线性代数解题方法和技巧
探索高中数学中的线性代数问题的解题技巧
探索高中数学中的线性代数问题的解题技巧高中阶段的数学学科中,线性代数问题一直是难点和重点之一。
许多学生在学习这一部分时常常会遇到各种各样的问题,而其中最大的问题则在于解题技巧。
在今天的文章中,我们将会探索一下在高中数学中,如何更加高效的解决线性代数问题。
一、了解基本概念在学习线性代数问题时,首先需要了解一些基本的概念,例如向量、矩阵等。
向量可以看做是一个有向线段,其长度为模长,方向为方向角;而矩阵则是由数个数构成的矩形阵列。
学生们应该首先了解这些基本概念,并且掌握它们之间的互相转化关系。
二、掌握基本运算法则解决线性代数问题的一个必要条件就是掌握基本的运算法则,例如加法、减法、数乘、转置、乘法等。
在掌握了这些基本运算法则之后,我们就能够更加容易地进行计算,从而更快、更准确地得出答案。
三、熟练应用高斯消元法高斯消元法是解决线性代数问题的一种经典方法。
在数学高中阶段学习线性代数时,学生们应该熟悉并掌握这一方法的应用,从而在进行数学计算时更加得心应手。
四、重视矩阵的秩和行列式在矩阵的秩和行列式中,包含了比如求解线性方程组解、判断矩阵线性无关等重要概念。
掌握这一点,可以帮助学生们更加深入理解线性代数的相关内容。
五、注重实际应用在学习数学的过程中,不仅仅只需要理解具体的概念和方法,还需要注重实际应用。
因此,在学习过程中,需要关注线性代数的实际应用,例如掌握矩阵在计算机图形处理中的应用、了解线性代数在人工智能中的应用等等。
六、注重举一反三学习数学,不仅仅是掌握具体的概念、方法和应用,还需要注重举一反三。
在解决一道线性代数问题的过程中,如果能够形成思维习惯,逐渐掌握一般化的解题方法和思路,那么对于提高解题效率和分析问题能力来说,是非常有帮助的。
七、勤于联系最后,无论是在解决线性代数问题的过程中还是在整个数学学习过程中,勤于联系对于提高数学能力和解题效率来说都是非常重要的。
只有通过大量的联系和实际运用,才能更加深入地了解和掌握线性代数问题的解题技巧。
经济数学·线性代数:解题方法技巧归纳
经济数学·线性代数:解题方法技巧归纳
常见的解题方法技巧:
1.高斯消元法:用于解决线性方程组的方法,通过
消去未知数的系数,使方程组的每一行的未知数
只有一个。
2.高斯-约旦消元法:用于解决线性方程组的方法,
通过消去未知数的系数,使方程组的每一行的未
知数只有一个,并通过交换方程的顺序来解决无
解或多解的情况。
3.矩阵消元法:用于解决线性方程组的方法,将方
程组写成矩阵形式,通过消去未知数的系数,使
矩阵的每一行的未知数只有一个。
4.高斯-约旦分解法:用于解决线性方程组的方法,
通过将方程组写成两个矩阵的乘积的形式。
5.广义逆矩阵法:用于解决线性方程组的方法,通
过求出矩阵的广义逆(也叫做伪逆),将方程组写
成矩阵的形式,求解未知数的值。
6.矩阵的特征值与特征向量:用于解决矩阵的本征
值问题的方法,通过求解矩阵的特征方程,求得
矩阵的特征值与特征向量,并利用它们来求解其
他问题。
7.奇异值分解:用于解决矩阵的奇异值分解问题的
方法,将矩阵分解为三个矩阵的乘积的形式,并利用它们来求解其他问题。
8.广义逆矩阵的求法:用于求解矩阵的广义逆(也叫做伪逆)的方法,包括计算机辅助的方法和数学计算的方法。
了解高中数学中的线性代数问题的解题技巧
了解高中数学中的线性代数问题的解题技巧线性代数是数学的一个分支,广泛应用于科学、工程和经济等领域。
在高中数学中,线性代数也是一门重要的课程,通过学习线性代数,不仅可以提高学生的数学思维能力,还可以帮助他们解决实际问题。
本文将介绍高中数学中线性代数问题的解题技巧,包括向量、矩阵和线性方程组的解法等。
一、向量的基本概念和运算向量是线性代数中的重要概念,它可以表示大小和方向。
在解决向量问题时,首先要了解向量的基本概念,包括向量的表示方法、向量的模长和方向角等。
其次,需要熟练掌握向量的运算法则,如向量的加法、减法、数量乘法和内积等。
通过灵活运用这些运算法则,可以简化向量计算过程,提高解题效率。
二、矩阵的基本概念和运算矩阵是线性代数中另一个重要的概念,它可以用来表示一组数。
在解决矩阵问题时,首先要了解矩阵的基本概念,包括矩阵的行、列、秩和转置等。
其次,需要掌握矩阵的运算法则,如矩阵的加法、减法、数量乘法和乘法等。
同时,矩阵的逆矩阵和行列式等相关概念和运算也是解决矩阵问题的关键。
掌握了这些基本概念和运算法则,可以更好地理解和解决与矩阵相关的数学问题。
三、线性方程组的解法线性方程组是线性代数中的重要问题之一,它可以用来描述多个线性方程的关系。
在解决线性方程组时,可以采用消元法、矩阵方法和向量方法等不同的解题技巧。
消元法是线性方程组解法中最常用的方法,将线性方程组转化为行阶梯形式,然后逐步消去未知数,得到解的过程。
矩阵方法通过将线性方程组转化为矩阵的形式,然后通过行初等变换或矩阵的逆矩阵等方法求解。
向量方法通过将线性方程组表示为向量的形式,通过向量之间的线性组合求解。
在解决线性方程组问题时,根据具体情况选择合适的解题方法,可以提高解题效率。
四、矩阵的特征值和特征向量矩阵的特征值和特征向量是线性代数中的重要概念,它们对于理解矩阵的本质和性质有着重要的作用。
矩阵的特征值表示矩阵在某个方向上的伸缩因子,特征向量表示在相应特征值方向上的向量。
线性代数解题方法与技巧教学设计
线性代数解题方法与技巧教学设计1. 简介线性代数是数学中的重要分支,也是应用数学中的重要课程之一。
作为一门基础课,线性代数既有理论研究,也有实用应用,广泛应用于各个领域。
线性代数教学中,掌握解题方法和技巧是非常关键的,因为线性代数考试中,大多数得分都来自于解题技巧。
本文将介绍线性代数中一些普遍的解题方法和技巧,并提出一些教学设计建议,以帮助教师提高线性代数教学效果。
2. 解题方法和技巧2.1 矩阵求逆在矩阵求逆的过程中,我们可以运用如下的技巧:1.先求矩阵行列式的值,如果为0则矩阵不可逆,否则进行下一步。
2.运用初等行变换将原矩阵变成一个上三角矩阵。
3.通过回代的方式,得到逆矩阵。
2.2 矩阵转置矩阵的转置就是将矩阵的行列互换。
在实际运用中,我们可以采用以下技巧:1.对于一个m行n列的矩阵A,它的转置矩阵为n行m列的矩阵A T。
2.对于矩阵的转置运算,常用的方法是将原矩阵的所有元素上下翻转,然后把第i行变成第i列。
2.3 矩阵秩矩阵秩是矩阵中非零行的行数,其解题方法和技巧如下:1.对矩阵进行初等行变换,使其变成行最简形矩阵。
2.记行最简形矩阵的非零行数为r,则原矩阵的秩为r。
2.4 特征值与特征向量线性代数中重要的概念之一就是特征值与特征向量,其中特征值是矩阵的一个重要特征,解题方法和技巧如下:1.找到矩阵的特征方程,并求出特征值。
2.通过求解齐次线性方程组,得到特征向量。
3.确定每个特征向量所对应的特征值。
3. 教学设计建议为了更好地教授线性代数的解题方法和技巧,我们提出如下教学设计建议:3.1 应用实例讲解线性代数中的一些解题方法和技巧需要结合实际应用来讲解,这样有助于学生更好地理解概念和原理。
对于每一个解题方法和技巧,可以提供一个或多个实际应用的例子来进行讲解和演示。
3.2 视频授课在线性代数解题方法和技巧教学中,视频授课是一种较为有效的教学方式。
通过采用课堂教学视频的方式,学生可以在课堂外随时随地学习和复习知识点。
线性代数求解方法和技巧
线性代数求解方法和技巧线性代数是数学中重要的一个分支,研究向量空间、线性变换和线性方程组等内容。
在实际问题中,我们常常需要用线性代数的方法来解决问题,因此掌握线性代数的求解方法和技巧对于理解和应用数学是非常重要的。
首先,我们讨论线性方程组的求解方法。
线性方程组是由一组线性方程组成的方程组,其中每个方程的未知数的次数都为1。
对于n个未知数和m个方程的线性方程组,我们有以下几种常用的求解方法:1. 列主元消元法:这是最常用的线性方程组求解方法之一。
它的基本思想是通过行变换将线性方程组化为一个三角形式,进而求解得到方程组的解。
在进行行变换时,要选择合适的列主元,即选择主元元素绝对值最大的一列作为主元素。
2. 矩阵求逆法:对于一个可逆的n阶方阵A,我们可以通过求A的逆矩阵来求解线性方程组Ax=b。
具体地,我们首先通过高斯消元法将方程组化为三角形式,然后根据三角形式的矩阵求逆公式来求解x。
3. LU分解法:对于一个n阶非奇异矩阵A,我们可以将其分解为一个下三角矩阵L和一个上三角矩阵U的乘积,即A=LU。
接着,我们可以通过LU分解来求解线性方程组Ax=b。
具体地,我们首先通过LU分解将方程组化为Lc=b和Ux=c两个方程组,然后依次求解这两个方程组得到x的值。
除了以上的求解方法,还有一些线性方程组的特殊情况和对应的求解方法:1. 齐次线性方程组:如果线性方程组右边的常数项都为0,即b=0,那么我们称为齐次线性方程组。
对于齐次线性方程组,其解空间是一个向量空间。
我们可以通过高斯消元法来求解齐次线性方程组,先将其化为三角形式,然后确定自由未知量的个数,最后确定解空间的基底。
2. 奇异线性方程组:如果线性方程组的系数矩阵A是奇异矩阵,即det(A)=0,那么我们称为奇异线性方程组。
对于奇异线性方程组,其解可能不存在,或者存在无穷多解。
我们可以通过计算矩阵A的秩来确定线性方程组的解的情况。
另外,在实际问题中,我们可能会遇到大规模的线性方程组,这时候求解方法和技巧还需要考虑到计算效率的问题。
线性代数题求解答技巧
线性代数题求解答技巧线性代数是一门重要的数学学科,应用广泛,涉及到众多的概念和定理。
解线性代数题有一些技巧和方法可以帮助我们更好地理解问题和找到解答。
在本文中,我将向您介绍一些解线性代数题的技巧。
1. 熟悉基本概念和定理:了解线性代数的基本概念和定理,例如矩阵、行列式、向量空间、线性变换等,对于解题非常重要。
熟悉这些基础知识将帮助您更好地理解问题和找到解答。
2. 理解题目中的关键信息:仔细阅读题目,并理解其中的关键信息和要求。
对于一些复杂的题目,可以将问题进行拆解,将其转化为更简单的子问题来解决。
3. 画图和示意图:对于涉及到向量、矩阵和线性变换的题目,可以尝试画图和示意图以帮助理解问题。
图形可以直观地表示线性变换的作用和向量的变化,有助于更好地理解问题的本质。
4. 利用矩阵运算法则:运用矩阵的基本运算法则,例如加法、减法、乘法和转置等来进行计算。
通过运用这些法则,可以简化计算和转化问题的形式。
5. 找到未知量的线性关系:对于涉及到向量和矩阵的方程组,可以通过列向量和矩阵相乘得到一个线性方程组。
通过求解这个方程组,可以找到未知量之间的线性关系。
6. 利用行列式的性质:行列式是解线性方程的重要工具之一。
了解行列式的性质和计算方法,可以帮助我们更好地理解和解决问题。
通过对行列式的计算,可以判断矩阵是否可逆、线性方程组是否有唯一解等关键问题。
7. 利用向量空间的性质:向量空间是研究向量的重要概念之一。
了解向量空间的性质,例如维数、基、秩等,可以帮助我们更好地理解向量空间的结构和性质,从而解决相关问题。
8. 利用特殊矩阵的性质:对于一些特殊的矩阵,例如对称矩阵、上三角矩阵、对角矩阵等,它们具有一些特殊的性质和特点。
通过利用这些性质,可以简化计算和解决问题。
9. 利用线性变换的性质:线性变换是研究线性代数的重要工具之一。
了解线性变换的性质和运算法则,可以帮助我们更好地理解和解决线性变换的问题。
10. 训练解题技巧:解线性代数题需要一些技巧和经验。
《线性代数》学习方法
《线性代数》学习方法1.建立数学基础:学习线性代数需要一定的数学基础,尤其是对于矩阵、向量和方程组等概念的理解。
在开始学习线性代数之前,建议先复习一下高中阶段的数学知识,包括数学函数、集合论、代数和几何等内容。
2.理论与实践结合:线性代数是一门理论与实践相结合的学科,理论与实践相互促进。
在学习理论知识的同时,要注重实际应用。
通过解决一些实际问题,可以更好地理解和掌握线性代数的概念和方法。
3.多做练习题:做练习题是学习线性代数的重要途径。
通过练习题,可以巩固理论知识,培养解决问题的能力。
建议在学习过程中,多做一些练习题,并及时总结和反思自己的解题方法和思路。
4.注重证明和推导:线性代数中的很多定理和公式都是通过严格的证明和推导得到的。
在学习线性代数的过程中,要注重理解和掌握定理的证明过程。
通过证明和推导,可以更深入地理解定理的内涵和应用。
5.学会画图:线性代数中的很多概念和方法都可以通过图形来表示和解释。
学会画图可以帮助我们更直观地理解和掌握线性代数的内容。
在学习过程中,可以多画一些示意图和图形,帮助自己形象地理解和记忆线性代数的概念和方法。
6.多与他人交流:线性代数是一门需要思考和交流的学科。
在学习过程中,可以多与同学和老师进行讨论和交流,分享自己的思考和理解。
通过交流,可以互相学习和启发,提高学习效果。
7.参考优质教材和资源:选择一本优质的线性代数教材对于学习的效果非常重要。
可以参考一些经典的线性代数教材,如《线性代数及其应用》和《线性代数引论》等。
同时,还可以利用互联网上的优质资源,如在线课程和视频教程等,丰富学习的内容。
8.培养数学思维:线性代数是一门抽象的学科,需要培养抽象思维和逻辑思维能力。
在学习过程中,要注重思考和理解概念和定理的内涵,培养自己的数学思维能力。
9.持之以恒:学习线性代数需要一定的时间和精力,不能急于求成。
要持之以恒,坚持每天学习一定的时间,不断积累和提高。
总之,学习线性代数需要一定的数学基础和学习方法。
线性代数求解技巧
线性代数求解技巧线性代数是数学中的一个重要分支,广泛应用于科学、工程和计算领域。
线性代数的核心是通过矩阵和向量的运算来解决线性方程组、矩阵的特征值和特征向量等问题。
在线性代数中,我们可以采用一些技巧来简化计算和求解问题。
下面将介绍一些常用的线性代数求解技巧。
1. 高斯消元法高斯消元法是求解线性方程组的常用技巧。
这种方法通过矩阵的初等行变换将方程组转化为行阶梯形式,从而简化求解过程。
首先,将方程组表示成增广矩阵的形式,然后通过交换行、乘以非零常数和将一行的倍数加到另一行上的操作,将矩阵转化为行阶梯形式。
接着,通过回代的方式求解出方程组的解。
高斯消元法在实际应用中非常方便,可以高效地求解大规模的线性方程组。
2. LU分解LU分解是将矩阵分解为一个下三角矩阵和一个上三角矩阵的乘积的过程。
LU分解可以简化求解线性方程组的过程,并且在分解完成后,可以通过前向替代和后向替代的方式求解出方程组的解。
LU分解的优点是可以在多次使用同一个系数矩阵的情况下,避免重复计算。
3. 特征值与特征向量特征值和特征向量是矩阵的重要性质,可以用于求解许多线性代数问题。
特征值表示的是矩阵变换后,向量沿着特定方向发生多大变化的量度。
特征向量是在矩阵变换后,仍然保持在同一方向上的向量。
通过求解特征值和特征向量,我们可以得到一些矩阵的重要性质,如矩阵的谱半径和最大特征值等。
4. 奇异值分解奇异值分解是将一个矩阵分解为三个矩阵的乘积的过程。
奇异值分解广泛应用于信号处理、数据压缩和机器学习等领域。
通过奇异值分解,我们可以得到矩阵的奇异值和左、右奇异向量。
奇异值表示了矩阵的重要程度和变换的能力,而奇异向量表示矩阵变换的方向。
奇异值分解可以用于矩阵的降维和矩阵逆的计算等问题。
5. 内积和正交性内积是线性代数中的一个重要运算,它可以表示两个向量的夹角和它们之间的相似度。
内积有许多重要的性质,如对称性、线性性和正定性等。
利用内积的性质,我们可以定义向量的长度、向量的投影和向量的正交性等概念,并解决一些与向量之间的关系有关的问题。
解答线性代数问题的五大数学思想方法
解答线性代数问题的五大数学思想方法线性代数是数学中一门重要的学科,它研究向量空间及其上的线性映射。
在解答线性代数问题时,有五种常用的数学思想方法,它们是:1. 向量空间思想向量空间思想是线性代数的核心概念,它通过引入向量、线性组合和线性相关性等概念,将问题抽象为向量空间中的运算和性质。
在解答线性代数问题时,我们可以利用向量空间的性质,如线性独立性和子空间的性质,对问题进行分析和推导。
2. 矩阵运算思想矩阵运算思想是解答线性代数问题的重要手段。
通过将向量和线性映射表示为矩阵形式,我们可以利用矩阵的运算法则,如矩阵的加法、乘法和转置等,对线性代数问题进行简化和求解。
3. 特征值和特征向量思想特征值和特征向量思想是线性代数中的重要概念,它们与线性映射的性质密切相关。
通过求解矩阵的特征值和特征向量,我们可以揭示线性映射的几何效应和特征,进而对线性代数问题进行深入分析和解答。
4. 线性方程组思想线性方程组思想是解答线性代数问题的基础方法。
通过建立线性方程组,我们可以通过消元法、矩阵求逆或矩阵行列式等方法,求解线性方程组的解,从而解答线性代数问题。
5. 内积和正交思想内积和正交思想是解答线性代数问题的重要工具和思想方法。
通过定义内积和正交的概念,我们可以利用内积的性质,如正交投影、正交分解和正交对角化等,对线性代数问题进行求解和分析。
综上所述,解答线性代数问题的五大数学思想方法包括向量空间思想、矩阵运算思想、特征值和特征向量思想、线性方程组思想以及内积和正交思想。
这些方法能够帮助我们深入理解线性代数的概念和性质,解答各类线性代数问题。
线性代数学习方法
线性代数学习方法(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!线性代数学习方法线性代数学习方法分享线性代数是数学中一门非常重要的学科,被广泛应用于各个领域,包括自然科学、工程、计算机科学、经济学等等。
考研数学线性代数题解题技巧与方法
考研数学线性代数题解题技巧与方法线性代数是考研数学中的一门重要课程,也是许多考生感到头疼的科目。
在考研数学线性代数题中,解题技巧和方法是至关重要的。
本文将探讨几种在解线性代数题目时常用的技巧和方法,希望能对考生们有所帮助。
一、方程组求解1. 列主元消去法:列主元消去法是求解线性方程组的一种常用方法。
它的基本思想是通过一系列的行变换,将方程组化为“简化行梯阵”,然后逆序回代求解未知数。
在进行列主元消去法时,可以采用高斯-约当消去法或高斯-塞尔曼消去法。
2. 矩阵求逆法:求解线性方程组可以借助矩阵求逆。
当方程组可用矩阵表示时,我们可以通过求解矩阵的逆矩阵来求解方程组。
矩阵求逆法可以使用伴随矩阵法、初等变换法或分区法等方法求解。
二、特征值和特征向量1. 特征方程法:求解特征值和特征向量可以通过解特征方程来实现。
根据定义,特征值和特征向量满足方程AX = λX,其中 A 是给定的 n阶方阵,X 是 n 维非零向量,λ 是标量。
我们可以通过解特征方程det(A-λI) = 0 来获得特征值λ,然后代入方程组进行求解得到特征向量X。
2. 相似对角化法:相似对角化是一种常用的特征值和特征向量求解方法。
根据特征分解定理,对于 n 阶矩阵 A,若存在可逆矩阵 P,使得P⁻¹AP = D,其中 D 是对角矩阵,那么 D 的对角线上的元素就是 A 的特征值,P 的列向量就是 A 的特征向量。
三、向量空间1. 基与维数:向量空间是线性代数的重要概念之一。
对于给定的向量空间 V,若存在 V 的一个向量组 v₁, v₂, ..., vₙ,满足:(1) 向量组中的向量线性无关;(2) 向量空间 V 中的任意向量都可以由该向量组线性表示;那么这个向量组就是 V 的一组基。
而向量空间 V 的维数就是它的基的向量个数。
2. 基变换与坐标表示:在向量空间中,基的选择对于向量的表示是至关重要的。
不同的基会导致不同的坐标表示。
数学线性代数基础知识及解题技巧
数学线性代数基础知识及解题技巧数学线性代数是一门重要的数学分支,它广泛应用于科学、工程、经济学等领域。
线性代数的基础知识和解题技巧对于学习和应用数学线性代数来说至关重要。
本文将介绍数学线性代数的基础概念、常用方法和解题技巧。
1. 向量与矩阵向量是线性代数的基本元素之一,它可以用一组有序的数字表示。
向量有大小和方向,可以进行加法和数乘运算。
矩阵是由若干个向量组成的矩形阵列,矩阵的每个元素也可以是一个数字。
矩阵的加法、数乘和乘法等运算规则与向量类似。
了解向量和矩阵的基本概念及运算规则是学习线性代数的基础。
2. 线性方程组线性方程组是由一组线性方程组成的方程组。
在线性方程组中,未知数的次数与方程的个数相同,并且每个未知数的次数都是一次。
线性方程组的解是使得方程组中的每个方程均成立的未知数的值。
解线性方程组的常用方法有高斯消元法、矩阵法和克拉默法则等。
掌握解线性方程组的方法和技巧是线性代数的关键。
3. 向量空间向量空间是由一组向量所组成的集合,满足一定的运算规则。
向量空间具有加法、数乘和零向量等运算规则。
线性代数中的许多概念和理论都是在向量空间中进行研究的。
了解向量空间的概念和性质对于进一步理解线性代数的相关内容很重要。
4. 矩阵的特征值与特征向量矩阵的特征值是指矩阵与它的特征向量相乘得到的向量与特征向量平行的数值。
特征值与特征向量是研究线性变换的重要工具,它们可以帮助我们理解矩阵的性质和变换过程。
特征值与特征向量可以通过求解特征方程组得到。
5. 线性变换线性变换是指将一个向量空间映射到另一个向量空间的变换。
线性变换具有保持向量空间的加法和数乘运算规则的性质。
线性变换是研究线性代数的重要对象,可以通过矩阵的乘法来表示线性变换。
线性变换的性质和特点对于理解和应用线性代数具有重要意义。
6. 解题技巧解题技巧在学习线性代数时非常重要。
首先,要注意理解和掌握基本概念和运算规则。
其次,要善于运用数学工具和方法,如矩阵的转置、逆矩阵和行列式等。
线性代数的典型解题方法
| a jj | | k j | | a jj k j |
所以 | a jj |
aij ki | aij | | ki | | aij | | k j | ,
i j i 1 i j
m
i j
| a
i j
ij
| ,矛盾,即 α1 , α2 ,
, αm 线性无关.
即
2 x1 x3 2 x2 x4 x1 3 x 2 x 3 x 2 x x 3 2 4 1 3
从而
2 x1 x3 2x x 2 4 3 x1 2 x3 3 x2 2 x4
x1 1, 2 x1 x2 2, x3 3, 2 x3 x4 4,
1
1 A . A
a) 定义法 凑成 AB E 的形式; 例 1 设 A 为 n 阶矩阵,且 A 2 E , B A 2 A 2 E ,证明 B 可逆,并求 B .
3 2 1
B A2 2 A 2 E A3 A2 2 A A( A 2 E )( A E ) . 1 1 2 3 由 A 2 E 得 A A E ,即 A 可逆,且 A1 A2 . 2 2 2 3 3 再由 A 2 E 得 A 8E 10 E ,即 ( A 2 E )( A 2 A 4 E ) 10 E ,从而 A 2 E 可逆,且 1 ( A 2 E )1 ( A2 2 A 4 E ) . 10 2 3 3 又由 A 2 E 得 A E E ,即 ( A E )( A A E ) E ,从而 A E 可逆,且 ( A E ) 1 A2 A E ,
3) 分块对角化 4) 相似对角化 2、矩阵的逆 具体矩阵的逆: a) 初等变换法;
线性代数解题方法与技巧
线性代数解题方法与技巧
线性代数是一门高等数学的分支,主要研究向量空间和线性映射之间的关系。
有时也可以被用来求解复杂的数学问题。
本文将介绍一些常用的线性代数解题方法与技巧。
首先,在求解线性代数问题之前,需要分析问题,找出问题的条件和特征,并归纳出问题的表达形式,以便有针对性的解决。
其次,要认真看清线性代数形式,要区分方程组中的等式和不等式,这样可以更好地理解求解的步骤。
第三,必须考虑到线性代数的基本性质,比如向量的加法、叉乘和点积、矩阵的乘法等。
使用这些基本性质可以更容易地解决线性代数问题。
第四,要了解不同形式的线性代数,比如可以利用矩阵、向量和有理函数来表达,这样可以更容易地理解问题,并有效解决。
第五,有时候线性代数问题太复杂,可以考虑使用拟合技术来求解,使用类似于最小二乘法的拟合方法可以达到较好的性能。
最后,在求解线性代数问题时,要尽量避免暴力枚举法,尽量从数学的角度出发,从数学原理出发花费更少的时间,从而更好地求解问题。
总的来说,线性代数的解题需要考虑问题的特征,归纳出问题的表达形式,正确识别基本性质,以及使用不同的数学技术等,这些都是线性代数解题方法与技巧。
线性代数解题方法和技巧
第一部分 行列式一、行列式的概念(1) 二阶与三阶行列式的对角线法则 (2) n 阶行列式的定义(3) 余子式、代数余子式的定义【测试题】四阶行列式中含有1123a a 的项是__________二、数字型行列式的计算计算数字型行列式的常见思路有:(1) 如果在行列式的某一行(列)中,零的个数比较多,可按该行(列)展开;(2) 利用行列式的性质,将行列式某行(列)中尽可能多的元素化为零,然后再按该行(列)展开(课本P.18例7的第二种解法);(3) 三角形法:利用行列式的性质,将给定的行列式化为上(下)三角形行列式(课本P.12例7、例8、例9);(4) 递推法或数学归纳法(课本P.15例11,P.18例12); (5) 利用范德蒙行列式;(6) 利用拉普拉斯定理(同济第五版的线性代数没有介绍该定理,不作为期末考试要求). 【测试题】1.计算下列各行列式(k D 为k 阶行列式): (1) 11n aD a=O,其中对角线上的元素都是a ,未写出的元素都是0;(2) n x a aa x aD a a x=L L M M M L ;(3) 1111(1)()(1)()1111nn n n n n n a a a n a a a n D a a a n −−−+−−−−=−−LL M M M L L;(4) 11211nnn nna b a b D c d c d =ONNO,其中未写出的元素都是0.2.设3521110513132413D −−=−−−−,D 的(,)i j 元的余子式和代数余子式依次记作ij M 和ij A ,求11121314A A A A +++及11213141M M M M +++.3.四阶行列式1122433440000000a b a b D b a b a =的值等于__________(A) 12341234a a a a b b b b −;(B) 12341234a a a a b b b b +;(C) 12123434()()a a b b a a b b −−; (D) 23231414()()a a b b a a b b −−.三、抽象型行列式的计算 【测试题】1.设12312,,,,αααββ均为4维列向量,且已知4阶行列式1231,,,m αααβ=,1223,,,n ααβα=,则4阶行列式32112,,,αααββ+=__________(A) m n +; (B) ()m n −+; (C) n m −; (D) m n −.2.若1112132122233132331a a a D a a a a a a ==,则1111121312121222331313233423423423a a a a D a a a a a a a a −=−=−__________ 3.设A 为3阶矩阵,12A =,求:(1) 1*(2)3A A −−;(2) *1(3)2A A −−. 4.设A 为n 阶(实)矩阵,且满足Tn A A E =.如果0A <,求行列式A E +的值. 5.设4阶矩阵A 与B 相似,A 的特征值为1111,,,2345,求行列式1B E −−的值.四、行列式等于零的判定设A 为n 阶方阵,则与“0A =”等价的说法有: (1) A 是奇异矩阵;(2) A 是降秩矩阵,即()R A n <; (3) n 元齐次线性方程组0Ax =有非零解;(4) A 的列(行)向量组中至少存在一个列(行)向量可以由其余1n −个列(行)向量线性表示;(5) A 的列(行)向量组线性相关; (6) A 至少有一个特征值等于零. 【测试题】1.设A 为n 阶矩阵,且0A =,则下列各选项中正确的是__________ (A) A 中必有一列(行)的元素全等于零; (B) A 中必有两列(行)的元素对应成比例;(C) A 的列(行)向量组中必有一个列(行)向量可以由其余的列(行)向量线性表示; (D) A 的列(行)向量组中任意一个列(行)向量都可以由其余的列(行)向量线性表示.2.设A 为m n ×矩阵,B 为n m ×矩阵,则下列各选项中正确的是__________ (A) 当m n >时,必有行列式0AB ≠; (B) 当m n >时,必有行列式0AB =; (C) 当n m >时,必有行列式0AB ≠;(D) 当n m >时,必有行列式0AB =.第二部分 矩阵一、矩阵的概念及运算1.矩阵的概念(方阵、行矩阵、列矩阵、同型矩阵、零矩阵、单位阵、对角阵、对称阵、纯量阵、伴随矩阵、可逆矩阵、奇异矩阵、非奇异矩阵、满秩矩阵、降秩矩阵、正交阵等) 2.矩阵的运算 矩阵的加法 数乘矩阵 矩阵的乘法* 矩阵的转置*方阵的幂方阵的行列式*说明:重点复习带*号的矩阵运算. 3.行列式与矩阵的区别【测试题】1.设A 和B 均为n 阶矩阵,k 为正整数,则下列各选项中正确的是__________(可以多选) (A) A B A B +=+; (B) AB BA =; (C) AB BA =; (D) 111()A B A B −−−+=+; (E) 111()AB A B −−−=(F) 111()kA A k−−=; (G) 111[()]()()T T T AB A B −−−=; (H) T T A B A B +=+;(I) TTA BA B +=+; (J) ()kkk AB A B =⋅.2.设A 和B 均为n 阶矩阵,且AB O =,则下列各选项中正确的是__________(A) A O =或B O =; (B) A B O +=; (C) 0A =或0B =; (D) 0A B +=. 3.设,,A B C 均为n 阶矩阵,E 为n 阶单位阵,则下列各选项中正确的是__________(A) 22()()A B A B A B +−=−; (B) 222()AB A B =; (C) 由AC BC =一定可以推出A B =;(D) 22()()A E A E A E −=+−.4.设A 是m 阶矩阵,B 是n 阶矩阵,已知A a =,B b =,若分块矩阵3O A C B O ⎛⎞=⎜⎟⎝⎠,则C =__________ (A) 3ab −; (B) 3mab ;(C) (1)3mn m ab −; (D) (1)(1)3m nm ab +−;二、伴随矩阵设n 阶方阵()ij n n A a ×=,其中2n ≥,则对于A 的伴随矩阵*A 有以下结论:(1) 定义:1121112222*12n n nnnn A A A A A A A A A A ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠L L M M M L ,其中ij A 为元素ij a 的代数余子式(,1,2,,i j n =L ); (2) **A A AA A E ==; (3)1*n A A−=,故当A 可逆时,*A 也可逆;(4) 若||0A ≠,则1*1A A A −=,*1A A A −=,1**11()()A A A A−−==; (5) **()()T TA A =;(6) *,(),()1,()1,0,() 2.n R A n R A R A n R A n =⎧⎪==−⎨⎪≤−⎩当当当【测试题】1.设A 为(2)n n ≥阶可逆矩阵,对于A 的伴随矩阵*A ,必有**()A =__________ (A) 1n AA −; (B) 1n AA +; (C) 2n AA −; (D) 2n AA +.2.设A 为(3)n n ≥阶矩阵,对于A 的伴随矩阵*A 和常数(0,1)k k ≠±,必有*()kA =__________(A) *kA ; (B) 1*n kA −;(C) *n k A ;(D) 1*k A −.3.设A 和B 均为(2)n n ≥阶矩阵,**,A B 分别为A 和B 的伴随矩阵,对于分块矩阵A O C OB ⎛⎞=⎜⎟⎝⎠,C 的伴随矩阵*C =__________(A) **A A O OB B ⎛⎞⎜⎟⎜⎟⎝⎠; (B) **B B O O A A ⎛⎞⎜⎟⎜⎟⎝⎠; (C) **A B O OB A ⎛⎞⎜⎟⎜⎟⎝⎠; (D) **B A O O A B ⎛⎞⎜⎟⎜⎟⎝⎠. 4.设3阶矩阵a b b A b a b b b a ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,若A 的伴随矩阵*A 的秩等于1,则必有__________(A) a b =或20a b +=;(B) a b =且20a b +≠; (C) a b ≠且20a b +=;(D) a b ≠且20a b +≠. 5.设100120123A ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,对于A 的伴随矩阵*A ,求1*()A −和*1()A −.三、可逆矩阵1.设A 为n 阶(实)方阵,则与“A 为可逆矩阵”等价的说法有: (1) 存在与A 同阶的方阵B ,使得AB E =(或BA E =)成立; (2) A 是非奇异矩阵,即0A ≠; (3) A 是满秩矩阵,即()R A n =; (4) A 可以表示为一些初等矩阵的乘积;(5) n 元齐次线性方程组0Ax =只有零解(不存在非零解); (6) A 的列(行)向量组线性无关; (7) A 的列(行)向量组是nR 的一个基; (8) A 的特征值都不等于零;(9) TA A 为正定矩阵(不作为期末考试要求).2.求逆矩阵的方法 (1) 伴随矩阵法:1*1AA A−=(最适合于2阶可逆矩阵). 设a b A c d ⎛⎞=⎜⎟⎝⎠可逆,则1*11d b A A c a A ad bc −−⎛⎞==⎜⎟−−⎝⎠(2) 初等行(列)变换法(适合于3阶或更高阶的可逆矩阵):y 若(,)~(,)rA E E X ,则1AX −=;y若~c A E E X ⎛⎞⎛⎞⎜⎟⎜⎟⎝⎠⎝⎠,则1A X −=; 需要特别注意的是,在进行初等行变换时,绝对不能同时进行初等列变换................................. (3) 特殊分块矩阵的逆矩阵设n 阶方阵A 和s 阶方阵B 都可逆,则111A O A O O B OB −−−⎛⎞⎛⎞=⎜⎟⎜⎟⎝⎠⎝⎠;111O A O B B O AO −−−⎛⎞⎛⎞=⎜⎟⎜⎟⎝⎠⎝⎠; 11111A O A O C B B CA B −−−−−⎛⎞⎛⎞=⎜⎟⎜⎟−⎝⎠⎝⎠(4) 定义法:给定矩阵方程()f A O =,求A 或A 的多项式的逆矩阵. 【测试题】1.求3201022112320121−−⎛⎞⎜⎟⎜⎟⎜⎟−−−⎜⎟⎝⎠逆矩阵. 2.设n 阶矩阵,,A B C 满足ABC E =,则下列各选项中正确的是__________ (A) ACB E =;(B) BAC E =;(C) BCA E =;(D) CBA E =.3.设11,,,A B A B A B −−++均为n 阶可逆矩阵,则111()A B −−−+=__________(A) 11A B −−+;(B) A B +;(C) 1()A A B B −+; (D) 1()A B −+.4.设n 阶矩阵A 满足24A A E O +−=,求1()A E −−.四、矩阵方程最基本的矩阵方程形如:AX B =和XA B =,其中,A B 为已知矩阵,且A 可逆,X 为未知矩阵,这两个矩阵方程的解分别为1X A B −=和1X BA −=.对于一般的矩阵方程,设法利用矩阵的运算法则及恒定变形,将所给的矩阵方程化为上述基本形式之一,再进行求解.常见解法:(1) 课本P.45例12;(2) 课本P.65例3. 【测试题】已知,A B 为3阶矩阵,且满足124A B B E −=−,其中E 为3阶单位阵.(1) 证明:矩阵2A E −可逆;(2) 若120120002B −⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,求矩阵A .五、列满秩矩阵设m n ×矩阵A 为列满秩阵,即()R A n =,则有以下结论:(1) A 的行最简形矩阵为n m nE O ×⎛⎞⎜⎟⎝⎠; (2) 若AB C =,则()()R B R C =;(3) 若AB O =,则B O =(矩阵乘法的消去律); (4) A 的列向量组一定线性无关;(5) 若m n >,则A 的行向量组也线性无关.【测试题】设m n ×矩阵A 的秩()R A m n =<,E 为m 阶单位阵,则下列各选项中正确的是__________(A) A 的任意m 个列向量线性无关; (B) A 的任意一个m 阶子式都不等于零; (C) 若矩阵B 满足BA O =,则B O =;(D) A 通过初等行变换必可以化为()(,)m m n m E O ×−的形式.六、正交矩阵1.与“A 为正交阵”等价的说法有:(1) T A A E =(或TAA E =); (2) A 可逆且1T AA −=;(3) A 的行(列)向量组两两正交,且都是单位向量. 2.正交阵的性质 (1) 若A 为正交阵,则1T AA −=也是正交阵,且1A =±;(2) 若,A B 为正交阵,则AB 也是正交阵.【测试题】设,A B 是n 阶正交阵,则下列各选项中不正确的是__________ (A) A B +是正交阵; (B) AB 是正交阵;(C) 1A −是正交阵;(D) 若1A =−,则1λ=−是A 的特征值.七、矩阵的初等变换与初等矩阵(口诀:左行右列) 【测试题】1.设111213212223313233a a a A a a a a a a ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,212223111213311132123313a a a B a a a a a a a a a ⎛⎞⎜⎟=⎜⎟⎜⎟+++⎝⎠,1010100001P ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠, 2100010101P ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠,则下列各选项中正确的是__________(A) 12APP B =;(B) 21AP P B =;(C) 12PP A B =;(D) 21P P A B =.2.设11121314212223243132333441424344a a a a a a a a A a a a a a a a a ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠,14131211242322213433323144434241a a a a a a a a B a a a a a a a a ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠,100010********000P ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠, 21000001001000001P ⎛⎞⎜⎟⎜⎟=⎜⎟⎜⎟⎝⎠,则1B −=__________ (A) 112A PP −; (B) 112P A P −; (C) 112PP A −; (D) 121P A P −.八、矩阵的秩 1.矩阵的秩的概念矩阵的秩等于最高阶非零子式的阶数,也等于行阶梯形矩阵非零行的行数. 规定零矩阵的秩等于零.2.矩阵的秩的性质(课本P.69至P.70) 【测试题】1.设A 为m n ×矩阵,B 为n 阶可逆矩阵,矩阵A 的秩等于r ,矩阵C AB =的秩等于1r ,则下列各选项中正确的是__________ (A) 1r r >;(B) 1r r <;(C) 1r r =;(D) r 与1r 的关系视乎B 而定.2.(3)n n ≥阶矩阵1111a a a aa a A aa a a a a⎛⎞⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎝⎠L L L M M M M L ,若矩阵A 的秩为1n −,则a =__________(A) 1; (B) 11n −; (C) 1−; (D) 11n −.九、行阶梯形矩阵vs.行最简形矩阵第三部分 线性方程组一、线性方程组的解的判定【测试题】设123123123(1)0(1)3(1)x x x x x x x x x λλλλ+++=⎧⎪+++=⎨⎪+++=⎩,问λ取何值时,此方程组有唯一解、无解或有无限多解?并在有无限多解时求其同解.(试用两种方法求解本题)二、齐次线性方程组的通解(基础解系) 【测试题】1.写出一个以1222341001x c c −⎛⎞⎛⎞⎜⎟⎜⎟−⎜⎟⎜⎟=+⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠为通解的齐次线性方程组.2.求一个齐次线性方程组,使它的基础解系为12(0,1,2,3),(3,2,1,0)TTξξ==. 3.设n 阶矩阵A 的各行元素之和均等于零,且()1R A n =−,求0Ax =的通解.三、非齐次线性方程组的通解 【测试题】1.设四元非齐次线性方程组的系数矩阵的秩为3,已知123,,ηηη是它的三个解向量,且123(2,3,4,5),(1,2,3,4)T T ηηη=+=,求该方程组的通解.2.设矩阵1234(,,,)A a a a a =,其中234,,a a a 线性无关,1232a a a =−.向量1234b a a a a =+++,求该方程组的通解.3.已知12,ββ是线性方程组Ax b =的两个不同的解,12,αα是对应的齐次线性方程组0Ax =的基础解系,12,k k 是任意常数,则Ax b =的通解是__________(A) 1211221()2k k ββααα−+++; (B) 1211212()2k k ββααα++−+;(C) 1211221()2k k ββαββ−+++; (D) 1211212()2k k ββαββ++−+.第四部分 向量组一、线性方程组的四种等价形式y一般形式 11112211211222221122,,.n n n nm m mn n m a x a x a x b a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L Ly向量方程的形式1112111212222212n n m m mn n m a a a x b a a a x b a a a x b ⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠L L L L M M L ,简记为Ax b =. y增广矩阵的形式 11121121222212n n m m mnm a a a b a a a b a a a b ⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠L L M M M M L ,简记为(,)A b . y向量组线性组合的形式 1112112122221212n n n m m mn m a a a b a a a b x x x a a a b ⎛⎞⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟+++=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠⎝⎠L M M M M , 若12(,,,)n A a a a =L ,则可简记为1122n n x a x a x a b +++=L .二、线性方程组、矩阵、向量组的相互关系三、向量组的线性组合n 元线性方程组Ax b = 其中A 是m n ×矩阵矩阵(,)A b向量组12:,,,n A a a a L及向量b是否存在解?()(,)R A R A b =是否成立?向量b 能否由向量组A线性表示?无解 ()(,)R A R A b < NO 有解 ()(,)R A R A b = YES(x 的分量就是线性组合的系数)唯一解()(,)R A R A b n ==(未知数个数)表达式唯一 无穷解()(,)R A R A b n =<(未知数个数)表达式不唯一矩阵方程矩阵 向量组AX B =有解 ()(,)R A R A B =向量组B 可以由向量组A 线性表示AX B =,BX A =都有解()()(,)R A R B R A B ==向量组B 与向量组A 等价,特别地,向量组与自己的最大无关组等价,于是有限向量组中成立的结论可推广到一般的情形.线性方程组矩阵向量组0Ax =只有零解()R A =A 的列向量的个数A 的列向量组线性无关0Ax =与0Bx =同解~rA B即A 能通过初等行.变换..化为B y矩阵A 的行向量组....与矩阵B 的行向量组....等价(P.84)y矩阵A 的列向量组....与矩阵B 的列向量组....有相同的线性关系(P. 93例11)【测试题】1.设有向量组12321:2,1,11054A a a a α−−⎛⎞⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟===⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠,及向量11b β⎛⎞⎜⎟=⎜⎟⎜⎟−⎝⎠,问,αβ为何值时,(1) 向量b 不能由向量组A 线性表示;(2) 向量b 能由向量组A 线性表示,且表示式唯一; (3) 向量b 能由向量组A 线性表示,且表示式不唯一.2.设向量β可由向量组12,,,m αααL 线性表示,但不能由向量组()Ⅰ:121,,,m ααα−L 线性表示,记向量组()Ⅱ:121,,,,,m αααβ−L 则下列各选项中正确的是__________ (A) m α不能由()Ⅰ线性表示,也不能由()Ⅱ线性表示; (B) m α不能由()Ⅰ线性表示,但可由()Ⅱ线性表示; (C) m α可由()Ⅰ线性表示,也可由()Ⅱ线性表示; (D) m α可由()Ⅰ线性表示,但不能由()Ⅱ线性表示.四、向量组的线性相关性n 元齐次线性方程组0Ax =(其中A 是m n ×矩阵)矩阵A向量组12:,,,n A a a a L是否存在非零解?()R A n <是否成立?是否线性相关?只有零解()R A n =(列向量的个数)线性无关 存在非零解()R A n <(列向量的个数)线性相关(x 的分量就是线性组合的系数)1.设向量组12:,,,n A a a a L ,则与“向量组A 线性相关”等价的说法有:(1) 存在不全为零的实数12,,,n k k k L ,使得11220n n k a k a k a +++=L (零向量)成立; (2) n 元齐次线性方程组0Ax =有非零解; (3) ()R A n <(列向量的个数);(4) A 的列向量组中至少存在一个列向量可以由其余1n −个列向量线性表示.2.设向量组12:,,,n A a a a L ,则与“向量组A 线性无关”等价的说法有:(1) 如果11220n n k a k a k a +++=L (零向量)成立,则必有120n k k k ====L ; (2) n 元齐次线性方程组0Ax =只有零解; (3) ()R A n =(列向量的个数);(4) A 的列向量组中任意一个列向量都不能由其余1n −个列向量线性表示. 3.课本P.89定理5【测试题】1.已知123(,,)2R a a a =,234(,,)3R a a a =,证明:(1) 1a 能由23,a a 线性表示;(2) 4a 不能由123,,a a a 线性表示.2.设向量组12:,,,r A αααL 可由向量组12:,,,s B βββL 线性表示,则下列各选项中正确的是__________(A) 当r s <时,向量组B 必线性相关; (B) 当r s >时,向量组B 必线性相关; (C) 当r s <时,向量组A 必线性相关;(D) 当r s >时,向量组A 必线性相关. 3.设12,,,s αααL 均为n 维向量,则下列各选项中不正确的是__________(A) 若对任意一组不全为零的系数12,,,s k k k L ,都有11220s s k k k ααα+++≠L ,则12,,,s αααL 线性无关;(B) 若12,,,s αααL 线性相关,则对任意一组不全为零的系数12,,,s k k k L ,都有11220s s k k k ααα+++=L ;(C) 12,,,s αααL 线性无关的充分必要条件是12(,,,)s R s ααα=L ; (D)12,,,s αααL 线性无关的必要条件是其中任意两个向量线性无关.4.设112b a a =+,223b a a =+,334b a a =+,441b a a =+,证明向量组1234,,,b b b b 线性相关.五、向量组的秩【测试题】求矩阵11221021512031311041A ⎛⎞⎜⎟−⎜⎟=⎜⎟−⎜⎟−⎝⎠的列向量组的一个最大无关组,并把不属于最大无关组的列向量用最大无关组线性表示.第五部分 方阵的特征值和特征向量一、向量的内积、长度及正交性1.向量内积的性质(对称性、线性性质、非负性、施瓦兹不等式) 2.向量长度的性质(非负性、齐次性、三角不等式) 3.向量的正交性的性质 y 两两正交的非零向量组一定线性无关; y施密特正交化过程.4.正交矩阵的性质(参阅矩阵部分)二、特征值和特征向量的概念、性质及计算(特征值和特征向量这两个概念只针对方阵而言) 特征多项式 A E λ−(以λ为未知数的一元n 次多项式) 特征方程 0A E λ−=关于方阵的特征值和特征向量有以下结论: (1) 特征值就是特征方程0A E λ−=的根.(2) 特征方程在复数范围内一定有解,根的个数等于方程的次数(重根按重数计算),因此n阶矩阵A 在复数范围内有n 个特征值.(3) 设n 阶矩阵()ij n n A a ×=的特征值为12,,,n λλλL ,则121122n nn a a a λλλ+++=+++L L ,12n A λλλ=L .(4) 设i λ是矩阵A 的一个特征值,则由()0i A E x λ−=求得的任意一个非零解i p 都是A 对应于特征值i λ的特征向量(若i λ为实数,则i p 可取实向量;若i λ为复数,则i p 可取复向量).(5) 对应于特征值i λ的特征向量并不唯一(有无限多个),()0i A E x λ−=的任意一个基础解系都可以作为这无限多个特征向量的最大无关组.(6) 一般来说,对应于特征值i λ的线性无关的特征向量最多只有()i n R A E λ−−个,与特征值i λ的重数没有直接关系.(7) 对应于不同特征值的特征向量线性无关.(8) n 阶矩阵最多只有n 个线性无关的特征向量(因为向量空间nR 的维数等于n ). (9) 若λ是A 的特征值,则k λ是k A 的特征值;()ϕλ是()A ϕ的特征值(其中01()m m a a a ϕλλλ=+++L 是λ的多项式,01()m m A a E a A a A ϕ=+++L 是矩阵A的多项式)(参阅课本P.120例8). (10) TA 与A 有相同的特征值.(11) n 阶零矩阵O 的特征值只能等于0.特别地,若A 是n 阶对称阵,λ是A 的k 重特征值,则 y ()R A E n k λ−=−,从而对应于特征值λ恰有k 个线性无关的特征向量;y 对应于不同特征值的特征向量两两正交;yn 阶对称阵恰有n 个线性无关的特征向量.【测试题】 1.矩阵3113A −⎛⎞=⎜⎟−⎝⎠的特征值为__________2.设n 阶矩阵,A B 满足()()R A R B n +<,证明,A B 有公共特征值,有公共特征向量. 3.已知3阶矩阵A 的特征值为1,2,3−,求*32A A E ++.4.设12(,,,)Tn a a a a =L ,10a ≠,T A aa =,证明0λ=是n 阶矩阵A 的1n −重特征值.三、方阵的相似对角化1.关于n 阶方阵的相似对角化,有以下结论:(1) n 阶方阵A 可以相似对角化当且仅当A 有n 个线性无关的特征向量; (2) 如果n 阶方阵A 的n 个特征值各不相同,则A 可以相似对角化; (3) 对称矩阵一定可以相似对角化.2.n 阶方阵A 相似对角化的一般步骤:(i) 求出A 的所有互不相等的特征值12,,,s λλλL (s n ≤),它们的重数依次为12,,,s k k k L(121s k k k +++=L ).(ii) 如果s n =,则A 可以相似对角化,转入第(iv)步;否则转入第(iii)步.(iii) 如果对每一个i k 重特征值i λ,()i i R A E n k λ−=−都成立,则A 可以相似对角化,转入第(iv)步;否则A 不能相似对角化,算法结束.(iv) 对每一个i k 重特征值i λ,求()0i A E x λ−=的基础解系,得i k 个线性无关的特征向量,转入第(v)步.因为121s k k k +++=L ,所以一共可以得到n 个线性无关的特征向量. (v) 这n 个线性无关的特征向量构成可逆矩阵P ,满足1P AP −=Λ.注意Λ中对角元的排列次序应与P 中列向量的排列次序相对应.特别地,对称阵对角化的步骤参阅课本P.125.3.若方阵,A B 相似,则(1) 方阵,A B 有相同的特征多项式,从而有相同的特征值; (2) 方阵,A B 的多项式()A ϕ与()B ϕ也相似;(3) 特别地,若有可逆矩阵P ,使得1P AP −=Λ为对角阵,则1k k P A P −=Λ,1()()P A P ϕϕ−=Λ,因为12kkkk n λλλ⎛⎞⎜⎟⎜⎟Λ=⎜⎟⎜⎟⎜⎟⎝⎠O,12()()()()n ϕλϕλϕϕλ⎛⎞⎜⎟⎜⎟Λ=⎜⎟⎜⎟⎝⎠O ,所以可以通过()ϕΛ计算方便地计算A 的多项式()A ϕ; (4) 特别地,若()ϕλ是A 的特征多项式,则()A O ϕ=(零矩阵). 【测试题】1.设矩阵20131405A x ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠可相似对角化,求x .2.已知111p ⎛⎞⎜⎟=⎜⎟⎜⎟⎝⎠是矩阵2125312A a b −⎛⎞⎜⎟=⎜⎟⎜⎟−−⎝⎠的一个特征向量. (1) 求参数,a b 及特征向量p 所对应的特征值; (2) 问A 能不能相似对角化?并说明理由.3.设3阶对称阵A 的特征值为16λ=,233λλ==,与特征值16λ=对应的特征向量为1(1,1,1)T p =,求矩阵A .。
解析考研数学线性代数高分解题技巧
解析考研数学线性代数高分解题技巧在考研数学线性代数这个科目中,许多考生认为解题技巧是取得高分的重要因素之一。
本文将分析解析考研数学线性代数高分解题技巧,希望能给考生提供实用的指导。
一、理解基本概念要想在线性代数中取得高分,首先要对基本概念有深入的理解。
线性代数中的基本概念包括矩阵、向量、行列式等。
建议考生在备考过程中,将这些基本概念的定义和性质牢记于心,并多做相关题型的练习,以加深对这些概念的理解和应用。
二、掌握基本定理和性质熟练掌握线性代数中的基本定理和性质是解题的基础。
比如矩阵的秩与零空间的维数的关系、特征值与特征向量的性质等。
考生要牢记这些基本定理和性质,并能够熟练灵活地运用于解题过程中。
三、强化计算能力在线性代数的考试中,计算题是比较常见的一种题型。
因此,考生需要通过大量的计算练习,提高计算的准确性和速度。
对于矩阵的运算和行列式的计算,考生要掌握相应的运算法则和计算技巧,以提高解题的效率。
四、注意题目中的关键信息在解题过程中,考生需要仔细阅读题目,注意题目中的关键信息。
有时候,题目中隐藏着解题的关键。
比如,题目中给定了一个矩阵的特定性质,可以利用该性质进行解题;题目中提到了矩阵的秩和零空间的维数之间的关系,可以通过这一关系推导出相关的结论。
因此,考生需要善于发现题目中的关键信息,并能够巧妙地运用于解题过程中。
五、分析解题方法在解题过程中,考生可以根据题目的不同,选择不同的解题方法。
比如,在求解矩阵的特征值和特征向量时,可以选择特征方程和特征多项式法,也可以选择初等变换法;在计算矩阵的秩时,可以选择高斯消元法或行阶梯形法。
考生需要对各种解题方法有所了解,并能够灵活选择和应用于解题过程中。
总结起来,解析考研数学线性代数高分解题技巧包括理解基本概念,掌握基本定理和性质,强化计算能力,注意题目中的关键信息以及分析解题方法。
通过不断的练习和实践,考生将能够更好地掌握这些解题技巧,提高解题能力,取得更好的成绩。
考研线性代数 解题方法汇总(非知识点汇总)
考研线性代数解题方法汇总(非知识点汇总)行列式的计算消零化基本形法•思想:通过恒等变形变为基本形求解•恒等变形o消零化▪当列/行元素大致相同时,用第一行倍加▪当列/行元素具有递推性质时,用i行倍加i+1行▪相同优先o互换▪变为分块对角矩阵▪变换主/副对角线(变换次数为(n-1)n/2)o展开定理•常见行列式形状o爪形行列式o行和相等行列式▪求法▪1、所有元素向第一列求和▪2、提出第一列公因式▪3、将第一列归零化,视情况采用相应方法加边法•使用场景:无法通过互换、倍加、倍乘化简的行列式•使用方法:每列元素都含有同一参数的项,且该项系数(可以是其他参数)具有规律性数学归纳法与递推法•使用场景:具有递推性质的n阶行列式的证明•第一类归纳法o1、验证n=1时成立o2、假设n=k时成立o3、证明n=k+1时成立•第二类归纳法o1、验证n=1、n=2时成立o2、假设n<k时成立o3、证明n=k时成立•常见行列式形状o三主对角线行列式▪行和相等▪行和不相等用范德蒙德行列式行列式形式与解法总结•特殊形状行列式o爪形行列式o行和相等行列式o三主对角线行列式•多个行/列元素大致相同•行列元素具有递推性质•零的分布有规律•第一列只有两个元素o消去第二个元素o放置两头采用展开定理•具有递推性质的n阶行列式•所有元素都为齐次式余子式和代数余子式的线性组合计算法1:转化为行列式计算法2:用伴随矩阵计算•1、利用 A=|A|A逆计算A•2、由伴随阵的相应元素得到余子式•要求:需要A逆好求,没啥大用特别:所有代数余子式和的计算抽象行列式的计算|A+B|•知列向量o拆分o将向量的线性组合转化为矩阵乘积o将对矩阵的变换过程转化为矩阵乘积•完全抽象•知部分具体矩阵C 或 C的特征值o向|C|、|C+kE|靠拢▪相似:知A~B,可得|A+kE|=|B+kE|▪特征值性质:A+kE的特征值为 A的特征值+k行列式方程•1、将方程化为待求矩阵为因子的因式方程行列式表示的函数和方程求行列式函数f最高次数•化简行列式计算fo观察有差相同的行列,尽可能化零o多项式行列式化为基本型求解求行列式函数f的复合函数求行列式函数f的根或根的个数由行列式函数f的根特征(二重根)求参数行列式在Ax=0上的应用——克拉默法则注意:在求解|A|=0时,使用展开定理直接求因式乘积,不要先求多项式再因式分解,可能很难因式分解|A|=0的证明充要条件•|A|=k|A|o将关于A一次幂的表达式两边取行列式o特别:正交矩阵相关证明【李线代讲义例2.29】•Ax=0有非零解•反证法•存在零特征值o当题目中提到列向量时使用o题目中有A的多项式函数:同乘å•矩阵的秩注意矩阵方阵的幂通用步骤o对角阵o小三角阵o对角线元素相同的三角阵o零分布规则的阵分解为矩阵乘积•1、若给定矩阵向量成比例,则可分解为两向量乘积•2、利用结合律将两向量交换相乘•原理o行向量*列向量=数o列向量*行向量=各行成比例的矩阵利用递推式•使用场景:给定矩阵无法分解•1、依次求矩阵前几次幂,得递推式o形式:A^m=k*A^s(n>m)o注意•2、由递推式用法化简求值o1)从A^n中提出A^s,将其看作催化剂o2)A^s把A^n剩余部分全部转化为k▪转化为(n-s)/(m-s)个k乘积▪当n-s/m-s不是整数时分类讨论利用对角阵•1、求其相似对角阵代入•2、当对角阵元素相同时,求幂不需要求P两方阵和的幂•通过二项式定理展开•特别:对角线元素相同的三角阵o1、将给定矩阵分解为单位阵E和小三角阵B的和o2、用二项式定理展开,消去零项,再求和o背景知识:小三角阵▪对角元素为0的三角阵▪小三角阵的幂=更小三角阵▪小三角阵的”非零对角线到角的线数+1”次幂=O矩阵乘法的可交换性求与其可交换的矩阵•待定系数法o1、假设同阶矩阵B与其可交换o2、列式AB=BA并化简o3、令对应元素相等得解•拆解单位阵法o应用场景:给定矩阵与单位阵相近o1、将给定矩阵呢拆解为单位阵E和矩阵Bo2、求与矩阵B可交换的矩阵证明两矩阵可交换•利用伴随矩阵公式o应用场景:被证明式中含有伴随阵o1、凑出与伴随阵对应的矩阵o2、用公式进行矩阵交换后恢复•利用可逆矩阵公式o应用场景:给定两被证矩阵关系式o1、将已知条件凑出AB=E,证明可逆o2、由可逆矩阵可交换写出交换乘积等式o3、将乘积展开,消去多余项相关结论•对角矩阵与对角矩阵可交换•(E+A)^(-1)与(E-A)可交换对称矩阵和反对称矩阵相关结论•n阶方阵=对称矩阵+反对称矩阵待定证明A可逆并求A逆求数值矩阵A的逆•分块矩阵法求抽象矩阵的逆•分解成多个可逆矩阵的乘积o将待证矩阵分解为已知可逆矩阵的乘积o相关结论分块矩阵的逆•主对角线分块矩阵的逆•副对角线分块矩阵的逆•待定系数法o1、设出逆矩阵,令其与原矩阵相乘为单位阵o2、由对应块相等列方程可逆矩阵的判别验证•证明可逆o证明|A|≠0o特征值全为0部分+特征值全不为0部分证明A=O证明aij=0证明r(A)=0相关结论抽象矩阵式化简先化简条件,再化简被证式用条件将被证式的不可转化单元表出伴随矩阵低阶阵:定义法一般/抽象阵:公式法记忆方阵的行列式常见恒等变换•交换某项乘积顺序o解法:一边消一边补o例:(E+AB)=A(E+BA)A^(-1)•(A^(-1)+B^(-1))=A^(-1)(A+B)B^(-1)矩阵方程技巧•知A*可直接求|A|、A^(-1)•A逆的逆可乘进括号逆中初等矩阵将左乘初等矩阵看作行变换证明正交阵证明ATA=AAT=E,不能只证一部分矩阵的秩与等价矩阵向量向量组的线性表出计算题转化为线性方程组有没有解证明题构造方程组,证明方程组有解•等价证明r(å1,å2,...,ås)=r(å1,å2,...,ås,ç)找出两个条件•å1,å1,...,ås线性无关•å1,å1,...,ås,ç线性相关证明k≠0反证法向量组的线性相关、无关具体相关性计算转化为Ax=0有没有非零解特别•有零向量•向量数>维数•n维n个向量行列式=0•向量数>矩阵秩抽象相关性证明定义法•1、设k1a1+k2a2+...+knan=0•2、恒等变形证明k1 k2 ... kn=0▪同乘使1项为0,需要多次同乘▪同乘后与原式相加减消元o常用条件▪特征向量:不同特征值特征向量线性无关▪基础解系:基础解系线性无关秩•1、将被证向量组以列排为矩阵A•2、证明r(A)=so A若有A=BCo A若有AB=Co A若有AB=O秩向量组极大无关向量组•含一参向量组求极大【李线代讲义例3.21】o拼矩阵、行变换、由参讨论秩求两向量组矩阵计算证明•思路:分别找到表大于和表小于的两个条件•条件o向量o方程组▪解向量的秩=n-r(A)▪若Ax=b、Ax=0有s个线性无关解向量,则s≤n-r(A)▪若AB=O,则r(B)≤n-r(A)其他•已知r(A)求r(B)等价矩阵和等价向量组分别证明向量组1、11可以相互线性表出r(A)=r(B)=r(A,B)当A B其中一个满秩时不需要求r(A,B)A可由B表出,B不能由A表出1、由r(A)<r(A,B)≤n得|A|=0解未知数2、代入看是否满足r(A)<r(B)=r(A,B)向量空间线性方程组齐次线性方程组具体型求解1、将系数矩阵化为含最大单位阵的矩阵2、非单位阵列的位置填写100;010;0013、在解向量其他位置填写填1列元素相反数抽象型求解1、推断r(A)知解向量个数2、找出n-r(A)个å使得Ax=0证明向量组是Ax=0的基础解系1、验证Açi=02、证明ç 1 ç 2 ... çt无关3、说明t=n-r(A)非齐次线性方程组具体型求解一般步骤•1、将增广矩阵化为含最大单位阵的矩阵•2、自由变量赋值o1/选取剩余非单位矩阵列作为自由变量o2/给通解的自由变量列赋值100;010;001o3/给特解的自由变量列赋值000•3、填写其他元素o1/通解解向量其他位置填写填1列元素相反数o2/特解解向量其他位置填写b向量元素含参注意•首先尽量消去参数•不能对某行同乘/除(可能为零)含参项•不能对某行同除含参项后加到另一行(可能为∞)含两参数的分类讨论•1、令|A|=0求出得唯一解参数范围•2、剩余范围画树状图讨论o三个主分支o次分支标准▪r(A)=?=r([A,b])•3、写情况类别o将每种情况对应的路线取交集,得参数范围o无解情况参数范围可取并集,合并为一种o无穷解情况不可合并抽象型求解1、推断解的结构2、找出n-r(A)个线性无关齐次方程解向量3、找出特解A的行向量与Ax=0的解的关系线性方程组系数矩阵列向量和解的关系求两个方程组的公共解两个方程组联立成大方程组求解抽象方程组:证明大方程组有非零解一个方程组+另一方程组的基础解系1、求出方程组的基础解系2、将公共解用两个基础解系分别表示•其中一个基础解系用负系数表示•移项得两个基础解系的线性组合=03、建立新齐次方程组并求解4、代回2步骤式得公共解同解方程组具体型同解必要条件题目•同未知数不同方程数的两个齐次方程组同解求参数步骤•1、由方程式较多的方程组1非满秩求参数•2、将方程组1求解得基础解系•3、将基础解系代入方程组2中求参数•4、验证两方程组秩相同抽象型1、证明方程组(1)的解是(11)的解2、证明方程组(11)的解是(1)的解方程组的几何应用求矩阵AX=B型•将其看作多个同系数矩阵的方程组•1、设X=[x,y,z],x y z为列向量•2、将A、B组成增广矩阵[A,B]求解f(X)=B型(不可化为AX=B)•1、设未知矩阵为具体矩阵•2、代入条件令对应元素相等转化为方程组特征值与特征向量求特征值/向量数值矩阵特征方程法•1、利用特征方程求解特征根o展开公式法▪找到两行/列相乘加满足o一般方法▪1、合并同类项写成降幂多项式▪2、猜根后通过多项式除法进行因式分解•2、带入特征根解齐次线性方程组求特征向量观察法•秩1矩阵•主对角线ai,其他为b抽象矩阵方法•公式法•定义法o思想:将题目条件转化为Aå=kå形式o常见•相似法o背景知识▪P^(-1)AP~B,特征值相同▪B的特征向量=P^(-1)*A的特征向量▪A的特征向量=P*B的特征向量o思想:构造相似阵,求其特征,公式法求原矩阵特征o题目特征▪题目出现‘å1 å2线性无关’,‘Aå1’,‘Aå2’•同乘å法o步骤▪1、对f(A)=0同乘å转化为f(λ)=0,求λ可能值▪2、由’秩’ + ’可相似对角化’ 确定λ题目•‘å1 å2线性无关’,‘Aå1’,‘Aå2’•多项式f(A)=0两个矩阵是否有相同的特征值判断思路特征多项式是否相等常见判断矩阵与转置阵相似矩阵。
线性代数解方程组的方法
线性代数解方程组的方法
解线性方程组的方法:第一种消元法;第二种克拉姆法则;第三种逆矩阵法;第四种增光矩阵法;第五种计算机编程,随便用个软件,譬如Matlab,输入密令;目前这5中教为适用,适合一切齐次或者非齐次线性方程组。
第一种消元法,此法最为简单,直接消掉只剩最后一个未知数,再回代求余下的未知数,但只适用于未知数个数等于方程的个数,且有解的情况;
第二种克拉姆法则,如果行列式不等于零,则用常数向量替换系数行列式中的每一行再除以系数行列式就是解;
第三种逆矩阵法,同样要求系数矩阵可逆,直接建立AX=b与线性方程组的关系,X=A^-1.*b就是解;
第四种增光矩阵法,利用增广矩阵的性质(A,b)通过线性行变换,化为简约形式,确定自由变量,(各行中第一个非零元对应的未知数除外余下的就是自由变量),对自由变量进行赋值,求出其它未知数,然后写成基础解析的形式。
第五种计算机编程,随便用个软件,譬如Matlab,输入密令。
【线性代数】常见计算题型及常用思路
线性表示(或求坐标) 常用思路:待定系数法。设
, (假设 1
X1 ,
, m F n 是列向量)
(想想为什么一定有除上面方程组的一个基础解系,设为 使得
x11
关于
xm m
, X n t F n
nt
就
。然后根据题设条件得到
x1 ,
, xm
1 ,
方法一:基于
P 以及原矩阵的相
A 可逆 AX b的唯一解为
X A1b ,利用线
性方程组求解。 方法二:基于可逆矩阵可写成初等矩阵的乘积,利用 初等变换求 解,主要是两个公式: 前者只能用行变换,后者只能用列变换。 方法三:利用分块矩阵求解。主要基于两个公式: (假 设已知可逆)
似标准形时要注意特征向量与特征值是相互对应的。 题型 13. 实对称矩阵的对角化 方法:和题型 12 一致,但是要加入 Schmidt 正交化过程 及单位要注意的是: 千万不要把所有的特征向量放在一起 Schmidt 正交化,一定要分别对每个特征值所对应的特征 向量分别正交化,也就是说:如果有 m 个不同特征值, 要进行 m 次 Schmidt 正交化过程! 题型 14. 求二次型/矩阵相合标准形与相合规范形(必须 掌握) 方法一:配方法。 方法二:初等变化法。 (参考课本例题,此两种方法和 中学所用的 一致) 方法三:利用题型 12 或 13,基于正交矩阵的逆矩阵 和转置一样。
, 个) 。则 1
, t , X1 ,
, X n t F n
的一个方程组。解方程组。
方法二:利用课本定理 4.10(如果已知在某一组基下的矩 阵) 题型 3.判断
, m V ( F )
的线性相关性
常用思路:待定系数法。设
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-2-
线性代数解题方法和技巧
a11
2.若 D = a21
a12 a22 a32
a13 a33
4a11 4a31
2a11 − 3a12 2a21 − 3a22 2a31 − 3a32
a13 a23 = __________ a33
a23 = 1 ,则 D1 = 4a21
a31
3.设 A 为 3 阶矩阵, A =
线性代数解题方法和技巧
第一部分
行列式
一、行列式的概念 (1) 二阶与三阶行列式的对角线法则 (2)
n 阶行列式的定义
(3) 余子式、代数余子式的定义
【测试题】四阶行列式中含有 a11a23 的项是__________
二、数字型行列式的计算 计算数字型行列式的常见思路有: (1) 如果在行列式的某一行(列)中,零的个数比较多,可按该行(列)展开; (2) 利用行列式的性质,将行列式某行(列)中尽可能多的元素化为零,然后再按该行(列) 展开; (3) 三角形法:利用行列式的性质,将给定的行列式化为上(下)三角形行列式; (4) 递推法或数学归纳法; (5) 利用范德蒙行列式; (6) 利用拉普拉斯定理(同济第五版的线性代数没有介绍该定理,不作为期末考试要求) .
(D) A − E = ( A + E )( A − E ) .
2 2
4.设 A 是 m 阶矩阵和 B 是 n 阶矩阵,已知 A = a , B = b ,若分块矩阵 C = ⎜ 则 C = __________ (A) −3ab ; (B) 3 ab ;
m
⎛ O 3A ⎞ ⎟, ⎝B O ⎠
(C) ( −1) 3 ab ;
【测试题】 : 1.计算下列各行列式( Dk 为 k 阶行列式)
a
(1) Dn =
1 O
,其中对角线上的元素都是 a ,未写出的元素都是 0;
1
a
x a L a a x L a (2) Dn = ; M M M a a L x
-1-
线性代数解题方法和技巧
an
(3) Dn +1 =
(a − 1) n M a −1 1
n
-6-
线性代数解题方法和技巧
(9) A A 为正定矩阵(不作为期末考试要求) .
T
2.求逆矩阵的方法 (1) 伴随矩阵法: A
−1
=
1 * . A (最适合于 2 阶可逆矩阵) A
设A=⎜
⎛a b⎞ 1 * 1 ⎛ d −b ⎞ −1 A = ⎟ 可逆,则 A = ⎜ ⎟ A ad − bc ⎝ −c a ⎠ ⎝c d⎠
联系
【测试题】 1.设 A 和 B 均为 n 阶矩阵,k 为正整数,则下列各选项中正确的是__________(可以多选) (A) A + B = A + B ; (C) AB = BA ; (E) ( AB )
−1
(B) AB = BA ; (D) ( A + B ) (F) ( kA)
T
−1
−1
⎛ A11 ⎜ A * A = ⎜ 12 ⎜ M ⎜ ⎝ A1n
(2) (3)
M A2 n
A* A = AA* = A E ; A* = A
n −1
,故当 A 可逆时, A 也可逆;
−1
*
(4) 若 | A |≠ 0 ,则 A
=
1 * 1 A , A* = A A−1 , ( A−1 )* = ( A* ) −1 = A; A A
a n −1 (a − 1) n −1 L (a − n) n −1 M a 1 L L M a−n 1
;
L
( a − n) n
an O
(4) D2 n =
bn N a1 c1 N b1 d1 O dn
,其中未写出的元素都是 0.
cn
3 −5 2 1 1 1 0 −5 , D 的 (i, j ) 元的余子式和代数余子式依次记作 M ij 和 Aij ,求 2.设 D = −1 3 1 3 2 −4 −1 −3
四、行列式等于零的判定 设 A 为 n 阶方阵,则与“ A = 0 ”等价的说法有: (1) (2) (3) (4)
A 是奇异矩阵; A 是降秩矩阵,即 R( A) < n ;
n 元齐次线性方程组 Ax = 0 有非零解;
A 的列(行)向量组中至少存在一个列(行)向量可以由其余 n − 1 个列(行)向量线
(A) ⎜ ⎜
⎛ A A* ⎝ O
O ⎞ ⎟; B B* ⎟ ⎠ O ⎞ ⎟; B A* ⎟ ⎠
(B) ⎜ ⎜
⎛ B B* ⎝ O
O ⎞ ⎟; A A* ⎟ ⎠ O ⎞ ⎟. A B* ⎟ ⎠
⎛ A B* (C) ⎜ ⎜ O ⎝
⎛ B A* (D) ⎜ ⎜ O ⎝
⎛a b b⎞ ⎜ ⎟ * 4.设 3 阶矩阵 A = b a b ,若 A 的伴随矩阵 A 的秩等于 1 ,则必有__________ ⎜ ⎟ ⎜b b a⎟ ⎝ ⎠
(A) kA ;
*
(B) k
n −1
A* ;
(C) k A ;
* *
n
*
(D) k A .
−1
*
3 .设 A 和 B 均为 n( n ≥ 2) 阶矩阵, A , B 分别为 A 和 B 的伴随矩阵,对于分块矩阵
⎛ A O⎞ * C =⎜ ⎟ , C 的伴随矩阵 C = __________ ⎝O B ⎠
b1 0 0 a4
的值等于__________
(B) a1a2 a3 a4 + b1b2b3b4 ; (D) ( a2 a3 − b2b3 )(a1a4 − b1b4 ) .
三、抽象型行列式的计算 【测试题】 1.设 α1 , α 2 , α 3 , β1 , β 2 均为 4 维列向量,且已知 4 阶行列式
⎛ A−1 ⎛ A O⎞ = ⎜ ⎜ ⎟ ⎝O B ⎠ ⎝ O
−1
−1
O ⎞ ⎟; B −1 ⎠ O ⎞ ⎟ B −1 ⎠
说明:重点复习带*号的矩阵运算. 3.行列式与矩阵的区别 行列式 定义 n 个元素排成 n 行 n 列, 按照一定的规则确定一个数值.
2
矩阵 数表 矩阵的运算 (§2.2,§2.3) 用等号
运算 和 性质
行列式的性质 (§1.5) 用等号 方阵的行列式
矩阵的初等变换 (§3.1,§3.2) 用“~”号
α1 , α 2 , α 3 , β1 = m , α1 , α 2 , β 2 , α 3 = n ,
则 4 阶行列式 α 3 , α 2 , α1 , β1 + β 2 = __________ (A) m + n ; (B) −(m + n) ; (C) n − m ; (D) m − n .
(5) ( A ) = ( A ) ;
T *
* T
⎧n, 当R ( A) = n, ⎪ * (6) R ( A ) = ⎨1, 当R ( A) = n − 1, ⎪0, 当R ( A) ≤ n − 2. ⎩
【测试题】 1.设 A 为 n( n ≥ 2) 阶可逆矩阵,对于 A 的伴随矩阵 A ,必有 ( A ) = __________
mn m
(D) ( −1)
( m +1) n
3m ab ;
二、伴随矩阵 设 n 阶方阵 A = ( aij ) n×n ,其中 n ≥ 2 ,则对于 A 的伴随矩阵 A 有以下结论:
*
(Байду номын сангаас)
A* 的定义:
A21 L A22 An1 ⎞ ⎟ L An 2 ⎟ ,其中 Aij 为元素 aij 的代数余子式( i, j = 1, 2, L , n ) ; M ⎟ ⎟ L Ann ⎠
1 −1 * * −1 ,求:(1) (2 A) − 3 A ;(2) (3 A ) − 2 A . 2
T
4.设 A 为 n 阶(实)矩阵,且满足 A A = En .如果 A < 0 ,求行列式 A + E 的值. 5.设 4 阶矩阵 A 与 B 相似, A 的特征值为
1 1 1 1 , , , ,求行列式 B −1 − E 的值. 2 3 4 5
= A−1 + B −1 ;
1 −1 A ; k
= A−1 B −1 = ( A−1 )T ( B −1 )T ;
=
T
(G) [( AB ) ] (I) A + B
T T
T −1
(H) A + B
k
= A+B;
k k
= A+ B ;
(J) ( AB ) = A ⋅ B .
2.设 A 和 B 均为 n 阶矩阵,且 AB = O ,则下列各选项中正确的是__________ (A) A = O 或 B = O ; (B) A + B = O ; (C) A = 0 或 B = 0 ; (D) A + B = 0 .
(A) a = b 或 a + 2b = 0 ; (C) a ≠ b 且 a + 2b = 0 ; (B) a = b 且 a + 2b ≠ 0 ; (D) a ≠ b 且 a + 2b ≠ 0 .
⎛1 0 0 ⎞ ⎜ ⎟ * −1 * * −1 5.设 A = 1 2 0 ,对于 A 的伴随矩阵 A ,求 ( A ) 和 ( A ) . ⎜ ⎟ ⎜1 2 3 ⎟ ⎝ ⎠
三、可逆矩阵 1.设 A 为 n 阶(实)方阵,则与“ A 为可逆矩阵”等价的说法有: (1) 存在与 A 同阶的方阵 B ,使得 AB = E (或 BA = E )成立; (2) A 是非奇异矩阵,即 A ≠ 0 ; (3) A 是满秩矩阵,即 R( A) = n ; (4) A 可以表示为一些初等矩阵的乘积; ; (5) n 元齐次线性方程组 Ax = 0 只有零解(不存在非零解) (6) A 的列(行)向量组线性无关; (7) A 的列(行)向量组是 R 的一个基; (8) A 的特征值都不等于零;