九年级数学上册期末试卷综合测试卷(word含答案)

合集下载

九年级上册金华数学期末试卷测试卷 (word版,含解析)

九年级上册金华数学期末试卷测试卷 (word版,含解析)

九年级上册金华数学期末试卷测试卷(word版,含解析)一、选择题1.如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=1.5,BC=2,DE=1.8,则EF=()A.4.4 B.4 C.3.4 D.2.42.若x=2y,则xy的值为()A.2 B.1 C.12D.133.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.15B.25C.35D.454.如图,P为平行四边形ABCD的对称中心,以P为圆心作圆,过P的任意直线与圆相交于点M,N.则线段BM,DN的大小关系是()A.BM>DN B.BM<DN C.BM=DN D.无法确定5.下列方程有两个相等的实数根是()A.x2﹣x+3=0 B.x2﹣3x+2=0 C.x2﹣2x+1=0 D.x2﹣4=06.如图,△ABC内接于⊙O,连接OA、OB,若∠ABO=35°,则∠C的度数为()A.70°B.65°C.55°D.45°7.如图,点A 、B 、C 是⊙O 上的三点,∠BAC = 40°,则∠OBC 的度数是( ) A .80° B .40° C .50° D .20° 8.数据3、4、6、7、x 的平均数是5,这组数据的中位数是( )A .4B .4.5C .5D .6 9.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )A .相交B .相切C .相离D .无法确定10.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位 B .向左平移1个单位,再向上平移1个单位 C .向右平移1个单位,再向上平移1个单位 D .向右平移1个单位,再向下平移1个单位 11.如图所示的网格是正方形网格,则sin A 的值为( )A .12B .22C .35D .4512.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x ,则下列方程中,正确的是( ) A .600(1+x )=950 B .600(1+2x )=950 C .600(1+x )2=950D .950(1﹣x )2=600二、填空题13.平面直角坐标系内的三个点A (1,-3)、B (0,-3)、C (2,-3),___ 确定一个圆.(填“能”或“不能”)14.如图,已知Rt ABC ∆中,90ACB ∠=︒,8AC =,6BC =,将ABC ∆绕点C 顺时针旋转得到MCN ∆,点D 、E 分别为AB 、MN 的中点,若点E 刚好落在边BC 上,则sin DEC ∠=______.15.将抛物线y=﹣2x 2+1向左平移三个单位,再向下平移两个单位得到抛物线________; 16.如图,ABC ∆是O 的内接三角形,45BAC ∠=︒,BC 的长是54π,则O 的半径是__________.17.如图,在ABCD 中,13BE DF BC ==,若1BEG S ∆=,则ABF S ∆=__________.18.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.19.一组数据3,2,1,4,x 的极差为5,则x 为______.20.如图,在△ABC 中,AD 是BC 上的高,tan B =cos ∠DAC ,若sin C =1213,BC =12,则AD 的长_____.21.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-•=__________.22.如图,正方形ABCD 的边长为5,E 、F 分别是BC 、CD 上的两个动点,AE ⊥EF .则AF 的最小值是_____.23.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____. 24.已知234x y z x z y+===,则_______ 三、解答题25.如图,在Rt ABC ∆中,90BAC ∠=︒,点G 是BC 中点.连接AG .作BD AG ⊥,垂足为F ,ABD ∆的外接圆O 交BC 于点E ,连接AE .(1)求证:AB AE =;(2)过点D 作圆O 的切线,交BC 于点M .若14GM GC =,求tan ABC ∠的值; (3)在(2)的条件下,当1DF =时,求BG 的长.26.如图,矩形OABC 中,A (6,0)、C (0,23)、D (0,33),射线l 过点D 且与x 轴平行,点P 、Q 分别是l 和x 轴正半轴上动点,满足∠PQO =60°.(1)①点B 的坐标是 ;②当点Q 与点A 重合时,点P 的坐标为 ;(2)设点P 的横坐标为x ,△OPQ 与矩形OABC 的重叠部分的面积为S ,试求S 与x 的函数关系式及相应的自变量x 的取值范围.27.已知二次函数y =x 2+bx +c 的函数值y 与自变量x 之间的对应数据如表:x … ﹣1 0 1 2 3 4 … y…1052125…(1)求b 、c 的值;(2)当x 取何值时,该二次函数有最小值,最小值是多少?28.(1)(学习心得)于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在ABC 中,,90AB AC BAC ∠==,D 是ABC 外一点,且AD AC =,求BDC ∠的度数.若以点A为圆心,AB 为半径作辅助A ,则C 、D 必在A 上,BAC ∠是A 的圆心角,而BDC ∠是圆周角,从而可容易得到BDC ∠=________.(2)(问题解决)如图2,在四边形ABCD 中,90BAD BCD ∠=∠=,25BDC ∠=,求BAC ∠的度数.(3)(问题拓展)如图3,,E F 是正方形ABCD 的边AD 上两个动点,满足AE DF =.连接交于点,连接CF 交BD 于点G ,连接BE 交于点H ,若正方形的边长为2,则线段DH 长度的最小值是_______.29.解方程: (1)x 2-8x +6=0 (2)(x -1)2 -3(x -1) =030.表是2019年天气预报显示宿迁市连续5天的天气气温情况.利用方差判断这5天的日最高气温波动大还是日最低气温波动大.12月17日12月18日 12月19日 12月20日 12月21日最高气温(℃) 10 67 8 9最低气温(℃)1 0 ﹣1 0 331.如图,已知⊙O 的直径AC 与弦BD 相交于点F ,点E 是DB 延长线上的一点,∠EAB=∠ADB .(1)求证:AE 是⊙O 的切线;(2)已知点B 是EF 的中点,求证:△EAF ∽△CBA ; (3)已知AF=4,CF=2,在(2)的条件下,求AE 的长.32.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 . (2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC = ②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法: ①直角三角形的内心是它的等角点; ②等腰三角形的内心和外心都是它的等角点; ③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】直接利用平行线分线段成比例定理对各选项进行判断即可. 【详解】 解:∵a ∥b ∥c , ∴AB DEBC EF=, ∵AB =1.5,BC =2,DE =1.8,∴1.5 1.82EF = , ∴EF=2.4 故选:D .本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.2.A解析:A【解析】【分析】将x=2y代入xy中化简后即可得到答案.【详解】将x=2y代入xy得:22x yy y==,故选:A.【点睛】此题考查代数式代入求值,正确计算即可.3.B解析:B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.4.C解析:C【解析】分析:连接BD,根据平行四边形的性质得出BP=DP,根据圆的性质得出PM=PN,结合对顶角的性质得出∠DPN=∠BPM,从而得出三角形全等,得出答案.详解:连接BD,因为P为平行四边形ABCD的对称中心,则P是平行四边形两对角线的交点,即BD必过点P,且BP=DP,∵以P为圆心作圆,∴P又是圆的对称中心,∵过P的任意直线与圆相交于点M、N,∴PN=PM,∵∠DPN=∠BPM,∴△PDN≌△PBM(SAS),∴BM=DN.点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于中等难度的题型.理解平行四边形的中心对称性是解决这个问题的关键.解析:C【解析】【分析】先根据方程求出△的值,再根据根的判别式的意义判断即可.【详解】A、x2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根,故本选项不符合题意;B、x2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故本选项不符合题意;C、x2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,所以方程有两个相等的实数根,故本选项符合题意;D、x2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意;故选:C.【点睛】本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.6.C解析:C【解析】【分析】根据三角形的内角和定理和等腰三角形等边对等角求得∠O的度数,再进一步根据圆周角定理求解.【详解】解:∵OA=OB,∠ABO=35°,∴∠BAO=∠ABO=35°,∴∠O=180°-35°×2=110°,∴∠C=12∠O=55°.故选:C.【点睛】本题考查三角形的内角和定理、等腰三角形的性质,圆周角定理.能理解同弧所对的圆周角等于圆心角的一半是解决此题的关键.7.C解析:C∵∠BOC=2∠BAC ,∠BAC=40° ∴∠BOC=80°, ∵OB=OC ,∴∠OBC=∠OCB=(180°-80°)÷2=50° 故选C .8.C解析:C 【解析】 【分析】首先根据3、4、6、7、x 这组数据的平均数求得x 值,再根据中位数的定义找到中位数即可. 【详解】由3、4、6、7、x 的平均数是5, 即(3467)55++++÷=x 得5x =这组数据按照从小到大排列为3、4、5、6、7,则中位数为5. 故选C 【点睛】此题考查了平均数计算及中位数的定义,熟练运算平均数及掌握中位数的定义是解题关键.9.A解析:A 【解析】 【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交. 【详解】∵⊙O 的半径为5,圆心O 到直线的距离为3,∴直线l 与⊙O 的位置关系是相交. 故选A . 【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.10.C解析:C 【解析】 【分析】根据抛物线顶点的变换规律作出正确的选项. 【详解】抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .【点睛】 主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.11.C解析:C【解析】【分析】设正方形网格中的小正方形的边长为1,连接格点BC ,AD ,过C 作CE ⊥AB 于E ,解直角三角形即可得到结论.【详解】解:设正方形网格中的小正方形的边长为1,连接格点BC ,AD ,过C 作CE ⊥AB 于E ,∵224225AC BC =+==,BC =22,AD =2232AC CD +=, ∵S △ABC =12AB •CE =12BC •AD , ∴CE =223265525BC AD AB ⨯==, ∴6535525CE A sin CAB C ∠===, 故选:C .【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.12.C解析:C【解析】【分析】设快递量平均每年增长率为x,根据我国2018年及2020年的快递业务量,即可得出关于x的一元二次方程,此题得解.【详解】设快递量平均每年增长率为x,依题意,得:600(1+x)2=950.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题13.不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、解析:不能【解析】【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆.【详解】解:∵B(0,-3)、C(2,-3),∴BC∥x轴,而点A(1,-3)与C、B共线,∴点A、B、C共线,∴三个点A(1,-3)、B(0,-3)、C(2,-3)不能确定一个圆.故答案为:不能.【点睛】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆.14.【解析】【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE长,的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】【解析】【分析】根据旋转性质及直角三角形斜边中线等于斜边一半,求出CD=CE=5,再根据勾股定理求DE 长,sin DEC∠的值即为等腰△CDE底角的正弦值,根据等腰三角形三线合一构建直角三角形求解.【详解】如图,过D点作DM⊥BC,垂足为M,过C作CN⊥DE,垂足为N,在Rt△ACB中,AC=8,BC=6,由勾股定理得,AB=10,∵D为AB的中点,∴CD=15 2AB= ,由旋转可得,∠MCN=90°,MN=10,∵E为MN的中点,∴CE=15 2MN,∵DM⊥BC,DC=DB,∴CM=BM=13 2BC=,∴EM=CE-CM=5-3=2,∵DM=14 2AC,∴由勾股定理得,DE=∵CD=CE=5,CN⊥DE,∴∴由勾股定理得,CN=∴sin∠DEC=25 CNCE.25. 【点睛】 本题考查旋转性质,直角三角形的性质和等腰三角形的性质,能够用等腰三角形三线合一的性质构建直角三角形解决问题是解答此题的关键.15.【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关解析:()2231y x =-+-【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为()2231y x =-+-.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键. 16.【解析】【分析】连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB 、OC ,如图,∵,∴∠BOC=90°,∵的长是,∴, 解得: 解析:52【解析】【分析】连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB 、OC ,如图,∵45BAC ∠=︒,∴∠BOC =90°,∵BC 的长是54π, ∴9051804OB ππ⋅=, 解得:52OB =. 故答案为:52.【点睛】本题考查了圆周角定理和弧长公式,属于基本题型,熟练掌握上述基本知识是解答的关键. 17.6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.【详解】解:∵四解析:6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得ABG S ∆,根据相似三角形的性质可求得AFG S ∆,进而可得答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴△BEG ∽△FAG , ∵13BE DF BC ==, ∴12EG BE AG AF ==, ∴211,24BEG BEG ABG AFG S S EG BE S AG S AF ∆∆∆∆⎛⎫==== ⎪⎝⎭, ∵1BEG S ∆=,∴2ABG S ∆=,4AFG S ∆=,∴6ABF ABG AFG S S S ∆∆∆=+=.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键.18.【解析】【分析】根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围. ,,方程有两个不相等的实数解析:3k <【解析】【分析】根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围.1a,b =-,c k =方程有两个不相等的实数根,241240b ac k ∴∆=-=->,3k ∴<.故答案为:3k <.【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.19.-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,解析:-1或6【解析】【分析】由题意根据极差的公式即极差=最大值-最小值.x可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=6;当x是最小值,则4-x=5,所以x=-1;故答案为-1或6.【点睛】本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,同时注意分类的思想的运用.20.8【解析】【分析】在Rt△ADC中,利用正弦的定义得sinC==,则可设AD=12x,所以AC=13x,利用勾股定理计算出DC=5x,由于cos∠DAC=sinC得到tanB=,接着在Rt△A解析:8【解析】【分析】在Rt△ADC中,利用正弦的定义得sin C=ADAC=1213,则可设AD=12x,所以AC=13x,利用勾股定理计算出DC=5x,由于cos∠DAC=sin C得到tan B=1213,接着在Rt△ABD中利用正切的定义得到BD=13x,所以13x+5x=12,解得x=23,然后利用AD=12x进行计算.【详解】在Rt△ADC中,sin C=ADAC=1213,设AD=12x,则AC=13x,∴DC=5x,∵cos∠DAC=sin C=12 13,∴tan B=12 13,在Rt△ABD中,∵tan B=ADBD=1213,而AD=12x,∴BD=13x,∴13x+5x=12,解得x=23,∴AD=12x=8.故答案为8.【点睛】本题主要考查解直角三角形,熟练掌握锐角三角函数的定义,是解题的关键.21.2【解析】【分析】根据根与系数的关系确定和,然后代入计算即可.【详解】解:∵∴=-3, =-5∴-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于(a≠解析:2【解析】【分析】根据根与系数的关系确定12x x +和12x x •,然后代入计算即可.【详解】解:∵2350x x +-=∴12x x +=-3, 12x x •=-5∴1212x x x x +-•=-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于20ax bx c ++=(a≠0),则有:12b x x a +=-,12c x x a•=是解答本题的关键. 22.【解析】【分析】设BE =x ,CF =y ,则EC =5﹣x ,构建二次函数了,利用二次函数的性质求出CF 的最大值,求出DF 的最小值即可解决问题.【详解】解:设BE =x ,CF =y ,则EC =5﹣x , 解析:254【解析】【分析】设BE =x ,CF =y ,则EC =5﹣x ,构建二次函数了,利用二次函数的性质求出CF 的最大值,求出DF 的最小值即可解决问题.【详解】解:设BE =x ,CF =y ,则EC =5﹣x ,∵AE ⊥EF ,∴∠AEF =90°,∴∠AEB +∠FEC =90°,而∠AEB +∠BAE =90°,∴∠BAE =∠FEC ,∴Rt △ABE ∽Rt △ECF , ∴AB EC =BE CF, ∴55x -=x y , ∴y =﹣15x 2+x =﹣15(x ﹣52)2+54,∵﹣15<0, ∴x =52时,y 有最大值54, ∴CF 的最大值为54, ∴DF 的最小值为5﹣54=154, ∴AF 的最小值=22AD DF +=221554⎛⎫+ ⎪⎝⎭=254, 故答案为254.【点睛】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF 的最小值.23.y =﹣(x+1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】解析:y =﹣(x +1)2﹣2【解析】【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为()212y a x +-=,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】由题意可知,平移后的函数的顶点为(﹣1,﹣2),设平移后函数的解析式为()212y a x +-=,∵所得的抛物线经过点(0,﹣3),∴﹣3=a ﹣2,解得a =﹣1,∴平移后函数的解析式为()212y x +=--,故答案为()212y x +=--.【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握坐标平移规律:“左右平移时,横坐标左移减右移加,纵坐标不变;上下平移时,横坐标不变,纵坐标上移加下移减”。

天津市九年级上册期末数学试卷(word解析版)

天津市九年级上册期末数学试卷(word解析版)

知,除了小明外,该班其他同学身高的平均数为 172 cm ,方差为 k cm2 ,第二天,小明来 到学校,老师帮他补测了身高,发现他的身高也是 172 cm ,此时全班同学身高的方差为
k ' cm2 ,那么 k ' 与 k 的大小关系是( )
A. k ' k
B. k ' k
C. k ' k
D.无法判断
8.不透明袋子中有 2 个红球和 4 个蓝球,这些球除颜色外无其他差别,从袋子中随机取出 1个球是红球的概率是( )
A. 1 3
B. 1 4
C. 1 5
D. 1 6
9.如图,在⊙O 中,AB 为直径,圆周角∠ACD=20°,则∠BAD 等于( )
A.20°
B.40°
C.70°
D.80°
10.如图,PA 是⊙O 的切线,切点为 A,PO 的延长线交⊙O 于点 B,连接 AB,若∠B=
D.4
12.如图,在矩形
中,

,若以 为圆心,4 为半径作⊙ .下列四个点
中,在⊙ 外的是( )
A.点
B.点
C.点
D.点
13.已知在△ABC 中,∠ACB=90°,AC=6cm,BC=8cm,CM 是它的中线,以 C 为圆
心,5cm 为半径作⊙C,则点 M 与⊙C 的位置关系为( )
A.点 M 在⊙C 上 B.点 M 在⊙C 内 C.点 M 在⊙C 外 D.点 M 不在⊙C 内
14.下列方程中,是一元二次方程的是( )
A.2x+y=1
B.x2+3xy=6
C.x+ 1 =4 x
D.x2=3x﹣2
15.二次函数 y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;

2021-2022学年门头沟区九年级第一学期数学期末测试(word版含答案)

2021-2022学年门头沟区九年级第一学期数学期末测试(word版含答案)

A门头沟区2021-2022学年度第一学期期末调研试卷九 年 级 数 学 2022.1一、选择题(本题共16分,每小题2分)第1- 8题均有四个选项,符合题意的选项只有..一个. 1.已知23a b =(0ab ≠),下列比例式成立的是 A .32a b=B .32a b =C .23a b =D .32b a = 2.抛物线2(3)+1=-y x 的顶点坐标是 A .()3,1-B .()3,1C .()3,1-D .()3,1--3. 已知⊙O 的半径为5,如果点P 到圆心O 的距离为8,那么点P 与⊙O 的位置关系是 A .点P 在⊙O 上B .点P 在⊙O 内C .点P 在⊙O 外D .无法确定4.在Rt △ABC 中,如果∠C = 90°,tan A = 2,那么sin A 的值是 A .23B .13CD 5.如图,线段AB 是⊙O 的直径,弦CD 丄AB 于E , 如果∠CAB = 20°,那么∠AOD 等于A .120°B .140°C .150°D .160°6. 如果将抛物线22y x =先向左平移2个单位,再向上平移3个单位后得到一条新的抛物线, 这条新的抛物线的表达式是 A .()2223y x =-+ B .()22+23y x =- C .()2223y x =--D .()2223y x =++7. 如果()11,A y 与()22,B y 都在函数1k y x-=的图象上,且12y y >,那么k 的取值范围是 A .k >1B .k <1C .k ≠1D .任意实数OD CB Ay xQ PBACOxyO –1–2–3–4123456–1–2–312348.如图,如果抛物线2144y x =-与x 轴交于A 、B 两点,点P 是以()0,3C 为圆心,2为半径的圆 上的一个动点,点Q 是线段P A 的中点,连接OQ , 那么线段OQ 的最大值是 A .3 B .412C .4D .72二、填空题(本题共16分,每小题2分) 9.如果23x y =,那么x y x+的值是 . 10.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是 米. 11.如果两个相似三角形的相似比是1:3,那么这两个相似三角形的周长比是 . 12.如图,扇形的圆心角∠AOB = 60°,半径为3cm .如果点C 、D 是AB 的三等分点,图中所有阴影部分的面积之和是cm 2.13.把二次函数的表达式223y x x =-+化为()2y a x h k =-+的形式为 . 14.写出一个图象位于第一,三象限的反比例函数的表达式 .15.《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为8步, 股(长直角边)长为15步,问该直角三角形所能容纳的最大圆 的直径是多少?”.答:该直角三角形所能容纳的最大圆的直径..是 步. 16.函数2112y x x =+的图象如图所示,在下列结论中,① 该函数自变量x 的取值范围是0x ≠;② 该函数有最小值32; ③ 方程21132x x +=有三个根;④ 如果()11,x y 和()22,x y 是该函数图象上的两个点,当120x x <<时一定有12y y <. 所有正确结论的序号是 .ED CBA三、解答题(本题共68分,第17~22题每小题5分,23~26题每小题6分,第27~28题每小题7分)解答应写出文字说明、证明过程或演算步骤. 17.计算:(02sin 605π︒--.18.已知:如图,在△ABC 中,点D 在BC 上,点E 在AC 上,DE 与AB 不平行.添加一个条件 ,使得△CDE ∽△CAB ,然后再加以证明.19.已知:如图1,在△ABC 中,AB = AC .求作:⊙O ,使得⊙O 是△ABC 的外接圆.D AB CB C A图1 图2作法:① 如图2,作∠BAC 的平分线交BC 于D ;② 作线段AB 的垂直平分线EF ; ③ EF 与AD 交于点O ;④ 以点O 为圆心,以OB 为半径作圆. ∴ ⊙O 就是所求作的△ABC 的外接圆. 根据上述尺规作图的过程,回答以下问题:(1)使用直尺和圆规,依作法补全图2(保留作图痕迹); (2)完成下面的证明.证明:∵ AB = AC ,∠BAD =∠DAC ,∴ . ∵ AB 的垂直平分线EF 与AD 交于点O ,∴ OA = OB ,OB = OC .( )(填推理的依据) ∴ OA = OB = OC .∴ ⊙O 就是△ABC 的外接圆.DCBAD CBAPMF EC B A DyxAO20.已知二次函数2y ax bx c =++(a ≠0)图象上部分点横坐标、纵坐标的对应值如下表:x … 0 1 2 3 4 … y…-3-4-35…(1)求该二次函数的表达式;(2)直接写出该二次函数的图象与x 轴的交点坐标.21.已知:如图,在Rt △ABC 中,∠ACB = 90°,CD 是AB 边上的高.(1)求证:△ABC ∽△CBD ;(2)如果AC = 4,BC = 3,求BD 的长.22.如图,在平面直角坐标系xOy 中,一次函数2y x =-的图象与反比例函数ky x=的图象的一个交点 为()1,A n -.(1)求反比例函数ky x=的表达式; (2)如果P 是坐标轴上一点,且满足P A = OA ,直接写出点P 的坐标.23.“永定楼”是门头沟区的地标性建筑,某数学兴趣小组进行了测量它高度的社会实践活动.如图,他们先在点D 处用高1.5米的测角仪AD 测得塔顶M 的仰角为 30°,然后沿DF 方向前行70 m 到达点E 处,在点 E 处测得塔顶M 的仰角为60°. 求永定楼的高MF .(结果保留根号)24.在美化校园的活动中,某兴趣小组借助如图所示的直角墙角(墙角两边DC 和DA 足够长),用28 m长的篱笆围成一个矩形花园ABCD (篱笆只围AB 和BC 两边). 设AB = x m ,S 矩形ABCD = y m 2.(1)求y 与x 之间的关系式,并写出自变量的取值范围; (2)当矩形花园的面积为192 m 2时,求AB 的长;(3)如果在点P 处有一棵树(不考虑粗细),它与墙DC 和DA 的距离分别是15 m 和6 m ,如果要将这棵树围在矩形花园内部(含边界),直接写出矩形花园面积的最大值.OFED CBA25.如图,AB 为⊙O 的直径,C 为BA 延长线上一点,CD 是⊙O 的切线,D 为切点,OF ⊥AD 于点E ,交CD 于点F .(1)求证:∠ADC = ∠AOF ; (2)如果1sin 3C =,BD = 8,求EF 的长.26.在平面直角坐标系xOy 中,已知抛物线224y ax ax =-+(a >0).(1)求该抛物线的对称轴和顶点坐标(用含a 的代数式表示); (2)如果该抛物线的顶点恰好在x 轴上,求它的表达式;(3)如果()11,A m y -,()2,B m y ,()32,C m y +三点均在抛物线224y ax ax =-+上,且总有y 1>y 3>y 2,结合图象,直接写出m 的取值范围.27.在△ABC 中,∠BAC = 45°,CD ⊥AB 于点D ,AE ⊥BC 于点E ,连接DE .(1)如图1,当△ABC 为锐角三角形时,① 依题意补全图形,猜想∠BAE 与∠BCD 之间的数量关系并证明; ② 用等式表示线段AE ,CE ,DE 的数量关系,并证明.(2)如图2,当∠ABC 为钝角时,直接写出线段AE ,CE ,DE 的数量关系.CB ACBA图1 图228.如图,在平面直角坐标系xOy 中,()0,2C ,⊙C 的半径为1.如果将线段AB 绕原点O 逆时针旋转α(0°<α<180°)后的对应线段''A B 所在的直线与⊙C 相切,且切点在线段''A B 上,那么线段AB 就是⊙C 的“关联线段”,其中满足题意的最小α就是线段AB 与⊙C 的“关联角”.(1)如图1,如果()2,0A ,线段OA 是⊙C 的“关联线段”,那么它的“关联角”为 °. (2)如图2,如果()13,3A -、()12,3B -,()21,1A 、()23,2B ,()33,0A 、()33,2B -.那么⊙C 的“关联线段”有 (填序号,可多选). ① 线段A 1 B 1② 线段A 2 B 2③ 线段A 3 B 3(3)如图3,如果()1,0B 、(),0D t ,线段BD 是⊙C 的“关联线段”,那么t 的取值范围是 . (4)如图4,如果点M 的横坐标为m ,且存在以MC 的“关联线段”,那么m 的取值范围是 .图1图2图3 图4门头沟区2021-2022学年度第一学期期末调研九年级数学答案及评分参考2022.1一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)三、解答题(本题共68分,第17~22题每小题5分,23~26题每小题6分,第27~28题每小题7分) 17.(本小题满分5分) 解:原式=25 1.+-………………………………………………………………4分 4.……………………………………………………………………………5分18.(本小题满分5分)解:添加条件正确;…………………………………………………………………………2分 证明过程正确.…………………………………………………………………………5分19.(本小题满分5分)解:(1)作图正确;…………………………………………………………………………2分 (2)依据正确.…………………………………………………………………………5分20.(本小题满分5分)解:(1)∵设这个二次函数的表达式为23y ax bx .=+-由题意得,3034a b a b --=⎧⎨+-=-⎩…………………………………………………1分解得,12a b .=⎧⎨=-⎩∴223y x x .=--…………………………………………………………………3分 (2)()1,0-,()3,0.……………………………………………………………………5分21.(本小题满分5分)(1)证明:∵ ∠ACB = 90°,CD 是AB 边上的高,∴ ∠A C B =∠C D B = 90°.……………………………………………………1分 又∵ ∠B =∠B ,∴ △A B C ∽△C B D .…………………………………………………………2分(2)解:在Rt △ABC 中,∠ACB = 90°,AC = 4,BC = 3.∴ 由勾股定理得 A B =5.…………………………………………………………3分 ∵ △ABC ∽△CBD , ∴AB BC CB BD=.……………………………………………………………………4分 ∴ 223955BC BD AB ===.………………………………………………………5分22.(本小题满分5分)解(1)∵A (1-, n )在一次函数x y 2-=的图象上,∴n =2-×(1-)=2. ……………………………………………………………………1分 ∴点A 的坐标为(1-, 2). …………………………………………………………2分 ∵点A 在反比例函数xky =的图象上, ∴2-=k .∴反比例函数的解析式为xy 2-=. ………………………………………………3分 (2)点P 的坐标为(-2, 0)或(0, 4). …………………………………………………5分23.(本小题满分6分)解:根据题意,得 1.5CF BE AD ===,70AB DE ==.设MC 为x m . ……………………………………………………………………………1分 在Rt △MCB 中,tan =MCMBC BC∠,OFED CBA∴tan60x BC =︒. …………………………………………………………………2分同法可求AC .……………………………………………………………………3分∴70+. ………………………………………………………………………4分解得x =.……………………………………………………………………………5分∴ 1.5m MF MC CF =+=().答:永定楼的高为 1.5米. …………………………………………………………6分24.(本小题满分6分)解:(1)由题意得 ()22828.y x x x x =-=-+………………………………………………1分028.x <<…………………………………………………………………………2分(2)由题意得 228192.x x -+=…………………………………………………………3分解得1212,16.x x ==答:A B 的长为12米或16米.……………………………………………………5分 (3)当13x =时,面积的最大值为195米2.…………………………………………6分25.(本小题满分6分) 解:(1)连接OD .∵CD 是O 的切线, ∴OD CD ⊥.∴90ADC ODA ︒∠+∠=. ∵OF AD ⊥,∴90AOF DAO ∠+∠=︒. ∵ODA DAO ∠=∠,∴ADC AOF ∠=∠.………………………………………………………………3分 (2)设半径为r ,在Rt OCD ∆中,1sin 3C =, ∴13OD OC =. ∴OD r =,3OC r =.FA∵OA r =,∴2AC OC OA r =-=. ∵AB 为O 的直径, ∴90ADB ∠=︒. ∴OF BD ,∴12OE OA BD AB ==. ∴4OE =. ∵34OF OC BD BC ==, ∴6OF =.∴2EF OF OE =-=.……………………………………………………………6分26.(本小题满分6分)解:(1)由题意得()22241 4.y ax ax a x a =-+=--+∴ 对称轴为直线1x =,顶点坐标为()1,4.a -+………………………………2分 (2)∵抛物线的顶点恰好在x 轴上,∴40.a -+= 解得 4.a =∴ 抛物线的表达式为248 4.y x x =-+……………………………………………4分 (3)10.2m <<…………………………………………………………………………6分27.(本小题满分7分)解:(1)① 依题意,补全图形. ………………………………………………………1分猜想:∠B A E = ∠B C D. ……………………………………………………2分 证明:∵CD ⊥AB ,AE ⊥BC ,∴∠BAE +∠B = 90°,∠BCD +∠B = 90°.∴∠B A E = ∠B C D. …………………………………………………3分②线段AE ,CE ,DE 的数量关系:CE +DE = AE . ………………………4分 证明:如图,在AE 上截取AF = CE ,连接DF .∵∠BAC = 45°,CD ⊥AB , ∴ AD = CD.又∵∠BAE = ∠BCD,∴△ADF≌△CDE .∴DF = DE,∠ADF = ∠CDE.∵AB⊥CD,∴∠ADF+∠FDC = 90°. ∴∠CDE+∠FDC = ∠EDF = 90°.∴△EDF是等腰直角三角形.∴EF = DE2.∵AF + EF = AE,∴C E+D E=A E.…………………………………………………6分(2)线段AE,CE,DE的数量关系:CE DE = AE . ……………………………7分28.(本小题满分7分)解:(1)60°.………………………………………………………………………………2分(2)②,③.……………………………………………………………………………4分(3)t………………………………………………………………………………5分(4)2 4.m-<≤…………………………………………………………………………7分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。

九年级上册数学期末试卷(附答案)

九年级上册数学期末试卷(附答案)

2019-2020学年度九年级(上)期末数学试卷一.选择题(共12小题)1.下列事件中,是必然事件的是()A.打开电视,它正在播广告B.抛掷一枚硬币,正面朝上C.打雷后会下雨D.367人中有至少两人的生日相同2.在平面直角坐标系中,点P (﹣1,2)关于原点的对称点的坐标为()A.(﹣1,﹣2)B.(1,﹣2)C.(2,﹣1)D.(﹣2,1)3.一元二次方程x 2﹣4x +5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根4.在体检中,12名同学的血型结果为:A 型3人,B 型3人,AB 型4人,O 型2人,若从这12名同学中随机抽出2人,这两人的血型均为O 型的概率为()A.B.C.D.5.二次函数y =x 2﹣2x +4化为y =a (x ﹣h )2+k 的形式,下列正确的是()A.y =(x ﹣1)2+2B.y =(x ﹣2)2+4C.y =(x ﹣2)2+2D.y =(x ﹣1)2+36.某药品原价每盒28元,为响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,设该药品平均每次降价的百分率是x ,由题意,所列方程正确的是()A.28(1﹣2x )=16B.16(1+2x )=28C.28(1﹣x )2=16D.16(1+x )2=287.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点0)20米的A 处,则小明的影长为()米.A.4B.5C.6D.78.如图,在⊙O 中,点A 、B 、C 在⊙O 上,且∠ACB =110°,则∠α=()A.70°B.110°C.120°D.140°9.反比例函数y=(m≠0)的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上,其中正确的是()A.①②B.②③C.③④D.①④10.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=11.如图,水平地面上有一面积为30πcm2的灰色扇形OAB,其中OA=6cm,且OA垂直于地面,将这个扇形向右滚动(无滑动)至点B刚好接触地面为止,则在这个滚动过程中,点O移动的距离是()A.10πcm B.20πcm C.24πcm D.30πcm12.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12B.9C.6D.4二.填空题(共6小题)13.等边三角形绕它的中心至少旋转度,才能和原图形重合.14.设x1,x2是一元二次方程7x2﹣5=x+8的两个根,则x1+x2的值是.15.已知二次函数y=﹣x2﹣2x+3的图象上有两点A(﹣7,y1),B(﹣8,y2),则y1y2.(用>、<、=填空).16.如图,在平面直角坐标系中,⊙A与x轴相切于点B,BC为⊙A的直径,点C在函数y =(k>0,x>0)的图象上,若△OAB的面积为,则k的值为.17.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB =8,CD=2,则EC的长为.18.如图,在△ABC中,∠ACB=90°,BC=16cm,AC=12cm,点P从点B出发,以2cm/秒的速度向点C移动,同时点Q从点C出发,以1cm/秒的速度向点A移动,设运动时间为t秒,当t=秒时,△CPQ与△ABC相似.三.解答题(共8小题)19.用你喜欢的方法解方程(1)x2﹣6x﹣6=0(2)2x2﹣x﹣15=020.如图所示,点A(,3)在双曲线y=上,点B在双曲线y=之上,且AB∥x轴,C,D在x轴上,若四边形ABCD为矩形,求它的面积.21.如图,在由边长为1的小正方形组成的网格中,△ABC的顶点均落在格点上.(1)将△ABC绕点O顺时针旋转90°后,得到△A1B1C1.在网格中画出△A1B1C1;(2)求线段OA在旋转过程中扫过的图形面积;(结果保留π)22.甲、乙两人分别都有标记为A、B、C的三张牌做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.(1)用树状图或列表的方法,列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率.23.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE 上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=,AE=3,求AF的长.24.如图所示,已知AB是⊙O的直径,BC⊥AB,连接OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,求AD:OC的值.25.某超市销售一种商品,成本每千克30元,规定每千克售价不低于成本,且不高于70元,经市场调查,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)405060销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?26.如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B (3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.参考答案与试题解析一.选择题(共12小题)1.下列事件中,是必然事件的是()A.打开电视,它正在播广告B.抛掷一枚硬币,正面朝上C.打雷后会下雨D.367人中有至少两人的生日相同【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A 、打开电视,它正在播广告是随机事件,故A 不符合题意;B 、抛掷一枚硬币,正面朝上是随机事件,故B 不符合题意;C 、打雷后会下雨是随机事件,故C 不符合题意;D 、367人中有至少两人的生日相同是必然事件,故D 符合题意.故选:D .2.在平面直角坐标系中,点P (﹣1,2)关于原点的对称点的坐标为()A.(﹣1,﹣2)B.(1,﹣2)C.(2,﹣1)D.(﹣2,1)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:点P (﹣1,2)关于原点的对称点的坐标为(1,﹣2),故选:B .3.一元二次方程x 2﹣4x +5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】把a =1,b =﹣4,c =5代入△=b 2﹣4ac 进行计算,根据计算结果判断方程根的情况.【解答】解:∵a =1,b =﹣4,c =5,∴△=b 2﹣4ac =(﹣4)2﹣4×1×5=﹣4<0,所以原方程没有实数根.故选:D .4.在体检中,12名同学的血型结果为:A 型3人,B 型3人,AB 型4人,O 型2人,若从这12名同学中随机抽出2人,这两人的血型均为O 型的概率为()A.B.C.D.【分析】根据题意可知,此题是不放回实验,一共有12×11=132种情况,两人的血型均为O型的有两种可能性,从而可以求得相应的概率.【解答】解:由题意可得,这两人的血型均为O型的概率为:=,故选:A.5.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2B.y=(x﹣2)2+4C.y=(x﹣2)2+2D.y=(x﹣1)2+3【分析】利用配方法整理即可得解.【解答】解:y=x2﹣2x+4=(x2﹣2x+1)+3,=(x﹣1)2+3,所以,y=(x﹣1)2+3.故选:D.6.某药品原价每盒28元,为响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,设该药品平均每次降价的百分率是x,由题意,所列方程正确的是()A.28(1﹣2x)=16B.16(1+2x)=28C.28(1﹣x)2=16D.16(1+x)2=28【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=16,把相应数值代入即可求解.【解答】解:设该药品平均每次降价的百分率是x,则第一次降价后的价格为28×(1﹣x)元,两次连续降价后的售价是在第一次降价后的价格的基础上降低x,为28×(1﹣x)×(1﹣x)元,则列出的方程是28(1﹣x)2=16.故选:C.7.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点0)20米的A处,则小明的影长为()米.A.4B.5C.6D.7【分析】直接利用相似三角形的性质得出,故=,进而得出AM的长即可得出答案.【解答】解:由题意可得:OC∥AB,则△MBA∽△MCO,故=,即=,解得:AM=5.故选:B.8.如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=()A.70°B.110°C.120°D.140°【分析】作所对的圆周角∠ADB,如图,利用圆内接四边形的性质得∠ADB=70°,然后根据圆周角定理求解.【解答】解:作所对的圆周角∠ADB,如图,∵∠ACB+∠ADB=180°,∴∠ADB=180°﹣110°=70°,∴∠AOB=2∠ADB=140°.故选:D.9.反比例函数y=(m≠0)的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上,其中正确的是()A.①②B.②③C.③④D.①④【分析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.【解答】解:∵反比例函数的图象位于一三象限,∴m>0故①错误;当反比例函数的图象位于一三象限时,在每一象限内,y随x的增大而减小,故②错误;将A(﹣1,h),B(2,k)代入y=得到h=﹣m,2k=m,∵m>0∴h<k故③正确;将P(x,y)代入y=得到m=xy,将P′(﹣x,﹣y)代入y=得到m=xy,故P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上故④正确,故选:C.10.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=【分析】A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x 值,由此可得出抛物线与x轴的交点为(1,0)、(2,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=﹣,D选项正确.综上即可得出结论.【解答】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x2﹣3x+c与y轴的交点为(0,2),∴c=2,∴抛物线的解析式为y=x2﹣3x+2.当y=0时,有x2﹣3x+2=0,解得:x1=1,x2=2,∴抛物线与x轴的交点为(1,0)、(2,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x2﹣3x+2,∴抛物线的对称轴为直线x=﹣=﹣=,D选项正确.故选:D.11.如图,水平地面上有一面积为30πcm2的灰色扇形OAB,其中OA=6cm,且OA垂直于地面,将这个扇形向右滚动(无滑动)至点B刚好接触地面为止,则在这个滚动过程中,点O移动的距离是()A.10πcm B.20πcm C.24πcm D.30πcm【分析】根据题意可知点O移动的距离正好是灰色扇形的弧长,所以先根据扇形的面积求得扇形的圆心角的度数,再根据弧长公式求得弧长,即点O移动的距离.【解答】解:设扇形的圆心角为n度,则=30π∴n=300.∵扇形的弧长为=10π(cm),∴点O移动的距离10πcm.故选:A.12.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12B.9C.6D.4【分析】△AOC的面积=△AOB的面积﹣△BOC的面积,由点A的坐标为(﹣6,4),根据三角形的面积公式,可知△AOB的面积=12,由反比例函数的比例系数k的几何意义,可知△BOC的面积=|k|.只需根据OA的中点D的坐标,求出k值即可.【解答】解:∵OA的中点是D,点A的坐标为(﹣6,4),∴D(﹣3,2),∵双曲线y=经过点D,∴k=﹣3×2=﹣6,∴△BOC的面积=|k|=3.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣3=9.故选:B.二.填空题(共6小题)13.等边三角形绕它的中心至少旋转120度,才能和原图形重合.【分析】根据旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形作答即可.【解答】解:由于等边三角形三角完全相同,旋转时,只要使下一个角对准原角,就能重合,因为一圈360度,除以3,就得到120度.故答案为:120°.14.设x1,x2是一元二次方程7x2﹣5=x+8的两个根,则x1+x2的值是.【分析】把方程化为一般形式,利用根与系数的关系直接求解即可.【解答】解:把方程7x2﹣5=x+8化为一般形式可得7x2﹣x﹣13=0,∵x1,x2是一元二次方程7x2﹣5=x+8的两个根,∴x1+x2=,故答案为:.15.已知二次函数y=﹣x2﹣2x+3的图象上有两点A(﹣7,y1),B(﹣8,y2),则y1>y2.(用>、<、=填空).【分析】先根据已知条件求出二次函数的对称轴,再根据点A、B的横坐标的大小即可判断出y1与y2的大小关系.【解答】解:∵二次函数y=﹣x2﹣2x+3的对称轴是x=﹣1,开口向下,∴在对称轴的左侧y随x的增大而增大,∵点A(﹣7,y1),B(﹣8,y2)是二次函数y=﹣x2﹣2x+3的图象上的两点,﹣7>﹣8,∴y1>y2.故答案为:>.16.如图,在平面直角坐标系中,⊙A与x轴相切于点B,BC为⊙A的直径,点C在函数y =(k>0,x>0)的图象上,若△OAB的面积为,则k的值为10.【分析】连接OC,求出△BCO面积即可解决问题.【解答】解:如图,连接OC,∵BC是直径,‘∴AC=AB,∴S△ABO=S△ACO=,∴S△BCO=5,∵⊙A与x轴相切于点B,∴CB⊥x轴,∴S△CBO=,∴k=10,故答案为10.17.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为2.【分析】连结BE,设⊙O的半径为R,由OD⊥AB,根据垂径定理得AC=BC=AB=4,在Rt△AOC中,OA=R,OC=R﹣CD=R﹣2,根据勾股定理得到(R﹣2)2+42=R2,解得R=5,则OC=3,由于OC为△ABE的中位线,则BE=2OC=6,再根据圆周角定理得到∠ABE=90°,然后在Rt△BCE中利用勾股定理可计算出CE.【解答】解:连结BE,设⊙O的半径为R,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=R,OC=R﹣CD=R﹣2,∵OC2+AC2=OA2,∴(R﹣2)2+42=R2,解得R=5,∴OC=5﹣2=3,∴BE=2OC=6,∵AE为直径,∴∠ABE=90°,在Rt△BCE中,CE===2.故答案为:2.18.如图,在△ABC中,∠ACB=90°,BC=16cm,AC=12cm,点P从点B出发,以2cm/秒的速度向点C移动,同时点Q从点C出发,以1cm/秒的速度向点A移动,设运动时间为t秒,当t= 4.8或秒时,△CPQ与△ABC相似.【分析】分CP和CB是对应边,CP和CA是对应边两种情况,利用相似三角形对应边成比例列式计算即可得解.【解答】解:CP和CB是对应边时,△CPQ∽△CBA,所以,,即,解得t=4.8;CP和CA是对应边时,△CPQ∽△CAB,所以,,即,解得t=.综上所述,当t=4.8或时,△CPQ与△CBA相似.故答案为4.8或.三.解答题(共8小题)19.用你喜欢的方法解方程(1)x2﹣6x﹣6=0(2)2x2﹣x﹣15=0【分析】(1)先求出b'2﹣4ac的值,再代入公式求出即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2﹣6x﹣6=0,b'2﹣4ac=(﹣6)2﹣4×1×(﹣6)=60,x=,x1=3+,x2=3﹣;(2)2x2﹣x﹣15=0,(2x+5)(x﹣3)=0,2x+5=0,x﹣3=0,x1=﹣2.5,x2=3.20.如图所示,点A(,3)在双曲线y=上,点B在双曲线y=之上,且AB∥x轴,C,D在x轴上,若四边形ABCD为矩形,求它的面积.【分析】由点A的坐标以及AB∥x轴,可得出点B的坐标,从而得出AD、AB的长度,利用矩形的面积公式即可得出结论.【解答】解:∵A(,3),AB∥x轴,点B在双曲线y=之上,∴B(1,3),∴AB=1﹣=,AD=3,∴S=AB•AD=×3=2.21.如图,在由边长为1的小正方形组成的网格中,△ABC的顶点均落在格点上.(1)将△ABC绕点O顺时针旋转90°后,得到△A1B1C1.在网格中画出△A1B1C1;(2)求线段OA在旋转过程中扫过的图形面积;(结果保留π)【分析】(1)根据图形旋转的性质画出旋转后的图形即可;(2)先根据勾股定理求出OA的长,再根据线段OA在旋转过程中扫过的图形为以OA为半径,∠AOA1为圆心角的扇形,利用扇形的面积公式得出结论即可;【解答】解:(1)如图.△A1B1C1即为所求三角形;(2)由勾股定理可知OA=,线段OA在旋转过程中扫过的图形为以OA为半径,∠AOA1为圆心角的扇形,则S扇形OAA1==2π.答:扫过的图形面积为2π.22.甲、乙两人分别都有标记为A、B、C的三张牌做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.(1)用树状图或列表的方法,列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果,(2)利用概率公式求解即可求得答案.【解答】解:(1)列表如下:甲A甲B甲C 乙A(甲A,乙A)(甲B,乙A)(甲C,乙A)乙B(甲A,乙B)(甲B,乙B)(甲C,乙B)乙C(甲A,乙C)(甲B,乙C)(甲C,乙C)(2)由列出的表格或画出的树状图,得甲、乙两人一次游戏的所有等可能的结果有9种,其中出现平局的结果有3种,所以出现平局的概率为=.23.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE 上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=,AE=3,求AF的长.【分析】(1)根据四边形ABCD是平行四边形,得出AB∥CD,AD∥BC,再根据平行线的性质得出∠B+∠C=180°,∠ADF=∠DEC,然后根据∠AFD+∠AFE=180°,∠AFE=∠B,得出∠AFD=∠C,从而得出△ADF∽△DEC;(2)根据已知和勾股定理得出DE=,再根据△ADF∽△DEC,得出=,即可求出AF的长.【解答】解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠B+∠C=180°,∠ADF=∠DEC,∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)∵AE⊥BC,AD=3,AE=3,∴在Rt△DAE中,DE===6,由(1)知△ADF∽△DEC,得=,∴AF===2.24.如图所示,已知AB是⊙O的直径,BC⊥AB,连接OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,求AD:OC的值.【分析】(1)连接OD,利用SAS得到三角形COD与三角形COB全等,利用全等三角形的对应角相等得到∠ODC为直角,即可得证;(2)由平行得相似,根据题意确定出所求即可.【解答】(1)证明:连接OD,∵OA=OD,∴∠ODA=∠OAD,∵AD∥OC,∴∠OAD=∠COD,∠ODA=∠COD,∴∠COD=∠BOC,在△COD和△BOC中,,∴△COD≌△BOC,∴∠ODC=∠OBC=90°,∴CD为圆O的切线;(2)解:∵△COD≌△COB,∴BC=CD,∵DE=2BC,∴DE=2CD,∵AD∥OC,∴△DAE∽△COE,∴AD:OC=ED:AC=2:3.25.某超市销售一种商品,成本每千克30元,规定每千克售价不低于成本,且不高于70元,经市场调查,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)405060销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式;(3)将所得函数解析式配方成顶点式即可得最值情况.【解答】解:(1)设y与x之间的函数解析式为y=kx+b,则,解得,即y与x之间的函数表达式是y=﹣2x+180;(2)由题意可得,W=(x﹣30)(﹣2x+180)=﹣2x2+240x﹣5400,即W与x之间的函数表达式是W=﹣2x2+240x﹣5400;(3)∵W=﹣2x2+240x﹣5400=﹣2(x﹣60)2+1800,30≤x≤70,∴当30≤x≤60时,W随x的增大而增大;当60≤x≤70时,W随x的增大而减小;当x=60时,W取得最大值,此时W=1800.26.如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B (3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.【分析】(1)根据待定系数法,可得函数解析式;(2)根据菱形的对角线互相垂直且平分,可得P点的纵坐标,根据自变量与函数值的对应关系,可得P点坐标;(3)根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ 的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.【解答】解:(1)将点B和点C的坐标代入函数解析式,得,解得,二次函数的解析式为y=﹣x2+2x+3;(2)若四边形POP′C为菱形,则点P在线段CO的垂直平分线上,如图1,连接PP′,则PE⊥CO,垂足为E,∵C(0,3),∴E(0,),∴点P的纵坐标,当y=时,即﹣x2+2x+3=,解得x1=,x2=(不合题意,舍),∴点P的坐标为(,);(3)如图2,P在抛物线上,设P(m,﹣m2+2m+3),设直线BC的解析式为y=kx+b,将点B和点C的坐标代入函数解析式,得,解得.直线BC的解析为y=﹣x+3,设点Q的坐标为(m,﹣m+3),PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,OA=1,AB=3﹣(﹣1)=4,S四边形ABPC=S△ABC+S△PCQ+S△PBQ=AB•OC+PQ•OF+PQ•FB=×4×3+(﹣m2+3m)×3=﹣(m﹣)2+,当m=时,四边形ABPC的面积最大.当m=时,﹣m2+2m+3=,即P点的坐标为(,).当点P的坐标为(,)时,四边形ACPB的最大面积值为.。

2022-2023学年北京市房山区九年级(上)期末数学试卷(word,解析版)

2022-2023学年北京市房山区九年级(上)期末数学试卷(word,解析版)

2022-2023学年北京市房山区九年级(上)期末数学试卷一、选择题(本题共8道小题,每小题2分,共16分)1.(2分)如图,在△ABC中,DE∥BC,如果AD=3,BD=6,AE=2,那么AC的值为()A.4B.6C.8D.92.(2分)在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么cos A的值为()A.B.C.D.3.(2分)把二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列变形正确的是()A.y=(x+1)2+3B.y=(x﹣2)2+3C.y=(x﹣1)2+5D.y=(x﹣1)2+3 4.(2分)如图,点A、B、C是⊙O上的三点,∠BAC=25°,则∠BOC的度数是()A.30°B.40°C.50°D.60°5.(2分)堤的横断面如图.堤高BC是5米,迎水斜坡AB的长时13米,那么斜坡AB的坡度是()A.1:3B.1:2.6C.1:2.4D.1:26.(2分)点A(x1,y1),B(x2,y2)是反比例函数的图象上的两点,如果x1<x2<0,那么y1,y2的大小关系是()A.y1<y2<0B.y2<y1<0C.y1>y2>0D.y2>y1>07.(2分)道路施工部门在铺设如图所示的管道时,需要先按照其中心线计算长度后再备料.图中的管道中心线的长为(单位:m)()A.B.C.D.8.(2分)如图,在平面直角坐标系xOy中,A,B两点同时从原点O出发,点A以每秒2个单位长的速度沿x轴的正方向运动,点B以每秒1个单位长的速度沿y轴的正方向运动,设运动时间为t秒,以AB为直径作圆,圆心为点P.在运动的过程中有如下5个结论:①∠ABO的大小始终不变;②⊙P始终经过原点O;③半径AP的长是时间t的一次函数;④圆心P的运动轨迹是一条抛物线;⑤AB始终平行于直线.其中正确的有()A.①②③④B.①②⑤C.②③⑤D.①②③⑤二、填空题(本题共8道小题,每小题2分,共16分)9.(2分)二次函数y=(x+1)2﹣2图象的顶点坐标为.10.(2分)如图,平面直角坐标系中,若反比例函数的图象过点A和点B,则a的值为.11.(2分)在正方形网格中,△ABC的位置如图所示,则sin∠ABC为.12.(2分)抛物线y=x2﹣2x+m与x轴只有一个交点,则m的值为.13.(2分)丽丽的圆形镜子摔碎了,她想买一个同样大小的镜子.为了测算圆形镜子的半径,如图,她将直角三角尺的直角顶点C放在破损的圆形镜子的圆框上,两直角边分别与圆框交于A,B两点,测得CA为8cm,CB为6cm,则该圆形镜子的半径是cm.14.(2分)如图,在矩形ABCD中,若AB=2,BC=4,且,则EF的长为.15.(2分)《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中卷九中记载了一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“如右图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆(内切圆)的直径是多少步?”根据题意,该内切圆的直径为步.16.(2分)在平面直角坐标系xOy中,以点P(t,0)为圆心,单位长1为半径的圆与直线y=kx﹣2相切于点M,直线y=kx﹣2与y轴交于点N,当MN取得最小值时,k的值为.三、解答题(本题共12道小题,共68分.17,18,20,21每题5分;其余每题6分)17.(5分)2cos30°+sin45°﹣tan60°.18.(5分)抛物线y=﹣x2+bx+c过点(0,﹣3)和(2,1).(1)求b,c的值;(2)直接写出当x取何值时,函数y随x的增大而增大.19.(6分)如图,△ABC中,AB=AC=5,sin∠ABC=.(1)求BC的长.(2)BE是AC边上的高,请你补全图形,并求BE的长.20.(5分)下面是晓雨同学设计的“过圆外一点作已知圆的切线”的尺规作图的过程.已知:如图,⊙O及⊙O外一点P.求作:过点P的⊙O的切线PD(D为切点).作法:①连接PO与⊙O交于点A,延长PO与⊙O交于点B;②以点O为圆心,AB长为半径作弧;以点P为圆心,PO长为半径作弧,在PO上方两弧交于点C;③连接OC,PC,OC与⊙O交于点D;④作直线PD.则直线PD即为所求作的⊙O的切线.请你根据晓雨同学的作法,完成以下问题:(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成以下证明过程:证明:由作图可知,OC=AB,PC=PO,点为线段CO中点,∴PD⊥OC()又∵点D在⊙O上,∴PD是⊙O切线()21.(5分)如图,割线PB与⊙O交于点A,B,割线PC过圆心O,且∠CPB=30°.若PC=13,⊙O的半径OA=5,求弦AB的长.22.(6分)中央电视塔是一座现代化的标志性建筑,其外观优美,造型独特,在观光塔上眺望,北京风景尽收眼底.一次数学活动课上,某校老师带领学生去测量电视塔的高度.如图,在点C处用高1.5m的测角仪CD测得塔尖A的仰角为37°,向塔的方向前进128m 到达F处,在F处测得塔尖A的仰角为45°,请你求出中央电视塔AB的高度(结果精确到1m).(参考数据:sin37°≈,cos37°≈,tan37°≈,sin53°≈,cos53°≈,tan53°≈.)23.(6分)在历史的长河中,很多文物难免损耗或破碎断裂,而文物修复师能运用自身拥有的多门学科的专业知识去修复破损的文物,使其重获新生.如图1,某文物修复师在修复一件破碎的古代瓷器束口盏(盏口原貌为圆形)的时候,仅凭一块碎片就初步推算出了该文物原貌口径的尺寸.如图2是文物修复师根据碎片的切面画出的几何图形.碎片的边缘是圆弧,表示为弧AB,测得弧所对的弦长AB为12.8cm,弧中点到弦的距离为2cm.设弧AB所在圆的圆心为O,半径OC⊥AB于D,连接OB.求这个盏口半径OB 的长(精确到0.1cm).24.(6分)如图,平面直角坐标系xOy中,反比例函数y=(x<0)的图象经过点A(﹣1,4),一次函数y=﹣x+2的图象与反比例函数y=(x<0)的图象交于点B.(1)求m的值;(2)点C(x C,y C)是y=(x<0)图象上任意一点,过点C作y轴的垂线交y轴于点D,过点C作x轴的垂线交直线y=﹣x+2于点E.①当x C=﹣2时,判断CD与CE的数量关系,并说明理由;②当CE≥CD时,直接写出x C的取值范围.25.(6分)如图,AB是⊙O的直径,直线MC与⊙O相切于点C.过点B作BD⊥MC于D,线段BD与⊙O相交于点E.(1)求证:BC是∠ABD的平分线;(2)若AB=10,BE=6,求BC的长.26.(6分)在平面直角坐标系中,已知抛物线y=ax2﹣4ax+3(a≠0).(1)求抛物线的对称轴;(2)抛物线上存在两点A(2﹣t,y1),B(2+2t,y2),若y1>y2,请判断此时抛物线有最高点还是最低点,并说明理由;(3)在(2)的条件下,抛物线上有三点(1,m),(2,n),(5,p),当mnp≥0时,求a的取值范围.27.(6分)已知△ABC为等腰直角三角形,∠BAC=90°,AB=2.点D为平面上一点,使得∠BDA=90°.点P为BC中点,连接DP.(1)如图,点D为△ABC内一点.①猜想∠BDP的大小;②写出线段AD,BD,PD之间的数量关系,并证明;(2)直接写出线段CD的最大值.28.(6分)在平面直角坐标系xOy中,已知一条开口向上的抛物线,连接此抛物线上关于对称轴对称的两点A,B(A点在B点左侧),以AB为直径作⊙M.取线段AB下方的抛物线部分和线段AB上方的圆弧部分(含端点A,B),组成一个封闭图形,我们称这种图形为“抛物圆”,其中线段AB叫做“横径”,线段AB的垂直平分线被“抛物圆”截得的线段叫做“纵径”,规定“纵径”长度和“横径”长度的比值叫做此“抛物圆”的“扁度”.(1)已知抛物线y=x2.①若点A横坐标为﹣2,则得到的“抛物圆”的“横径”长为,“纵径”长为;②若点A横坐标为t,用t表示此“抛物圆”的“纵径”长,并求出当它的“扁度”为2时t的值;(2)已知抛物线y=x2﹣2ax+a2+a,若点A在直线y=﹣4ax+a上,求“抛物圆”的“扁度”不超过3时a的取值范围.2022-2023学年北京市房山区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共8道小题,每小题2分,共16分)1.(2分)如图,在△ABC中,DE∥BC,如果AD=3,BD=6,AE=2,那么AC的值为()A.4B.6C.8D.9【分析】根据平行线分线段成比例定理列出比例式,代入计算求出EC,结合图形计算得到答案.【解答】解:∵DE∥BC,∴=,即=,解得,EC=4,∴AC=AE+EC=2+4=6,故选:B.2.(2分)在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么cos A的值为()A.B.C.D.【分析】根据勾股定理求出斜边AB的长,根据余弦的概念求出cos A.【解答】解:∠C=90°,BC=3,AC=4,由勾股定理得,AB==5,∴cos A==,故选:A.3.(2分)把二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列变形正确的是()A.y=(x+1)2+3B.y=(x﹣2)2+3C.y=(x﹣1)2+5D.y=(x﹣1)2+3【分析】利用配方法整理即可得解.【解答】解:y=x2﹣2x+4,=x2﹣2x+1+3,=(x﹣1)2+3.故选:D.4.(2分)如图,点A、B、C是⊙O上的三点,∠BAC=25°,则∠BOC的度数是()A.30°B.40°C.50°D.60°【分析】根据圆周角定理得出∠COB=2∠CAB,代入求出即可.【解答】解:∵对的圆心角为∠COB,对的圆周角为∠CAB,∠BAC=25°,∴∠COB=2∠CAB=50°,故选:C.5.(2分)堤的横断面如图.堤高BC是5米,迎水斜坡AB的长时13米,那么斜坡AB的坡度是()A.1:3B.1:2.6C.1:2.4D.1:2【分析】坡度=垂直距离÷水平距离.【解答】解:由勾股定理得:AC=12米.则斜坡AB的坡度=BC:AC=5:12=1:2.4.故选:C.6.(2分)点A(x1,y1),B(x2,y2)是反比例函数的图象上的两点,如果x1<x2<0,那么y1,y2的大小关系是()A.y1<y2<0B.y2<y1<0C.y1>y2>0D.y2>y1>0【分析】根据k的值判断此函数图象所在的象限,再根据x1<x2<0判断出A(x1,y1)、B(x2,y2)所在的象限,根据此函数的增减性即可解答.【解答】解:∵反比例函数y=的图象在一,三象限,在每一象限内y随x的增大而减小,∵x1<x2<0,∴A(x1,y1)、B(x2,y2)两点均位于第三象限,∴y2<y1<0.故选:B.7.(2分)道路施工部门在铺设如图所示的管道时,需要先按照其中心线计算长度后再备料.图中的管道中心线的长为(单位:m)()A.B.C.D.【分析】根据弧长公式求出答案即可.【解答】解:图中的管道中心线的长为=(m),故选:B.8.(2分)如图,在平面直角坐标系xOy中,A,B两点同时从原点O出发,点A以每秒2个单位长的速度沿x轴的正方向运动,点B以每秒1个单位长的速度沿y轴的正方向运动,设运动时间为t秒,以AB为直径作圆,圆心为点P.在运动的过程中有如下5个结论:①∠ABO的大小始终不变;②⊙P始终经过原点O;③半径AP的长是时间t的一次函数;④圆心P的运动轨迹是一条抛物线;⑤AB始终平行于直线.其中正确的有()A.①②③④B.①②⑤C.②③⑤D.①②③⑤【分析】①由题意得:OA=2t,OB=t,则tan∠ABO=,即可求解;②AB是圆P的直径,则AB所对的圆周角为90°,即∠AOB=90°,即可求解;③AP==t,即可求解;④由③知,点P(t,t),即可求解;⑤求出直线AB的表达式为:y=﹣x+t,即可求解.【解答】解:①由题意得:OA=2t,OB=t,则tan∠ABO=,∴∠ABO的大小始终不变,正确;②∵AB是圆P的直径,则AB所对的圆周角为90°,即∠AOB=90°,∴⊙P始终经过原点O,正确;③由点A、B的坐标,根据中点坐标公式得:点P(t,t),则AP==t,即AP的长度是时间t的一次函数,正确;④由③知,点P(t,t),则点P在直线y=x上,故④错误;⑤设直线AB的表达式为:y=kx+b,则,解得:,故直线AB的表达式为:y=﹣x+t,∵AB始终平行于直线,正确,故选:D.二、填空题(本题共8道小题,每小题2分,共16分)9.(2分)二次函数y=(x+1)2﹣2图象的顶点坐标为(﹣1,﹣2).【分析】直接根据二次函数的性质解答即可.【解答】解:二次函数y=(x+1)2﹣2图象的顶点坐标为:(﹣1,﹣2).故答案为:(﹣1,﹣2).10.(2分)如图,平面直角坐标系中,若反比例函数的图象过点A和点B,则a的值为.【分析】利用反比例函数图象上点的坐标特征得到﹣3=﹣2a,然后解关于a的方程即可.【解答】解:∵反比例函数y=(k≠0)的图象经过点A(1,﹣3)和点B(﹣2,a),∴﹣3=﹣2a,解得a=,故答案为:.11.(2分)在正方形网格中,△ABC的位置如图所示,则sin∠ABC为.【分析】在Rt△ABD中,先利用勾股定理求出AB的长,然后利用锐角三角函数的定义进行计算即可解答.【解答】解:如图:在Rt△ABD中,AD=1,BD=3,∴AB===,∴sin∠ABC===,故答案为:.12.(2分)抛物线y=x2﹣2x+m与x轴只有一个交点,则m的值为1.【分析】由抛物线y=x2﹣2x+m与x轴只有一个交点可知,对应的一元二次方程x2﹣2x+m =0,根的判别式Δ=b2﹣4ac=0,由此即可得到关于m的方程,解方程即可求得m的值.【解答】解:∵抛物线y=x2﹣2x+m与x轴只有一个交点,∴Δ=0,∴b2﹣4ac=22﹣4×1×m=0;∴m=1.故答案为:1.13.(2分)丽丽的圆形镜子摔碎了,她想买一个同样大小的镜子.为了测算圆形镜子的半径,如图,她将直角三角尺的直角顶点C放在破损的圆形镜子的圆框上,两直角边分别与圆框交于A,B两点,测得CA为8cm,CB为6cm,则该圆形镜子的半径是5cm.【分析】连接AB,由圆周角定理得AB为圆形镜子的直径,再由勾股定理求出AB的长,即可得出结论.【解答】解:如图,连接AB,∵∠ACB=90°,∴AB为圆形镜子的直径,∵CA=8cm,CB=6cm,∴AB===10(cm),∴圆形镜子的半径为×10=5(cm),故答案为:5.14.(2分)如图,在矩形ABCD中,若AB=2,BC=4,且,则EF的长为.【分析】先根据矩形的性质得到AD∥BC,∠BAD=90°,则可判断△AEF∽△CBF,根据相似三角形的性质得到===,则可计算出AE=1,接着利用勾股定理计算出BE,然后利用=求出EF的长.【解答】解:∵四边形ABCD为矩形,∴AD∥BC,∠BAD=90°,∵AE∥BC,∴△AEF∽△CBF,∴===,∴AE=BC=×4=1,在Rt△ABE中,BE===,∵=,∴=,∴EF=BE=.故答案为:.15.(2分)《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中卷九中记载了一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“如右图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆(内切圆)的直径是多少步?”根据题意,该内切圆的直径为6步.【分析】根据勾股定理求出直角三角形的斜边,根据直角三角形的内切圆的半径的求法确定出内切圆半径,得到直径.【解答】解:根据勾股定理得:斜边AB==17,∴内切圆直径=8+15﹣17=6(步),故答案为:6.16.(2分)在平面直角坐标系xOy中,以点P(t,0)为圆心,单位长1为半径的圆与直线y=kx﹣2相切于点M,直线y=kx﹣2与y轴交于点N,当MN取得最小值时,k的值为或﹣.【分析】连接PN,在y=kx﹣2中,得N(0,﹣2),即得MN==,故PN最小时,MN最小,此时PN⊥x轴,即t=0,P与O重合,过M作MK⊥x轴于K,由含30°角的直角三角形三边关系可得M(﹣,﹣),再用待定系数法解得k=﹣,由对称性当M'在第四象限时,k=.【解答】解:连接PN,如图:在y=kx﹣2中,令x=0得y=﹣2,∴N(0,﹣2),∵MN与⊙P相切,∴∠MNP=90°,∴MN==,∴PN最小时,MN最小,此时PN⊥x轴,即t=0,P与O重合,过M作MK⊥x轴于K,如图:∵PM=1,PN=2,∠PMN=90°,∴∠PNM=30°,∴∠MPN=60°,∴∠MPK=30°,∴KM=PM=,PK=KM=,∴M(﹣,﹣),把M(﹣,﹣)代入y=kx﹣2得:﹣=﹣k﹣2,解得k=﹣,由对称性可得,当M'在第四象限时,k=,故答案为:或﹣.三、解答题(本题共12道小题,共68分.17,18,20,21每题5分;其余每题6分)17.(5分)2cos30°+sin45°﹣tan60°.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=2×+×﹣=1.18.(5分)抛物线y=﹣x2+bx+c过点(0,﹣3)和(2,1).(1)求b,c的值;(2)直接写出当x取何值时,函数y随x的增大而增大.【分析】(1)把(0,﹣3)和(2,1)代入抛物线,得出方程组,求出方程组的解即可;(2)根据(1)中bc的值得出抛物线的解析式,求出其顶点坐标,根据抛物线的性质即可得出结论.【解答】解:(1)∵抛物线y=﹣x2+bx+c过点(0,﹣3)和(2,1),∴,解得,(2)由(1)知,b=4,c=﹣3,∵抛物线的解析式为y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴顶点坐标为:(2,1),∵a=﹣1<0,∴抛物线开口向下,∴当x<2时,函数y随x的增大而增大.19.(6分)如图,△ABC中,AB=AC=5,sin∠ABC=.(1)求BC的长.(2)BE是AC边上的高,请你补全图形,并求BE的长.【分析】(1)过点A作AD⊥BC,垂足为D,利用等腰三角形的性质可得BC=2BD,然后在Rt△ABD中,利用锐角三角函数的定义可求出BD的长,从而进行计算即可解答;(2)利用(1)的结论可得sin∠ABC=sin∠ACB=,然后Rt△BEC中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)过点A作AD⊥BC,垂足为D,∵AB=AC=5,AD⊥BC,∴BC=2BD,在Rt△ABD中,sin∠ABC=,∴AD=AB•sin∠ABC=5×=2,∴BD===,∴BC=2BD=2,∴BC的长为2;(2)如图:∵∠ABC=∠ACB,∴sin∠ABC=sin∠ACB=,在Rt△BEC中,BC=2,∴BE=BC•sin∠ACB=2×=,∴BE的长为.20.(5分)下面是晓雨同学设计的“过圆外一点作已知圆的切线”的尺规作图的过程.已知:如图,⊙O及⊙O外一点P.求作:过点P的⊙O的切线PD(D为切点).作法:①连接PO与⊙O交于点A,延长PO与⊙O交于点B;②以点O为圆心,AB长为半径作弧;以点P为圆心,PO长为半径作弧,在PO上方两弧交于点C;③连接OC,PC,OC与⊙O交于点D;④作直线PD.则直线PD即为所求作的⊙O的切线.请你根据晓雨同学的作法,完成以下问题:(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成以下证明过程:证明:由作图可知,OC=AB,PC=PO,点D为线段CO中点,∴PD⊥OC(三线合一)又∵点D在⊙O上,∴PD是⊙O切线(过半径的外端且垂直于半径的直线是圆的切线)【分析】(1)根据题中的步骤画图;(2)根据切线的判断求解.【解答】解:(1)如图:PD即为所求;(2)证明:由作图可知,OC=AB,PC=PO,点D为线段CO中点,∴PD⊥OC(三线合一),又∵点D在⊙O上,∴PD是⊙O切线(过半径的外端且垂直于半径的直线是圆的切线),故答案为:D,三线合一,过半径的外端且垂直于半径的直线是圆的切线.21.(5分)如图,割线PB与⊙O交于点A,B,割线PC过圆心O,且∠CPB=30°.若PC=13,⊙O的半径OA=5,求弦AB的长.【分析】由垂径定理得到AH=BH,由勾股定理可求AH的长,于是可求AB的长.【解答】解:作OH⊥AB于H,∴AH=BH,∵PC=13,⊙O的半径OA=OC=5,∴PO=PC﹣OC=13﹣5=8,∵∠CPB=30°,∴OH=PO=4,∵AH2=AO2﹣OH2,∴AH2=52﹣42,∴AH=3,∴AB=2AH=6.22.(6分)中央电视塔是一座现代化的标志性建筑,其外观优美,造型独特,在观光塔上眺望,北京风景尽收眼底.一次数学活动课上,某校老师带领学生去测量电视塔的高度.如图,在点C处用高1.5m的测角仪CD测得塔尖A的仰角为37°,向塔的方向前进128m 到达F处,在F处测得塔尖A的仰角为45°,请你求出中央电视塔AB的高度(结果精确到1m).(参考数据:sin37°≈,cos37°≈,tan37°≈,sin53°≈,cos53°≈,tan53°≈.)【分析】根据题意可得:DE=CF=128米,CD=EF=GB=1.5米,∠AGD=90°,设AG=x米,然后在Rt△AGC中,利用锐角三角函数的定义求出EG的长,从而求出DG 的长,再在Rt△AGD中,利用锐角三角函数的定义列出关于x的方程,进行计算即可解答.【解答】解:由题意得:DE=CF=128米,CD=EF=GB=1.5米,∠AGD=90°,设AG=x米,在Rt△AGC中,∠AEG=45°,∴EG==x(米),∴DG=GE+DE=(128+x)米,在Rt△AGD中,∠ADG=37°,∴tan37°==≈,解得:x=384,经检验:x=384是原方程的根,∴AB=AG+BG=384+1.5≈386(米),∴中央电视塔AB的高度约为386米.23.(6分)在历史的长河中,很多文物难免损耗或破碎断裂,而文物修复师能运用自身拥有的多门学科的专业知识去修复破损的文物,使其重获新生.如图1,某文物修复师在修复一件破碎的古代瓷器束口盏(盏口原貌为圆形)的时候,仅凭一块碎片就初步推算出了该文物原貌口径的尺寸.如图2是文物修复师根据碎片的切面画出的几何图形.碎片的边缘是圆弧,表示为弧AB,测得弧所对的弦长AB为12.8cm,弧中点到弦的距离为2cm.设弧AB所在圆的圆心为O,半径OC⊥AB于D,连接OB.求这个盏口半径OB 的长(精确到0.1cm).【分析】由垂径定理得BD=6.4cm,设这个盏口半径OB的长为rcm,则OD=(r﹣2)cm,然后在Rt△BOD中,由勾股定理得出方程,解方程即可.【解答】解:由题意得:AB=12.8cm,OC⊥AB,∴AD=BD=AB=6.4cm,设这个盏口半径OB的长为rcm,则OD=(r﹣2)cm,在Rt△BOD中,由勾股定理得:6.42+(r﹣2)2=r2,解得:r=11.24,答:这个盏口半径OB的长为11.24cm.24.(6分)如图,平面直角坐标系xOy中,反比例函数y=(x<0)的图象经过点A(﹣1,4),一次函数y=﹣x+2的图象与反比例函数y=(x<0)的图象交于点B.(1)求m的值;(2)点C(x C,y C)是y=(x<0)图象上任意一点,过点C作y轴的垂线交y轴于点D,过点C作x轴的垂线交直线y=﹣x+2于点E.①当x C=﹣2时,判断CD与CE的数量关系,并说明理由;②当CE≥CD时,直接写出x C的取值范围.【分析】(1)把点A的坐标代入到反比例函数解析式即可得m的值;(2)①确定点C的坐标为(﹣2,2),点E的坐标为(﹣2,4),即可求解;②设t=x C,当x>1﹣时,则点C在E的上方,当CE≥CD时,即﹣+t﹣2≥﹣t,即可求解;当CE≥CD时,即﹣t+2≥﹣t,即可求解.【解答】解:(1)把点A(﹣1,4)代入得:4=,解得:m=﹣4;(2)①CD=CE,理由如下:由(1)可得,反比例函数解析式为:y=,∴当x=﹣2时,y=2,∴点C的坐标为(﹣2,2),∵过点C作y轴的垂线交y轴于点D,∴CD=2,∵过点C作x轴的垂线交直线y=﹣x+2于点E,∴当x=﹣2时,y=4,∴点E的坐标为(﹣2,4),∴CE=2,∴CD=CE;②设t=x C,联立y=和x=﹣x+2并解得:x=1,当x>1﹣时,则点C在E的上方,当CE≥CD时,即﹣+t﹣2≥﹣t,解得:1﹣<t≤﹣1,当x<1﹣时,则点C在E的下方,当CE≥CD时,即﹣t+2≥﹣t,解得:t≤﹣2,综上,1﹣<x C≤﹣1或x C≤﹣2.25.(6分)如图,AB是⊙O的直径,直线MC与⊙O相切于点C.过点B作BD⊥MC于D,线段BD与⊙O相交于点E.(1)求证:BC是∠ABD的平分线;(2)若AB=10,BE=6,求BC的长.【分析】(1)连接OC,根据切线的性质得到∠OCM=90°,得到OC∥BD,根据平行线的性质、等腰三角形的性质证明结论;(2)连接AC,连接AE交OC于点F,根据勾股定理求出AE,进而求出AF,然后求出AC,最后求出BC的长.【解答】(1)证明:连接OC,∵直线MC与⊙O相切于点C∴∠OCM=90°,∵BD⊥CD,∴∠BDM=90°,∴∠OCM=∠ADM,∴OC∥BD,∴∠DBC=∠BCO,∵OA=OC,∴∠BCO=∠CBO,∴∠DBC=∠CBA,即BC是∠ABD的平分线;(2)连接AC,连接AE交OC于点F,∵AB为直径,∴∠AEB=90°,∴AE==8,由(1)知OC∥BD,O为AB的中点,∴AF=4,∴OF==3,∴CF=OC﹣OF=2,∴AC==2,∴BC==4.26.(6分)在平面直角坐标系中,已知抛物线y=ax2﹣4ax+3(a≠0).(1)求抛物线的对称轴;(2)抛物线上存在两点A(2﹣t,y1),B(2+2t,y2),若y1>y2,请判断此时抛物线有最高点还是最低点,并说明理由;(3)在(2)的条件下,抛物线上有三点(1,m),(2,n),(5,p),当mnp≥0时,求a的取值范围.【分析】(1)由抛物线的对称轴x=﹣,即可求解;(2)由y1>y2知:点A离对称轴的距离比点B离对称轴的距离大,即可求解;(3)确定(1,n)为抛物线的最高点,得到m、p同号,进而求解.【解答】解:(1)抛物线的对称轴x=﹣=﹣=2;(2)当a>0时,由y1>y2知:点A离对称轴的距离比点B离对称轴的距离大,即|2﹣t﹣2|>|2+2t﹣2|,即|t|<0,无解;当a<0时,同理可得:|2﹣t﹣2|<|2+2t﹣2|,即|t|>0,∴a<0,即抛物线有最高点;(3)由(1,m),(5,p)知,m=a﹣4a+3=3﹣3a,p=25a﹣20a+3=5a+3,由(2)知,a<0,则(1,n)为抛物线的最高点,若n≤0,则m、n均为负数,与mnp≥0不符,故n>0,则m、p同号,即,解得:﹣≤a≤1,而a<0,∴﹣≤a<0.27.(6分)已知△ABC为等腰直角三角形,∠BAC=90°,AB=2.点D为平面上一点,使得∠BDA=90°.点P为BC中点,连接DP.(1)如图,点D为△ABC内一点.①猜想∠BDP的大小;②写出线段AD,BD,PD之间的数量关系,并证明;(2)直接写出线段CD的最大值.【分析】(1)①通过证明点A,点B,点P,点D四点共圆,可得∠BAP=∠BDP=45°;②由“SAS”可证△APD≌△BPH,可得BH=AD,即可求解;(2)由题意可得点D在以AB为半径的圆上运动,则点D在CO的延长线时,CD有最大值,即可求解.【解答】解:(1)①如图,连接AP,∵△ABC为等腰直角三角形,∠BAC=90°,点P是BC的中点,∴AP=BP=CP,AP⊥BP,∠BAP=∠ABC=45°,∴∠APB=∠ADB=90°,∴点A,点B,点P,点D四点共圆,∴∠BAP=∠BDP=45°;②BD=AD+PD,理由如下:如图,过点P作PH⊥PD,交BD于H,∵PH⊥PD,∠BDP=45°,∴∠DPH=∠APB=90°,∠BDP=∠DHP=45°,∴∠BPH=∠APD,PD=PH,又∵BP=AP,∴△APD≌△BPH(SAS),∴BH=AD,∵PD=PH,∠DPH=90°,∴HD=DP,∴BD=BH+HD=AD+DP;(2)如图,取AB的中点O,连接OC,∴AO=OB=1,∴CO===,∵∠ADB=90°,∴点D在以AB为半径的圆上运动,∴点D在CO的延长线时,CD有最大值,即CD的最大值为+1.28.(6分)在平面直角坐标系xOy中,已知一条开口向上的抛物线,连接此抛物线上关于对称轴对称的两点A,B(A点在B点左侧),以AB为直径作⊙M.取线段AB下方的抛物线部分和线段AB上方的圆弧部分(含端点A,B),组成一个封闭图形,我们称这种图形为“抛物圆”,其中线段AB叫做“横径”,线段AB的垂直平分线被“抛物圆”截得的线段叫做“纵径”,规定“纵径”长度和“横径”长度的比值叫做此“抛物圆”的“扁度”.(1)已知抛物线y=x2.①若点A横坐标为﹣2,则得到的“抛物圆”的“横径”长为4,“纵径”长为6;②若点A横坐标为t,用t表示此“抛物圆”的“纵径”长,并求出当它的“扁度”为2时t的值;(2)已知抛物线y=x2﹣2ax+a2+a,若点A在直线y=﹣4ax+a上,求“抛物圆”的“扁度”不超过3时a的取值范围.【分析】(1)①点A(﹣2,4),则点B(2,4),得到半径R=AM=2,则AB=4,求出RN=RM+OM=4+2=6,即可求解;②若点A横坐标为t,则点A(t,t2),则点B(﹣t,t2),参考①即可求解;(2)联立y=x2﹣2ax+a2+a和y=﹣4ax+a并解得:x=﹣a,得到A(﹣a,4a2+a),进而求解.【解答】解:(1)①如图,设线段AB的垂直平分线被“抛物圆”截得的线段为RN,则点N(O)重合,点A(﹣2,4),则点B(2,4),则圆M的半径R=AM=2,则AB=4,由点B的坐标知,OM=4,则RN=RM+OM=4+2=6,故答案为:4,6;②若点A横坐标为t,则点A(t,t2),则点B(﹣t,t2),则圆M的直径为﹣t﹣t=﹣2t,则RN=﹣t+t2,则,解得:t=0(舍去)或﹣3,即t=﹣3;(2)由抛物线的表达式知,其顶点坐标为(a,a),即点N(a,a),联立y=x2﹣2ax+a2+a和y=﹣4ax+a并解得:x=﹣a,当x=﹣a时,y=﹣4ax+a=4a2+a,即点A(﹣a,4a2+a),则点B(3a,4a2+a),则AB=4a,圆M的半径为2a,则RN=2a+(4a2+a﹣a)=4a2+2a,则,解得:a.。

广东省揭阳市2021-2022学年九年级上学期期末考试数学试题(Word版含答案)

广东省揭阳市2021-2022学年九年级上学期期末考试数学试题(Word版含答案)

2021-2022学年广东省揭阳市普宁市九年级(上)期末数学试卷一、选择题(本大题10小题,每小题3分,共30分。

)在每小题列出的四个选项中,只有一个正确选项,请将正确答案写在答题卷的相应位置。

1.(3分)如图所示的几何体的左视图是()A.B.C.D.2.(3分)如图,已知直线AB∥CD∥EF,BD=2,DF=4,则的值为()A.B.C.D.13.(3分)已知Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式中正确的是()A.sin A=B.tan A=C.tan B=D.cos B=4.(3分)将二次函数y=(x﹣1)2的图象向左平移1个单位长度,再向上平移2个单位后,所得图象的函数解析式是()A.y=(x﹣2)2+2B.y=(x﹣2)2﹣2C.y=x2﹣2D.y=x2+25.(3分)对于一元二次方程x2﹣5x+c=0来说,当c=时,方程有两个相等的实数根,若将c的值在的基础上减小,则此时方程根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.只有一个实数根6.(3分)如图,线段AB∥CD,连接AD,BC交于点O,若CD=2AB,则下列选项中错误的是()A.△AOB∽△DOCB.C.D.7.(3分)下列说法中正确的是()A.矩形的对角线平分每组对角B.菱形的对角线相等且互相垂直C.有一组邻边相等的矩形是正方形D.对角线互相垂直的四边形是菱形8.(3分)某口袋里现有12个红球和若干个绿球(两种球除颜色外,其余完全相同),某同学随机的从该口袋里摸出一球,记下颜色后放回,共试验600次,其中有300次是红球,估计绿球个数为()A.8B.10C.12D.149.(3分)如图,小明在学校操场A处测得旗杆的仰角∠DAC为30°,沿AC方向行进10米至B处,测得仰角∠DBC为45°,则旗杆的高度DC是()A.5(+1)米B.(﹣1)米C.10米D.(10+)米10.(3分)一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案写在答题卷的相应位置。

最新人教版九年级上册数学期末测试卷及答案

最新人教版九年级上册数学期末测试卷及答案

最新人教版九年级上册数学期末测试卷及答案九年级上册数学期末试卷一、选择题1.下列图形中,既是中心对称图形又是轴对称图形的是()A。

B。

C。

D。

2.将函数y=2x^2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是()A。

y=2(x-1)^2-3B。

y=2(x-1)^2+3C。

y=2(x+1)^2-3D。

y=2(x+1)^2+33.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于( )A。

55°B。

70°C。

125°D。

145°4.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( ) A。

4B。

5C。

6D。

35.一个半径为2cm的圆内接正六边形的面积等于()A。

24cm^2B。

63cm^2C。

123cm^2D。

83cm^26.如图,XXX是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A。

35°B。

45°C。

55°D。

75°7.函数y=-2x^2-8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<-2,则()A。

y1<y2B。

y1>y2C。

y1=y2D。

y1、y2的大小不确定8.将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()A。

B。

C。

D。

9.一次函数y=ax+b与二次函数y=ax^2+bx+c在同一坐标系中的图像可能是()A。

B。

C。

D。

10.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是m.(结果不取近似值)A。

2020-2021学年上学期广东省深圳市南山区期末考试九年级数学试卷 (Word版 含解析)

2020-2021学年上学期广东省深圳市南山区期末考试九年级数学试卷  (Word版 含解析)

广东省深圳市南山区2020-2021学年九年级(上)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上)。

1.如图,这是由5个大小相同的正方体搭成的几何体,该几何体的左视图()A.B.C.D.2.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形3.在一个不透明的口袋中,装有若干个红球和3个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中红球的个数大约是()A.20个B.16个C.15个D.12个4.一元二次方程x2+2x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根5.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′位似比是1:2,已知△ABC的面积是10,则△A′B′C′的面积是()A.10B.20C.40D.806.关于反比例函数y=﹣,下列说法不正确的是()A.函数图象分别位于第二、四象限B.函数图象关于原点成中心对称C.函数图象经过点(﹣6,﹣2)D.当x<0时,y随x的增大而增大7.如图.AB∥CD∥EF,AF、BE交于点G,下列比例式错误的是()A.B.C.D.8.如图,已知点A是反比例函数y=(x>0)的图象上一点,AB∥x轴交另一个反比例函数y=(x>0)的图象于点B,C为x轴上一点,若S△ABC=2,则k的值为()A.4B.2C.3D.19.如图,在菱形ABCD中,对角线AC、BD交于点O,且AC=6,BD=8,过A点作AE垂直BC,交BC于点E,则的值为()A.B.C.D.10.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下面四个结论:①CF=2AF;②AD=CD;③DF=DC;④△AEF∽△CAB;⑤S四边形CDEF=S△ABF.其中正确的结论有()A.2个B.3个C.4个D.5个二、填空题(本题有5小题,每小题3分,共15分.把答案填在答题卡上).11.已知==,且a+b﹣2c=6,则a的值为.12.小王同学想利用树影测量校园内的树高.他在某一时刻测得小树高为1.5米时,其影长为1.2米,当他测量教学楼旁的一棵大树的影长时,因大树靠近教学楼,有一部分影子在墙上.经测量,地面部分影长为6.4米,墙上影长为1.4米,那么这棵大树高约为米.13.设m、n是方程x2+x﹣1001=0的两个实数根,则m2+2m+n的值为.14.如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为.15.如图,在平面直角坐标系中,矩形ABCD的顶点A、D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y =(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0)、D(0,4),则反比例函数的解析式为.三、解答题:(16题6分,17题6分,18题7分,19题8分,20题9分,21题9分,22题10分,共计55分)16.解下列方程:(1)2(x﹣2)2=x2﹣4.(2)2x2﹣4x﹣1=0.17.甲、乙、丙、丁四位同学参加校田径运动会4×100米接力跑比赛,因为丁的速度最快,所以由他负责跑最后一棒,其他三位同学的跑步顺序随机安排.(1)请用画树状图或列表的方法表示甲、乙、丙三位同学所有的跑步顺序;(2)请求出正好由丙将接力棒交给丁的概率.18.如图,在菱形ABCD中,E为对角线BD上一点,且AE=DE,连接CE.(1)求证:CE=DE.(2)当BE=2,CE=1时,求菱形的边长.19.某商店准备销售一种多功能旅行背包,计划从厂家以每个30元的价格进货,经过市场发现当每个背包的售价为40元时,月均销量为280个,售价每增长2元,月均销量就相应减少20个.(1)若使这种背包的月均销量不低于130个,每个背包售价应不高于多少元?(2)在(1)的条件下,当该这种书包销售单价为多少元时,销售利润是3120元?(3)这种书包的销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由.20.如图,在平面直角坐标系中,直线y=3x+b经过点A(﹣1,0),与y轴正半轴交于B点,与反比例函数y=(x>0)交于点C,且BC=2AB,BD∥x轴交反比例函数y=(x>0)于点D,连接AD.(1)求b、k的值;(2)求△ABD的面积;(3)若E为射线BC上一点,设E的横坐标为m,过点E作EF∥BD,交反比例函数y=(x>0)的图象于点F,且EF=BD,求m的值.21.问题背景如图(1),在四边形ABCD中,∠B+∠D=180°,AB=AD,∠BAD=α,以点A为顶点作一个角,角的两边分别交BC,CD于点E,F,且∠EAF=α,连接EF,试探究:线段BE,DF,EF之间的数量关系.(1)特殊情景在上述条件下,小明增加条件“当∠BAD=∠B=∠D=90°时”如图(2),小明很快写出了:BE,DF,EF之间的数量关系为.(2)类比猜想类比特殊情景,小明猜想:在如图(1)的条件下线段BE,DF,EF之间的数量关系是否仍然成立?若成立,请你帮助小明完成证明;若不成立,请说明理由.(3)解决问题如图(3),在△ABC中,∠BAC=90°,AB=AC=4,点D,E均在边BC上,且∠DAE=45°,若BD=,请直接写出DE的长.22.(1)证明推断:如图(1),在正方形ABCD中,点E、Q分别在边BC、AB上,DQ⊥AE于点O,点G、F分别在边CD、AB上,GF⊥AE.①填空:DQ AE(填“>”“<”或“=”);②推断的值为;(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF折叠,使点A落在BC 边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP,当k=时,若=,GF=2,求CP的长.参考答案与试题解析一.选择题(共10小题)1.如图,这是由5个大小相同的正方体搭成的几何体,该几何体的左视图()A.B.C.D.【分析】找到从几何体的左边看所得到的图形即可.【解答】解:左视图有2列,每列小正方形数目分别为2,1.故选:A.2.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形【分析】根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.【解答】解:A、四个角相等的四边形是矩形,为真命题,故A选项不符合题意;B、对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;C、对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;D、对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.故选:C.3.在一个不透明的口袋中,装有若干个红球和3个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中红球的个数大约是()A.20个B.16个C.15个D.12个【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【解答】解:设红球有x个,根据题意得,3:(3+x)=1:5,解得x=12,经检验:x=12是原分式方程的解,所以估计盒子中红球的个数大约有12个,故选:D.4.一元二次方程x2+2x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先计算出根的判别式△的值,根据△的值就可以判断根的情况.【解答】解:∵在方程x2+2x﹣1=0中,△=22﹣4×1×(﹣1)=8>0,∴方程x2+2x﹣1=0有两个不相等的实数根.故选:A.5.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′位似比是1:2,已知△ABC的面积是10,则△A′B′C′的面积是()A.10B.20C.40D.80【分析】根据位似变换的性质得到△ABC∽△A′B′C′,根据相似三角形的面积比等于相似比的平方是解题的关键.【解答】解:∵△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′位似比是1:2,∴△ABC∽△A′B′C′,相似比为1:2,∴=()2=,∵△ABC的面积是10,∴△A′B′C′的面积是40,故选:C.6.关于反比例函数y=﹣,下列说法不正确的是()A.函数图象分别位于第二、四象限B.函数图象关于原点成中心对称C.函数图象经过点(﹣6,﹣2)D.当x<0时,y随x的增大而增大【分析】根据反比例函数图象上点的坐标特征对C进行判断;根据反比例函数的性质对A、B、D进行判断.【解答】解:反比例函数y=﹣,k=12<0,A、函数图象分别位于第二、四象限,故本选项说法正确;B、函数图象关于原点成中心对称,故本选项说法正确;C、函数图象经过点(﹣6,2),故本选项说法不正确;D、当k<0,双曲线的两支分别位于第二、四象限,在每一象限内y随x的增大而增大,故本选项说法正确;故选:C.7.如图.AB∥CD∥EF,AF、BE交于点G,下列比例式错误的是()A.B.C.D.【分析】根据平行线分线段成比例定理进行判断即可.【解答】解:A、由AB∥CD∥EF,则,所以A选项的结论正确;B、由AB∥CD∥EF,则,所以B选项的结论正确;C、由AB∥CD∥EF,则,所以C选项的结论正确;D、由AB∥CD∥EF,则,所以D选项的结论错误;故选:D.8.如图,已知点A是反比例函数y=(x>0)的图象上一点,AB∥x轴交另一个反比例函数y=(x>0)的图象于点B,C为x轴上一点,若S△ABC=2,则k的值为()A.4B.2C.3D.1【分析】由点A是反比例函数y=的图象上,可得S△AOD=3,根据等底同高的三角形面积相等可得S△AOB=S=2,进而求出S△BOD=1,再根据点B在反比例函数y=(x>0)的图象上,求出S△BOD=1,进而求出k △ACB的值.【解答】解:延长AB交y轴于点D,连接OA、OB,∵点A是反比例函数y=(x>0)的图象上,AB∥x轴,∴S△AOD=|k|=×6=3,S△AOB=S△ACB=2,∴S△BOD=S△AOD﹣S△AOB=3﹣2=1,又∵点B在反比例函数y=(x>0)的图象上,∴S△BOD=|k|=1,∴k=2,k=﹣2(舍去),故选:B.9.如图,在菱形ABCD中,对角线AC、BD交于点O,且AC=6,BD=8,过A点作AE垂直BC,交BC于点E,则的值为()A.B.C.D.【分析】利用菱形的性质即可计算得出BC的长,再根据面积法即可得到AE的长,最后根据勾股定理进行计算,即可得到BE的长,进而得出结论.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3,BO=BD=4,AO⊥BO,∴BC===5,∵S菱形ABCD=AC•BD=BC×AE,∴AE==.在Rt△ABE中,BE===,∴CE=BC﹣BE=5﹣=,∴的值为,故选:C.10.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下面四个结论:①CF=2AF;②AD=CD;③DF=DC;④△AEF∽△CAB;⑤S四边形CDEF=S△ABF.其中正确的结论有()A.2个B.3个C.4个D.5个【分析】依据△AEF∽△CBF,即可得出CF=2AF;依据△BAE∽△ADC,即可得到AD=CD;过D作DM ∥BE交AC于N,依据DM垂直平分CF,即可得出DF=DC;依据∠EAC=∠ACB,∠ABC=∠AFE=90°,即可得到△AEF∽△CAB;设△AEF的面积为s,则△ABF的面积为2s,△CEF的面积为2s,△CDE的面积为3s,四边形CDEF的面积为5s,进而得出S四边形CDEF=S△ABF.【解答】解:∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴=,∴CF=2AF,故①正确;设AE=a,AB=b,则AD=2a,∵BE⊥AC,∠BAD=90°,∴∠ABE=∠ADC,而∠BAE=∠ADC=90°,∴△BAE∽△ADC,∴,即b=a,∴AD=CD,故②正确;如图,过D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故④正确;如图,连接CE,由△AEF∽△CBF,可得,设△AEF的面积为s,则△ABF的面积为2s,△CEF的面积为2s,∴△ACE的面积为3s,∵E是AD的中点,∴△CDE的面积为3s,∴四边形CDEF的面积为5s,∴S四边形CDEF=S△ABF,故⑤正确.故选:D.二.填空题(共5小题)11.已知==,且a+b﹣2c=6,则a的值为12.【分析】直接利用已知比例式假设出a,b,c的值,进而利用a+b﹣2c=6,得出答案.【解答】解:∵==,∴设a=6x,b=5x,c=4x,∵a+b﹣2c=6,∴6x+5x﹣8x=6,解得:x=2,故a=12.故答案为:12.12.小王同学想利用树影测量校园内的树高.他在某一时刻测得小树高为1.5米时,其影长为1.2米,当他测量教学楼旁的一棵大树的影长时,因大树靠近教学楼,有一部分影子在墙上.经测量,地面部分影长为6.4米,墙上影长为1.4米,那么这棵大树高约为9.4米.【分析】根据在同一时刻,不同物体的物高和影长成比例计算.【解答】解:设这棵大树高为x,根据平行投影特点:在同一时刻,不同物体的物高和影长成比例.可得树高比影长为=1.25,则有==0.8,解可得:x=9.4米.13.设m、n是方程x2+x﹣1001=0的两个实数根,则m2+2m+n的值为1000.【分析】由于m、n是方程x2+x﹣1001=0的两个实数根,根据根与系数的关系可以得到m+n=﹣1,并且m2+m ﹣1001=0,然后把m2+2m+n可以变为m2+m+m+n,把前面的值代入即可求出结果【解答】解:∵m、n是方程x2+x﹣1001=0的两个实数根,∴m+n=﹣1,并且m2+m﹣1001=0,∴m2+m=1001,∴m2+2m+n=m2+m+m+n=1001﹣1=1000.故答案为:1000.14.如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠F AE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF =•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠F AE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.15.如图,在平面直角坐标系中,矩形ABCD的顶点A、D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y =(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0)、D(0,4),则反比例函数的解析式为y =.【分析】根据平行于x轴的直线上任意两点纵坐标相同,可设B(x,4).利用矩形的性质得出E为BD中点,∠DAB=90°.根据线段中点坐标公式得出E(x,4).由勾股定理得出AD2+AB2=BD2,列出方程22+42+(x ﹣2)2+42=x2,求出x,得到E点坐标,即可求得反比例函数的解析式.【解答】解:∵BD∥x轴,D(0,4),∴B、D两点纵坐标相同,都为4,∴可设B(x,4).∵矩形ABCD的对角线的交点为E,∴E为BD中点,∠DAB=90°.∴E(x,4).∵∠DAB=90°,∴AD2+AB2=BD2,∵A(2,0),D(0,4),B(x,4),∴22+42+(x﹣2)2+42=x2,解得x=10,∴E(5,4).∵反比例函数y=(k>0,x>0)的图象经过点E,∴k=5×4=20,∴反比例函数的解析式为y=故答案为y=.三.解答题16.解下列方程:(1)2(x﹣2)2=x2﹣4.(2)2x2﹣4x﹣1=0.【分析】(1)先移项得到2(x﹣2)2﹣(x﹣2)(x+2)=0,然后利用因式分解法解方程;(4)利用配方法解方程即可.【解答】解:(1)2(x﹣2)2﹣(x﹣2)(x+2)=0,(x﹣2)(2x﹣4﹣x﹣2)=0,所以x1=2,x2=6;(2)x2﹣2x=,x2﹣2x+1=+1,即(x﹣1)2=,∴x﹣1=±,所以x1=1+,x2=1﹣.17.甲、乙、丙、丁四位同学参加校田径运动会4×100米接力跑比赛,因为丁的速度最快,所以由他负责跑最后一棒,其他三位同学的跑步顺序随机安排.(1)请用画树状图或列表的方法表示甲、乙、丙三位同学所有的跑步顺序;(2)请求出正好由丙将接力棒交给丁的概率.【分析】(1)画树状图即可得出答案;(2)共有6个等可能的结果,正好由丙将接力棒交给丁的结果有2个,再由概率公式求解即可.【解答】解:(1)画树状图如图:(2)由(1)得:共有6个等可能的结果,正好由丙将接力棒交给丁的结果有2个,∴正好由丙将接力棒交给丁的概率为=.18.如图,在菱形ABCD中,E为对角线BD上一点,且AE=DE,连接CE.(1)求证:CE=DE.(2)当BE=2,CE=1时,求菱形的边长.【分析】(1)证△ABE≌△CBE(SAS),即可得出结论;(2)连接AC交BD于H,先由菱形的性质可得AH⊥BD,BH=DH,AH=CH,求出BH、EH的长,由勾股定理求出AH的长,再由勾股定理求出AB的长,即可得出结果.【解答】(1)证明:∵四边形ABCD是菱形,∴∠ABE=∠CBE,AB=CB,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE,∵AE=DE,∴CE=DE;(2)解:如图,连接AC交BD于H,∵四边形ABCD是菱形,∴AH⊥BD,BH=DH,AH=CH,∵CE=DE=AE=1,∴BD=BE+DE=2+1=3,∴BH=BD=,EH=BE﹣BH=2﹣=,在Rt△AHE中,由勾股定理得:AH===,在Rt△AHB中,由勾股定理得:AB===,∴菱形的边长为.19.某商店准备销售一种多功能旅行背包,计划从厂家以每个30元的价格进货,经过市场发现当每个背包的售价为40元时,月均销量为280个,售价每增长2元,月均销量就相应减少20个.(1)若使这种背包的月均销量不低于130个,每个背包售价应不高于多少元?(2)在(1)的条件下,当该这种书包销售单价为多少元时,销售利润是3120元?(3)这种书包的销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由.【分析】(1)设每个背包的售价为x元,则月均销量为(280﹣×20)个,根据月均销量不低于130个,即可得出关于x的一元一次不等式,解之取其最大值即可得出结论;(2)根据总利润=每个的利润×月均销量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(3)根据总利润=每个的利润×月均销量,即可得出关于x的一元二次方程,由根的判别式△=﹣36<0,即可得出这种书包的销售利润不能达到3700元.【解答】解:(1)设每个背包的售价为x元,则月均销量为(280﹣×20)个,依题意,得:280﹣×20≥130,解得:x≤55.答:每个背包售价应不高于55元.(2)依题意,得:(x﹣30)(280﹣×20)=3120,整理,得:x2﹣98x+2352=0,解得:x1=42,x2=56(不合题意,舍去).答:当该这种书包销售单价为42元时,销售利润是3120元.(3)依题意,得:(x﹣30)(280﹣×20)=3700,整理,得:x2﹣98x+2410=0.∵△=(﹣98)2﹣4×1×2410=﹣36<0,∴该方程无解,∴这种书包的销售利润不能达到3700元.20.如图,在平面直角坐标系中,直线y=3x+b经过点A(﹣1,0),与y轴正半轴交于B点,与反比例函数y=(x>0)交于点C,且BC=2AB,BD∥x轴交反比例函数y=(x>0)于点D,连接AD.(1)求b、k的值;(2)求△ABD的面积;(3)若E为射线BC上一点,设E的横坐标为m,过点E作EF∥BD,交反比例函数y=(x>0)的图象于点F,且EF=BD,求m的值.【分析】(1)作CH⊥y轴于点H,把点A坐标代入直线解析式中求出b,求出点B坐标,再用相似三角形的性质求出CH、BH,求出点C坐标,即可求出k;(2)先求出点D坐标,求出BD,根据三角形的面积公式计算,得到答案;(3)先求出EF=2,设出点E坐标,分0<m<2、m>2两种情况,表示出点F坐标,根据反比例函数图象上点的坐标特征建立方程求解,即可得出结论.【解答】解:(1)作CH⊥y轴于点H,∵直线y=3x+b经过点A(﹣1,0),∴﹣1×3+b=0,解得,b=3,对于直线y=3x+3,当x=0时,x=3,∴点B的坐标为(0,3),即OB=3,∵CH∥OA,∴△AOB∽△CHB,∴==,即==,解得,CH=2,BH=6,∴OH=OB+BH=9,∴点C的坐标为(2,9),∴k=2×9=18;(2)∵BD∥x轴,∴点D的纵坐标为3,∴点D的横坐标为=6,即BD=6,∴△ABD的面积=×6×3=9;(3)EF=BD=×6=2,设E(m,3m+3),当0<m<2时,点F的坐标为(m+2,3m+3),∵点F在反比例函数y=上,∴(m+2)(3m+3)=18,解得,m1=﹣4(舍去),m2=1,当m>2时,点F的坐标为(m﹣2,3m+3),∵点F在反比例函数y=上,∴(m﹣2)(3m+3)=18,解得,m3=(舍去),m4=,综上所述,m的值为1或.21.问题背景如图(1),在四边形ABCD中,∠B+∠D=180°,AB=AD,∠BAD=α,以点A为顶点作一个角,角的两边分别交BC,CD于点E,F,且∠EAF=α,连接EF,试探究:线段BE,DF,EF之间的数量关系.(1)特殊情景在上述条件下,小明增加条件“当∠BAD=∠B=∠D=90°时”如图(2),小明很快写出了:BE,DF,EF之间的数量关系为BE+DF=EF.(2)类比猜想类比特殊情景,小明猜想:在如图(1)的条件下线段BE,DF,EF之间的数量关系是否仍然成立?若成立,请你帮助小明完成证明;若不成立,请说明理由.(3)解决问题如图(3),在△ABC中,∠BAC=90°,AB=AC=4,点D,E均在边BC上,且∠DAE=45°,若BD=,请直接写出DE的长.【分析】(1)将△ABE绕点A逆时针旋转90°,得到△ADG,据此知AE=AG,BE=DG,∠BAE=∠DAG.证△AFE≌△AFG得EF=FG,从而得出答案;(2)将△ABE绕点A逆时针旋转α得到△ADH,知∠ABE=∠ADH,∠BAE=∠DAH,AE=AH,BE=DH,证△AEF≌△AHF得EF=FH=DF+DH=DF+BE;(3)将△AEC绕点A顺时针旋转90°,得到△AE′B,连接DE′.据此知BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,由AB=AC=4知∠ABC+∠ABE′=90°,即∠E′BD=90°,从而得E′B2+BD2=E′D2.易证△AE′D≌△AED得DE=DE′,根据DE2=BD2+EC2可得答案.【解答】解:(1)BE+DF=EF,如图1,将△ABE绕点A逆时针旋转90°,得到△ADG,∵∠ADC=∠B=∠ADG=90°,∴∠FDG=180°,即点F,D,G共线.由旋转可得AE=AG,BE=DG,∠BAE=∠DAG.∵∠BAE+∠DAF=∠BAD﹣∠EAF=90°﹣45°=45°,∴∠DAG+∠DAF=45°,∴∠EAF=∠F AG,∴△AFE≌△AFG(SAS),∴EF=FG.又∵FG=DG+DF=BE+DF,∴BE+DF=EF,故答案为:BE+DF=EF.(2)成立.证明:如图2,将△ABE绕点A逆时针旋转α得到△ADH,可得∠ABE=∠ADH,∠BAE=∠DAH,AE=AH,BE=DH.∵∠B+∠ADC=180°,∴∠ADH+∠ADC=180°,∴点C,D,H在同一直线上.∵∠BAD=α,∠EAF=α,∴∠BAE+∠F AD=α,∴∠DAH+∠F AD=α,∴∠F AH=∠EAF,又∵AF=AF,∴△AEF≌△AHF(SAS),∴EF=FH=DF+DH=DF+BE;(3)DE=,如图3,将△AEC绕点A顺时针旋转90°,得到△AE′B,连接DE′.可得BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,在Rt△ABC中,∵AB=AC=4,∴∠ABC=∠ACB=45°,BC=4,∴∠ABC+∠ABE′=90°,即∠E′BD=90°,∴E′B2+BD2=E′D2.易证△AE′D≌△AED,∴DE=DE′,∴DE2=BD2+EC2,即DE2=,解得.22.(1)证明推断:如图(1),在正方形ABCD中,点E、Q分别在边BC、AB上,DQ⊥AE于点O,点G、F分别在边CD、AB上,GF⊥AE.①填空:DQ=AE(填“>”“<”或“=”);②推断的值为1;(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF折叠,使点A落在BC 边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP,当k=时,若=,GF=2,求CP的长.【分析】(1)①由正方形的性质得AB=DA,∠ABE=90°=∠DAH.所以∠HAO+∠OAD=90°,又知∠ADO+∠OAD=90°,所以∠HAO=∠ADO,于是△ABE≌△DAH,可得AE=DQ.②证明四边形DQFG是平行四边形即可解决问题.(2)结论:=k.如图2中,作GM⊥AB于M.证明:△ABE∽△GMF即可解决问题.(3)如图2中,作PM⊥BC交BC的延长线于M.利用相似三角形的性质求出PM,CM即可解决问题.【解答】(1)①解:∵四边形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DQ,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.故答案是:=;②解:∵DQ⊥AE,FG⊥AE,∴DQ∥FG,∵FQ∥DG,∴四边形DQFG是平行四边形,∴FG=DQ,∵AE=DQ,∴FG=AE,∴=1.故答案为:1.(2)解:结论:=k.理由:如图2中,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,∴∠BAE=∠FGM,∴△ABE∽△GMF,∴=,∵∠AMG=∠D=∠DAM=90°,∴四边形AMGD是矩形,∴GM=AD,∴===k.(3)解:如图2中,作PM⊥BC交BC的延长线于M.由=,可以假设BE=3k,BF=4k,EF=AF=5k,∵=,FG=2,∴AE=3,∴(3k)2+(9k)2=(3)2,∴k=1或﹣1(舍弃),∴BE=3,AB=9,∵BC:AB=2:3,∴BC=6,∴BE=CE=3,AD=PE=BC=6,∵∠EBF=∠FEP=∠PME=90°,∴∠FEB+∠PEM=90°,∠PEM+∠EPM=90°,∴∠FEB=∠EPM,∴△FBE∽△EMP,∴==,∴==,∴EM=,PM=,∴CM=EM﹣EC=﹣3=,∴PC==.。

2020-2021学年甘肃省金昌市龙门学校九年级(上)期末数学试卷(word,解析版)

2020-2021学年甘肃省金昌市龙门学校九年级(上)期末数学试卷(word,解析版)

2020-2021学年甘肃省金昌市龙门学校九年级(上)期末数学试卷一、选择题:(每小题3分,共30分)1.(3分)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.2.(3分)一元二次方程x2+2x+3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定3.(3分)若将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是()A.y=2(x﹣1)2﹣3B.y=2(x﹣1)2+3C.y=2(x+1)2﹣3D.y=2(x+1)2+34.(3分)下列事件中是不可能事件的是()A.三角形内角和小于180°B.两实数之和为正C.买体育彩票中奖D.抛一枚硬币2次都正面朝上5.(3分)若函数为反比例函数,则m=()A.1B.0C.0或﹣1D.﹣16.(3分)如果两个相似三角形的相似比为3:2,那么它们的面积比是()A.2:3B.3:2C.9:4D.4:97.(3分)如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3B.2.5C.4D.3.58.(3分)如图,AB是⊙O的直径,点C,D在⊙O上.若∠D=50°,则∠BAC等于()A.25°B.40°C.50°D.55°9.(3分)若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x1<x3C.x2<x3<x1D.x3<x2<x1 10.(3分)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2B.3:1C.1:1D.1:2二、填空题:(每小题4分,共32分.)11.(4分)已知反比例函数(k是常数,k≠1)的图象有一支在第四象限,那么k 的取值范围是.12.(4分)已知一个正六边形的半径为5,则这个正六边形的边长是.13.(4分)如果,那么=.14.(4分)若两个相似三角形对应边的比为3:5,则它们周长的比为.15.(4分)已知扇形的圆心角为90°,半径为6cm,则用该扇形围成的圆锥的侧面积为cm.16.(4分)二次函数y=ax2+bx+c的图象如图所示,则方程ax2+bx+c=0的两根为.17.(4分)一个不透明的袋子中,装有除颜色外完全相同的10个球,其中2个红球,3个绿球,5个黄球,若从中随机摸出一个球,摸到黄球的概率是.18.(4分)如图,A为反比例函数图象上一点,AB垂直x轴于点B,若S△AOB=5,则k=.三、解答题(共88分)19.(6分)如图是一块残缺的圆轮片,点A、B、C在上,请用尺规作图法作出所在的⊙O.(保留作图痕迹,不写作法)20.(8分)已知:如图,DE∥BC交BA的延长线于D,交CA的延长线于E,AD=4,DB =12,DE=3.求BC的长.21.(8分)已知函数y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y=5.(1)求y与x的函数关系式;(2)当x=﹣2时,求函数y的值.22.(8分)一次函数y=kx+b(k≠0)与反比例函数y=(k≠0)的图象交于A(﹣2,1),B(1,n)两点.求:(1)△ABO的面积;(2)根据图象,直接写出满足kx+b>的解集.23.(8分)如图,甲、乙两人在玩转盘游戏时,准备了两个可以自由转动的转盘A,B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,甲获胜;数字之和为1时,乙获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止.(1)用画树状图或列表法求乙获胜的概率;(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由.24.(10分)如图,小华在地面上放置一个平面镜E来测量铁塔AB的高度,镜子与铁塔的距离EB=20m,镜子与小华的距离ED=2m时,小华刚好从镜子中看到铁塔顶端点A.已知小华的眼睛距地面的高度CD=1.5m,求:铁塔AB的高度.25.(10分)如图,在△ABC中,∠A=90°,AB=AC=2,⊙O是的内切圆,它与AB、BC、CA分别相切于点D、E、F.求⊙O的半径.26.(10分)如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.求证:(1)∠PBC=∠CBD;(2)BC2=AB•BD.27.(10分)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若∠CAB=120°,⊙O的半径等于5,求线段BC的长.28.(10分)抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线与y轴交于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.2020-2021学年甘肃省金昌市龙门学校九年级(上)期末数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分)1.(3分)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称的定义得出结论即可.【解答】解:由题意知,A、C选项中的图形是轴对称图形,D选项中的图形既不是轴对称也不是中心对称图形,B选项是中心对称图形,故选:B.2.(3分)一元二次方程x2+2x+3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【分析】根据方程的系数结合根的判别式即可得出Δ=﹣8<0,由此即可得出结论.【解答】解:∵在方程x2+2x+3=0中,Δ=22﹣4×1×3=﹣8<0,∴该方程无解.故选:C.3.(3分)若将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是()A.y=2(x﹣1)2﹣3B.y=2(x﹣1)2+3C.y=2(x+1)2﹣3D.y=2(x+1)2+3【分析】易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【解答】解:原抛物线的顶点为(0,0),向左平移1个单位,再向上平移3个单位,那么新抛物线的顶点为(﹣1,3);可设新抛物线的解析式为y=(x﹣h)2+k,代入得:y=2(x+1)2+3,故选:D.4.(3分)下列事件中是不可能事件的是()A.三角形内角和小于180°B.两实数之和为正C.买体育彩票中奖D.抛一枚硬币2次都正面朝上【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、三角形的内角和小于180°是不可能事件,故A符合题意;B、两实数之和为正是随机事件,故B不符合题意;C、买体育彩票中奖是随机事件,故C不符合题意;D、抛一枚硬币2次都正面朝上是随机事件,故D不符合题意;故选:A.5.(3分)若函数为反比例函数,则m=()A.1B.0C.0或﹣1D.﹣1【分析】根据反比例y=kx﹣1(k≠0)的定义解答即可.【解答】解:∵函数为反比例函数,∴m2+m=0,m≠0,∴m=﹣1.故选:D.6.(3分)如果两个相似三角形的相似比为3:2,那么它们的面积比是()A.2:3B.3:2C.9:4D.4:9【分析】根据相似三角形的面积比等于相似比的平方解决问题即可.【解答】解:∵两个相似三角形的相似比是3:2,∴这两个相似三角形的面积比=9:4,故选:C.7.(3分)如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3B.2.5C.4D.3.5【分析】连接OA,根据垂径定理得到AP=AB,利用勾股定理得到答案.【解答】解:连接OA,∵AB⊥OP,∴AP==3,∠APO=90°,又OA=5,∴OP===4,故选:C.8.(3分)如图,AB是⊙O的直径,点C,D在⊙O上.若∠D=50°,则∠BAC等于()A.25°B.40°C.50°D.55°【分析】求出∠ABC,证明∠ACB=90°即可解决问题.【解答】解:∵AB是直径,∴∠ACB=90°,∵∠ABC=∠ADC=50°,∴∠BAC=90°﹣50°=40°,故选:B.9.(3分)若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x1<x3C.x2<x3<x1D.x3<x2<x1【分析】根据反比例函数图象上点的坐标特征,将A、B、C三点的坐标代入反比例函数的解析式y=,分别求得x1,x2,x3的值,然后再来比较它们的大小.【解答】解:∵点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=的图象上,∴x1=﹣2,x2=﹣6,x3=6;又∵﹣6<﹣2<6,∴x2<x1<x3;故选:B.10.(3分)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2B.3:1C.1:1D.1:2【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.二、填空题:(每小题4分,共32分.)11.(4分)已知反比例函数(k是常数,k≠1)的图象有一支在第四象限,那么k 的取值范围是k<2.【分析】由于反比例函数y=的图象有一支在第二象限,可得k﹣1<0,求出k的取值范围即可.【解答】解:∵反比例函数y=的图象有一支在第二象限,∴k﹣2<0,解得k<2.故答案为:k<2.12.(4分)已知一个正六边形的半径为5,则这个正六边形的边长是5.【分析】根据正六边形的特点,通过连接半径,结合等腰三角形的有关知识解决.【解答】解:如图,连接OA、OB.∴OA=OB=5,∠AOB=60°,∴AB=5,故答案为:5.13.(4分)如果,那么=.【分析】由,可设x=2k,y=3k,z=4k,代入,即可求得答案.【解答】解:∵,∴设x=2k,y=3k,z=4k,∴==.故答案为:.14.(4分)若两个相似三角形对应边的比为3:5,则它们周长的比为3:5.【分析】根据相似三角形对应边的比叫相似比,周长的比等于相似比解答.【解答】解:∵两个相似三角形对应边的比为3:5,∴两个相似三角形的相似比为3:5,∴它们周长比为3:5.故答案为:3:5.15.(4分)已知扇形的圆心角为90°,半径为6cm,则用该扇形围成的圆锥的侧面积为9πcm.【分析】利用圆锥的侧面展开图为一扇形和扇形的面积公式计算.【解答】解:该扇形围成的圆锥的侧面积==9π(cm2).故答案为9π.16.(4分)二次函数y=ax2+bx+c的图象如图所示,则方程ax2+bx+c=0的两根为x1=﹣1,x2=3.【分析】结合图象得到抛物线与x轴的一交点坐标为(﹣1,0),对称轴方程为x=1,则抛物线与x轴的另一交点坐标与(﹣1,0)关于直线x=1对称.【解答】解:∵抛物线与x轴的一交点坐标为(﹣1,0),对称轴方程为x=1,∴抛物线与x轴的另一交点坐标与(﹣1,0)关于直线x=1对称,∴抛物线与x轴的另一交点坐标(3,0).∴方程ax2+bx+c=0的两根为:x1=﹣1,x2=3.故答案是:x1=﹣1,x2=3.17.(4分)一个不透明的袋子中,装有除颜色外完全相同的10个球,其中2个红球,3个绿球,5个黄球,若从中随机摸出一个球,摸到黄球的概率是0.5.【分析】利用概率公式即可求得答案.【解答】解:摸到黄球的概率为:=0.5.故答案为:0.5.18.(4分)如图,A为反比例函数图象上一点,AB垂直x轴于点B,若S△AOB=5,则k=﹣10.【分析】利用三角形的面积表示出点A的横纵坐标的积,进而根据点A所在象限得到k 的值.【解答】解:设A的坐标为(x,y),∵S△AOB=5,∴|xy|=5,∴|xy|=10,∵点A在第二象限,∴k=xy=﹣10,故答案为﹣10.三、解答题(共88分)19.(6分)如图是一块残缺的圆轮片,点A、B、C在上,请用尺规作图法作出所在的⊙O.(保留作图痕迹,不写作法)【分析】因为点A、B、C在上,所以线段AB、BC是所在的⊙O的两条弦,而弦的垂直平分线经过圆心,则作出AB、BC的垂直平分线的交点即可得到所求的圆的圆心,连接圆心和点C得到的线段就是该圆的一条半径,即可作出这个圆.【解答】解:如图,分别作AB、BC的垂直平分线MN、PQ交于点O,连接OC,以O 为圆心、OC长为半径作圆,⊙O所在的圆.理由:∵点A、B、C在上,∴AB、BC是所在的⊙O的两条弦,∴⊙O的圆心在AB的垂直平分线上,也在BC的垂直平分线上,∴AB、BC的垂直平分线的交点就是⊙O的圆心,∴以O为圆心,以OC为半径的圆是所在的⊙O.20.(8分)已知:如图,DE∥BC交BA的延长线于D,交CA的延长线于E,AD=4,DB =12,DE=3.求BC的长.【分析】由DE∥BC得到∠B=∠D,∠C=∠E,根据相似三角形的判定得到△ABC∽△ADE,利用相似的性质得,而AD=4,DB=12,DE=3,则AB=DB﹣AD,然后代入进行计算即可得到BC的长.【解答】解:∵DE∥BC,∴∠B=∠D,∠C=∠E,∴△ABC∽△ADE,∴,∵AD=4,DB=12,DE=3∴,∴BC=6.21.(8分)已知函数y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y=5.(1)求y与x的函数关系式;(2)当x=﹣2时,求函数y的值.【分析】(1)首先根据y1与x成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y=5,求出y1和y2与x的关系式,进而求出y与x的关系式,(2)根据(1)问求出的y与x之间的关系式,令x=﹣2,即可求出y的值.【解答】解:(1)由题意,设y1=k1x(k1≠0),y2=(k2≠0),则y=k1x+,因为当x=1时,y=4;当x=2时,y=5,所以有解得k1=2,k2=2.因此y=2x+.(2)当x=﹣2时,y=2×(﹣2)﹣1=﹣5.22.(8分)一次函数y=kx+b(k≠0)与反比例函数y=(k≠0)的图象交于A(﹣2,1),B(1,n)两点.求:(1)△ABO的面积;(2)根据图象,直接写出满足kx+b>的解集.【分析】(1)根据题意可以求得k的值,从而可以求得点B的坐标,求出直线AB的解析式,得到点C的坐标,从而可以求得△ABO的面积;(2)观察图象求得即可.【解答】解:(1)∵反比例函数y=(k≠0)的图象过点A(﹣2,1),B(1,n)两点,∴k=﹣2×1=1×n,∴k=﹣2,n=﹣2,∴点B(1,﹣2),∵一次函数y=kx+b(k≠0)过点A(﹣2,1),点B(1,﹣2),∴,解得,∴y=﹣x﹣1,当y=0时,0=﹣x﹣1,得x=﹣1,∴y=﹣x﹣1与x轴的交点C为(﹣1,0),∵点A(﹣2,1),点B(1,﹣2),∴△ABO的面积是+=;(2)由图象可知,kx+b>的解集为x<﹣2或0<x<1.23.(8分)如图,甲、乙两人在玩转盘游戏时,准备了两个可以自由转动的转盘A,B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,甲获胜;数字之和为1时,乙获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止.(1)用画树状图或列表法求乙获胜的概率;(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出甲乙获胜的概率,比较即可.【解答】解:(1)列表:由列表法可知:会产生12种结果,它们出现的机会相等,其中和为1的有3种结果.∴P(乙获胜)=;(2)公平.∵P(乙获胜)=,P(甲获胜)=.∴P(乙获胜)=P(甲获胜)∴游戏公平.24.(10分)如图,小华在地面上放置一个平面镜E来测量铁塔AB的高度,镜子与铁塔的距离EB=20m,镜子与小华的距离ED=2m时,小华刚好从镜子中看到铁塔顶端点A.已知小华的眼睛距地面的高度CD=1.5m,求:铁塔AB的高度.【分析】根据反射定律可以推出∠1=∠2,所以可得△BAE∽△DCE,再根据相似三角形的性质解答.【解答】解:结合光的反射原理得:∠CED=∠AEB.在Rt△CED和Rt△AEB中,∵∠CDE=∠ABE=90°,∠CED=∠AEB,∴Rt△CED∽Rt△AEB,∴,即,解得AB=15(m).答:铁塔AB的高度是15m.25.(10分)如图,在△ABC中,∠A=90°,AB=AC=2,⊙O是的内切圆,它与AB、BC、CA分别相切于点D、E、F.求⊙O的半径.【分析】首先连接OD、OE,进而利用切线的性质得出∠ODA=∠OF A=∠A=90°,进而得出四边形ODAF是正方形,再利用勾股定理求出⊙O的半径.【解答】解:连接OD、OE,∵⊙O是△ABC的内切圆,切点为D、E、F,∴∠ODA=∠OF A=∠A=90°,又∵OD=OF,∴四边形ODAF是正方形,设OD=AD=AF=r,则BE=BD=CF=CE=2﹣r,在△ABC中,∠A=90°,∴BC==2,又∵BC=BE+CE,∴(2﹣r)+(2﹣r)=2,得:r=2﹣,∴⊙O的半径是2﹣.26.(10分)如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.求证:(1)∠PBC=∠CBD;(2)BC2=AB•BD.【分析】(1)连接OC,由PC为圆O的切线,利用切线的性质得到OC垂直于PC,再由BD垂直于PD,得到一对直角相等,利用同位角相等两直线平行得到OC与BD平行,进而得到一对内错角相等,再由OB=OC,利用等边对等角得到一对角相等,等量代换即可得证;(2)连接AC,由AB为圆O的直径,利用圆周角定理得到∠ACB为直角,利用两对角相等的三角形相似得到三角形ABC与三角形CBD相似,利用相似三角形对应边成比例,变形即可得证.【解答】证明:(1)连接OC,∵PC与圆O相切,∴OC⊥PC,即∠OCP=90°,∵BD⊥PD,∴∠BDP=90°,∴∠OCP=∠PDB,∴OC∥BD,∴∠BCO=∠CBD,∵OB=OC,∴∠PBC=∠BCO,∴∠PBC=∠CBD;(2)连接AC,∵AB为圆O的直径,∴∠ACB=90°,∴∠ACB=∠CDB=90°,∵∠ABC=∠CBD,∴△ABC∽△CBD,∴=,则BC2=AB•BD.27.(10分)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若∠CAB=120°,⊙O的半径等于5,求线段BC的长.【分析】(1)先连接OD、AD,由于AB是直径以及AB=AC,易证BD=CD,而OA=OB,从而可知OD是△ABC的中位线,那么OD∥AC,再结合DE⊥AC,易证∠ODE=∠CED=90°,即DE是⊙O的切线;(2)由⊙O半径是5,可知AB=10,而△ABC是等腰三角形,且AD⊥BC,利用等腰三角形三线合一定理可知∠CAD=∠BAD=60°,在Rt△ADB中,易求BD,进而可求BC.【解答】解:如右图所示,连接OD、AD.∵AB是直径,∴∠BDA=∠CDA=90°,又∵AB=AC,∴BD=CD,∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴∠ODE=∠CED=90°,∴DE是⊙O的切线;(2)∵⊙O半径是5,∴AB=10,∵△ABC是等腰三角形,且AD⊥BC,∴∠CAD=∠BAD=60°,在Rt△ADB中,BD=sin60°•AB=5,∴BC=10.28.(10分)抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线与y轴交于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.【分析】(1)将点A、点B的坐标代入可求出b、c的值,继而可得出该抛物线的解析式;(2)连接BC,则BC与对称轴的交点,即是点Q的位置,求出直线BC的解析式后,可得出点Q的坐标.【解答】解(1)把A(1,0)、B(﹣3,0)代入抛物线解析式可得:,解得:故抛物线的解析式为y=﹣x2﹣2x+3.(2)存在.由题意得,点B与点A关于抛物线的对称轴对称,连接BC,则BC与抛物线对称轴的交点是点Q的位置,设直线BC解析式为y=kx+b,把B(﹣3,0)、C(0,3)代入得:,解得:,则直线BC的解析式为y=x+3,令Q X=﹣1 得Q y=2,故点Q的坐标为:(﹣1,2).。

九年级上册合肥数学期末试卷测试卷(含答案解析)

九年级上册合肥数学期末试卷测试卷(含答案解析)
A.(6,0)B.(6,3)C.(6,5)D.(4,2)
11.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,下列结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若B(﹣5,y1)、C(﹣1,y2)为函数图象上的两点,则y1<y2.其中正确结论是()
A.②④B.①③④C.①④D.②③
12.已知抛物线与二次函数 的图像相同,开口方向相同,且顶点坐标为 ,它对应的函数表达式为()
A. B.
C. D.
二、填空题
13.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的解,则此三角形的周长是_____.
14.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是_____cm2.
18.如图,在 中, , , ,则 的长为________.
19.二次函数 的图象如图所示,若点 , 是图象上的两点,则 ____ (填“>”、“<”、“=”).
20.已知正方形ABCD边长为4,点P为其所在平面内一点,PD= ,∠BPD=90°,则点A到BP的距离等于_____.
21.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.
28.如图,直线y=kx+b(b>0)与抛物线y= x2相交于点A(x1,y1),B(x2,y2)两点,与x轴正半轴相交于点D,于y轴相交于点C,设∆OCD的面积为S,且kS+8=0.
(1)求b的值.
(2)求证:点(y1,y2)在反比例函数y= 的图像上.
29.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.

九年级数学全册期末复习试卷测试与练习(word解析版)

九年级数学全册期末复习试卷测试与练习(word解析版)

九年级数学全册期末复习试卷测试与练习(word解析版)一、选择题1.在半径为3cm的⊙O中,若弦AB=32,则弦AB所对的圆周角的度数为()A.30°B.45°C.30°或150°D.45°或135°2.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是()A.13B.512C.12D.13.函数y=mx2+2x+1的图像与x轴只有1个公共点,则常数m的值是()A.1 B.2 C.0,1 D.1,24.如图,AB是⊙O的弦,半径OC⊥AB,D为圆周上一点,若BC的度数为50°,则∠ADC 的度数为()A.20°B.25°C.30°D.50°5.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段AC 的长为()A.43B.42C.6 D.46.下列方程有两个相等的实数根是()A.x2﹣x+3=0 B.x2﹣3x+2=0 C.x2﹣2x+1=0 D.x2﹣4=07.如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确...的是( )A.12DE BC=B.AD AEAB AC=C.△ADE∽△ABCD.:1:2ADE ABCS S=8.已知点O是△ABC的外心,作正方形OCDE,下列说法:①点O是△AEB的外心;②点O是△ADC的外心;③点O是△BCE的外心;④点O是△ADB的外心.其中一定不成立的说法是()A.②④B.①③C.②③④D.①③④9.函数y=(x+1)2-2的最小值是()A.1 B.-1 C.2 D.-210.下列图形,是轴对称图形,但不是中心对称图形的是()A.B.C.D.11.如图,点A、B、C均在⊙O上,若∠AOC=80°,则∠ABC的大小是()A.30°B.35°C.40°D.50°12.方程2x x的解是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=-1 13.已知⊙O的直径为4,点O到直线l的距离为2,则直线l与⊙O的位置关系是A.相交B.相切C.相离D.无法判断14.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是()A.35B.38C.58D.3415.如图,△ABC中,∠C=90°,∠B=30°,AC=7,D、E分别在边AC、BC上,CD =1,DE∥AB,将△CDE绕点C旋转,旋转后点D、E对应的点分别为D′、E′,当点E′落在线段AD′上时,连接BE′,此时BE′的长为()A.23B.33C.27D.37二、填空题16.如图,已知正六边形内接于O,若正六边形的边长为2,则图中涂色部分的面积为______.17.若圆锥的底面半径为3cm,高为4cm,则它的侧面展开图的面积为_____cm2.18.如图,二次函数y=ax2+bx+c的图像过点A(3,0),对称轴为直线x=1,则方程ax 2+bx +c =0的根为____.19.如图,在Rt △ABC 中,BC AC ⊥,CD 是AB 边上的高,已知AB =25,BC =15,则BD =__________.20.若关于x 的一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______.21.如图,直线l 1∥l 2∥l 3,A 、B 、C 分别为直线l 1,l 2,l 3上的动点,连接AB ,BC ,AC ,线段AC 交直线l 2于点D .设直线l 1,l 2之间的距离为m ,直线l 2,l 3之间的距离为n ,若∠ABC =90°,BD =3,且12m n =,则m +n 的最大值为___________.22.如图,圆锥的底面半径OB =6cm ,高OC =8cm ,则该圆锥的侧面积是_____cm 2.23.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.24.二次函数2y x bx c =-++的部分图像如图所示,要使函数值3y >,则自变量x 的取值范围是_______.25.若m 是关于x 的方程x 2-2x-3=0的解,则代数式4m-2m 2+2的值是______. 26.如图,在由边长为1的小正方形组成的网格中.点 A ,B ,C ,D 都在这些小正方形的格点上,AB 、CD 相交于点E ,则sin ∠AEC 的值为_____.27.如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_____.28.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x … -1 0123 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.29.如图,圆形纸片⊙O 半径为 52,先在其内剪出一个最大正方形,再在剩余部分剪出 4个最大的小正方形,则 4 个小正方形的面积和为_______.30.若二次函数24y x x =-的图像在x 轴下方的部分沿x 轴翻折到x 轴上方,图像的其余部分保持不变,翻折后的图像与原图像x 轴上方的部分组成一个形如“W ”的新图像,若直线y =-2x +b 与该新图像有两个交点,则实数b 的取值范围是__________三、解答题31.已知关于x 的一元二次方程(a ﹣1)x 2﹣2x +1=0有两个不相等的实数根,求a 的取值范围.32.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.33.如图,AB 是⊙O 的直径,D 是弦AC 的延长线上一点,且CD =AC ,DB 的延长线交⊙O 于点E .(1)求证:CD =CE ;(2)连结AE ,若∠D =25°,求∠BAE 的度数.34.如图,已知一次函数3y x =-+分别交x 、y 轴于A 、B 两点,抛物线2y x bx c =-++经过A 、B 两点,与x 轴的另一交点为C .(1)求b 、c 的值及点C 的坐标;(2)动点P 从点O 出发,以每秒1个单位长度的速度向点A 运动,过P 作x 轴的垂线交抛物线于点D ,交线段AB 于点E .设运动时间为(0)t t >秒. ①当t 为何值时,线段DE 长度最大,最大值是多少?(如图1)②过点D 作DF AB ⊥,垂足为F ,连结BD ,若BOC 与BDF 相似,求t 的值(如图2)35.如图示,AB是O的直径,点F是半圆上的一动点(F不与A,B重合),弦⊥交射线AF于点AF.∠,过点D作DE AFAD平分BAF(1)求证:DE 与O 相切:(2)若8AE =,10AB =,求DE 长;(3)若10AB =,AF 长记为x ,EF 长记为y ,求y 与x 之间的函数关系式,并求出AF EF ⋅的最大值. 四、压轴题36.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点B 的坐标为(3,4),一次函数23y x b =-+的图像与边OC 、AB 分别交于点D 、E ,并且满足OD BE =,M 是线段DE 上的一个动点 (1)求b 的值;(2)连接OM ,若ODM △的面积与四边形OAEM 的面积之比为1:3,求点M 的坐标; (3)设N 是x 轴上方平面内的一点,以O 、D 、M 、N 为顶点的四边形是菱形,求点N 的坐标.37.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 3C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围. 38.问题发现:(1)如图①,正方形ABCD 的边长为4,对角线AC 、BD 相交于点O ,E 是AB 上点(点E 不与A 、B 重合),将射线OE 绕点O 逆时针旋转90°,所得射线与BC 交于点F ,则四边形OEBF 的面积为 . 问题探究:(2)如图②,线段BQ =10,C 为BQ 上点,在BQ 上方作四边形ABCD ,使∠ABC =∠ADC =90°,且AD =CD ,连接DQ ,求DQ 的最小值; 问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD 中,∠ABC =∠ADC =90°,AD =CD ,AC =600米.其中AB 、BD 、BC 为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB +BD +BC 的最大值.39.如图,已知AB 是⊙O 的直径,AB =8,点C 在半径OA 上(点C 与点O 、A 不重合),过点C 作AB 的垂线交⊙O 于点D ,连结OD ,过点B 作OD 的平行线交⊙O 于点E 、交射线CD 于点F .(1)若ED =BE ,求∠F 的度数:(2)设线段OC =a ,求线段BE 和EF 的长(用含a 的代数式表示); (3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长. 40.矩形ABCD 中,AB =2,AD =4,将矩形ABCD 绕点C 顺时针旋转至矩形EGCF (其中E 、G 、F 分别与A 、B 、D 对应).(1)如图1,当点G 落在AD 边上时,直接写出AG 的长为 ;(2)如图2,当点G落在线段AE上时,AD与CG交于点H,求GH的长;(3)如图3,记O为矩形ABCD对角线的交点,S为△OGE的面积,求S的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意画出图形,连接OA和OB,根据勾股定理的逆定理得出∠AOB=90°,再根据圆周角定理和圆内接四边形的性质求出即可.【详解】解:如图所示,连接OA,OB,则OA=OB=3,∵AB=2,∴OA2+OB2=AB2,∴∠AOB=90°,∴劣弧AB的度数是90°,优弧AB的度数是360°﹣90°=270°,∴弦AB对的圆周角的度数是45°或135°,故选:D.【点睛】此题主要考查圆周角的求解,解题的关键是根据图形求出圆心角,再得到圆周角的度数. 2.C解析:C【解析】【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案.【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴红灯的概率是:301 302552=++.故答案为:C.【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键.3.C解析:C【解析】【分析】分两种情况讨论,当m=0和m≠0,函数分别为一次函数和二次函数,由抛物线与x轴只有一个交点,得到根的判别式的值等于0,列式求解即可.【详解】解:①若m=0,则函数y=2x+1,是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1,是二次函数.根据题意得:b2-4ac=4-4m=0,解得:m=1.∴m=0或m=1故选:C.【点睛】本题考查了一次函数的性质与抛物线与x轴的交点,抛物线与x轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.4.B解析:B【解析】【分析】利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到=AC BC,然后根据圆周角定理计算∠ADC的度数.【详解】∵BC的度数为50°,∴∠BOC=50°,∵半径OC ⊥AB ,∴=AC BC ,∴∠ADC=12∠BOC=25°. 故选B .【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理. 5.B解析:B【解析】【分析】由已知条件可得ABC DAC ~,可得出AC BC DC AC =,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BC DC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=, 故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答. 6.C解析:C【解析】【分析】先根据方程求出△的值,再根据根的判别式的意义判断即可.【详解】A 、x 2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根,故本选项不符合题意;B 、x 2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故本选项不符合题意;C 、x 2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,所以方程有两个相等的实数根,故本选项符合题意;D 、x 2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意; 故选:C.【点睛】本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.7.D解析:D【解析】∵在△ABC 中,点D 、E 分别是AB 、AC 的中点,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC ,AD AE AB AC =, ∴21()4ADEABC S DE S BC ==. 由此可知:A 、B 、C 三个选项中的结论正确,D 选项中结论错误.故选D.8.A解析:A【解析】【分析】根据三角形的外心得出OA=OC=OB ,根据正方形的性质得出OA=OC <OD ,求出OA=OB=OC=OE≠OD ,再逐个判断即可.【详解】解:如图,连接OB 、OD 、OA ,∵O 为锐角三角形ABC 的外心,∴OA =OC =OB ,∵四边形OCDE 为正方形,∴OA =OC <OD ,∴OA =OB =OC =OE ≠OD ,∴OA =OC ≠OD ,即O 不是△ADC 的外心,OA =OE =OB ,即O 是△AEB 的外心,OB =OC =OE ,即O 是△BCE 的外心,OB =OA ≠OD ,即O 不是△ABD 的外心,故选:A .【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.9.D解析:D【解析】【分析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值.【详解】解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2.故选D.【点睛】本题考查了二次函数的最值.10.A解析:A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,是中心对称图形,不符合题意;C. 是轴对称图形,是中心对称图形,不符合题意;D. 是轴对称图形,是中心对称图形,不符合题意;故选:A.【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.11.C解析:C【解析】【分析】根据圆周角与圆心角的关键即可解答.【详解】∵∠AOC=80°,∴12ABC AOC4.故选:C.【点睛】此题考查圆周角定理:同弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.C解析:C【解析】【分析】根据因式分解法,可得答案.【详解】,解:2x x方程整理,得,x2-x=0因式分解得,x(x-1)=0,于是,得,x=0或x-1=0,解得x1=0,x2=1,故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.13.B解析:B【解析】【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.【详解】∵⊙O的直径为4,∴⊙O的半径为2,∵圆心O到直线l的距离是2,∴根据圆心距与半径之间的数量关系可知直线l与⊙O的位置关系是相切.故选:B.【点睛】本题考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r,圆心到直线的距离是d,当d=r时,直线和圆相切,当d>r时,直线和圆相离,当d<r时,直线和圆相交.14.B解析:B【解析】【分析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是3.8故选B.【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.15.B解析:B【解析】【分析】如图,作CH ⊥BE ′于H ,设AC 交BE ′于O .首先证明∠CE ′B =∠D ′=60°,解直角三角形求出HE ′,BH 即可解决问题.【详解】解:如图,作CH ⊥BE ′于H ,设AC 交BE ′于O .∵∠ACB =90°,∠ABC =30°,∴∠CAB =60°,∵DE ∥AB , ∴CD CA =CE CB ,∠CDE =∠CAB =∠D ′=60° ∴'CD CA ='CE CB, ∵∠ACB =∠D ′CE ′,∴∠ACD ′=∠BCE ′,∴△ACD ′∽△BCE ′,∴∠D ′=∠CE ′B =∠CAB ,在Rt △ACB 中,∵∠ACB =90°,AC ,∠ABC =30°,∴AB =2AC =,BC AC ,∵DE ∥AB , ∴CD CA =CE CB,,∴CE∵∠CHE ′=90°,∠CE ′H =∠CAB =60°,CE ′=CE∴E ′H =12CE CH HE ′=32,∴BH∴BE ′=HE ′+BH =故选:B .【点睛】本题考查了相似三角形的综合应用题,涉及了旋转的性质、平行线分线段成比例、相似三角形的性质与判定等知识点,解题的关键是灵活运用上述知识点进行推理求导.二、填空题16.【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正解析:2 3π【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正六边形内接于O,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=1122OB OA DA ,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴图中涂色部分的面积等于扇形AOB的面积为:26022 3603ππ⨯=.故答案为:23π.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.17.15【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长∴圆锥的侧面展开图的面积故填:.【点睛】解析:15π【解析】【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm ,高为4cm∴圆锥的母线长22345()cm =+=∴圆锥的侧面展开图的面积()23515cmππ=⨯⨯=故填:15π.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 18.【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得:解析:123;1x x ==-【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得: 抛物线与x 轴交于(3,0)和(-1,0)即当y=0时,x=3或-1∴ax 2+bx +c =0的根为123;1x x ==-故答案为:123;1x x ==-【点睛】本题考查抛物线的对称性及二次函数与一元二次方程,利用对称性求出抛物线与x 轴的交点坐标是本题的解题关键.19.9【解析】【分析】利用两角对应相等两三角形相似证△BCD∽△BAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵,,∴∠ACB=∠CDB=90°,∵∠B=∠B,解析:9【解析】【分析】利用两角对应相等两三角形相似证△BCD ∽△BAC ,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵BC AC ⊥,CD AB ⊥,∴∠ACB=∠CDB=90°,∵∠B=∠B,∴△BCD ∽△BAC, ∴BC BD AB BC= ,∴152515BD =, ∴BD=9.故答案为:9.【点睛】 本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例式求解是解答此题的关键.20.【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,∴ 解析:72【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】 解:∵一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根, ∴2214241402b ac k k ,整理得,22410k k , ∴21+22k k 2221k k k 224k k224k k当21+22k k 时, 224k k142=-+72= 故答案为:72. 【点睛】 本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.21.【解析】【分析】 过作于,延长交于,过作于,过作于,设,,得到,,根据相似三角形的性质得到,,由,得到,于是得到,然后根据二次函数的性质即可得到结论.【详解】解:过作于,延长交于,过作于,过解析:274【解析】【分析】过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,得到3DM y =-,4DN x =-,根据相似三角形的性质得到xy mn =,29y x =-+,由12m n =,得到2n m =,于是得到()3m n m +=最大,然后根据二次函数的性质即可得到结论.【详解】解:过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,3BD =,3DM y ∴=-,3DN x =-,90ABC AEB BFC CMD AND ∠=∠=∠=∠=∠=︒,90EAB ABE ABE CBF ∴∠+∠=∠+∠=︒,EAB CBF ∴∠=∠,ABE BFC ∴∆∆∽,∴AE BE BF CF=,即x m n y =, xy mn ∴=,ADN CDM ∠=∠,CMD AND ∴∆∆∽, ∴AN DN CM DM=,即3132m x n y -==-, 29y x ∴=-+,12m n =, 2n m ∴=,()3m n m ∴+=最大,∴当m 最大时,()3m n m +=最大,22(29)292mn xy x x x x m ==-+=-+=,∴当92(29)4x =-=⨯-时,28128mn m ==最大, 94m ∴=最大, m n ∴+的最大值为927344⨯=. 故答案为:274. 【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线,利用相似三角形转化线段关系,得出关于m 的函数解析式是解题的关键.22.60π【解析】【分析】先利用勾股定理求出BC 的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB =6cm ,高OC =8cm .∴BC==10(cm ),∴圆锥的侧面积是:(解析:60π【解析】【分析】先利用勾股定理求出BC 的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:12610602r l rlππππ⋅⋅==⋅⨯=(cm2).故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键.23.【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围. ,,方程有两个不相等的实数解析:3k<【解析】【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.1a,b=-,c k=方程有两个不相等的实数根,241240b ac k∴∆=-=->,3k∴<.故答案为:3k<.【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.24.【解析】【分析】根据,则函数图象在直线的上方,所以找出函数图象在直线的上方的取值范围即可.【详解】根据二次函数的图象可知:对称轴为,已知一个点为,根据抛物线的对称性,则点关于对称性对称解析:20x -<<【解析】【分析】根据3y >,则函数图象在直线3y =的上方,所以找出函数图象在直线3y =的上方x 的取值范围即可.【详解】根据二次函数的图象可知:对称轴为1x =-,已知一个点为()03,, 根据抛物线的对称性,则点()03,关于对称性对称的另一个点为()23-,, 所以3y >时,x 的取值范围是20x -<<.故答案为:20x -<<.【点睛】本题主要考查了二次函数的性质,主要利用了二次函数的对称性,读懂图象信息,利用对称轴求出点()03,的对称点是解题的关键. 25.-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m 是关于x 的方程x2解析:-4【解析】【分析】先由方程的解的含义,得出m 2-2m-3=0,变形得m 2-2m=3,再将要求的代数式提取公因式-2,然后将m 2-2m=3代入,计算即可.【详解】解:∵m 是关于x 的方程x 2-2x-3=0的解,∴m 2-2m-3=0,∴m 2-2m=3,∴4m-2m 2+2= -2(m 2-2m )+2= -2×3+2= -4.故答案为:-4.【点睛】本题考查了利用一元二次方程的解的含义在代数式求值中的应用,明确一元二次方程的解的含义并将要求的代数式正确变形是解题的关键.26.【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求解析:25【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求出CD的长,从而求出CE,最后根据锐角三角函数的意义求出结果即可.【详解】过点C作CF⊥AE,垂足为F,在Rt△ACD中,CD=221310+=,由网格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,∴CF=AC•sin45°=22,由AC∥BD可得△ACE∽△BDE,∴13 CE ACDE BD==,∴CE=14CD=104,在Rt△ECF中,sin∠AEC=2252510CFCE=⨯=,故答案为:25.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.27.【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是,故答案为.【点睛】此题主要解析:1 3【解析】【分析】根据几何概率的求解公式即可求解.【详解】解:∵总面积为9个小正方形的面积,其中阴影部分面积为3个小正方形的面积∴飞镖落在阴影部分的概率是31 93 ,故答案为13.【点睛】此题主要考查概率的求解,解题的关键是熟知几何概率的公式.28.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴x=122ba-±-±==−1±2,∵1x<0,∴1x=−1-2<0,∵-4≤-3,∴3222 -≤-≤-,∴-3≤−1−2≤ 2.5-,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.29.16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x,根据勾股定理求出x值即可得到小正方形的边长,从而算出4个小正方形的面积和.【详解】解:如解析:16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x,根据勾股定理求出x值即可得到小正方形的边长,从而算出4 个小正方形的面积和.【详解】解:如图,点A为上面小正方形边的中点,点B为小正方形与圆的交点,D为小正方形和大正方形重合边的中点,由题意可知:四个小正方形全等,且△OCD 为等腰直角三角形, ∵⊙O 半径为 52,根据垂径定理得:∴OD=CD=522=5, 设小正方形的边长为x ,则AB=12x , 则在直角△OAB 中,OA 2+AB 2=OB 2,即()()22215=522x x ⎛⎫++ ⎪⎝⎭, 解得x=2,∴四个小正方形的面积和=242=16⨯.故答案为:16.【点睛】本题考查了垂径定理、勾股定理、正方形的性质,熟练掌握利用勾股定理解直角三角形是解题的关键.30.【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图解析:18b -<<【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,即可求解.【详解】解:设y=x 2-4x 与x 轴的另外一个交点为B ,令y=0,则x=0或4,过点B (4,0), 由函数的对称轴,二次函数y=x 2-4x 翻折后的表达式为:y=-x 2+4x ,当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线n 过点B (4,0)与新图象有三个交点, 当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,当直线处于直线m 的位置:联立y=-2x+b 与y=x 2-4x 并整理:x 2-2x-b=0,则△=4+4b=0,解得:b=-1;当直线过点B 时,将点B 的坐标代入直线表达式得:0=-8+b ,解得:b=8,故-1<b <8;故答案为:-1<b <8.【点睛】本题考查的是二次函数综合运用,涉及到函数与x 轴交点、几何变换、一次函数基本知识等内容,本题的关键是确定点A 、B 两个临界点,进而求解.三、解答题31.a <2且a ≠1【解析】【分析】根据一元二次方程的定义和判别式的意义得到a ﹣1≠0且△=(﹣2)2﹣4(a ﹣1)>0,然后解两个不等式得到它们的公共部分即可.【详解】∵关于x 的一元二次方程(a ﹣1)x 2﹣2x+1=0有两个不相等的实数根,∴a ﹣1≠0且△=(﹣2)2﹣4(a ﹣1)>0,解得:a <2且a≠1.【点睛】本题考查了一元二次方程根的情况与判别式的关系,对于一元二次方程ax 2+bx+c=0(a≠0),判别式△=b 2-4ac ,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;注意a≠0这一隐含条件,避免漏解.32.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;。

(完整word版)浙教版数学九年级(上)期末模拟试卷(九)及参考答案

(完整word版)浙教版数学九年级(上)期末模拟试卷(九)及参考答案

浙教版数学九年级(上)期末模拟试卷(九)2010年1月考生须知:1.全卷满分为150分,考试时间120分钟.试卷2张共6页,有三大题,24小题. 2.请用钢笔或圆珠笔书写答案.温馨提示:请细心审题,严谨表达,相信你会有出色的表现 参考公式:二次函数y=ax 2+bx+c 的顶点坐标是)44,2(2ab ac a b --.试 卷 Ⅰ一. 选择题(本题共10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选均不给分) 1.抛物线y=2(x ﹣1)2﹣3的对称轴是直线( )A 、 x=2B 、x=1C 、x =﹣1D 、x =﹣3 2.如图,已知点A,B,C,D,E 是⊙O 的五等分点,则∠BAD 的度数是( )A. 36°B. 48°C. 72°D. 96° 3.下面给出了相似的一些命题:(1)菱形都相似 (2)等腰直角三角形都相似(3)正方形都相似 (4)矩形都相似 (5)正六边形都相似 其中正确的有( )A. 2 个B. 3个C. 4个D. 5个 4.二次函数y =-3x 2+1的图象是将( )A. 抛物线y =-3x 2向左平移3个单位得到;B. 抛物线y =-3x 2向左平移1个单位得到C. 抛物线y=3x 2向上平移1个单位得到;D. 抛物线y =-3x 2向上平移1个单位得到 5.在△ABC 中,已知AB=AC=4cm,BC=6cm,D 是BC 的中点,以D 为圆心作一个半径为3cm 的圆,则下列说法正确的是( )A. 点A 在⊙D 外B. 点B 在⊙D 内C. 点C 在⊙D 上D. 无法确定6.幼儿园的小朋友打算选择一种形状、大小都相同的正多边形塑胶板铺活动室地面,为了保证铺地时既无缝隙又不重叠,请你告诉他们,下面形状的塑胶板A__ D不能选择的是( )A 、正八边形B 、正六边形C 、正方形D 、正三角形 7.已知弧的长为3πcm ,弧的半径为6cm ,则圆弧的度数为( ) A. 45° B. 90 ° C. 60 ° D. 180° 8.下列四条线段不成比例的是( ) A. a=3,b=6,c=2,d=4 B. a=83,b=8,c=5,d=15 C. a=3,b=2,c=3,d=2 D. a=1,b=2,c=6,d=39.现有一个圆心角为90°,半径为10的扇形纸片,用它恰好卷成一个圆锥的侧面(接缝忽略不计),则该圆锥的底面半径为( )A. 5B. 3.5C. 2.5D. 210.《九章算术》是我国东汉初年编订的一部数学经典著作。

苏教版九年级数学上册 期末试卷测试卷附答案

苏教版九年级数学上册 期末试卷测试卷附答案

苏教版九年级数学上册 期末试卷测试卷附答案一、选择题1.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)2.如图,AB 为圆O 直径,C 、D 是圆上两点,∠ADC=110°,则∠OCB 度( )A .40B .50C .60D .703.在平面直角坐标系中,如图是二次函数y =ax 2+bx +c (a ≠0)的图象的一部分,给出下列命题:①a +b +c =0;②b >2a ;③方程ax 2+bx +c =0的两根分别为﹣3和1;④b 2﹣4ac >0,其中正确的命题有( )A .1个B .2个C .3个D .4个4.如图,以AB 为直径的⊙O 上有一点C ,且∠BOC =50°,则∠A 的度数为( )A .65°B .50°C .30°D .25°5.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+6.如图,已知等边△ABC的边长为4,以AB为直径的圆交BC于点F,CF为半径作圆,D 是⊙C上一动点,E是BD的中点,当AE最大时,BD的长为()A.23B.25C.4 D.67.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变8.关于二次函数y=x2+2x+3的图象有以下说法:其中正确的个数是()①它开口向下;②它的对称轴是过点(﹣1,3)且平行于y轴的直线;③它与x轴没有公共点;④它与y轴的交点坐标为(3,0).A.1 B.2 C.3 D.49.二次函数y=x2﹣2x+1与x轴的交点个数是()A.0 B.1 C.2 D.310.在△ABC中,∠C=90°,tan A=13,那么sin A的值是()A.12B.13C.1010D.31011.抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度12.如图,AB为O的直径,C为O上一点,弦AD平分BAC∠,交BC于点E,6AB=,5AD=,则AE的长为()A.2.5 B.2.8 C.3 D.3.2二、填空题13.将二次函数y=2x2的图像沿x轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.14.如图,已知正六边形内接于O,若正六边形的边长为2,则图中涂色部分的面积为______.15.在一块边长为30 cm的正方形飞镖游戏板上,有一个半径为10 cm的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.16.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.17.二次函数y=ax2+bx+c(a≠0)的图像如图所示,当y<3时,x的取值范围是____.18.如图,在Rt△ABC中,BC AC,CD是AB边上的高,已知AB=25,BC=15,则BD=__________.19.如图,直线y=12x﹣2与x轴、y轴分别交于点A和点B,点C在直线AB上,且点C的纵坐标为﹣1,点D在反比例函数y=kx的图象上,CD平行于y轴,S△OCD=52,则k的值为________.20.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是_____. x … ﹣1 0 1 2 … y…343…21.某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n 个数据的平均数等于______.22.用配方法解一元二次方程2430x x +-=,配方后的方程为2(2)x n +=,则n 的值为______.23.如图,AB 是⊙O 的直径,弦BC=2cm ,F 是弦BC 的中点,∠ABC=60°.若动点E 以2cm/s 的速度从A 点出发沿着A ⇒B ⇒A 方向运动,设运动时间为t (s )(0≤t <3),连接EF ,当t 为_____s 时,△BEF 是直角三角形.24.如图,在□ABCD 中,E 、F 分别是AD 、CD 的中点,EF 与BD 相交于点M ,若△DEM 的面积为1,则□ABCD 的面积为________.三、解答题25.某市2017年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2019年投入的资金是7200万元,且从2017年到2019年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元? 26.如图,在ABC ∆中,AD 是高.矩形EFGH 的顶点E 、H 分别在边AB 、AC 上,FG 在边BC 上,6BC =,4=AD ,23EF EH =.求矩形EFGH 的面积.27.为加快城乡对接,建设美丽乡村,某地区对A 、B 两地间的公路进行改建,如图,A ,B 两地之间有一座山.汽车原来从A 地到B 地需途经C 地沿折线ACB 行驶,现开通隧道后,汽车可直接沿直线AB 行驶,已知BC =80千米,∠A =45°,∠B =30°. (1)开通隧道前,汽车从A 地到B 地要走多少千米?(2)开通隧道后,汽车从A 地到B 地可以少走多少千米?(结果保留根号)28.如图,在△ABC 中,AB =AC =13,BC =10,求tan B 的值.29.为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 95 90 95 88 (1)根据上述数据,将下列表格补充完整. 整理、描述数据: 成绩/分8889 90 91 95 96 97 98 99 学生人数 2132121数据分析:样本数据的平均数、众数和中位数如下表: 平均数 众数 中位数 9391得出结论:(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为分.数据应用:(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.30.如图,AB是⊙O的直径,D是弦AC的延长线上一点,且CD=AC,DB的延长线交⊙O 于点E.(1)求证:CD=CE;(2)连结AE,若∠D=25°,求∠BAE的度数.31.某景区检票口有A、B、C、D共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票.(1)甲选择A检票通道的概率是;(2)求甲乙两人选择的检票通道恰好相同的概率.32.如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值,S的最大值是多少;(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;(3)当t为何值时,△APQ是等腰三角形.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ), ∴抛物线2(1)2y x =-+的顶点坐标是(1,2). 故选D .2.D解析:D 【解析】 【分析】根据角的度数推出弧的度数,再利用外角∠AOC 的性质即可解题. 【详解】解:∵∠ADC=110°,即优弧ABC 的度数是220°, ∴劣弧ADC 的度数是140°, ∴∠AOC=140°, ∵OC=OB, ∴∠OCB=12∠AOC=70°, 故选D. 【点睛】本题考查圆周角定理、外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.C解析:C 【解析】 【分析】根据二次函数的图象可知抛物线开口向上,对称轴为x =﹣1,且过点(1,0),根据对称轴可得抛物线与x 轴的另一个交点为(﹣3,0),把(1,0)代入可对①做出判断;由对称轴为x =﹣1,可对②做出判断;根据二次函数与一元二次方程的关系,可对③做出判断,根据根的判别式解答即可. 【详解】由图象可知:抛物线开口向上,对称轴为直线x =﹣1,过(1,0)点, 把(1,0)代入y =ax 2+bx +c 得,a +b +c =0,因此①正确;对称轴为直线x =﹣1,即:﹣2ba=﹣1,整理得,b =2a ,因此②不正确; 由抛物线的对称性,可知抛物线与x 轴的两个交点为(1,0)(﹣3,0),因此方程ax 2+bx +c =0的两根分别为﹣3和1;故③是正确的; 由图可得,抛物线有两个交点,所以b 2﹣4ac >0,故④正确; 故选C . 【点睛】考查二次函数的图象和性质,抛物线通常从开口方向、对称轴、顶点坐标、与x 轴,y 轴的交点,以及增减性上寻找其性质.4.D解析:D 【解析】 【分析】根据圆周角定理计算即可. 【详解】解:由圆周角定理得,1252A BOC ∠=∠=︒,故选:D . 【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.A解析:A 【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.故选A.6.B解析:B 【解析】 【分析】点E 在以F 为圆心的圆上运到,要使AE 最大,则AE 过F ,根据等腰三角形的性质和圆周角定理证得F 是BC 的中点,从而得到EF 为△BCD 的中位线,根据平行线的性质证得CD ⊥BC ,根据勾股定理即可求得结论. 【详解】解:点D 在⊙C 上运动时,点E 在以F 为圆心的圆上运到,要使AE 最大,则AE 过F , 连接CD ,∵△ABC是等边三角形,AB是直径,∴EF⊥BC,∴F是BC的中点,∵E为BD的中点,∴EF为△BCD的中位线,∴CD∥EF,∴CD⊥BC,BC=4,CD=2,故2216425BC CD+=+=故选:B.【点睛】本题主要考查等边三角形的性质,圆周角定理,三角形中位线的性质以及勾股定理,熟练并正确的作出辅助圆是解题的关键.7.B解析:B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.8.B解析:B【解析】【分析】直接利用二次函数的性质分析判断即可.【详解】 ①y =x 2+2x +3,a =1>0,函数的图象的开口向上,故①错误; ②y =x 2+2x +3的对称轴是直线x =221-⨯=﹣1, 即函数的对称轴是过点(﹣1,3)且平行于y 轴的直线,故②正确; ③y =x 2+2x +3,△=22﹣4×1×3=﹣8<0,即函数的图象与x 轴没有交点,故③正确; ④y =x 2+2x +3, 当x =0时,y =3,即函数的图象与y 轴的交点是(0,3),故④错误; 即正确的个数是2个, 故选:B . 【点睛】本题考查二次函数的特征,解题的关键是熟练掌握根据二次函数解析式求二次函数的开口方向、对称轴、与坐标轴的交点坐标.9.B解析:B 【解析】由△=b 2-4ac=(-2)2-4×1×1=0,可得二次函数y=x 2-2x+1的图象与x 轴有一个交点.故选B .10.C解析:C 【解析】 【分析】根据正切函数的定义,可得BC ,AC 的关系,根据勾股定理,可得AB 的长,根据正弦函数的定义,可得答案. 【详解】 tan A =BCAC =13,BC =x ,AC =3x , 由勾股定理,得AB x ,sin A =BC AB 故选:C . 【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x ,AC=3x 是解题关键.11.D解析:D【解析】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x﹣2)2﹣1的图象.故选D.点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.12.B解析:B【解析】【分析】连接BD,CD,由勾股定理求出BD的长,再利用ABD BED,得出DE DBDB AD=,从而求出DE的长,最后利用AE AD DE=-即可得出答案.【详解】连接BD,CD∵AB为O的直径90ADB∴∠=︒22226511BD AB AD∴=-=-∵弦AD平分BAC∠11CD BD∴==CBD DAB∴∠=∠ADB BDE∠=∠ABD BED∴DE DBDB AD∴=1111=解得115 DE=115 2.85AE AD DE ∴=-=-= 故选:B .【点睛】 本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.二、填空题13.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y =2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y =2x 2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为 y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.14.【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB 的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA 与BC 交于D 点∵正 解析:23π 【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正六边形内接于O,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=1122OB OA DA ,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴图中涂色部分的面积等于扇形AOB的面积为:26022 3603ππ⨯=.故答案为:23π.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.15.【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100解析:9π【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,边长为30cm的正方形ABCD的面积=302=900cm2,∴P(飞镖落在圆内)=100==9009SSππ半圆正方形,故答案为:9π.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.16.【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是=,故答案为.【解析:2 3【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是360120360-=23,故答案为2 3 .【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是利用长度比,面积比,体积比等.17.-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x <3.【点睛解析:-1<x <3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x 的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x <3时,y <3,故答案为:-1<x <3.【点睛】本题考查了二次函数与不等式和二次函数的对称性,此类题目,利用数形结合的思想求解更简便.18.9【解析】【分析】利用两角对应相等两三角形相似证△BCD∽△BAC,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵,,∴∠ACB=∠CDB=90°,∵∠B=∠B,解析:9【解析】【分析】利用两角对应相等两三角形相似证△BCD ∽△BAC ,根据相似三角形对应边成比例得比例式,代入数值求解即可.【详解】解:∵BC AC ⊥,CD AB ⊥,∴∠ACB=∠CDB=90°,∵∠B=∠B,∴△BCD ∽△BAC, ∴BC BD AB BC = , ∴152515BD =, ∴BD=9.故答案为:9.【点睛】本题考查利用相似三角形的性质求线段长,证明两三角形相似注意题中隐含条件,如公共角,对顶角等,利用相似的性质得出比例式求解是解答此题的关键.19.【解析】【分析】【详解】试题分析:把x=2代入y=x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D解析:【解析】【分析】【详解】试题分析:把x=2代入y=12x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D的坐标代入反比例函数的解析式求出k即可.解:∵点C在直线AB上,即在直线y=12x﹣2上,C的横坐标是2,∴代入得:y=12×2﹣2=﹣1,即C(2,﹣1),∴OM=2,∵CD∥y轴,S△OCD=52,∴12CD×OM=52,∴CD=52,∴MD=52﹣1=32,即D的坐标是(2,32),∵D在双曲线y=kx上,∴代入得:k=2×32=3.故答案为3.考点:反比例函数与一次函数的交点问题.点评:本题考查了反比例函数与一次函数的交点问题、一次函数、反比例函数的图象上点的坐标特征、三角形的面积等知识点,通过做此题培养了学生的计算能力和理解能力,题目具有一定的代表性,是一道比较好的题目.20.(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)解析:(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax2+bx+c经过(0,3)、(2,3)两点,∴对称轴x=0+22=1;点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数的对称性.21..【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案. 【详解】平均数等于总和除以个数,所以平均数.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的解析:mx ny m n++.【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数mx ny m n+=+. 【点睛】 本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法.22.7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵,∴,∴,∴,∴;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟解析:7【解析】【分析】根据配方法,先移项,然后两边同时加上4,即可求出n 的值.【详解】解:∵2430x x +-=,∴243x x +=,∴2447x x ++=,∴2(2)7x +=,∴7n =;故答案为:7.【点睛】本题考查了配方法解一元二次方程,解题的关键是熟练掌握配方法的步骤. 23.1或1.75或2.25s【解析】试题分析:∵AB 是⊙O 的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到解析:1或1.75或2.25s【解析】试题分析:∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到O(此时和O不重合).若△BEF是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E与点O重合,即t=1;当∠BEF=90°时,则BE=BF=34,此时点E走过的路程是214或274,则运动时间是74s或94s.故答案是t=1或74或94.考点:圆周角定理.24.16【解析】【分析】【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF, △DEM∽△BHM ∴ ,∵F是CD的中点∴DF解析:16【解析】【分析】【详解】延长EF交BC的延长线与H,在平行四边形ABCD 中,∵AD=BC,AD ∥BC∴△DEF ∽△CHF, △DEM ∽△BHM ∴DE DF CH CF = ,2()DEM BMHS DE S BH ∆∆= ∵F 是CD 的中点∴DF=CF∴DE=CH∵E 是AD 中点∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵1DEM S ∆= ∴211()3BMH S ∆= ∴9BMH S ∆=∴9CFH BCFM S S ∆+=四边形∴9DEF BCFM S S ∆+=四边形∴9DME DFM BCFM S S S ∆∆++=四边形∴19BCD S ∆+=∴8BCD S ∆=∵四边形ABCD 是平行四边形∴2816ABCD S =⨯=四边形故答案为:16.三、解答题25.(1)20%;(2)8640万元.【解析】【分析】(1)设平均增长率为x,根据题意可得2018年投入的资金是5000(1+x)万元,2019年投入的资金是5000(1+x) (1+x)万元,由2019年投入的资金是7200万元即可列出方程.,求解即可.(2)相当于数字7200增长了20%,列式计算. 【详解】解:(1)设两年间每年投入资金的平均增长率为x ,根据题意得, 5000(1+x)2=7200解得,x 1=0.2=20%,x 2= -2.2(不符合题意,舍去) 答:该市对市区绿化工程投入资金的年平均增长率为20%; (2)根据题意得,7200(1+20%)=8640万元. 答:在2020年预计需投入8640万元. 【点睛】本题考查一元二次方程的实际应用,增长率问题,根据a(1+x)2=b (a 、b 、x 、n 分别表示增长前量、增长后量、增长率和增长次数)列方程是解答增长率问题的关键.26.6EFGH S =四边形【解析】 【分析】根据相似三角形对应边比例相等性质求出EF,EH 的长,继而求出面积. 【详解】 解:如图:∵四边形EFGH 是矩形,AD 交EH 于点Q, ∴∥EH FG ∴AEH ABC ∆∆∽ ∴AQ EHAD BC= 设2EF x =,则3EH x = ∴42346x x-=解得:1x =. 所以2EF =,3EH =.∴236EFGH S EF EH =⋅=⨯=四边形 【点睛】本题考查的知识点主要是相似三角形的性质,利用相似三角形对应边比例相等求出有关线段的长是解题的关键.27.(1)开通隧道前,汽车从A 地到B 地要走千米;(2)汽车从A 地到B 地比原来少走的路程为千米. 【解析】 【分析】(1)过点C 作AB 的垂线CD ,垂足为D ,在直角△ACD 中,解直角三角形求出CD ,进而解答即可;(2)在直角△CBD 中,解直角三角形求出BD ,再求出AD ,进而求出汽车从A 地到B 地比原来少走多少路程. 【详解】(1)过点C 作AB 的垂线CD ,垂足为D , ∵AB ⊥CD ,sin30°=CDBC,BC =80千米, ∴CD =BC •sin30°=80×12=40(千米),AC =CDsin 45︒=千米), AC +BC =80+1-8(千米), 答:开通隧道前,汽车从A 地到B 地要走(80+1-8)千米; (2)∵cos30°=BDBC,BC =80(千米),∴BD =BC •cos30°=80×2千米), ∵tan45°=CDAD,CD =40(千米), ∴AD =CD40tan 45︒=(千米),∴AB =AD +BD =40+千米),∴汽车从A 地到B 地比原来少走多少路程为:AC +BC ﹣AB =80+1-8﹣40﹣40+40(千米).答:汽车从A 地到B 地比原来少走的路程为 [40+40]千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.28.12 5【解析】【分析】过A点作AD⊥BC,将等腰三角形转化为直角三角形,利用勾股定理求AD,利用锐角三角函数的定义求∠B的正切值.【详解】过点A作AD⊥BC,垂足为D,∵AB=AC=13,BC=10,∴BD=DC=12BC=5,∴AD222213512AB BD-=-=,在Rt△ABD中,∴tan B125 ADBD==.【点睛】本题考查了勾股定理,等腰三角形的性质和三角函数的应用,关键是将问题转化到直角三角形中求解,并且要熟练掌握好边角之间的关系.29.(1)5;3;90;(2)91;(3)估计评选该荣誉称号的最低分数为97分.理由见解析.【解析】【分析】(1)由题意即可得出结果;(2)由20×50%=10,结合题意即可得出结论;(3)由20×30%=6,即可得出结论.【详解】(1)由题意得:90分的有5个;97分的有3个;出现次数最多的是90分,∴众数是90分;故答案为:5;3;90;(2)20×50%=10,如果该校想确定七年级前50%的学生为“良好”等次,则“良好”等次的测评成绩至少定为91分;故答案为:91;(3)估计评选该荣誉称号的最低分数为97分;理由如下:∵20×30%=6,∴估计评选该荣誉称号的最低分数为97分.【点睛】本题考查了众数、中位数、用样本估计总体等知识;熟练掌握众数、中位数、用样本估计总体是解题的关键.30.(1)证明见解析;(2)40°.【解析】【分析】(1)连接BC,利用直径所对的圆周角是直角、线段垂直平分线性质、同弧所对的圆周角相等、等角对等边即可证明.(2)利用三角形外角等于不相邻的两个内角和、利用直径所对的圆周角是直角、直角三角形两锐角互余即可解答.【详解】(1)证明:连接BC,∵AB是⊙O的直径,∴∠ABC=90°,即BC⊥AD,∵CD=AC,∴AB=BD,∴∠A=∠D,∴∠CEB=∠A,∴∠CEB=∠D,∴CE=CD.(2)解:连接AE.∵∠A BE=∠A+∠D=50°,∵AB是⊙O的直径,∴∠AEB=90°,∴∠BAE=90°﹣50°=40°.【点睛】本题考查圆周角定理,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.31.(1)14;(2)14.【解析】【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解.【详解】(1)解:一名游客经过此检票口时,选择A通道通过的概率=14,故答案为:14;(2)解:列表如下:A B C DA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E,它的发生有4种可能:(A,A)、(B,B)、(C,C)、(D,D)∴P(E)=416=14.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.32.(1)当t为52秒时,S最大值为185;(2)2013;(3)52或2513或4013.【解析】【分析】(1)过点P 作PH ⊥AC 于H ,由△APH ∽△ABC ,得出=PH APBC AB,从而求出AB ,再根据535PH t -,得出PH=3﹣35t ,则△AQP 的面积为:12AQ•PH=12t (3﹣35t ),最后进行整理即可得出答案;(2)连接PP′交QC 于E ,当四边形PQP′C 为菱形时,得出△APE ∽△ABC ,=AE APAC AB,求出AE=﹣45t+4,再根据QE=AE ﹣AQ ,QE=12QC 得出﹣95t+4=﹣12t+2,再求t 即可; (3)由(1)知,PD=﹣35t+3,与(2)同理得:QD=﹣95t+4,从而求出△APQ 中,分三种情况讨论:①当AQ=AP ,即t=5﹣t ,②当PQ=AQ ,③当PQ=AP ﹣t ,再分别计算即可. 【详解】解:(1)如图甲,过点P 作PH ⊥AC 于H , ∵∠C=90°, ∴AC ⊥BC , ∴PH ∥BC , ∴△APH ∽△ABC , ∴=PH AP BC AB, ∵AC=4cm ,BC=3cm , ∴AB=5cm , ∴5=35PH t-, ∴PH=3﹣35t , ∴△AQP 的面积为: S=12×AQ×PH=12×t×(3﹣35t )=﹣310(t ﹣52)2+185, ∴当t 为52秒时,S 最大值为185cm2.(2)如图乙,连接PP′,PP′交QC 于E ,当四边形PQP′C 为菱形时,PE 垂直平分QC ,即PE ⊥AC ,QE=EC , ∴△APE ∽△ABC ,∴=AE APAC AB, ∴AE=(5)4=5AP AC t AB ⋅-⨯=﹣45t+4 QE=AE ﹣AQ ═﹣45t+4﹣t=﹣95t+4, QE=12QC=12(4﹣t )=﹣12t+2, ∴﹣95t+4=﹣12t+2, 解得:t=2013, ∵0<2013<4, ∴当四边形PQP′C 为菱形时,t 的值是2013s ; (3)由(1)知, PD=﹣35t+3,与(2)同理得:QD=AD ﹣AQ=﹣95t+4∴,在△APQ 中,①当AQ=AP ,即t=5﹣t 时,解得:t 1=52;②当PQ=AQ =t 时,解得:t 2=2513,t 3=5;③当PQ=AP ﹣t 时,解得:t 4=0,t 5=4013; ∵0<t <4,∴t 3=5,t 4=0不合题意,舍去, ∴当t 为52s 或2513s 或4013s 时,△APQ 是等腰三角形.【点睛】本题考查相似形综合题.。

九年级上册内江数学期末试卷测试卷(含答案解析)

九年级上册内江数学期末试卷测试卷(含答案解析)

九年级上册内江数学期末试卷测试卷(含答案解析)一、选择题1.二次函数y =x 2﹣6x 图象的顶点坐标为( ) A .(3,0) B .(﹣3,﹣9)C .(3,﹣9)D .(0,﹣6)2.如图,CD 为O 的直径,弦AB CD ⊥于点E ,2DE =,8AB =,则O 的半径为( )A .5B .8C .3D .103.在Rt ABC ∆中,90C ∠=︒,3AC =,=1BC ,则sin A 的值为( ) A .1010B .31010C .13D .1034.如图,点P 为⊙O 外一点,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,∠P=30°,OB=3,则线段BP 的长为( )A .3B .33C .6D .95.方程2x x =的解是( ) A .x=0B .x=1C .x=0或x=1D .x=0或x=-1 6.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()249x +=-B .()247x +=-C .()2425x +=D .()247x +=7.方程x 2=4的解是( )A .x=2B .x=﹣2C .x 1=1,x 2=4D .x 1=2,x 2=﹣28.如图,随意向水平放置的大⊙O 内部区域抛一个小球,则小球落在小⊙O 内部(阴影)区域的概率为( )A.12B.14C.13D.199.在△ABC中,∠C=90°,tan A=13,那么sin A的值是()A.12B.13C.10D.31010.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=1x﹣2实数根的情况是()A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根11.某市计划争取“全面改薄”专项资金120 000 000元,用于改造农村义务教育薄弱学校100所数据120 000 000用科学记数法表示为()A.12×108B.1.2×108C.1.2×109D.0.12×10912.如图,AB为O的切线,切点为A,连接AO BO、,BO与O交于点C,延长BO与O交于点D,连接AD,若36ABO∠=,则ADC∠的度数为( )A.54B.36C.32D.27二、填空题13.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD.若AC=2,则cosD=________.14.如图,一个可以自由转动的转盘,任意转动转盘一次,当转盘停止时,指针落在红色区域的概率为____.15.数据2,3,5,5,4的众数是____.16.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽为________cm .(结果保留根号)17.如图,由边长为1的小正方形组成的网格中,点,,,A B C D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为_________.18.当21x -≤≤时,二次函数22()1y x m m =--++有最大值4,则实数m 的值为________.19.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.20.如图,点C 是以AB 为直径的半圆上一个动点(不与点A 、B 重合),且AC+BC=8,若AB=m (m 为整数),则整数m 的值为______.21.如图,在由边长为1的小正方形组成的网格中.点 A ,B ,C ,D 都在这些小正方形的格点上,AB 、CD 相交于点E ,则sin ∠AEC 的值为_____.22.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x … -1 0123 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.23.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________. 24.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.三、解答题25.已知关于x 的方程x 2+ax +a ﹣2=0.(1)求证:不论a 取何实数,该方程都有两个不相等的实数根; (2)若该方程的一个根为1,求a 的值及该方程的另一根. 26.如图,已知抛物线y 1=﹣12x 2+32x+2与x 轴交于A 、B 两点,与y 轴交于点C ,直线l 是抛物线的对称轴,一次函数y 2=kx+b 经过B 、C 两点,连接AC . (1)△ABC 是 三角形;(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标; (3)结合图象,写出满足y 1>y 2时,x 的取值范围 .27.A 箱中装有3张相同的卡片,它们分别写有数字1,2,4;B 箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A 箱、B 箱中各随机地取出1张卡片,请你用画树形(状)图或列表的方法求:(1)两张卡片上的数字恰好相同的概率.(2)如果取出A 箱中卡片上的数字作为十位上的数字,取出B 箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率. 28.如图,AB 为O 的直径,PD 切O 于点C ,交AB 的延长线于点D ,且2D A ∠=∠.(1)求D ∠的度数. (2)若O 的半径为2,求BD 的长.29.如图,二次函数22y ax ax c =-+ (a < 0) 与 x 轴交于 A 、C 两点,与 y 轴交于点 B ,P为 抛物线的顶点,连接 AB ,已知 OA :OC=1:3. (1)求 A 、C 两点坐标;(2)过点 B 作 BD ∥x 轴交抛物线于 D ,过点 P 作 PE ∥AB 交 x 轴于 E ,连接 DE , ①求 E 坐标; ②若 tan ∠BPM=25,求抛物线的解析式.30.解方程:2670x x --=31.如图,二次函数y =ax 2+bx +c 的图象与x 轴相交于点A (﹣1,0)、B (5,0),与y 轴相交于点C(0,533).(1)求该函数的表达式;(2)设E为对称轴上一点,连接AE、CE;①当AE+CE取得最小值时,点E的坐标为;②点P从点A出发,先以1个单位长度/的速度沿线段AE到达点E,再以2个单位长度的速度沿对称轴到达顶点D.当点P到达顶点D所用时间最短时,求出点E的坐标.32.某小型工厂9月份生产的A、B两种产品数量分别为200件和100件,A、B两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了A、B两种产品的生产数量和出厂单价,10月份A产品生产数量的增长率和A产品出厂单价的增长率相等,B产品生产数量的增长率是A产品生产数量的增长率的一半,B产品出厂单价的增长率是A产品出厂单价的增长率的2倍,设B产品生产数量的增长率为x(0x ),若10月份该工厂的总收入增加了4.4x,求x的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】将二次函数解析式变形为顶点式,进而可得出二次函数的顶点坐标.【详解】解:∵y=x2﹣6x=x2﹣6x+9﹣9=(x﹣3)2﹣9,∴二次函数y=x2﹣6x图象的顶点坐标为(3,﹣9).故选:C.【点睛】此题主要考查二次函数的顶点,解题的关键是熟知二次函数的图像与性质.2.A解析:A【分析】作辅助线,连接OA ,根据垂径定理得出AE=BE=4,设圆的半径为r ,再利用勾股定理求解即可. 【详解】解:如图,连接OA ,设圆的半径为r ,则OE=r-2, ∵弦AB CD ⊥, ∴AE=BE=4,由勾股定理得出:()22242r r =+-, 解得:r=5, 故答案为:A. 【点睛】本题考查的知识点主要是垂径定理、勾股定理及其应用问题;解题的关键是作辅助线,灵活运用勾股定理等几何知识点来分析、判断或解答.3.A解析:A 【解析】 【分析】先根据勾股定理求出斜边的长,再根据正弦的定义解答即可. 【详解】解:在Rt ABC ∆中,∵90C ∠=︒,3AC =,=1BC , ∴2210AB AC BC += ∴10sin 1010BC A AB ===. 故选:A. 【点睛】本题考查了勾股定理和正弦的定义,属于基本题型,熟练掌握基本知识是解题关键.4.A解析:A【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP的长.【详解】连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6-3=3.故选A.【点睛】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.5.C解析:C【解析】【分析】根据因式分解法,可得答案.【详解】=,解:2x x方程整理,得,x2-x=0因式分解得,x(x-1)=0,于是,得,x=0或x-1=0,解得x1=0,x2=1,故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.6.D解析:D【解析】【分析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890++=,x x289x x +=-,2228494x x ++=-+,所以()247x +=, 故选D. 【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.7.D解析:D 【解析】 x 2=4, x =±2. 故选D.点睛:本题利用方程左右两边直接开平方求解.8.B解析:B 【解析】 【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比. 【详解】解:∵如图所示的正三角形, ∴∠CAB =60°,∴∠OAB =30°,∠OBA =90°, 设OB =a ,则OA =2a ,则小球落在小⊙O 内部(阴影)区域的概率为()22142a a ππ=. 故选:B .【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.9.C解析:C 【解析】 【分析】根据正切函数的定义,可得BC,AC的关系,根据勾股定理,可得AB的长,根据正弦函数的定义,可得答案.【详解】tan A=BCAC=13,BC=x,AC=3x,由勾股定理,得AB=10x,sin A=BCAB=10,故选:C.【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x,AC=3x是解题关键.10.C解析:C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.11.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】120 000 000=1.2×108,故选:B .【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.D解析:D【解析】【分析】由切线性质得到AOB ∠,再由等腰三角形性质得到OAD ODA ∠=∠,然后用三角形外角性质得出ADC ∠【详解】切线性质得到90BAO ∠=903654AOB ∴∠=-=OD OA =OAD ODA ∠=∠∴AOB OAD ODA ∠=∠+∠27ADC ADO ∴∠=∠=故选D【点睛】本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键二、填空题13.【解析】试题分析:连接BC ,∴∠D=∠A,∵AB 是⊙O 的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形 解析:13【解析】 试题分析:连接BC ,∴∠D=∠A ,∵AB 是⊙O 的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=AC AB =26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.14.【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是=,故答案为.【解析:2 3【解析】【分析】用红色区域的圆心角度数除以圆的周角的度数可得到指针落在红色区域的概率.【详解】解:因为蓝色区域的圆心角的度数为120°,所以指针落在红色区域内的概率是360120360=23,故答案为2 3 .【点睛】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是利用长度比,面积比,体积比等.15.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.16.()【解析】设它的宽为xcm.由题意得.∴ .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即,近似值约解析:(10)【解析】设它的宽为x cm.由题意得:20x=.∴10x= .点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即12,近似值约为0.618.17.【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB 的长,进而可得答案.【详解】解:解析:817【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:如图所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,∴△CEF≌△DBF,∴BF=EF=12BE=12,∵BF∥AD,∴△BOF∽△AOD,∴11248 BO BFAO AD===,∴89AO AB=,∵221417 AB=+=,∴817 AO=.故答案为:817【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.18.2或【解析】【分析】求出二次函数对称轴为直线x=m,再分m<-2,-2≤m≤1,m>1三种情况,根据二次函数的增减性列方程求解即可.解:二次函数的对称轴为直线x=m ,且开口向下,解析:2或【解析】【分析】求出二次函数对称轴为直线x=m ,再分m <-2,-2≤m≤1,m >1三种情况,根据二次函数的增减性列方程求解即可.【详解】解:二次函数22()1y x m m =--++的对称轴为直线x=m ,且开口向下,①m <-2时,x=-2取得最大值,-(-2-m )2+m 2+1=4, 解得74m =-, 724->-, ∴不符合题意,②-2≤m≤1时,x=m 取得最大值,m 2+1=4,解得m =所以m =,③m >1时,x=1取得最大值,-(1-m )2+m 2+1=4,解得m=2,综上所述,m=2或时,二次函数有最大值.故答案为:2或【点睛】本题考查了二次函数的最值,熟悉二次函数的性质及图象能分类讨论是解题的关键.19.【解析】【分析】利用勾股定理求出AC ,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴,∵AE 是直径,∴∠ABE=90°,【解析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC =, ∴3AB =∴AB =故答案为:5 【点睛】本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.20.6或7【解析】【分析】因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中,且AC+BC=8,即可求得,根据基本不等式,可得的范围,再根据题意要求AB 为整数及三角形三边关系,即可解析:6或7【解析】【分析】 因为直径所对圆周角为直角,所以ABC 的边长可应用勾股定理求解,其中222AB =AC BC +,且AC+BC=8,即可求得22AB =(AC+BC)2AC BC -⋅,根据基本不等式AC BC=AC+(8-AC)+≥2AB 的范围,再根据题意要求AB 为整数及三角形三边关系,即可得出AB 可能的长度.【详解】解:∵直径所对圆周角为直角,故ABC 为直角三角形,∴根据勾股定理可得,222AB =AC BC +,即22AB =(AC+BC)2AC BC -⋅,又∵AC+BC=8,根据基本不等式AC BC=AC+(8-AC)+≥∴0<AC BC 16⋅≤,代入22AB =(AC+BC)2AC BC -⋅∴232AB 64≤≤,同时AB 要满足整数的要求,∴AB=6或7或8,但是三角形三边关系要求,任意两边之和大于第三边,故AB ≠8, ∴AB=6或7,故答案为:6或7.【点睛】本题主要考察了直径所对圆周角为直角、勾股定理、三角形三边关系、基本不等式,解题的关键在于找出AB 长度的范围. 21.【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD 是等腰直角三角形,进而可得Rt△ACF 是等腰直角三角形,求出CF ,再根据△ACE∽△BDE 的相似比为1:3,根据勾股定理求【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt △ABD 是等腰直角三角形,进而可得Rt △ACF 是等腰直角三角形,求出CF ,再根据△ACE ∽△BDE 的相似比为1:3,根据勾股定理求出CD 的长,从而求出CE ,最后根据锐角三角函数的意义求出结果即可.【详解】过点C 作CF ⊥AE ,垂足为F ,在Rt △ACD 中,CD =由网格可知,Rt △ABD 是等腰直角三角形,因此Rt △ACF 是等腰直角三角形,∴CF =AC •sin45°=2, 由AC ∥BD 可得△ACE ∽△BDE , ∴13CE AC DE BD ==,∴CE =14CD =4,在Rt △ECF 中,sin ∠AEC =25CF CE ==,故答案为:25.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.22.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得313ca b ca b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴x=2411322b b aca-±--±==−1±132,∵1x<0,∴1x=−113<0,∵-4≤13-3,∴13322-≤≤-,∴-3≤−1−2≤ 2.5 -,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.23.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可. 【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;④m=﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.24.y=0.5(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.三、解答题25.(1)见解析;(2)a=12,x1=﹣32【解析】【分析】(1)根据根的判别式即可求解;(2)将x=1代入方程x2+ax+a﹣2=0,求出a,再利用根与系数的关系求出方程的另一根.【详解】解:(1)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4≥0,∴不论a取何实数,该方程都有两个不相等的实数根.(2)将x=1代入方程x2+ax+a﹣2=0得1+a+a﹣2=0,解得a=12;∴方程为x2+12x﹣32=0,即2x2+x﹣3=0,设另一根为x 1,则1×x 1=c a =﹣32, ∴另一根x 1=﹣32. 【点睛】 此题主要考查一元二次方程根的求解,解题的关键是熟知根的判别式与根与系数的关系.26.(1)直角;(2)P (32,54);(3)0<x <4. 【解析】【分析】(1)求出点A 、B 、C 的坐标分别为:(-1,0)、(4,0)、(0,2),则AB 2=25,AC 2=5,BC 2=20,即可求解;(2)点A 关于函数对称轴的对称点为点B ,则直线BC 与对称轴的交点即为点P ,即可求解;(3)由图象可得:y 1>y 2时,x 的取值范围为:0<x <4.【详解】解:(1)当x=0时,y 1=0+0+2=2,当y=0时, ﹣12x 2+32x+2=0, 解得x 1=-1,x 2=4, ∴点A 、B 、C 的坐标分别为:(﹣1,0)、(4,0)、(0,2),则AB 2=25,AC 2=5,BC 2=20,故AB 2=AC 2+BC 2,故答案为:直角;(2)将点B 、C 的坐标代入一次函数表达式:y =kx+b 得:400k b b +=⎧⎨=⎩, 解得122k b ⎧=-⎪⎨⎪=⎩, ∴直线BC 的表达式为:y =﹣12x+2, 抛物线的对称轴为直线:x =32, 点A 关于函数对称轴的对称点为点B ,则直线BC 与对称轴的交点即为点P ,当x=32时,y=12×32+2=54,故点P(32,54);(3)由图象可得:y1>y2时,x的取值范围为:0<x<4,故答案为:0<x<4.【点睛】本题考查了二次函数与坐标轴的交点,待定系数法求一次函数解析式,轴对称最短的性质,勾股定理及其逆定理,以及利用图像解不等式等知识,本题难度不大.27.(1)29;(2)59.【解析】【分析】(1)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单;解题时要注意是放回实验还是不放回实验,此题属于放回实验.列举出符合题意:“两张卡片上的数字恰好相同”的各种情况的个数,再根据概率公式解答即可.(2)列举出符合题意:“两张卡片组成的两位数能被3整除”的各种情况的个数,再根据概率公式解答即可【详解】(1)由题意可列表:∴一共有9种情况,两张卡片上的数字恰好相同的有2种情况,∴两张卡片上的数字恰好相同的概率是29;(2)由题意可列表:∴一共有9种情况,两张卡片组成的两位数能被3整除的有5种情况,∴两张卡片组成的两位数能被3整除的概率是59. 考点:列表法与树状图法.28.(1)45D ∠=︒;(2)222BD =.【解析】【分析】(1)根据等腰三角形性质和三角形外角性质求出∠COD=2∠A ,求出∠D=∠COD ,根据切线性质求出∠OCD=90°,即可求出答案;(2)由题意O 的半径为2,求出OC=CD=2,根据勾股定理求出BD 即可. 【详解】解:(1)∵OA=OC ,∴∠A=∠ACO ,∴∠COD=∠A+∠ACO=2∠A ,∵∠D=2∠A ,∴∠D=∠COD ,∵PD 切⊙O 于C ,∴∠OCD=90°,∴∠D=∠COD=45°;(2)∵∠D=∠COD ,O 的半径为2, ∴OC=OB=CD=2,在Rt △OCD 中,由勾股定理得:22+22=(2+BD )2, 解得:222BD =.【点睛】本题考查切线的性质,勾股定理,等腰三角形性质,三角形的外角性质的应用,主要考查学生的推理能力,熟练掌握切线的性质,勾股定理,等腰三角形性质,三角形的外角性质是解题关键.29.(1)A (-1,0),C (3,0);(2)① E (-13,0);②原函数解析式为:2515522y x x =-++. 【解析】【分析】(1)由二次函数的解析式可求出对称轴为x=1,过点P 作PE ⊥x 轴于点E,所以设A (-m ,0),C (3m ,0),结合对称轴即可求出结果;(2) ①过点P 作PM ⊥x 轴于点M ,连接PE ,DE ,先证明△ABO △EPM 得到AO EM OB PM =,找出OE=a c-,再根据A (-1,0)代入解析式得:3a+c=0,c=-3a ,即可求出OE 的长,则坐标即可找到;②设PM 交BD 于点N ;根据点P (1,c-a ),BN ‖AC ,PM ⊥x 轴表示出PN=-a ,再由tan ∠BPM=25PN BN =求出a ,结合(1)知道c ,即可知道函数解析式. 【详解】(1)∵二次函数为:22y ax ax c =-+(a<0), ∴对称轴为2122b a x a a-=-=-=, 过点P 作PM ⊥x 轴于点M ,则M (1,0),M 为AC 中点,又OA :OC=1:3,设A (-m ,0),C (3m ,0),∴231m m -+=, 解得:m=1, ∴A (-1,0),C (3,0),(2)①做图如下:∵PE ∥AB ,∴∠BAO=∠PEM ,又∠AOB=∠EMP ,∴△ABO △EPM , ∴AO EM OB PM= , 由(1)知:A (-1,0),C (3,0),M (1,0),B (0,c ),P (1,c-a ), ∴11OE c c a+=-, ∴OE=a c -, 将A (-1,0)代入解析式得:3a+c=0,∴c=-3a ,∴133a a OE c a =-== , ∴E (-13,0); ②设PM 交BD 于点N ;∵22y ax ax c =-+(a<0),∴x=1时,y=c-a ,即点P (1,c-a ),∵BN ‖AC ,PM ⊥x 轴∴NM= BO=c ,BN=OM=1,∴PN=-a ,∵tan ∠BPM=25, ∴tan ∠BPM=25BN PN =, ∴PN=52, 即a=-52, 由(1)知c=-3a ,∴c=152;∴原函数解析式为:2515522y x x =-++. 【点睛】 此题考查了抛物线与x 轴的交点;二次函数的性质,待定系数法求二次函数解析式.30.x 1=7,x 2=1-【解析】【分析】观察原方程,可运用二次三项式的因式分解法进行求解.【详解】解:原方程可化为:(x-7)(x+1)=0,x-7=0或x+1=0;解得:x 1=7,x 2=1-.【点睛】本题考查了解一元二次方程的方法,解题的关键是熟练掌握因式分解法解一元二次方程.31.(1)2333y x x =-++;(2)①(2;②点E (2. 【解析】【分析】(1)抛物线的表达式为:y =a (x +1)(x ﹣5)=a (x 2﹣4x ﹣5),故﹣5a ,解得:a =﹣(2)①点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点E ,则点E 为所求,即可求解;②t =AE +2DE ,t =AE +2DE =AE +EH ,当A 、E 、H 共线时,t 最小,即可求解. 【详解】(1)抛物线的表达式为:y =a (x +1)(x ﹣5)=a (x 2﹣4x ﹣5),故﹣5a =3,解得:a故抛物线的表达式为:2333y x x =-++; (2)①函数的对称轴为:x =2,点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点E ,则点E 为所求,由点B 、C 的坐标得,BC 的表达式为:y =﹣3x +3,当x =2时,y故答案为:(2;②t =AE +12DE , 过点D 作直线DH ,使∠EDH =30°,作HE ⊥DH 于点H ,则HE =12DE ,t =AE +12DE =AE +EH ,当A 、E 、H 共线时,t 最小, 则直线A (E )H 的倾斜角为:30°, 直线AH 的表达式为:y 3x +1) 当x =2时,y 3故点E (23.【点睛】本题考查了二次函数的综合问题,掌握二次函数的性质以及解析式、对称的性质是解题的关键.32.5%【解析】【分析】根据题意,列出方程即可求出x 的值.【详解】根据题意,得 2(12)200(12)(14)100(1)(22001100)(1 4.4)x x x x x +⨯+++⨯+=⨯+⨯+整理,得2200x x -=解这个方程,得15%x =,20x =(不合题意,舍去)所以x 的值是5%.【点睛】此题考查的是一元二次方程的应用,掌握实际问题中的等量关系是解决此题的关键.。

九年级上册韶关数学期末试卷综合测试(Word版 含答案)

九年级上册韶关数学期末试卷综合测试(Word版 含答案)

九年级上册韶关数学期末试卷综合测试(Word 版 含答案)一、选择题1.下列关于x 的一元二次方程,有两个不相等的实数根的方程的是( ) A .x 2+1=0B .x 2+2x +1=0C .x 2+2x +3=0D .x 2+2x -3=02.如图,AB 为圆O 直径,C 、D 是圆上两点,∠ADC=110°,则∠OCB 度( )A .40B .50C .60D .703.如图,已知点D 在ABC ∆的BC 边上,若CAD B ∠=∠,且:1:2CD AC =,则:CD BD =( )A .1:2B .2:3C .1:4D .1:34.已知抛物线221y ax x =+-与x 轴没有交点,那么该抛物线的顶点所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限5.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为( ) A .42B .45C .46D .486.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( ) A .34B .14C .13D .127.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .43B .42C .6D .48.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:19.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm 10.二次函数y =3(x +4)2﹣5的图象的顶点坐标为( )A .(4,5)B .(﹣4,5)C .(4,﹣5)D .(﹣4,﹣5)11.如图,△AOB 为等腰三角形,顶点A 的坐标(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )A .(203,103) B .(16345) C .(20345) D .(163,3 12.已知1x =是方程220x ax ++=的一个根,则方程的另一个根为( ) A .-2B .2C .-3D .3二、填空题13.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC ,若点A 、D 、E 在同一条直线上,∠ACD =70°,则∠EDC 的度数是_____.14.若a b b -=23,则ab的值为________. 15.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x … -1 0123 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.16.设1x ,2x 是关于x 的一元二次方程240x x +-=的两根,则1212x x x x ++=______. 17.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.18.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 19.在平面直角坐标系中,抛物线2yx 的图象如图所示.已知A 点坐标为()1,1,过点A 作1AA x ∕∕轴交抛物线于点1A ,过点1A 作12A A OA ∕∕交抛物线于点2A ,过点2A 作23A A x ∕∕轴交抛物线于点3A ,过点3A 作34A A OA ∕∕交抛物线于点4A ……,依次进行下去,则点2019A 的坐标为_____.20.点P 在线段AB 上,且BP APAP AB=.设4AB cm =,则BP =__________cm .21.已知⊙O半径为4,点,A B在⊙O上,21390,sin13BAC B∠=∠=,则线段OC的最大值为_____.22.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)23.在一块边长为30 cm的正方形飞镖游戏板上,有一个半径为10 cm的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.24.如图,圆形纸片⊙O半径为 52,先在其内剪出一个最大正方形,再在剩余部分剪出4个最大的小正方形,则 4 个小正方形的面积和为_______.三、解答题25.对于代数式ax2+bx+c,若存在实数n,当x=n时,代数式的值也等于n,则称n为这个代数式的不变值.例如:对于代数式x2,当x=0时,代数式等于0;当x=1时,代数式等于1,我们就称0和1都是这个代数式的不变值.在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A.特别地,当代数式只有一个不变值时,则A=0.(1)代数式x2﹣2的不变值是,A=.(2)说明代数式3x2+1没有不变值;(3)已知代数式x2﹣bx+1,若A=0,求b的值.26.如图,宾馆大厅的天花板上挂有一盏吊灯AB,某人从C点测得吊灯顶端A的仰角为35︒,吊灯底端B的仰角为30,从C点沿水平方向前进6米到达点D,测得吊灯底端B 的仰角为60︒.请根据以上数据求出吊灯AB的长度.(结果精确到0.1米.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,2≈1.41,3≈1.73)27.如图,四边形OABC为矩形,OA=4,OC=5,正比例函数y=2x的图像交AB于点D,连接DC,动点Q从D点出发沿DC向终点C运动,动点P从C点出发沿CO向终点O运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了t s.(1)求点D的坐标;(2)若PQ∥OD,求此时t的值?(3)是否存在时刻某个t,使S△DOP=52S△PCQ?若存在,请求出t的值,若不存在,请说明理由;(4)当t为何值时,△DPQ是以DQ为腰的等腰三角形?28.如图,矩形OABC中,A(6,0)、C(0,23)、D(0,33),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足∠PQO=60°.(1)①点B的坐标是;②当点Q与点A重合时,点P的坐标为;(2)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式及相应的自变量x的取值范围.29.九(3)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表:甲789710109101010乙10879810109109(1)计算乙队的平均成绩和方差;(2)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是哪个队?30.已知二次函数y=ax2+bx﹣16的图象经过点(﹣2,﹣40)和点(6,8).(1)求这个二次函数图象与x轴的交点坐标;(2)当y>0时,直接写出自变量x的取值范围.31.如果一个直角三角形的两条直角边的长相差2cm,面积是242cm,那么这个三角形的两条直角边分别是多少?32.在2017年“KFC”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程.【详解】A、△=0-4×1×1=-4<0,没有实数根;B、△=22-4×1×1=0,有两个相等的实数根;C、△=22-4×1×3=-8<0,没有实数根;D、△=22-4×1×(-3)=16>0,有两个不相等的实数根,故选D.【点睛】本题考查了根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.2.D解析:D【解析】【分析】根据角的度数推出弧的度数,再利用外角∠AOC的性质即可解题.【详解】解:∵ ADC=110°,即优弧ABC的度数是220°,∴劣弧ADC的度数是140°,∴∠AOC=140°,∵OC=OB,∴∠OCB=12∠AOC=70°, 故选D. 【点睛】本题考查圆周角定理、外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3.D解析:D 【解析】 【分析】根据两角对应相等证明△CAD ∽△CBA ,由对应边成比例得出线段之间的倍数关系即可求解. 【详解】解:∵∠CAD=∠B ,∠C=∠C, ∴△CAD ∽△CBA,∴12CD CA CA CB, ∴CA=2CD,CB=2CA, ∴CB=4CD, ∴BD=3CD,∴13CD BD. 故选:D. 【点睛】本题考查相似三角形的判定与性质,得出线段之间的关系是解答此题的关键.4.D解析:D 【解析】 【分析】根据题目信息可知当y=0时,20a 21x x =+-,此时0<,可以求出a 的取值范围,从而可以确定抛物线顶点坐标的符号,继而可以确定顶点所在的象限. 【详解】解:∵抛物线2y a 21x x =+-与x 轴没有交点,∴2a 210x x +-=时无实数根; 即,24440b ac a =-=+<, 解得,a 1<-,又∵2y a 21x x =+-的顶点的横坐标为:2102a a-=->;纵坐标为:()414104a a aa⨯----=<; 故抛物线的顶点在第四象限. 故答案为:D. 【点睛】本题考查的知识点是抛物线与坐标轴的交点问题,解题的关键是根据抛物线与x 轴无交点得出2a 210x x +-=时无实数根,再利用根的判别式求解a 的取值范围.5.C解析:C 【解析】 【分析】根据中位数的定义,把8个数据从小到大的顺序依次排列后,求第4,第5位两数的平均数即为本组数据的中位数. 【详解】解:把数据由小到大排列为:42,44,45,46,46,46,47,48∴中位数为4646462+=. 故答案为:46. 【点睛】找中位数的时候一定要先排好大小顺序,再根据奇数个数和偶数个数来确定中位数.如果是奇数个,则正中间的数字即为中位数;如果是偶数个,则找中间两个数的平均数为中位数.先将数据按从小到大顺序排列是求中位数的关键.6.B解析:B 【解析】试题解析:可能出现的结果的结果有1种, 则所求概率1.4P = 故选B.点睛:求概率可以用列表法或者画树状图的方法.7.B解析:B 【解析】 【分析】由已知条件可得ABC DAC ~,可得出AC BCDC AC=,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~,根据“相似三角形对应边成比例”,得AC BCDC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=42, 故选B. 【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.8.B解析:B 【解析】 【分析】可证明△DFE ∽△BFA ,根据相似三角形的面积之比等于相似比的平方即可得出答案. 【详解】∵四边形ABCD 为平行四边形, ∴DC ∥AB , ∴△DFE ∽△BFA , ∵DE :EC=3:1, ∴DE :DC=3:4, ∴DE :AB=3:4, ∴S △DFE :S △BFA =9:16. 故选B .9.B解析:B 【解析】 【分析】由CD ⊥AB ,可得DM=4.设半径OD=Rcm ,则可求得OM 的长,连接OD ,在直角三角形DMO 中,由勾股定理可求得OD 的长,继而求得答案. 【详解】解:连接OD ,设⊙O 半径OD 为R,∵AB 是⊙O 的直径,弦CD ⊥AB 于点M , ∴DM=12CD=4cm ,OM=R-2,在RT △OMD 中,OD²=DM²+OM²即R²=4²+(R-2)², 解得:R=5,∴直径AB 的长为:2×5=10cm . 故选B . 【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.10.D解析:D 【解析】 【分析】根据二次函数的顶点式即可直接得出顶点坐标. 【详解】∵二次函数()2345y x +=-∴该函数图象的顶点坐标为(﹣4,﹣5), 故选:D . 【点睛】本题考查二次函数的顶点坐标,解题的关键是掌握二次函数顶点式()2y a x h k =-+的顶点坐标为(h ,k ).11.C解析:C 【解析】 【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标. 【详解】解:过O′作O′F ⊥x 轴于点F ,过A 作AE ⊥x 轴于点E , ∵A 的坐标为(2∴OE=2.由等腰三角形底边上的三线合一得OB=2OE=4, 在Rt △ABE 中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得OB AE A'B O'F 22⋅⋅=3O'F2⋅=,∴O′F=3.在Rt △O′FB 中,由勾股定理可求83=,∴OF=820433+=.∴O′的坐标为(203).故选C.【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.12.B解析:B【解析】【分析】根据一元二次方程根与系数的关系求解.【详解】设另一根为m,则1•m=2,解得m=2.故选B.【点睛】考查了一元二次方程根与系数的关系.根与系数的关系为:x1+x2=-ba,x1•x2=ca.要求熟练运用此公式解题.二、填空题13.115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=7解析:115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=70°,∴∠DCE=20°,∴∠EDC=180°﹣∠E﹣∠DCE=180°﹣45°﹣20°=115°,故答案为115°.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识,问题,属于中考常考题型.14.【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.解析:5 3【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵a bb-=23,∴b=35 a,∴ab=5335aa=,故答案为:5 3 .【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.15.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴=,∵1x<0,∴1x=−1<0,∵-4≤-3,∴322 -≤≤-,∴-≤ 2.5 -,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.16.-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵,是关于的一元二次方程的两根,∴,∴,故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,如果,是方解析:-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵1x ,2x 是关于x 的一元二次方程240x x +-=的两根,∴121214x x x x +=-=-,, ∴()1212145x x x x ++=-+-=-,故答案为:5-.【点睛】本题考查了一元二次方程根与系数的关系,如果1x ,2x 是方程20x px q ++=的两根,那么12x x p +=﹣,12x x q =. 17.4【解析】【分析】根据图形中的数字,可以写出前n 行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第解析:4【解析】【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n行n个数,故前n个数字的个数为:1+2+3+…+n=(1)2n n+,∵当n=63时,前63行共有63642⨯=2016个数字,2020﹣2016=4,∴2020在第64行左起第4个数,故答案为:64,4.【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键. 18.2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.解析:2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为1203180π⨯=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.19.【解析】【分析】根据二次函数性质可得出点的坐标,求得直线为,联立方程求得的坐标,即可求得的坐标,同理求得的坐标,即可求得的坐标,根据坐标的变化找出变化规律,即可找出点的坐标.【详解】解:∵解析:2(1010,1010)-【解析】【分析】根据二次函数性质可得出点1A 的坐标,求得直线12A A 为2y x =+,联立方程求得2A 的坐标,即可求得3A 的坐标,同理求得4A 的坐标,即可求得5A 的坐标,根据坐标的变化找出变化规律,即可找出点2019A 的坐标.【详解】解:∵A 点坐标为()1,1,∴直线OA 为y x =,()11,1A -,∵12A A OA ∕∕,∴直线12A A 为2y x =+,解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴()22,4A ,∴()32,4A -,∵34A A OA ∕∕,∴直线34A A 为6y x =+,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴()43,9A ,∴()53,9A -…,∴()220191010,1010A -,故答案为()21010,1010-. 【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.20.【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x ,根据题意可得,,整理为:,利用求根公式解方程得:,∴,(舍去).解析:(6-【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x , 根据题意可得,444x x x -=-, 整理为:212160x x -+=,利用求根公式解方程得:1212x 622±±===±,∴16x =-264x =+>(舍去).故答案为:6-【点睛】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键.21.【解析】【分析】过点A 作AE⊥AO,并使∠AEO=∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE 的最大值,则答案即可求出.83+ 【解析】【分析】过点A 作AE ⊥AO,并使∠AEO =∠ABC,先证明ABC AEO ∆∆,由三角函数可得出23AO AE =,进而求得6AE =,再通过证明AEB AOC ∆∆,可得出23OC BE =,根据三角形三边关系可得:BE OE OB ≤+,由勾股定理可得OE =,求出BE 的最大值,则答案即可求出.【详解】解:过点A 作AE ⊥AO,并使∠AEO =∠ABC,∵OAE BAC AEO ABC ∠=∠⎧⎨∠=∠⎩, ∴ABC AEO ∆∆, ∴tan AC AO B AB AE ∠==, ∵13sin 13B ∠=, ∴2213313cos 11313B ⎛⎫∠=-= ⎪ ⎪⎝⎭, ∴213sin 213tan cos 3313B B n B ∠∠===∠, ∴23AO AE =, 又∵4AO =,∴6AE =,∵90,90EAB BAO OAC BAO ∠+∠=︒∠+∠=︒, ∴ =EAB OAC ∠∠, 又∵AC AO AB AE=, ∴AEB AOC ∆∆, ∴23OC AC BE AB ==, ∴23OC BE =, 在△OEB 中,根据三角形三边关系可得:BE OE OB ≤+, ∵222264213OE AE AO =+=+=, ∴2134OE OB +=,∴BE 的最大值为:2134,∴OC 的最大值为:()28433=. 【点睛】 本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形.22.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲的方差为0.14,乙的方差为0.06,∴S 甲2>S 乙2,∴成绩较为稳定的是乙;故答案为:乙.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.23.【解析】【分析】分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100 解析:9π 【解析】【分析】分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算S S 半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100πcm 2,边长为30cm 的正方形ABCD 的面积=302=900cm 2,∴P (飞镖落在圆内)=100==9009S S ππ半圆正方形,故答案为:9π. 【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.24.16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x ,根据勾股定理求出x 值即可得到小正方形的边长,从而算出4 个小正方形的面积和.【详解】解:如解析:16【解析】【分析】根据题意可知四个小正方形的面积相等,构造出直角△OAB ,设小正方形的面积为x ,根据勾股定理求出x 值即可得到小正方形的边长,从而算出4 个小正方形的面积和.【详解】解:如图,点A 为上面小正方形边的中点,点B 为小正方形与圆的交点,D 为小正方形和大正方形重合边的中点,由题意可知:四个小正方形全等,且△OCD 为等腰直角三角形,∵⊙O 半径为,根据垂径定理得:∴=5, 设小正方形的边长为x ,则AB=12x , 则在直角△OAB 中,OA 2+AB 2=OB 2,即()(22215=2x x ⎛⎫++ ⎪⎝⎭, 解得x=2,∴四个小正方形的面积和=242=16 .故答案为:16.【点睛】本题考查了垂径定理、勾股定理、正方形的性质,熟练掌握利用勾股定理解直角三角形是解题的关键.三、解答题25.(1)﹣1和2;3;(2)见解析;(3)﹣3或1【解析】【分析】(1)根据不变值的定义可得出关于x 的一元二次方程,解之即可求出x 的值,再做差后可求出A 的值;(2)由方程的系数结合根的判别式可得出方程3x 2﹣x +1=0没有实数根,进而可得出代数式3x 2+1没有不变值;(3)由A =0可得出方程x 2﹣(b +1)x +1=0有两个相等的实数根,进而可得出△=0,解之即可得出结论.【详解】解:(1)依题意,得:x 2﹣2=x ,即x 2﹣x ﹣2=0,解得:x 1=﹣1,x 2=2,∴A =2﹣(﹣1)=3.故答案为﹣1和2;3.(2)依题意,得:3x 2 +1=x ,∴3x 2﹣x +1=0,∵△=(﹣1)2﹣4×3×1=﹣11<0,∴该方程无解,即代数式3x 2+1没有不变值.(3)依题意,得:方程x 2﹣bx +1= x 即x 2﹣(b +1)x +1=0有两个相等的实数根, ∴△=[﹣(b +1)]2﹣4×1×1=0,∴b 1=﹣3,b 2=1.答:b 的值为﹣3或1.【点睛】本题考查了一元二次方程的应用以及根的判别式,根据不变值的定义,求出一元二次方程的解是解题的关键.26.吊灯AB的长度约为1.1米.【解析】【分析】延长CD交AB的延长线于点E,构建直角三角形,分别在两个直角三角形△BDE和△AEC 中利用正弦和正切函数求出AE长和BE长,即可求解.【详解】解:延长CD交AB的延长线于点E,则∠AEC=90°,∵∠BDE=60°,∠DCB=30°,∴∠CBD=60°﹣30°=30°,∴∠DCB=∠CBD,∴BD=CD=6(米)在Rt△BDE中,sin∠BDE=BE BD,∴BE=BD•sin∠BDE═6×sin60°=3≈5.19(米),DE=12BD=3(米),在Rt△AEC中,tan∠ACE=AE CE,∴AE=CE•tan∠ACE=(6+3)×tan35°≈9×0.70=6.30(米),∴AB=AE﹣BE≈6.30﹣5.19≈1.1(米),∴吊灯AB的长度约为1.1米.【点睛】本题考查解直角三角形的应用,解答此题的关键是构建直角三角形,利用锐角三角函数进行解答.27.(1)D(2,4);(2)52t=;(3)存在,t的值为2 ;(4)当15t=或22511t=或325 6t=时,△DPQ是一个以DQ为腰的等腰三角形【解析】【分析】(1)由题意得出点D 的纵坐标为4,求出y=2x 中y=4时x 的值即可得;(2)由PQ ∥OD 证△CPQ ∽△COD ,得CQ CP CD CO=,即555t t -=,解之可得; (3)分别过点Q 、D 作QE ⊥OC ,DF ⊥OC 交OC 与点E 、F ,对于直线y=2x ,令y=4求出x 的值,确定出D 坐标,进而求出BD ,BC 的长,利用勾股定理求出CD 的长,利用两对角相等的三角形相似得到三角形CQE 与三角形CDF 相似,由相似得比例表示出QE ,由底PC ,高QE 表示出三角形PQC 面积,再表示出三角形ODP 面积,依据S △DOP =52S △PCQ 列出关于t 的方程,解之可得;(4)由三角形CQE 与三角形CDF 相似,利用相似得比例表示出CE ,PE ,进而利用勾股定理表示出PQ 2,DP 2,以及DQ ,分两种情况考虑:①当DQ=DP ;②当DQ=PQ ,求出t 的值即可.【详解】解:(1)∵OA =4∴把4y =代入2y x =得2x =∴D (2,4).(2)在矩形OABC 中,OA =4,OC=5∴AB =OC =5,BC =OA =4∴BD =3,DC =5由题意知:DQ =PC =t∴OP =CQ =5-t∵PQ ∥OD∴CQ CP CD CO = ∴555t t -= ∴52t = . (3)分别过点Q 、D 作QE ⊥OC , DF ⊥OC 交OC 与点E 、F则DF =OA =4 ∴DF ∥QE ∴△CQE ∽△CDF∴QE CQ DF CD = ∴545QE t -= ∴455t QE -=() ∵ S △DOP =52S △PCQ ∴151********t t =t ()()--⨯⨯⨯ ∴12t =,25t =当t =5时,点P 与点O 重合,不构成三角形,应舍去∴t 的值为2.(4)∵△CQE ∽△CDF∴QE CQ DF CD= ∴4(5)5QE t =- 38(5)355PE t t t =--=- ∴222216(5)816(3)16252555t PQ t t t -=+-=-+ 2224(3)DP t =+-2DQ t =①当DQ PQ =时,221616255t t t =-+, 解之得:1225511t ,t == ②当DQ DP =时,2224(3)t t +-=解之得:256t =答:当15t =或22511t =或3256t =时,△DPQ 是一个以DQ 为腰的等腰三角形. 【点睛】 此题属于一次函数的综合问题,涉及的知识有:坐标与图形性质,相似三角形的判定与性质,勾股定理,以及等腰三角形的性质,熟练掌握相似三角形的判定与性质以及勾股定理是解本题的关键.28.(1)①(6,23),②(3,33);(2)()()()()2434303313333523223123595439x x x x x S x x x x ⎧+≤≤⎪⎪⎪-+-<≤⎪⎪=⎨⎪-+<≤⎪⎪⎪>⎪⎩【解析】【分析】(1)①由四边形OABC 是矩形,根据矩形的性质,即可求得点B 的坐标;②由正切函数,即可求得∠CAO 的度数,③由三角函数的性质,即可求得点P 的坐标;(2)分别从当0≤x≤3时,当3<x≤5时,当5<x≤9时,当x >9时去分析求解即可求得答案.【详解】解:(1)①∵四边形OABC 是矩形,∴AB=OC ,OA=BC ,∵A (6,0)、C (0,23),∴点B 的坐标为:(6,23);②如图1:当点Q 与点A 重合时,过点P 作PE ⊥OA 于E ,∵∠PQO=60°,D (0,3∴3∴AE=3tan 60PE =, ∴OE=OA-AE=6-3=3, ∴点P 的坐标为(3,33);故答案为:①(6,23),②(3,33);(2)①当0≤x ≤3时,如图,OI =x ,IQ =PI •tan 60°=3,OQ =OI +IQ =3+x ;由题意可知直线l ∥BC ∥OA , ∴31333EF PE DC OQ PO DO ====, ∴EF =133+x () 此时重叠部分是梯形,其面积为:S 梯形=12(EF +OQ )•OC =433(3+x ) ∴4343x S =+. 当3<x ≤5时,如图AQ =OI +IO -OA =x +3-6=x -3AH 3x -3)S=S 梯形﹣S △HAQ =S 梯形﹣12AH •AQ 433+x 23x (-3) ∴231333S x x =+ ③当5<x ≤9时,如图∵CE ∥DP ∴CO CE DO DP = ∴2333CE x= ∴23CE x = 263BE x =- S=12(BE +OA )•OC =3(12﹣23x ) ∴23123S x =-+. ④当x >9时,如图∵AH ∥PI∴AO AH OI PI = ∴633x =∴183AH =S=12543.综上:203335599x x x x S x x x ⎧+≤≤⎪⎪⎪-<≤⎪⎪=⎨⎪+<≤⎪>⎩)))).【点睛】此题考查了矩形的性质,相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质等知识.此题综合性较强,难度较大,注意数形结合思想与分类讨论思想的应用.29.(1)9,1;(2)乙【解析】【分析】(1)根据平均数与方差的定义即可求解;(2)根据方差的性质即可判断乙队整齐.【详解】(1)乙队的平均成绩是:1(10482793)10⨯⨯+⨯++⨯=9 方差是:222214(109)2(89)(79)3(99)110⎡⎤⨯⨯-+⨯-+-+⨯-=⎣⎦ (2)∵乙队的方差<甲队的方差∴成绩较为整齐的是乙队.【点睛】此题主要考查平均数与方差,解题的关键是熟知平均数与方差的求解公式及方差的性质.30.(1)交点坐标为(2,0)和(8,0);(2)2<x <8【解析】【分析】(1)把点(﹣2,﹣40)和点(6,8)代入二次函数解析式得到关于a 和b 的方程组,解方程组求得a 和b 的值,可确定出二次函数解析式,令y =0,解方程即可;(2)当y >0时,即二次函数图象在x 轴上方的部分对应的x 的取值范围,据此即可得结论.【详解】(1)由题意,把点(﹣2,﹣40)和点(6,8)代入二次函数解析式,得404216836616a b a b -=--⎧⎨=+-⎩, 解得:110a b =-⎧⎨=⎩,所以这个二次函数的解析式为:21016y x x +=--,当y =0时,210160x x +--=,解之得:1228x x =,=,∴这个二次函数图象与x 轴的交点坐标为(2,0)和(8,0);(2)当y >0时,直接写出自变量x 的取值范围是2<x <8.【点睛】本题考查待定系数法求解析式、二次函数图象与x 轴的交点,解题的关键是熟练掌握待定系数法求解析式.31.一条直角边的长为 6cm ,则另一条直角边的长为8cm .【解析】【分析】可设较短的直角边为未知数x ,表示出较长的边,根据直角三角形的面积为24列出方程求正数解即可.【详解】解:设一条直角边的长为xcm ,则另一条直角边的长为(x+2)cm .根据题意列方程,得1(2)242x x •+=. 解方程,得:x 1=6,x 2=8-(不合题意,舍去).∴一条直角边的长为 6cm ,则另一条直角边的长为8cm .【点睛】本题考查一元二次方程的应用;用到的知识点为:直角三角形的面积等于两直角边积的一半.32.14【解析】【分析】根据甲队第1局胜画出第2局和第3局的树状图,然后根据概率公式列式计算即可得解.【详解】根据题意画出树状图如下:一共有4种情况,确保两局胜的有1种,所以,P =14. 考点:列表法与树状图法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学上册期末试卷综合测试卷(word 含答案)一、选择题1.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( )A .5B .4C .3D .2 2.两个相似三角形的面积比是9:16,则这两个三角形的相似比是( )A .9︰16B .3︰4C .9︰4D .3︰16 3.如图,等腰直角三角形ABC 的腰长为4cm ,动点P 、Q 同时从点A 出发,以1cm/s 的速度分别沿A →B 和A →C 的路径向点B 、C 运动,设运动时间为x (单位:s),四边形PBC Q 的面积为y(单位:cm 2),则y 与x(0≤x≤4)之间的函数关系可用图象表示为( )A .B .C .D .4.如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是( )A .100mB .1003mC .150mD .503m5.已知点O 是△ABC 的外心,作正方形OCDE ,下列说法:①点O 是△AEB 的外心;②点O 是△ADC 的外心;③点O 是△BCE 的外心;④点O 是△ADB 的外心.其中一定不成立的说法是( )A .②④B .①③C .②③④D .①③④ 6.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )A .方差B .平均数C .众数D .中位数7.如图,点P 为⊙O 外一点,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,∠P=30°,OB=3,则线段BP 的长为( )A .3B .3C .6D .98.如图,点A 、B 、C 是⊙O 上的三点,∠BAC = 40°,则∠OBC 的度数是( )A .80°B .40°C .50°D .20° 9.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+ 10.如图,如果从半径为6cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A .2cmB .4cmC .6cmD .8cm 11.已知函数2y x bx c =-++的部分图像如图所示,若0y >,则的取值范围是( )A .41x -<<B .21x -<<C .31x -<<D .31x x <->或12.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+C .1(1)2a --D .1(3)2a -+ 二、填空题13.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC ,若点A 、D 、E 在同一条直线上,∠ACD =70°,则∠EDC 的度数是_____.14.数据2,3,5,5,4的众数是____.15.如图,AB 是半圆O 的直径,AB=10,过点A 的直线交半圆于点C ,且sin ∠CAB=45,连结BC ,点D 为BC 的中点.已知点E 在射线AC 上,△CDE 与△ACB 相似,则线段AE 的长为________;16.若关于x 的一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根,则代数式(k-2)2+2k(1-k)的值为______. 17.抛物线y=ax 2-4ax+4(a≠0)与y 轴交于点A .过点B(0,3)作y 轴的垂线l ,若抛物线y=ax 2-4ax+4(a≠0)与直线l 有两个交点,设其中靠近y 轴的交点的横坐标为m ,且│m│<1,则a 的取值范围是______.18.如图,Rt △ABC 中,∠ACB =90°,AC =BC =4,D 为线段AC 上一动点,连接BD ,过点C 作CH ⊥BD 于H ,连接AH ,则AH 的最小值为_____.19.已知关于x 的方程a (x +m )2+b =0(a 、b 、m 为常数,a ≠0)的解是x 1=2,x 2=﹣1,那么方程a (x +m +2)2+b =0的解_____.20.如图,在ABC 中,62BC =+,45C ∠=︒,2AB AC =,则AC 的长为________.21.如图,△ABC 中,AB =AC =5,BC =6,AD ⊥BC ,E 、F 分别为AC 、AD 上两动点,连接CF 、EF ,则CF +EF 的最小值为_____.22.一组数据:3,2,1,2,2,3,则这组数据的众数是_____.23.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .24.如图,一次函数y =x 与反比例函数y =k x(k >0)的图像在第一象限交于点A ,点C 在以B (7,0)为圆心,2为半径的⊙B 上,已知AC 长的最大值为7,则该反比例函数的函数表达式为__________________________.三、解答题25.如图,已知矩形ABCD 的边6AB =,4BC =,点P 、Q 分别是AB 、BC 边上的动点.(1)连接AQ 、PQ ,以PQ 为直径的O 交AQ 于点E .①若点E 恰好是AQ 的中点,则QPB ∠与AQP ∠的数量关系是______;②若3BE BQ ==,求BP 的长;(2)已知3AP =,1BQ =,O 是以PQ 为弦的圆.①若圆心O 恰好在CB 边的延长线上,求O 的半径: ②若O 与矩形ABCD 的一边相切,求O 的半径.26.某景区检票口有A、B、C、D共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票.(1)甲选择A检票通道的概率是;(2)求甲乙两人选择的检票通道恰好相同的概率.27.解方程(1)x2-6x-7=0;(2) (2x-1)2=9.28.学校为了解九年级学生对“八礼四仪”的掌握情况,对该年级的500名同学进行问卷测试,并随机抽取了10名同学的问卷,统计成绩如下:得分109876人数33211(1)计算这10名同学这次测试的平均得分;(2)如果得分不少于9分的定义为“优秀”,估计这 500名学生对“八礼四仪”掌握情况优秀的人数;(3)小明所在班级共有40人,他们全部参加了这次测试,平均分为7.8分.小明的测试成绩是8分,小明说,我的测试成绩在班级中等偏上,你同意他的观点吗?为什么?29.如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF 的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)∠C=45°,⊙O的半径为2,求阴影部分面积.30.利用一面墙(墙的长度为20m),另三边用长58m的篱笆围成一个面积为200m2的矩形场地.求矩形场地的各边长?31.一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?32.解方程:(1)x2-8x+6=0(2)(x -1)2 -3(x -1)=0【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解.【详解】解:根据题意得,a-1=1,2+m=2,解得,a=2,m=0,∴a-m=2.故选:D.【点睛】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.2.B解析:B【解析】试题分析:根据相似三角形中,面积比等于相似比的平方,即可得到结果.因为面积比是9:16,则相似比是3︰4,故选B.考点:本题主要考查了相似三角形的性质点评:解答本题的关键是掌握相似三角形面积的比等于相似比的平方3.C解析:C【解析】【分析】先计算出四边形PBCQ 的面积,得到y 与x 的函数关系式,再根据函数解析式确定图象即可.【详解】由题意得: 22111448222y x x =⨯⨯-=-+(0≤x≤4), 可知,抛物线开口向下,关于y 轴对称,顶点为(0,8),故选:C.【点睛】此题考查二次函数的性质,根据题意列出解析式是解题的关键.4.A解析:A【解析】∵堤坝横断面迎水坡AB 的坡比是1:3,∴BC =AC 3, ∵BC=50,∴AC=503,∴()2222AB=AC +BC 503+50100==(m ).故选A 5.A解析:A【解析】【分析】根据三角形的外心得出OA=OC=OB ,根据正方形的性质得出OA=OC <OD ,求出OA=OB=OC=OE≠OD ,再逐个判断即可.【详解】解:如图,连接OB 、OD 、OA ,∵O 为锐角三角形ABC 的外心,∴OA =OC =OB ,∵四边形OCDE 为正方形,∴OA =OC <OD ,∴OA=OB=OC=OE≠OD,∴OA=OC≠OD,即O不是△ADC的外心,OA=OE=OB,即O是△AEB的外心,OB=OC=OE,即O是△BCE的外心,OB=OA≠OD,即O不是△ABD的外心,故选:A.【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.6.A解析:A【解析】【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差故选A考点:方差7.A解析:A【解析】【分析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP的长.【详解】连接OA,∵PA为⊙O的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6-3=3.故选A.【点睛】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.8.C解析:C【解析】∵∠BOC=2∠BAC ,∠BAC=40°∴∠BOC=80°,∵OB=OC ,∴∠OBC=∠OCB=(180°-80°)÷2=50°故选C .9.A解析:A【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.故选A.10.B解析:B【解析】【分析】因为圆锥的高,底面半径,母线构成直角三角形,首先求得留下的扇形的弧长,利用勾股定理求圆锥的高即可.【详解】解:∵从半径为6cm 的圆形纸片剪去13圆周的一个扇形, ∴剩下的扇形的角度=360°×23=240°, ∴留下的扇形的弧长=24061880ππ⨯=, ∴圆锥的底面半径248r ππ==cm ; 故选:B.【点睛】此题主要考查了主要考查了圆锥的性质,要知道(1)圆锥的高,底面半径,母线构成直角三角形,(2)此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长. 11.C解析:C【解析】【分析】根据抛物线的对称性确定抛物线与x 轴的另一个交点为(−3,0),然后观察函数图象,找出抛物线在x轴上方的部分所对应的自变量的范围即可.【详解】∵y=ax2+bx+c的对称轴为直线x=−1,与x轴的一个交点为(1,0),∴抛物线与x轴的另一个交点为(−3,0),∴当−3<x<1时,y>0.故选:C.【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据函数对称轴找到抛物线与x轴的交点.12.D解析:D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.二、填空题13.115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=7解析:115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=70°,∴∠DCE=20°,∴∠EDC=180°﹣∠E﹣∠DCE=180°﹣45°﹣20°=115°,故答案为115°.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识,问题,属于中考常考题型.14.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.15.3或9 或或【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB 是半圆O 的直径,∴∠ACB=90,∵sin∠C解析:3或9 或23或343 【解析】【分析】先根据圆周角定理及正弦定理得到BC=8,再根据勾股定理求出AC=6,再分情况讨论,从而求出AE.【详解】∵AB 是半圆O 的直径,∴∠ACB=90︒,∵sin ∠CAB=45, ∴45BC AB =, ∵AB=10,∴BC=8,∴6AC ===,∵点D 为BC 的中点,∴CD=4.∵∠ACB=∠DCE=90︒, ①当∠CDE 1=∠ABC 时,△ACB ∽△E 1CD,如图 ∴1AC BC CE CD =,即1684CE =, ∴CE 1=3,∵点E 1在射线AC 上,∴AE 1=6+3=9,同理:AE 2=6-3=3.②当∠CE 3D=∠ABC 时,△ABC ∽△DE 3C ,如图 ∴3AC BC CD CE =,即3684CE =, ∴CE 3=163, ∴AE 3=6+163=343, 同理:AE 4=6-163=23. 故答案为:3或9 或23或343. 【点睛】此题考查相似三角形的判定及性质,当三角形的相似关系不是用相似符号连接时,一定要分情况来确定两个三角形的对应关系,这是解此题容易错误的地方.16.【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程x2﹣2kx+1-4k=0有两个相等的实数根,∴解析:72【解析】【分析】根据题意可得一元二次方程根的判别式为0,列出含k 的等式,再将所求代数进行变形后整体代入求值即可.【详解】解:∵一元二次方程12x 2﹣2kx+1-4k=0有两个相等的实数根,∴2214241402b ac k k ,整理得,22410k k , ∴21+22k k 2221k k k 224k k224k k当21+22k k 时, 224k k142=-+ 72= 故答案为:72. 【点睛】本题考查一元二次方程根的判别式与根个数之间的关系,根据根的个数确定根的判别式的符号是解答此题的关键.17.a>或a<.【解析】【分析】先确定抛物线的对称轴,根据开口的大小与a 的关系,即开口向上时,a>0,且a 越大开口越小,开口向下时,a<0,且a 越大,开口越大,从而确定a 的范围.【详解】解:如解析:a>13或a<15-. 【解析】【分析】 先确定抛物线的对称轴,根据开口的大小与a 的关系,即开口向上时,a>0,且a 越大开口越小,开口向下时,a<0,且a 越大,开口越大,从而确定a 的范围.【详解】解:如图,观察图形抛物线y=ax 2-4ax+4的对称轴为直线422a x a-=-= ,设抛物线与直线l交点(靠近y轴)为(m,3),∵│m│<1,∴-1<m<1.当a>0时,若抛物线经过点(1,3)时,开口最大,此时a值最小,将点(1,3)代入y=ax2-4ax+4,得,3=a-4a+4解得a=1 3 ,∴a>1 3 ;当a<0时,若抛物线经过点(-1,3)时,开口最大,此时a值最大,将点(-1,3)代入y=ax2-4ax+4,得,3=a+4a+4解得a=1 5 - ,∴a<1 5 -.a的取值范围是a>13或a<15-.故答案为:a>13或a<15-.【点睛】本题考查抛物线的性质,首先明确a值与开口的大小关系,观察图形,即数形结合的思想是解答此题的关键.18.2﹣2【解析】【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=BC=2,根据勾股定理可求AG=2,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,解析:25﹣2【解析】【分析】取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=12BC=2,根据勾股定理可求AG=25,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,可求AH的最小值.【详解】解:如图,取BC中点G,连接HG,AG,∵CH⊥DB,点G是BC中点∴HG=CG=BG=12BC=2,在Rt△ACG中,AG22AC CG5在△AHG中,AH≥AG﹣HG,即当点H在线段AG上时,AH最小值为52,故答案为:52【点睛】本题考查了动点问题,解决本题的关键是熟练掌握直角三角形中勾股定理关系式. 19.x3=0,x4=﹣3.【解析】【分析】把后面一个方程中的x+2看作整体,相当于前面一个方程中的x求解.【详解】解:∵关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,m,解析:x 3=0,x 4=﹣3.【解析】【分析】把后面一个方程中的x +2看作整体,相当于前面一个方程中的x 求解.【详解】解:∵关于x 的方程a (x +m )2+b =0的解是x 1=2,x 2=﹣1,(a ,m ,b 均为常数,a ≠0),∴方程a (x +m +2)2+b =0变形为a [(x +2)+m ]2+b =0,即此方程中x +2=2或x +2=﹣1, 解得x =0或x =﹣3.故答案为:x 3=0,x 4=﹣3.【点睛】此题主要考查一元二次方程的解,解题的关键是熟知整体法的应用.20.【解析】【分析】过点作的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求的长.【详解】过作于点,设,则,因为,所以,则由勾股定理得,因为,所以,则.则.【点睛】本题考查勾股定解析:2【解析】【分析】过A 点作BC 的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求AC 的长.【详解】过A 作AD BC ⊥于D 点,设2AC x =,则2AB x =,因为45C ∠=︒,所以AD CD x ==,则由勾股定理得223BD AB AD x =-=,因为62BC =+,所以362BC x x =+=+,则2x =.则2AC =.【点睛】本题考查勾股定理和正余弦公式的运用,要学会通过作辅助线得到特殊三角形,以便求解.21.【解析】【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥B M,即可得出答案解析:24 5【解析】【分析】作BM⊥AC于M,交AD于F,根据三线合一定理求出BD的长和AD⊥BC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EF≥BM,即可得出答案.【详解】作BM⊥AC于M,交AD于F,∵AB=AC=5,BC=6,AD是BC边上的中线,∴BD=DC=3,AD⊥BC,AD平分∠BAC,∴B、C关于AD对称,∴BF=CF,根据垂线段最短得出:CF+EF=BF+EF≥BF+FM=BM,即CF+EF≥BM,∵S△ABC=12×BC×AD=12×AC×BM,∴BM=642455 BC ADAC,即CF+EF的最小值是245,故答案为:245.【点睛】本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,题目具有一定的代表性,是一道比较好的题目.22.【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据解答即可.【详解】在数据:3,2,1,2,2,3中,2出现3次,出现的次数最多,∴这组数据的众数是2,故答案为:2.【点睛解析:【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据解答即可.【详解】在数据:3,2,1,2,2,3中,2出现3次,出现的次数最多,∴这组数据的众数是2,故答案为:2.【点睛】此题考查的是求一组数据的众数,掌握众数的定义是解决此题的关键.23.1【解析】【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.24.或【解析】【分析】过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB 中,AD=m,BD=解析:9yx=或16yx=【解析】【分析】过A作AD垂直于x轴,设A点坐标为(m,n),则根据A在y=x上得m=n,由AC长的最大值为7,可知AC过圆心B交⊙B于C,进而可知AB=5,在Rt△ADB中,AD=m,BD=7-m,根据勾股定理列方程即可求出m的值,进而可得A点坐标,即可求出该反比例函数的表达式.【详解】过A作AD垂直于x轴,设A点坐标为(m,n),∵A在直线y=x上,∴m=n,∵AC长的最大值为7,∴AC过圆心B交⊙B于C,∴AB=7-2=5,在Rt△ADB中,AD=m,BD=7-m,AB=5,∴m2+(7-m)2=52,解得:m=3或m=4,∵A点在反比例函数y=kx(k>0)的图像上,∴当m=3时,k=9;当m=4时,k=16,∴该反比例函数的表达式为:9yx=或16yx=,故答案为9yx=或16yx=【点睛】本题考查一次函数与反比例函数的性质,理解题意找出AC的最长值是通过圆心的直线是解题关键.三、解答题25.(1)①2QPB AQP ∠=∠;②1.5;(2)①5;②53、255,35630、5. 【解析】 【分析】(1)①根据直径所对的圆周角是直角判断△APQ 为等腰三角形,结合等腰三角形的两底角相等和圆周角定理证明;②证明△PBQ ∽△QBA ,由对应边成比例求解; (2)①画出图形,由勾股定理列方程求解;②分O 与矩形ABCD 的四边分别相切,画出图形,利用切线性质,由勾股定理列方程求解. 【详解】解:(1)①如图,PQ 是直径,E 在圆上, ∴∠PEQ=90°, ∴PE ⊥AQ, ∵AE=EQ, ∴PA=PQ, ∴∠PAQ=∠PQA,∴∠QPB=∠PAQ+∠PQA=2∠AQP , ∵∠QPB=2∠AQP .\②解:如图,∵BE=BQ=3, ∴∠BEQ=∠BQE, ∵∠BEQ=∠BPQ, ∵∠PBQ=∠QBA, ∴△PBQ ∽△QBA, ∴BPBQBQ BA, ∴336BP , ∴BP=1.5;(2)①如图, BP=3,BQ=1,设半径OP=r,在Rt△OPB中,根据勾股定理得,PB2+OB2=OP2∴32+(r-1)2=r2,∴r=5,∴O的半径是5.②如图,O与矩形ABCD的一边相切有4种情况,如图1,当O与矩形ABCD边BC相切于点Q,过O作OK⊥AB于K,则四边形OKBQ为矩形,设OP=OQ=r,则PK=3x,由勾股定理得,r2=12+(3-r)2,解得,r=5 3 ,∴O半径为5 3 .如图2,当O与矩形ABCD边AD相切于点N,延长NO交BC于L,则OL⊥BC,过P作PS⊥NL于S,设OS=x,则ON=OP=OQ=3+x,设PS=BL=y,由勾股定理得,2222223331x x yx x y,解得125 23x(舍去),225 23x,∴ON=25 53,∴O半径为25 53.如图3,当O与矩形ABCD边CD相切于点M,延长MO交AB于R,则OR⊥AB,过O作OH⊥BC于H,设OH=BR=x,设HQ=y, 则OM=OP=OQ=4-1-y=3-y,由勾股定理得,2222223331y x yy x y,解得163032x (舍去),263032x,∴OM=35630,∴O半径为35630.如图4,当O与矩形ABCD边AB相切于点P,过O作OG⊥BC于G,则四边形AFCG为矩形,设OF=CG=x,,则OP=OQ=x+4,由勾股定理得(x+4)2=32+(x+3)2,解得,x=1,∴OP=5,∴O半径为5.综上所述,若O与矩形ABCD的一边相切,为O的半径53,2553,35630,5.【点睛】本题考查圆的相关性质,涉及圆周角定理,垂径定理,切线的性质等,综合性较强,利用分类思想画出对应图形,化繁为简是解答此题的关键.26.(1)14;(2)14.【解析】【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解.【详解】(1)解:一名游客经过此检票口时,选择A通道通过的概率=14,故答案为:14;(2)解:列表如下:共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E,它的发生有4种可能:(A,A)、(B,B)、(C,C)、(D,D)∴P(E)=416=14.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.27.(1)x1=7,x2=-1;(2)x1=2,x2=-1【解析】【分析】(1)根据配方法法即可求出答案.(2)根据直接开方法即可求出答案;【详解】解:(1)x2-6x+9-9-7=0(x-3) 2=16x-3=±4x1=7,x2=-1(2)2x-1=±32x=1±3x1=2,x2=-1【点睛】本题考查了解一元二次方程,观察所给方程的形式,分别使用配方法和直接开方法求解.28.(1)8.6;(2)300;(3)不同意,理由见解析.【解析】【分析】(1)根据加权平均数的计算公式求平均数;(2)根据表中数据求出这10名同学中优秀所占的比例,然后再求500名学生中对“八礼四仪”掌握情况优秀的人数;(3)根据平均数和中位数的意义进行分析说明即可.【详解】解:(1)103938271618.633211x⨯+⨯+⨯+⨯+⨯==++++∴这10名同学这次测试的平均得分为8.6分;(2)3350030010+⨯=(人)∴这 500名学生对“八礼四仪”掌握情况优秀的人数为300人;(3)不同意平均数容易受极端值的影响,所以小明的测试成绩为8分,并不一定代表他的成绩在班级中等偏上,要想知道自己的成绩是否处于中等偏上,需要了解班内学生成绩的中位数.【点睛】本题考查加权平均数的计算,用样本估计总体以及平均数及中位数的意义,了解相关概念准确计算是本题的解题关键.29.(1)见解析;(2)2-2π【解析】【分析】(1)若要证明CD是⊙O的切线,只需证明CD与半径垂直,故连接OE,证明OE∥AD即可;(2)根据等腰直角三角形的性质和扇形的面积公式即可得到结论.【详解】解:(1)连接OE.∵OA=OE,∴∠OAE=∠OEA,又∵∠DAE=∠OAE,∴∠OEA=∠DAE,∴OE∥AD,∴∠ADC=∠OEC,∵AD⊥CD,∴∠ADC=90°,故∠OEC=90°.∴OE⊥CD,∴CD是⊙O的切线;(2)∵∠C=45°,∴△OCE是等腰直角三角形,∴CE=OE=2,∠COE=45°,∴阴影部分面积=S△OCE﹣S扇形OBE=12⨯2×2﹣2452360π⨯=2﹣2π.【点睛】本题综合考查了圆与三角形,涉及了切线的判定、等腰三角形的性质、扇形的面积,灵活的将图形与已知条件相结合是解题的关键.30.矩形长为25m,宽为8m【解析】【分析】设垂直于墙的一边为x米,则邻边长为(58-2x),利用矩形的面积公式列出方程并解答.【详解】解:设垂直于墙的一边为x米,得:x(58﹣2x)=200解得:x1=25,x2=4,当x=4时,58﹣8=50,∵墙的长度为20m,∴x=4不符合题意,当x=25时,58﹣2x=8,∴矩形的长为25m,宽为8m,答:矩形长为25m,宽为8m.【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.31.38【解析】【分析】本题先利用树状图,求出医院某天出生了3个婴儿的8中等可能性,再求出出现1个男婴、2个女婴有三种,概率为3 8 .【详解】解:用树状图来表示出生婴儿的情况,如图所示.在这8种情况中,一男两女的情况有3种,则概率为38.【点睛】本题利用树状图比较合适,利用列表不太方便.一般来说求等可能性,只有两个层次,既可以用树状图,又可以用列表;有三个层次时,适宜用树状图求出所有的等可能性.用到的知识点为:概率=所求情况数与总情况数之比.32.(1)x1104,x2104(2) x1=1,x2=4.【解析】【分析】(1)根据配方法即可求解;(2)根据因式分解法即可求解.【详解】(1)x2-8x+6=0x2-8x+16=10(x-4)2=10x-4=10∴x1104,x2104(2)(x -1)2 - 3(x -1)=0(x -1)(x -1-3)=0(x -1)(x-4)=0∴x-1=0或x-4=0解得x1=1,x2=4.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知其解法的运用.{题型:3-选择题}{题目}{适用范围:1.七年级}{类别:常考题}{章节:[1-1-3]003}计划开设以下课外活动项目:A 一版画、B 一机器人、C 一航模、D 一园艺种植.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查(每位学生必须选且只能选一个项目),并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;扇形统计图中,选“D一园艺种植”的学生人数所占圆心角的度数是 °;(2)请你将条形统计图补充完整;(3)若该校学生总数为 1500 人,试估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总人数(1)200;72(2)60(人),图见解析(3)1050人.【解析】【分析】(1)由A类有20人,所占扇形的圆心角为36°,即可求得这次被调查的学生数,再用360°乘以D人数占总人数的比例可得;(2)首先求得C项目对应人数,即可补全统计图;(3)总人数乘以样本中B、C人数所占比例可得.【详解】(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷36360=200(人);选“D一园艺种植”的学生人数所占圆心角的度数是360°×40200=72°,故答案为:200、72;(2)C项目对应人数为:200−20−80−40=60(人);补充如图.(3)1500×8060200=1050(人),答:估计该校学生中最喜欢“机器人”和最喜欢“航模”项目的总人数为1050人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.。

相关文档
最新文档