1.目录 五年级奥数教材智能思维训练教材
五年级数学思维训练校本教材
上册刘徽九章算术刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。
《九章算术》约成书于东汉之初,共有246个问题的解法。
在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明。
在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根。
在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果。
他用割圆术,从直径为2尺的圆内接正六边形开始割圆,依次得正12边形、正24边形……,割得越细,正多边形面积和圆面积之差越小,用他的原话说是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。
”他计算了3072边形面积并验证了这个值.刘徽提出的计算圆周率的科学方法,奠定了此后千余年中国圆周率计算在世界上的领先地位。
刘徽在数学上的贡献极多,在开方不尽的问题中提出“求徽数”的思想,这方法与后来求无理根的近似值的方法一致,它不仅是圆周率精确计算的必要条件,而且促进了十进小数的产生;在线性方程组解法中,他创造了比直除法更简便的互乘相消法,与现今解法基本一致;并在中国数学史上第一次提出了“不定方程问题”;他还建立了等差级数前n项和公式;提出并定义了许多数学概念:如幂(面积);方程(线性方程组);正负数等等.刘徽还提出了许多公认正确的判断作为证明的前提。
他的大多数推理、证明都合乎逻辑,十分严谨,从而把《九章算术》及他自己提出的解法、公式建立在必然性的基础之上.虽然刘徽没有写出自成体系的著作,但他注《九章算术》所运用的数学知识实际上已经形成了一个独具特色、包括概念和判断、并以数学证明为其联系纽带的理论体系.刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作.《海岛算经》一书中,刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目.刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推理的方式来论证数学命题的人.刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。
小学数学奥数基础教程(五年级)目30讲全精编版
小学奥数基础教程(五年级)第1讲数字迷(一)第2讲数字谜(二)第3讲定义新运算(一)第4讲定义新运算(二)第5讲数的整除性(一)第6讲数的整除性(二)第7讲奇偶性(一)第8讲奇偶性(二)第9讲奇偶性(三)第10讲质数与合数第11讲分解质因数第12讲最大公约数与最小公倍数(一)第13讲最大公约数与最小公倍数(二)第14讲余数问题第15讲孙子问题与逐步约束法第16讲巧算24第17讲位置原则第18讲最大最小第19讲图形的分割与拼接第20讲多边形的面积第21讲用等量代换求面积第22 用割补法求面积第23讲列方程解应用题第24讲行程问题(一)第25讲行程问题(二)第26讲行程问题(三)第27讲逻辑问题(一)第28讲逻辑问题(二)第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲数字谜(一)数字谜的内容在三年级和四年级都讲过,同学们已经掌握了不少方法。
例如用猜想、拼凑、排除、枚举等方法解题。
数字谜涉及的知识多,思考性强,所以很能锻炼我们的思维。
这两讲除了复习巩固学过的知识外,还要讲述数字谜的代数解法及小例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立(每个运算符号只准使用一次):(5○13○7)○(17○9)=12。
分析与解:因为运算结果是整数,在四则运算中只有除法运算可能出现分数,所以应首先确定“÷”的位置。
当“÷”在第一个○内时,因为除数是13,要想得到整数,只有第二个括号内是13的倍数,此时只有下面一种填法,不合题意。
(5÷13-7)×(17+9)。
当“÷”在第二或第四个○内时,运算结果不可能是整数。
当“÷”在第三个○内时,可得下面的填法:(5+13×7)÷(17-9)=12。
例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。
(完整word)五年级下数学思维训练教材
第一讲立体图形及展开同学们在五年级所学习的立体图形主要是长方体和正方体,从这一讲开始我们将一起研究数学竞赛中经常出现的有关长方体和正方体的问题,帮助大家提高观察能力和空间想像能力,以及掌握解答问题的技巧和方法。
这一讲我们进一步研究长方体和正方体的特征及展开图例题选讲例1:图1所示的是一个正方体纸盒拆开后平摊在桌面上的形状。
如果将这个展开图恢复成原来的正方体,图中的点F、点G分别与哪个点重合?【分析与解答】为了研究方便,我们将正方体六个面分别标上序号1、2、3、4、5、6,如果将l作为底面,那么4就是后面,5为右面,6为前面,2则是左面,3就是上面,(如图2)。
从图中不难看出点F与点N,重合,点G与点S重合。
还有一种方法就是动手制作一张展开图,折一折,结果就一目了然了,同学们不妨试试吧!例2:一只小虫从图l所示的长方体上的A点出发,沿长方体的表面爬行,依次经过前面、上面、后面、底面,最后到达P点。
请你为它设计一条最短的爬行路线。
【分析与解答】因为小虫在长方体的表面爬行,所以我们可以将长方体的前、后、上、下西个面展开成平面图形(如图2)。
又因为在平面上“两点之间的线段长度最短”,所以连接AP,则线段AP为小虫爬行的最短路线。
练习与思考1.如图所示的是一个正方体纸盒拆开后平摊在桌面上的形状。
如果将这个展开图恢复成原来的正方体,图中的点B、点D分别与哪个点重合?2.如图所示的是一个棱长3厘米的正方体木块,一只蚂蚁从A点沿表面爬向B点。
请画出蚂蚁爬行的最短路线。
问:这样的路线共有几条?3.将一张长方形硬纸片,剪去多余部分后,折叠成一个棱长为l厘米的正方体。
这张长方形硬纸片的面积最小是多少平方厘米?4.一块长方形的铁皮,长28厘米,在这块铁皮的四角各剪下一个边长为4厘米的小正方形,然后通过折叠、焊接做成一个无盖的长方体盒子。
已知这个盒子的容积是960立方厘米,求原来长方形铁皮的面积。
5.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则A、B、c处填的数各是多少?6.如图所示的10个展开图中,哪些可以做成完整的正方体?7.图(1)是一个正方体,图(2)是这个正方体的一个平面展开图,图(3)、图(4)、图(5)也是这个正方体的平面展开图,但每一个展开图上都有四个面上的图案没画出来,请你给补上。
(整理)小学数学思维校本课程教材
回族区南关小学特色校本课程数学思维训练教程五年级数学思维训练兴趣小组试用回族区南关小学五年级数学思维训练兴趣小组活动目的:通过配合课堂教学,延伸课内知识,进行有计划、有步骤的课外数学思维能力专项训练,对于进一步激发学有余力学生的学习兴趣、开阔数学视野、培养数学思维、掌握数学学习方法具有莫大的好处,为学生中学阶段学好数学奠定坚实的基础。
动内容活:自编数学思维训练教材,主要包括小数的简便运算和循环小数与计算、数的整除、质数与合数、分解质因数、因数的个数与因数的和、最大公因数与最小公倍数、奇数与偶数、巧算表面积和体积等。
活动时间:每周四下午两节课后进行(其中,期中考试和期末考试复习期间暂停3次)活动地点:多媒体教室组织办法:在开学第二周,在学生自愿报名的基础上,结合学生平时的数学学习情况,选拔活动小组成员。
效果评价:以作业、上课表现和测试结果来进行评价。
参加人员:五年级学生指导教师:王建民第一讲小数乘法的运算技巧探究目标:1、能熟练的根据乘法运算的规则、数字特征、运算定律、性质、公式等,进行简算和速算。
2、培养善于观察、灵活运用基础知识的能力,能正确、迅速、合理、灵活的解答有关运算问题。
3、养成整体观察、深入理解、有序思考、细心解题的良好习惯。
探究过程:例1计算:(1)438.9×5 (2)574.62 ×25解析:(1)由于5=10÷2,因此,可以先把438.9乘以10,再除以2,所得的商就是438.9与5的积。
即解:438.9×5=4389÷2=2194.5(2)由于25=100÷4,因此,可以先把574.62乘以100,再除以4,所得的商就是574.62乘25的积。
即解:574.62×25=57462÷4=14365.5或574.62×25=574.62÷4×100=14365.5例2计算(1)47.39÷0.5 (2)12.348÷0.25解析:(1)47.39÷0.5=473.9÷5= 473.9×2÷10=94.78(2)12.348÷0.25 或12.348÷0.25=1234.8÷25 =1234.8÷25=1234.8÷5÷5 =1234.8×4÷100=246.96÷5 =4939.2÷100=49.392 =49.392例3:计算1.25×0.25×0.05×64解析:根据题目中的数字特点,为了凑整,将64分解成2×4×8,然后根据乘法交换律和结合律进行简算。
小学数学奥数基础教程(五年级)目录
小学数学奥数基础教程(五年级)目录(含答案)word文档下载地址文档贡献者:与你的缘..第1讲数字迷(一)练习1.第2讲数字谜(二)练习2.第3讲定义新运算(一)练习3.第4讲定义新运算(二)练习4.第5讲数的整除性(一)练习5.第6讲数的整除性(二)练习6.第7讲奇偶性(一)练习7.第8讲奇偶性(二)练习8.第9讲奇偶性(三)练习9.第10讲质数与合数练习10.第11讲分解质因数练习11.第12讲最大公约数与最小公倍数(一)练习12.第13讲最大公约数与最小公倍数(二)练习13.第14讲余数问题练习14.第15讲孙子问题与逐步约束法练习15.第16讲巧算24练习16.第17讲位置原则练习17.第18讲最大最小练习18.第19讲图形的分割与拼接练习19.第20讲多边形的面积练习20.第21讲用等量代换求面积练习21.第22 用割补法求面积练习22.第23讲列方程解应用题练习23.第24讲行程问题(一)练习24.第25讲行程问题(二)练习25.第26讲行程问题(三)练习26.第27讲逻辑问题(一)练习27.第28讲逻辑问题(二)练习28.第29讲抽屉原理(一)练习29.第30讲抽屉原理(二)练习30。
第1讲 消去问题 五年级奥数智能思维训练教材
第一讲消去问题(一)在有些应用题里,给出了两个或者两个以上的未知数量间的关系,要求出这些未知数的数量。
我们在解题时,可以通过比较条件,分析对应的未知数量变化的情况,想办法消去其中的一个未知量,从而把一道数量关系较复杂的题目变成比较简单的题目解答出来。
这样的解题方法,我们通常把它叫做“消去法”。
例题与方法在学习例题前,我们先进行一些基本数量关系的练习,为用消去法解题作好准备。
(1)买1个皮球和1个足球共用去40元,买同样的5个皮球和5个足球一共用去多少元?(2)3袋大米和3袋面粉共重225千克,1袋大米和1袋面粉共重多少千克?(3)6行桃树和6行梨树一共120棵,照这样子计算8行桃树和8行梨树一共有多少棵?(4)学校买了4个水瓶和25个茶杯,一共用去172元,每个水瓶18元,每个茶杯多少元?例1 学校第一次买了3个水瓶和20个茶杯,共用去134元;第二次又买了同样的3个水瓶和16个差杯,共用去118元。
水瓶和茶杯的单价各是多少元?例2 买3个篮球和5个足球共、用去480元,买同样的6个篮球和3个足球共用去519元。
篮球和足球的单价各是多少元?练习与思考(第1~4题5分,其余每题10分,共100分)1、 1袋黄豆和1袋绿豆共重50千克,同样的7袋黄豆和7袋绿豆共重()千克。
2、买5条毛巾和5条枕巾共用去90元,买1条毛巾和1条枕巾要()元。
3、买4本字典和4本笔记本共、用去了68元,买同样的9本字典和9本笔记本一共要()元。
4、9筐苹果和9筐梨共重495千克,找这样计算,2筐苹果和2筐梨共重()千克。
5、妈妈买了5米画布和3米白布,一共用去102元。
花布每米15元,白布每米多少元?6、果园里有14行桃树和20行梨树,桃树和梨树一共有440棵。
每行梨树15棵,每行桃树多少棵?7、买3千克茶叶和5千克糖,一共用去420元,买同样的3千克茶叶和3千克糖,一共用去874元。
每千克茶叶和每千克糖各多少元?8、食堂第一次运来6袋大米和4袋面粉,一共重400千克;第二次又运来9袋大米和4袋面粉,一共重550千克。
五年级-奥数与智能思维(上)【73页】
博思五年级奥数——长方形、正方形的周长【一】用3个边长为3厘米的正方形,拼成一个大长方形时,这个大长方形的周长是多少厘米?它比3个正方形的周长和少多少厘米?练习1、用5个边长为2厘米的正方形拼成一个大长方形,这个大长方形的周长是多少厘米?2、把两个长为20厘米,宽为10厘米的长方形拼成一个大长方形。
大长方形的周长是多少厘米?【二】求下图的周长。
(单位:厘米)练习1、求下图的周长。
(单位:厘米)2、下图由五个边长都是3厘米的正方形组成。
求这两个图形的周长。
(1)(2)【三】有5张同样大小的纸如下图重叠着,每张纸都是边长8厘米的正方形,重叠的部分为边长的一半。
求重叠后图形的周长。
练习1、下图由8个边长都是4厘米的正方形组成,求这个图形的周长。
2、下图由1个正方形和2个长方形组成,求这个图形的周长。
【四】一块长方形木板,沿着它的长度不同的两边各截去5厘米,截掉的总面积为225平方厘米。
现在这块木板的周长是多少厘米?练习1、有一长方形,如果长减小5米,宽减少3米,面积就比原来减少90平方米,且剩下部分正好是一个正方形,求这个正方形的周长。
2、有两个相同的长方形,长是9厘米,宽是4厘米,如果按下图叠放在一起,这个图形的周长是多少?【五】求下列图形的周长。
(单位:厘米)练习1、求下列图形的周长。
(单位:厘米)2、一个长10厘米,宽2厘米的长方形和两个正方形正好拼成下图长方形,求所拼长方形的周长。
【六】如图的正方形分成甲、乙两部分,下面哪几句话是正确的?①甲的周长比乙大②甲乙周长相等③甲的面积比乙大④甲乙面积相等练习1、在()里填上“>”、“<”或“=”。
甲的周长()乙的周长2、下图是边长为5厘米的正方形,求正方形中阴影部分的周长。
3.如下图,阴影部分是正方形,DF=6厘米,AB=9厘米。
求最大的长方形的周长。
练习1、下面三个正方形的面积相等,剪去阴影部分的面积也相等,求原来正方形的周长发生了什么变化。
锻炼五年级学生思维能力的书籍
锻炼五年级学生思维能力的书籍锻炼五年级学生思维能力的书籍推荐1.《思维导图》•推荐理由:《思维导图》是一本由著名心智图创始人托尼·布赖(英文名:Tony Buzan)所著的经典书籍。
通过学习思维导图的技巧,五年级学生可以提高思维能力,培养思维的逻辑性和创造性。
•书籍简介:本书详细介绍了什么是思维导图以及如何制作思维导图,帮助读者更好地组织和整理思维。
同时,书中也提供了丰富的思维导图应用案例,帮助学生将所学知识进行分类和关联,培养综合思维能力。
2.《解密数学思维》•推荐理由:数学是培养逻辑思维和问题解决能力的重要学科。
《解密数学思维》针对五年级学生的思维需求,引导学生通过解决数学难题,培养逻辑思考和分析能力。
•书籍简介:本书以有趣的数学题目为主线,通过讲解解题方法、技巧和思维逻辑,帮助学生培养数学思维能力。
每个章节都有大量的练习题目,既可以提升学生的数学运算能力,又能锻炼他们的思维灵活性和创新性。
3.《创意思维训练营》•推荐理由:创造力和创新思维是五年级学生需要培养的重要能力。
《创意思维训练营》通过启发学生的创意思维,提供创新性的思维训练,帮助学生培养创造性思维和问题解决能力。
•书籍简介:本书通过引导学生进行各种创意思维活动,如头脑风暴、创意绘画、创意写作等,培养学生的创造力和创新性思维。
同时,书中也提供了一些实用的创意方法和技巧,帮助学生在解决问题和提出新想法时更具创造性。
4.《思维的技巧》•推荐理由:《思维的技巧》是一本通俗易懂的思维训练书籍,适合五年级学生使用。
通过学习书中提出的思维方法和技巧,学生可以提高思维能力和解决问题的能力。
•书籍简介:本书详细介绍了多种思维技巧,如分析、推理、归纳和创新等。
每种技巧都有具体的实例和练习,帮助学生理解和应用不同的思维方式。
同时,书中也提供了一些实用的解决问题的方法,培养学生的问题解决能力和创新思维。
以上是我针对锻炼五年级学生思维能力的四本书籍推荐及简介,希望能对您有所帮助!。
5华数奥赛教材五年级
《华数奥赛教材(5年级)》目录
上册
第一讲小数的巧算与估算
第二讲列方程解应用题
第三讲容斥原理
第四讲抽屉原理
第五讲进位制
第六讲长度与角度
第七讲面积计算
第八讲等积变形
第九讲图形割补
第十讲图形的切拼
第十一讲图论问题
第十二讲最优化策略
第十三讲覆盖与染色
第十四讲组合问题
第十五讲竞赛题选讲
《华数奥赛教材(5年级)》目录
下册
第一讲平均数
第二讲约数与倍数
第三讲约数的判断
第四讲数的分解
第五讲质数与合数
第六讲最大公约数与最小公倍数
第七讲约数的个数与约数和
第八讲整除
第九讲带余除法
第十讲同余
第十一讲末位数字
第十二讲完全平方数
第十三讲自然数的数字和
第十四讲游戏中的整数问题
第十五讲竞赛题选。
思维拓展训练五年级教材
思维拓展训练五年级教材以下是一些建议的思维拓展训练活动,适合五年级学生:1. 智力游戏:- 数独:让学生尝试填写9x9的数独格子,培养逻辑思维和数学能力。
- 推理游戏:学生需要根据提供的线索来推理出正确的答案,如猜谜语、推理迷题等。
- 图形拼装:将零散的图形拼接成完整的图案,培养学生的空间想象能力和手眼协调能力。
2. 创意写作:- 给学生一个开放式的题目,让他们用自己的想象力写一篇故事。
- 以一张图片、一段音乐或一段视频为素材,让学生通过观察和倾听来写一篇描述性的作文。
- 提供一句话的开头,要求学生继续写下去,培养他们的逻辑思维和创造力。
3. 逻辑思维训练:- 进行谜题破解活动,让学生分析线索、进行推理,找出问题的解决方法。
- 进行数字游戏,如数学谜题、计算游戏等,培养学生的数学思维和逻辑推理能力。
- 进行思维导图练习,让学生将一个主题或概念按照逻辑关系进行组织和归纳。
4. 团队合作挑战:- 给学生一个团队合作的任务,如搭建一个高塔、解决一个难题等,让他们一起讨论、分工合作,培养团队合作和沟通能力。
- 组织学生参加棋类、团体游戏等,培养他们的策略思维和团队意识。
5. 观察力训练:- 让学生观察一张图片、一段视频或一个场景,然后提问细节内容,培养他们的观察力和细致思考能力。
- 进行记忆力挑战,让学生观察一些物品或图片,然后挑战他们记住尽可能多的细节。
以上的活动旨在提高学生的逻辑思维能力、创造力、观察力和团队合作能力。
学校可以结合五年级的课程内容和学生的兴趣特点进行具体的训练安排。
同时,鼓励学生提出自己的想法和解决问题的方法,培养他们的独立思考和创新意识。
5年级-奥数与智能思维(下)【91页】-最新精品
第一章数与计算∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第一讲估值问题∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第二章趣题与技巧∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第一讲算式谜∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第三章实践与应用(一)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第一讲行程问题(一)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第二讲行程问题(二)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第三讲行程问题(三)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第四讲行程问题(四)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第四章数论与整除∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第一讲数字趣味题∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第二讲分解质因数(一)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第三讲分解质因数(二)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第四讲最大公因数∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第五讲最小公倍数(一)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第六讲最小公倍数(二)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第五章实践与应用(二)∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第一讲盈亏问题∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第二讲假设法解题∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第三讲作图法解题∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第四讲火车行程问题∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第五讲杂题∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第六章组合与推理∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第一讲包含与排除∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第二讲置换问题∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第四讲 最大最小问题∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第五讲 推理问题∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙第一章 数与计算第一讲 估值问题【一】 不计算结果,想一想,在( )里填“<”、“>”或“=”。
智能开发训练系列读本 智力数学 五年级 苏教版 2018版
智能开发训练系列读本智力数学五年级苏教版 2018版智能开发训练系列读本是一套为五年级学生设计的智力开发训练教材。
其中的智力数学部分旨在培养学生的数学思维能力和解决问题的能力。
本文将围绕智能开发训练系列读本中的智力数学部分进行详细介绍。
智能数学部分是智能开发训练系列读本中的一个重要组成部分,其主要目标是培养学生的逻辑思维、创造力和解决问题的能力。
该部分的内容设计精彩,既有有趣的数学智力题,又有与日常生活相结合的实际问题,能够激发学生对数学的兴趣和学习的动力。
智能数学的内容涵盖了五年级的数学知识,包括整数的加减、乘除,小数的加减乘除,分数的加减乘除,图形的认识和运算,几何形体的认识,以及一些有趣的数学思维题。
这些内容的设计紧密结合课程标准,旨在帮助学生巩固和拓展数学知识,提高解决实际问题的能力。
在智能数学的教学中,教师需要采用多种教学方法,激发学生的学习兴趣。
例如,可以通过故事情境的设计,引导学生发现数学规律和解题方法。
同时,教师还可以设计一些有趣的数学游戏,培养学生的合作意识和竞争意识,让学生在游戏中体会到数学的乐趣。
在学习智能数学的过程中,学生需要运用到已学的数学知识,发现问题的规律,运用逻辑思维进行推理,提出解决问题的方法,最终得到正确的答案。
这样的学习过程可以培养学生的数学思维能力和解决问题的能力,提高学生的学习兴趣和自信心。
智能数学的学习过程不仅能够提高学生的数学能力,还能够培养学生的创造力和创新精神。
在解决数学问题的过程中,学生需要不断尝试和探索,寻找新的方法和思路。
这样的学习过程可以激发学生的创造力,培养学生的创新意识和解决问题的能力。
总之,智能开发训练系列读本中的智力数学部分是一套很好的教材,可以帮助五年级学生提高数学思维能力和解决问题的能力。
通过多种教学方法和有趣的数学题目,学生能够在学习中发现数学的美妙,培养数学兴趣和学习动力。
教师应充分发挥教材的优势,设计有趣的教学活动,激发学生的学习兴趣和潜能,提高学生的数学水平。
小学奥数思维拓展训练五年级教材-精选本
目录第1讲平均数 (1)第2讲倍数问题(一) (3)第3讲倍数问题(二) (5)第4讲假设法解题 (7)第5讲作图法解题 (9)第6讲周期问题 (11)第7讲置换问题 (13)第8讲包含与排除 (15)第9讲估值问题 (17)第10讲一般应用题 (19)第11讲盈亏问题 (21)第12讲算式题 (23)第13讲行程问题 (25)第14讲火车行程问题 (27)第15讲灵活运用 (29)终结性测试题一………………………………………………………31终结性测试题二………………………………………………………32第1讲平均数专题简析把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的输就是平均数。
如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数例1某3个数的平均数是2,如果把其中一个数改为4,平均数就变成了3,被改的数原来是多少?分析解答:原来三个数的和是2×3=6,后来个数的和是3×3=9,9比6多出了3,是因为把那个数改成了4,因此,原来的数应该是4-3=1。
3×3-2×3=34-3=1答:被改的数原来是1。
随堂练习:1、已知九个数的平均数是72 ,去掉一个数后,余下数的平均数是78,去掉的数是多少?2、有五个数,平均数是9,如果把其中的一个数改为1,那么这五个数的平均数为8。
这个改动的数原来是多少?例2把五个数从小到大排列,其平均数时38,前三个数的平均数是27,后三个数的平均数是48,中间一个数是多少?分析解答:先求五个数的和:38×5=190。
在秋初前三个数的和:27×3=81,后三个数的和:48×3=144。
用前三个数的和加上后三个数的和,这样,中间的那个书就算了两次,必然比190多,而多出的部分就是所求的中间的一个数。
【培训】五年级奥数培训教材
【关键字】培训目录第一章数与计算…………………………………………第一讲估值问题……………………………………第二章趣题与智巧…………………………………………第一讲算式谜…………………………………………第三章实践与应用(一)………………………………第一讲行程问题(一)………………………………第二讲行程问题(二)………………………………第三讲行程问题(三)………………………………第四讲行程问题(四)………………………………第四章数论与整除…………………………………………第一讲数字趣题…………………………………………第二讲分解质因数(一)………………………………第三讲分解质因数(二)………………………………第四讲最大公因数………………………………第五讲最小公倍数(一)………………………………第六讲最小公倍数(二)………………………………第五章实践与应用(二)………………………………第一讲盈亏问题……………………………………第二讲假设法解题……………………………………第三讲作图法解题……………………………………第四讲火车行程问题………………………………第五讲杂题…………………………………………第六章组合与推理……………………………………第一讲包含与排除………………………………第二讲置换问题……………………………………第三讲简单列举……………………………………第四讲最大最小问题………………………………第五讲推理问题……………………………………第一章 数与计算第一讲 估值问题【专题导引】在日常生活中,某些量往往只需要作一个大致的估计,如对某厂下一年生产的总产值的估计就只能是一个大概数。
很难也没有必要精确到几元几角几分。
估算就是对一些量的粗略运算,不仅现在,就是今后科学技术相当发达了,这类计算仍然十分必要。
如果我们的计算结果与粗略估计大相径庭,就说明我们的计算过程必然有错。
估算常采用的方法是:1、省略尾数取近似值;2、用放大或缩小的方法来确定某个数或整个算式的取值范围进行估算。
五年级奥数培训教材85482
目录第一章数与计算…………………………………………第一讲估值问题……………………………………第二章趣题与智巧…………………………………………第一讲算式谜…………………………………………第三章实践与应用 (一)………………………………第一讲行程问题(一)………………………………第二讲行程问题(二)………………………………第三讲行程问题(三)………………………………第四讲行程问题(四)………………………………第四章数论与整除…………………………………………第一讲数字趣题…………………………………………第二讲分解质因数(一)………………………………第三讲分解质因数(二)………………………………第四讲最大公因数………………………………第五讲最小公倍数(一)………………………………第六讲最小公倍数(二)………………………………第五章实践与应用(二)………………………………第一讲盈亏问题……………………………………第二讲假设法解题……………………………………第三讲作图法解题……………………………………第四讲火车行程问题………………………………第五讲杂题…………………………………………第六章组合与推理……………………………………第一讲包含与排除………………………………第二讲置换问题……………………………………第三讲简单列举……………………………………第四讲最大最小问题………………………………第五讲推理问题……………………………………第一章数与计算第一讲估值问题【专题导引】在日常生活中,某些量往往只需要作一个大致的估计,如对某厂下一年生产的总产值的估计就只能是一个大概数。
很难也没有必要精确到几元几角几分。
估算就是对一些量的粗略运算,不仅现在,就是今后科学技术相当发达了,这类计算仍然十分必要。
如果我们的计算结果与粗略估计大相径庭,就说明我们的计算过程必然有错。
估算常采用的方法是:1、省略尾数取近似值;2、用放大或缩小的方法来确定某个数或整个算式的取值范围进行估算。
五年级奥数培训教材85482
目录第一章数与计算…………………………………………第一讲估值问题……………………………………第二章趣题与智巧…………………………………………第一讲算式谜…………………………………………第三章实践与应用(一)………………………………第一讲行程问题(一)………………………………第二讲行程问题(二)………………………………第三讲行程问题(三)………………………………第四讲行程问题(四)………………………………第四章数论与整除…………………………………………第一讲数字趣题…………………………………………第二讲分解质因数(一)………………………………第三讲分解质因数(二)………………………………第四讲最大公因数………………………………第五讲最小公倍数(一)………………………………第六讲最小公倍数(二)………………………………第五章实践与应用(二)………………………………第一讲盈亏问题……………………………………第二讲假设法解题……………………………………第三讲作图法解题……………………………………第四讲火车行程问题………………………………第五讲杂题…………………………………………第六章组合与推理……………………………………第一讲包含与排除………………………………第二讲置换问题……………………………………第三讲简单列举……………………………………第四讲最大最小问题………………………………第五讲推理问题……………………………………第一章数与计算第一讲估值问题【专题导引】在日常生活中,某些量往往只需要作一个大致的估计,如对某厂下一年生产的总产值的估计就只能是一个大概数。
很难也没有必要精确到几元几角几分。
估算就是对一些量的粗略运算,不仅现在,就是今后科学技术相当发达了,这类计算仍然十分必要。
如果我们的计算结果与粗略估计大相径庭,就说明我们的计算过程必然有错.估算常采用的方法是:1、省略尾数取近似值;2、用放大或缩小的方法来确定某个数或整个算式的取值范围进行估算.【典型例题】【例1】不计算出结果,仔细想一想,尽快选择“<"、“>”或“="。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数智能思维训练教材
目录
◆第一讲消去问题(一) (2)
◆第二讲消去问题(二) (7)
◆第三讲一般应用题 (12)
◆第四讲盈亏问题(一) (16)
◆第五讲盈亏问题(二) (17)
◆第六讲流水问题 (19)
◆第七讲等差数列 (23)
◆第八讲找规律 (26)
◆能力测试(一) (26)
◆第九讲加法原理 (28)
◆第十讲乘法法原理 (31)
◆第十一讲周期问题(一) (35)
◆第十二讲周期问题(二) (37)
◆第十三讲巧算(一) (39)
◆第十四讲巧算(二) (40)
◆第十五讲数阵问题(一) (45)
◆第十五讲数阵问题(二) (45)
◆能力测试(二) (63)
◆第16讲平面图形的计算(一)……………
◆第17讲平面图形的计算(二)……………
◆第18讲列方程解应用题(一)………………
◆第19讲列方程解应用题(二)………………
◆第20讲行程问题(一)…………………………
◆第21讲行程问题(二)…………………………
◆第22讲行程问题(三)…………………
◆第23讲行程问题(四)……………………
◆阶段测试(一)……………………
◆第24讲平均数问题(一)………………………
◆第25讲平均数问题(二)………………
◆第26讲长方体和正方体(一)………………
◆第27讲长方体和正方体(二)……………………
◆第28讲数的整除特征……………………………
◆第29讲奇偶性问题……………………
◆第30讲最大公约数和最小公倍数…………………
◆第30讲分解质因数(一)……………………
◆第31讲分解质因数(二)……………………
◆第32讲牛顿问题……………………
◆综合测试………………………………………。