大一上学期 高数复习要点整理
大一上高数复习知识点
大一上高数复习知识点一、函数与极限函数的定义:设有两个非空集合 A 和 B,如果按照某种确定的对应关系 f,使得对于 A 中的每一个元素 x,在 B 中都有唯一确定的元素 y 和它对应,那么就称 f 是从集合 A 到集合 B 的一个函数,记作 y=f(x)。
函数的极限:设函数 f(x) 在点 x=a 的某个去心邻域内有定义,如果存在一个常数 A,对于任意给定的正数ε,总存在正数δ,使得当 0<|x-a|<δ 时,有 |f(x)-A|<ε 成立,那么就称函数 f(x) 在点 x=a 处的极限为 A,记作lim(x→a) f(x) = A。
二、导数与微分导数的定义:设函数 y=f(x) 在点 x=a 处某个邻域内有定义,如果极限lim(h→0) [f(a+h)-f(a)]/h存在,则称该极限为函数 y=f(x) 在点 x=a 处的导数,记作 f'(a)或 dy/dx| (x=a)。
导数的应用:函数的导数具有很广泛的应用,例如:1. 切线问题:导数可以表示函数曲线在某一点处的切线斜率。
2. 函数的单调性与极值问题:通过导数的正负性可以判断函数的单调性及极值点。
3. 函数的凹凸性与拐点问题:通过导数的增减性可以判断函数的凹凸性和拐点。
4. 弧长与曲率问题:导数可以用于计算函数曲线的弧长和曲率等。
微分的定义:设函数 y=f(x) 在点 x=a 处可导,那么函数在点x=a 处的微分 dy 是指函数 f(x) 在点 x=a 处的增量与自变量增量 dx 之比,即 dy=f'(a)·dx。
三、积分与定积分定积分的定义:设函数 f(x) 在区间 [a, b] 上有定义,将区间 [a, b] 分成 n 个小区间,假设 Delta x 是区间 [a, b] 中最大的小区间长度,选取小区间 [x(i-1), xi] 上的任意一点 x(i),然后构造和式:Σ f(x(i))·Delta x,当 n 趋于无穷大,Delta x 趋于 0 时,如果和式的极限存在,且与区间的选取方式无关,那么称此极限为函数 f(x)在区间 [a, b] 上的定积分,记作∫[a,b] f(x)dx。
大一上学期高数知识点大全
大一上学期高数知识点大全1. 代数的基本概念1.1. 实数和复数1.2. 整式与分式1.3. 幂与根1.4. 指数与对数2. 函数与极限2.1. 函数的基本概念2.2. 一次函数与二次函数2.3. 指数函数与对数函数2.4. 极限的定义与性质3. 导数与微分3.1. 导数的定义与性质3.2. 常见函数的导数3.3. 高阶导数3.4. 微分的定义与应用4. 积分与不定积分4.1. 不定积分的定义与性质 4.2. 基本积分公式4.3. 定积分的定义与性质4.4. 牛顿-莱布尼茨公式5. 一元函数的应用5.1. 函数的增减性与最值问题 5.2. 函数与导数的几何意义 5.3. 曲线的图像与拐点5.4. 泰勒展开与近似计算6. 二元函数与多元函数6.1. 二元函数的性质与图像 6.2. 多元函数的极值与最值6.3. 偏导数与全微分6.4. 隐函数与参数方程7. 重积分与曲线积分7.1. 二重积分的定义与计算 7.2. 三重积分的定义与计算 7.3. 曲线积分的定义与计算 7.4. 曲面积分的定义与计算8. 空间解析几何8.1. 点、直线和平面的方程 8.2. 空间曲线与曲面8.3. 空间向量与坐标系8.4. 空间几何运算和投影9. 常微分方程9.1. 基本概念与一阶微分方程9.2. 可降阶的一阶微分方程9.3. 二阶线性常微分方程9.4. 高阶常微分方程的初值问题以上是大一上学期高等数学的主要知识点,通过深入学习这些内容,可以为后续学习及应用数学打下坚实的基础。
希望对你的学习有所帮助!。
高数大一最全知识点
高数大一最全知识点高等数学作为大一学生的必修课程,是一门基础而又重要的学科。
掌握好高数知识点,不仅对后续的学习有着重要的影响,也对提高数理思维和解决实际问题具有重要的帮助。
下面将为大家整理总结大一高数中最全的知识点。
第一章:函数与极限1. 函数的概念和性质函数定义、定义域和值域、函数的图像和性质等。
2. 极限的概念和性质数列极限、函数极限、几何意义以及重要的极限性质。
3. 连续与间断连续函数的概念、连续函数的性质、间断点和间断函数等。
第二章:导数与微分1. 导数的概念和计算导数的定义、导数的计算方法、各种函数导数的计算公式等。
2. 高阶导数与导数的应用高阶导数的定义、高阶导数的计算、导数在几何和物理问题中的应用等。
3. 微分学基本定理微分中值定理、极值与最值、凹凸性等重要的微分学定理。
第三章:积分与不定积分1. 定积分和不定积分的概念和性质定积分的定义、定积分的计算、不定积分的定义和基本积分表等。
2. 定积分的应用定积分的几何应用、定积分的物理应用、定积分的概率统计应用等。
3. 反常积分反常积分的概念和性质、反常积分判敛方法、特殊函数的反常积分等。
第四章:常微分方程1. 常微分方程的基本概念常微分方程的定义、初值问题、解的存在唯一性定理等。
2. 一阶常微分方程解法可分离变量方程、齐次方程、一阶线性方程、伯努利方程等解法。
3. 高阶线性微分方程高阶线性齐次和非齐次微分方程的解法、常系数线性微分方程等。
第五章:多元函数与偏导数1. 多元函数的概念和性质多元函数的定义、定义域、值域、图像等基本概念。
2. 偏导数与全微分偏导数的定义和计算、全微分的定义以及全微分近似等。
3. 隐函数与参数方程隐函数的存在定理、隐函数的求导、参数方程的定义和性质等。
第六章:多元函数的积分学1. 二重积分的概念和性质二重积分的定义、二重积分的计算、二重积分的性质等。
2. 三重积分和曲线、曲面积分三重积分的定义、三重积分的计算、曲线积分、曲面积分的概念与计算等。
高数笔记大一上知识点汇总
高数笔记大一上知识点汇总[第一章:数列与极限]1. 数列的概念数列是按照一定规律排列的一系列数的集合。
数列中的每个数称为该数列的项。
2. 数列的分类- 等差数列:数列中每两项之间的差值都相等。
- 等比数列:数列中每两项之间的比值都相等。
- 递推数列:数列中的每一项都能由前面的项通过某种规律推算得到。
3. 数列的通项公式在某些规律的数列中,我们可以找到一种公式来表示该数列的第n项,这个公式被称为数列的通项公式。
4. 数列的前n项和数列的前n项和表示数列从第一项到第n项的求和结果。
对于等差数列、等比数列和递推数列,都有相应的求和公式。
5. 极限的概念极限是数列或函数在某一点或无穷远处的趋势或趋近值。
6. 数列的极限- 数列的收敛:当数列的项越来越接近某个确定的数时,可以说该数列收敛于该数。
- 数列的发散:当数列的项没有接近某个确定的数的情况下,可以说该数列发散。
7. 极限的性质与运算法则- 极限唯一性:数列的极限只能有一个。
- 有界性:收敛的数列是有界的,即数列中的所有项都在某个范围内。
- 收敛数列的极限运算法则:对于两个收敛数列的和、差、积、商,其极限仍可通过相应的运算得到。
[第二章:导数与微分]1. 函数的极限函数的极限表示当自变量趋近于某个值时,函数值的趋势或趋近值。
2. 导数的定义导数表示函数在某一点处的变化率或斜率。
可以通过导数来刻画函数曲线在某一点的切线的斜率。
3. 导数的运算法则- 常数倍法则:导数与常数倍之间有简单的线性关系。
- 和差法则:导数的和的导数等于各个导数之和。
- 乘积法则:导数的乘积等于前一个导数乘以后一个函数的值再加上后一个导数乘以前一个函数的值。
- 商法则:导数的商等于分子的导数乘以分母的值减去分母的导数乘以分子的值,再除以分母的平方。
4. 高阶导数函数的导数也可以求导,得到的导函数称为原函数的高阶导数。
5. 隐函数与参数方程的求导对于隐函数和参数方程,我们可以使用求导法则来求取导数。
大一高数上半册知识点总结
大一高数上半册知识点总结高等数学是大学数学的基础课程之一,对于大一学生来说,学习高等数学是非常重要的。
以下是大一高数上半册的主要知识点总结。
一、函数与极限1. 函数的概念与性质:定义域、值域、奇偶性、周期性等。
2. 极限的概念与性质:无穷大极限、无穷小极限、左极限、右极限等。
3. 函数的极限:极限的四则运算、夹逼准则等。
二、导数与微分1. 导数的定义与性质:导数的几何意义、导数与函数的关系、导数的四则运算等。
2. 常见函数的导数:多项式函数、指数函数、对数函数、三角函数等。
3. 微分的定义与性质:微分的几何意义、微分与导数的关系等。
三、一元函数求导法则1. 基本函数求导法则:常数函数、幂函数、指数函数、对数函数、三角函数等。
2. 复合函数求导法则:链式法则、内外函数法则等。
3. 反函数求导法则:反函数与导数的关系等。
四、高阶导数与微分中值定理1. 高阶导数与迭代法则:高阶导数的定义、高阶导数的迭代法则等。
2. 微分中值定理:拉格朗日中值定理、柯西中值定理等。
五、定积分与不定积分1. 定积分的定义与性质:定积分的几何意义、定积分的性质、定积分的四则运算等。
2. 不定积分的定义与性质:不定积分的基本公式、换元积分法、分部积分法等。
3. 牛顿-莱布尼兹公式:定积分与不定积分的关系等。
六、微分方程1. 微分方程的概念与分类:微分方程的定义、微分方程的分类等。
2. 一阶常微分方程:可分离变量型、一阶线性微分方程等。
3. 二阶常系数齐次线性微分方程:特征方程法、常数变易法等。
七、应用题1. 最大值与最小值问题:极值的判定条件、最大最小值的求解等。
2. 曲线的凹凸性和拐点:凹凸性的判定条件、拐点的求解等。
3. 曲线与曲面的面积与体积:旋转体的体积、平面图形的面积等。
以上是大一高数上半册的主要知识点总结,希望对你的学习有所帮助。
在学习过程中,要注重理论与实际应用的结合,不断进行练习和巩固,提高数学思维与解决问题的能力。
大一高数上册必考知识点
大一高数上册必考知识点一、函数与极限在大一高数上册中,函数与极限是学习的重点和基础。
学生需要了解以下几个必考知识点:1. 函数的定义与性质:函数的定义、定义域、值域、自变量、因变量等基本概念。
此外,还要了解一些特殊函数的性质,如一次函数、二次函数、常函数、反函数等。
2. 极限的定义与性质:了解极限的定义和符号表示,掌握极限存在与不存在的判定方法。
此外,还要熟悉一些常用的极限性质,如四则运算的极限、极限的唯一性等。
3. 无穷大与无穷小:理解无穷大和无穷小的概念及其性质。
掌握无穷小的比较、运算和性质。
4. 函数的连续性:了解连续函数的定义和性质,掌握函数连续性的判定方法,如极限存在的性质、闭区间上连续函数的性质等。
二、导数与微分导数与微分是大一高数上册的另一个重要内容,学生需要掌握以下必考知识点:1. 导数的概念和性质:了解导数的定义和符号表示,理解导数的几何意义和物理意义。
掌握导数与函数图像的关系,掌握导数的运算法则。
2. 可导性与连续性的关系:了解可导函数与函数的连续性的关系,掌握可导函数的判定方法。
3. 微分的概念与运算:了解微分的定义和性质,掌握微分的运算法则,如函数和的微分、函数积的微分、复合函数的微分等。
4. 高阶导数与高阶微分:理解高阶导数和高阶微分的概念,掌握高阶导数和高阶微分的定义和计算方法。
三、曲线图形与极值曲线图形与极值是大一高数上册的另一个考查重点,以下是必考知识点:1. 曲线的绘制和性质:学生需要掌握曲线的绘制方法,了解曲线的对称性、奇偶性等性质。
2. 函数的单调性与增减性:理解函数的单调性和增减性的概念,掌握单调性与增减性的判定方法。
3. 驻点与极值:了解驻点和极值的概念,掌握极值与导数的关系,掌握极值的判定方法。
四、不定积分与定积分不定积分和定积分也是大一高数上册必考的内容,以下是必考知识点:1. 不定积分的概念和性质:了解不定积分的定义和性质,掌握常用函数的不定积分表达式,如多项式函数、三角函数、指数函数等。
大一高数上所有知识点总结
大一高数上所有知识点总结一、函数与极限1. 函数的概念与性质1.1 函数的定义1.2 函数的性质2. 极限的概念与性质2.1 极限的定义2.2 极限存在的充分条件2.3 极限的性质及四则运算法则3. 无穷小量与无穷大量3.1 无穷小量的概念与性质3.2 无穷大量的概念与性质4. 极限的计算4.1 用夹逼准则求极限4.2 用无穷小量比较求极限4.3 用洛必达法则求极限4.4 用泰勒公式求极限二、导数与微分1. 导数的概念与求导法则1.1 导数的概念1.2 导数的计算与求导法则1.3 隐函数的导数1.4 高阶导数2. 函数的微分与高阶导数2.1 函数的微分2.3 高阶导数的概念与计算3. 函数的增减性与凹凸性3.1 函数的单调性3.2 函数的最值与最值存在条件3.3 函数的凹凸性及拐点三、函数的应用1. 泰勒公式在误差估计中的应用2. 函数的极值及其应用3. 函数的图形与曲线的切线方程4. 收敛性与闭区间紧性的概念及应用四、不定积分1. 不定积分的概念与性质1.1 不定积分的定义1.2 不定积分的性质1.3 不定积分的基本公式2. 不定积分的计算2.1 一些特殊函数的不定积分2.2 有理函数的不定积分2.3 有理三角函数的不定积分2.4 特殊的不定积分解法五、定积分1. 定积分的概念与性质1.1 定积分的定义1.2 定积分的性质2. 定积分的几何应用2.1 定积分与曲线下面积2.2 定积分与旋转体的体积计算2.3 定积分与空间几何体的体积计算六、微分方程1. 微分方程的概念与基本性质1.1 微分方程的定义1.2 微分方程的基本性质2. 常微分方程的解法2.1 一阶微分方程的解法2.2 二阶微分方程的解法2.3 高阶微分方程的解法3. 微分方程在物理问题中的应用3.1 弹簧振动问题3.2 电路的动态特性问题3.3 理想气体的状态方程问题七、多元函数微积分1. 多元函数的概念与性质1.1 多元函数的定义1.2 多元函数的导数与偏导数1.3 多元函数的微分2. 多元函数的极值与条件极值2.1 多元函数的极值点2.2 多元函数的条件极值点3. 二重积分与三重积分3.1 二重积分的概念与性质3.2 二重积分的计算3.3 三重积分的概念与性质3.4 三重积分的计算4. 重积分在几何与物理中的应用4.1 重积分与平面图形的面积计算4.2 重积分与曲面旋转体的体积计算4.3 重积分与空间物体的质量与重心计算八、无穷级数1. 数项级数的概念与性质1.1 数项级数的概念1.2 数项级数收敛的充分条件1.3 数项级数的审敛法2. 幂级数2.1 幂级数的概念与性质2.2 幂级数的收敛域2.3 幂级数在收敛域上的一致收敛性3. 函数项级数3.1 函数项级数的概念与性质3.2 函数项级数收敛的判别法3.3 函数项级数的一致收敛性以上是大一高数的知识点总结,总结了函数与极限、导数与微分、函数的应用、不定积分、定积分、微分方程、多元函数微积分、无穷级数等内容。
大一高数上册笔记知识点
大一高数上册笔记知识点一、函数与极限1. 定义和性质- 函数的定义:函数是一个将一个集合的元素对应到另一个集合的元素的规则。
- 函数的性质:唯一性和有界性。
2. 极限的定义和性质- 极限的定义:当自变量趋近于某个特定值时,函数的值趋近于一个确定的常数。
- 极限的性质:唯一性、局部有界性和保号性。
3. 无穷大与无穷小- 无穷大:当自变量趋近于无穷时,函数的值无限增大。
- 无穷小:当自变量趋近于某个特定值时,函数的值无限接近于零。
二、导数与微分1. 导数的定义和性质- 导数的定义:函数在某一点的变化率。
- 导数的性质:线性性、乘积法则和除法法则。
2. 常用函数的导数- 幂函数的导数:幂函数的导数是其指数乘以底数的幂减一。
- 指数函数和对数函数的导数:指数函数和对数函数可以互相转化为求幂函数的导数。
- 三角函数的导数:根据三角函数的特性,可以求得三角函数的导数。
3. 微分的定义和性质- 微分的定义:函数在某一点的线性逼近。
- 微分的性质:可加性、恒等关系和乘积关系。
三、一元函数的应用1. 函数的极值- 极值的定义:函数取得最大值或最小值的点。
- 极值的判别法:一阶导数判别法和二阶导数判别法。
2. 函数的凸性和拐点- 函数的凸性:函数图像在某一区间上向上凸或向下凸。
- 函数的拐点:函数图像由凹变凸或由凸变凹的点。
3. 泰勒公式- 泰勒公式的定义:将一个函数在某一点展开成无穷级数的形式。
- 泰勒公式的应用:求函数的近似值和导数的近似值。
四、不定积分1. 不定积分的定义和性质- 不定积分的定义:函数在某一区间上的原函数。
- 不定积分的性质:线性性、换元法则和分部积分法则。
2. 常用函数的不定积分- 幂函数的不定积分:幂函数的不定积分是其指数加一的倒数乘以底数的幂。
- 指数函数和对数函数的不定积分:指数函数和对数函数可以互相转化为求幂函数的不定积分。
- 三角函数的不定积分:根据三角函数的特性,可以求得三角函数的不定积分。
(完整版)高等数学(上)重要知识点归纳
高等数学(上)重要知识点归纳第一章 函数、极限与连续一、极限的定义与性质 1、定义(以数列为例),,0lim N a x n n ∃>∀⇔=∞→ε当N n >时,ε<-||a x n2、性质(1) )()()(lim 0x A x f A x f xx α+=⇔=→,其中)(x α为某一个无穷小。
(2)(保号性)若0)(lim 0>=→A x f xx ,则,0>∃δ当),(0δx U x o∈时,0)(>x f 。
(3)*无穷小乘以有界函数仍为无穷小。
二、求极限的主要方法与工具 1、*两个重要极限公式 (1)1sin lim=∆∆→∆ (2)e =◊+◊∞→◊)11(lim 2、两个准则 (1) *夹逼准则 (2)单调有界准则 3、*等价无穷小替换法常用替换:当0→∆时(1)∆∆~sin (2)∆∆~tan(3)∆∆~arcsin (4)∆∆~arctan(5)∆∆+~)1ln( (6)∆-∆~1e (7)221~cos 1∆∆- (8)nn ∆-∆+~114、分子或分母有理化法5、分解因式法 6用定积分定义 三、无穷小阶的比较* 高阶、同阶、等价1、连续的定义*)(x f 在a 点连续)()()()()(lim 0lim 0a f a f a f a f x f y ax x ==⇔=⇔=∆⇔-+→→∆2、间断点的分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧其他震荡型(来回波动))无穷型(极限为无穷大第二类但不相等)跳跃型(左右极限存在可去型(极限存在)第一类 3、曲线的渐近线*ax x f A y A x f ax x =∞===→∞→则存在渐近线:铅直渐近线:若则存在渐近线:水平渐近线:若,)(lim )2(,)(lim )1(五、闭区间连续函数性质 1、最大值与最小值定理 2、介值定理和零点定理第二章 导数与微分一、导数的概念 1、导数的定义*a f x f a f x a f y dy a f y ax x x a x a x -=-∆+=∆=='='→→∆→∆==)()(lim )()(lim lim |)(|002、左右导数 左导数ax a f x f x y a f a x x --=∆∆='--→→∆-)()(limlim)(0 右导数ax a f x f x y a f a x x --=∆∆='++→→∆+)()(limlim)(03、导数的几何意义*k a f a x f y a x 处的切线斜率在点(曲线))(,)(|='=4、导数的物理意义加速度)速度)则若运动方程:()()()(,)(()()(t a t v t s t v t s t s s ='=''='= 5、可导与连续的关系: 连续,反之不然。
大学大一上册高数知识点归纳
大学大一上册高数知识点归纳在大一上学期,学习高等数学是我们大学生活的一部分。
高等数学是一门基础且重要的学科,对于我们今后的专业学习以及数学思维的培养都有着至关重要的作用。
下面,我将对大学大一上学期高等数学的知识点进行归纳总结。
一、函数与极限1. 函数与映射:函数的定义与性质,一次函数、二次函数、指数函数、对数函数等常见函数的图像与性质。
2. 极限的概念与性质:数列极限、函数极限的定义与运算法则,极限存在准则,无穷小量与无穷大量的概念与性质。
二、导数与微分1. 导数的概念与计算:导数的定义、导数运算法则,高阶导数,隐函数求导,参数方程求导。
2. 微分学的应用:局部线性化与微分,函数的单调性、凹凸性与极值,最值问题,中值定理与罗尔定理。
三、积分与定积分1. 不定积分的概念与计算:原函数与不定积分的关系,不定积分的运算法则,分部积分法,换元积分法。
2. 定积分的概念与性质:定积分的定义与运算法则,区间上的平均值与中值定理,面积与曲线长度的计算。
四、常微分方程1. 常微分方程的基本概念:常微分方程的定义,解的概念与解的存在唯一性定理。
2. 一阶常微分方程:可分离变量方程、线性方程、齐次方程及其应用。
3. 二阶常微分方程:常系数齐次线性方程、常系数非齐次线性方程及其特解的求法。
五、级数与幂级数1. 数项级数与收敛性:级数的概念与性质,正项级数、交错级数、绝对收敛、条件收敛的判别法。
2. 幂级数:幂级数的收敛半径与收敛域,和函数的概念,常见幂级数的展开与求和。
这些是大学大一上学期高等数学的主要知识点归纳,通过对这些知识的学习和理解,我们可以奠定扎实的数学基础,并为今后的学习打下坚实的基础。
希望同学们能够重视这门学科,认真学习,掌握好每一个知识点,提升自己的数学素养。
高数大一上期末复习要点
高数大一上期末复习要点高等数学是一门大一上学期的重要课程,它是数学的一门基础性课程,也是理工科学生必修的一门课程。
本文将总结和归纳高等数学大一上学期的复习要点,以帮助同学们对这门课程进行有效的复习。
一、函数与极限1. 函数的概念、性质和表示法2. 函数的基本类型:多项式函数、指数函数、对数函数、三角函数等3. 函数的运算:和、差、积、商、复合函数4. 函数的单调性、奇偶性、周期性以及对称性5. 极限的定义、性质和相关定理6. 数列极限与函数极限的关系二、导数与微分1. 导数的概念、定义和几何意义2. 导数的计算法则:常数求导、幂函数求导、指数函数求导、对数函数求导、三角函数求导等3. 高阶导数的概念与计算4. 函数的微分与微分近似值的应用5. 函数的单调性与极值问题6. 函数的图像与导数的关系三、积分与不定积分1. 积分的概念、性质和计算方法2. 定积分的概念、性质和计算方法3. 牛顿-莱布尼茨公式与不定积分的概念4. 不定积分的基本性质和计算方法5. 不定积分的换元法与分部积分法6. 定积分的几何应用:面积、曲线长度、平均值等四、微分方程1. 微分方程的概念和基本形式2. 一阶微分方程的可分离变量、齐次方程和线性方程解法3. 一阶线性微分方程的常数变易法和伯努利方程解法4. 二阶齐次线性微分方程的特征方程解法5. 二阶非齐次线性微分方程的特解叠加法与待定系数法6. 微分方程的应用:变种种群模型、生命问题、机械振动等五、级数与幂级数1. 数列与级数的概念和性质2. 收敛与发散的判定:比较判别法、比值判别法、根值判别法等3. 常数项级数的和与收敛域4. 幂级数的收敛半径与收敛域5. 幂级数的运算:求导、求积等6. 幂级数的应用:函数展开、函数逼近等上述要点是大一上学期高等数学课程的重点内容,同学们在复习的过程中应该重点关注,并通过课堂笔记、教材、习题集等进行系统复习和巩固。
同时,在复习过程中要注重提高自己的问题解决能力和应用能力,培养数学思维和分析能力。
大一高数知识点总结上册
大一高数知识点总结上册一、导数与微分在大一高数的学习中,导数与微分是其中的重要知识点。
导数和微分是解决实际问题中变化率和极值问题的有力工具。
1. 导数的定义与计算方法导数是函数变化率的极限值,用于描述函数在某一点上的切线斜率。
导数的计算可以使用以下方法:- 利用导数的定义进行计算;- 使用求导法则,包括常数法则、幂法则、和差法则、乘法法则、商法则等。
2. 导数的几何意义和物理意义导数的几何意义是函数曲线上某一点的切线斜率,可以用来研究曲线的变化趋势和几何性质。
导数的物理意义是描述物理量的变化率,例如速度的导数是加速度。
3. 微分的定义和应用微分是导数的一个近似值,描述函数在某一点上的局部变化情况。
微分的定义可以使用导数进行计算,在实际应用中可以帮助解决极值问题。
4. 高阶导数与高阶微分高阶导数是导数的导数,表示函数变化率的变化率。
高阶微分是微分的微分,表示函数局部变化情况的变化情况。
二、一元函数与极限一元函数是大一高数中另一个重要的知识点,它是导数和微分的基础。
1. 一元函数的定义和性质一元函数是自变量和因变量之间的关系,在数学中常用符号表示。
一元函数具有以下性质:- 定义域和值域;- 奇偶性和周期性;- 单调性和最值;- 对称性和反对称性。
2. 极限的定义与性质极限是函数趋近于某一点的稳定值,是一元函数的重要概念。
极限具有以下性质:- 极限的存在与唯一性;- 极限的四则运算性质;- 极限的保号性质;- 极限的夹逼性质。
三、无穷级数无穷级数是在大一高数中需要掌握的重要概念,它在数学和物理等领域具有广泛的应用。
1. 数列与无穷级数的定义数列是按一定规律排列的一系列数,无穷级数是数列的部分和构成的。
2. 等比级数与等比数列等比数列是相邻两项之比为常数的数列,等比级数是以等比数列的项作为部分和构成的级数。
3. 幂级数与函数展开幂级数是以幂函数的项作为部分和构成的级数。
幂级数可以通过展开函数的泰勒级数来表示函数。
大一上学期高数速记知识点
大一上学期高数速记知识点在大一上学期的高数课程中,我们将学习很多重要的数学概念和知识点。
为了帮助大家更好地记忆和理解这些知识点,以下是一些速记技巧和关键内容的总结。
1. 函数与极限- 定义域:f(x)存在的一组实数x的集合- 值域:f(x)对应的所有可能的输出值的集合- 极限:当自变量趋近于某个特定值时,函数趋近于的一个值 - 无穷小量:当自变量趋近于某个值时,函数趋近于零2. 导数与微分- 导数:描述函数在某一点的变化率- 微分:描述函数在某一点的线性近似- 求导法则:常数法则、幂法则、和法则、积法则、商法则、链式法则- 高阶导数:对导数再次求导数3. 积分与不定积分- 积分:表示曲线下面的面积或区间上的累计变化- 不定积分:求导运算的逆运算- 基本积分公式:幂函数积分、三角函数积分、指数函数积分、对数函数积分等4. 一元函数的应用- 函数的最值:通过求导或用例外值比较法找到- 函数的增减性:通过导数的正负判断函数的增减区间- 函数的凹凸性:通过导数的增减来判断函数的凹凸区间和拐点- 欧拉定理:具有一阶导数的函数在极值点处的切线斜率为零5. 无穷级数- 等比数列与等比级数:基数和公比的概念,求和公式- 幂级数:一个无穷多项式求和的结果- 收敛与发散:判断级数的求和是否有限或无穷- 收敛级数的性质:加减乘除、比较、比值、根值判别法6. 多元函数与偏导数- 多元函数:自变量有两个或更多的函数- 偏导数:多元函数对其中一组自变量求导的结果- 偏导数的几何意义:描述函数在不同坐标轴方向上的变化率 - 梯度:一个向量,其分量为每个偏导数7. 多重积分- 二重积分:计算平面区域上某个函数的累计变化量- 三重积分:计算空间区域上某个函数的累计变化量- 坐标变换:通过变量替换简化积分计算- 应用:计算质量、体积、物理中的中心矩等这些是大一上学期高数课程中的一些重要的速记知识点和关键内容。
通过对这些内容的理解和记忆,我们可以更好地掌握高数的基本概念和应用技巧。
大一高数上册知识点
大一高数上册知识点一、数列与极限1.数列的概念:数列是按照一定规律排列的一列数。
2.数列的表示方法:通项公式、递推公式。
3.数列的性质:有界性、单调性。
4.数列的极限:数列逐渐趋近于无穷大或无穷小的值。
5.数列的收敛与发散:当数列存在极限时,称其收敛,否则称其发散。
6.常见数列:等差数列、等比数列、斐波那契数列等。
二、函数与映射1.函数的定义:函数是一种特殊的关系,每个自变量对应唯一的一个因变量。
2.函数的基本性质:定义域、值域、图像、单调性、奇偶性等。
3.基本初等函数:幂函数、指数函数、对数函数、三角函数等。
4.函数的运算与复合:函数加减乘除、函数复合运算。
5.映射的概念:映射是一种把一个集合中的元素对应到另一个集合中的元素的规则。
三、极限与连续1.函数的极限:函数在某点或无穷远处的趋近值。
2.极限的性质:唯一性、局部有界性、保号性等。
3.极限的计算方法:夹逼定理、函数极限运算法则等。
4.连续的概念:连续函数在其定义域内的任意点都有极限且与函数值相等。
5.连续函数的性质:介值定理、最大最小值定理等。
6.不连续点的分类:可去间断点、跳跃间断点、无穷间断点等。
四、导数与微分1.导数的概念:函数在某点的变化率。
2.导数的计算方法:基本导数公式、导数的四则运算、高阶导数等。
3.导数的几何意义:切线的斜率、函数图像的局部性质等。
4.微分的概念:函数在某点的线性近似变化量。
5.微分的计算方法:微分的四则运算、复合函数的微分等。
6.幂指对数函数的导数:幂函数、指数函数、对数函数的导数公式。
五、微分中值定理与导数应用1.罗尔定理:连续函数在闭区间端点值相等时,必定存在某点使导数为零。
2.拉格朗日中值定理:连续函数在闭区间内存在某点使导数等于平均变化率。
3.柯西中值定理:两个函数在闭区间内存在某点使导数的商等于函数的商。
4.泰勒公式:函数在某点的函数值可以用该点的导数表示的公式。
5.应用问题:最值问题、曲线的凹凸性、曲率、速度与加速度等。
大一高数知识点笔记大全
大一高数知识点笔记大全一、函数与极限1. 函数的定义与性质- 函数的概念- 定义域、值域与对应关系- 奇偶性与周期性- 单调性与零点- 复合函数与反函数2. 极限的概念与性质- 函数极限的定义- 左、右极限与无穷大极限- 极限的四则运算法则- 极限存在准则- 无穷小与无穷大二、导数与微分1. 导数的概念与计算- 导数的定义与几何意义 - 基本函数的导数- 导数的四则运算法则- 高阶导数与Leibniz公式2. 微分的概念与应用- 微分的定义与计算- 高阶微分的概念- 微分中值定理- 凹凸性与拐点三、不定积分与定积分1. 不定积分的概念与计算 - 不定积分的定义- 分部积分法与换元积分法 - 部分分式分解法2. 定积分的概念与计算- 定积分的定义与几何意义 - 定积分的基本性质- 牛顿-莱布尼茨公式- 反常积分四、微分方程1. 微分方程的基本概念- 微分方程的定义与分类 - 解的存在唯一性- 利用初始条件求解2. 常微分方程的解法- 齐次线性方程- Bernoulli方程- 一阶线性齐次方程- 二阶线性齐次方程五、多元函数与偏导数1. 多元函数的概念与性质 - 多元函数的定义与表示 - 偏导数的概念与计算 - 隐函数与参数曲线2. 高阶偏导数与全微分- 高阶偏导数的定义- 混合偏导数与次序互换 - 全微分的概念与计算- 隐函数的全微分公式六、重积分与曲线积分1. 二重积分的概念与计算- 二重积分的定义与性质- 坐标变换与极坐标系- 二重积分的计算方法- 物理应用2. 三重积分的概念与计算- 三重积分的定义与性质- 坐标变换与柱坐标系、球坐标系 - 三重积分的计算方法- 物理应用七、向量代数与空间解析几何1. 空间向量与向量运算- 空间向量的概念与表示- 向量的线性运算- 向量的数量积与夹角- 平面与直线的方程2. 空间解析几何的基本概念- 平面与直线的位置关系- 点、直线与面的距离- 球的方程与性质- 圆柱曲线与曲面以上是大一高数的知识点笔记大全,通过仔细学习和实践掌握这些知识点,将对你的数学学习和理解有很大的帮助。
大一上高数重点知识点
大一上高数重点知识点一、函数与极限1.函数:-函数的定义:函数是一个变量间的关系,通常表示为y=f(x),其中x是自变量,y是因变量,f(x)是给定x的函数值。
-四则运算和复合运算:加法、减法、乘法、除法、复合等运算规则。
-基本初等函数:常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。
2.极限:-极限的定义:当自变量x无限接近一些确定值时,函数f(x)的值逐渐趋向于一个确定的常数L,称L为函数f(x)当x趋近于一些确定值时的极限。
-极限的性质:极限的唯一性、局部有界性、保序性等。
-极限计算法则:四则运算法则、复合运算法则、等价无穷小替代法则等。
二、导数与微分学1.导数:- 导数的定义:函数f(x)在点x处的导数表示为f'(x),定义为f'(x)=lim(x→0)(f(x+h)-f(x))/h。
-导数的几何意义:导数表示函数的变化率,即函数曲线在一点的斜率。
-基本求导法则:常数法则、乘法法则、幂函数法则、指数函数法则、对数函数法则、三角函数法则等。
2.微分学:- 微分的定义:函数f(x)在点x处的微分表示为df(x)=f'(x)dx。
-微分的几何意义:微分代表函数曲线在特定点附近的线性近似,即切线与x轴的交点的y坐标。
-高阶导数:导数的导数称为高阶导数,如f''(x)表示f'(x)的导数。
三、不定积分与定积分1.不定积分:- 不定积分的定义:函数F(x)是f(x)的一个原函数,表示为∫f(x)dx=F(x)+C,其中C为常数。
-基本积分法则:幂函数积分、指数函数积分、对数函数积分、三角函数积分等。
-分部积分法:将积分的乘积分解为两个函数的乘积的积分形式进行求解。
-特殊积分:标准形式的积分表达式的求解,如三角函数的积分、有理函数的积分等。
2.定积分:- 定积分的定义:函数f(x)在区间[a,b]上的定积分表示为∫[a,b]f(x)dx,表示函数在该区间上的面积。
高数大一上知识点总结复习
高数大一上知识点总结复习在大一上学期的学习中,我们学习了高等数学(高数)的一些基础知识点。
这些知识点对我们建立数学思维、提高分析问题和解决问题的能力非常重要。
接下来,我将对这些知识点进行总结和复习。
一、极限与连续1. 数列与极限数列的概念:数列是按照一定规律排列的一串数。
数列的极限:当数列中的数值趋于某个常数时,称该常数为数列的极限。
数列极限的性质:极限唯一性、保号性、夹逼性、有界性等。
2. 函数与极限函数的定义:函数是一个对应关系,将一个自变量的值映射到一个因变量的值。
函数的极限:当自变量趋近于某个值时,函数对应的因变量的值趋近于某个常数。
函数极限的性质:极限唯一性、四则运算法则、复合函数的极限等。
3. 连续与间断连续函数的定义:函数在其定义域内的任何点上都满足极限存在且与函数值相等。
间断点与间断性:函数在某些点上极限不存在或者与函数值不相等,称为间断点。
二、导数与微分1. 导数的概念与性质导数的定义:描述函数在某一点附近的变化率。
导数可以表示斜率、速率、函数的变化趋势等。
导数的性质:四则运算法则、常数函数的导数、乘积法则、商法则等。
2. 导数的应用切线与法线:导数与函数图像上的切线方程和法线方程的应用。
函数的单调性:导数与函数的单调性的关系,判断函数在某个区间上的单调性。
函数的最值:通过导数来判断函数的最值。
3. 微分的概念与性质微分的定义:描述函数在某一点附近的变化量。
微分的性质:微分与导数的关系、微分的线性性质等。
三、不定积分与定积分1. 不定积分不定积分的定义:描述函数的原函数。
不定积分是导数的逆运算。
基本积分表:求解一些常见函数的不定积分所需的基本积分表。
不定积分的性质:线性性质、分部积分法、换元积分法等。
2. 定积分定积分的定义:描述函数在某个区间上的累积效果。
定积分的性质:线性性质、区间可加性、积分中值定理等。
牛顿-莱布尼茨公式:定积分和不定积分的关系。
四、微分方程1. 微分方程的概念与基本形式微分方程的定义:含有一个或多个未知函数的导数和自变量的关系式。
大一上学期高数知识点总结
大一上学期高数知识点总结一、导数与微分1. 函数的极限与连续性- 函数极限的定义与性质- 连续函数的定义与性质2. 导数与微分的概念- 导数的定义与几何意义- 微分的定义与应用3. 常见函数的导数- 幂函数、指数函数、对数函数、三角函数的导数计算4. 高阶导数与高阶微分- 高阶导数的概念及计算方法- 高阶微分的概念及应用二、常用函数与曲线的性质1. 一次函数与二次函数- 一次函数与二次函数的图像特征 - 一次函数与二次函数的性质及应用2. 指数函数与对数函数- 指数函数与对数函数的图像特征 - 指数函数与对数函数的性质及应用3. 三角函数与反三角函数- 基本三角函数的定义与性质- 反三角函数的定义与性质4. 参数方程与极坐标方程- 参数方程的概念与性质- 极坐标方程的概念与性质三、积分与定积分1. 不定积分与定积分- 不定积分的定义与性质- 定积分的定义与性质2. 常见函数的积分- 幂函数、指数函数、对数函数、三角函数的积分计算3. 积分中值定理与换元法- 积分中值定理的概念及应用- 换元法的基本思想与应用4. 微元法与面积体积计算- 微元法的基本原理与应用- 曲线下面积、旋转体体积的计算四、常微分方程1. 一阶常微分方程- 可分离变量方程的解法- 齐次方程的解法2. 线性常微分方程- 一阶线性齐次方程的解法- 一阶线性非齐次方程的解法3. 高阶常微分方程- 二阶常系数齐次方程的解法 - 二阶常系数非齐次方程的解法五、级数与幂级数1. 数项级数的概念与性质- 数项级数收敛的判定方法- 数项级数收敛的性质2. 幂级数的性质与收敛半径- 幂级数的收敛域与收敛半径- 幂级数的运算与收敛区间的确定3. 常见函数的幂级数展开- 指数函数、三角函数、对数函数的幂级数展开六、空间解析几何1. 空间直线与平面- 点、直线、平面的位置关系与方程- 直线与平面的交点及距离计算2. 空间曲线与曲面- 曲线的参数方程与性质- 曲面的方程与性质3. 空间向量的运算- 空间向量的基本运算法则- 向量积与混合积的计算以上是大一上学期高数的主要知识点总结,希望对你的复习有所帮助。
高数大一上册知识点笔记
高数大一上册知识点笔记1. 函数与极限:- 函数的概念及基本性质- 极限的定义与性质- 极限运算法则2. 导数与微分:- 导数的定义与计算- 导数的几何意义与物理意义- 微分的概念与计算3. 微分中值定理与高阶导数:- 罗尔定理- 拉格朗日中值定理- 柯西中值定理- 高阶导数的概念与计算4. 不定积分与定积分:- 不定积分的定义与基本性质- 基本积分公式与常用积分公式 - 定积分的概念与性质- 牛顿-莱布尼茨公式5. 定积分的应用:- 曲线长度与曲面面积- 物理应用:质量、质心与静力学6. 微分方程:- 高阶导数与高阶线性微分方程 - 一阶线性微分方程- 可分离变量的一阶微分方程- 齐次线性微分方程7. 无穷级数:- 数列极限与数列的收敛性质 - 正项级数与收敛判别法- 收敛级数的性质- 幂级数及其收敛域8. 函数序列与函数级数:- 函数序列的定义与性质- 函数序列的一致收敛性- 麦克劳林级数与泰勒级数9. 空间解析几何:- 空间直线与平面的方程- 空间曲线与曲面的方程- 空间直线与平面的位置关系 - 空间曲线与曲面的位置关系10. 多元函数与偏导数:- 多元函数的概念与性质- 偏导数的定义与计算- 高阶偏导数与混合偏导数11. 多元函数的极值与条件极值: - 多元函数的极值与最大最小值 - 条件极值与拉格朗日乘数法12. 重积分:- 二重积分的概念与计算- 二重积分的性质与应用- 三重积分的概念与计算- 三重积分的性质与应用13. 曲线与曲面积分:- 第一类曲线积分的概念与计算 - 第二类曲线积分的概念与计算- 曲面积分的概念与计算14. 广义积分:- 广义积分的概念与收敛性- 参数积分的概念与性质- Gamma函数与Beta函数的定义与性质这些是高数大一上册的主要知识点笔记,对于每个知识点,可以进一步展开,提供详细的定义、定理、公式和实例,以帮助理解和掌握相关内容。
大一上学期的高数课程重点在于奠定基础,熟练掌握这些知识点对于后续的学习和应用都具有重要意义。
大一高等数学的知识点纲要
大一高等数学的知识点纲要
一、函数与极限
1. 函数的概念与性质
2. 极限的定义与性质
3. 常见函数的极限计算方法
4. 连续与间断的判断与性质
二、导数与微分
1. 导数的定义与性质
2. 常用函数的导数计算方法
3. 高阶导数与隐函数求导
4. 微分的概念与应用
三、积分与定积分
1. 不定积分的概念与计算方法
2. 定积分的概念与性质
3. 牛顿—莱布尼茨公式与换元积分法
4. 定积分的应用:曲线长度、曲线面积、旋转体体积等
四、级数与一元函数级数
1. 数列与级数的概念与性质
2. 收敛级数与发散级数的判定方法
3. 常见级数的求和方法
4. 函数展开为级数与幂级数的应用
五、多元函数与偏导数
1. 多元函数的概念与性质
2. 偏导数的定义与计算方法
3. 雅可比矩阵与梯度的应用
4. 高阶偏导数与泰勒展开
六、多重积分与曲线曲面积分
1. 二重积分的概念与计算方法
2. 三重积分与累次积分的计算顺序
3. 曲线积分的概念与计算方法
4. 曲面积分的概念与计算方法
七、常微分方程与线性代数
1. 一阶常微分方程的基本概念与求解方法
2. 高阶线性常微分方程的解法
3. 线性代数的基本概念与性质
4. 线性方程组的解法与矩阵的应用
八、数学物理方程与概率统计
1. 波动方程与热传导方程的解法
2. 概率与统计的基本概念与性质
3. 随机变量与概率分布函数
4. 参数估计与假设检验
以上是大一高等数学中涉及的主要知识点纲要,通过学习这些内容,可以打下坚实的数学基础,为进一步深入学习数学打下基础。
希望本文对您有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高数解题技巧。
高数(上册)期末复习要点
高数(上册)期末复习要点
第一章:1、极限
2、连续(学会用定义证明一个函数连续,判断间断点类型)
第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续
2、求导法则(背)
3、求导公式也可以是微分公式
第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)
2、洛必达法则
3、泰勒公式拉格朗日中值定理
4、曲线凹凸性、极值(高中学过,不需要过多复习)
5、曲率公式曲率半径
第四章、第五章:积分
不定积分:1、两类换元法 2、分部积分法(注意加C )
定积分: 1、定义 2、反常积分
第六章:定积分的应用
主要有几类:极坐标、求做功、求面积、求体积、求弧长
第七章:向量问题不会有很难
1、方向余弦
2、向量积
3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面
4、空间旋转面(柱面)
高数解题技巧。
(高等数学、考研数学通用)
高数解题的四种思维定势
●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。
●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。
●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。
●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。
线性代数解题的八种思维定势
●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。
●第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。
●第三句话:若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE再说。
●第四句话:若要证明一组向量α1,α2,…,αS线性无关,先考虑用定义再说。
●第五句话:若已知AB=0,则将B的每列作为Ax=0的解来处理
●第六句话:若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。
●第七句话:若已知A的特征向量ξ0,则先用定义Aξ0=λ0ξ0处理一下再说。
●第八句话:若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。
概率解题的九种思维定势
●第一句话:如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式
●第二句话:若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli 试验,及其概率计算公式
●第三句话:若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发生概率是用全概率公式计算。
关键:寻找完备事件组
●第四句话:若题设中给出随机变量X ~ N 则马上联想到标准化 ~ N(0,1)来处理有关问题。
●第五句话:求二维随机变量(X,Y)的边缘分布密度的问题,应该马上联想到先画出使联合分布密度的区域,然后定出X的变化区间,再在该区间内画一条//y轴的直线,先与区域边界相交的为y的下限,后者为上限,而的求法类似。
●第六句话:欲求二维随机变量(X,Y)满足条件Y≥g(X)或(Y≤g(X))的概率,应该马上联想到二重积分的计算,其积分域D是由联合密度的平面区域及满足Y≥g(X)或(Y≤g(X))的区域的公共部分。
●第七句话:涉及n次试验某事件发生的次数X的数字特征的问题,马上要联想到对X作(0-1)分解。
即令
●第八句话:凡求解各概率分布已知的若干个独立随机变量组成的系统满足某种关系的概率(或已知概率求随机变量个数)的问题,马上联想到用中心极限定理处理。
●第九句话:若为总体X的一组简单随机样本,则凡是涉及到统计量的分布问题,一般联想到用卡方分布,t分布和F分布的定义进行讨论。
首先对极限的总结如下
极限的保号性很重要就是说在一定区间内函数的正负与极限一致
1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是
一般极限的一种)
2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么)
1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记
(x趋近无穷的时候还原成无穷小)
2 LHopital 法则(大题目有时候会有暗示要你使用这个方法)
首先他的使用有严格的使用前提!!!!!!
必须是X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件
(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)
必须是0比0 无穷大比无穷大!!!!!!!!!
当然还要注意分母不能为0
LHopital 法则分为3中情况
1 0比0 无穷比无穷时候直接用
2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了
3 0的0次方1的无穷次方无穷的0次方
对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)
3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)
E的x展开sina 展开cos 展开ln1+x展开
对题目简化有很好帮助
4面对无穷大比上无穷大形式的解决办法
取大头原则最大项除分子分母!!!!!!!!!!!
看上去复杂处理很简单!!!!!!!!!!
5无穷小于有界函数的处理办法
面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!
6夹逼定理(主要对付的是数列极限!)
这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)
8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)
可以使用待定系数法来拆分化简函数
9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化
10 2 个重要极限的应用。
这两个很重要!!!!!对第一个而言是X趋近0时候的sinx与x比值。
地2个就如果x趋近无穷大无穷小都有对有对应的形式
(地2个实际上是用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)
11 还有个方法,非常方便的方法
就是当趋近于无穷大时候
不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!
x的x次方快于x!快于指数函数快于幂数函数快于对数函数(画图也能看出速率的快慢)
当x趋近无穷的时候他们的比值的极限一眼就能看出来了
12 换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中
13假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的
14还有对付数列极限的一种方法,
就是当你面对题目实在是没有办法走投无路的时候可以考虑转化为定积分。
一般是从0到1的形式。
15单调有界的性质
对付递推数列时候使用证明单调性!!!!!!
16直接使用求导数的定义来求极限,
(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,看见了有特别注意)
(当题目中告诉你F(0)=0时候f(0)导数=0的时候就是暗示你一定要用导数定义!!!!)。