2012第十届走美杯五年级教师版
分解质因数(一).教师版
:i' nf-教学目标1. 能够利用短除法分解2. 整数唯一分解定理:让学生自己初步领悟任何一个数字都可以表示为△☆ △☆ ... △☆的结构,而且表达形式唯一”知识点拨一、质因数与分解质因数(1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数(2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数例如:30=2 3 5 •其中2、3、5叫做30的质因数•又如12=2 2 3 =22 3,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.(4).分解质因数的方法:短除法212例如:26 , (「是短除法的符号)所以12=2 2 3 ;3、唯一分解定理任何一个大于1的自然数n都可以写成质数的连乘积,即:n二p;1 p;2 p;3川p;k其中为质数,a1 <a2a k为自然数,并且这种表示是唯一的•该式称为n的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:•/ 210=2X3X5X7, •••可知这三个数是5、6和7.三、部分特殊数的分解111 =3 37 ;1001 =7 11 13 ;11111 =41 271 ;10001 =73 137 ;1995 =3 5 7 19 ;1998 =2 3 3 3 37 ;2007 =3 3 223 ;2008 =2 2 2 251 ;10101 =3 7 13 37.模块一、分解质因数【例1】分解质因数20034= 。
【考点】分解质因数【难度】1星【题型】填空【解析】原式=2 33 7 53【答案】2 33 7 53【例2】三个连续自然数的乘积是210,求这三个数是多少?【考点】分解质因数【难度】1星【题型】填空【解析】210分解质因数:210=2 3 5 7,可知这三个数是5、6和7。
小学奥数教师版-5-1-3-3 数阵图(三)
5-1-3-3.数阵图教学目标1.了解数阵图的种类2.学会一些解决数阵图的解题方法3.能够解决和数论相关的数阵图问题知识点拨.一、数阵图定义及分类:1.定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2.数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.例题精讲数阵图与数论【例1】把0—9这十个数字填到右图的圆圈内,使得五条线上的数字和构成一个等差数列,而且这个等差数列的各项之和为55,那么这个等差数列的公差有种可能的取值.【解析】【考点】数阵图与数论【难度】3星【题型】填空【关键词】迎春杯,三年级,初赛,第8题设顶点分别为A、B、C、D、E,有45+A+B+C+D+E=55,所以A+B+C+D+E=10,所以A、B、C、D、E分别只能是0-4中的一个数字.则除之外的另外5个数(即边上的)为45-10=35.设所形成的等差数列的首项为a1,公差为d.利用求和公式5(a1+a1+4d)2=55,得a1+2d=11,故大于等于0+1+5=6,且为奇数,只能取7、9或11,而对应的公差d分别为2、1和0.经试验都能填出来所以共有3中情况,公差分别为2、1、0.【答案】2种可能【例2】将1~9填入下图的○中,使得任意两个相邻的数之和都不是3,5,7的倍数.【解析】【考点】数阵图与数论【难度】4星【题型】填空根据题意可知1的两边只能是3与7;2的两边只能是6与9;3的两边只能是1、5或8;4的两边只能是7与9.可以先将3—1—7--写出来,接下来7的后面只能是4,4的后面只能是9,9的后面只能是2,2的后面只能是6,可得:3—1—7—4—9—2—6--,还剩下5和8两个数.由于6814+=是7的倍数,所以接下来应该是5,这样可得:3—1—7—4—9—2—6—5—8—3.检验可知这样的填法符合题意.【答案】3—1—7—4—9—2—6—5—8—3【例3】在下面8个圆圈中分别填数字l ,2,3,4,5,6,7,8(1已填出).从1开始顺时针走1步进入下一个圆圈,这个圆圈中若填n (n ≤8)。
走美杯五年级详解
⎝ 7⎠
⎝ b⎠
牌组 {a,a,b,b}称为“王亮牌组”,请再写出一组不同的“王亮牌组”
。
考点:24 点
解析: ⎜⎛ a − a ⎟⎞ × b = ab − a = a(b −1) = 24 ,所以 24 能被 a 整除,
⎝ b⎠
所以 a 的可能取值为 1,2,3,4,6,8,12,24,对应的 b 的取值为 25,13,9,7,5,4,3,2 又因为 a、b 的取值范围为 1 至 13,
24,最先找到算法者获胜。游戏规定 4 张扑克牌都要用到,而且每张牌只能用 1 次,比如 2,3,4,Q 则可
以由算法 (2× Q)× (4 − 3)得到 24。
王亮在一次游戏中抽到了 4,4,7,7,经过思考,他发现, ⎜⎛ 4 − 4 ⎟⎞ × 7 = 24 ,我们将满足 ⎜⎛ a − a ⎟⎞ × b = 24 的
【第 13 题】如果两个自然数的积被 9 除余 1,那么我们称这两个自然数互为“模 9 的倒数”。比如,2 × 5 = 10 ,
被 9 除余 1,则 2 和 5 互为“模 9 的倒数”;1×1 = 1,则 1 的“模 9 的倒数”是它自身。显然,一个自然数
如果存在“模 9 的倒数”,则它的倒数并不是唯一的,比如,10 就是 1 的另一个“模 9 的倒数”。判断 1,2,
数)只有 2 与 3。那么,这个自然数是
。
考点:约数的个数
解析:设这个数为 2a × 3b ( a、b 均为正整数),由题意可知 (a +1)× (b +1) = 10 = 2× 5
所以 a = 1 ,b = 4 或 a = 4 ,b = 1
所以这个自然数是 21 × 34 = 162 或 24 × 31 = 48
【奥赛】小学数学竞赛:奇数与偶数的性质与应用.教师版解题技巧 培优 易错 难
本讲知识点属于数论大板块内的“定性分析”部分,小学生的数学思维模式大多为“纯粹的定量计算,拿到一个题就先去试数,或者是找规律,在性质分析层面几乎为0,本讲力求实现的一个主要目标是提高孩子对数学的严密分析能力,培养孩子明白做题前有时要“先看能不能这么做,再去动手做”的思维模式。
无论是小升初还是杯赛会经常遇到,但不会单独出题,而是结合其他知识点来考察学生综合能力。
一、奇数和偶数的定义 整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
通常偶数可以用2k (k 为整数)表示,奇数则可以用2k +1(k 为整数)表示。
特别注意,因为0能被2整除,所以0是偶数。
二、奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数性质2:偶数±奇数=奇数性质3:偶数个奇数的和或差是偶数性质4:奇数个奇数的和或差是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数三、两个实用的推论推论1:在加减法中偶数不改变运算结果奇偶性,奇数改变运算结果的奇偶性。
推论2:对于任意2个整数a ,b ,有a +b 与a -b 同奇或同偶模块一、奇偶分析法之计算法【例 1】 1231993++++……的和是奇数还是偶数?【考点】奇偶分析法之计算法 【难度】2星 【题型】解答【解析】 在1至1993中,共有1993个连续自然数,其中997个奇数,996个偶数,即共有奇数个奇数,那么原式的计算结果为奇数.【答案】奇数【例 1】 从1开始的前2005个整数的和是______数(填:“奇”或“偶”)。
【考点】奇偶分析法之计算法 【难度】2星 【题型】填空【关键词】希望杯,4年级,初赛,5题【解析】 1+2+3+…+2004+2005=(1+2005)×2005÷2=1003×2005是奇数【答案】奇数【巩固】 2930318788+++++……得数是奇数还是偶数?例题精讲知识点拨教学目标5-1奇数与偶数的性质与应用【考点】奇偶分析法之计算法【难度】2星【题型】解答【解析】偶数。
走美杯
1.“走美杯”的重要性“走美”是小学奥数竞赛中覆盖年级数最多的杯赛,从小学三年级到初中二年级的学生都可以通过参加“走进美妙的数学花园”杯赛活动。
“走美”作为数学竞赛中的后起之秀,凭借其新颖的考试形式以及较高的竞赛难度取得了非常迅速的发展,近年来在重点中学选拔中引起了广泛的关注。
客观地说“走美”一、二等奖对小升初作用非常大,三等奖作用不大。
中低年级是学生参加杯赛考试的最佳时期。
学生的数学竞赛实力不是一朝一夕之间就可以轻易锻炼出来的,低年级从不接触竞赛而等到六年级再拿到含金量高的杯赛成绩是不切实际的想法与做法。
所以,孩子从学习奥数开始就应该为各种杯赛作好应战的准备,其中“走美”是中低年级同学的一次绝佳竞赛锻炼机会。
获得奖可以增强孩子信心、提高孩子兴趣、积累成绩证书。
考试失败也可以锻炼孩子应考能力、总结考试经验、促进学习动力。
中低年级的所有杯赛准备都是为了高年级时向更高杯赛奖项冲击,这是一个非常必要的提高过程。
五六年级的“走美”奖项都是小升初中被各重点中学看中的含金量非常高的杯赛奖项之一。
尤其被北大附、清华附、四中、实验等重视学生综合素质的重点中学看重。
因为“走美”作为奥数杯赛的一个重要特点就是试题不偏不刁、难度适中,强调考察学生的数学基本能力,奥数基础知识。
所以受到众多重点中学选拔综合型学生的青睐,成为录取的最佳参考标准之一。
2.“走美杯”难度指数有多高走美杯03年起办,12年为第10届。
“走美”作为奥数杯赛的一个重要特点就是试题不偏不刁、难度适中,强调考察学生的数学基本能力,奥数基础知识。
走美成绩管理很好,且透明度高,应该有说服力。
走美的透明度和速度,成绩名次张榜公布,考完后迅速出成绩,不拖泥带水。
较之其他杯赛,走美是比较透明清晰的。
只要比赛公平透明,结果就会有说服力。
获奖人数较多,是因总参加人数多。
走美是按比例设奖的:5%一等,10%二等,15%三等。
3.“走美杯”的特色和优势1、“走美”是四大杯赛中唯一一个只考一次就评选最后奖项的竞赛。
【奥赛】小学数学竞赛:数的整除之四大判断法综合运用(二).教师版解题技巧 培优 易错 难
5-2-2.数的整除之四大判断法综合运用(二)教学目标1.了解整除的性质;2.运用整除的性质解题;3.整除性质的综合运用.知识点拨一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。
【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;模块一、11系列【例 1】 以多位数142857为例,说明被11整除的另一规律就是看奇数位数字之和与偶数位数字之和的差能否被11整除.【考点】整除之11系列 【难度】2星 【题型】解答 【解析】 略【答案】142857110000041000021000810051071=⨯+⨯+⨯+⨯+⨯+⨯110000114199992100118199511171=⨯-+⨯++⨯-+⨯++⨯-+⨯()()()()() 11000014999921001899511418275=⨯+⨯+⨯+⨯+⨯+-+-+-()()因为根据整除性质1和铺垫知,等式右边第一个括号内的数能被11整除,再根据整除性质1,要判断142857能否被11整除,只需判断418275487125-+-+-=++-++()()能否被11整除,因此结论得到说明.【例 2】 试说明一个4位数,原序数与反序数的和一定是11的倍数(如:1236为原序数,那么它对应的反序数为6321,它们的和7557是11的倍数.【考点】整除之11系列 【难度】2星 【题型】解答 【解析】 略【答案】设原序数为abcd ,则反序数为dcba ,则abcd +dcba 100010010100010010a b c d d c b a =+++++++()() 10011101101001a b c d =+++1191101091a b c d =+++(),因为等式的右边能被11整除,所以abcd + dcba 能被11整除【例 3】 一个4位数,把它的千位数字移到右端构成一个新的4位数.已知这两个4位数的和是以下5个数的一个:①9865;②9866;③9867;④9868;⑤9869.这两个4位数的和到底是多少?【考点】整除之11系列 【难度】2星 【题型】解答【解析】 设这个4位数是abcd ,则新的4位数是bcda .两个数的和为1001110011011abcd bcda a b c d +=+++,是11的倍数.在所给的5个数中只有9867是11的倍数,故正确的答案为9867.【答案】9867模块二、7、11、13系列【例 4】 以多位数142857314275为例,说明被7、11、13整除的规律. 【考点】整除之7、11、13系列 【难度】3星 【题型】解答 【解析】 略【答案】142857314275142100000000085710000003141000275=⨯+⨯+⨯+142(10000000011)857(9999991)314(10011)275=⨯-+⨯++⨯-+ 14210000000011428579999998573141001314275=⨯-+⨯++⨯-+ (14210000000018579999993141001)(857142275314)=⨯+⨯+⨯+-+-因为根据整除性质1和铺垫知,等式右边第一个括号内的数能被7、11、13整除,再根据整除性质1,要判断142857314275能否被7、11、13整除,只需判断857142275314-+-能否被7、11、13整除,因此结论得到说明.【例 5】 已知道六位数20279□是13的倍数,求□中的数字是几? 【考点】整除之7、11、13系列 【难度】2星 【题型】填空 【解析】 根据一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除的特点知道:27920=7-□□,7□是13的倍数,□是8的时候是13倍数,所以知道方格中填1。
小学数学竞赛:差倍问题(二).教师版解题技巧 培优 易错 难
1. 掌握差倍问题的基本解法以及相关的年龄等应用题.2. 熟练应用通过图示来表示数量关系.差倍问题就是已知大小两数的差,以及大小两数的倍数关系,求大小两数的问题.差倍问题的特点与和倍问题类似。
解答差倍问题的关键是要确定两个数量的差及相对应的倍数差,一般情况下,在题目中不直接给出,需要经过调整和计算才能得到。
解题思路:首先要在题目中找到1倍量,然后画图确定解题方法.被除数的数量和除数的倍数关系要相对应,相除后得到的结果是一倍量差倍问题的基本关系式:差÷(倍数-1)=1倍数(较小数)1倍数×几倍=几倍数(较大数)或较小数+差=较大数 解决差倍问题,关键是学会画线段图,这样可以帮助我们更好的弄清各数量之间的关系. 年龄问题的和差问题主要利用的年龄差不变。
【例 1】 为了过冬,小白兔和小黑兔都储藏了一些胡萝卜。
已知小白兔储藏的胡萝卜数量是小黑兔储藏数量的3倍。
它们各吃了5个胡萝卜后,小白兔剩下的胡萝卜数量是小黑兔剩下数量的4倍。
那么它们剩下的胡萝卜共有 个。
【考点】差倍问题 【难度】3星 【题型】填空 【关键词】希望杯,4年级,1试 【解析】 小黑兔剩下胡萝卜的数量是3×5-5=10个,它们剩下的胡萝卜共有10+10×4=50个。
【答案】50个【例 2】 某养鸡场的母鸡只数是公鸡只数的6倍,后来公鸡、母鸡各增加60只,母鸡的只数变为公鸡只数的4倍,则养鸡场原来一共养了___________只鸡。
【考点】差倍问题 【难度】3星 【题型】填空 【关键词】希望杯,4年级,1试 【解析】 要保持母鸡是公鸡的6倍,母鸡增加60,公鸡就要增加360,所以360-60=300就是差的2倍,现在有150只母鸡,原来有90只母鸡,一共养了630只鸡。
【答案】630【例 3】 兄妹俩人去买文具,哥哥带的钱是妹妹的两倍,哥哥用去180元,妹妹用去30元,这时兄妹俩人剩下的钱正好相等,哥哥带了________元钱,妹妹带了________元钱.【考点】差倍问题 【难度】3星 【题型】填空 【关键词】2008年,第八届,春蕾杯,初赛 【解析】 由题目的条件“哥哥带的钱是妹妹的两倍”知:哥哥的钱比妹妹的钱多一倍,又由“哥哥用去180元,妹妹用去30元,这时兄妹俩人剩下的钱正好相等,知:哥哥比妹妹多18030150-=(元),则知妹妹带了150元,哥哥带了300元.【答案】哥哥带300元,妹妹带150元【巩固】 兄妹俩人去买文具,哥哥带的钱是妹妹的两倍,哥哥用去300元,妹妹用去40元,这时兄妹俩人剩下的钱正好相等.哥哥带了 元钱,妹妹带了 元钱.例题精讲知识精讲教学目标6-1-6.差倍问题(二)【考点】差倍问题【难度】3星【题型】填空【关键词】学而思杯,2年级,第11题【解析】哥哥用去300元,妹妹用去40元,这时兄妹俩人剩下的钱正好相等.可以得到妹妹带了30040260-=元)钱,那么哥哥带了260260520+=(元)钱.【答案】哥哥带了520元,妹妹带了260元【例 4】菜站运来的白菜是萝卜的3倍,卖出白菜1800千克,萝卜300千克,剩下的两种蔬菜的重量相等,菜站运来的白菜和萝卜各是多少千克?【考点】差倍问题【难度】3星【题型】解答【解析】这样想:根据“菜站运来的白莱是萝卜的3倍”应把运来的萝卜的重量看作1倍;“卖出白菜1800千克,萝卜300千克后,剩下两种蔬菜的重量正好相等”,说明运来的白菜比萝卜多180********-=(千克).这个重量相当于萝卜重量的312-=(倍),这样就可以先求出运来的萝卜是多少千克,再求运来的白菜是多少千克.所以运来萝卜:(1800300)(31)750-÷-=(千克),运来白菜:75032250⨯=(千克).【答案】白菜2250千克,萝卜750千克。
五年级应用题工程问题1教师版
基本工程问题知识要点工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。
工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。
在教学中,让学生建立正确概念是解决工程应用题的关键。
一、工程问题:定义:工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。
工作总量:一般抽象成单位“1”工作效率:单位时间内完成的工作量(1÷工作时间)三个基本公式:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;二、解题的思考方法:解答工程问题时一定要认真审题,弄明白是完成全部工程,还是该工程的部分(即它的几分之几)?有几个人或单位参加工作?他们完成这项工程各自需要多少时间?推得各自的工效是几分之一?他们是同时开始、同时结束工作的,还是有先有后的?具体要求什么等等。
因为工程问题的条件可用多种形式提出,有的不以“工程”命题,有的与其他类型的题目结合,这样,工程问题的题目就复杂起来。
但复杂是可以向简单转化的,通过一定的手段,使其变为若干个基本题,解题的基本思路与方法是不变的。
因此,只要抓住工作总量、工作效率、工作时间三者的关系,细心分析,就能找到解题的途径、步骤和方法。
三、利用常用常用的数学思想方法:如代换法、比例法、列表法、方程法等抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.简单工程(工作效率一定)1.一项工程,甲单独做需要28天时间,乙单独做需要21天时间,如果甲、乙合作需要多少时间?【解析】将整个工程的工作量看作“1”个单位,那么甲每天完成总量的128,乙每天完成总量的121,两人合作每天能完成总量的111282112+=,所以两人合作的话,需要111212÷=天能够完成.2.一项工程,甲单独做需要30天时间,甲、乙合作需要12天时间,如果乙单独做需要多少时间?【解析】将整个工程的工作量看作“1”个单位,那么甲每天完成总量的130,甲、乙合作每天完成总量的112,乙单独做每天能完成总量的111123020-=,所以乙单独做112020÷=天能完成.3.(第五届走美杯初赛)甲乙两名打字员,打字速度一样快,甲30分钟打了A材料的14,乙40分钟打了B材料的27。
8和倍问题(教师)
1. 和倍问题就是已知两个数的和以及它们之间的倍数关系,求这两个数各是多少的问题.解答此类应用题时要根据题目中所给的条件和问题,画出线段图,使数量关系一目了然,从而找出解题规律,正确迅速地列式解答。
2. 和倍问题的数量关系式是:1) 和÷(倍数+1)=小数2) 小数×倍数=大数 或 和一小数=大数【例 1】 学校买来一些乒乓球和羽毛球共40个,乒乓球的个数是羽毛球的4倍。
买来的乒乓球和羽毛球各多少个?乒乓球羽毛球一共40个"1"【解析】 羽毛球的个数看作1份数,乒乓球的个数就是4份数。
40个就相当于(4+1)份数,这样就可求出1份数,也就是羽毛球的个数;把羽毛球的个数乘以4就是乒乓球的个数。
羽毛球有40(41)8÷+=个。
乒乓球有8432⨯=个或乒乓球有40832-=个。
第八讲和倍问题知识概述例题精讲【拓展】 小华和爷爷今年共72岁,爷爷的岁数是小华的7倍。
爷爷比小华大多少岁?爷爷小华一共72岁"1"【解析】 (方法一)小华今年72(71)9÷+=岁。
爷爷今年9763⨯=岁或爷爷今年9763⨯=岁。
爷爷比小华大63954-=岁。
(方法二)小华今年72(71)9÷+=岁。
爷爷比小华大9(71)54⨯-=岁。
【例 2】 5箱苹果和5箱葡萄共重75千克,每箱苹果是每箱葡萄重量的2倍。
每箱苹果和每箱葡萄各重多少千克?【解析】 5箱苹果和5箱葡萄共重75千克,平均分成5份,1箱苹果与1箱葡萄重量和为:75÷5=15(千克)。
把1箱葡萄的重量看作一份,重量为:15÷(2+1)=5(千克);每箱苹果重量为:5×2=10(千克)。
【拓展】 被除数、除数、商3个数的和是212。
已知商是2,被除数和除数各是多少? 【解析】 由商是2,可得被除数与除数的和为:212-2=210;且被除数是除数的2倍。
小学数学竞赛:几何计数(三).教师版解题技巧 培优 易错 难
1.掌握计数常用方法;2.熟记一些计数公式及其推导方法;3.根据不同题目灵活运用计数方法进行计数.本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想.一、几何计数在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n 条直线最多将平面分成21223(2)2n n n ++++=++……个部分;n 个圆最多分平面的部分数为n (n -1)+2;n 个三角形将平面最多分成3n (n -1)+2部分;n 个四边形将平面最多分成4n (n -1)+2部分……在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解.排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.二、几何计数分类数线段:如果一条线段上有n +1个点(包括两个端点)(或含有n 个“基本线段”),那么这n +1个点把这条线段一共分成的线段总数为n +(n -1)+…+2+1条数角:数角与数线段相似,线段图形中的点类似于角图形中的边. 数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE 上有15条线段,每条线段的两端点与点A 相连,可构成一个三角形,共有15个三角形,同样一边在BC 上的三角形也有15个,所以图中共有30个三角形.ED CBA数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n 条线段,纵边上共有m 条线段,则图中共有长方形(平行四边形)mn 个.模块一、立体几何计数【例 1】 用同样大小的正方体小木块堆成如下图的立体图形,那么一共用了__________块小正方体。
小学数学竞赛:图形的分割.教师版解题技巧 培优 易错 难
几何面积问题除了利用常规的五大模型、各种公式求得之外,还可以用图形分割的思想来做。
我们发现,在迎春杯几何问题中,这类题目很多。
掌握好这种思想方法,可以帮助我们解决很多几何难题。
解题关键:分割其实就是运用特殊的三角形(等角直角三角形、等边三角形等)、正方形、等边图形的特殊性质进行分割而得,所以分割的关键是利用了特殊图形的关系解题。
解题思想:这其实就是一种化整为零的思想,各位同学不仅要学会几何题中的这种方法,更要细细体味这种思想在解决各种问题中的妙用。
模块一、简单分割【例 1】 3个相同的正方形纸片按相同的方向叠放在一起(如图),顶点A 和B 分别与正方形中心点重合,如果所构成图形的周长是48厘米,那么这个图形覆盖的面积是__________平方厘米.【考点】图形的分割 【难度】2星 【题型】填空 【关键词】迎春杯,中年级组,复试,4题 【解析】 将这3个正方形分割,可知这个图形的周长即为两个正方形纸片的周长之和,故正方形边长为48÷8=6(厘米),则图中每个分割得到的小正方形边长为6÷2=3(厘米),所以这个图形覆盖的面积为6×6×2+3×3×2=90(平方厘米)。
【答案】90平方厘米【例 2】 正方形ABCD 的面积是1平方米,将四条边分别向两端各延长一倍,连结八个端点得到一个正方形(如图),求大正方形的面积.DCB A【考点】图形的分割 【难度】2星 【题型】解答 【解析】 四条边分别向两端各延长一倍,很容易可以观察出,大正方形有9个小正方形组成,所以,大正方形的面积是:199⨯=(平方米).【答案】9平方米【例 3】 将边长为a 的正方形各边的中点连结成第二个正方形,再将第二个正方形各边的中点连结成第三个正方形,依此规律,继续下去,得到下图那么,边长为a 的正方形面积是图中阴影部分面积的________ 倍.例题精讲知识点拨4-2-4.图形的分割【考点】图形的分割 【难度】3星 【题型】填空 【关键词】希望杯,四年级,复赛,第6题,4分 【解析】 阴影部分是大正方形的0.5×0.5×0.5×0.5=116,所以正方形是阴影的16倍 【答案】16倍【例 4】 正三角形ABC 的面积是1平方米,将三条边分别向两端各延长一倍,连结六个端点得到一个六边形(如右图),求六边形的面积.CBA【考点】图形的分割 【难度】3星 【题型】解答 【解析】 采用分割法,过A 、B 、C 分别作平行线,得到右上图,其中所有小三角形的面积都相同,所以六边形面积等于13平方米.【答案】13平方米【例 5】 正六边形ABCDEF 的面积是1平方米,将六条边分别向两端各延长一倍,交于六个点,组成如下图的图形,求这个图形的面积.FED CB A FAB CDE【考点】图形的分割 【难度】3星 【题型】解答 【解析】 采用分割法,连接正六边形的对角线,会发现,所有的三角形面积都相同,一共有12个小三角形,原来正六边形的面积是1平方米,由6个小三角形组成,所以现在的大图形的面积是:122⨯= (平方米)【答案】2平方米【例 6】 长方形ABCD 的面积是40平方厘米,E 、F 、G 、H 分别为AC 、AH 、DH 、BC 的中点。
5-1-2-2 乘除法数字谜(一).教师版
5-1-2-2.乘除法数字谜(一)
教学目标
数字谜是杯赛中非常重要的一块,特别是迎春杯,数字谜是必考的,一般学生在做数字谜的时候都采用尝试的方式,但是这样会在考试中浪费很多时间.本模块主要讲乘除竖式数字谜的解题方法,学会通过找突
1.数字谜定义:一般是指那些含有未知数字或未知运算符号的算式.
模块一、乘法数字谜
是一个残缺的乘法竖式,其中
【难度】2星【题型】填空
所以b≥6,从而d≥6.由22□÷c≥60和c>2知c=3,
de=
76
30 000,所以.再由乘积不小于30000
下面残缺的算式中,只写出了3个数字1,其余的数字都不是
【难度】2星 【题型】填空
了说明的方便,这个算式中的关键数字用英文字母表示.很明显e= 0三数之一,两位数应是(100+f )的因数.101,103,102=17×6,则C 只能取3,,ab 317=⨯,,53ab =
【题型】填空
⨯=
.510)2161080
【答案】。
2024精选小学五年级上册美术全册教案
2024精选小学五年级上册美术全册教案教案:2024精选小学五年级上册美术全册一、教学内容本学期美术课程共分为八个章节,具体内容包括:1. 第一章:欣赏与评述——了解世界著名画家及其作品;2. 第二章:绘画——学习水彩画的基本技巧;3. 第三章:雕塑——学习泥塑的基本手法;4. 第四章:设计——学习简单的图案设计;5. 第五章:书法——学习硬笔书法的基本技法;6. 第六章:工艺——学习剪纸和版画的基本技法;7. 第七章:欣赏与评述——了解中国民间艺术;8. 第八章:综合实践——创作个人艺术作品集。
二、教学目标1. 提高学生的审美能力和欣赏水平,使他们在日常生活中能更好地发现美、欣赏美;2. 培养学生的绘画、雕塑、设计、书法等基本技能,提高他们的艺术素养;3. 培养学生团结协作、自主探究的学习精神,提高他们的综合素质。
三、教学难点与重点1. 教学难点:绘画、雕塑、设计、书法等技法的学习与运用;2. 教学重点:培养学生的审美能力、创新能力和实践能力。
四、教具与学具准备1. 教具:多媒体设备、画纸、画笔、水彩、泥塑材料、剪刀、刻刀、毛笔、墨水等;2. 学具:学生自带画笔、画纸、水彩、剪刀、刻刀等。
五、教学过程1. 导入:教师通过展示名画家的作品,引导学生欣赏并讨论,激发学生的学习兴趣;2. 讲解:教师讲解绘画、雕塑、设计、书法等基本技法,并进行示范;3. 练习:学生按照教师的要求,进行绘画、雕塑、设计、书法等实践操作;4. 评讲:教师对学生的作品进行点评,指出优点和不足,鼓励学生继续努力;六、板书设计1. 第一章:画家姓名、作品名称、绘画风格;2. 第二章:水彩画基本技巧(色彩、构图、笔法等);3. 第三章:泥塑基本手法(揉、搓、压、切等);4. 第四章:图案设计基本原则(对称、重复、对比等);5. 第五章:硬笔书法基本技法(笔画、结构、布局等);6. 第六章:剪纸和版画基本技法(剪纸纹样、版画制作等);7. 第七章:民间艺术类型、代表作品、特点;8. 第八章:个人艺术作品集创作要求。
小学奥数教师版-5-1-2-2 乘除法数字谜(一)
是
.
【考点】乘法数字谜 【难度】3 星 【题型】填空
【关键词】迎春杯,中年级,复试,第 8 题
【解析】这是一道数字谜问题.考察同学们的推理能力.首先列成竖式:
cba abc
a cbba
从 cba a ,及乘积为 acbba 看, c 1,所以 cba c 1ba 1 1ba . 1b a
⑴ 数字谜中的文字,字母或其它符号,只取 0 ~ 9 中的某个数字; ⑵ 要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件; ⑶ 必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字; ⑷ 数字谜解出之后,最好验算一遍.
例题精讲
模块一、乘法数字谜
【例 1】 下面是一个乘法算式:问:当乘积最大时,所填的四个数字的和是多少?
知识点拨
1. 数字谜定义:一般是指那些含有未知数字或未知运算符号的算式. 2. 数字谜突破口:这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则,数的
性质(和差积商的位数,数的整除性,奇偶性,尾数规律等)来进行正确的推理,判断. 3. 解数字谜:一般是从某个数的首位或末位数字上寻找突破口.推理时应注意:
【例 10】如图,请在右图每个方框中填入一个数字,使乘法竖式成立。
×
2
0
0
7
【考点】乘法数字谜 【难度】3 星 【题型】填空 【关键词】走美杯,初赛,六年级,第 7 题
154
× 522 3 08
308 7 70
【解析】 8 0 3 8 8
【答案】
5-1-2-2.乘除法数字谜(一).题库
教师版
page 4 of 12
学而思杯
学而思杯
【考点】乘法数字谜 【难度】3 星 【题型】填空 【解析】首先从式子中可以看出“思” 0 ,另外第三个部分积的首位只能为 9,所以“学”只能为 3.由于 3 个
小学数学 带余除法(一).教师版
【例 6】 一个两位奇数除 1477,余数是 49,那么,这个两位奇数是多少? 【考点】除法公式的应用 【难度】1 星 【题型】解答 【解析】这个两位奇数能被 1477-49=1428 整除,且必须大于 49,1428=2×2×3×7×17,所以这样的两位奇数只有
51。 【答案】51
【例 7】 大于 35 的所有数中,有多少个数除以 7 的余数和商相等? 【考点】除法公式的应用 【难度】2 星 【题型】解答 【解析】除以 7 的余数只能是 0~6,所以商只能是 0~6,满足大于 7 的数只有商和余数都为 5、6,所以只
的约数,同时还要满足大于 10 这个条件。这样题目就转化为 1998 有多少个大于 10 的约数,
1998 2 33 37 ,共有(1+1)×(3+1)×(1+1)=16 个约数,其中 1,2,3,6,9 是比 10 小的约
数,所以符合题目条件的自然数共有 11 个。 【答案】11
【巩固】写出全部除 109 后余数为 4 的两位数. 【考点】除法公式的应用 【难度】2 星 【题型】解答 【关键词】美国长岛,小学数学竞赛,第五届 【解析】 109 4 105 3 5 7 .因此,这样的两位数是:15;35;21. 【答案】两位数是:15;35;21
余 3,因此十位是 9,答案是 399 【答案】399
【例 15】一个自然数,除以 11 时所得到的商和余数是相等的,除以 9 时所得到的商是余数的 3 倍,这个自 然数是_________.
小学数学竞赛:定义新运算.教师版解题技巧培优易错难
教学目标定义新运算这类题目是在考验我们的适应能力,我们大家都习惯四则运算,定义新运算就打破了运算规则,要求我们要严格按照题目的规定做题.新定义的运算符号,常见的如△ 、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的.解答这类题目的关键是理解新定义,严格按照新定义的式子代入数值,把定义的新运算转化成我们所熟悉的四则运算。
知识点拨一定义新运算基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
我们学过的常用运算有:+、-、×、÷等.如:2+3=5 2×3=6都是2 和3,为什么运算结果不同呢?主要是运算方式不同,实际是对应法则不同.可见一种运算实际就是两个数与一个数的一种对应方法,对应法则不同就是不同的运算.当然,这个对应法则应该是对任意两个数,通过这个法则都有一个唯一确定的数与它们对应.只要符合这个要求,不同的法则就是不同的运算在这一讲中,我们定义了一些新的运算形式,它们与我们常用的“+”,“-”,“×,”“÷运”算不相同.二定义新运算分类1.直接运算型2.反解未知数型3.观察规律型4.其他类型综合例题精讲模块一、直接运算型【例1】若 A* B 表示A 3B A B ,求 5*7 的值。
【考点】定义新运算之直接运算【难度】2 星【题型】计算【解析】A* B是这样结果这样计算出来:先计算A+3B的结果,再计算A+B 的结果,最后两个结果求乘积。
由A*B=(A+3B)×(A+B)可知:5*7=(5+3×7)×(5+7)=(5+21)×12 =26×12 =312【答案】 312巩固】定义新运算为 a △b =( a + 1) ÷b ,求的值。
小学数学竞赛试题 三角形等高模型与鸟头模型(二).教师版与学生版都有
板块一 三角形等高模型我们已经知道三角形面积的计算公式:三角形面积=底⨯高2÷从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的13,则三角形面积与原来的一样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状. 在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如左图12::S S a b =s 2s 1baDCBA③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△;反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.板块二 鸟头模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上), 则:():()ABC ADE S S AB AC AD AE =⨯⨯△△EDCBADE CBA图⑴ 图⑵【例 1】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16S =△平例题精讲4-3-2.三角形等高模型与鸟头模型方厘米,求ABC △的面积.EDCBAEDCBA【考点】三角形的鸟头模型 【难度】2星 【题型】解答 【解析】 连接BE ,::2:5(24):(54)ADE ABE S S AD AB ===⨯⨯△△,::4:7(45):(75)ABE ABC S S AE AC ===⨯⨯△△,所以:(24):(75)ADE ABC S S =⨯⨯△△,设8ADE S =△份,则35ABC S =△份,16ADE S =△平方厘米,所以1份是2平方厘米,35份就是70平方厘米,ABC △的面积是70平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 .【答案】70【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那么三角形ABC 的面积是多少?E DC B A AB C DE【考点】三角形的鸟头模型 【难度】2星 【题型】解答 【解析】 连接BE .∵3EC AE = ∴3ABC ABE S S = 又∵5AB AD =∴515ADE ABE ABC S S S =÷=÷,∴1515ABC ADE S S ==.【答案】15【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面积是甲部分面积的几倍?乙甲E D CBAA BCDE甲乙【考点】三角形的鸟头模型 【难度】2星 【题型】解答 【解析】 连接AD .∵3BE =,6AE =∴3AB BE =,3ABD BDE S S = 又∵4BD DC ==,∴2ABC ABD S S =,∴6ABC BDE S S =,5S S =乙甲.【答案】5【例 2】 如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =,:3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.ED CBA EDCBA【考点】三角形的鸟头模型 【难度】3星 【题型】解答 【解析】 连接BE ,::2:5(23):(53)ADE ABE S S AD AB ===⨯⨯△△[]::3:(32)(35):(32)5ABE ABC S S AE AC ==+=⨯+⨯△△,所以[]:(32):5(32)6:25ADE ABC S S =⨯⨯+=△△,设6ADE S =△份,则25ABC S =△份,12ADE S =△平方厘米,所以1份是2平方厘米,25份就是50平方厘米,ABC △的面积是50平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比【答案】50【例 3】 如图所示,在平行四边形ABCD 中,E 为AB 的中点,2AF CF =,三角形AFE (图中阴影部分)的面积为8平方厘米.平行四边形的面积是多少平方厘米?【考点】三角形的鸟头模型 【难度】2星 【题型】解答 【解析】 连接FB .三角形AFB 面积是三角形CFB 面积的2倍,而三角形AFB 面积是三角形AEF 面积的2倍,所以三角形ABC 面积是三角形AEF 面积的3倍;又因为平行四边形的面积是三角形ABC 面积的2倍,所以平行四边形的面积是三角形AFE 面积的326⨯=()倍.因此,平行四边形的面积为8648⨯=(平方厘米).【答案】48【例 4】 已知DEF △的面积为7平方厘米,,2,3BE CE AD BD CF AF ===,求ABC △的面积.FED CBA【考点】三角形的鸟头模型 【难度】3星 【题型】解答【解析】:():()(11):(23)1:6BDE ABC S S BD BE BA BC =⨯⨯=⨯⨯=△△,:():()(13):(24)3:8CEF ABC S S CE CF CB CA =⨯⨯=⨯⨯=△△:():()(21):(34)1:6ADF ABC S S AD AF AB AC =⨯⨯=⨯⨯=△△设24ABC S =△份,则4BDE S =△份,4ADF S =△份,9CEF S =△份,244497DEF S =---=△份,恰好是7平方厘米,所以24ABC S =△平方厘米【答案】24【例 5】 如图16-4,已知.AE=15AC ,CD=14BC ,BF=16AB ,那么DEF ABC 三角形的面积三角形的面积等于多少?【考点】三角形的鸟头模型 【难度】3星 【题型】解答 【关键词】迎春杯,决赛,第一题,9题 【解析】 如下图,连接AD ,BE ,CF.有△ABE ,△ABC 的高相等,面积比为底的比,则有ABE ABCSS=AEAC,所以ABE S =AEAC×ABC S =15ABC S同理有AEF S=AFABABE S ,即=AEF S=15×56ABC S =16ABC S . 类似的还可以得到CDE S =14×45ABC S =15ABC S ,BDF S =16×13ABC S =18ABC S .所以有DEF S =ABC S -(AEF S +CDE S +BDF S )=(1-16-15-18)ABC S =61120ABC S . 即DEF ABC 三角形的面积三角形的面积为61120. 【答案】61120【例 6】 如图,三角形ABC 的面积为3平方厘米,其中:2:5AB BE =,:3:2BC CD =,三角形BDE 的面积是多少?AB EC DDC EB A【考点】三角形的鸟头模型 【难度】2星 【题型】解答 【解析】 由于180ABC DBE ︒∠+∠=,所以可以用共角定理,设2AB =份,3BC =份,则5BE =份,325BD =+=份,由共角定理:():()(23):(55)6:25ABC BDE S S AB BC BE BD =⨯⨯=⨯⨯=△△,设6ABC S =△份,恰好是3平方厘米,所以1份是0.5平方厘米,25份就是250.512.5⨯=平方厘米,三角形BDE 的面积是12.5平方厘米【答案】12.5【例 7】 如图所示,正方形ABCD 边长为6厘米,13AE AC =,13CF BC =.三角形DEF 的面积为_______平方厘米.EDC3【关键词】走美杯,五年级,初赛【解析】由题意知13AE AC=、13CF BC=,可得23CE AC=.根据”共角定理”可得,():():()12:(33)2:9CEF ABCS S CF CE CB AC=⨯⨯=⨯⨯=△△;而66218ABCS=⨯÷=△;所以4CEFS=△;同理得,:2:3CDE ACDS S=△△;,183212CDES=÷⨯=△,6CDFS=△故412610DEF CEF DEC DFCS S S S=+-=+-=△△△△(平方厘米).【答案】10【例 8】如图,已知三角形ABC面积为1,延长AB至D,使BD AB=;延长BC至E,使2CE BC=;延长CA至F,使3AF AC=,求三角形DEF的面积.FEDCBA ABCDEF【考点】三角形的鸟头模型【难度】3星【题型】解答【解析】(法1)本题是性质的反复使用.连接AE、CD.∵11ABCDBCSS=,1ABCS=,∴S1DBC=.同理可得其它,最后三角形DEF的面积18=.(法2)用共角定理∵在ABC和CFE中,ACB∠与FCE∠互补,∴111428ABCFCES AC BCS FC CE⋅⨯===⋅⨯.又1ABCS=,所以8FCES=.同理可得6ADFS=,3BDES=.所以186318DEF ABC FCE ADF BDES S S S S=+++=+++=.【答案】18【例 9】如图,把四边形ABCD的各边都延长2倍,得到一个新四边形EFGH如果ABCD的面积是5平方厘米,则EFGH的面积是多少平方厘米?【考点】三角形的鸟头模型【难度】4星【题型】解答【解析】方法一:如下图,连接BD,ED,BG,有EAD、ADB同高,所以面积比为底的比,有2EAD ABD ABDEAS S SAB==.同理36EAH EAD EAD ABDAHS S S SAD===.类似的,还可得6FCG BCDS S=,有()66EAH FCG ABD BCD ABCDS S S S S+=+==30平方厘米.连接AC,AF,HC,还可得6EFB ABCS S=,6DHG ACDS S=,有()66EFBDHG ABC ACD ABCDS S S S S+=+==30平方厘米.有四边形EFGH的面积为EAH,FCG,EFB,DHG,ABCD的面积和,即为30+30+5=65(平方厘米.) 方法二:连接BD,有EAH 、△ABD中∠EAD+∠BAD=180°又夹成两角的边EA、AH,AB、AD的乘积比,EA AHAB AD⨯⨯=2×3=6,所以EAHS=6ABDS.类似的,还可得FCGS=6BCDS,有EAHS+FCGS=6(ABDS+BCDS)=6ABCDS=30平方厘米.连接AC,还可得EFBS=6ABCS,DHGS=6ACDS,有EFBS+DHGS=6(ABCS+ACDS)=6ABCDS=30平方厘米.有四边形EFGH的面积为△EAH,△FCG,△EFB,△DHG,ABCD的面积和,即为30+30+5=65平方厘米.【答案】65【例 10】如图,平行四边形ABCD,BE AB=,2CF CB=,3GD DC=,4HA AD=,平行四边形ABCD的面积是2,求平行四边形ABCD与四边形EFGH的面积比.HGA BCDEFHGA BCDEF【考点】三角形的鸟头模型【难度】4星【题型】解答【解析】连接AC、BD.根据共角定理∵在ABC△和BFE△中,ABC∠与FBE∠互补,∴111133ABCFBES AB BCS BE BF⋅⨯===⋅⨯△△.又1ABCS=△,所以3FBES=△.同理可得8GCFS=△,15DHGS=△,8AEHS=△.所以8815+3+236EFGH AEH CFG DHG BEF ABCDS S S S S S=++++=++=△△△△.所以213618ABCDEFGHSS==.【答案】118【例 11】 如图,四边形EFGH 的面积是66平方米,EA AB =,CB BF =,DC CG =,HD DA =,求四边形ABCD 的面积.H GFED CB A A B CDEFGH【考点】三角形的鸟头模型 【难度】4星 【题型】解答 【解析】 连接BD .由共角定理得:():()1:2BCD CGF S S CD CB CG CF =⨯⨯=△△,即2CGF CDB S S =△△同理:1:2ABD AHE S S =△△,即2AHE ABD S S =△△ 所以2()2AHE CGF CBD ADB ABCD S S S S S +=+=△△△△四边形 连接AC ,同理可以得到2DHG BEF ABCD S S S +=△△四边形5AHE CGF HDG BEF EFGH ABCD ABCD S S S S S S S =++++=△△△△四边形四边形四边形所以66513.2ABCD S =÷=四边形平方米【答案】13.2【例 12】 如图,将四边形ABCD 的四条边AB 、CB 、CD 、AD 分别延长两倍至点E 、F 、G 、H ,若四边形ABCD 的面积为5,则四边形EFGH 的面积是 .A B CD E F GHA B CDEF GH【考点】三角形的鸟头模型 【难度】4星 【题型】解答 【解析】 连接AC 、BD .由于2BE AB =,2BF BC =,于是4BEF ABC S S ∆∆=,同理4HDG ADC S S ∆∆=.于是444BEF HDG ABC ADC ABCD S S S S S ∆∆∆∆+=+=.再由于3AE AB =,3AH AD =,于是9AEH ABD S S ∆∆=,同理9CFG CBD S S ∆∆=. 于是999AEH CFG ABD CBD ABCD S S S S S ∆∆∆∆+=+=.那么491260EFGH BEF HDG AEH CFG ABCD ABCD ABCD ABCD ABCD S S S S S S S S S S ∆∆∆∆=+++-=+-==.【答案】60【例 13】 如图,在ABC △中,延长AB 至D ,使BD AB =,延长BC 至E ,使12CE BC =,F 是AC 的中点,若ABC △的面积是2,则DEF △的面积是多少?A BCDEF【考点】三角形的鸟头模型 【难度】3星 【题型】解答【解析】 ∵在ABC △和CFE △中,ACB ∠与FCE ∠互补,∴224111ABC FCE S AC BC S FC CE ⋅⨯===⋅⨯△△. 又2ABCS=,所以0.5FCES=.同理可得2ADF S =△,3BDE S =△.所以20.532 3.5DEF ABC CEF DEB ADF S S S S S =++-=++-=△△△△△【答案】3.5【例 14】 如图,1ABC S =△,5BC BD =,4AC EC =,DG GS SE ==,AF FG =.求FGSS.SGF E DCBA【考点】三角形的鸟头模型 【难度】3星 【题型】解答 【解析】 本题题目本身很简单,但它把本讲的两个重要知识点融合到一起,既可以看作是”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”的反复运用,也可以看作是找点,最妙的是其中包含了找点的3种情况.最后求得FGS S △的面积为4321115432210FGS S =⨯⨯⨯⨯=△.【答案】110【例 15】 如图所示,正方形ABCD 边长为8厘米,E 是AD 的中点,F 是CE 的中点,G 是BF 的中点,三角形ABG 的面积是多少平方厘米?ABCD EF GABC DEF G【考点】三角形的鸟头模型 【难度】4星 【题型】解答 【解析】 连接AF 、EG .因为218164BCF CDE S S ==⨯=△△,根据”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”8AEF S =,8EFG S =,再根据”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”,得到16BFCS=,32ABFE S =,24ABF S =,所以12ABG S =平方厘米.【答案】12【例 16】 四个面积为1的正六边形如图摆放,求阴影三角形的面积.H GFEDCB A【考点】三角形的鸟头模型 【难度】4星 【题型】解答 【解析】 如图,将原图扩展成一个大正三角形DEF ,则AGF ∆与CEH ∆都是正三角形.假设正六边形的边长为为a ,则AGF ∆与CEH ∆的边长都是4a ,所以大正三角形DEF 的边长为4217⨯-=,那么它的面积为单位小正三角形面积的49倍.而一个正六边形是由6个单位小正三角形组成的,所以一个单位小正三角形的面积为16,三角形DEF 的面积为496.由于4FA a =,3FB a =,所以AFB ∆与三角形DEF 的面积之比为43127749⨯=.同理可知BDC ∆、AEC ∆与三角形DEF 的面积之比都为1249,所以ABC ∆的面积占三角形DEF 面积的1213134949-⨯=,所以ABC ∆的面积的面积为4913136496⨯=.【答案】136【巩固】已知图中每个正六边形的面积都是1,则图中虚线围成的五边形ABCDE 的面积是 .B DCEA【考点】三角形的鸟头模型 【难度】4星 【题型】解答 【解析】 从图中可以看出,虚线AB 和虚线CD 外的图形都等于两个正六边形的一半,也就是都等于一个正六边形的面积;虚线BC 和虚线DE 外的图形都等于一个正六边形的一半,那么它们合起来等于一个正六边形的面积;虚线AE 外的图形是两个三角形,从右图中可以看出,每个三角形都是一个正六边形面积的16,所以虚线外图形的面积等于11132363⨯+⨯=,所以五边形的面积是12103633-=.【答案】263【例 17】 仅用下图这把刻度尺,最少测量 次,就能得出三角形ABC 和三角形BCD 的面积比。
五年级走美杯分类考试试题精选
计算1. (2006年第四届走美五年级初赛第1题)23422640⨯+⨯=( )。
【解析】20062. (2008年第六届走美五年级初赛第1题)111112342346+-+=_______【解析】1111123423461111123423641414144+-+=+-++++-=+-= 数论质数、合数3. (2007年第五届走美五年级初赛第6题)有些三位数,它的各位数字的乘积是质数,这样的三位数最小是 ,最大是 。
解析:容易知最小的三位数的位数高的应尽量的小为112,最大的应尽可能的大,为711.4. (2008年第六届走美五年级初赛第2题)若A 、1A 、2A 都是质数,则A =__________(1A 是指十位数字为1,个位数字为A 的两位数)【解析】A 是质数,只能为2、3、5、7,但是12、15、27都不是质数,所以A =35. (2009年第七届走美五年级初赛第6题)从20以内的质数中选出6个数,写在一个正方体的六个面上,使两个相对面的和都相等,所选的6个数是__________________【解析】20以内的质数有:2,3,5,7,11,13,17,19.显然2不能入选,否则会出现有的和为奇数,有的和为偶数的情况,那么还剩下3,5,7,11,13,17,19这7个数。
从中选择6个,相当于从中剔除1个。
由于这7个数的和为3571113171975++++++=,是3的倍数,而选出的6个数之和也是3的倍数,所以被剔除的那个数也是3的倍数,只能是3。
所以选出的6个数是:5,7,11,13,17,19.应用题6.(2009年第七届走美五年级初赛第5题)弹簧测力计可以用来称物体质量,弹簧伸长的长度也不同,观察下表,当物体重0.5千克时,弹簧伸长______厘米,如果弹簧伸长8厘米,物体重______千克。
【解析】当物体重0.5千克时,弹簧伸长:3÷(1÷0.5)=1.5厘米。
五年级奥数差倍问题(一)教师版
1.五年级奥数差倍问题(wèntí)(一)教师版2.熟练应用通过(tōngguò)图示来表示数量关系.差倍问题(wèntí)就是已知大小两数的差,以及大小两数的倍数(bèishù)关系,求大小(dàxiǎo)两数的问题.差倍问题的特点与和倍问题类似。
解答差倍问题的关键是要确定两个数量的差及相对应的倍数差,一般情况下,在题目中不直接给出,需要经过调整和计算才能得到。
解题思路:首先要在题目中找到1倍量,然后画图确定解题方法.被知识精讲 教学目标6-1-6.差倍问题(一)除数的数量和除数的倍数关系要相对应,相除后得到的结果是一倍量差倍问题的基本(jīběn)关系式:差÷(倍数-)=1倍数(bèishù)(较小数)倍数(bèishù)×几倍=几倍数(较大数)或较小数+差=较大数解决(jiějué)差倍问题,关键(guānjiàn)是学会画线段图,这样可以帮助我们更好的弄清各数量之间的关系.年龄问题的和差问题主要利用的年龄差不变。
例题精讲【例 1】两个整数,差为l6,一个是另一个的5倍.这两个数分别是()和()【考点】差倍问题【难度】1星【题型】填空【关键词】走美杯,3年级(niánj í),初赛(chūsài)【解析(jiě xī)】本题(běntí)属于和差问题。
小数:16÷(5-1)=4;大数(dà shù):4×5=20或4+16=20。
【答案】小数,大数【解析】李爷爷家养的鸭比鹅多只,鸭的只数是鹅的倍,你知道李爷爷家养的鸭和鹅各有多少只吗?【考点】差倍问题【难度】1星【题型】解答【解析】引导学生画图,但是一定要强调差所对应的份数,这样我们就可以求一份量(一倍量),从而解决题目.与18只相对应,这样就可以求出一倍数也就是鹅的只数,求出了鹅的只数,鸭的只数就容易求出来了.鸭与鹅只数的倍数差是(倍),鹅有 (只),鸭有(只). 【答案】鹅只,鸭只【巩固】甲班的图书本数比乙班多80本,甲班的图书本数是乙班的3倍,甲班和乙班各有图书多少本?【考点】差倍问题【难度】1星【题型】解答【解析】乙班的本数: 80÷(3-1)=40(本)甲班的本数: 40×3=120(本)或40+80=120(本)。