.222)1()1(+=-+x x x 3.()21a x +三、1.解:设这辆轿车第二年、第三年平均每年的折旧率为x ,则776.7)1%)(201(122=--x ,解得%101.01==x ,9.12=x (舍去). 答:略2.解:设年利率为x ,得1320)1](1000)1(2000[=+-+x x , 解得%101.01==x ,6.12-=x (舍去).答:略§22.3实际问题与一元二次方程(二)一、1.C 2.B二、1. 15,10 2. cm 20 3. 6三、1.解:设这种运输箱底部宽为x 米,则长为)2(+x 米,得151)2(=⨯+x x ,解得5,321-==x x (舍去),∴这种运输箱底部长为5米,宽为3米.由长方体展开图知,要购买矩形铁皮面积为:)(35)23()25(2m =+⨯+,∴要做一个这样的运输箱要花7002035=⨯(元).2.解:设道路宽为x 米,得50423220232202=+-⨯-⨯x x x , 解得34,221==x x (舍去).答:略§22.3实际问题与一元二次方程(三)一、1.B 2.D二、1. 1或2 2. 24 3. 15- 三、1.设这种台灯的售价为每盏x 元,得()()[]1000040x 1060030x =---, 解得80x 50x 21==,当50x =时,()50040x 10600=--;当80x =时,()20040x 10600=-- 答:略2.设从A 处开始经过x 小时侦察船最早能侦察到军舰,得22250)3090()20(=-+x x ,解得1328,221==x x ,1328>2,∴最早2小时后,能侦察到军舰. 第二十三章 旋 转§23.1图形的旋转(一)一、1.A 2.B 3.D二、1. 90 2. B 或C 或BC 的中点 3. A 60 4. 120°,30°5 .三、EC 与BG 相等 方法一:∵四边形ABDE 和ACFG 都是正方形 ∴AE=AB ,AC=AG∴∠EAB=∠CAG=90°∴把△EAC 绕着点A 逆时针旋转90°,可与△BAG 重合 ∴EC=BG 方法二:∵四边形ABDE 和ACFG 都是正方形 ∴AE=AB ,AC=AG ∠EAB=∠CAG=90°∴∠EAB+∠BAC=∠CAG+∠BAC 即 ∠EAC=∠BAG ∴△EAC ≌△BAG ∴EC=BG §23.1图形的旋转(二)一、1.C 2.C 3.D 二、1. 2,120° 2. 120或240 3. 4三、1.如图 2.如图3.(1)旋转中心是时针与分针的交点; (2)分针旋转了108.4.解:(1)HG 与HB 相等. 连接AH ∵正方形ABCD 绕着点A 旋转得到正方形AEFG ∴AG=AD=AB=AE ,∠G=∠B=90°又∵AH=AH ∴△AGH ≌△ABH ∴HG=HB (2)∵△AGH ≌△ABH ∴∠GAH = ∠BAH∴21)2AGH ABH S S cm ∆∆==由122GH ⨯=GH =在Rt △AGH中,根据勾股定理得:2AH GH =∴∠GAH=30°∴旋转角∠DAG = 90°-2∠GAH = 90°-2×30°= 30°§23.2中心对称(一)一、1.C 2.D 3.B二、1.对称中心 对称中心 2.关于点O 成中心对称3 .△CDO 与△EFO 三、1.(略)2.(1)A 1的坐标为(1,1),B 1的坐标为(5,1),C 1的坐标为(4,4).(2)A 2()1,1--, B 2的坐标为()5,1--, C 2的坐标为()4,4--画图如下: 3.画图如下:§23.2中心对称(二)一、1.D 2.C 3.二、1.矩形、菱形、正方形 2.正六边形、正八边形(边数为偶数的正多边形均正确) 三、1.关于原点O 对称(图略) 2.解:∵矩形ABCD 和矩形AB 'C 'D '关于A 点对称∴AD=AD ',AB=AB ',DD '⊥BB '∴四边形BDB 'D '是菱形 3.解:(1)AE 与BF 平行且相等 ∵△ABC 与△FEC 关于点C 对称∴AB 平行且等于FE ∴四边形ABFE 是平行四边形 ∴AE 平行且等于BF (2)122cm (3)当∠ACB=60°,四边形ABFE 为矩形,理由如下: ∵∠ACB=60°,AB=AC ∴AB=AC=BC ∵四边形ABFE 是平行四边形∴AF=2AC ,BE=2BC ∴AF=BE ∴四边形ABFE 为矩形B′B§23.2中心对称(三)一、1.B 2.D 3.D二、1. 四 2.3y x =(任一正比例函数) 3. 三 三、1.如图2、解:由已知得212x x +=-, 244y+= 解得1x =-,2y =∴()221x y +=⨯-3.(1)D 的坐标为(3,-4)或(-7,-4 (2)C 的坐标为(-1,-2),D 的坐标为(画图如图:§23.3 课题学习 图案设计 一、1.D 2.C二、1.72° 2.基本图案绕(2)的O 点依次旋转60°、120°、180°、240°、300°而得到. 三、1.(略)2.如图3.(1)是,6条 (2)是(3)60°、120°、180°、240°、300°第二十四章 圆§24.1.1圆一、1.A 2.B 3.A二、1. 无数 经过这一点的直径 2. 30 3. 半径 圆上三、1.提示:证对角线互相平分且相等 2.提示:证明:OCD OAB ∠=∠ §24.1.2 垂直与弦的直径一、1.B 2.C 3. D二、1.平分 弧 2. 3≤OM ≤5 3. 三、1. 120 2. (1)、图略 (2)、10cm §24.1.3 弧、弦、圆心角一、1. D 2. C 3. C 二、1.(1)∠AOB=∠COD,=(2)∠AOB=∠COD, AB=CD (3)=, AB=CD2. 15°3. 2 三、1. 略2.(1)连结OM 、ON ,在Rt △OCM 和Rt △ODN 中OM=ON ,OA=OB ,∵AC=DB ,∴OC=OD ,∴Rt △OCM ≌Rt △ODN ,∴∠AOM=∠BON , ∴AM=BN⌒ ⌒§24.1.4圆周角一、1.B 2. B 3.C二、1.28 2. 4 3.60°或120°三、1.90o提示:连接AD 2.提示:连接AD §24.2.1点和圆的位置关系 一、1.B 2.C 3. B二、1.d <r d r = ,d >r 2. OP >6 3. 内部, 斜边上的中点, 外部 三、1.略 2.5cm§24.2.2直线与圆的位置关系(一) 一、1. B 2. D 3. A 二、1.相离, 相切 2.相切 3. 4三、1.(1)相交, 相切 §24. 2.2直线与圆的位置关系(二) 一、1.C 2.B二、1.过切点的半径 垂直于 2.、30°三、1.提示: 作OC ⊥AQ 于C 点 2.(1)60o(2)§24.2.2直线与圆的位置关系(三)一、1.C 2.B 3.C二、1. 115o 2. 90o10cm 3. 1﹕2三、1. 14cm 2. 提示:连接OP ,交AB 与点C. §24.2.3圆与圆的位置关系一、1.A 2.C 3. D 二、1. 相交 2. 8 3. 2 3 10三、1.提示:分别连接1212,,OO O B O B ;可得1216030O OOO B O AB ∠=∴∠=2.提示:半径相等,所以有AC=CO ,AO=BO ;另通过说明∠AEO=90°,则可得AE=ED. §24.3正多边形和圆(一)一、1. B 2. C 3.C二、1.内切圆 外接圆 同心圆 2.十五3.2cm 三、1.10和5 2. 连结OM ,∵MN ⊥OB 、OE =21OB =21OM ,∴∠EMO =30°,∴∠MOB =60°,∴∠MOC =30°,∠MOB =6360︒、∠MOC =12360︒.即MB 、MC 分别是⊙O 内接正六边形和正十二边形的边长.§24.3正多边形和圆(二) 一、1.C 2. B二、1. 72 2. 四 每条弧 连接各等分点 3. 2a π三、1. 22. 边长为4,面积为32§24.4.1 弧长和扇形的面积一、1. B 2. D 3.C二、1.o 3602π, 2. π3434- 3.83π三、1. 10.5 2. 112π(2cm )§24.4.2 圆锥的侧面积和全面积一、1.A 2. B 3.B 二、1. 130π2cm 2. 215cm π 3. 2π三、1. (1)20π (2)220 2.S 48π=全第二十五章 概率初步§25.1.1随机事件(一)一、1. B 2. C 3.C二、1. 随机 2.随机 3.随机事件,不可能事件 4.不可能三、1. B ; A 、C 、D 、E ; F 2.(1)随机事件 (2)必然事件 (3)不可能事件 §25.1.1随机事件(二) 一、1.D 2.B 3. B二、1.黑色扇形 2.判断题 3. C 4.飞机三、1.(1)不一样,摸到红球的可能性大 ;(2)他们的说法正确2.事件A >事件C >事件D >事件B §25.1.2概率的意义(一) 一、 1. D 2. D二、1. 折线在0.5左右波动, 0.5 2. 0.5,稳定 3. 1,0,0<P(A)<1 三、1. (1)B,D (2)略2.(1)0.68,0.74,0.68,0.692,0.705,0.701 (2)接近0.7 (3)70% (4)2520§25.1.2概率的意义(二) 一、1. D 2. C 二、1.明 2. 75 3.1584. 16三、1.(1)不正确 (2)不一定2.(1)201 (2) 201 3.(1)0.6 (2)60%,40% (3)白球12只,黑球8只. §25.2用列举法求概率(一) 一、1.B 2. C 3.B 二、1.31 2.72 3.51 4.41 三、1.(1)“摸出的球是白球”是不可能事件,它的概率为0;(2)“摸出的球是黄球”是随机事件,它的概率为0.4;(3)“摸出的球是红球或黄球”是必然事件,它的概率为1. 2.50000013. 不唯一,如放3只白球,1只红球等§25.2用列举法求概率(二) 一、1.B 2.C 3.C二、1.83 2.23 3.112 4.NM L N ++ 三、1.(1)31 (2)61 (3)212.摸出两张牌和为偶数的概率是95,摸出两张牌和为奇数的概率是94,所以游戏有利于小张,不公平;可以改为,如果摸出两张牌,牌面数字之和为3,小张胜.牌面数字之和为5,则小王胜. 3.(1)16 (2)12 (3)12§25.2用列举法求概率(三) 一、1.A 2. B 3. B 二、1.365 2.161 3.21 4.31 三、1.(1)12;(22.(1)由列表(略)可得:P (数字之和为5)14=;(2)因为P (甲胜)14=,P (乙胜)34=,甲胜一次得12分,要使这个游戏对双方公平,乙胜一次的得分应为:1234÷=分.3.(1)根据题意可列表或树状图如下:从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种,∴P(和为奇数)23=(2)不公平.∵小明先挑选的概率是P(和为奇数)23=,小亮先挑选的概率是P(和为偶数)13=,∵2133≠,∴不公平.§25.2用列举法求概率(四)一、1.A 2.D 3. D二、(1)红、白、白,(2)923. 94.13三、1.列表或树状图略:由表或图可知,点数之和共有36种可能的结果,其中6出现5次,7出现6次,故P(和为6)536=,P(和为7)636=.∴P(和为6)<P(和为7),∴小红获胜的概率大.2.(1)31(2)31(3)31.3.(1)树状图为:(2)由图可知评委给出A选手所有可能的结果有8种.对于A选手,“只有甲、乙两位评委给出相同结论”有2种,即“通过-通过-待定”、“待定-待定-通过”,所以对于A选手“只有甲、乙两位评委给出相同结论”的概率是14.(1,2)(1,3)(1,4)2 3 41(2,1)(2,3)(2,4)1 3 42(3,1)(3,2)(3,4)1 2 43(4,1)(4,2)(4,3)1 2 34第一次摸球第二次摸球通过通过待定待定通过通过待定通过待定通过待定通过待定甲乙丙§25.3利用频率估计概率(一) 一、1. B 2. C 二、1. 常数 2.25013. 210, 270 三、1. (1)0.025,0.063,0.058,0.050,0.050,0.050 (2) 0.050 (3)20002. (1)0.75,0.8,0.8,0.85,0.83,0.8,0.78 (2)0.8(3)不一定.投10次篮相当于做10次实验,每次实验的结果都是随机的,所以投10次篮的结果也是随机的,但随着投篮次数的增加,他进球的可能性为80%. 3.(1)0.25,0.33,0.28,0.33,0.32,0.30,0.33,0.31,0.31,0.31 (2)0.31 (3)0.31§25.3利用频率估计概率(二) 一、1.A 2. B二、1. 0.98 2. 3, 2, 1 3.271 三、1.(1)92(2)略 2.先随机从鱼塘中捞取a 条鱼,在鱼上做下记号,经过一段时间饲养后,再从中捞取b 条鱼,记录下其中有记号的鱼有c 条,则池塘中的鱼估计会有ab c§25.4 课题学习 一、1.D 2. B二、1.概率 2.Z 3.31 三、1.(1)91 (2)31 (3)322.(1)这个游戏的结果共有四种可能:正正. 正反. 反正. 反反,所以甲赢的概率为41,因乙赢的概率为21,因此这个游戏有利于乙,不公平; (2)若要使游戏公平只需使两人赢的概率相同,我们可以改规则为“若出现两个正面或两个反面,则甲赢;若出现一正一反,则乙赢”.。

数学配套练习册九年级上册答案人教版

数学配套练习册九年级上册答案人教版
是一个非负数
18(8分)L=13--------------------2分
S侧面积=65π---------------6分
19(8分)(1)画法正确 4分(其中无痕迹扣1分)
(2)π…….. 2分
或3π…….. 2分
20、(1)10个------------------2分
-----------------4分
〔数学配套练习册九年级上册答案人教版〕
一、选择:1-5 CBCCD 6-10 BABCB
二、填空:
11 、不唯一,如绕O顺时针旋转90度;或先下1,再右3;或先右3,再下1
12、3ቤተ መጻሕፍቲ ባይዱ0 13、8,7
14、 15、 16、
三、解答题:
17(6分)、化简得 .--------------------------4分
(2)不存在…….. 4分(其中过程3分)
21、(1)b=2或—2…….. 5分(其中点坐标求出适当给分)
(2) ……..5分(其中点坐标求出适当给分)
22、(1)证明完整…….. 4分
(2)菱形-------4分(写平行四边形3分)
(3)S梯形= ----------------4分
23、(1) k=4…….. 3分
(2)答案a=1,b=3------------5分(其中求出B(-2,-2)给3分)
(3) 提示:发现OC⊥OB,且OC=2OB
所以把三角形AOC绕O顺时针旋转90度,再把OA的像延长一倍得(2,-8)
再作A关于x轴对称点,再把OA的像延长一倍得(8,-2)
所以所求的E坐标为(8,-2)或(2,-8)各2分,共4分

人教版九年级数学上册课本练习题答案

人教版九年级数学上册课本练习题答案

第21章第4页练习第1题答案解:(1)5x2-4x-1=0,二次相系数为5,一次项系数为-4,常数项为-1 (2)4x2-81=0,二次项系数为4,一次项系数为0,常数项为-81(3)4x2+8x-25=0,二次项系数为4,一次项系数为8,常数项为-25 (4)3x2-7x+1=0,二次项系数为3,一次项系数为-7,常数项为1【规律方法:化为一般形式即把所有的项都移到方程的左边,右边化为0的行驶,在确定二次项系数,一次项系数和常数项时,要特别注意各项系数及常数项均包含前面的符号。

】第4页练习第2题答案解:(1)4x2=25, 4x2-25=0(2)x(x-2)=100,x2-2x-100=0(3)x∙1=(1-x)2-3x+1=0习题21.1第1题答案(1)3x2-6x+1=0,二次项系数为3,一次项系数-6,常数项为1(2)4x2+5x-81=0,二次项系数为4,一次项系数为5,常数项为-81(3)x2+5x=0,二次项系数为1,一次项系数为5,常数项为0(4)x2-2x+1=0,二次项系数为1,一次项系数为-2,常数项为1(5)x2+10=0,二次项系数为1,一次项系数为0,常数项为10(6)x2+2x-2=0,二次项系数为1,一次项系数为2,常数项为-2习题21.1第2题答案(1)设这个圆的半径为Rm,由圆的面积公式得πR2=6.28,∴πR2-6.28=0(2)设这个直角三角形较长的直角边长为x cm,由直角三角形的面积公式,得1/2x(x-3)=9,∴x2-3x-18=0习题21.1第3题答案方程x2+x-12=0的根是-4,3习题21.1第4题答案设矩形的宽为x cm,则矩形的长为(x+1)cm,由矩形的面积公式,得x∙(x+1)=132,∴x2+x-132=0习题21.1第5题答案解:设矩形的长为x m,则矩形的宽为(0.5-x)m,由矩形的面积公式得:(0.5-x)=0.06∴x2-0.5x+0.06=0习题21.1第6题答案解:设有n人参加聚会,根据题意可知:(n-1)+(n-2)+(n-3)+…+3+2+1=10,即(n(n-1))/2=10,n2-n-20=0习题21.2第1题答案(1)36x2-1=0,移项,得36x2=1,直接开平方,得6x=±1,,6x=1或6x=-1,∴原方程的解是x1=1/6,x2=-1/6(2)4x2=81,直接开平方,得2=±9,,2x=9或2x=-9,∴原方程的解是x1=9/2,x2=-9/2(3)(x+5)2=25,直接开平方,得x+5=±5,∴+5=5或x+5=-5,∴原方程的解是x1=0,x2=-10(4)x2+2x+1=4,原方程化为(x+1)2=4,直接开平方,得x+1=±2,∴x+1=2或x+1=-2,∴原方程的解是x1=1,x2=-3习题21.2第2题答案(1)9;3(2)1/4;1/2(3)1;1(4)1/25;1/5习题21.2第3题答案(1)x2+10x+16=0,移项,得x2+10x=-16,配方,得x2+10x+52=-16+52,即(x+5)2=9,开平方,得x+5=±3,∴+5=3或x+5=-3,∴原方程的解为x1=-2,x2=-8(2)x2-x-3/4=0,移项,得x2-x=3/4,配方,得x2-x=3/4,配方,得x2-x+1/4=3/4+1/4,即(x-1/2)2=1,开平方,得x- 1/2=±1,∴原方程的解为x1=3/2,x2=-1/2(3)3x2+6x-5=0,二次项系数化为1,得x2+2x-5/3=0,移项,得x2+2x=5/3,配方,得x2+2x+1=5/3+1,即(x+1)2=8/3,(4)4x2-x-9=0,二次项系数化为1,得x2-1/4x-9/4=0,移项,得x2-1/4 x= 9/4,配方,得x2-1/4x+1/64=9/4+1/64,即(x-1/8)2=145/64,习题21.2第4题答案(1)因为△=(-3)2-4×2×(-3/2)=21>0,所以原方程有两个不相等的实数根(2)因为△=(-24)2-4×16×9=0,所以与原方程有两个相等的实数根(3)因为△=-4×1×9=-4<0,因为△=(-8)2-4×10=24>0,所以原方程有两个不相等的实数根习题21.2第5题答案(1)x2+x-12=0,∵a=1,b=1,c=-12,∴b2-4ac=1-4×1×(-12)=49>0,∴原方程的根为x1=-4,x2=3.∴b2-4ac=2-4×1×(-1/4)=3>0,(3)x2+4x+8=2x+11,原方程化为x2+2x-3=0,∵a=1,b=2,c=-3,∴b2-4ac=22-4×1×(-3)=16>0,∴原方程的根为x1=-3,x2=1.(4)x(x-4)=2-8x,原方程化为x2+4x-2=0,∵a=1,b=4,c=-2,∴b2-4ac=42-4×1×(-2)=24>0,(5)x2+2x=0,∵a=1,b=2,c=0,∴b2-4ac=22-4×1×0=4>0,∴原方程的根为x1=0,x2=-2.(6) x2+2x+10=0,∵a=1,b=2,c=10,∴b2-4ac=(2)2-4×1×10=-20<0,∴原方程无实数根习题21.2第6题答案(1)3x2-12x=-12,原方程可化为x2-4x+4=0,即(x-2)2=0,∴原方程的根为x1=x2=2(2)4x2-144=0,原方程可化为4(x+6)(x-6),∴x+6=0或x-6=0,∴原方程的根为x1=-6,x2=6.(3)3x(x-1)=2(x-1),原方程可化为(x-1)∙(3x-2)=0∴x-1=0或3x-2=0∴原方程的根为x1=1,x2=2/3(4)(2x-1)2=(3-x)2,原方程可化为[(2x-1)+(3-x)][(2x-1)-(3-x)]=0,即(x+2)(3x-4)=0,∴x+2=0或3x-4=0∴原方程的根为x1=-2,x2=4/3习题21.2第7题答案设原方程的两根分别为x1,x2(1)原方程可化为x2-3x-8=0,所以x1+x2=3,x1·x2=-8(2)x1+x2=-1/5,x1·x2=-1(3)原方程可化为x2-4x-6=0,所以x1+x2=4,x1·x2=-6(4)原方程可化为7x2-x-13=0,所以x1+x2=1/7,x1·x2=-13/7习题21.2第8题答案解:设这个直角三角形的较短直角边长为 x cm,则较长直角边长为(x+5)cm,根据题意得:1/2 x(x+5)=7,所以x2+5x-14=0,解得x1=-7,x2=2,因为直角三角形的边长为:答:这个直角三角形斜边的长为cm习题21.2第9题答案解:设共有x家公司参加商品交易会,由题意可知:(x-1)+(x-2)+(x-3)+…+3+2+1=45,即x(x-1)/2=45,∴x2-x-90=0,即(x-10)(x+9)=0,∴x-10=0或x+9=0,∴x1=10,x2=-9,∵x必须是正整数,∴x=-9不符合题意,舍去∴x=10答:共有10家公司参加商品交易会习题21.2第10题答案解法1:(公式法)原方程可化为3x2-14x+16=0,∵a=3,b=-14,c=16,∴b2-4ac=(-14)2-4×3×16=4>0,∴x=[-(-14)±]/(2×3)=(14±2)/6,∴原方程的根为x1=2,x2=8/3解法2:(因式分解法)原方程可化为[(x-3)+(5-2x)][(x-3)-(5-2x)]=0,即(2-x)(3x-8)=0,∴2-x=0或3x-8=0,∴原方程的根为x1=2,x2=8/3习题21.2第11题答案解:设这个矩形的一边长为x m,则与其相邻的一边长为(20/2-x)m,根据题意得:x(20/2-x)=24,整理,得x2-10x+24=0,解得x1=4,x2=6.当x=4时,20/2-x=10-4=6当x=6时, 20/2-x=10-6=4.故这个矩形相邻两边的长分别为4m和6m,即可围城一个面积为24m2的矩形习题21.2第12题答案解设:这个凸多边形的边数为n,由题意可知:1/2n(n-3)=20解得n=8或n=-5因为凸多边形的变数不能为负数所以n=-5不合题意,舍去所以n=8所以这个凸多边形是八边形假设存在有18条对角线的多边形,设其边数为x,由题意得:1/2 x(x-3)=18解得x=(3±)/2因为x的值必须是正整数所以这个方程不存在符合题意的解故不存在有18条对角线的凸多边形习题21.2第13题答案解:无论p取何值,方程(x-3)(x-2)-p2=0总有两个不相等的实数根,理由如下:原方程可以化为:x2-5x+6-p2=0△=b2-4ac=(-5)2-4×1×(6-p2)=25-24+4p2=1+4p2∵p2≥0,,1+4p2>0∴△=1+4p2>0∴无论P取何值,原方程总有两个不相等的实数根习题21.3第1题答案(1)x2+10x+21=0,原方程化为(x+3)(x+7)=0,或x+7=0,∴x1=-3,x2=-7.(2) x2-x-1=0∵a=1,b=-1,c=-1,b2-4ac=(-1)2-4×1×(-1)=5>0,(3)3x2+6x-4=0,∵a=3,b=6,c=-4,b2-4ac=62-4×4×3×(-4)=84>0,。

新人教版_九年级数学上册全册内容综合测试题(含答案)(K12教育文档)

新人教版_九年级数学上册全册内容综合测试题(含答案)(K12教育文档)

新人教版_九年级数学上册全册内容综合测试题(含答案)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(新人教版_九年级数学上册全册内容综合测试题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为新人教版_九年级数学上册全册内容综合测试题(含答案)(word版可编辑修改)的全部内容。

九年级(上) 期末数学测试卷(总分:120分,时间:120分钟)一、填空题(每题3分,共30分)x+中自变量x的取值范围是________.1.函数y=22.2+8—18=_______.3.已知方程x2+kx+1=0的一个根为2-1,则另一个根为_____,k=_______.4.有四张不透明的卡片4,22/7,π,3,除正面的数不同外,其余都相同,将它们背面朝上洗匀后,从中随机抽取一张卡片记下数字,再在余下的三张卡片中再抽取一张,•那么抽取的卡片都是无理数的概率为______.5.如图1,矩形ABCD与圆心在AB上的⊙O交于G,B,F,E,GB=8cm,•AG=•1cm,•DE=2cm,则EF=_______cm.图1 图2 图3 图46.如图2,粮仓的顶部是锥形,这个圆锥底面周长为32m,母线长7m,为防雨,需要在粮仓顶部铺上油毡,则共需油毡______m2.7.以25m/s的速度行驶的列车,紧急制动后,匀减速地滑行,经10s停止,则在制运过程中列车的行驶路程为______.8.如图3,PA,PB是⊙O的两条切线,A、B是切点,CD切劣弧AB于点E,•已知切线PA的长为6cm,则△PCD的周长为______cm.9.已知点A,点B均在x轴上,分别在A,B为圆心的两圆相交于M(3,-2),N(a,b )两点,则a b 的值为_______.10.某人用如下方法测一钢管内径:将一小段钢管竖直放在平台上,•向内放入两个半径为5cm 的钢球,测得上面一个钢球顶部高DC=16cm (钢管的轴截面如图4),则钢管的内直径AD 长为______cm . 二、选择题(每题4分,共40分) 11.下列各式计算正确的是( )A2 B .2=│a │ C 5= D .a=2 12.关于x 的一元二次方程(a —1)x 2+x+a 2-1=0的一个根为0,则a 的值为( )A .1B .-1C .1或-1D .1213.关于x 的一元二次方程x 2—2(m —2)x+m=0有两个不相等的实数根,则m•的取值范围为( )A .m 〉1B .m<1C .m>-1D .m<-114.有两名男生和两名女生,王老师要随机地,两两一对地为他们排座位,一男一女排在一起的概率为( )A .14B .13C .12D .2315.⊙I 是△ABC 的内切圆,且∠C=90°,切点为D ,E ,F,若AF ,BE 的长是方程x 2—13x+30=0的两个根,则S △ABC 的值为( ) A .30 B .15 C .60 D .13 16.图5中的4个图案,是中心对称图形的有( )A .①②B .①③C .①④D .③④图5 图6 图7 17.如图6,圆内接△ABC的外角∠ACH的平分线与圆交于D点,DP⊥AC,•垂足是P,DH⊥BH,垂足是H,下列结论:①CH=CP;②AD=DB;③AP=BH;④DH为圆的切线.•其中一定成立的是( )A.①②④ B.①③④ C.②③④ D.①②③18.如图7,Rt△ABC中,AB=AC=4,以AB为直径的圆交AC于D,则图中阴影部分的面积为()A.2π B.π+1 C.π+2 D.4+4π1922x xx x=--成立的x的取值范围是()A.x≠2 B.x≥0 C.x〉2 D.x≥220.如果f(x)=221xx+并且f1)表示当1时的值,1)22(1)1(1)+12,表示当12时的值,即12221()211()2+13.那么f1)+f212311()3f n fn+++的值是()A.n-12B.n-32C.n-52D.n+12三、解答题(共50分)21.(8分)已知33,求下列各式的值:(1)x2+2xy+y2; (2)x2—y222.(10分)如图末—8,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF是正方形,连结AF,BD.(1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想.(2)若将正方形CDEF绕点C顺时针方向旋转,使正方形CDEF的一边落在△ABC 的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.23.(10分)一枚均匀的正方体骰子,六个面分别标有数字1,2,3,4,5,6,连续抛掷两次,朝上的数字分别是m,n,若把m,n作为点A的横,纵坐标,那么点A(m,n)•在函数y=2x的图象上的概率是多少?24.(10分)如图末—9,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种草坪,要使草坪的面积为540m2,求道路的宽.25.(12分)如图末-10,在平面直角坐标系中,直线y=x+1与y轴交于点A,与x•轴交于点B,点C和点B关于y轴对称.(1)求△ABC内切圆的半径;(2)过O、A两点作⊙M,分别交直线AB、AC于点D、E,求证:AD+AE是定值,•并求其值.答案:5.6 6.112 1.x≥-2且x≠1 2.0 32,2.167.125m 8.12 9.9 10.18 11.C 12.B 13.B 14.D 15.A 16.B 17.D 18.C 19.C 20.A21.解:(1)x2+2xy+y2=(x+y)2331)2=(3)2=12.(2)x2—y2=(x—y)(x+y)=2×3322.解:(1)AF=BD且AF⊥BD,只需证△BCD≌△ACF即可.(2)略23.略24.解:如图所示,设路宽为xm,则种草坪的矩形长为(32—x )m ,宽为(20-x)m,•即(32-x )(20—x )=540,整理得x 2—52x+100=0,解得x 1=2,x 2=50(舍去), 所以道路宽为2m .25.解:(1)由直线AB 的解析式求得OA=OB=OC=1,由于△ABC 为Rt △,2,∴r=2AB AC BC+-21.(2)连结OD ,OE ,DE ,∵∠BAC=90°,∴DE 为直径.∴∠DOE=90°. 又∵∠AOB=90°,∴∠DOB=∠AOE . 又∵∠OAE=∠OBD=45°,且OA=OB .∴△AOE ≌△BOD .故AE=BD .∴2。

九年级上册数学作业本答案人教版

九年级上册数学作业本答案人教版

九年级上册数学作业本答案(人教版)一、整数1. 整数的概念整数是由正整数、负整数和0组成的数集。

在数轴上表示为负数在左,正数在右。

2. 整数的比较整数间可以进行比较大小,按数值大小顺序,负数大于正数的绝对值,负数之间按绝对值大小比较,正数之间按数值大小比较。

例题:比较下列整数的大小:-5,3,-2,0,1。

答案:-5 < -2 < 0 < 1 < 3。

3. 整数的加法和减法整数的加法和减法都遵循正数加正数为正数,正数加负数为减法,负数加正数为减法,负数加负数为负数的规律。

例题1:计算:2 + 3。

答案:2 + 3 = 5。

例题2:计算:5 - 7。

答案:5 - 7 = -2。

4. 整数的乘法和除法整数的乘法和除法的规律是负数相乘或相除为正数,正数相乘或相除为正数,负数和正数相乘或相除为负数。

例题1:计算:-3 × 4。

答案:-3 × 4 = -12。

例题2:计算:-12 ÷ 4。

答案:-12 ÷ 4 = -3。

5. 整数的混合运算整数的混合运算是指同时进行加、减、乘、除等多种运算的情况。

根据运算的优先级和规则,逐步进行计算。

例题:计算:3 + 4 × (-4) - 8 ÷ (-2)。

答案: 1. 先进行乘法:4 × (-4) = -16; 2. 再进行除法:8 ÷ (-2) = -4; 3. 最后进行加减法:3 + (-16) - (-4) = 3 - 16 + 4 = -9。

二、有理数1. 有理数的概念有理数是指整数和分数的统称。

有理数包含正有理数、负有理数和0。

2. 有理数的加法和减法有理数的加法和减法与整数的加法和减法类似,按照正数加正数为正数,正数加负数为减法,负数加正数为减法,负数加负数为负数的规律进行计算。

3. 有理数的乘法和除法有理数的乘法和除法遵循负数相乘或相除为正数,正数相乘或相除为正数,负数和正数相乘或相除为负数的规律。

新课程课堂同步练习册(九年级数学上册人教版)答案

新课程课堂同步练习册(九年级数学上册人教版)答案

《新课程课堂同步练习册·数学(人教版九年级上册)》参考答案 第二十一章 二次根式§21.1二次根式(一)一、1. C 2. D 3. D二、1.7±,23x ≤4. 1 三、1.50m 2.(1)2x ≥ (2)x >-1 (3)0m ≤ (4)0=m §21.1二次根式(二)一、1. C 2.B 3.D 4. D二、1.3π-,3π- 2.1 3.2)4(± ;2)7(±三、1.7-或-32.(1)5;(2)5; (3)4; (4)18; (5)0.01;(6)1x +; 3. 原式=2a b b a a --+-=- §21.2二次根式的乘除(一) 一、1.C 2. D 3.B二、1.< 2.1112+⨯-=-n n n (1,n n ≥为整数) 3.12s 4.三、1.(1)(2)(3)36 (4)–108 2.10cm 23§21.2二次根式的乘除(二)一、1.C 2.C 3.D二、1.a >3 2. 3.(1; 4. 6三、1.(1) (2) 2.(1)87(2)5(3)213.258528=÷nn ,因此是2倍. §21.2二次根式的乘除(三)一、1.D 2.A 3.B二、1.2=x 2.33, 3.1 4.33三、1.(1)1 (2)10 2. 33=x 3.(26-; 423=S §21.3二次根式的加减(一)一、1.C 2.A 3.C二、1.(答案不唯一,如:20、45) 2. 3<x <33 3. 1三、1.(1)34 (2)216- (3)2 (4)332. 10 §21.3二次根式的加减(二)一、1.A 2.A 3.B 4.A二、1. 1 2. 6+, 3. n m -三、1.(1)13- (2)253- (3)(4)22.因为25.45232284242324321824≈=⨯=++=++)()(>45 所以王师傅的钢材不够用. §21.3二次根式的加减(三) 一、1. C 2.B 3.D二、 1. 32; 2. 0, 3. 1 (4)(x x三、 1.(1)6 (2)5 2.(1) (2)92第二十二章 一元二次方程§22.1一元二次方程(一)一、1.C 2.D 3.D 二、1. 2 2. 3 3. –1三、1.略 2.222(4)(2)x x x -+-= 一般形式:212200x x -+= §22.1一元二次方程(二)一、1.C 2.D 3.C 二、1. 1(答案不唯一) 2.123. 2 三、1.(1)2,221-==x x (2)1233,44x x ==-(3)12t t ==- (4)1222x x ==- 2.以1为根的方程为2(1)0x -=, 以1和2为根的方程为(1)(2)0x x --= 3.依题意得212m +=,∴1m =± .∵1m =-不合题意,∴1m =. §22.2降次-解一元二次方程(一)一、1.C 2.C 3.D 二、1. 1233,22x x ==- 2. 1m ≥ 3. -1三、1.(1)43t =±(2)x =(3)1x =-± (4)1x =2.解:设靠墙一边的长为x 米,则401922xx -⋅= 整理,得 2403840x x -+=, 解得 1216,24x x == ∵墙长为25米, ∴1216,24x x ==都符合题意. 答:略. §22.2降次-解一元二次方程(二) 一、1.B 2.D 3. C二、1.(1)9,3 (2)-5 (3)24m ,2m2.3±3. 1或32-三、1.(1)1211x x ==2)12y y ==3)21,221==x x (4)124,3x x =-= 2.证明:2211313313()61212x x x --+=-++≤§22.2降次-解一元二次方程(三) 一、1.C 2.A 3.D二、1. 9m 4≤2. 243. 0三、1.(1)121x x 12==, (2)1222x x 33+==(3)121x 2x 3==, (4)12y 1y 2=-=,2.(1)依题意,得()222m+141m 0∆=--⨯⨯≥⎡⎤⎣⎦∴21-≥m ,即当21-≥m 时,原方程有两个实数根. (2)由题意可知()222m+141m ∆=--⨯⨯⎡⎤⎣⎦>0 ∴m >12-, 取m 0=,原方程为2x 2x 0-= 解这个方程,得12x 0x 2==,.§22.2降次-解一元二次方程(四) 一、1.B 2.D 3.B二、1.-2,2x = 2. 0或43 3. 10 三、1.(1)12305x x ==-, (2)3,2121-==x x (3)12113y y ==, (4)1,221==x x (5)1217x x == (6)19x =-,22x =2.把1x =代入方程得 ()222114132m m m +⨯+⨯+=,整理得2360m m +=∴120,2m m ==-§22.2降次-解一元二次方程(五) 一、1.C 2.A 3.A二、1.2660x x --=,1,1-,66-. 2、6或—2 3、4三、1.(1)12x 7x 3==, (2)12x x ==, (3)3121==x x (4) 12x 7x 2==-, 2.∵ 221=+x x ∴ 2=m 原方程为2230x x --= 解得 1x 3=,21x =-3.(1)()224(3)411b ac m -=--⨯⨯-944m =-+134m =->0 ∴ m <134(2)当方程有两个相等的实数根时,则1340m -=, ∴134m =, 此时方程为04932=+-x x , ∴1232x x == §22.2降次-解一元二次方程(六)一、1.B 2.D 3.B 二、1. 1 2. -3 3. -2 三、1.(1)51=x ,52-=x (2)21±=x (3)121==x x (4)没有实数根2.(1).4412,4112x x x x -=+∴=-+.21=∴x 经检验21=x 是原方程的解. 把21=x 代人方程0122=+-kx x ,解得3=k . (2)解01322=+-x x ,得.1,2121==x x ∴方程0122=+-kx x 的另一个解为1=x .3.(1)()22244114b ac k k -=-⨯⨯-=+>0,∴方程有两个不相等的实数根. (2)∵12x x k +=-,121x x ⋅=-,又1212x x x x +=⋅ ∴1k -=- ∴1k =§22.3实际问题与一元二次方程(一)一、1.B 2.D二、1.2)1()1(x a x a a -+-+ 2.222)1()1(+=-+x x x 3.()21a x +三、1.解:设这辆轿车第二年、第三年平均每年的折旧率为x ,则776.7)1%)(201(122=--x ,解得%101.01==x ,9.12=x (舍去). 答:略2.解:设年利率为x ,得1320)1](1000)1(2000[=+-+x x , 解得%101.01==x ,6.12-=x (舍去).答:略§22.3实际问题与一元二次方程(二)一、1.C 2.B二、1. 15,10 2. cm 20 3. 6三、1.解:设这种运输箱底部宽为x 米,则长为)2(+x 米,得151)2(=⨯+x x ,解得5,321-==x x (舍去),∴这种运输箱底部长为5米,宽为3米.由长方体展开图知,要购买矩形铁皮面积为:)(35)23()25(2m =+⨯+,∴要做一个这样的运输箱要花7002035=⨯(元).2.解:设道路宽为x 米,得50423220232202=+-⨯-⨯x x x , 解得34,221==x x (舍去).答:略§22.3实际问题与一元二次方程(三)一、1.B 2.D二、1. 1或2 2. 24 3. 15- 三、1.设这种台灯的售价为每盏x 元,得()()[]1000040x 1060030x =---, 解得80x 50x 21==,当50x =时,()50040x 10600=--;当80x =时,()20040x 10600=-- 答:略2.设从A 处开始经过x 小时侦察船最早能侦察到军舰,得22250)3090()20(=-+x x ,解得1328,221==x x ,1328>2,∴最早2小时后,能侦察到军舰. 第二十三章 旋 转§23.1图形的旋转(一)一、1.A 2.B 3.D二、1. 90 2. B 或C 或BC 的中点 3. A 60 4. 120°,30° 5 . 三、EC 与BG 相等 方法一:∵四边形ABDE 和ACFG 都是正方形 ∴AE=AB ,AC=AG∴∠EAB=∠CAG=90°∴把△EAC 绕着点A 逆时针旋转90°,可与△BAG 重合 ∴EC=BG 方法二:∵四边形ABDE 和ACFG 都是正方形 ∴AE=AB ,AC=AG ∠EAB=∠CAG=90° ∴∠EAB+∠BAC=∠CAG+∠BAC 即 ∠EAC=∠BAG ∴△EAC ≌△BAG ∴EC=BG §23.1图形的旋转(二)一、1.C 2.C 3.D 二、1. 2,120° 2. 120或240 3. 4三、1.如图 2.如图3.(1)旋转中心是时针与分针的交点; (2)分针旋转了108.4.解:(1)HG 与HB 相等. 连接AH ∵正方形ABCD 绕着点A 旋转得到正方形AEFG ∴AG=AD=AB=AE ,∠G=∠B=90°又∵AH=AH ∴△AGH ≌△ABH ∴HG=HB (2)∵△AGH ≌△ABH ∴∠GAH = ∠BAH∴214323()233AGH ABH S S cm ∆∆==⨯=由123223GH ⨯=得:233GH cm =在Rt △AGH 中,根据勾股定理得:2223432233AH cm GH ⎛⎫=+== ⎪ ⎪⎝⎭∴∠GAH=30°∴旋转角∠DAG = 90°-2∠GAH = 90°-2×30°= 30°§23.2中心对称(一)一、1.C 2.D 3.B二、1.对称中心 对称中心 2.关于点O 成中心对称3 .△CDO 与△EFO 三、1.(略)2.(1)A 1的坐标为(1,1),B 1的坐标为(5,1),C 1的坐标为(4,4).(2)A 2()1,1--, B 2的坐标为()5,1--, C 2的坐标为()4,4-- 画图如下: 3.画图如下:BB ′=2OB =5221222222=+=+BC OC§23.2中心对称(二)一、1.D 2.C 3.二、1.矩形、菱形、正方形 2.正六边形、正八边形(边数为偶数的正多边形均正确) 三、1.关于原点O 对称(图略) 2.解:∵矩形ABCD 和矩形AB 'C 'D '关于A 点对称∴AD=AD ',AB=AB ',DD '⊥BB ' ∴四边形BDB 'D '是菱形 3.解:(1)AE 与BF 平行且相等 ∵△ABC 与△FEC 关于点C 对称∴AB 平行且等于FE ∴四边形ABFE 是平行四边形 ∴AE 平行且等于BF (2)122cm (3)当∠ACB=60°,四边形ABFE 为矩形,理由如下: ∵∠ACB=60°,AB=AC ∴AB=AC=BC ∵四边形ABFE 是平行四边形∴AF=2AC ,BE=2BC ∴AF=BE ∴四边形ABFE 为矩形B′OCBAAB C D§23.2中心对称(三)一、1.B 2.D 3.D二、1. 四 2.3y x =(任一正比例函数) 3. 三 三、1.如图2、解:由已知得212x x +=-, 244y y += 解得1x =-,2y =∴()22120x y +=⨯-+= 3.(1)D 的坐标为(3,-4)或(-7,-4)或(-1,8) (2)C 的坐标为(-1,-2),D 的坐标为(4,-2), 画图如图:§23.3 课题学习 图案设计 一、1.D 2.C二、1.72° 2.基本图案绕(2)的O 点依次旋转60°、120°、180°、240°、300°而得到. 三、1.(略)2.如图3.(1)是,6条 (2)是(3)60°、120°、180°、240°、300°第二十四章 圆§24.1.1圆一、1.A 2.B 3.A二、1. 无数 经过这一点的直径 2. 303. 半径 圆上 三、1.提示:证对角线互相平分且相等 2.提示:证明:OCD OAB ∠=∠ §24.1.2 垂直与弦的直径一、1.B 2.C 3. D二、1.平分 弧 2. 3≤OM ≤53. 63三、1. 120 2. (1)、图略 (2)、10cm §24.1.3 弧、弦、圆心角一、1. D 2. C 3. C 二、1.(1) ∠AOB=∠COD,= (2) ∠AOB=∠COD, AB=CD (3) =, AB=CD2. 15°3. 2 三、1. 略2.(1)连结OM 、ON ,在Rt △OCM 和Rt △ODN 中OM=ON ,OA=OB ,∵AC=DB ,∴OC=OD ,∴Rt △OCM ≌Rt △ODN ,∴∠AOM=∠BON , ∴AM=BN0yx0yx⌒ ⌒§24.1.4圆周角一、1.B 2. B 3.C二、1.28 2. 43.60°或120°三、1.90o提示:连接AD 2.提示:连接AD §24.2.1点和圆的位置关系 一、1.B 2.C 3. B二、1.d <r d r = ,d >r 2. OP >63. 内部, 斜边上的中点, 外部 三、1.略 2. 5cm§24.2.2直线与圆的位置关系(一) 一、1. B 2. D 3. A二、1.相离, 相切 2.相切 3. 4三、1.(1)相交, 相切 §24. 2.2直线与圆的位置关系(二) 一、1.C 2.B二、1.过切点的半径 垂直于 2.3、30°三、1.提示: 作OC ⊥AQ 于C 点 2.(1)60o(2)§24.2.2直线与圆的位置关系(三)一、1.C 2.B 3.C二、1. 115o 2. 90o 10cm 3. 1﹕2 三、1. 14cm 2. 提示:连接OP ,交AB 与点C. §24.2.3圆与圆的位置关系一、1.A 2.C 3. D二、1. 相交 2. 83. 2 3 10三、1.提示:分别连接1212,,O O O B O B ;可得1216030OO O O B O AB ∠=∴∠=2.提示:半径相等,所以有AC=CO ,AO=BO ;另通过说明∠AEO=90°,则可得AE=ED. §24.3正多边形和圆(一)一、1. B 2. C 3.C二、1.内切圆 外接圆 同心圆 2.十五3.2cm 三、1.10和5 2. 连结OM ,∵MN ⊥OB 、OE =21OB =21OM ,∴∠EMO =30°,∴∠MOB =60°,∴∠MOC =30°,∠MOB =6360︒、∠MOC =12360︒.即MB 、MC 分别是⊙O 内接正六边形和正十二边形的边长.§24.3正多边形和圆(二) 一、1.C 2. B二、1. 72 2. 四 每条弧 连接各等分点3. 2a π三、1. 22. 边长为4,面积为32 §24.4.1 弧长和扇形的面积一、1. B 2. D 3.C二、1.o 3602π, 2. π3434- 3.83π三、1. 10.5 2. 112π(2cm )§24.4.2 圆锥的侧面积和全面积一、1.A 2. B 3.B 二、1. 130π2cm 2. 215cmπ3. 2π三、1. (1)20π (2)220 2. S 48π=全第二十五章 概率初步§25.1.1随机事件(一)一、1. B 2. C 3.C二、1. 随机 2.随机 3.随机事件,不可能事件 4.不可能三、1. B ; A 、C 、D 、E ; F 2.(1)随机事件 (2)必然事件 (3)不可能事件 §25.1.1随机事件(二) 一、1.D 2.B 3. B二、1.黑色扇形 2.判断题 3. C 4.飞机三、1.(1)不一样,摸到红球的可能性大 ;(2)他们的说法正确2.事件A >事件C >事件D >事件B §25.1.2概率的意义(一) 一、 1. D 2. D二、1. 折线在0.5左右波动, 0.5 2. 0.5,稳定 3. 1,0,0<P(A)<1 三、1. (1)B,D (2)略2.(1)0.68,0.74,0.68,0.692,0.705,0.701 (2)接近0.7 (3)70% (4)2520§25.1.2概率的意义(二) 一、1. D 2. C 二、1.明 2. 75 3.1584. 16三、1.(1)不正确 (2)不一定2.(1)201 (2) 201 3.(1)0.6 (2)60%,40% (3)白球12只,黑球8只. §25.2用列举法求概率(一) 一、1.B 2. C 3.B 二、1.31 2. 72 3. 51 4.41 三、1.(1)“摸出的球是白球”是不可能事件,它的概率为0;(2)“摸出的球是黄球”是随机事件,它的概率为0.4;(3)“摸出的球是红球或黄球”是必然事件,它的概率为1. 2.50000013. 不唯一,如放3只白球,1只红球等§25.2用列举法求概率(二) 一、1.B 2.C 3.C二、1.83 2.23 3.112 4.NM L N ++ 三、1.(1)31 (2)61 (3)212.摸出两张牌和为偶数的概率是95,摸出两张牌和为奇数的概率是94,所以游戏有利于小张,不公平;可以改为,如果摸出两张牌,牌面数字之和为3,小张胜.牌面数字之和为5,则小王胜. 3.(1)16 (2)12 (3)12§25.2用列举法求概率(三) 一、1.A 2. B 3. B 二、1.3652. 1613.214.31三、1.(1)12;(22.(1)由列表(略)可得:P (数字之和为5)14=;(2)因为P (甲胜)14=,P (乙胜)34=,甲胜一次得12分,要使这个游戏对双方公平,乙胜一次的得分应为:1234÷=分.3.(1)根据题意可列表或树状图如下:从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种,∴P(和为奇数)23=(2)不公平.∵小明先挑选的概率是P(和为奇数)23=,小亮先挑选的概率是P(和为偶数)13=,∵2133≠,∴不公平.§25.2用列举法求概率(四)一、1.A 2.D 3. D二、(1)红、白、白,(2)923. 94.13三、1.列表或树状图略:由表或图可知,点数之和共有36种可能的结果,其中6出现5次,7出现6次,故P(和为6)536=,P(和为7)636=.∴P(和为6)<P(和为7),∴小红获胜的概率大.2.(1)31(2)31(3)31.3.(1)树状图为:(2)由图可知评委给出A选手所有可能的结果有8种.对于A选手,“只有甲、乙两位评委给出相同结论”有2种,即“通过-通过-待定”、“待定-待定-通过”,所以对于A选手“只有甲、乙两位评委给出相同结论”的概率是14.(1,2)(1,3)(1,4)2 3 41(2,1)(2,3)(2,4)1 3 42(3,1)(3,2)(3,4)1 2 43(4,1)(4,2)(4,3)1 2 34第一次摸球第二次摸球通过通过待定待定通过通过待定通过待定通过待定通过待定甲乙丙§25.3利用频率估计概率(一) 一、1. B 2. C 二、1. 常数 2.25013. 210, 270 三、1. (1)0.025,0.063,0.058,0.050,0.050,0.050 (2) 0.050 (3)20002. (1)0.75,0.8,0.8,0.85,0.83,0.8,0.78 (2)0.8(3)不一定.投10次篮相当于做10次实验,每次实验的结果都是随机的,所以投10次篮的结果也是随机的,但随着投篮次数的增加,他进球的可能性为80%. 3.(1)0.25,0.33,0.28,0.33,0.32,0.30,0.33,0.31,0.31,0.31 (2)0.31 (3)0.31§25.3利用频率估计概率(二) 一、1.A 2. B二、1. 0.98 2. 3, 2, 1 3.271 三、1. (1)92(2)略 2.先随机从鱼塘中捞取a 条鱼,在鱼上做下记号,经过一段时间饲养后,再从中捞取b 条鱼,记录下其中有记号的鱼有c 条,则池塘中的鱼估计会有ab c§25.4 课题学习 一、1.D 2. B二、1.概率 2.Z 3.31三、1.(1) 91 (2) 31 (3) 322.(1)这个游戏的结果共有四种可能:正正. 正反. 反正. 反反,所以甲赢的概率为41,因乙赢的概率为21,因此这个游戏有利于乙,不公平; (2)若要使游戏公平只需使两人赢的概率相同,我们可以改规则为“若出现两个正面或两个反面,则甲赢;若出现一正一反,则乙赢”.。

人教版九年级上册数学练习册答案

人教版九年级上册数学练习册答案

A
B
(第 7 题)
C D
5.计算: 20 5 =_____▲ ____. 6.数据 70、71、72、73、69 的标准差是_____▲ _____.
7.如右图,△ABC 内接于圆,D 为弧 BC 的中点,∠BAC=50°,则∠DBC 是 ▲
度.
8.某小区 2011 年屋顶绿化面积为 2000 平方米,计划 2012 年屋顶绿化面积要达到 2880 平方米.如果每年屋顶绿 化面积的增长率相同,那么这个增长率是__▲___. 9. 如图, 任意四边形 ABCD 中, E、 G、 分别是 AD、 点 F、 H BC、 BD、 的中点, AC 当四边形 ABCD 满足条件 时(填一个即可) ,四边形 EGFH 是菱形.
8
14. 如图,半径为 10 的⊙O 中,弦 AB 的长为 16,则这条弦的弦心距为( ▲ ) A.6 B.8 C.10 D.12
15.如图,点 O 是矩形 ABCD 的中心,E 是 AB 上的点,沿 CE 折叠后,点 B 恰好与点 O 重合,若 BC=3,则折痕 CE
PS:双击获取文档,ctrl+a,ctrl+c,然后粘贴到word即可。 未能直接提供word文档,抱歉。
A G 题)
C
(第 10 题)
(第 12 题)
10.如图,AB 是⊙O 的直径,点 C,D 都在⊙O 上,连结 CA,CB,DC,DB.已知∠D=30° ,BC=3,则 AB 的 长是 ▲ .
11.小红的衣服被一个铁钉划了一个呈直角三角形的一个洞,其中三角形两边长分别为 1c 和 2cm,若要用同色圆 形布将此洞全部覆盖,那么这个圆布的直径最小应等于 ▲ . 12.如图,直线 y
九年级数学学科阶段性质量调研

人教版初中数学九年级上册《课本习题参考答案》第四页11-第九页

人教版初中数学九年级上册《课本习题参考答案》第四页11-第九页

人教版初中数学九年级上册《课本习题参考答案》第四页11-第九页习题21.2第11题答案解:设这个矩形的一边长为x m,则与其相邻的一边长为(20/2-x)m,根据题意得:x(20/2-x)=24,整理,得x2-10x+24=0,解得x1=4,x2=6.当x=4时,20/2-x=10-4=6当x=6时,20/2-x=10-6=4.故这个矩形相邻两边的长分别为4m和6m,即可围城一个面积为24 m2的矩形习题21.2第12题答案解设:这个凸多边形的边数为n,由题意可知:1/2n(n-3)=20 解得n=8或n=-5因为凸多边形的变数不能为负数所以n=-5不合题意,舍去所以n=8所以这个凸多边形是八边形假设存在有18条对角线的多边形,设其边数为x,由题意得:1/2 x(x-3)=18 解得x=(3±)/2因为x的值必须是正整数所以这个方程不存在符合题意的解故不存在有18条对角线的凸多边形习题21.2第13题答案解:无论p取何值,方程(x-3)(x-2)-p2=0总有两个不相等的实数根,理由如下:原方程可以化为:x2-5x+6-p2=0△=b2-4ac=(-5)2-4×1×(6-p2)=25-24+4p2=1+4p2∵p2≥0,,1+4p2>0∴△=1+4p2>0∴无论P取何值,原方程总有两个不相等的实数根习题21.3第1题答案(1)x2+10x+21=0,原方程化为(x+3)(x+7)=0,或x+7=0,∴x1=-3,x2=-7.(2)x2-x-1=0∵a=1,b=-1,c=-1,b2-4ac=(-1)2-4×1×(-1)=5>0,(3)3x2+6x-4=0,∵a=3,b=6,c=-4,b2-4ac=62-4×4×3×(-4)=84>0,(4)3x(x+1)=3x+3,原方程化为x2=1,直接开平方,得x=±1,∴x1=1,x2=-1(5)4x2-4x+1=x2+6x+9,原方程化为(2x-1)2=(x+3)2,∴[(2x-1)+(x+3)][(2x-1)-(x+3)]=0,即(3x+2)(x-4)=0,,3x+2=0或x-4=0,∴x1=-2/3,x2=4∴a=7,b=-,c=-5,b2-4ac=(-)2-4×7×(-5)=146>0∴x= [-(-)±]/(2×7)=(±)/14,∴x1=(+)/14,x2=(-)/14习题21.3第2题答案解:设相邻两个偶数中较小的一个是x,则另一个是(x+2).根据题意,得x(x+2)=168∴x2+2x-168=0∴x1=-14,x2=12.当x=-14时,x+2=-12当x=12时,x+2=14答:这两个偶数是-14,-12或12,14习题21.3第3题答案解:设直角三角形的一条直角边长为xcm,由题意可知1/2x (14-x)=24,∴x2-14x+48=0∴x1=6,x2=8当x=6时,14-x=8当x=8时,14-x=6∴这个直角三角形的两条直角边的长分别为6cm,8cm习题21.3第4题答案解:设每个支干长出x个小分支,则1+x+x2=91整理得x2+x-90=0,(x-9)?(x+10)=0解得x1=9,x2=-10(舍)答:每个支干长出来9个小分支习题21.3第5题答案解:设菱形的一条对角线长为x cm,则另一条对角线长为(10-x)cm,由菱形的性质可知:1/2 x?(10-x)=12,整理,的x2-10x+24=0,解得x1=4,x2=6.当x=4时,10-x=6当x=6时,10-x=4所以这个菱形的两条对角线长分别为6cm和4cm.由菱形的性质和勾股定理,得棱长的边长为:所以菱形的周长是4cm习题21.3第6题答案解:设共有x个队参加比赛,由题意可知(x-1)+(x-2)+(x-3)+…+3+2+1=90/2,即1/2x(x-1)=45整理,得x2-x-90=0解得x1=10,x2=-9因为x=-9不符合题意,舍去所以x=10答:共有10个队参加比赛习题21.3第7题答案解:设水稻每公顷产量的年平均增长率为x,则7200(1+x)2=8450解得x1=1/12,x2=-25/12因为x=- 25/12 不符合题意,舍去所以x= 1/12≈0.083=8.3%答:水稻每公顷产量的年平均增长率约为8.3%习题21.3第8题答案解:设镜框边的宽度应是x cm,根据题意得:(29+2x)(22+2x)-22×29=1/4×29×22整理,得8x2+204x-319=0解得x= [-204±]/16所以x1=[-204+)]/16,x2=[-204-)]/16因为x= [-204-)]/16<0不合题意,舍去所以x= [-204+)]/16≈1.5答:镜框边的宽度约1.5cm习题21.3第9题答案解:设横彩条的宽度为3x cm,则竖彩条的宽为2x cm.根据题意得:30×20×1/4=30×20-(30-4x)(20-6x),整理,得12x2-130x+75=0解得x1=[65+5)]/12,x2=(65-5)/12因为30-4x>0,且20-6x>0所以x<10/3所以x= (65+5)/12不符合题意,舍去所以x=(65-5)/12≈0.6所以3x≈1.8,2x≈1.2答:设计横彩条的宽度约为1.8cm,竖彩条的宽度约为1.2cm习题21.3第10题答案(1)设线段AC的长度为x,则x2=(1-x)×1,解得x1=(-1+)/2,x2=(-1-)/2(舍),∴AC=(-1+)/2(2)设线段AD的长度为x,则x2=((-1+)/2-x)?(1+)/2,解得x1=(3-)/2,x2=-1(舍),∴AD=(3-)/2(3)设线段AE的长度为x,则x2=((3-)/2-x)?(3-)/2,解得x1=-2+,x2=(1-)/2 (舍)∴AE=-2+【规律方法:若C为线段AB上一点,且满足AC2=BC?AB,则AC/AB=(-1)/2?(-1)/2也叫作黄金比,C点为黄金分割点,一条线段上有两个黄金分割点.】第6页练习答案练习题答案复习题21第1题答案(1)196x2-1=0,移项,得196x2=1,直接开平方,得14x=±1,x=±1/14,∴原方程的解为x1=1/14,x2=-1/14(2)4x2+12x+9=81,原方程化为x2+3x-18=0∵a=1,b=3,c=-18,b2-4ac=32-4×1×(-18)=81>0∴x1=-6,x2=3(3)x2-7x-1=0∵a=1,b=-7,c=-1,b2-4ac=(-7)2-4×1×(-1)=53>0,(4)2x2+3x=3,原方程化为2x2+3x-3=0,∵a=2,b=3,b=-3,b2-4ac=32-4×2×(-3)=33>0,∴x= (-3± )/(2×2)=(-3±)/4,∴x1=(-3+)/4,x2=(-3-)/4(5)x2-2x+1=25,原方程化为x2-2x-24=0,因式分解,得(x-6)(x+4)=0,∴x-6=0或x+4=0,∴x1=6,x2=-4(6)x(2x-5)=4x-10,原方程化为(2x-5)(x-2)=0,,2x-5=0或x-2=0,∴x1=5/2,x2=2(7)x2+5x+7=3x+11,原方程化为x2+2x-4=0,∵a=1,b=2,c=-4,b2-4ac=22-4×1×(-4)=20>0∴x= (-2±)/(2×1)=(-2±2)/2=-1±∴x1=-1+,x2=-1-(8)1-8x+16x2=2-8x,原方程化为(1-4x)(-1-4x)=0,1-4x=0或-1-4x=0,∴x1=1/4,x2=-1/4复习题21第2题答案解:设其中一个数为(8-x),根据题意,得x(8-x)=9.75,整理,得x2-8x+9.75=0,解得x1=6.5,x2=1.5当x=6.5时,8-x=1.5当x=1.5时,8-x=6.5答:这两个数是6.5和1.5复习题21第3题答案解:设矩形的宽为x cm,则长为(x+3)cm由矩形面积公式可得x(x+3)=4整理,得x2+3x-4=0解得x1=-4整理,得x2+3x-4=0解得x1=-4,x2=1因为矩形的边长是正数,所以x=-4不符合题意,舍去所以x=1 所以x+3=1+3=4答:矩形的长是4cm,宽是1cm复习题21第4题答案解:设方程的两根分别为x1,x2(1)x1+x2=5,x1?x2=-10(2)x1+x2=-7/2,x1?x2=1/2(3)原方程化为3x2-2x-6=0,∴x1+x2=2/3,x1?x2=-2 (4)原方程化为x2-4x-7=0,∴x1+x2=4,x1?x2=-7复习题21第5题答案解:设梯形的伤低长为x cm ,则下底长为(x+2)cm,高为(x-1)cm,根据题意,得1/2 [x+(x+2)]?(x-1)=8,整理,得x2=9,解得x1=3,x2=-3.因为梯形的低边长不能为负数,所以x=-3不符合题意,舍去,所以x=3,所以x+2=5,x-1=2.画出这个直角梯形如下图所示:复习题21第6题答案解:设这个长方体的长为5x cm,则宽为2 x cm,根据题意,得2x2+7-4=0,解得x1=1/2,x2=-4.因为长方体的棱长不能为负数,所以x=-4不合题意,舍去,所以x= 1/2.所以这个长方体的长为5x=1/2×5=2.5(cm),宽为2x=1(cm).画这个长方体的一个展开图如下图所示.(注意:长方体的展开图不唯一)复习题21第7题答案解:设应邀请x个球队参加比赛,由题意可知:(x-1)+(x-2)+…+3+2+1=15,即1/2 x(x-1)=15解得x1=6,x2=-5因为球队的个数不能为负数所以x=-5不符合题意,应舍去所以x=6答:应邀请6个球队参加比赛复习题21第8题答案解:设与墙垂直的篱笆长为x m,则与墙平行的篱笆为(20-2x)m根据题意,得x(20-2x)=50解得x1=x2=5所以20-2x=10(m)答:用20m长的篱笆围城一个长为10m,宽为5m的矩形场地.(其中一边长为10m,另两边均为5m)复习题21第9题答案解:设平均每次降息的百分率变为x,根据题意得:2.25%(1-x)2=1.98%整理,得(1-x)2=0.88解得x1=1 -x2=1+因为降息的百分率不能大于1所以x=1+不合题意,舍去所以x=1-≈0.0619=6.19%答:平均每次降息的百分率约是6.19%复习题21第10题答案解:设人均收入的年平均增长率为x,由题意可知:12000(x+1)2=14520,解这个方程,得x+1=±x=-1或x=--1又∵x=--1不合题意,舍去∴x=(-1)×100%=10%答:人均收入的年平均增长率是10%复习题21第11题答案解:设矩形的一边长为x cm,则与其相邻的一边长为(20-x)cm,由题意得:x(20-x)=75解得x1=5,x2=15,从而可知矩形的一边长15cm,与其相邻的一边长为5cm 当面积为101cm2时,可列方程x(20-x)=101,即x2-20x+101=0∵△=-4<0∴次方程无解∴不能围成面积为101cm2的矩形复习题21第12题答案解:设花坛中甬道的宽为x m.梯形的中位线长为1/2 (100+180)=140(m),根据题意得:1/2(100+180)×80×1/6=80?x?2+140x-2x2整理,得3x2-450x+2800=0解得x1=(450+)/6=75+5/3,x2=(450-)/6=75-5/3因为x=75+5/3不符合题意,舍去所以x=75-5/3≈6.50(m)故甬道的宽度约为6.50m复习题21第13题答案(1)5/4=1.25(m/s),所以平均每秒小球的滚动速度减少1.25m/s(2)设小球滚动5m用了x s?(5+(5-1.25x))/2x=5,即x2-8x+8=0解得x1=4+2(舍),x2=4-2≈1.2答:小球滚动5 m 约用了1.2s第9页练习答案练习第1题答案练习第2题答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档