信号与系统-5
信号与系统-第5章
第5 章非周期信号实频域分析本章内容傅里叶变换傅里叶变换的概念典型非周期信号的频谱傅里叶变换的性质线性性质,时移性质,频移性质,尺度变换性质,对称性,卷积定理,时域微分积分特性,频域微分积分特性,调制特性非周期信号作用下的系统分析傅里叶变换非周期信号f(T F(jω)∫+∞∞−−=tet f F td )()j (j ωωωωπωd )j (21)(j teF t f ∫+∞=傅里叶反变换=说明:F∫∞−2122d sin )(d cos )()(⎥⎤⎢⎡⎟⎞⎜⎛+⎟⎞⎜⎛=∫∫∞∞t t t f t t t f j F ωωω所以:∫∫∞∞−∞∞−−=tt t f t t t f d sin )(j d cos )(ωωπ2∫∞−π2∞−∫∫∞∞−+=ωωϕωωπd)](cos[)j(21tFωωϕωωd)](sin[)j(j∫∞++tF典型非周期信号的频谱矩形脉冲信号单边指数信号双边指数信号直流信号单位冲激信号符号信号矩形脉冲信号02τ−τ2τE矩形脉冲信号(续)F)(ωj单边指数信号0t单边指数信号(续)1双边指数信号0t双边指数信号(续)直流信号有些函数不满足绝对可积这一充分条件,如1,ε(t ) 等,但傅里叶变换却存在。
2202lim )j (ωααωα+=→F )0()0(≠=ωω因此,直流信号的频谱函数可能为一冲激函数,下面求其大小。
π2=1)(=t f )(∞<<−∞t 不满足绝对可积条件ωωααd 222∫∞∞−+)(d )(122αωαω∫∞∞−+=∞∞−=αωarctan 2直接用定义式不好求解,可用间接的方法。
如:直流信号的频谱函数可看作双边指数信号频谱在α→0时的极限:⎩⎨⎧∞+=0直流信号(续)所以,直流信号的频谱是:单位冲激信号=t fδ)(t)(t符号函数⎩⎨⎧<−>==0101)sgn()(t t t t f 构造函数:[=t11−0可积条件符号函数(续)[] F傅里叶变换对eαjω+本章内容傅里叶变换傅里叶变换的概念典型非周期信号的频谱傅里叶变换的性质线性性质,时移性质,频移性质,尺度变换性质,对称性,卷积定理,时域微分积分特性,频域微分积分特性,调制特性非周期信号作用下的系统分析傅里叶变换的性质线性性质时移性质频移性质尺度变换性质对称性卷积定理时域微分积分特性频域微分积分特性调制特性线性性质== [[解:22‖例:已知f(t), 求F(jω)‖-解: f (t) = f1(t) –g2(t)f1(t) = 1 ↔2πδ(ω)可知:g2(t) ↔2Sa(ω)∴F( jω) = 2πδ(ω) -2Sa(ω)由gτ(t) ↔τSa(ωτ/2)时移性质=[解:‖例求F (j ω)。
信号与系统第5章
t
பைடு நூலகம்
f1(t) 1 0 1 f2(t) 1 t
求如图信号的单边拉氏变换. 例1:求如图信号的单边拉氏变换. 求如图信号的单边拉氏变换 解:f1(t) = ε(t) –ε(t-1),f2(t) = ε(t+1) –ε(t-1) ε , ε 1 F1(s)= (1 es ) s F2(s)= F1(s)
第5-4页
■
湖南人文科技学院通信与控制工程系
信号与系统 解
5.1 拉普拉斯变换
因果信号f 求其拉普拉斯变换. 例1 因果信号 1(t)= eαt ε(t) ,求其拉普拉斯变换.
e ( s α )t ∞ 1 F1b ( s) = ∫ eαt e st d t = = [1 lim e (σ α )t e jω t ] 0 0 t →∞ (s α ) (s α ) 1 s α , Re[ s ] = σ > α jω = 不定 , σ =α 无界 , σ <α
F ( s) = 1 e sT
st
+e
2 st
+e
3 st
+ )
特例: 特例:δT(t) ←→ 1/(1 – e-sT)
第5-13页 13页
■
湖南人文科技学院通信与控制工程系
信号与系统 已知f 例2:已知 1(t) ←→ F1(s), 已知 求f2(t)←→ F2(s)
5.2
拉普拉斯变换性质
∞
可见,对于因果信号, 可见,对于因果信号,仅当 Re[s]=σ>α时,其拉氏变换存 σ α 收敛域如图所示. 在. 收敛域如图所示.
0
α
σ
收敛边界
第5-5页
山大信号与系统答案
第一章习题新闻来源:山东大学信息学院点击数:707 更新时间:2009-4-5 0:13 1—1 画出下列各函数的波形图。
(1)(2)(3)(4)1—2 写出图1各波形的数学表达式图1(1) (2)(3) 全波余弦整流(4) 函数1—3 求下列函数的值。
(1)(2)(3)(4)(5)1—4 已知,求,。
1—5 设,分别是连续信号的偶分量和奇分量,试证明1—6 若记,分别是因果信号的奇分量和偶分量,试证明,1—7 已知信号的波形如图2所示,试画出下列函数的波形。
(1)(2)图 21—8 以知的波形如图3所示,试画出的波形.图31—9 求下列各函数式的卷积积分。
(1),(2),1—10 已知试画出的波形并求。
1—11 给定某线性非时变连续系统,有非零初始状态。
已知当激励为时,系统的响应为时,系统的响应则为。
试求当初始状态保持不变,而激励为时的系统响1—12 设和分别为各系统的激励和响应,试根据下列的输入—输出关系,确定下列各⑴⑵(3)(4)第一章习题答案新闻来源:山东大学信息学院点击数:623 更新时间:2009-4-5 23:181-1 (1)(2)(3)(4)1-2(1)、(2)、或或(3)(4) =1-3(1)(2)(3)(4)(5)01-4 ,1-7 (1)(2)1-81-9(1)(2)1-101-111-12 (1)非线性、时不变系统。
(2)线性、时变系统。
(3)线性、时不变系统。
(4)线性、时变系统。
上一篇:没有上一篇资讯了下一篇:没有下一篇资讯了第二章习题新闻来源:山东大学信息学院点击数:412 更新时间:2009-4-9 22—1 已知给定系统的齐次方程是,分别对以下几种初始状态求解系1),2),3),2—2 已知系统的微分方程是当激励信号时,系统的全响应是,试确定系统的零输入2—3 已知系统的微分方程是该系统的初始状态为零。
1)若激励,求响应。
2)若在时再加入激励信号,使得时,,求系数。
信号与系统课后习题答案第5章
y(k)=[2(-1)k+(k-2)(-2)k]ε(k)
76
第5章 离散信号与系统的时域分析
5.23 求下列差分方程所描述的离散系统的零输入响应、 零状态响应和全响应。
77
第5章 离散信号与系统的时域分析 78
第5章 离散信号与系统的时域分析
确定系统单位响应: 由H(E)极点r=-2, 写出零输入响应表示式: 将初始条件yzi(0)=0代入上式,确定c1=0, 故有yzi(k)=0。
题解图 5.6-1
16
第5章 离散信号与系统的时域分析
题解图 5.6-2
17
第5章 离散信号与系统的时域分析
因此
18
第5章 离散信号与系统的时域分析
5.7 各序列的图形如题图 5.2 所示,求下列卷积和。
题图 5.2
19
第5章 离散信号与系统的时域分析 20
第5章 离散信号与系统的时域分析 21
第5章 离散信号与系统的时域分析 46
第5章 离散信号与系统的时域分析
5.16 已知离散系统的差分方程(或传输算子)如下,试求各 系统的单位响应。
47
第5章 离散信号与系统的时域分析 48
由于
第5章 离散信号与系统的时域分析
49
第5章 离散信号与系统的时域分析
因此系统单位响应为
50
第5章 离散信号与系统的时域分析 51
5.21 已知LTI离散系统的单位响应为
试求: (1) 输入为
时的零状态响应yzs(k); (2) 描述该系统的传输算子H(E)。
69
第5章 离散信号与系统的时域分析
解 (1) 由题意知: 先计算:
70
第5章 离散信号与系统的时域分析
信号与线性系统-5
信号与线性系统-5(总分:102.04,做题时间:90分钟)一、计算题(总题数:17,分数:102.00)标出下列信号对应于s平面中的复频率。
(分数:5.00)(1).e 2t;(分数:1.25)__________________________________________________________________________________________ 正确答案:()解析:解由于s 1 =2。
(2).te -t;(分数:1.25)__________________________________________________________________________________________ 正确答案:()解析:解由于s 1,2 =-1。
(3).cos2t;(分数:1.25)__________________________________________________________________________________________ 正确答案:()解析:解由于,所以s 1,2=±j2。
(4).e -t sin(-5t)(分数:1.25)__________________________________________________________________________________________ 正确答案:()解析:解由于s 1,2 =-1±j5。
写出下列复频率对应的时间函数模式。
(分数:5.00)(1).-1;(分数:1.25)__________________________________________________________________________________________ 正确答案:()解析:解 f(t)=Ae -tε(t)2;__________________________________________________________________________________________ 正确答案:()解析:解 f(t)=Ae 2tε(t)(3).-1±j2;(分数:1.25)__________________________________________________________________________________________ 正确答案:()解析:解 f(t)=Ae -t cos(2t+θ)ε(t)(4).±j4(分数:1.25)__________________________________________________________________________________________ 正确答案:()解析:解 f(t)=Acos(4t+θ)ε(t)求下列函数的拉普拉斯变换,并注明收敛区。
信号与系统讲义第五章1引言及无失真传输条件
无失真:时域波形传输不变
e(t )
e(t)
线性网络
t
H ( j)
R( j) KE( j)e jt0 R( j) E( j)H ( j)
r (t )
t t0
r(t) K e(t t0 )
H ( j) R( j) Ke jt0 E( j)
频域无失真条件: H ( j) Ke jt0
H( j) K () t0
r(t) e(t)*h(t)
R( j) E( j)H( j) H ( j) LT[h(t)] H ( j) R( j)
E( j)
对稳定系统
H (s)
H ( j) H (s) s j
系统函数还可以通过对微分方程取傅氏变换而得到
求矩形脉冲通过低通滤波器的响应
v1 (t )
E
t
0
输入信号波形
R
傅里叶变换在现代通信系统中的应用非常多,典 型的应用就是——滤波、调制与解调、抽样
频域系统函数——系统的频率响应函数H(jw)
稳定系统:s域系统函数→频域系统函数
频域系统函数H(jw)描述了系统对信号的各频率
成份的加权
傅氏变换将信号分解为无穷多项ejwt信号的叠加
S域系统函数H(s)描述系统对复指数信号est的加
5.3 无失真传输
信号通过系统传输,由于系统对信号中各频率分 量幅度产生不同程度的衰减,使得响应中各频率 分量的相对幅度产生变化,引起幅度失真。
同样地,由于系统对输入信号各频率分量产生的 相移,信号也会出现失真,称为相位失真
频域由相于移系→统时对域信延号时各频率分量产生的相移不与频
输 输
入 出率成yx正((t相t))比对,ss位iinn使((置响11t产t )应生的s1变)in各(化s频i2,nt率()而分2t引量起在2的) 时失间真轴上的
信号与系统课后习题答案第5章
yzi(k)=(-2)kε(k)
39
第5章 离散信号与系统的时域分析 40
第5章 离散信号与系统的时域分析 41
第5章 离散信号与系统的时域分析 42
第5章 离散信号与系统的时域分析 43
第5章 离散信号与系统的时域分析
(6) 系统传输算子:
22
第5章 离散信号与系统的时域分析
5.9 已知两序列
试计算f1(k)*f2(k)。
23
解 因为
第5章 离散信号与系统的时域分析
所以
24
第5章 离散信号与系统的时域分析
5.10 已知序列x(k)、y(k)为
试用图解法求g(k)=x(k)*y(k)。
25
第5章 离散信号与系统的时域分析
解 首先画出y(k)和x(k)图形如题解图5.10所示, 然后结合 卷积和的图解机理和常用公式,应用局部范围等效的计算方法 求解。
题解图 5.10
26
第5章 离散信号与系统的时域分析 27
总之有
第5章 离散信号与系统的时域分析
28
第5章 离散信号与系统的时域分析
5.11 下列系统方程中,f(k)和y(k)分别表示系统的输入和输 出,试写出各离散系统的传输算子H(E)。
29
第5章 离散信号与系统的时域分析
解 由系统差分方程写出传输算子H(E)如下:
解 各序列的图形如题解图5.2所示。
题解图 5.2
5
第5章 离散信号与系统的时域分析
5.3 写出题图 5.1 所示各序列的表达式。
题图 5.1
6
第5章 离散信号与系统的时域分析 7
第5章 离散信号与系统的时域分析
《信号与系统》第五章基本内容示例(含答案)
e−4t
sin(0t)
(t)
(2)ℒ
(2t
−
5)
=
1
−5s
e2
s
(3)ℒ-1
1 1− e−s
=
k =0
(t
−
k)
(4)ℒ
cos(3t − 2) (3t − 2) =
s
2
s +
9
−
e
2 3
s
(5)ℒ
e−t (t)
− e−(t −3)
(t
−
3)
=
s
1 (1− +1
e−3s )
(6)ℒ-1
1 2
2. 已知系统的 H (s) = s +1 ,画出系统的零、极点分布图。
(s + 2)2 + 4
六、简单计算下列式子
ℒ 1、
-1
(s
+
0 4)2
+
02
2、ℒ (2t − 5)
ℒ-1
3、
1
1 − e−
s
4、ℒ cos(3t − 2) (3t − 2)
ℒ 5、 e−t (t) − e−(t −3) (t − 3)
系统并联后的复合系统的系统函数为( )。
A . H1(s) + H2 (s)
B . H1(s) H2(s)
C.无法确定
D. H1(s) // H2(s) 14、若 f (t) 1 ,Re[s] −3 ,根据终值定理,原函数 f (t) 的终值为
s+3
( )。
A.无穷小
B.无穷大
C. 1 D. 0
X (s) = F(s) + s X (s) + s2 X (s)
信号与系统-华工-奥本海姆-各章例题-5
已知描述某LTI系统的微分方程为 例4 已知描述某 系统的微分方程为 y"(t) + 3y'(t) + 2y(t) = 3x '(t)+4x(t),系统的输入激励 x(t) , = e3t u(t),求系统的零状态响应 zs (t)。 ,求系统的零状态响应y 。
解: 由于输入激励x(t)的频谱函数为
系统的频率响应由微分方程可得
1 X ( jω ) = jω + 3
3( jω ) + 4 3( jω ) + 4 H ( jω ) = = 2 ( jω ) + 3( jω ) + 2 ( jω + 1)( jω + 2)
故系统的零状态响应yzs (t)的频谱函数Yzs (jω)为
3( jω ) + 4 Yzs ( jω ) = X ( jω ) H ( jω ) = ( jω + 1)( jω + 2)( jω + 3)
= 5 + cos 2t
∞<t <∞
求图示周期方波信号通过LTI系统 ω) = 系统H(j 例6 求图示周期方波信号通过 系统 1/(α+jω) 的响应 。 的响应y(t)。
~ (t ) x
解: 对于周期方波信号,其Fourier系数为
Aτ nω0τ Cn = Sa T0 2
信号系统-第5章 拉普拉斯变换与系统函数
事实上,由于X(s)是一个复平面上 的函数,将其视为一个数学上的变换而 不强调其物理意义更易理解。
利用复变函数理论中的围线积分、留
数定理和约当(Jordon)引理等知识,反 变换表达式(5-11)中原函数x(t)的计算可 简化为如下所示的留数计算。
x(t)
1 2πj
j∞ j∞
X
(s)est ds
因此,反演公式同样适用于单边拉 普拉斯反变换。
5.3 拉普拉斯变换的进一步讨论
5.3.1 定义与说明
式(5-3)已给出了单边拉普拉斯变 换的定义,这里重写于下:
∞
X (s) x(t)estdt 0
图5-2 3个不同的信号具有相同的单边拉普拉斯变换
【例5-5】 求(t)的拉普拉斯变换。
解 取为“0+”时,
1
j∞
X (s)estds
x(t) 2πj j∞
0
t≥0 t0
(5-11)
从物理意义上讲,式(5-11)也可 理解为将x(t)视为形如 et ejt 的幅度随 指数形式增长或衰减的正弦波的线性组 合。
但与傅里叶变换相比,X(s)不能像 X (j) 一样具有明确的物理意义,因此, X(s)在这个正弦波线性组合中的作用难 以得到物理解释。
变收换 敛与 域单 也边相拉同普,拉均斯 为变Re换s相同,,均即为右F半(s)平 s面1(, 包括大半或小半,视 而定)。
【例5-4】 因果信号 f1(t) et (t) 与非因 果信号 f2 (t) et (t) 具有相同的双边 拉普拉斯变换表达式,但收敛域不同。
F1(s)
∞
et (t)estdt
0
0
令 s j ,即 Res , Ims,
信号与系统复习题(答案全)
1、 若系统的输入f (t )、输出y (t) 满足()3()4t y t e ft -=,则系统为 线性的 (线性的、非线性的)、 时变的 (时变的、时不变)、 稳定的 (稳定的、非稳定的).2、 非周期、连续时间信号具有 连续 、非周期频谱;周期、连续时间信号具有离散、非周期 频谱;非周期、离散时间信号具有 连续 、周期频谱;周期、离散时间信号具有离散、 周期 频谱。
3、 信号f(t)的占有频带为0-10KHz,被均匀采样后,能恢复原信号的最大采样周期为 5×10—5 s 。
4、 )100()(2t Sa t f =是 能量信号 (功率信号、能量信号、既非功率亦非能量信号)。
5、 ()2cos()f t t =+是 功率信号 (功率信号、能量信号、既非功率亦非能量信号)。
6、 连续信号f(t )=sint 的周期T 0= 2π ,若对f (t )以fs=1Hz 进行取样,所得离散序列f(k)=sin(k ) ,该离散序列是周期序列? 否 。
7、 周期信号2sin(/2)()j n tn n f t e n ππ+∞=-∞=∑,此信号的周期为 1s 、直流分量为 2/π 、频率为5Hz 的谐波分量的幅值为 2/5 。
8、 f (t) 的周期为0。
1s 、傅立叶级数系数**03355532F F F F F j --=====、其余为0。
试写出此信号的时域表达式f (t ) = 5 + 6 cos ( 60 π t ) - 4 sin (100 π t ) . 9、 f (k ) 为周期N=5的实数序列,若其傅立叶级数系数()205=F ()52511,πjeF -+=()54512πjeF -+=、 则F 5 (3 )= ()54512πjeF +=- 、F 5 (4 )= ()52511πj eF +=- 、F 5 (5 )= 2 ;f(k ) =())1.7254cos(62.052)9.3552cos(62.152525140525︒-⨯+︒-⨯+=∑=k k e n F n k jn πππ。
管致中信号与线性系统第5版知识点课后答案
一切物理现象,都要满足先有原因然后产生结果这样一个显而易见的因果关系,结果不能早于原因而出现。对于一个系统,激励是原因,响应是结果,响应不可能出现于施加激励之前。符合因果律的系统称为因果系统(causal system),不符合因果律的系统称为非因果系统(non Causal system)。例如
若
则
系统若具有上式表示的性质则为非时变系统,不具有上述性质则为时变系统。
3.连续时间系统与离散时间系统
连续时间系统(continuous-time system)和离散时间系统(discrete-time system)是根据它们所传输和处理的信号的性质而定的。前者传输和处理连续信号,它的激励和响应在连续时间的一切值上都有确定的意义;与后者有关的激励和响应信号则是不连续的离散序列。
若
则
系统的叠加性是指当有几个激励同时作用于系统上时,系统的总响应等于各个激励分别作用于系统所产生的分量响应之和。用符号表示为
若 ,
则 + +
合并起来,就可得到线性系统应当具有的特性为
若 ,
则+ +
或者说,具有这种特性的系统,称为线性系统。非线性系统不具有上述特性。
2.非时变系统和时变系统
系统又可根据其中是否包含有随时间变化参数的元件而分为非时变系统(time.Invariant system) 和时变系统(time varying system)。
如复合信号中某两个分量频率的比值为无理数,则无法找到合适的;,该信号常称为概周期信号。概周期信号是非周期信号,但如选用某一有理数频率来近似表示无理数频率,则该信号可视为周期信号。所选的近似值改变,则该信号的周期也随之变化。例如 的信号,如令1.41,则可求得=100,=141,该信号的周期为 =200。如令1.414,则该信号的周期变为2000。
信号与系统课后习题参考答案
1试分别指出以下波形是属于哪种信号?题图1-11-2 试写出题1-1 图中信号的函数表达式。
1-3 已知信号x1(t)与x2(t)波形如题图1-3 中所示,试作出下列各信号的波形图,并加以标注。
题图1-3⑴x1(t2)⑵ x1(1 t)⑶ x1(2t 2)⑷ x2(t 3)⑸ x2(t 2) ⑹x2(1 2t)2⑺x1(t) x2( t)⑻x1(1 t)x2(t 1)⑼x1(2 t) x2(t 4)21- 4 已知信号x1(n)与x2 (n)波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。
题图1-4⑴x1(2n 1) ⑵ x1(4 n)⑶ x1(n)2⑷ x2 (2 n)⑸ x2(n 2) ⑹ x2(n 2) x2( n 1)⑺x1(n 2) x2(1 2n)⑻x1(1 n) x2(n 4)⑼ x1(n 1) x2(n 3)1- 5 已知信号x(5 2t )的波形如题图1-5 所示,试作出信号x(t)的波形图,并加以标注。
题图1-51- 6 试画出下列信号的波形图:1⑴ x(t) sin( t) sin(8 t)⑵ x(t) [1 sin( t )] sin(8 t)21⑶x(t) [1 sin( t)] sin(8 t)⑷ x(t) sin( 2t )1-7 试画出下列信号的波形图:⑴ x(t)1 e t u(t) ⑵ x(t) e t cos10 t[u(t 1) u(t 2)]⑶ x(t)(2 e t)u(t)⑷ x(t) e (t 1)u(t)⑸ x(t)u(t22 9) ⑹ x(t)(t2 4)1-8 试求出以下复变函数的模与幅角,并画出模与幅角的波形图1j2 ⑴ X (j ) (1 e j2)⑵ X( j1 e j4⑶ X (j ) 11 ee j ⑷ X( j )试作出下列波形的奇分量、偶分量和非零区间上的平均分量与交流分量。
题图 1-10形图。
题图 1-141-15 已知系统的信号流图如下,试写出各自系统的输入输出方程。
《信号与系统》第五章知识要点+典型例题
是双边拉氏变换收敛域的一种特殊情况。 3、 常用函数单边拉氏变换对 表 5.1 列出了最常使用函数的单边拉氏变换对。 4、单边拉氏变换的主要性质 掌握拉氏变换的性质如图掌握傅里叶变换性质一样重要,应用性质并结合常用函数的 拉氏变换对就可以简便地求复杂信号的拉氏变换,或由复杂象函数求原函数。表 5.2 列出了 最常用的单边拉氏变换的性质。
n
(5.3)
式中, s = pi 为 F ( s ) 的第 i 个单阶实极点,系数 K i 由下式确定
K i = (s - pi ) F (s )
b.
s =p i
(5.4)
F ( s ) 有单阶共轭极点
设 s = -a ± jb 为 F ( s ) 的一对共轭极点。 求逆变换时把 F ( s ) 首先凑成类似余弦函数
2
掌握拉氏变换的重要性质,也应从性质的基本形式、应用该性质的基本思路及应用中 应注意的问题这样三个方面来掌握。许多性质的应用思路及注意的问题都类同傅里叶变换, 这里不再赘述。 表 5.1 编号 1 2 3 4 5 时域函数 f (t ) 常用信号的单边拉氏变换对 (t ³0 ) 象函数 F ( s ) 1
s
¥ s
f ( )d
F ( s ) 为真分式
f ( ) lim sF ( s ),
s0
s 0 在sF ( s )的收敛域内
5、常用的拉氏逆变换的求解方法 逆变换积分公式并不常用于求解拉氏逆变换,而经常使用的有以下几种。 (1) 查表法 若提供拉氏变换对表,可“对号入座” ,一一查找。但应试时,一不提供表, 二不准翻书查看。我们需要记住一些常用信号的拉氏变换对,结合拉氏变换的重要性质,加 以套用,求得拉氏逆变换。 (2) 部分分式展开法 该方法要求 F ( s ) 为有理真分式。若 F ( s ) 为假分式,应先利用多项式相除, 把 F ( s ) 表示成一个多项式加真分式的形式。对于多项式部分,对应的逆变换是非常容易求 得的,它们是冲激函数 (t ) 及其各阶导数项之和。例如
《信号与系统》第五章
l) +
... +
c ∑ 2πδ (Ω − ( N − 1)2π / N
l)
例5-9,例5-10
离散时间信号
的傅立叶变换为( )
A.
B.
C.
D.
下面说法中正确的是( ) A. 离散时间信号 x[n]的绝对可和是其离散时 间傅立叶变换存在的充分条件。 B. 非周期离散时间信号 x[n]的偶部:频谱为 的实偶函数。 C. 非周期离散时间信号 x[n]的虚部:频谱为 的虚奇函数。 D. x[n]是实值的,则其频谱X(Ω)的模是Ω的 奇函数。
x[n] =
k =< N >
∑
c k ϕ k [ n] =
k =< N >
∑
ck e jk 2πn / N
(5-29)
¾ 将周期序列表示成式(5-29)的形式,即一组成谐波关系的复指 数序列的加权和,称为离散傅里叶级数(Discrete Time Fourier Series),而系数 k 则称为离散傅里叶系数。
3 时域抽样定理
时域抽样定理:设x(t)是一个有限带宽信号,即在 | ω |> ωm时, X (ω) = 0 ,若 ω > 2ω 或T < 1/ 2 f ,则x(t)可以唯一地由其样 s m m 本x(nT)确定。
最低抽样频率 2ω m 称为奈奎斯特抽样率
练习:信号 x(t) =
sin2π t πt
的奈奎斯特抽样间隔为(
)
时域抽样(采样)定理的具体应用 ¾若已知x(t),可通过以下办法得到x(t) 的样本 x(nT)并重建x(t): 1)将周期冲激串 p(t)与x(t)相乘,得到一冲激串 xp (t) 2) x p (t) 的依次冲激强度得到样本值x(nT) 3)将冲激串通过一个增益为T,截至频率大于 ω m 而小于 ωs −ωm 的 理想低通滤波器,那么该滤波器 的输出就是x(t)
郑君里《信号与系统》(第3版)笔记和课后习题(含考研真题)详解-第5章 傅里叶变换应用于通信系统——
故响应为:
R( j) = E( j)×H ( j) = 1 ×1 = 1 - 1 j + 3 j + 2 j + 2 j + 3
反变换可得: r(t)=F-1[R(jω)]=(e-2t-e-3t)u(t)
1 / 50
圣才电子书
十万种考研考证电子书、题库视频学习平 台
图 5-1-1 线性网络的无失真传输 2.引起信号失真的原因 ①系统对信号中各频率分量幅度产生不同程度的衰减,使响应的各频率分量的相对幅 度发生变化,引起幅度失真; ②系统对各频率分量产生的相移与频率不成正比,使响应的各频率分量在时间轴上的 相对位置产生变化,引起相位失真。 三、滤波 1.理想低通滤波器(见表 5-1-1)
= jπ [e jtan- 11 ( + 1) - e- jtan- 11 ( - 1)] + jπ ×[e jtan- 13 ( + 3) - e- jtan- 13 ( - 3)]
2
10
反变换,可得:
r(t) = F - 1[R( j)]
= 1 sin(t - tan- 11) + 1 sin(3t - tan- 1 3)
5-2 若系统函数H(jω)=1/(jω+1),激励为周期信号e(t)=sin(t) +sin(3t),试求响应r(t),画出e(t),r(t)波形,讨论经传输是否引起失真。
解:激励信号 e(t)=sin(t)+sin(3t),则 E(jω)=F[e(t)]=jπ[δ(ω+1)-δ(ω-1)]+jπ[δ(ω+3)-δ(ω-3)]
6 / 50
信号与系统(奥本海默第二版)第5章
说明:这些结论与连续时间情况下完全一致。 六. 差分与求和 (Differencing and Accumulation):
x[n] x[n 1] (1 e j ) X (e j )
X (e j ) j0 x(k ) 1 e j X (e )k ( 2 k ) k n
五. 共轭对称性 (symmetry properties):
若 x[n] X (e j ), 则 x*[n] X * (e j )
由此可进一步得到以下结论:
x*[n] x[n] 1. 若 x[n] 是实信号,则
X * (e j ) X (e j ), 即 X * (e j ) X (e j )
一. 从DFS到DTFT: 在讨论离散时间周期性矩形脉冲信号的频谱时,
我们看到:
当信号周期 N 增大时,频谱的包络形状不变,
幅度减小,而频谱的谱线变密。
N1 2 N 10
Nak
k
N1 2 N 20
k
N1 2 N 40
k
当 N 时,有 (2 / N ) 0 ,将导致 0 信号的频谱无限密集,最终成为连续频谱。 从时域看,当周期信号的周期 N 时,周 期序列就变成了一个非周期的序列。
X (e )
j
j
1 1 a 2 2a cos
1
a sin X ( e ) tg 1 a cos
0 a 1
1 a 0
由图可以得到:
0 a 1 时,低频特性, x[n] 单调指数衰减
1 a 0 时,高频特性,
2.
x[n] 摆动指数衰减
j
2 kn N
信号与系统实验五 连续线性时不变系统分析
信号与系统实验陈述课程名称:信号与系统实验实验项目名称:连续线性时不变系统分析专业班级:姓名:学号:完成时间:年月日一、实验目的1.掌握连续LTI系统的单位冲激响应、单位阶跃响应和任意激励对应响应的求解方法。
2.掌握连续LTI系统的频域分析方法。
3.掌握连续LTI系统的复频域分析方法。
4.掌握连续LTI系统的时域、频域和复频域分析方法的相互转换。
二、实验原理1.连续LTI系统的时域分析(1)连续线性时不变系统的描述设连续线性时不变系统的激励为,响应为,则描述系统的微分方程可暗示为为了在Matlab编程中调用有关函数,我们可以用向量和来暗示该系统,即这里要注意,向量和的元素排列是按微分方程的微分阶次降幂排列,缺项要用0补齐。
(2) 单位冲激响应单位冲激响应是指连续LTI系统在单位冲激信号激励下的零状态响应,因此满足线性常系数微分方程(5.1)及零初始状态,即,依照定义,它也可暗示为对于连续LTI系统,若其输入信号为,冲激响应为,则其零状态响应为可见,能够刻画和表征系统的固有特性,与何种激励无关。
一旦知道了系统的冲激响应,就可求得系统对任何输入信号所发生的零状态响应。
Matlab提供了专门用于求连续系统冲激响应的函数impulse(),该函数还能绘制其时域波形。
(3)单位阶跃响应单位阶跃响应是指连续LTI系统在单位阶跃信号激励下的零状态响应,它可以暗示为Matlab提供了专门用于求连续系统单位阶跃响应的函数step( ),该函数还能绘制其时域波形。
(4)任意激励下的零状态响应已经知道,连续LTI系统可用常系数线性微分方程(5.1)式来描述,Matlab提供的函数lsim( )能对上述微分方程描述的连续LTI系统的响应进行仿真,该函数不但能绘制指定时间范围内的系统响应波形图,而且还能求出系统响应的数值解。
其调用格式有lsim(b,a,x,t)y=lsim(b,a,x,t) :只求出系统的零状态响应的数值解,而不绘制响应曲线需要特别强调的是,Matlab总是把由分子和分母多项式暗示任何系统都当作是因果系统。
《信号与系统》课程讲义4-5
§4.5系统函数零极点∽频响特性一、频响特性1.概念①系统在正弦信号激励下稳态响应随信号频率的变化情况②H (s )稳定系统0sin()m E t ω0()lim ()~ss t r t r t ω→∞=③包括:幅频特性、相频特性§4.5系统函数零极点∽频响特性00120012...j j n nK K K K K s j s j s p s p s p ωωωω−=++++++−−−−j e H E j j H E s R j s K j m m j s zs j 22)(|)()(00000000−=−−⋅=⋅+=−−=−ϕωωωωωωje H E j j H E s R j s K j m m j s zs j 22)(|)()(00000000ϕωωωωωω=⋅=⋅−==2.稳定系统的频响特性)()(220s H s E s R m zs ωω+=①系统响应:000()j H j H e ϕω=000()j H j H e ϕω−−=令则§4.5系统函数零极点∽频响特性0000()lim ()j t j tss zs j j t r t r t K e K e ωωωω−−→∞==+)sin()(2000)()(00000ϕωωωϕωϕ+=+−=++−t H E e e jE m t j j t j m 0000sin()sin()m ss m E t r E H t ωφωφϕ+→=++②0000cos()cos()m ss m E t r E H t ωφωφϕ+→=++§4.5系统函数零极点∽频响特性③ωω()H s 当正弦激励信号频率改变时,将代入得到频率响应()()()|()j s j H j H s H j e ϕωωωω===幅频特性相频特性§4.5系统函数零极点∽频响特性[例1]求系统的稳态响应22()3()2()2()3()d d dr t r t r t e t e t dt dt dt ++=+()sin cos 2e t t t=+解:222323()()3232s j H s H j s s j ωωωω++=→=+++−2(arctan arctan3)33213(1)1310j j H j ej −+==+4(arctan arctan3)32345(2)26210j j H j ej π−−+==−+()ss r t 13251()sin(arctan arctan 3)cos(2arctan arctan 3)10332210ss r t t t π=+−++−−§4.5系统函数零极点∽频响特性c ωω()H j ωc c ωωωω<⎫⎬>⎭时,网络允许信号通过低通特性时,网络不允许信号通过cωω()H j ωc c ωωωω<⎫⎬>⎭时,网络不允许信号通过高通特性时,网络允许信号通过1c ω2c ωω()H j ω带阻特性3.滤波网络分类:幅频特性1c ω2c ωω()H j ω带通特性1c ω§4.5系统函数零极点∽频响特性1111()()()()()()mmj j j j nniii i K s z K j z H s H j s p j p ωωω====−−=→=→−−∏∏∏∏Oσ⋅×ip jz iθj ψj ωi M jN ,j i z p 频率特性取决于零、极点的分布4.频响特性的S 平面几何分析法()H j ωjj j j j z N eψω−=ij i i j p M eθω−=→令§4.5系统函数零极点∽频响特性121212121212[()()]1212()()()m nm n j j j m j j j n j m nj N e N e N e H j KM e M e M e N N N KeM M M H j e ψψψθθθψψψθθθϕωωω+++−+++=== 1212()()()m n ϕωψψψθθθ=+++−+++ 1212()m nN N N H j KM M M ω= 其中Oσ⋅×ip jz iθj ψj ωiM jN §4.5系统函数零极点∽频响特性RC 21()()11()V s R sH s V s R s sC RC ===++CR++-1v -2v 【例2】研究图示的高通滤波网络的频响特性10z =零点:11p RC=−极点:解:转移函§4.5系统函数零极点∽频响特性()|()s j H s H j ωω==11()1211()j j j N e V H j e M e V ψϕωθω==→211111,()V N V M ϕωψθ==−O ×j ω1M 1N 1θ190ψ=σ1RC−以矢量因子表示为1211111110,000,90()90N V N M RC M V θψϕω⎧==→=→=⎪⎨⎪==→=⎩0ω=时,§4.5系统函数零极点∽频响特性121111111222,2245,90()45N V N M RC RC M V θψϕω⎧==→=→=⎪⎨⎪==→=⎩ 1211111190,90()0N V M V θψϕω⎧→⇒→⎪⎨⎪→=→=⎩1RC ω=时,此点为高通滤波网络截止频率点ω→∞时,45 901RCω()ϕωO ()H j ω221§4.5系统函数零极点∽频响特性s RC 21()()()V j H j V j ωωω=1122R C R C ++-1v -2v C1R1C2R2++--3v 3kv 【例3】由平面几何法研究下图所示二阶系统的频响特性,,且§4.5系统函数零极点∽频响特性1311211112112223221()()1()()11()()()()()1sC V s V s R V s k s sC H s V s R C s s R R C R C V s kV s R sC ⎧⎪⎪=⎪+⎪⇒==⎨⎪++⎪=⎪+⎪⎩i 1121122110;,z p p R C R C ==−=−O ×j ω1M 1N 1θ190ψ= σ111R C −×2M 2θ221R C−解:零、极点为:1122R C R C 由于221R C −,所以靠近原点,111R C −离开较远。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统-5(总分:100.01,做题时间:90分钟)一、(总题数:21,分数:100.00)1.已知一个因果LTI系统的输入与输出由下列微分方程相联系:求系统的冲激响应。
(分数:3.00)__________________________________________________________________________________________ 正确答案:()2.电路如下图所示,写出电压转移函数,为得到无失真传输,元件参数R 1,R 2,C 1,C 2应满足什么关系?(分数:3.00)__________________________________________________________________________________________ 正确答案:()无失真条件:R 1 C 1 =R 2 C 23.激励信号e(t)为周期性锯齿波,经RC高通网络传输,分别如下图(a)和题图(b)所示,求输出的频域表达式R(jω)。
(分数:3.00)__________________________________________________________________________________________ 正确答案:()4.若LTI系统的冲激响应h(t)如下图所示,激励信号,求输出响应r(t),并讨论传输是否引起失真。
(分数:3.00)__________________________________________________________________________________________ 正确答案:()一个LTI系统的冲激响应为 e i (t),求输出r i (t)。
(分数:9.00)(1).e 1 (t)是如下图所示的对称方波;(分数:3.00)__________________________________________________________________________________________ 正确答案:()3.00)__________________________________________________________________________________________ 正确答案:()(3).(分数:3.00)__________________________________________________________________________________________ 正确答案:()5.已知系统的单位冲激响应。
输入r(t)。
(分数:3.00)__________________________________________________________________________________________ 正确答案:()6.已知系统的单位冲激响应,输入信号e(t)为如下图所示的周期信号,求输出r(t)。
(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:r(t)=π+2cos 2πt已知一个因果LTI系统的输出r(t)和输入e(t)由下列微分方程相联系:(分数:6.00)(1).确定系统的冲激响应h(t);(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:h(t)=e -2tε(t)-e -4tε(t)(2).如果e(t)=te -2tε(t),该系统的零状态响应是什么?(分数:3.00)__________________________________________________________________________________________ 正确答案:()一个滤波器的传输函数如下图(a)所示。
(分数:6.00)(1).若输入信号e(t)为如下图(b)所示的锯齿波信号,求输出r(t);(分数:3.00)__________________________________________________________________________________________ 正确答案:()(2).r(t)。
(分数:3.00)__________________________________________________________________________________________ 正确答案:()理想低通滤波器的传输函数H(jω)=G 2π (ω),求输入为下列各信号时的响应r(t):(分数:9.00)(1).e(t)=Sa(πt);(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:Sa(πt)3.00)__________________________________________________________________________________________ 正确答案:()解析:Sa(πt)(3).e(t)=δ(t)。
(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:Sa(πt)7.已知理想低通滤波器的传输函数H(jω)=G 240(ω),输入信号e(t)=20cos 100tcos 210 4t,求输出r(t)。
(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:r(t)=10cos 100t已知一个理想高通滤波器,其系统函数为其中ωc为截止角频率,t 0为延迟时间。
(分数:6.00)(1).求系统的冲激响应h(t);(分数:3.00)__________________________________________________________________________________________ 正确答案:()(2).当输入激励为e(t)=2e -tε(t)时,若要求输出信号r(t)的能量为输入信号e(t)的能量的50%,试确定ωc应具有的值。
(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:ωc =1rad/s已知信号e(t)=sin πt+cos 3πt,求该信号经过下列LTI系统后的输出信号r(t):(分数:9.00)3.00)__________________________________________________________________________________________ 正确答案:()解析:r(t)=sinπt3.00)__________________________________________________________________________________________ 正确答案:()3.00)__________________________________________________________________________________________ 正确答案:()8.如下图(a)是抵制载波振幅调制的接收系统。
若输入信号s(t)=cos 1000t低通滤波器的传输函数如下图(b)所示,求输出信号y(t)。
(分数:3.00)__________________________________________________________________________________________ 正确答案:()9.若系统的框图如题所示,且有输入信号s(t)=cos t传输函数求系统的输出y(t)。
(分数:3.00)__________________________________________________________________________________________ 正确答案:()如下图所示的系统。
(分数:9.00)(1).若,p(t)=cos 2ωt+4cos 8ωr(t)的傅里叶级数表达式;(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:其中(2).若e(t)是一个实信号,且已知,p(t)=cos Ωt,r(t);(分数:3.00)__________________________________________________________________________________________ 正确答案:()(3).若e(t)与h(t)同(b)中的相同,但p(t)=sin ωt,则输出r(t)是什么?(分数:3.00)__________________________________________________________________________________________ 正确答案:()10.如下图(a)给出了一个输入信号为e(t),输出信号为r(t)的系统。
已知e(t)的频谱如下图(b)所示,画出r(t)的频谱R(jω)。
(分数:3.00)__________________________________________________________________________________________ 正确答案:()解析:r(t)的频谱R(jω)如图:在如下图所示的系统中,理想低通滤波器的频率特性H(jω)=[ε(ω+2Ω)-ε(ω-2Ω)]e -jω0t,ω0≥Ω(分数:8.01)(1).求系统的冲激响应h(t);(分数:2.67)__________________________________________________________________________________________ 正确答案:()(2).若输入信号f(t)=[Sa(Ωt)] 2 cosω0 t,求输出y(t);(分数:2.67)__________________________________________________________________________________________ 正确答案:()(3).若输入信号f(t)=[Sa(Ωt)] 2 sin ω0 t,求输出y(t)。