【中小学资料】七年级数学上册 期中测试卷(一)(含解析)(新版)华东师大版

合集下载

2023-2024学年华东师大新版七年级上册数学期中复习试卷(含答案)

2023-2024学年华东师大新版七年级上册数学期中复习试卷(含答案)

2023-2024学年华东师大新版七年级上册数学期中复习试卷一.选择题(共10小题,满分30分,每小题3分)1.已知a,b,c三个数在数轴上对应点的位置如图所示,下列几个判断:①a<b<c;②﹣a<b;③a+b>0;④c﹣a>0中,正确的个数是( )A.1B.2C.3D.42.若|a﹣1|与|b﹣2|互为相反数,则a+b的值为( )A.3B.﹣3C.0D.3或﹣33.用科学记数法表示91800000,正确的是( )A.918×105B.918×107C.9.18×105D.9.18×1074.下列说法中正确的是( )A.单项式5x3y2的系数是5,次数是3B.是二次单项式C.单项式﹣13ab的系数是13,次数是2D.多项式2x2﹣5的常数项是55.如图中绕直线旋转一周能得到圆锥的是( )A.B.C.D.6.如果整式x m﹣1+5x﹣3是关于x的三次三项式,那么m的值为( )A.4B.3C.2D.17.由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则搭成该几何体的小正方体的个数最多为( )A.7个B.8个C.9个D.10个8.如图是一个正方体的展开图,若该正方体相对两个面上的数互为相反数,则A代表的数是( )A.﹣4B.2C.﹣3D.39.把黑色梅花按如图所示的规律拼图案,其中第①个图案有4朵梅花,第②个图案有8朵梅花,第③个图案有13朵梅花,…,按此规律排列下去,第⑥个图案中黑色梅花的朵数是( )A.25B.26C.34D.3510.根据如图所示的程序计算,若输入的x值为5时,输出的值为﹣3,则输入值为﹣1时,输出值为( )A.﹣1B.1C.3D.4二.填空题(共10小题,满分30分,每小题3分)11.多项式7a2b﹣a2b2﹣6ab是 次 项式.12.若﹣1<a<0,则a、a2、的大小关系用“<”连接是 .13.已知2x+y=1000,则代数式2021﹣4x﹣2y的值为 .14.已知(m﹣2)xy|m|+1是关于x,y的四次单项式,则m的值是 .15.在﹣,1,0,8.9,﹣6,11,,﹣3.2,﹣9这些有理数中,正数有 个,整数有 个,非正数有 个,非负整数有 个.16.某工程预算花费约为108元,实际花费约为2.3×1010元,预算花费约是实际花费的倍数是 .(用科学记数法表示,保留2位有效数字)17.小刚上学步行速度为5千米/时,若小刚家到学校的路程为s千米,则他上学需走 小时.18.在化简3(x﹣2y)﹣3x=3x﹣6y﹣3x的过程中,用到的运算律是 .19.若单项式2x m y3与单项式﹣3x2y n是同类项,则m= ,n= .20.一个圆锥的主视图和左视图是两个全等正三角形,则这个圆锥的侧面展开图的圆心角等于 .三.解答题(共7小题,满分60分)21.计算:5.2×1﹣4.8×125%+1÷0.8.22.计算(1)5m﹣2(4m+5n)+3(3m﹣4n);(2)﹣3a+[4b﹣(a﹣3b)].23.一个两位数个位上的数为1,十位上数为x,把1与x对调,新两位数比原两位数小27,则x为多少?24.定义:任意两个数a,b,按规则c=ab+a+b扩充得到一个新数c,称所得的新数c为数a,b的“对称数”.比如,若a=3,b=5,则a,b的“对称数”c=3×5+3+5=23.(1)若a=﹣m,b=m﹣4,求a,b的“对称数”c(用含m的式子表示),并证明c≤0;(2)若a=n2﹣1(n≠0),且a,b的“对称数”c=n3+4n2﹣1;求数b(用含n的式子表示);(3)a,b为正数,且均为奇数.若c=2019,则a+b= .25.化简:写出必要的计算步骤和解答过程.(1)3a2﹣2a+4a2﹣7a(2)2x2﹣3xy+y2﹣2xy﹣2x2+5xy﹣2y+126.先化简,再求值:5x2y﹣[3xy2﹣(4xy2﹣7x2y)﹣2x2y],其中x=2,y=﹣1.27.已知|a|=5,|b|=3,且a>0,b<0,求2a﹣b+2的值.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:由图可知:a<b<c,故①正确;∵a<b<0,∴b<0<﹣a,故②不正确;a+b<0,故③不正确;∵a<0,c>0,∴c﹣a>0,故④正确,∴正确的由①④,故选:B.2.解:∵|a﹣1|与|b﹣2|互为相反数,∴|a﹣1|+|b﹣2|=0,又∵|a﹣1|≥0,|b﹣2|≥0,∴a﹣1=0,b﹣2=0,解得a=1,b=2,a+b=1+2=3.故选:A.3.解:91 800 000=9.18×107.故选:D.4.解:A、单项式5x3y2的系数是5,次数是5,故此选项错误;B、单项式﹣xy是二次单项式,故此选项正确;C、单项式﹣13ab的系数是﹣13,次数是2,故此选项错误;D、多项式2x2﹣5的常数项是﹣5,故此选项错误.故选:B.5.解:A、图形绕直线l旋转一周后,不能能得到圆锥,故本选项不符合题意;B、图形绕直线l旋转一周后,得到的是一个球体,故本选项不符合题意;C、图形绕直线l旋转一周后,得到的是一个圆柱,故本选项不符合题意;D、图形绕直线l旋转一周后,能得到圆锥,故本选项符合题意;故选:D.6.解:∵整式x m﹣1+5x﹣3是关于x的三次三项式,∴m﹣1=3,解得:m=4.故选:A.7.解:根据题意得:,则搭成该几何体的小正方体最多是1+1+1+2+2=7(个).故选:A.8.解:由题意得:A与3相对,3的相反数是﹣3.∴A代表﹣3,故选:C.9.解:∵第①个图形有1+1+2=4朵梅花,第②个图形有2+1+2+3=8朵梅花,第③个图形有3+1+2+3+4=13朵梅花,…∴第n个图形中共有梅花的朵数是n+1+2+3+4+…+n+(n+1)=n+,则第⑥个图形中共有梅花的朵数是6+=34.故选:C.10.解:∵输入的x值为5时,输出的值为﹣3,∴=﹣3.解得b=1.当输入值为﹣1时,y=﹣2×(﹣1)+1=2+1=3.故选:C.二.填空题(共10小题,满分30分,每小题3分)11.解:根据多项式及其次数的定义,7a2b﹣a2b2﹣6ab含三项,次数为4.∴多项式7a2b﹣a2b2﹣6ab是四次三项式.故答案为:四、三.12.解:∵﹣1<a<0,∴令a=﹣,∴a2=,=﹣2.∵﹣2<﹣<,∴<a<a2.故答案为:<a<a2.13.解:∵2x+y=1000,∴2021﹣4x﹣2y=2021﹣2(2x+y)=2021﹣2×1000=2021﹣2000=21,故答案为:21.14.解:(m﹣2)xy|m|+1是关于x,y的四次单项式,∴,解得m=﹣2.故答案为:﹣2.15.解:正数有:1,8.9,11,,共4个;整数有:1,0,﹣6,11,﹣9,共5个;非正数有:,0,﹣6,﹣3.2,﹣9,共5个;非负整数有:1,0,11,共3个.故答案为:4;5;5;3.16.解:∵预算花费约为108元,实际花费约为2.3×1010元,∴预算花费约是实际花费的倍数是:108÷(2.3×1010)≈4.3×10﹣3.故答案为:4.3×10﹣3.17.解:小刚上学步行速度为5千米/时,若小刚家到学校的路程为s千米,则他上学需走小时.故答案为:.18.解:在化简3(x﹣2y)﹣3x=3x﹣6y﹣3x的过程中,用到的运算律是乘法分配律,故答案为:乘法分配律19.解:∵单项式2x m y3与单项式﹣3x2y n是同类项,∴m=2,n=3,故答案为:2,3.20.解:∵左视图是等边三角形,∴底面直径=圆锥的母线.故设底面圆的半径为r,则圆锥的母线长为2r,底面周长=2πr,侧面展开图是个扇形,弧长=2πr=,所以n=180°.故答案为:180°.三.解答题(共7小题,满分60分)21.解:原式=5.2×﹣4.8×+1×=×(5.2﹣4.8+1)=×1.4=.22.解:(1)原式=5m﹣8m﹣10n+9m﹣12n=6m﹣22n;(2)原式=﹣3a+4b﹣(a﹣3b)=﹣3a+4b﹣a+3b=﹣4a+7b.23.解:根据题意列方程得:10x+1﹣27=10+x,解得:x=4.答:x为4.24.解:(1)∵当a=﹣m,b=m﹣4时,a,b的“对称数”c=﹣m(m﹣4)﹣m+m﹣4=﹣m2+4m﹣4=﹣(m2﹣4m+4)=﹣(m ﹣2)2,又∵(m﹣2)2≥0,∴﹣(m﹣2)2≤0,即c≤0;(2)由题意得,b(n2﹣1)+(n2﹣1)+b=bn2﹣b+n2﹣1+b=(b+1)n2﹣1=n3+4n2﹣1=(n+4)n2﹣1∴b+1=n+4,解得,b=n+3;(3)由题意得,c=ab+a+b=a(b+1)+b=2019,∴a(b+1)+b+1=(b+1)(a+1)=2020=2×2×5×101,∵a,b为正数,且均为奇数,∴b+1、a+1均为正偶数,当a+1=2时,b+1=2×5×101=1010,∴此时a=1009,b=1,a+b=1009+1=1010,当a+1=2×5=10时,b+1=2×101=202,∴此时a=10﹣1=9,b=202﹣1=201,a+b=9+201=210,故答案为:1010,210.25.解:(1)原式=(3+4)a2+(﹣2﹣7)a=7a2﹣9a;(2)原式=(2﹣2)x2+y2+(5﹣2﹣3)xy﹣2y+1=y2﹣2y+1.26.解:5x2y﹣[3xy2﹣(4xy2﹣7x2y)﹣2x2y]=5x2y﹣(3xy2﹣4xy2+7x2y﹣2x2y)=5x2y﹣3xy2+4xy2﹣7x2y+2x2y=xy2,当x=2,y=﹣1时,原式=2×(﹣1)2=2.27.解:∵|a|=5,|b|=3,∴a=±5,b=±3,又∵a>0,b<0,∴a=5,b=﹣3,∴2a﹣b+2=10+3+2=15.。

2020-2021学年华东师大新版七年级上册数学期中练习试卷(有答案)

2020-2021学年华东师大新版七年级上册数学期中练习试卷(有答案)

2020-2021学年华东师大新版七年级上册数学期中练习试卷一.选择题(共10小题,满分40分,每小题4分)1.﹣4的倒数是()A.B.﹣C.4D.﹣42.拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省3240万斤,这些粮食可供9万人吃一年.“3240万”这个数据用科学记数法表示为()A.0.324×108B.32.4×106C.3.24×107D.324×1083.若x表示某件物品的原价,则代数式(1+10%)x表示的意义是()A.该物品打九折后的价格B.该物品价格上涨10%后的售价C.该物品价格下降10%后的售价D.该物品价格上涨10%时上涨的价格4.在实数3,,0,﹣2中,最大的数为()A.3B.C.0D.﹣25.用四舍五入法把3.7963精确到百分位得到的近似数是()A.3.79B.3.800C.3.8D.3.806.下列各数:(﹣3)2、0、、、(﹣1)2019、﹣22、﹣(﹣8)、中,负数有()A.2个B.3个C.4个D.5个7.下列关于倒数说法正确的个数有()①1的倒数是它本身;②除以一个不为0的数,等于乘以这个数的倒数;③a是任何数,则a的倒数是;④一种商品先提价,然后再降价,现在比原价高;⑤假分数的倒数一定小于1.A.1个B.2个C.3个D.4个8.某件夏装原价a元,因过季打折,以(a﹣20)元出售,则下列说法中,能正确表达该夏装出售价格的是()A.原价打6折后再减去20元B.原价打4折后再减去20元C.原价减去20元后再打6折D.原价减去20元后再打4折9.有理数a,b在数轴上对应点的位置如图所示,下列选项正确的是()A.a+b>0B.ab>0C.a<﹣b D.b﹣a>010.若0<a<1,则a,,a2从小到大排列正确的是()A.a2<a<B.a<<a2C.<a<a2D.a<a2<二.填空题(共6小题,满分24分,每小题4分)11.数a的位置如图,化简|a|+|a+4|=.12.把0.75:2化成最简单的整数比是.13.在“手拉手活动”中,小明为捐助某贫困山区的一名同学,现已存款300元,他计划今后每月存款20元,n月后存款总数是元(用含n的代数式表示).14.已知a2+2a=5,则2a2+4a﹣5的值为.15.在数轴上,若点A和点B表示的数互为相反数,点A在点B的左侧,且它们之间的距离是4个单位长度,那么点A和点B分别表示的数为.16.若a是最大的负整数,b是绝对值最小的有理数,数c在数轴上对应的点与原点的距离为1,则a+b2+|c|=.三.解答题(共9小题,满分86分)17.(6分)(1)如图中,这两个圈的重叠部分表示什么数的集合?(2)将下列各数填入它所在的数集的圈里.2019,﹣15%,﹣0.618,7,﹣9,,0,3014,﹣72.18.(6分)有理数:,4,﹣1,﹣5,0,3,﹣2,1.(1)将上面各数在数轴(图①)上表示出来,并把这些数用“<”连接;(2)请将以上各数填到相应集合的圈内(图②)19.(24分)计算:(1)|﹣|÷(﹣)﹣×(﹣2)3;(2)(﹣+)÷(﹣).20.(6分)已知:A+B=﹣3x2﹣5x﹣1,A﹣C=﹣2x2+3x﹣5.(1)求B+C;(2)当x=1时,求B+C的值.21.(8分)小明练习跳绳.以1分钟跳165个为目标,并把20次1分钟跳绳的数量记录如表(超过165个的部分记为“+”,少于165个的部分记为“﹣”)与目标数量的差异(单位:个)﹣11﹣6﹣2+4+10次数45362(1)小明在这20次跳绳练习中,1分钟最多跳多少个?(2)小明在这20次跳绳练习中,1分钟跳绳个数最多的一次比最少的一次多几个?(3)小明在这20次跳绳练习中,累计跳绳多少个?22.(8分)成都市民打车出行常用交通工具为出租车和滴滴快车.该市两种车的收费标准如下:出租车:2千米以内9元;超过2千米的部分:2元/千米.滴滴快车:里程费:1.6元/千米;时长费:18元/小时;远途费:0.8元/千米.(注:滴滴快车的收费由里程费、时长费、远途费三部分组成,其中里程费按行车的实际里程计算;时长费按照行车的实际时间计算;远途费的收取方式为:行车不超过8千米,不收远途费,超过8千米的,超过部分每千米加收0.8元).假设打车的平均速度为30千米/小时.(1)小明家到学校4千米,乘坐出租车需要多少元?(2)设乘车路程为x(x>2)千米,分别写出出租车和滴滴快车的应收费用(用含x的代数式表示)(3)小方和爸爸从家去环球中心(家到环球中心的距离大于2千米),乘坐滴滴快车比乘坐出租车节约2.4元,求小方家到环球中心的距离.23.(8分)已知有理数a、b、c在数轴上对应点的位置如图所示,化简:|a+c|+|b﹣a|+|c ﹣b|.24.(10分)如图,点M是AB的中点,点P在MB上.分别以AP,PB为边,作正方形APCD和正方形PBEF,连接MD和ME.设AP=a,BP=b,且a+b=10,ab=15.(1)求(a﹣b)2的值;(2)求图中阴影部分的面积.25.(10分)两个完全相同的长方形ABCD、EFGH,如图所示放置在数轴上.(1)长方形ABCD的面积是.(2)若点P在线段AF上,且PE+PF=10,求点P在数轴上表示的数.(3)若长方形ABCD、EFGH分别以每秒1个单位长度、3个单位长度沿数轴正方向移动.设两个长方形重叠部分的面积为S,移动时间为t.①整个运动过程中,S的最大值是,持续时间是秒.②当S是长方形ABCD面积一半时,求t的值.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:﹣4的倒数是﹣.故选:B.2.解:将3240万用科学记数法表示为:3.24×107.故选:C.3.解:若x表示某件物品的原价,则代数式(1+10%)x表示的意义是该物品价格上涨10%后的售价.故选:B.4.解:∵﹣2是负数,∴﹣2<0,∵0<<3,∴﹣2<0<<3,∴最大的数是3.故选:A.5.解:3.7963≈3.80(精确到百分位),故选:D.6.解:(﹣3)2=9,0,﹣(﹣)2=﹣,,(﹣1)2019=﹣1,﹣22=﹣4,﹣(﹣8)=8,﹣|﹣|=﹣,则负数有4个,故选:C.7.解:①1的倒数是它本身,正确;②除以一个不为0的数,等于乘以这个数的倒数,正确;③a≠0,则a的倒数是,故原说法错误;④一种商品先提价,然后再降价,现在比原价低,故原说法错误;⑤假分数的倒数一定小于或等于1.故原说法错误;所以,正确的说法有2个,故选:B.8.解:A、原价打6折后再减去20元时售价为(a﹣20)元,符合题意;B、原价打4折后再减去20元时售价为(a﹣20)元,不符合题意;C、原价减去20元后再打6折时售价为(a﹣20)元,不符合题意;D、原价减去20元后再打4折时售价为(a﹣20)元,不符合题意.故选:A.9.解:由有理数a,b在数轴上的位置可知,b<﹣1<0<a<1,且|a|<|b|,因此a+b<0,故A不符合题意;ab<0,故B不符合题意;a+b<0,即a<﹣b,故C符合题意;b<a,即b﹣a<0,故D不符合题意;故选:C.10.解:∵0<a<1,∴设a=,=2,a2=,∵<<2,∴a2<a<.故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:根据数轴得:﹣1<a<0,∴a<0,a+4>0,则原式=﹣a+a+4=4.故答案为:4.12.解:0.75:2=75:200=(75÷25):(200÷25)=3:8.故答案为:3:8.13.解:由题意可知,n月后存款总数是(300+20n)元.故答案为:(300+20n).14.解:∵a2+2a=5,∴2a2+4a﹣5=2(a2+2a)﹣5=2×5﹣5=5.故答案为:5.15.解:4÷2=2,则点A和点B分别表示的数为﹣2和2.故答案为:﹣2和2.16.解:根据题意得:a=﹣1,b=0,c=1或﹣1,即|c|=1,则原式=﹣1+0+1=0.故答案为:0.三.解答题(共9小题,满分86分)17.解:(1)如图中,这两个圈的重叠部分表示负分数的集合;(2)如图所示:18.解:(1),﹣5<﹣2<﹣1<0<<1<34;(2)如图所示:.19.解:(1)|﹣|÷(﹣)﹣×(﹣2)3=÷(﹣)﹣×(﹣8)=﹣2+1=﹣1.(2)(﹣+)÷(﹣)=×(﹣24)﹣×(﹣24)+×(﹣24)=﹣16+18﹣4=﹣2.20.解:(1)∵B+C=(A+B)﹣(A﹣C),∴B+C=(﹣3x2﹣5x﹣1)﹣(﹣2x2+3x﹣5)=﹣3x2﹣5x﹣1+2x2﹣3x+5=﹣x2﹣8x+4;(2)当x=1时,B+C=﹣1﹣8+4=﹣5.21.解:(1)跳绳最多的一次为:165+10=175(个)答:小明在这20次跳绳练习中,1分钟最多跳175个.(2)(+10)﹣(﹣11)=10+11=21(个)答:小明在这20次跳绳练习中,1分钟跳绳个数最多的一次比最少的一次多21个.(3)165×20﹣11×4﹣6×5﹣2×3+4×6+10×2=3264(个)答:小明在这20次跳绳练习中,累计跳绳3264个.22.解:(1)9+(4﹣2)×2=13(元),答:小明家到学校4千米,乘坐出租车需要13元.(2)设乘车路程为x(x>2)千米,乘车的费用y元,则,y=9+2(x﹣2)=2x+5 (x>2),出租车①当2<x≤8时,y=1.6x+18×=2.2x,滴滴快车②当x>8时,y=1.6x+18×+0.8(x﹣8)=3x﹣6.4,滴滴快车∴y滴滴快车=,答:乘车路程为x(x>2)千米,乘车费用为:y出租车=2x+5 (x>2),y滴滴快车=;(3)若2<x≤8时,则2x+5﹣2.2x=2.4,解得,x=13(不合题意舍去),若x>8时,则,2x+5﹣(3x﹣6.4)=2.4,解得,x=9,答:小方家到环球中心的距离为9千米.23.∵a+c<0,b﹣a>0,c﹣b>0.∴|a+c|+|b﹣a|+|c﹣b|=﹣(a+c)+(b﹣a)+(c﹣b)=﹣a﹣c+b﹣a+c﹣b=﹣2a.24.解:(1)∵a+b=10,ab=15,∴(a﹣b)2=(a+b)2﹣4ab=102﹣4×15=40;(2)S阴影部分=S正方形APCD+S正方形BEFP﹣S△AMD﹣S△MBE==a2+b2﹣•(a+b)===100﹣30﹣=100﹣30﹣25=45.25.解:(1)由图形可得:EF=﹣4+10=6,AB=10﹣2=8,∵两个完全相同的长方形ABCD、EFGH,∴AD=EF=6,∴长方形ABCD的面积是6×8=48;故答案为:48;(2)设点P在数轴上表示的数是x,则PE=x﹣(﹣10)=x+10,PF=x﹣(﹣4)=x+4,因为PE+PF=10,所以(x+10)+(x+4)=10,解得x=﹣2,答:点P在数轴上表示的数是﹣2;(3)①整个运动过程中,S的最大值是6×6=36,当点E与A重合时,2+t=﹣10+3t,解得:t=6,当点F与B重合时,10+t=﹣4+3t,解得:t=7,∴7﹣6=1,∴整个运动过程中,S的最大值是36,持续时间是1秒;故答案为:36;1;②由题意知移动t秒后,点E、F、A、B在数轴上分别表示的数是﹣10+3t、﹣4+3t、2+t、10+t,情况一:当点A在E、F之间时,AF=(﹣4+3t)﹣(2+t)=2t﹣6,由题意知AF•AD=S=48×=24,所以6×(2t﹣6)=24,解得t=5,情况二:当点B在E、F之间时,BE=(10+t)﹣(﹣10+3t)=20﹣2t,由题意知BE•BC=S=48×=24,所以6×(20﹣2t)=24,解得t=8,综上所述,当S是长方形ABCD面积一半时,t=5或8.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期中测试卷(一)总分120分一.选择题(共9小题,每题3分)1.下列各数中,负数是()A.﹣(1﹣2)B.(﹣1)﹣1 C (﹣1)n D.1﹣22.在数轴上表示两个数的距离为3个单位长度的一对数是()A.﹣1和1 B.﹣1和2 C.﹣1和3 D.﹣1和43.在数轴上表示实数﹣1和7这两点间的距离为()个单位长度.A.6 B.8 C.一6 D.﹣84.如图,数轴上的点A所表示的是实数a,则点A到原点的距离是()A.a B.﹣a C.±a D.﹣|a|5.|﹣2|的相反数是()A.﹣2 B.﹣C.D.26.在﹣,0,﹣2,,1这五个数中,最小的数为()A.0 B.﹣ C ﹣2 D.7.小明家冰箱冷冻室的温度为﹣5℃,调高4℃后的温度为()A.4℃B.9℃C.﹣1℃D.﹣9℃8.计算|﹣|﹣的结果是()A.﹣B.C.﹣1 D.19.计算1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是()A.﹣1005 B.﹣2010 C.0D.﹣1二.填空题(共6小题,每题3分)10.﹣(﹣)的相反数与﹣的倒数的积为_________.11.若a与b互为倒数,则3﹣5ab=_________.12.若|m+3|+(n﹣2)2=0,则(m+n)2010的值为_________.13.根据相关部门统计,2014年我国共有9390000名学生参加高考,9390000用科学记数法表示为_________.14.32×3.14+3×(﹣9.42)=_________.15.(为了解体育测试中篮球项目的得分情况(个人得分都是整数),抽取7位同学的成绩,若用四舍五入取近似值的方法将平均分精确到一位小数,该7位同学的平均分为9.4分,若精确到两位小数,则该7位同学的平均分为_________分.三.解答题(共12小题)16.计算:(6分)(1)﹣0.1252009×82010;(2)﹣32﹣|(﹣5)|×(﹣)2×(﹣18)÷|﹣(﹣3)2|.17.(6分)计算:(1﹣)×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)×(1﹣)18.(6分)计算:.19.先化简,再求值:(6分)(1)(6a﹣1)﹣(2﹣5a)﹣,其中a=2;(2)(3a2﹣ab+7)﹣(5ab﹣4a2+7),其中a=2,b=.20.(6分)已知a﹣b=6,ab=﹣2,求3(ab+a﹣2b)﹣5(b﹣2a)+2(ab﹣a)的值.21.(6分)已知|a+1|与|2a+b|互为相反数,试求整式3(a﹣b)﹣5(a﹣b)2+3(a+b)+(a﹣b)2﹣7(a+b)2﹣3(a+b)的值.22(6分).若多项式2x n﹣1﹣x n+3x m+1是六次二项式,试求2(m﹣n2)﹣3(n﹣m2)﹣(2m﹣n)+4(2m﹣n)的值.23.(6分)在修我市解放路的BRT(快速公交)时,需要对部分建筑进行拆迁,市政府成立了拆迁工作组,他们步行去做拆迁户主的思想工作;如果向南记为负,向北记为正;以下是他们一天中行程(单位:km):出发点,﹣0.7,+2.7,﹣1.3,+0.3,﹣1.4,+2.6,拆迁点;(1)工作组最后到达的地方在出发点的哪个方向?距出发点多远?(2)在一天的工作中,最远处离出发点有多远?(3)如果平均每个拆迁地址(出发点处没有拆迁)要做1小时的思想工作,他们步行的速度为2km/h,工作组早上九点出发,做完工作时是下午几点?24.(6分)如图是某种细胞分裂示意图,这种细胞每过30分钟便由1个分裂成2个.根据此规律可得:(1)这样的一个细胞经过第四个30分钟后可分裂成_________个细胞;(2)这样的一个细胞经过3小时后可分裂成_________个细胞;(3)这样的一个细胞经过n(n为正整数)小时后可分裂成_________个细胞.25.(7分)观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想=_________;(2)证明你猜想的结论;(3)求和:+++…+.26.(7分)如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r 米,长方形长为a米,宽为b米.(1)分别用代数式表示草地和空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留到整数).27.(7分)在数学活动中,小明为了求的值(结果用n表示).设计如图所示的几何图形.(1)请你利用这个几何图形求的值为_________.(2)请你利用下图,再设计一个能求的值的几何图形.新华师版七年级上期中测试卷(一)参考答案与试题解析一.选择题(共9小题)1.下列各数中,负数是()A.﹣(1﹣2)B.(﹣1)﹣1C.(﹣1)n D.1﹣2考点:正数和负数;有理数的乘方;负整数指数幂.专题:常规题型.分析:将各选项化简得:﹣(1﹣2)=1;(﹣1)﹣1=﹣1;当n为偶数,(﹣1)n=1,当n为奇数,(﹣1)n=﹣1;1﹣2=1,再根据正数与负数的概念即可判断.解答:解:A、﹣(1﹣2)=1,为正数,故本选项错误;B、(﹣1)﹣1=﹣1,为负数,故本选项正确;C、当n为偶数,(﹣1)n=1,当n为奇数,(﹣1)n=﹣1,故本选项错误;D、1﹣2=1,为正数,故本选项错误.故选B.点评:本题考查了正数与负数的知识,属于基础题,判断一个数是正数还是负数,要把它化简成最后形式再判断.2.在数轴上表示两个数的距离为3个单位长度的一对数是()A.﹣1和1 B.﹣1和2 C.﹣1和3 D.﹣1和4考点:数轴.专题:探究型.分析:根据两点间距离的定义进行解答即可.解答:解:A、﹣1和1之间的距离为:|﹣1﹣1|=2,故本选项错误;B、﹣1和2之间的距离为:|﹣1﹣2|=3,故本选项正确;C、﹣1和3之间的距离为:|﹣1﹣3|=4,故本选项错误;D、﹣1和4之间的距离为:|﹣1﹣4|=5,故本选项错误.故选B.点评:本题考查的是数轴上两点之间的距离,即数轴上两点之间的距离等于两点所表示数的差的绝对值.3.在数轴上表示实数﹣1和7这两点间的距离为()个单位长度.A.6 B.8 C.一6 D.﹣8考点:数轴.专题:计算题.分析:根据数轴上的点与实数的对应关系利用数形结合的思想,用较大的数减去较小的数即可求解.解答:解:∵7>﹣1,∴在数轴上表示实数﹣1和7这两点间的距离为=7﹣(﹣1)=8.故选B.点评:本题考查的知识点为:求数轴上两点间的距离就让两点中对应的较大的数减去较小的数.4.如图,数轴上的点A所表示的是实数a,则点A到原点的距离是()A.a B.﹣a C.±a D.﹣|a|考点:数轴;绝对值.分析:本题通过观察数轴,判断出A点表示的数的正负性,再根据距离等于坐标的绝对值,化简,即可得出答案.解答:解:依题意得:A到原点的距离为|a|,∵a<0,∴|a|=﹣a,∴A到原点的距离为﹣a.故选B.点评:本题考查了数轴的性质及绝对值的定义,能够根据数轴判断出数的符号,再进一步确定距离.5.|﹣2|的相反数是()A.﹣2 B.﹣C.D.2考点:绝对值;相反数.分析:相反数的意义:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.解答:解:∵|﹣2|=2,∴2的相反数是﹣2.故选A.点评:本题考查了相反数的意义及绝对值的性质:学生易把相反数的意义与倒数的意义混淆.6.在﹣,0,﹣2,,1这五个数中,最小的数为()A.0 B.﹣C.﹣2 D.考点:有理数大小比较.专题:数形结合.分析:用数轴法,将各选项数字标于数轴之上即可解本题.解答:解:画一个数轴,将A=0、B=﹣、C=﹣2、D=,E=1标于数轴之上,可得:∵C点位于数轴最左侧,是最小的数故选:C.点评:本题考查了数轴法比较有理数大小的方法,牢记数轴法是解题的关键.7.小明家冰箱冷冻室的温度为﹣5℃,调高4℃后的温度为()A.4℃B.9℃C.﹣1℃D.﹣9℃考点:有理数的加法.专题:计算题.分析:原来的温度为﹣5℃,调高4℃,实际就是转换成有理数的加法运算.解答:解:﹣5+4=﹣1故选C.点评:本题主要考查从实际问题抽象出有理数的加法运算.8.计算|﹣|﹣的结果是()A.﹣B.C.﹣1 D.1考点:有理数的减法;绝对值.专题:计算题.分析:根据绝对值的性质去掉绝对值符号,然后根据有理数的减法运算,减去一个数等于加上这个数的相反数进行计算即可得解.解答:解:|﹣|﹣=﹣=﹣.故选A.点评:本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.9.计算1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是()A.﹣1005 B.﹣2010 C.0 D.﹣1考点:有理数的加减混合运算.专题:规律型.分析:由题意,这从1到2010一共可分为1005组,每组的结果都是1,由此不难得出答案.解答:解:这从1到2010一共2010个数,相邻两个数之差都为﹣1,所以1﹣2+3﹣4+5﹣6+7﹣8+…+2009﹣2010的结果是﹣1005.故选A.点评:此题主要考查有理数的加减混合运算,认真审题,找出规律,是解决此类问题的关键所在.二.填空题(共6小题)10.﹣(﹣)的相反数与﹣的倒数的积为.考点:有理数的乘法;相反数;倒数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积为1的两个数互为倒数,可得一个数的倒数,根据有理数的乘法,可得答案.解答:解:﹣(﹣)的相反数是﹣,﹣的倒数是﹣,﹣(﹣)的相反数与﹣的倒数的积是﹣×(﹣)=,故答案为:.点评:本题考查了有理数的乘法,同号得正,异号得负,并把绝对值相乘.11.若a与b互为倒数,则3﹣5ab=﹣2.考点:倒数.专题:计算题.分析:根据互为倒数的两个数的积为1,直接求出ab的值,从而得到3﹣5ab的值.解答:解:∵ab=1,∴3﹣5ab=3﹣5×1=﹣2.故答案为﹣2.点评:本题考查了利用倒数求代数式的值,明确互为倒数的两个数的积为1是解题的关键.12.若|m+3|+(n﹣2)2=0,则(m+n)2010的值为1.考点:非负数的性质:偶次方;非负数的性质:绝对值;有理数的乘方.专题:计算题.分析:根据非负数的性质,可求出x、y的值,然后将代数式化简再代值计算.解答:解:∵|m+3|+(n﹣2)2=0,∴m=﹣3,y=2;∴原式=(﹣3+2)2010=1故答案为1.点评:本题考查了非负数的性质以及有理数的乘方,几个非负数的何为0,这几个数都为0.13.根据相关部门统计,2014年我国共有9390000名学生参加高考,9390000用科学记数法表示为9.39×106.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:9390000用科学记数法表示为9.39×106,故答案为:9.39×106.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.32×3.14+3×(﹣9.42)=0.考点:有理数的混合运算.分析:根据32×3.14+3×(﹣9.42)=3×9.42+3×(﹣9.42)即可求解.解答:解:原式=3×9.42+3×(﹣9.42)=3×=3×0=0.故答案是:0.点评:本题考查了有理数的混合运算,理解运算顺序是关键.15.为了解体育测试中篮球项目的得分情况(个人得分都是整数),抽取7位同学的成绩,若用四舍五入取近似值的方法将平均分精确到一位小数,该7位同学的平均分为9.4分,若精确到两位小数,则该7位同学的平均分为9.43分.考点:近似数和有效数字.分析:应根据得9.4分得到7位裁判的准确打分和,除以7,再保留2位小数即可.解答:解:用四舍五入取近似值的方法精确到一位小数能得到9.4的数值范围是:(大于等于9.35和小于9.45之间)∴9个裁判去掉最高和最低得分后,实际取值就是7个人的分数.∴该运动员的有效总得分在大于或等于9.35×7=65.45分和小于9.45×7=66.15之间.∵每个裁判给的分数都是整数,∴得分总和也是整数,在65.45和66.15之间只有66是整数,∴该运动员的有效总得分是66分.∴得分为:66÷7≈9.4286,精确到两位小数就是9.43.点评:本题考查了近似数和有效数字,得到得分为一位小数的准确分值的范围,及得到7位裁判的准确打分和是难点.三.解答题(共12小题)16.计算:(1)﹣0.1252009×82010;(2)﹣32﹣|(﹣5)|×(﹣)2×(﹣18)÷|﹣(﹣3)2|.考点:有理数的混合运算.专题:计算题.分析:(1)原式变形后,利用积的乘方逆运算法则计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.解答:解:(1)原式=﹣(0.125×8)2009×8=﹣8;(2)原式=﹣32﹣5××(﹣18)÷9=﹣32+=﹣30.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.计算:(1﹣)×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)×(1﹣)考点:有理数的混合运算.分析:先算减法,再算乘法,分子与分母错位约分得出答案即可.解答:解:原式=××××…××=.点评:此题考查有理数的混合运算,掌握运算顺序与计算的方法是解决问题的关键.18.计算:.考点:有理数的混合运算.分析:利用乘法分配律计算即可.解答:解:原式=10×(﹣18)﹣×(﹣18)=﹣180+=﹣179.点评:此题考查有理数的混合运算,掌握运算方法和运算定律,正确判定运算符号计算即可.19.先化简,再求值:(1)(6a﹣1)﹣(2﹣5a)﹣,其中a=2;(2)(3a2﹣ab+7)﹣(5ab﹣4a2+7),其中a=2,b=.考点:整式的加减—化简求值.分析:(1)根据去括号的法则,可去掉括号,根据合并同类项,可化简整式,根据代数式求值,可得答案;(2)根据去括号的法则,可去掉括号,根据合并同类项,可化简整式,根据代数式求值,可得答案.解答:解:(1)(6a﹣1)﹣(2﹣5a)﹣=6a﹣1﹣2+5a+(1﹣a)=6a﹣1﹣2+5a+1﹣a=10a﹣2,把a=2代入原式,得10a﹣2=10×2﹣2=18;(2)(3a2﹣ab+7)﹣(5ab﹣4a2+7)=3a2﹣ab+7﹣5ab+4a2﹣7=7a2﹣6ab,把a=2,b=代入原式,得7a2﹣6ab=7×2﹣6×2×=14﹣4=10.,点评:本题考查了整式的化简求值,注意去括号的法则:括号前是正号去掉括号不变号,括号前是负号去掉括号要变号.20.已知a﹣b=6,ab=﹣2,求3(ab+a﹣2b)﹣5(b﹣2a)+2(ab﹣a)的值.考点:整式的加减—化简求值.分析:首先利用整式的混合运算法则整理进而将已知代入求出即可.解答:解:∵a﹣b=6,ab=﹣2,∴3(ab+a﹣2b)﹣5(b﹣2a)+2(ab﹣a)=3ab+3a﹣6b﹣5b+10a+2ab﹣2a=5ab+11a﹣11b=5ab+11(a﹣b)=﹣10+11×6=56.点评:此题主要考查了整式的加减运算,正确把握运算法则是解题关键.21.已知|a+1|与|2a+b|互为相反数,试求整式3(a﹣b)﹣5(a﹣b)2+3(a+b)+(a﹣b)2﹣7(a+b)2﹣3(a+b)的值.考点:整式的加减—化简求值;非负数的性质:绝对值.分析:由|a+1|与|2a+b|互为相反数,可得|a+1|+|2a+b|=0,因为|a+1|≥0,|2a+b|≥0,所以a+1=0,2a+b=0,进而求出a=﹣1,b=2,然后计算a﹣b=﹣3,a+b=1,然后代入即可.解答解:∵|a+1|与|2a+b|互为相反数,∴|a+1|+|2a+b|=0,∵|a+1|≥0,|2a+b|≥0,∴a+1=0,2a+b=0,∴a=﹣1,b=2,∴a﹣b=﹣3,a+b=1,∴3(a﹣b)﹣5(a﹣b)2+3(a+b)+(a﹣b)2﹣7(a+b)2﹣3(a+b)=3(a﹣b)﹣4(a﹣b)2﹣7(a+b)2=3×(﹣3)﹣4×(﹣3)2﹣7×12=﹣9﹣4×9﹣7=﹣9﹣36﹣7=﹣52.点评:此题考查了整式的加减化简求值,解题的关键是求出a、b的值.22.若多项式2x n﹣1﹣x n+3x m+1是六次二项式,试求2(m﹣n2)﹣3(n﹣m2)﹣(2m﹣n)+4(2m﹣n)的值.考点:整式的加减—化简求值;多项式.专题:计算题.分析:由题意求出m与n的值,原式去括号合并得到最简结果,把m与n的值代入计算即可求出值.解答:解:∵多项式2x n﹣1﹣x n+3x m+1是六次二项式,∴n﹣1=m+1,n=6,解得:m=4,n=6,原式=2m﹣2n2﹣3n+3m2﹣2m+n+8m﹣4n=3m2﹣2n2+8m﹣6n,当m=4,n=6时,原式=48﹣72+32﹣36=﹣28.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.在修我市解放路的BRT(快速公交)时,需要对部分建筑进行拆迁,市政府成立了拆迁工作组,他们步行去做拆迁户主的思想工作;如果向南记为负,向北记为正;以下是他们一天中行程(单位:km):出发点,﹣0.7,+2.7,﹣1.3,+0.3,﹣1.4,+2.6,拆迁点;(1)工作组最后到达的地方在出发点的哪个方向?距出发点多远?(2)在一天的工作中,最远处离出发点有多远?(3)如果平均每个拆迁地址(出发点处没有拆迁)要做1小时的思想工作,他们步行的速度为2km/h,工作组早上九点出发,做完工作时是下午几点?考点:正数和负数.分析:(1)根据有理数的加法运算,可得答案;(2)根据有理数的加法,可得每次距离,根据有理数比较大小,可得答案;(3)根据有理数的加法,可的路程,根据路程与时间的关系,可得答案.解答:解:(1)﹣0.7+2.7+(﹣1.3)+0.3+(﹣1.4)+2.6=2.2(km),答:工作组最后到达的地方在出发点的北方,距出发点2.2km;(2)第一次的距离是|﹣0.7|=0.7(km),第二次的距离是|﹣0.7+2.7|=2(km),第三次的距离是|2+(﹣1.3)|=0.7(km),第四次的距离是|0.7+0.3|=1(km),第五次的距离是|1+(﹣1.4)|=0.4,第六次的距离是|﹣0.4+2.6|=2.2(km),∵2.2>2>1>0.7>0.4,答:在一天的工作中,最远处离出发点有2.2km;(3)(|﹣0.7|+2.7+|﹣1.3|+0.3+|﹣1.4|+2.6)÷2=4(h),9+4+6=19(点),即下午7点,答:工作组早上九点出发,做完工作时是下午7点.点评:本题考查了正数和负数,利用了有理数的加法运算.24.如图是某种细胞分裂示意图,这种细胞每过30分钟便由1个分裂成2个.根据此规律可得:(1)这样的一个细胞经过第四个30分钟后可分裂成16个细胞;(2)这样的一个细胞经过3小时后可分裂成64个细胞;(3)这样的一个细胞经过n(n为正整数)小时后可分裂成22n个细胞.考点:有理数的乘方.专题:规律型.分析:根据图形可知其规律为n小时是22n.解答:解:(1)第四个30分钟后可分裂成24=16;(2)经过3小时后可分裂成22×3=26=64;(3)经过n(n为正整数)小时后可分裂成22n.点评:主要考查从图示或数据中寻找规律的能力.25.观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想=;(2)证明你猜想的结论;(3)求和:+++…+.考点:规律型:数字的变化类.专题:规律型;探究型.分析:(1)根据所给的等式,进行推而广之即可;(2)根据分式的加减运算法则进行证明;(3)根据(2)中证明的结论,进行计算.解答:(1)解:;(2)证明:右边=﹣=﹣===左边,所以猜想成立.(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.点评:此题考查了异分母的分式相减的运算法则.26.如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r米,长方形长为a米,宽为b米.(1)分别用代数式表示草地和空地的面积;(2)若长方形长为300米,宽为200米,圆形的半径为10米,求广场空地的面积(计算结果保留到整数).考点:列代数式;代数式求值.分析:(1)草地面积=4×四分之一圆形面积;空地的面积=长方形面积﹣草地面积;(2)把长=300米,宽=200米,圆形的半径=10米代入(1)中式子即可.解答:解:(1)草地面积为:4×πr2=πr2米2,空地面积为:(ab﹣πr2)米2;(2)当a=300,b=200,r=10时,ab﹣πr2=300×200﹣100π≈59686(米2),∴广场空地的面积约为59686米2.点评:解决问题的关键是读懂题意,找到所求的量的等量关系.要熟练运用长方形面积和圆面积公式.27.在数学活动中,小明为了求的值(结果用n表示).设计如图所示的几何图形.(1)请你利用这个几何图形求的值为(1﹣).(2)请你利用下图,再设计一个能求的值的几何图形.考点:规律型:图形的变化类.分析:此题要结合图形分析计算其面积和的方法是总面积减去剩下的面积.解答:解:(1)设总面积为:1,最后余下的面积为:,故几何图形的值为:.故答案为:.(2)如图等.点评:(1)此题结合图形观察发现,计算面积和的时候,运用总面积减去剩下的面积非常简便.(2)只要是按照图形的对称轴进行折叠均可.。

相关文档
最新文档