2015高考数学(理)一轮复习配套限时规范特训:10-1分类加法计数原理与分步乘法计数原理
高考数学一轮复习分类加法计数原理专题检测(带答案)
高考数学一轮复习分类加法计数原理专题检测(带答案)完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法‥‥‥,在第n类办法中有mn种不同的方法,以下是分类加法计数原理专题检测,请考生及时练习。
一、选择题1.如图,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有()A.72种B.48种C.24种D.12种解析先分两类:一是四种颜色都用,这时A有4种涂法,B 有3种涂法,C有2种涂法,D有1种涂法,共有4321=24种涂法;二是用三种颜色,这时A,B,C的涂法有432=24种,D只要不与C同色即可,故D 有2种涂法.故不同的涂法共有24+242=72种.答案 A2.如图,用6种不同的颜色把图中A、B、C、D四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有().A.400种B.460种C.480种D.496种解析从A开始,有6种方法,B有5种,C有4种,D、A同色1种,D、A不同色3种,不同涂法有654(1+3)=480(种),故选C.答案 C3.某省高中学校自实施素质教育以来,学生社团得到迅猛发展,某校高一新生中的五名同学打算参加春晖文学社、舞者轮滑俱乐部、篮球之家、围棋苑四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团.且同学甲不参加围棋苑,则不同的参加方法的种数为().A.72B.108C.180D.216解析设五名同学分别为甲、乙、丙、丁、戊,由题意,如果甲不参加围棋苑,有下列两种情况:(1)从乙、丙、丁、戊中选一人(如乙)参加围棋苑,有C种方法,然后从甲与丙、丁、戊共4人中选2人(如丙、丁)并成一组与甲、戊分配到其他三个社团中,有CA种方法,故共有CCA种参加方法;(2)从乙、丙、丁、戊中选2人(如乙、丙)参加围棋苑,有C 种方法,甲与丁、戊分配到其他三个社团中有A种方法,这时共有CA种参加方法;综合(1)(2),共有CCA+CA=180种参加方法.答案 C.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有()A.8种B.9种C.10种D.11种解析分四步完成,共有3311=9种.答案 B.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有().A.300种B.240种C.144种D.96种解析甲、乙两人不去巴黎游览情况较多,采用排除法,符合条件的选择方案有CA-CA=240.答案 B.4位同学从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法有().A.12种B.24种C.30种D.36种解析分三步,第一步先从4位同学中选2人选修课程甲.共有C种不同选法,第二步给第3位同学选课程,有2种选法.第三步给第4位同学选课程,也有2种不同选法.故共有C22=24(种).答案 B二、填空题.将数字1,2,3,4,5,6按第一行1个数,第二行2个数,第三行3个数的形式随机排列,设Ni(i=1,2,3)表示第i行中最大的数,则满足N1解析由已知数字6一定在第三行,第三行的排法种数为AA=60;剩余的三个数字中最大的一定排在第二行,第二行的排法种数为AA=4,由分步计数原理满足条件的排列个数是240.答案 240.数字1,2,3,,9这九个数字填写在如图的9个空格中,要求每一行从左到右依次增大,每列从上到下也依次增大,当数字4固定在中心位置时,则所有填写空格的方法共有________种.解析必有1、4、9在主对角线上,2、3只有两种不同的填法,对于它们的每一种填法,5只有两种填法.对于5的每一种填法,6、7、8只有3种不同的填法,由分步计数原理知共有223=12种填法.答案 12.如果把个位数是1,且恰有3个数字相同的四位数叫做好数,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,好数共有________个.解析当相同的数字不是1时,有C个;当相同的数字是1时,共有CC个,由分类加法计数原理得共有好数C+CC=12个.答案 12给n个自上而下相连的正方形着黑色或白色.当n4时,在所有不同的着色方案中,黑色正方形互不相邻的着色方案如下图所示:由此推断,当n=6时,黑色正方形互不相邻的着色方案共有__________种,至少有两个黑色正方形相邻的着色方案共有________种.(结果用数值表示)三、解答题.如图所示三组平行线分别有m、n、k条,在此图形中(1)共有多少个三角形?(2)共有多少个平行四边形?解 (1)每个三角形与从三组平行线中各取一条的取法是一一对应的,由分步计数原理知共可构成mnk个三角形. (2)每个平行四边形与从两组平行线中各取两条的取法是一一对应的,由分类和分步计数原理知共可构成CC+CC+CC个平行四边形..设集合M={-3,-2,-1,0,1,2},P(a,b)是坐标平面上的点,a,bM.(1)P可以表示多少个平面上的不同的点?(2)P可以表示多少个第二象限内的点?(3)P可以表示多少个不在直线y=x上的点?解 (1)分两步,第一步确定横坐标有6种,第二步确定纵坐标有6种,经检验36个点均不相同,由分步乘法计数原理得N=66=36(个).(2)分两步,第一步确定横坐标有3种,第二步确定纵坐标有2种,根据分步乘法计数原理得N=32=6个.(3)分两步,第一步确定横坐标有6种,第二步确定纵坐标有5种,根据分步乘法计数原理得N=65=30个..现安排一份5天的工作值班表,每天有一个人值班,共有5个人,每个人都可以值多天班或不值班,但相邻两天不准由同一个人值班,问此值班表共有多少种不同的排法?可将星期一、二、三、四、五分给5个人,相邻的数字不分给同一个人.星期一:可分给5人中的任何一人,有5种分法;星期二:可分给剩余4人中的任何一人,有4种分法;星期三:可分给除去分到星期二的剩余4人中的任何一人,有4种分法;同理星期四和星期五都有4种不同的分法,由分步计数原理共有54444=1 280种不同的排法..已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是从A到B的映射.(1)若B中每一元素都有原象,这样不同的f有多少个?(2)若B中的元素0必无原象,这样的f有多少个?(3)若f满足f(a1)+f(a2)+f(a3)+f(a4)=4,这样的f又有多少个?(1)显然对应是一一对应的,即为a1找象有4种方法,a2找象有3种方法,a3找象有2种方法,a4找象有1种方法,所以不同的f共有4321=24(个).(2)0必无原象,1,2,3有无原象不限,所以为A中每一元素找象时都有3种方法.所以不同的f共有34=81(个). (3)分为如下四类:第一类,A中每一元素都与1对应,有1种方法;第二类,A中有两个元素对应1,一个元素对应2,另一个元素与0对应,有CC=12种方法;第三类,A中有两个元素对应2,另两个元素对应0,有CC=6种方法;第四类,A中有一个元素对应1,一个元素对应3,另两个元素与0对应,有CC=12种方法.所以不同的f共有1+12+6+12=31(个).分类加法计数原理专题检测及答案的全部内容就是这些,预祝广大考生可以考上理想的大学。
高三数学考纲、知识点及题库 10.1 分类加法与分步乘法计数原理
高三数学一轮复习考纲、知识点及题库第十章计数原理§10.1分类加法计数原理与分步乘法计数原理最新考纲考情考向分析1.理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”.2.能利用两个原理解决一些简单的实际问题.以理解和应用两个基本原理为主,常以实际问题为载体,突出分类讨论思想,注重分析问题、解决问题能力的考查,常与排列、组合知识交汇;两个计数原理在高考中单独命题较少,一般是与排列组合结合进行考查;两个计数原理的考查一般以选择、填空题的形式出现.----------知识梳理-----------1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.3.分类加法计数原理和分步乘法计数原理的区别分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.概念方法微思考1.在解题过程中如何判定是用分类加法计数原理还是分步乘法计数原理?【提示】如果已知的每类办法中的每一种方法都能完成这件事,应该用分类加法计数原理;如果每类办法中的每一种方法只能完成事件的一部分,就用分步乘法计数原理.2.两种原理解题策略有哪些?【提示】①分清要完成的事情是什么;②分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;③有无特殊条件的限制;④检验是否有重复或遗漏.-----------基础自测------------题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(×)(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(√)(3)在分步乘法计数原理中,事情是分步完成的,其中任何一个单独的步骤都不能完成这件事,只有每个步骤都完成后,这件事情才算完成.(√)(4)如果完成一件事情有n个不同步骤,在每一步中都有若干种不同的方法m i(i=1,2,3,…,n),那么完成这件事共有m1m2m3…m n种方法.(√)(5)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(√)题组二教材改编2.[P12A组T5]已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标,纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是()A.12B.8C.6D.4【答案】C【解析】分两步:第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此第一、二象限内不同点的个数是3×2=6,故选C.3.[P10练习T4]已知某公园有4个门,从一个门进,另一个门出,则不同的走法的种数为()A.16B.13C.12D.10【答案】C【解析】将4个门编号为1,2,3,4,从1号门进入后,有3种出门的方式,共3种走法,从2,3,4号门进入,同样各有3种走法,共有不同走法3×4=12(种).题组三易错自纠4.现用4种不同颜色对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有()A.24种B.30种C.36种D.48种【答案】D【解析】需要先给C块着色,有4种方法;再给A块着色,有3种方法;再给B块着色,有2种方法;最后给D块着色,有2种方法,由分步乘法计数原理知,共有4×3×2×2=48(种)着色方法.5.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24B.18C.12D.6【答案】B【解析】分两类情况讨论:第1类,奇偶奇,个位有3种选择,十位有2种选择,百位有2种选择,共有3×2×2=12(个)奇数;第2类,偶奇奇,个位有3种选择,十位有2种选择,百位有1种选择,共有3×2×1=6(个)奇数.根据分类加法计数原理知,共有12+6=18(个)奇数.6.如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.【答案】12【解析】当组成的数字有三个1,三个2,三个3,三个4时共有4种情况.当有三个1时:2111,3111,4111,1211,1311,1411,1121,1131,1141,有9种,当有三个2,3,4时:2221,3331,4441,有3种,根据分类加法计数原理可知,共有12种结果.------------专题突破------------题型一分类加法计数原理1.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14B.13C.12D.10【答案】B【解析】方程ax2+2x+b=0有实数解的情况应分类讨论.①当a=0时,方程为一元一次方程2x+b=0,不论b取何值,方程一定有解.此时b的取值有4个,故此时有4个有序数对.②当a≠0时,需要Δ=4-4ab≥0,即ab≤1.显然有3个有序数对不满足题意,分别为(1,2),(2,1),(2,2).a≠0时,(a,b)共有3×4=12个实数对,故a≠0时满足条件的实数对有12-3=9个,所以答案应为4+9=13.2.如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为()A.240B.204C.729D.920【答案】A【解析】若a2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若a2=4,满足条件的“凸数”有3×4=12(个),…,若a2=9,满足条件的“凸数”有8×9=72(个).所以所有凸数有2+6+12+20+30+42+56+72=240(个).3.(2016·全国Ⅲ)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个【答案】C【解析】第一位为0,最后一位为1,中间3个0,3个1,3个1在一起时为000111,001110;只有2个1相邻时,共A24个,其中110100,110010,110001,101100不符合题意;三个1都不在一起时有C34个,共2+8+4=14(个).思维升华分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词,关键元素,关键位置.(1)根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复.(3)分类时除了不能交叉重复外,还不能有遗漏.题型二分步乘法计数原理例1(1)(2016·全国Ⅱ)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9【答案】B【解析】从E点到F点的最短路径有6条,从F点到G点的最短路径有3条,所以从E点到G点的最短路径有6×3=18(条),故选B.(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.【答案】120【解析】每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).引申探究1.本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每人恰好参加一项,每项人数不限”,则有多少种不同的报名方法?解每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得不同的报名方法共有36=729(种).2.本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每项限报一人,但每人参加的项目不限”,则有多少种不同的报名方法?解每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,根据分步乘法计数原理,可得不同的报名方法共有63=216(种).思维升华(1)利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.跟踪训练1一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不同(除交汇点O外)的游览线路有___种.(用数字作答)【答案】48【解析】根据题意,从点P处进入后,参观第一个景点时,有6个路口可以选择,从中任选一个,有6种选法;参观完第一个景点,参观第二个景点时,有4个路口可以选择,从中任选一个,有4种选法;参观完第二个景点,参观第三个景点时,有2个路口可以选择,从中任取一个,有2种选法.由分步乘法计数原理知,共有6×4×2=48(种)不同游览线路.题型三两个计数原理的综合应用例2(1)(2017·天津)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有________个.(用数字作答)【答案】1080【解析】①当组成四位数的数字中有一个偶数时,四位数的个数为C35·C14·A44=960.②当组成四位数的数字中不含偶数时,四位数的个数为A45=120.故符合题意的四位数一共有960+120=1080(个).(2)现有5种不同颜色的染料,要对如图所示的四个不同区域进行涂色,要求有公共边的两个区域不能使用同一种颜色,则不同的涂色方法的种数是()A.120B.140C.240D.260【答案】D【解析】由题意,先涂A处共有5种涂法,再涂B处有4种涂法,最后涂C处,若C处与A处所涂颜色相同,则C处共有1种涂法,D处有4种涂法;若C处与A处所涂颜色不同,到C处有3种涂法,D处有3种涂法,由此可得不同的涂色方法有5×4×(1×4+3×3)=260(种).故选D.(3)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是() A.60B.48C.36D.24【答案】B【解析】长方体的6个表面构成的“平行线面组”的个数为6×6=36,另含4个顶点的6个面(非表面)构成的“平行线面组”的个数为6×2=12,故符合条件的“平行线面组”的个数是36+12=48.思维升华利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类.(3)弄清分步、分类的标准是什么.(4)利用两个计数原理求解.跟踪训练2(1)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有() A.144个B.120个C.96个D.72个【答案】B【解析】由题意,首位数字只能是4,5,若万位是5,则有3×A34=72(个);若万位是4,则有2×A34=48(个),故比40000大的偶数共有72+48=120(个).故选B.(2)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是____.【答案】36【解析】第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).(3)如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数为________.【答案】96【解析】按区域1与3是否同色分类:①区域1与3同色:先涂区域1与3有4种方法,再涂区域2,4,5(还有3种颜色)有A33种方法.∴区域1与3同色时,共有4A33=24(种)方法.②区域1与3不同色:第一步涂区域1与3有A24种方法,第二步涂区域2有2种涂色方法,第三步涂区域4只有1种方法,第四步涂区域5有3种方法.∴共有A24×2×1×3=72(种)方法.故由分类加法计数原理可知,不同的涂色种数为24+72=96.1.(2018·贵州省凯里市第一中学月考)集合A={1,2,3,4,5},B={3,4,5,6,7,8,9},从集合A,B 中各取一个数,能组成的没有重复数字的两位数的个数为()A.52B.58C.64D.70【答案】B【解析】根据分步乘法计数原理得(C12·C13+C14·C13+C12·C14+C23)·A22=58.2.(2018·保定质检)三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽又被踢回给甲,则不同的传递方式共有()A.4种B.6种C.10种D.16种【答案】B【解析】分两类:甲第一次踢给乙时,满足条件的有3种传递方式(如图),同理,甲先传给丙时,满足条件的也有3种传递方式.由分类加法计数原理可知,共有3+3=6(种)传递方式.3.十字路口来往的车辆,如果不允许回头,则行车路线共有()A.24种B.16种C.12种D.10种【答案】C【解析】根据题意,车的行驶路线起点有4种,行驶方向有3种,所以行车路线共有4×3=12(种),故选C.4.(2018·玉林联考)若自然数n使得作竖式加法n+(n+1)+(n+2)各位数均不产生进位现象,则称n为“开心数”.例如:32是“开心数”.因为32+33+34不产生进位现象;23不是“开心数”,因为23+24+25产生进位现象,那么,小于100的“开心数”的个数为() A.9B.10C.11D.12【答案】D【解析】根据题意个位数n需要满足n+(n+1)+(n+2)<10,即n<2.3,∴个位数可取0,1,2三个数,∵十位数k需要满足3k<10,∴k<3.3,∴十位数可以取0,1,2,3四个数,故小于100的“开心数”共有3×4=12(个).故选D.5.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有()A.120种B.260种C.340种D.420种【答案】D【解析】由题意可知上下两块区域可以相同,也可以不同,则共有5×4×3×1×3+5×4×3×2×2=180+240=420.故选D.6.如图,给7条线段的5个端点涂色,要求同一条线段的两个端点不能同色,现有4种不同的颜色可供选择,则不同的涂色方法种数有()A.24B.48C.96D.120【答案】C【解析】若A,D颜色相同,先涂E有4种涂法,再涂A,D有3种涂法,再涂B有2种涂法,C只有1种涂法,共有4×3×2=24(种);若A,D颜色不同,先涂E有4种涂法,再涂A有3种涂法,再涂D有2种涂法,当B和D相同时,C有2种涂法,当B和D不同时,C 只有1种涂法,共有4×3×2×(2+1)=72(种),根据分类加法计数原理可得,共有24+72=96(种),故选C.7.(2018·湖北省黄冈中学月考)对33000分解质因数得33000=23×3×53×11,则33000的正偶数因数的个数是()A.48B.72C.64D.96【答案】A【解析】33000的因数由若干个2(共有23,22,21,20四种情况),若干个3(共有3,30两种情况),若干个5(共有53,52,51,50四种情况),若干个11(共有111,110两种情况),由分步乘法计数原理可得33000的因数共有4×2×4×2=64(个),不含2的共有2×4×2=16(个),∴正偶数因数的个数为64-16=48,即33000的正偶数因数的个数是48,故选A.8.从1,2,3,4,7,9六个数中,任取两个数作为对数的底数和真数,则所有不同对数值的个数为________.【答案】17【解析】当所取两个数中含有1时,1只能作真数,对数值为0,当所取两个数中不含有1时,可得到A25=20(个)对数,但log23=log49,log32=log94,log24=log39,log42=log93.综上可知,共有20+1-4=17(个)不同的对数值.9.设a,b,c∈{1,2,3,4,5,6},若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三角形有________个.【答案】27【解析】先考虑等边的情况,a=b=c=1,2,…,6,有六个,再考虑等腰的情况,若a=b=1,c<a+b=2,此时c=1与等边重复,若a=b=2,c<a+b=4,则c=1,3,有两个,若a=b=3,c<a+b=6,则c=1,2,4,5,有四个,若a=b=4,c<a+b=8,则c=1,2,3,5,6,有五个,若a=b=5,c<a+b=10,则c=1,2,3,4,6,有五个,若a=b=6,c<a+b=12,则c=1,2,3,4,5,有五个,故一共有27个.10.2017年1月27日,哈尔滨地铁3号线一期开通运营,甲、乙、丙、丁四位同学决定乘坐地铁去城乡路、哈西站和哈尔滨大街.每人只能去一个地方,哈西站一定要有人去,则不同的游览方案为________种.【答案】65【解析】根据题意,甲、乙、丙、丁四位同学决定乘坐地铁去城乡路、哈西站和哈尔滨大街.每人只能去一个地方,则每人有3种选择,则4人一共有3×3×3×3=81种情况,若哈西站没人去,即四位同学选择了城乡路和哈尔滨大街.每人有2种选择方法,则4人一共有2×2×2×2=16种情况,故哈西站一定要有人去有81-16=65种情况,即哈西站一定有人去的游览方案有65种.11.(2018·金华模拟)联合国国际援助组织计划向非洲三个国家援助粮食和药品两种物资,每种物资既可以全部给一个国家,也可以由其中两个或三个国家均分,若每个国家都要有物资援助,则不同的援助方案有________种.【答案】25【解析】根据题意,可分为:三个国家粮食和药品都有,有1种方法;一个国家粮食,两个国家药品,有3种方法;一个国家药品,两个国家粮食,有3种方法;两个国家粮食,三个国家药品,有3种方法;两个国家药品,三个国家粮食,有3种方法;两个国家粮食,两个国家药品,有3×2=6种方法;三个国家粮食,一个国家药品,有3种方法;三个国家药品,一个国家粮食,有3种方法,故方法总数是25.12.将数字“124467”重新排列后得到不同的偶数的个数为________.【答案】240【解析】将数字“124467”重新排列后所得数字为偶数,则末位数应为偶数,①若末位数字为2,因为含有2个4,所以有5×4×3×2×12=60(种)情况;②若末位数字为6,同理有5×4×3×2×12=60(种)情况;③若末位数字为4,因为有2个相同数字4,所以共有5×4×3×2×1=120(种)情况.综上,共有60+60+120=240(种)情况.13.工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是_______.【答案】60【解析】根据题意,第一个可以从6个螺栓里任意选一个,共有6种选择方法,并且是机会相等的,若第一个选1号螺栓,第二个可以选3,4,5号螺栓,依次选下去,共可以得到10种方法,所以总共有10×6=60种方法,故答案是60.14.已知集合M ={1,2,3},N ={1,2,3,4},定义函数f :M →N .若点A (1,f (1)),B (2,f (2)),C (3,f (3)),△ABC 的外接圆圆心为D ,且DA →+DC →=λDB →(λ∈R ),则满足条件的函数f (x )有________种.【答案】12【解析】由DA →+DC →=λDB →(λ∈R ),说明△ABC 是等腰三角形,且|BA |=|BC |,必有f (1)=f (3),f (1)≠f (2).当f (1)=f (3)=1时,f (2)=2,3,4,有三种情况;f (1)=f (3)=2,f (2)=1,3,4,有三种情况;f (1)=f (3)=3,f (2)=2,1,4,有三种情况;f (1)=f (3)=4,f (2)=2,3,1,有三种情况.因而满足条件的函数f (x )有12种.15.回文数是指从左到右与从右到左读都一样的正整数,如22,121,3443,94249等.显然2位回文数有9个:11,22,33,…,99,3位回文数有90个:101,111,121,…,191,202,…,999.则(1)5位回文数有________个;(2)2n (n ∈N *)位回文数有________个.【答案】(1)900(2)9×10n -1【解析】(1)5位回文数相当于填5个方格,首尾相同,且不为0,共9种填法,第2位和第4位一样,有10种填法,中间一位有10种填法,共有9×10×10=900(种)填法,即5位回文数有900个.(2)根据回文数的定义,此问题也可以转化成填方格.结合分步乘法计数原理,知有9×10n-1种填法.16.用6种不同的颜色给三棱柱ABC-DEF六个顶点涂色,要求每个点涂一种颜色,且每条棱的两个端点涂不同颜色,则不同的涂色方法有________种.(用数字作答)【答案】8520【解析】分两步来进行,先涂A,B,C,再涂D,E,F.第一类:若6种颜色都用上,此时方法共有A66=720种;第二类:若6种颜色只用5种,首先选出5种颜色,方法有C56种;先涂A,B,C,方法有A35种,再涂D,E,F中的两个点,方法有A23种,最后剩余的一个点只有2种涂法,故此时方法共有C56·A35·A23·2=4320种;第三类:若6种颜色只用4种,首先选出4种颜色,方法有C46种;先涂A,B,C,方法有A34种,再涂D,E,F中的一个点,方法有3种,最后剩余的两个点只有3种涂法,故此时方法共有C46·A34·3·3=3240种;第四类:若6种颜色只用3种,首先选出3种颜色,方法有C36种;先涂A,B,C,方法有A33种,再涂D,E,F,方法有2种,故此时方法共有C36·A33×2=240种.综上可得,不同涂色方案共有720+4320+3240+240=8520种.。
2015届高考数学总复习(基础过关+能力训练):计数原理、随机变量及分布列 排列与组合(含答案)
第十一章 计数原理、随机变量及分布列第2课时排列与组合(理科专用)1. 若A 3n =6C 4n ,则n =________.答案:7解析:n !(n -3)!=6×n !(n -4)!×4!,得n -3=4,解得n =7.2. 乒乓球队的10名队员中有3名主力队员,派5名参加比赛.3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有________种(用数字作答).答案:252解析:三名主力安排有A 33种,其余7名选2名安排在第二、四位置上有A 27种排法,故共有排法数A 33A 27=252种.3. 某班有30名男生,20名女生,现要从中选出5人组成一个宣传小组,其中男、女学生均不少于2人的选法为________(只列式,不计算).答案:C 330C 220+C 230C 320解析:男生2人,女生3人,有C 230C 320;男生3人,女生2人,有C 330C 220,共计C 230C 320+C 330C 220.4. 有6本不同的书分给甲、乙、丙三人,每人两本,不同的分法种数是________. 答案:90解析:甲得2本有C 26,乙从余下的4本中取2本有C 24,余下的C 22,共计C 26C 24.5. 某书店有11种杂志,2元1本的8种,1元1本的3种.小张用10元钱买杂志(10元钱刚好用完),则不同买法的种数是________(用数字作答).答案:266解析:根据题意,可有以下两种情况:① 用10元钱买2元1本共有C 58=56;② 用10元钱买2元1本的杂志4本和1元1本的杂志2本,共有C 48·C 23=70×3=210.故210+56=266.6. A ={1,2,3,4,5,6,7,8,9},则含有五个元素,且其中至少有两个偶数的子集个数为________.答案:105解析:直接法:分三类,在4个偶数中分别选2个、3个、4个偶数,其余选奇数,C 24C 35+C 34C 25+C 44C 15=105;间接法:C 59-C 55-C 45C 14=105.7. 某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种,现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上不同的选择,则餐厅至少还需准备________种不同的素菜.答案:7 解析:在5种不同的荤菜中取出2种的选择方式应有C 25=10种,设素菜为x 种,则C 2x ·C 25≥200,解得x ≥7,∴ 至少应有7种素菜.8. 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能都是同一种颜色,且红色卡片至多1张.不同取法的种数为________.答案:472解析:若没有红色卡,则需从黄、蓝、绿三色卡片中选3张,若都不同色则有C 14×C 14×C 14=64种,若2色相同,则有C 23C 12C 24C 14=144;若红色卡片有1张,则剩余2张若不同色,有C 14×C 23×C 14×C 14=192种,如同色则有C 14C 23C 24=72,所以共有64+144+192+72=472.9. 用0、1、2、3四个数字组成没有重复数字的自然数.(1) 把这些自然数从小到大排成一个数列,问1230是这个数列的第几项? (2) 其中的四位数中偶数有多少个?解:(1) 分类讨论:①1位自然数有4个;②2位自然数有9个;③3位自然数有18个,即A 34-A 23=3A 33=18个;④4位自然数中,“10XY ”型有A 22=2个,1 203,1 230共有4个;由分类计数原理知1 230是此数列的第4+9+18+4=35项.(2) 四位数中的偶数有A3+A2A2=10个.10. 已知平面α∥β,在α内有4个点,在β内有6个点.(1) 过这10个点中的3点作一平面,最多可作多少个不同平面?(2) 以这些点为顶点,最多可作多少个三棱锥?(3) 上述三棱锥中最多可以有多少个不同的体积?解:(1) 所作出的平面有三类:①α内1点,β内2点确定的平面,有C14·C26个;②α内2点,β内1点确定的平面,有C24·C16个;③α、β本身.∴所作的平面最多有C14·C26+C24·C16+2=98个.(2) 所作的三棱锥有三类:①α内1点,β内3点确定的三棱锥,有C14·C36个;②α内2点,β内2点确定的三棱锥,有C24·C26个;③α内3点,β内1点确定的三棱锥,有C34·C16个.∴最多可作出的三棱锥有C14·C36+C24·C26+C34·C16=194个.(3) ∵当等底面积、等高的情况下三棱锥的体积相等,且平面α∥β,∴体积不相同的三棱锥最多有C36+C34+C26·C24=114个.11. 6个人坐在一排10个座位上.问:(1) 空位不相邻的坐法有多少种?(2) 4个空位只有3个相邻的坐法有多少种?(3) 4个空位至多有2个相邻的坐法有多少种?解:6个人排有A66种,6人排好后包括两端共有7个“间隔”可以插入空位.(1) 空位不相邻相当于将4个空位安插在上述7个“间隔”中,有C47=35种插法,故空位不相邻的坐法有A66·C47=252 00种.(2) 将相邻的3个空位当作一个元素,另一空位当作另一个元素,往7个“间隔”里插有A27种插法,故4个空位中只有3个相邻的坐法有A66A27=302 40种.(3) 4个空位至少有2个相邻的情况有三类:①4个空位各不相邻有C47种坐法;②4个空位2个相邻,另有2个不相邻有C17C26种坐法;③4个空位分两组,每组都有2个相邻,有C27种坐法.综合上述,应有A66(C47+C17C26+C27)=115 920种坐法.。
高考复习方案大一轮(全国人教数学)-历年高考真题与模拟题分类汇编 J单元 计数原理(理科2015年) Word版
数 学J 单元 计数原理J1 基本计数原理J2 排列、组合12.J2 某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了________条毕业留言.(用数字作答)12.1560 根据题意知写了A 240=40×39=1560(条).18.J2、K2、K6、K4 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望.18.解:(1)记事件A 1={从甲箱中摸出的1个球是红球},A 2={从乙箱中摸出的1个球是红球},B 1={顾客抽奖1次获一等奖},B 2={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}.由题意,A 1与A 2相互独立,A 1A 2与A 1A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 1A 2+A 1A 2,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以 P (B 1)=P (A 1A 2)=P (A 1)P (A 2)=25×12=15,P (B 2)=P (A 1A 2+A 1A 2)=P (A 1A 2)+P (A 1A 2)=P (A 1)P (A 2)+P (A 1)P (A 2)=P (A 1)(1-P (A 2))+(1-P (A 1))P (A 2)=25×1-12+1-25×12=12. 故所求概率P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710.(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B 3,15. 于是P (X =0)=C 03150453=64125, P (X =1)=C 13151452=48125, P (X =2)=C 23152451=12125, P (X =3)=C 33153450=1125. 故X 的分布列为X 的数学期望为E (X )=3×15=35.6.J2 用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有( )A .144个B .120个C .96个D .72个6.B 由题意知,万位上排4时,有2×A 34个大于40 000的偶数,万位上排5时,有3×A 34个,故共有5×A 34=120(个).22.J2、J3、K2(1)已知n 为正整数,在(1+x )2n 与(1+2x 3)n 展开式中x 3项的系数相同,求n 的值.(2)设袋中共有7个球,其中4个红球,3个白球.从袋中随机取出3个球,求取出的白球比红球多的概率.解:(1)(1+x )2n 中x 3项的系数为C 32n ,(1+2x 3)n 中x 3项的系数为2n .由C 32n =2n ,得2n (2n -1)(2n -2)3×2×1=2n , 解得n =2.(2)从袋中取出3个球,总的取法有C 37=35(种);其中白球比红球多的取法有C 33+C 23·C 14=13(种).因此取出的白球比红球多的概率为1335.J3 二项式定理11.J3⎝⎛⎭⎪⎫x 3+1x 7的展开式中x 5的系数是________.(用数字填写答案) 11.35T r +1=C r 7(x 3)7-r ⎝ ⎛⎭⎪⎫1x r=C r 7·x 21-4r ,令21-4r =5,得r =4,因此x 5的系数为C 47=35. 9.J3 在(x -1)4的展开式中,x 的系数为________.9.6()x -14展开式的通项T r +1=C r 4(x )4-r (-1)r (0≤r ≤4),令4-r =2,得r =2,所以x 的系数是C 24=6.3.J3 已知(1+x )n 的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A .212B .211C .210D .293.D 因为展开式中第4项与第8项的二项式系数相等,所以C 3n =C 7n ,解得n =10.根据二项式系数和的相关公式得,奇数项的二项式系数和为2n -1=29.故选D. 15.J3 (a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.15.3 (a +x )(1+x )4的展开式中x 的奇数次幂项一部分来自第一个因式取a ,第二个因式取C 14x 及C 34x 3;另一部分来自第一个因式取x ,第二个因式取C 04x 0,C 24x 2及C 44x 4.所以系数之和为a C 14+a C 34+C 04+C 24+C 44=8a +8=32,所以a =3.10.J3 (x 2+x +y )5的展开式中,x 5y 2的系数为( )A .10B .20C .30D .6010.C 5的通项T r +1=C r 5(x 2+x )r y 5-r ,由题意取r =3,得T 4=C 35(x 2+x )3y 2=C 35(x +1)3x 3y 2,记(x +1)3的通项T ′r ′+1=C r ′3xr ′, 由题意得r ′=2,所以x 5y 2的系数为C 35·C 23=30.9.J3 在(2+x )5的展开式中,x 3的系数为________.(用数字作答)9.40 展开式的通项T r +1=C r 525-r x r ,令r =3,得C 3525-3=40. 11.J3 (x +2)5的展开式中,x 2的系数等于________.(用数字作答)11.80 (x +2)5的展开式的通项为T r +1=C r 5x5-r ·2r(0≤r ≤5,且r ∈N ),令5-r =2,得r =3,所以x 2的系数为C 35·23=80.J4 单元综合6. 某人从{W ,X ,Y ,Z }中选2个不同的字母,从{0,2,6,8}中选3 个不同的数字编拟车牌号,要求前三位是数字,后两位是字母,且数字2不能排在首位,字母Z 和数字2不能相邻,那么满足要求的车牌号有( )A .198个B .180个C .216个D .234个6.A 不选2时,有A 33A 24=72(种)选法;选2,不选Z 时,有C 12C 23A 22A 23=72(种)选法;选2和Z 时,若2在数字的中间,有A 23C 12C 13=36(种)选法,若2在数字的第三位,有A 23A 13=18(种)选法.根据分类计数原理,共有72+72+36+18=198(种)选法,故选A. 4. 若(x 2+2)⎝ ⎛⎭⎪⎫1x 2-mx 5的展开式中x 2的系数是250, 则实数m 的值为 ( ) A .±5 B .5C .± 5 D. 54.C ⎝ ⎛⎭⎪⎫1x 2-mx 5的展开式的通项为C r 5x -2(5-r )·(-mx )r =C r 5(-m )r x 3r -10,由3r -10=2得r =4,系数为C 45(-m )4=5m 4,所以2×5m 4=250,得m =± 5.12. 设ABCDEF 为正六边形,一只青蛙开始在顶点A 处,它每次可随意地跳到相邻两顶点之一.若在5次之内跳到D 点,则停止跳动;若5次之内不能到达D 点,则跳完5次也停止跳动,那么这只青蛙从开始到停止,可能出现的不同跳法共有________种.12.26 青蛙不能跳1次、2次或4次到达D 点,故青蛙的跳法只有下列两种:(1)青蛙跳3次到达D 点,有ABCD ,AFED 两种跳法;(2)青蛙一共跳5次后停止,那么,前3次的跳法一定不到达D ,只能到达B 或F ,则共有AFEF ,ABAF ,AFAF ,ABCB ,ABAB ,AFAB 这6种跳法,随后两次跳法各有四种,比如由F 出发的有FEF ,FED ,FAF ,FAB 共四种,因此共有6×4=24(种)跳法,故共有24+2=26(种)跳法.6. 将二项式⎝ ⎛⎭⎪⎪⎫x +124x n 的展开式按x 的降幂排列,若前三项的系数成等差数列,则该展开式中x 的指数是整数的项共有( )A .3个B .4个C .5个D .6个6.A 展开式的通项为T r +1=C rn·⎝ ⎛⎭⎪⎫12r x 2n -3r 4(r =0,1,2,…,n ),∴前三项的系数分别是1,n 2,n (n -1)8.∵前三项的系数成等差数列,∴2·n 2=1+n (n -1)8,∴n =8.当n =8时,T r +1=C r 8·⎝ ⎛⎭⎪⎫12r x 16-3r 4(r =0,1,2,…,8),故展开式中x 的指数是整数的项共有3个.。
2016高考数学(理)一轮模拟训练10-1分类加法计数原理与分步乘法计数原理
模拟训练1. [2015·聊城模拟]将3张不同的奥运会门票分给10名同学中的3人,每人1张,则不同的分法种数有( )A. 2610B. 720C. 240D. 120解析:第1张有10种分法,第2张有9种分法,第3张有8种分法,∴一共有10×9×8=720(种).答案:B2. [2015·温州质检]某班2014年元旦联欢会原定的9个歌唱节目已排成节目单,但在开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为( )A. 110B. 120C. 20D. 12解析:先将其中一个节目插入原节目单的9个节目形成的10个空中,有10种方法;再把另一个节目插入前10个节目形成的11个空中,有11种插法.由分步乘法计数原理知有10×11=110种.答案:A3. [2015·衡水一中模拟]某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )A. 4种B. 10种C. 18种D. 20种解析:依题意,就所剩余的一本画册进行分类计数:第一类,剩余的是一本画册,此时满足题意的赠送方法共有4种;第二类,剩余的是一本集邮册,此时满足题意的赠送方法共有C24=6(种).因此,满足题意的赠送方法共有4+6=10种.答案:B4. [2015·盐城模拟]五名学生报名参加四项体育比赛,每人限报一项,则报名方法的种数为________.五名学生争夺四项比赛的冠军(冠军不并列),获得冠军的可能性有________种.解析:报名的方法种数为4×4×4×4×4=45(种).获得冠军的可能情况有5×5×5×5=54(种).答案:45545. [2015·杭州质检]从0,1,2,3中任取三个数字,组成无重复数字的三位数中,偶数的个数是________(用数字回答).解析:0为特殊元素,当三位数个位数为0时,偶数共有A23个;当个位数不为0时,若为偶数个位只能为2,此时三位偶数有2+A22个,故满足条件的偶数共有A23+2+A22=10个.答案:10。
高考数学一轮同步练习 11.1 分类加法计数原理与分步乘法计数原理 理 苏教版
第十一章 计数原理、概率、随机变量及其分布列第一节 分类加法计数原理与分步乘法计数原理1.将5封信投入3个邮筒,不同的投法共有 … ( )A.35种B.53种 C.3种 D.15种答案:B解析:第1封信,可以投入第1个邮筒里,可以投入第2个邮筒里,也可以投入第3个邮筒里,共有3种投法;同理,后面的4封信也都各有3种投法,所以,5封信投入3个邮筒,不同的投法共有53种.2.商店里有15种上衣,18种裤子,某人要买一件上衣或一条裤子,共有 种不同的选法.要买上衣、裤子各一件,共有 种不同的选法.答案:33 270解析:买上衣,有15种选法;买裤子,有18种选法.买1件上衣或1条裤子有15+18=33种选法.买上衣1件和裤子1条,有1518270⨯=种选法.3.设集合M={-3,-2,-1,0,1,2},P(a,b)是坐标平面上的点,a 、b M ∈.(1)P 可以表示多少个平面上的不同的点?(2)P 可以表示多少个第二象限内的点?(3)P 可以表示多少个不在直线y=x 上的点?解:(1)分两步,第一步,确定横坐标有6种,第二步确定纵坐标有6种,根据分步乘法计数原理得符合条件的点的个数N=6⨯6=36.(2)分两步,第一步,确定横坐标有3种,第二步确定纵坐标有2种,根据分步乘法计数原理得符合条件的点的个数N=3⨯2=6.(3)分两步,第一步,确定横坐标有6种,第二步确定纵坐标有5种,根据分步乘法计数原理得符合条件的点的个数N=6⨯5=30.见课后作业B题组一 分类加法计数原理1.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为( )A.26B.24C.20D.19答案:D解析:因信息可以分开沿不同的路线同时传递,由分类加法计数原理,完成从A 向B 传递有四种办法12→53126412671286→,→→,→→,→→,故单位时间内传递的最大信息量为:3+4+6+6=19, 故选D.2.三边长均为整数,且最大边长为11的三角形的个数为A.25B.26C.36D.37答案:C解析:另两边边长用x 、y 表示,且不妨设111x y ≤≤≤,要构成三角形,必须12x y +≥.当y 取值11时,x=1,2,3,…,11,可有11个三角形.当y 取值10时,x=2,3,…,10,可有9个三角形.…当y 取值6时,x 也只能取6,只有一个三角形.所以,所求三角形的个数为3.从1,2,3,4四个数字中任取数(不重复取)作和,则取出这些数的不同的和共有( )A.8种B.9种C.10种D.5种答案:A解析:取2个数作和为:1+2=3,1+3=4,1+4=5,2+3=5,2+4=6,3+4=7;其和的结果为3,4,5,6,7.取3个数作和为其和的结果为6,7,8,9.取4个数作和为:1+2+3+4=10;其结果为10,以上得到的和可以为3,4,5,6,7,8,9,10,共8种.题组二 分步乘法计数原理4.有四位老师在同一年级的4个班级中,各教一个班的数学,在数学考试时,要求每位老师均不在本班监考,则安排监考的方法总数是( )A.8B.9C.10D.11答案:B解析:由分步乘法计数原理知监考方法总数为339⨯=.5.某体育彩票规定:从01至36共36个号中抽出7个号为一注,每注2元,某人想从01至10中选3个连续的号,从11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,则这人把这种特殊要求的号买全,至少要花( )A.3 360元B.6 720元C.4 320元D.8 640元答案:D解析:据分步乘法计数原理,买全号码共需要8910628⨯⨯⨯⨯=640元,故选D.6.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( )A.8种B.12种C.16种D.20种答案:B解析:分两步:第一步:先选不相邻的两个面,共有3种选法(都是相对的面),第二步:再从余下的四个面中任选一个面,有4种选法,这样前后选出的三个面符合题目要求,所以共有选法3412N =⨯=种,选B.7.已知集合A={a,b,c,d},B={x,y,z},则从集合A 到集合B 的映射个数最多是( )A.34AB.34CC.43D.34 答案:C解析:因为集合A 中的每一个元素都找到集合B 中的任何一个元素作为自己的象,且只有当集合A 中的每一个元素都在B 中找到自己的象后,才能建立起从A 到B 的映射, 因此,从A 到B 的映射最多有433333⨯⨯⨯=个,故选C.8.将4个不同的小球放入3个不同的盒子,其中每个盒子都不空的放法共有种.答案:36解析:4个不同的小球放入3个不同的盒子,其中每个盒子都不空,则必有一个盒子放入2个球,设4个球的编号分别为1,2,3,4,则其中2个球放在一个盒子里的情况有:1,2;1,3;1,4;2,3;2,4;3,4,计6种情况,把2个球放在一个盒子里的情况当作1个球和另外2个球分别放入3个盒子里,共有321⨯⨯种放法,于是所求放法为632136⨯⨯⨯=种. 题组三 两个计数原理的综合应用9.将数字1、2、3、4填在标号为1、2、3、4的方格里,每格填一个数字,则每个方格的标号与所填的数字均不相同的填法有( )A.6种B.9种C.11种D.23种答案:B解析:综合应用两个基本原理解决实际问题.先把1填入方格,符合条件的有3种方法;第二步把被填入方格的对应数字填入其他三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3⨯3=9种填法,故选B.10.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中表示第一、二象限内不同的点的个数和是( )A.18B.10C.16D.14答案:D11.高三(1)班有学生50人,男30人,女20人;高三(2)班有学生60人,男30人,女30人;高三(3)班有学生55人,男35人,女20人.(1)从高三(1)班或(2)班或(3)班中选一名学生任学生会主席,有多少种不同的选法?(2)从高三(1)班、(2)班男生中,或从高三(3)班女生中选一名学生任学生会体育部长,有多少种不同的选法?解:(1)50+60+55=165(种),即所求选法为165种.(2)30+30+20=80(种),即所求选法有80种.12.有三个袋子,其中一个袋子装有红色小球20个,每个小球上标有1到20中的一个号码;一个袋子中装有白色小球15个,每个小球上标有1到15中的一个号码;第三个袋子装有8个黄色小球,每个小球上标有1到8中的一个号码.(1)从袋子里任取一个小球,有多少种不同取法?(2)从袋子里任取红、白、黄球各一个,有多少种不同的取法?解:(1)完成取一个小球这件事分三类:第一类取白球有15种不同取法;第二类取红球有20种不同取法;第三类取黄球有8种不同取法,由分类加法计数原理可知,共有取法种(2)完成取红、白、黄球各一个这件事分三步.第一步:取红球一个有20种不同的取法;第二步:取白色小球一个有8种不同取法;⨯⨯=400第三步:取黄色小球一个有15种不同取法,由分步乘法计数原理,共有201582种不同的取法▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚 =^_^= 成就梦想▁▂▃▄▅▆▇█▉▊▋▌▃▄▅▆▇██■▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生▃▄▅▆▇██■▓。
浙江新高考数学理科一轮复习创新方案知能检测10.1分类加法计数原理与分步乘法计数原理(含答案详析)
第一节分类加法计数原理与分步乘法计数原理[全盘巩固]1.将3张不同的奥运会门票分给10名同学中的3人,每人1张,则不同分法的种数是()A.2 160 B.720 C.240 D.120解析:选B分步来完成此事.第1张有10种分法;第2张有9种分法;第3张有8种分法,共有10×9×8=720种分法.2.a,b,c,d,e共5个人,从中选1名组长1名副组长,但a不能当副组长,不同选法的种数是()A.20 B.16 C.10 D.6解析:选B当a当组长时,则共有1×4=4种选法;当a不当组长时,又因为a也不能当副组长,则共有4×3=12种选法.因此共有4+12=16种选法.3. (2014·汕头模拟)如图,用6种不同的颜色把图中A,B,C,D四块区域分开,若相邻区域不能涂同一种颜色,则不同涂法的种数为()A.400 B.460 C.480 D.496解析:选C从A开始,有6种方法,B有5种,C有4种,D,A同色1种,D,A不同色3种,则有6×5×4×(1+3)=480种不同涂法.4.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是()A.9 B.14 C.15 D.21解析:选B∵P={x,1},Q={y,1,2},且P⊆Q,∴x∈{y,1,2}.∴当x=2时,y=3,4,5,6,7,8,9,共有7种情况;当x=y时,x=3,4,5,6,7,8,9,共有7种情况.共有7+7=14种情况.即这样的点的个数为14.5.(2014·济南调研)已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40 B.16 C.13 D.10解析:选C分两类情况讨论:第1类,直线a分别与直线b上的8个点可以确定8个不同的平面;第2类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.6.(2014·杭州模拟)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60 B.48 C.36 D.24解析:选B长方体的6个表面构成的“平行线面组”个数为6×6=36,另含4个顶点的6个面(非表面)构成的“平行线面组”个数为6×2=12,故符合条件的“平行线面组”的个数是36+12=48.7.在平面直角坐标系内,点P(a,b)的坐标满足a≠b,且a,b都是集合{1,2,3,4,5,6}中的元素,又点P到原点的距离|OP|≥5.则这样的点P的个数为________.解析:依题意可知:当a=1时,b=5,6两种情况;当a=2时,b=5,6两种情况;当a=3时,b=4,5,6三种情况;当a=4时,b=3,4,5,6四种情况;当a=5或6,b各有6种情况.所以共有2+2+3+4+6+6=23种情况.答案:238.集合N={a,b,c}⊆{-5,-4,-2,1,4},若关于x的不等式ax2+bx+c<0恒有实数解,则满足条件的集合N的个数是________.解析:依题意知,最多有10个集合N,其中对于不等式ax2+bx+c<0没有实数解的情况可转化为需要满足a>0,且Δ=b2-4ac≤0,因此只有当a,c同号时才有可能,共有2种情况,因此满足条件的集合N的个数是10-2=8.答案:89.将数字1,2,3,4,5,6排成一列,记第i个数为a i(i=1,2,…,6),若a1≠1,a3≠3,a5≠5,a1<a3<a5,则不同的排列方法有________种(用数字作答).解析:分两步:第1步,先排a1,a3,a5,若a1=2,有2种排法;若a1=3,有2种排法;若a1=4,有1种排法,所以共有5种排法;第2步,再排a2,a4,a6,共有6种排法,故有5×6=30种不同的排列方法.答案:3010.有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(不一定六名同学都能参加)(1)每人恰好参加一项,每项人数不限;(2)每项限报一人,且每人至多参加一项;(3)每项限报一人,但每人参加的项目不限.解:(1)每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得共有36=729种不同的报名方法.(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,根据分步乘法计数原理,可得共有6×5×4=120种不同的报名方法.(3)每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,根据分步乘法计数原理,可得共有63=216种不同的报名方法.11.某电视台连续播放6个广告,其中有3个不同的商业广告、两个不同的宣传广告、一个公益广告,要求最后播放的不能是商业广告,且宣传广告与公益广告不能连续播放,两个宣传广告也不能连续播放,则有多少种不同的播放方式?解:用1,2,3,4,5,6表示广告的播放顺序,则完成这件事有三类方法.第1类:宣传广告与公益广告的播放顺序是2,4,6,分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.第2类:宣传广告与公益广告的播放顺序是1,4,6,分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.第3类:宣传广告与公益广告的播放顺序是1,3,6,同样分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.由分类加法计数原理得:6个广告共有36+36+36=108种不同的播放方式.12. 某城市在中心广场建造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有多少种(用数字作答).解:法一:从题意来看,6部分种4种颜色的花,又从图形看,知必有2组同颜色的花,从同颜色的花入手分类求解.(1)2与5同色,则3,6也同色或4,6也同色,所以共有4×3×2×2×1=48种栽种方法;(2)3与5同色,则2,4或4,6同色,所以共有4×3×2×2×1=48种栽种方法;(3)2与4且3与6同色,所以共有4×3×2×1=24种栽种方法.所以共有48+48+24=120种栽种方法.法二:记颜色为A,B,C,D四色,先安排1,2,3有4×3×2种不同的栽法,不妨设1,2,3已分别栽种A,B,C,则4,5,6的栽种方法共5种,由以下树状图清晰可见.根据分步乘法计数原理,共有4×3×2×5=120种不同的栽种方法.[冲击名校]1.设集合I={1,2,3,4,5},选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法的种数为()A.50 B.49 C.48 D.47解析:选B根据题意,B中最小的数大于A中最大的数,则集合A,B中没有相同的元素,且都不是空集,按A中元素分情况讨论,分别计算其选法种数,进而相加即可.第1类,当A中最大的数是1时,A是{1},B可以是{2,3,4,5}的非空子集,即有24-1=15种选法;第2类,当A中最大的数是2时,A可以是{2}或{1,2},B可以是{3,4,5}的非空子集,即有2×(23-1)=14种选法;第3类,当A中最大的数是3时,A可以是{3},{1,3},{2,3},{1,2,3},B可以是{4,5}的非空子集,即有4×(22-1)=12种选法;第4类,当A中最大的数是4时,A可以是{4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4},B是{5},即有8×1=8种选法.综上可知,共有15+14+12+8=49种不同的选择方法.2.若m,n均为非负整数,在做m+n的加法时各位均不进位(例如:134+3 802=3 936),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为1 942的“简单的”有序对的个数为________.解析:第1步,1=1+0,或1=0+1,共2种组合方式;第2步,9=0+9,或9=1+8,或9=2+7,或9=3+6,…,或9=9+0,共10种组合方式;第3步,4=0+4,或4=1+3,或4=2+2,或4=3+1,或4=4+0,共5种组合方式;第4步,2=0+2,或2=1+1,或2=2+0,共3种组合方式.根据分步乘法计数原理,值为1 942的“简单的”有序对的个数为2×10×5×3=300.答案:300。
2015高考理科数学一轮计数原理、概率复习题(带答案)
2015高考理科数学一轮计数原理、概率复习题(带答案)第1课时分类加法计数原理与分步乘法计数原理1.理解分类加法计数原理和分步乘法计数原理.2.会用分类加法计数原理和分步乘法计数原理分析和解决一些简单的实际问题.对应学生用书P167]【梳理自测】一、分类加法计数原理1.(教材改编)从3名女同学和2名男同学中选1人主持主题班会,则不同的选法种数为()A.6B.5C.3D.22.设x,y∈N且x+y≤3,则直角坐标系中满足条件的点M(x,y)共有()A.3个B.4个C.5个D.10个答案:1.B2.D◆以上题目主要考查了以下内容:完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有mn种不同的方法,则完成这件事情共有N=m1+m2+…+mn种不同的方法.二、分步乘法计数原理1.(教材改编)由0,1,2,3这四个数字组成的四位数中,有重复数字的四位数共有()A.238个B.232个C.174个D.168个2.(教材改编)有不同颜色的四件衬衣与不同颜色的三条领带,如果一条领带与一件衬衣配成一套.则不同的配法种数是________.3.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有________种.答案:1.C2.123.32◆以上题目主要考查了以下内容:完成一件事情需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有mn种不同的方法,那么完成这件事情共有N=m1•m2•…•mn种不同的方法.【指点迷津】1.两个特点分类加法计数原理的特点是独立、互斥;分步乘法计数原理的特点是关联、连续.解题时经常是两个原理交叉在一起使用,两个原理综合使用时,一般先分类,再分步,分类要标准明确,分步要步骤连续,有的题目也可能出现先分步,在“步”里面再分类.2.两个关键分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的步骤,既要合理分类,又要准确分步.对应学生用书P167]考向一分类加法计数原理(2014•浙江省名校联考)如果正整数a的各位数字之和等于6,那么称a 为“好数”(如:6,24,2013等均为“好数”),将所有“好数”从小到大排成一列a1,a2,a3,…,若an=2013,则n=()A.50B.51C.52D.53【审题视点】2013是四位数,故“好数”按四位数,按三大类分首位为0、1、2每一类再分,采用加法原理.【典例精讲】本题可以把数归为“四位数”(含0006等),因此比2013小的“好数”为0×××,1×××,2004,共三类数,其中第一类可分为:00××,01××,…,0600,共7类,共有7+6+…+2+1=28个数;第二类可分为:10××,11××,…,1500,共6类,共有6+5+4+3+2+1=21个数,故2013为第51个数,故n=51,选B.【答案】B【类题通法】(1)分类加法计数原理的特点①根据问题的特点能确定一个适合于它的分类标准;②完成这件事情的任何一种方法必须属于某一类.(2)使用分类加法计数原理应注意的问题分类时标准要明确,分类应做到不重不漏.1.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()A.3B.4C.6D.8解析:选D.当公比为2时,等比数列可为1,2,4或2,4,8;当公比为3时,等比数列可为1,3,9;当公比为32时,等比数列可为4,6,9.同理,公比为12,13,23时,也有4个.考向二分步乘法原理(2012•高考辽宁卷)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为()A.3×3B.3×(3!)3C.(3!)4D.9!【审题视点】一家人视为一个整体,采用捆绑法,先排三个家庭,再排每个家庭的三口人.【典例精讲】第1步:3个家庭的全排列,方法数为3!,第2步:家庭内部3个人全排列,方法数为3!,共3个家庭,方法数为(3!)3;∴总数为(3!)×(3!)3=(3!)4,故选C.【答案】C【类题通法】(1)明确题目中所指的“完成一件事”是什么事,必须要经过几步才能完成这件事;(2)完成这件事需要分成若干个步骤,只有每个步骤都完成了才算完成这件事,缺少任何一步,这件事都不可能完成;(3)解决分步问题时要合理设计步骤、顺序,使各步互不干扰,还要注意元素是否可以重复选取.2.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个(用数字作答).解析:法一:用2,3组成四位数共有2×2×2×2=16(个),其中不出现2或不出现3的共2个,因此满足条件的四位数共有16-2=14(个).法二:满足条件的四位数可分为三类:第一类含有一个2,三个3,共有4个;第二类含有三个2,一个3共有4个;第三类含有二个2,二个3共有C24=6(个),因此满足条件的四位数共有2×4+C24=14(个).答案:14考向三两个原理的综合应用(2014•石家庄市模拟)为举办校园文化节,某班推荐2名男生、3名女生参加文艺技能培训,培训项目及人数分别为:乐器1人,舞蹈2人,演唱2人,每人只参加一个项目,并且舞蹈和演唱项目必须有女生参加,则不同的推荐方案的种数为________.(用数字作答)【审题视点】先分两类:参加乐器培训的是女生或男生,每一类中分步选舞蹈或演唱.【典例精讲】若参加乐器培训的是女生,则各有1名男生及1名女生分别参加舞蹈和演唱培训,共有3×2×2=12种方案;若参加乐器培训的是男生,则各有1名男生、1名女生及2名女生分别参加舞蹈和演唱培训,共有2×3×2=12种方案,所以共有24中推荐方案.【答案】24【类题通法】(1)解决此类综合题的关键在于区分该问题是“分类”还是“分步”.(2)解决既有“分类”又有“分步”的综合问题时,应“先分类,后分步”.3.已知集合M∈{1,-2,3),N∈{-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是()A.18B.10C.16D.14解析:选D.M中的元素作点的横坐标,N中的元素作点的纵坐标,在第一象限的点共有2×2个,在第二象限的点共有1×2个.N中的元素作点的横坐标,M中的元素作点的纵坐标,在第一象限的点共有2×2个,在第二象限的点共有2×2个.所求不同的点的个数是2×2+1×2+2×2+2×2=14(个).对应学生用书P168]两个原理不清,分步与排列混淆致误把3封信投到4个信箱,所有可能的投法共有()A.A34种B.C34种C.43种D.34种【正解】第1封信投到信箱中有4种投法;第2封信投到信箱也有4种投法;第3封信投到信箱也有4种投法.只要把这3封信投完,就做完了这件事情,由分步计数原理可得共有43种方法,故选C.【答案】C【易错点】(1)选择的标准出现错误,误认为每个信箱有三种选择,所以可能的投法有34种,没有注意到一封信只能投在一个信箱中.(2)与排列混淆,误认为3封信只能用三个信箱错选为A.(3)与组合混淆,错选为B,C34只表示适用了三个信箱,并没把信放入信箱,事情并没“完成”.【警示】(1)理清题目的条件、结论及完成的“事件”,合理选择分类原理和分步原理.(2)能否独立完成事情是区分分类还是分步的依据,如(1)中,把其中的一封信投到信箱里,并没有完成任务,所以只能看做其中的一步,而不是一类.(3)本题所完成的事是指:把3封信全部投到信箱,可以用一个信箱,也可用2、3个信箱,故采用分步完成.1.(2013•高考山东卷)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243B.252C.261D.279解析:选B.0,1,2…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),∴有重复数字的三位数有900-648=252(个).2.(2012•高考浙江卷)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种解析:选D.共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故不同的取法有C45+C44+C25C24=66(种).3.(2013•高考福建卷)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14B.13C.12D.10解析:选B.当a=0时,关于x的方程为2x+b=0,此时有序数对(0,-1),(0,0),(0,1),(0,2)均满足要求;当a≠0时,Δ=4-4ab≥0,ab≤1,此时满足要求的有序数对为(-1,-1),(-1,0),(-1,1),(-1,2),(1,-1),(1,0),(1,1),(2,-1),(2,0).综上,满足要求的有序数对共有13个,选B.4.(2012•高考北京卷)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24B.18C.12D.6解析:选B.从0,2中选一个数字,分两类:1)取0:此时0只能放在十位,再从1,3,5中任取两个数,在个位与百位进行全排列即可,列式为A23;2)取2:此时2可以放在十位或百位,再从1,3,5中任取两个放在剩余两位进行全排列,列式为2A23,∴满足条件的三位数的个数为A23+2A23=3A23=3×3×2=18.故选B.。
(山东专用)新高考数学一轮复习 第十章 计数原理、概率、随机变量及其分布 10.1 分类加法计数原理
第一节分类加法计数原理与分步乘法计数原理课标要求考情分析1.理解分类加法计数原理和分步乘法计数原理.2.会用分类加法计数原理和分步乘法计数原理分析和解决一些简单的实际问题.1.两个计数原理一般不单独命题,常与排列、组合交汇考查.2.题型以选择题、填空题为主,要求相对较低.知识点两种计数原理基本形式一般形式区别分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法完成一件事有n类不同方案,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n种不同的方法分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任何一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第完成一件事需要n个步骤,做第1步有m1种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N =m1×m2×…×m n 种不同的方法1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(×)(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(√)(3)在分步乘法计数原理中,事情是分步完成的,其中任何一个单独的步骤都不能完成这件事,只有每个步骤都完成后,这件事情才算完成.(√)(4)如果完成一件事情有n个不同步骤,在每一步中都有若干种不同的方法m i(i=1,2,3,…,n),那么完成这件事共有m1m2m3…m n种方法.(√)(5)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(√)2.小题热身(1)从3名女同学和2名男同学中选1人主持本班的某次主题班会,则不同的选法种数为(B)A.6B.5C.3D.2(2)已知某公园有4个门,从一个门进,另一个门出,则不同的走法共有(C)A.16种B.13种C.12种D.10种(3)小王有70元钱,现有面值分别为20元和30元的两种IC电话卡.若他至少买一张,则不同的买法共有(A)A.7种B.8种C.6种D.9种(4)一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不同(除交汇点O外)的游览线路有48种.(用数字作答)(5)如图,从A城到B城有3条路;从B城到D城有4条路;从A城到C城有4条路,从C城到D城有5条路,则某旅客从A城到D城共有32条不同的路线.解析:(1)“完成这件事”即选出1人当主持人,可分选女主持人和男主持人两类进行,分别有3种选法和2种选法,所以共有3+2=5种不同的选法.(3)要完成的“一件事”是“至少买一张IC电话卡”,分3类完成:买1张IC电话卡、买2张IC电话卡、买3张IC电话卡,而每一类都能独立完成“至少买一张IC电话卡”这件事.买1张IC电话卡有2种方法,买2张IC电话卡有3种方法,买3张IC电话卡有2种方法.不同的买法共有2+3+2=7(种).(4)根据题意,从点P处进入后,参观第一个景点时,有6个路口可以选择,从中任选一个,有6种选法;参观完第一个景点,参观第二个景点时,有4个路口可以选择,从中任选一个,有4种选法;参观完第二个景点,参观第三个景点时,有2个路口可以选择,从中任取一个,有2种选法.由分步乘法计数原理知,共有6×4×2=48(种)不同游览线路.(5)不同路线共有3×4+4×5=32(条).考点一分类加法计数原理的应用【例1】(1)已知椭圆x2a2+y2b2=1,若a∈{2,4,6,8},b∈{1,2,3,4,5,6,7,8},这样的椭圆有________个.()C.28 D.32(2)我们把中间位数上的数字最大,而两边依次减小的多位数称为“凸数”.如132,341等,那么由1,2,3,4,5可以组成无重复数字的三位“凸数”的个数是________.【解析】(1)解法1:若焦点在x轴上,则a>b,a=2时,有1个;a=4时,有3个;a=6时,有5个;a=8时,有7个,共有1+3+5+7=16个.若焦点在y轴上,则b>a,b=3时,有1个;b=4时,有1个;b=5时,有2个;b=6时,有2个;b=7时,有3个;b=8时,有3个.共有1+1+2+2+3+3=12个.故共有16+12=28个.解法2:a=b时有4种情况,故椭圆个数为4×8-4=28个.(2)根据“凸数”的特点,中间的数字只能是3,4,5,故分三类,第一类,当中间数字为“3”时,此时有2种(132,231);第二类,当中间数字为“4”时,从1,2,3中任取两个放在4的两边,故有6种;第三类,当中间数字为“5”时,从1,2,3,4中任取两个放在5的两边,故有12种;根据分类加法计数原理,得到由1,2,3,4,5可以组成无重复数字的三位“凸数”的个数是2+6+12=20.【答案】(1)C(2)20方法技巧(1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏.(2)分类时,注意完成这件事的任何一种方法必须属于某一类,不能重复.1.图书馆的书架有三层,第一层有3本不同的数学书,第二层有5本不同的语文书,第三层有8本不同的英语书,现从中任取1本书,则不同的取法共有(B) A.120种B.16种解析:书架上有3+5+8=16(本)书,则从中任取1本书,共有16种不同的取法.故选B.2.将编号为1,2,3,4的小球放入编号为1,2,3的盒子中,要求不允许有空盒子,且球与盒子的编号不能相同,则不同的放球方法有(B)A.16种B.12种C.9种D.6种解析:由题意可知,这四个小球有两个小球放在一个盒子中,当1号与2号小球放在同一盒子中时,有2种不同的放法;当1号与3号小球放在同一盒子中时,有2种不同的放法;当1号与4号小球放在同一盒子中时,有2种不同的放法;当2号与3号小球放在同一盒子中时,有2种不同的放法;当2号与4号小球放在同一盒子中时,有2种不同的放法;当3号与4号小球放在同一盒子中时,有2种不同的放法.因此,由分类加法计数原理可知,不同的放球方法共有12种.故选B.考点二分步乘法计数原理的应用【例2】(1)已知集合M={-3,-2,-1,0,1,2},P(a,b)(a,b∈M)表示平面上的点,则P可表示坐标平面上第二象限的点的个数为()A.6 B.12C.24 D.36(2)有6名同学报名参加三个智力项目,每项限报一人,三个项目都有人报,且每人至多参加一项,则共有________种不同的报名方法.【解析】(1)确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种方法;第二步确定b,由于b>0,所以有2种方法.由分步乘法计数原理,得到第二象限的点的个数是3×2=6.(2)每项限报一个,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).【答案】(1)A(2)120方法技巧利用分步乘法计数原理解决问题的策略(1)利用分步乘法计数原理解决问题时要注意按事件发生的过程来合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足的两个条件:一是各步骤相互独立,互不干扰;二是步与步之间确保连续,逐步完成.1.如图,某电子器件由3个电阻串联而成,形成回路,其中有6个焊接点A,B,C,D,E,F,如果焊接点脱落,整个电路就会不通.现发现电路不通,那么焊接点脱落的可能情况共有63种.解析:因为每个焊接点都有脱落与未脱落两种情况,而只要有一个焊接点脱落,则电路就不通,故共有26-1=63种可能情况.2.从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,则可组成18个不同的二次函数,其中偶函数有6个(用数字作答).解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3×3×2=18(个)二次函数.若二次函数为偶函数,则b=0,同上可知共有3×2=6(个)偶函数.考点三两个计数原理的综合应用命题方向1计数问题【例3】高考结束后6名同学游览我市包括日月湖在内的6个景区,每名同学任选一个景区游览,则有且只有两名同学选择日月湖景区的方案有()A.A26×A45种B.A26×54种C.C26×A45种D.C26×54种【解析】根据题意,分2步进行分析:①先从6名同学中任选2人,去日月湖景区旅游,有C26种方案,②对于剩下的4名同学,每人都有5种选择,则这4人有5×5×5×5=54种方案,则有且只有两名同学选择日月湖景区的方案有C26×54种,故选D.【答案】 D命题方向2与几何有关的问题【例4】如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48B.18 C.24D.36【解析】第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).【答案】 D命题方向3涂色问题【例5】如图一个地区分为五个行政区域,现给该地图着色,要求相邻区域不得使用同一种颜色,现有四种颜色可供选择,则不同的着色方法共有________种.(用数字作答)【解析】由题意可知,当选用三种颜色着色时,由分步乘法计数原理得,有C14C13C12=24(种)方法,当选用四种颜色着色时,由分步乘法计数原理得,有2C14C13C12C11=48(种)方法,再据分类加法计数原理可得有24+48=72(种)方法.【答案】72方法技巧利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类.(3)弄清分步、分类的标准是什么.(4)利用两个计数原理求解.1.(方向1)将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同的放法共有(C)A.480种B.360种C.240种D.120种解析:根据题意,将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则必须有2个小球放入1个盒子,其余的小球各单独放入一个盒子,分2步进行分析:①先将5个小球分成4组,有C25=10种分法;②将分好的4组全排列,放入4个盒子,有A44=24种情况,则不同放法有10×24=240种.故选C.2.(方向2)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是(B)A.60 B.48C.36 D.24解析:长方体的6个表面构成的“平行线面组”的个数为6×6=36,另外含4个顶点的6个面(非表面)构成的“平行线面组”的个数为6×2=12,故符合条件的“平行线面组”的个数是36+12=48.3.(方向3)用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有108种.解析:把区域分为三部分,第一部分1,5,9,有3种涂法.第二部分4,7,8,当5,7同色时,4,8各有2种涂法,共4种涂法;当5,7异色时,7有2种涂法,4,8均只有1种涂法,故第二部分共4+2=6种涂法.第三部分与第二部分一样,共6种涂法.由分步乘法计数原理,可得共有3×6×6=108种涂法.。
山东省济宁市2015届高考数学一轮复习第一讲计数原理讲练理新人教A版
第一讲计数原理、二项式定理一、两个计数原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n 种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.二、排列组合1、排列与排列数(1).排列从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2).排列数从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数,记作A m n.2、组合与组合数(1).组合从n个不同元素中取出m(m≤n)个元素组成一组,叫做从n个不同元素中取出m个元素的一个组合.(2).组合数从n 个不同元素中取出m (m ≤n )个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,记作C mn .3、排列数、组合数的公式及性质(1)A mn =n (n -1)(n -2)…(n -m +1)=n !n -m !(2)C m n=A mn A m m=n n -n -n -m +m !=n !m !n -m !(n ,m∈N *,且m ≤n ).特别地C 0n =1.解排列、组合应用题的常见策略 (1)特殊元素优先安排的策略; (2)合理分类与准确分步的策略;(3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略; (7)定序问题除法处理的策略; (8)分排问题直排处理的策略.三、二项式定理 1、二项式定理(1).(a +b )n=C 0n a n+C 1n an -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *).(2).第r +1项,T r +1=C r n an -r b r.(3).第r +1项的二项式系数为C rn . 2、二项式系数的性质(1).0≤k ≤n 时,C kn 与C n -kn 的关系是C kn =C n -kn .(2).二项式系数先增后减中间项最大且n 为偶数时第n2+1项的二项式系数最大,最大值为C n 2n ;当n 为奇数时,第n +12项和n +32项的二项式系数最大,最大值为C n -12n 或Cn +12n.(3).各二项式系数和:C 0n +C 1n +C 2n +…+C n n =2n,C0n+C2n+C4n+…=C1n+C3n+C5n+…=2n-1.基础自测1.在所有的两位数中,个位数字大于十位数字的两位数共有( )A.50个B.45个C.36个D.35个【解析】根据题意,十位数上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目要求的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36(个).【答案】 C2.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种 B.12种 C.24种 D.30种【解析】分步完成.首先甲、乙两人从4门课程中同选1门,有4种方法,其次甲从剩下的3门课程中任选1门,有3种方法,最后乙从剩下的2门课程中任选1门,有2种方法,于是,甲、乙所选的课程中恰有1门相同的选法共有4×3×2=24(种),故选C.【答案】 C3.A、B、C、D、E五人并排站成一排,如果B必须站在A的右边(A、B可以不相邻),那么不同的排法共有( )A.24种 B.60种 C.90种 D.120种【解析】可先排C、D、E三人,共A35种排法,剩余A、B两人只有一种排法,由分步计数原理满足条件的排法共A35=60(种).【答案】 B4.(2013·大纲全国卷)(x+2)8的展开式中x6的系数是( )A.28 B.56 C.112 D.224【解析】该二项展开式的通项为T r+1=C r8x8-r2r=2r C r8x8-r,令r=2,得T3=22C28x6=112x6,所以x6的系数是112.【答案】 C考点一两个计数原理例 6个学生按下列要求站成一排,求各有多少种不同的站法?(1)甲不站排头,乙不能站排尾;(2)甲、乙都不站排头和排尾;(3)甲、乙、丙三人中任何两人都不相邻;(4)甲、乙都不与丙相邻.【思路点拨】(1)按甲站的位置分类求解;(2)先排甲、乙的位置,再排其他学生;(3)不相邻问题用插空法求解;(4)按丙站的位置分类求解.【尝试解答】(1)分两类:甲站排尾,有A55种;甲站中间四个位置中的一个,且乙不站排尾,有A14A14A44种.由分类计数原理,共有A55+A14A14A44=504(种).(2)分两步:首先将甲、乙站在中间四个位置中的两个,有A24种;再站其余4人,有A44种.由分步计数原理,共有A24·A44=288(种).(3)分两步:先站其余3人,有A33种;再将甲、乙、丙3人插入前后四个空当,有A34种.由分步计数原理,共有A33·A34=144(种).(4)分三类:丙站首位,有A24A33种;丙站末位,有A24A33种;丙站中间四个位置中的一个,有A14A23A33种.由分类计数原理,共有2A24A33+A14A23A33=288(种).方法与技巧 1.对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.2.对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.跟踪练习(2013山东)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A.243 B.252C.261 D.279解析:本题考查分步乘法计数原理的基础知识,考查转化与化归思想,考查运算求解能力,考查分析问题和解决问题的能力.能够组成三位数的个数是9×10×10=900,能够组成无重复数字的三位数的个数是9×9×8=648,故能够组成有重复数字的三位数的个数是900-648=252.答案:B考点二排列与组合例 1、男运动员6名,女运动员4名,其中男女队长各1名,选派5人外出比赛,在下列情形中各有多少种选派方法?(1)至少有1名女运动员;(2)既要有队长,又要有女运动员.【思路点拨】第(1)问可以用直接法或间接法求解.第(2)问根据有无女队长分类求解.【尝试解答】(1)法一至少有1名女运动员包括以下几种情况:1女4男,2女3男,3女2男,4女1男.由分类加法计数原理可得总选法数为C14C46+C24C36+C34C26+C44C16=246(种).法二“至少有1名女运动员”的反面为“全是男运动员”可用间接法求解.从10人中任选5人有C510种选法,其中全是男运动员的选法有C56种.所以“至少有1名女运动员”的选法为C 510-C 56=246(种). (2)当有女队长时,其他人选法任意,共有C 49种选法.不选女队长时,必选男队长,共有C 48种选法.其中不含女运动员的选法有C 45种,所以不选女队长时共有C 48-C 45种选法,所以既有队长又有女运动员的选法共有C 49+C 48-C 45=191(种).方法与技巧 组合问题常有以下两类题型变化含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.至少”或“最多”含有几个元素的题型:若直接法分类复杂时,逆向思维,间接求解.2、(2012山东)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )A .232B .252C .472D .484解析:若没有红色卡片,则需从黄、蓝、绿三色卡片中选3张,若都不同色则有C 14×C 14×C 14=64种,若2张同色,则有C 23×C 12×C 24×C 14=144种;若红色卡片有1张,剩余2张不同色,则有C 14×C 23×C 14×C 14=192种,剩余2张同色,则有C 14×C 13×C 24=72种,所以共有64+144+192+72=472种不同的取法.答案:C跟踪练习 1、(2010山东)(8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有 (A )36种(B )42种(C)48种(D )54种【答案】B2、(2009·宁夏、海南)7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有________种(用数字作答).解析:法一:先从7人中任取6人,共有C 67种不同的取法.再把6人分成两部分,每部分3人,共有C 36C 33A 22种分法.最后排在周六和周日两天,有A 22种排法,∴C 67×C 36C 33A 22×A 22=140种.法二:先从7人中选取3人排在周六,共有C 37种排法.再从剩余4人中选取3人排在周日,共有C 34种排法,∴共有C 37×C 34=140种.答案:140考点三 二项式定理例 1、(X -31x)12展开式中的常数项为(A )-1320 (B )1320 (C )-220 (D)220 解析:本题考查二项式定理及其应用4121212331121212((1)(1),r r r r r r r r r r r T C xC x x C x ----+==-⋅=-993101212121110(1)220.321T C C ⨯⨯==-=-=-=-⨯⨯2、如果n x x )13(32-的展开式中各项系数之和为128,则展开式中31x 的系数是( )A .7B .-7C .21D .-215.C跟踪练习 1、[2014·山东卷] 若⎝⎛⎭⎪⎫ax 2+b x 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________.答案:2 [解析] T r +1=C r6(ax 2)6-r·⎝ ⎛⎭⎪⎫b x r=C r 6a 6-r ·b r x 12-3r,令12-3r =3,得r =3,所以C 36a 6-3b 3=20,即a 3b 3=1,所以ab =1,所以a 2+b 2≥2ab =2,当且仅当a =b ,且ab =1时,等号成立.故a 2+b 2的最小值是2.2、(2013江西).⎝ ⎛⎭⎪⎫x 2-2x 5展开式中的常数项为( )A .80B .-80C .40D .-40解析:本题考查二项式定理,意在考查考生的运算能力.T r +1=C r5·(x 2)5-r·⎝⎛⎭⎪⎫-2x 3r=C r5·(-2)r·x10-5r,令10-5r =0,得r =2,故常数项为C 25×(-2)2=40.答案:C。
2015年高考数学总复习(人教A版,理科)配套教案:第十章 计数原理 10.3
§10.3 二项式定理1.二项式定理(a +b )n =C 0n a n +C 1n a n -1b 1+…+C k n a n -k b k +…+C n nb n (n ∈N *). 这个公式叫做二项式定理,右边的多项式叫做(a +b )n 的二项展开式,其中的系数C k n (k =0,1,2,…,n )叫做二项式系数.式中的C k n a n -k b k叫做二项展开式的通项,用T k +1表示,即展开式的第k +1项:T k +1=C k n an -k b k . 2.二项展开式形式上的特点 (1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C n n .3.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,即C m n =C n -m n. (2)增减性与最大值:二项式系数C k n ,当k <n +12时,二项式系数是递增的;当k >n +12时,二项式系数是递减的.当n 是偶数时,那么其展开式中间一项T n2+1的二项式系数最大.当n 是奇数时,那么其展开式中间两项T n +12 和T n +12+1 的二项式系数相等且最大.(3)各二项式系数的和(a +b )n 的展开式的各个二项式系数的和等于2n ,即C 0n +C 1n +C 2n +…+C k n +…+C n n =2n . 二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n +…=2n -1.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)C k n an -k b k 是二项展开式的第k 项. ( × ) (2)二项展开式中,系数最大的项为中间一项或中间两项.( × )(3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关. ( √ ) (4)在(1-x )9的展开式中系数最大的项是第五、第六两项. ( × ) 2.(1+2x )5的展开式中,x 2的系数等于( )A .80B .40C .20D .10答案 B解析 T k +1=C k n a n -k b k =C k 515-k (2x )k =C k 5×2k ×x k ,令k =2, 则可得含x 2项的系数为C 25×22=40. 3.在(x 2-13x)n 的展开式中,只有第5项的二项式系数最大,则展开式中常数项是 ( )A .-7B .7C .-28D .28答案 B解析 由题意有n =8,T k +1=C k 8(12)8-k (-1)k x 8-43k , k =6时为常数项,常数项为7.4.已知C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =729,则C 1n +C 2n +C 3n +…+C n n等于 ( )A .63B .64C .31D .32答案 A解析 逆用二项式定理得C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =(1+2)n =3n =729,即3n =36,所以n =6,所以C 1n +C 2n +C 3n +…+C n n =26-C 0n =64-1=63.故选A.5.设(x -1)21=a 0+a 1x +a 2x 2+…+a 21x 21,则a 10+a 11=________. 答案 0解析 a 10,a 11分别是含x 10和x 11项的系数,所以a 10=-C 1121,a 11=C 1021, 所以a 10+a 11=C 1021-C 1121=0.题型一 求二项展开式的指定项或指定项系数例1 已知在⎝ ⎛⎭⎪⎪⎫3x -123x n 的展开式中,第6项为常数项. (1)求n ;(2)求含x 2的项的系数; (3)求展开式中所有的有理项.思维启迪 先根据第6项为常数项利用通项公式求出n ,然后再求指定项. 解 (1)通项公式为T k +1=C k n xn -k 3⎝⎛⎭⎫-12k x -k 3=C k n ⎝⎛⎭⎫-12k x n -2k 3. 因为第6项为常数项,所以k =5时,n -2×53=0,即n =10.(2)令10-2k 3=2,得k =2,故含x 2的项的系数是C 210⎝⎛⎭⎫-122=454. (3)根据通项公式,由题意⎩⎪⎨⎪⎧10-2k 3∈Z0≤k ≤10k ∈N,令10-2k 3=r (r ∈Z ),则10-2k =3r ,k =5-32r ,∵k ∈N ,∴r 应为偶数.∴r 可取2,0,-2,即k 可取2,5,8,∴第3项,第6项与第9项为有理项,它们分别为C 210⎝⎛⎭⎫-122x 2,C 510⎝⎛⎭⎫-125,C 810⎝⎛⎭⎫-128x -2. 思维升华 求二项展开式中的特定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k +1,代回通项公式即可.(1)(2013·江西)⎝⎛⎭⎫x 2-2x 35展开式中的常数项为( )A .80B .-80C .40D .-40(2)(x +a x )(2x -1x )5的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .40答案 (1)C (2)D解析 (1)T k +1=C k 5(x 2)5-k ⎝⎛⎭⎫-2x 3k =C k 5(-2)k x 10-5k , 令10-5k =0得k =2.∴常数项为T 3=C 25(-2)2=40.(2)令x =1得(1+a )(2-1)5=1+a =2,所以a =1.因此(x +1x )(2x -1x )5展开式中的常数项即为(2x -1x )5展开式中1x 的系数与x 的系数的和.(2x-1x)5展开式的通项为T k +1=C k 5(2x )5-k ·(-1)k ·x -k =C k 525-k x 5-2k ·(-1)k . 令5-2k =1,得2k =4,即k =2,因此(2x -1x )5展开式中x 的系数为C 2525-2(-1)2=80.令5-2k =-1,得2k =6,即k =3,因此(2x -1x )5展开式中1x的系数为C 3525-3·(-1)3=-40. 所以(x +1x )(2x -1x)5展开式中的常数项为80-40=40.题型二 二项式系数的和或各项系数的和的问题 例2 在(2x -3y )10的展开式中,求: (1)二项式系数的和; (2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和; (4)奇数项系数和与偶数项系数和; (5)x 的奇次项系数和与x 的偶次项系数和.思维启迪 求二项式系数的和或各项系数的和的问题,常用赋值法求解. 解 设(2x -3y )10=a 0x 10+a 1x 9y +a 2x 8y 2+…+a 10y 10,(*)各项系数和为a 0+a 1+…+a 10,奇数项系数和为a 0+a 2+…+a 10,偶数项系数和为a 1+a 3+a 5+…+a 9,x 的奇次项系数和为a 1+a 3+a 5+…+a 9,x 的偶次项系数和为a 0+a 2+a 4+…+a 10.由于(*)是恒等式,故可用“赋值法”求出相关的系数和.(1)二项式系数的和为C 010+C 110+…+C 1010=210.(2)令x =y =1,各项系数和为(2-3)10=(-1)10=1.(3)奇数项的二项式系数和为C 010+C 210+…+C 1010=29, 偶数项的二项式系数和为C 110+C 310+…+C 910=29.(4)令x =y =1,得到a 0+a 1+a 2+…+a 10=1,① 令x =1,y =-1(或x =-1,y =1), 得a 0-a 1+a 2-a 3+…+a 10=510,② ①+②得2(a 0+a 2+…+a 10)=1+510, ∴奇数项系数和为1+5102;①-②得2(a 1+a 3+…+a 9)=1-510, ∴偶数项系数和为1-5102.(5)x 的奇次项系数和为a 1+a 3+a 5+…+a 9=1-5102;x 的偶次项系数和为a 0+a 2+a 4+…+a 10=1+5102.思维升华 (1)“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n 、(ax 2+bx +c )m (a 、b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可. (2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.已知f (x )=(1+x )m +(1+2x )n (m ,n ∈N *)的展开式中x 的系数为11.(1)求x 2的系数取最小值时n 的值;(2)当x 2的系数取得最小值时,求f (x )展开式中x 的奇次幂项的系数之和.解 (1)由已知得C 1m +2C 1n =11,∴m +2n =11,x 2的系数为C 2m +22C 2n =m (m -1)2+2n (n -1) =m 2-m 2+(11-m )⎝ ⎛⎭⎪⎫11-m 2-1=⎝⎛⎭⎫m -2142+35116. ∵m ∈N *,∴m =5时,x 2的系数取得最小值22,此时n =3. (2)由(1)知,当x 2的系数取得最小值时,m =5,n =3, ∴f (x )=(1+x )5+(1+2x )3. 设这时f (x )的展开式为f (x )=a 0+a 1x +a 2x 2+…+a 5x 5,令x =1,a 0+a 1+a 2+a 3+a 4+a 5=25+33, 令x =-1,a 0-a 1+a 2-a 3+a 4-a 5=-1, 两式相减得2(a 1+a 3+a 5)=60,故展开式中x 的奇次幂项的系数之和为30. 题型三 二项式定理的应用例3 (1)已知2n +2·3n +5n -a 能被25整除,求正整数a 的最小值; (2)求1.028的近似值.(精确到小数点后三位)思维启迪 (1)将已知式子按二项式定理展开,注意转化时和25的联系;(2)近似值计算只要看展开式中的项的大小即可.解 (1)原式=4·6n +5n -a =4(5+1)n +5n -a=4(C 0n 5n +C 1n 5n -1+…+C n -2n 52+C n -1n 5+C n n )+5n -a =4(C 0n 5n +C 1n 5n -1+…+C n -2n52)+25n +4-a , 显然正整数a 的最小值为4.(2)1.028=(1+0.02)8≈C 08+C 18·0.02+C 28·0.022+C 38·0.023≈1.172. 思维升华 (1)整除问题和求近似值是二项式定理中两类常见的应用问题,整除问题中要关注展开式的最后几项,而求近似值则应关注展开式的前几项.(2)二项式定理的应用基本思路是正用或逆用二项式定理,注意选择合适的形式.(1)(2012·湖北)设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a 等于( )A .0B .1C .11D .12(2)S =C 127+C 227+…+C 2727除以9的余数为________.答案 (1)D (2)7解析 (1)512 012+a =(52-1)2 012+a =C 02 012522 012-C 12 012522 011+…+C 2 0112 012×52×(-1)2 011+C 2 0122 012×(-1)2 012+a . 因为52能被13整除,所以只需C 2 0122 012×(-1)2 012+a 能被13整除, 即a +1能被13整除,所以a =12.(2)S =C 127+C 227+…+C 2727=227-1=89-1=(9-1)9-1=C 09×99-C 19×98+…+C 89×9-C 99-1 =9(C 09×98-C 19×97+…+C 89)-2. ∵C 09×98-C 19×97+…+C 89是整数,∴S 被9除的余数为7.混淆二项展开式的系数与二项式系数致误典例:(12分)已知(3x +x 2)2n 的展开式的二项式系数和比(3x -1)n 的展开式的二项式系数和大992.求在⎝⎛⎭⎫2x -1x 2n 的展开式中, (1)二项式系数最大的项; (2)系数的绝对值最大的项.易错分析 本题易将二项式系数和系数混淆,利用赋值来求二项式系数的和导致错误;另外,也要注意项与项的系数,系数的绝对值与系数的区别. 规范解答解 由题意知,22n -2n =992,即(2n -32)(2n +31)=0,∴2n =32,解得n =5.[2分] (1)由二项式系数的性质知,⎝⎛⎭⎫2x -1x 10的展开式中第6项的二项式系数最大,即C 510=252.∴二项式系数最大的项为T 6=C 510(2x )5⎝⎛⎭⎫-1x 5=-8 064.[6分] (2)设第k +1项的系数的绝对值最大,∴T k +1=C k 10·(2x )10-k ·⎝⎛⎭⎫-1x k =(-1)k C k 10·210-k ·x 10-2k , ∴⎩⎪⎨⎪⎧C k 10·210-k ≥C k -110·210-k +1,C k 10·210-k ≥C k +110·210-k -1,得⎩⎪⎨⎪⎧ C k 10≥2C k -1102C k 10≥C k +110,即⎩⎪⎨⎪⎧11-k ≥2k ,2(k +1)≥10-k ,解得83≤k ≤113,[10分]∵k ∈Z ,∴k =3.故系数的绝对值最大的项是第4项,T 4=-C 310·27·x 4=-15 360x 4.[12分]温馨提醒 (1)本题重点考查了二项式的通项公式,二项式系数、项的系数以及项数和项的有关概念.(2)解题时要注意区别二项式系数和项的系数的不同;项数和项的不同.(3)本题的易错点是混淆项与项数,二项式系数和项的系数的区别.方法与技巧1.通项为T k +1=C k n an -k b k 是(a +b )n 的展开式的第k +1项,而不是第k 项,这里k =0,1,…,n .2.二项式系数与项的系数是完全不同的两个概念.二项式系数是指C 0n ,C 1n ,…,C n n,它只与各项的项数有关,而与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a ,b 的值有关.3.因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.4.运用通项求展开式的一些特殊项,通常都是由题意列方程求出k ,再求所需的某项;有时需先求n ,计算时要注意n 和k 的取值范围及它们之间的大小关系. 失误与防范1.区别“项的系数”与“二项式系数”,审题时要仔细.项的系数与a ,b 有关,可正可负,二项式系数只与n 有关,恒为正. 2.切实理解“常数项”“有理项”(字母指数为整数)“系数最大的项”等概念. 3.赋值法求展开式中的系数和或部分系数和,常赋的值为0,±1. 4.在化简求值时,注意二项式定理的逆用,要用整体思想看待a 、b .A 组 专项基础训练一、选择题1.(2012·天津)在⎝⎛⎭⎫2x 2-1x 5的二项展开式中,x 的系数为( )A .10B .-10C .40D .-40答案 D解析 因为T k +1=C k 5(2x 2)5-k ⎝⎛⎭⎫-1x k=C k 525-k x 10-2k (-1)k x -k =C k 525-k (-1)k x 10-3k , 令10-3k =1,得k =3,所以x 的系数为C 3525-3(-1)3=-40. 2.(1+3x )n (其中n ∈N 且n ≥6)的展开式中x 5与x 6的系数相等,则n 等于 ( )A .6B .7C .8D .9答案 B解析 (1+3x )n 的展开式中含x 5的项为C 5n (3x )5=C 5n 35x 5,展开式中含x 6的项为C 6n 36x 6,由两项的系数相等得C 5n ·35=C 6n ·36,解得n =7. 3.(4x -2-x )6(x ∈R )展开式中的常数项是 ( )A .-20B .-15C .15D .20答案 C解析 设展开式的常数项是第k +1项,则T k +1=C k 6·(4x )6-k ·(-2-x )k =C k 6·(-1)k ·212x -2kx ·2-kx =C k 6·(-1)k ·212x -3kx ,∴12x -3kx =0恒成立.∴k =4,∴T 5=C 46·(-1)4=15.4.若在(x +1)4(ax -1)的展开式中,x 4的系数为15,则a 的值为( )A .-4 B.52 C .4 D.72答案 C解析 ∵(x +1)4(ax -1)=(x 4+4x 3+6x 2+4x +1)(ax -1), ∴x 4的系数为4a -1=15,∴a =4.5.若(1+x )+(1+x )2+…+(1+x )n =a 0+a 1(1-x )+a 2(1-x )2+…+a n (1-x )n ,则a 0-a 1+a 2-…+(-1)n a n 等于( )A.34(3n -1) B.34(3n -2) C.32(3n -2)D.32(3n -1) 答案 D解析 在展开式中,令x =2得3+32+33+…+3n =a 0-a 1+a 2-a 3+…+(-1)n a n , 即a 0-a 1+a 2-a 3+…+(-1)n a n =3(1-3n )1-3=32(3n -1). 二、填空题6.二项式(x +y )5的展开式中,含x 2y 3的项的系数是________.(用数字作答) 答案 10解析 T k +1=C k 5x5-k y k(k =0,1,2,3,4,5),由题意知⎩⎪⎨⎪⎧5-k =2k =3,∴含x 2y 3的系数为C 35=10.7.(2012·浙江)若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________. 答案 10解析 f (x )=x 5=(1+x -1)5,它的通项为T k +1=C k 5(1+x )5-k ·(-1)k , T 3=C 25(1+x )3(-1)2=10(1+x )3,∴a 3=10.8.(1-x )20的二项展开式中,x 的系数与x 9的系数之差为________. 答案 0解析 ∵T k +1=C k 20(-x 12)k =(-1)k ·C k 20·x k 2, ∴x 与x 9的系数分别为C 220与C 1820. 又∵C 220=C 1820,∴C 220-C 1820=0.三、解答题9.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7. 求:(1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6; (4)|a 0|+|a 1|+|a 2|+…+|a 7|.解 令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1.① 令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.② (1)∵a 0=C 07=1,∴a 1+a 2+a 3+…+a 7=-2. (2)(①-②)÷2,得a 1+a 3+a 5+a 7=-1-372=-1 094.(3)(①+②)÷2,得a 0+a 2+a 4+a 6=-1+372=1 093.(4)方法一 ∵(1-2x )7展开式中,a 0、a 2、a 4、a 6大于零,而a 1、a 3、a 5、a 7小于零, ∴|a 0|+|a 1|+|a 2|+…+|a 7|=(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7)=1 093-(-1 094)=2187.方法二 |a 0|+|a 1|+|a 2|+…+|a 7|,即(1+2x )7展开式中各项的系数和,令x =1, ∴|a 0|+|a 1|+|a 2|+…+|a 7|=37=2 187.10.已知⎝⎛⎭⎫12+2x n ,(1)若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;(2)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项.解 (1)∵C 4n +C 6n =2C 5n ,∴n 2-21n +98=0.∴n =7或n =14,当n =7时,展开式中二项式系数最大的项是T 4和T 5.∴T 4的系数为C 37⎝⎛⎭⎫12423=352, T 5的系数为C 47⎝⎛⎭⎫12324=70, 当n =14时,展开式中二项式系数最大的项是T 8.∴T 8的系数为C 714⎝⎛⎭⎫12727=3 432. (2)∵C 0n +C 1n +C 2n =79,∴n 2+n -156=0.∴n =12或n =-13(舍去).设T k +1项的系数最大, ∵⎝⎛⎭⎫12+2x 12=⎝⎛⎭⎫1212(1+4x )12, ∴⎩⎪⎨⎪⎧C k 124k ≥C k -1124k -1,C k 124k ≥C k +1124k +1.∴9.4≤k ≤10.4,∴k =10.∴展开式中系数最大的项为T 11,T 11=C 1012·⎝⎛⎭⎫122·210·x 10=16 896x 10. B 组 专项能力提升1.若(x +a )2(1x -1)5的展开式中常数项为-1,则a 的值为( )A .1B .9C .-1或-9D .1或9答案 D解析 由于(x +a )2=x 2+2ax +a 2,而(1x-1)5的展开式通项为T k +1=(-1)k C k 5·x k -5,其中k =0,1,2,…,5.于是(1x-1)5的展开式中x -2的系数为(-1)3C 35=-10,x -1项的系数为(-1)4C 45=5,常数项为-1,因此(x +a )2(1x -1)5的展开式中常数项为1×(-10)+2a ×5+a 2×(-1)=-a 2+10a -10,依题意-a 2+10a -10=-1,解得a 2-10a +9=0,即a =1或a =9.2.若(3x -1x )n 展开式中各项系数之和为32,则该展开式中含x 3的项的系数为( )A .-5B .5C .-405D .405答案 C解析 令x =1得2n =32,所以n =5,于是(3x -1x)5展开式的通项为 T k +1=(-1)k C k 5(3x )5-k (1x)k =(-1)k C k 535-k x 5-2k , 令5-2k =3,得k =1,于是展开式中含x 3的项的系数为(-1)1C 1534=-405,故选C.3.从(4x +1x)20的展开式中任取一项,则取到有理项的概率为( ) A.521 B.27 C.310 D.37答案 B解析 (4x +1x)20的展开式通项为 T k +1=C k 20(4x )20-k (1x)k =C k 20x 5-34k ,其中k =0,1,2,…,20. 而当k =0,4,8,12,16,20时,5-34k 为整数,对应的项为有理项, 所以从(4x +1x)20的展开式中任取一项, 则取到有理项的概率为P =621=27. 4.(x -y )10的展开式中,x 7y 3的系数与x 3y 7的系数之和等于________.答案 -240解析 ∵T k +1=(-1)k C k 10x10-k y k , ∴-C 310+(-C 710)=-2C 310=-240.5.在(1+x )3+(1+x )3+(1+3x )3的展开式中,x 的系数为________(用数字作答).答案 7解析 由条件易知(1+x )3、(1+x )3、(1+3x )3展开式中x 的系数分别是C 13、C 23、C 33,即所求系数是3+3+1=7. 6.若(2-x )10=a 0+a 1x +a 2x 2+…+a 10x 10,则(a 0+a 2+…+a 10)2-(a 1+a 3+…+a 9)2的值为_ _______.答案 1解析 设f (x )=(2-x )10,则(a 0+a 2+…+a 10)2-(a 1+a 3+…+a 9)2=(a 0+a 1+…+a 10)(a 0-a 1+a 2-…-a 9+a 10)=f (1)f (-1)=(2-1)10(2+1)10=1.。
(智慧测评)2015届高考数学大一轮总复习 第10篇 第2节 计数原理、排列与组合的综合应用课时训练
(智慧测评)2015届高考数学大一轮总复习第10篇第2节计数原理、排列与组合的综合应用课时训练理新人教A版"一、选择题1.如图所示,使电路接通,开关不同的开闭方式有( )A.11种B.20种C.21种D.12种解析:左边两个开关的开闭方式有闭合2个、1个即有1+2=3(种),右边三个开关的开闭方式有闭合1个、2个、3个,即有3+3+1=7(种),故使电路接通的情况有3×7=21(种).故选C.答案:C2.现有4种不同颜色要对如图所示的四个部分进行着色,每部分涂一种颜色,有公共边界的两块不能用同一种颜色,如果颜色可以反复使用,则不同的着色方法共有( )A.24种B.30种C.36种D.48种解析:按使用颜色种数可分为两类.①使用4种颜色有A44=24种不同的着色方法,②使用3种颜色有A34=24种不同着色方法.由分类加法原理知共有24+24=48种不同的着色方法.故选D.答案:D3.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种解析:法一先分组后分配,不同的安排方案共有C24C22A22A22=12(种).故选A.A22法二由位置选元素,先安排甲地,其余去乙地,不同的安排方案共有C12C24·C11C22=12(种).选A.4.(2014某某省某某市第五中学高三模拟)2013年第12届全国运动会举行期间,某校4名大学生申请当A,B,C三个比赛项目的志愿者,组委会接受了他们的申请,每个比赛项目至少分配一人,每人只能服务一个比赛项目,若甲要求不去服务A比赛项目,则不同的安排方案共有( )A.20种B.24种C.30种D.36种解析:①甲自己服务一个比赛项目,则先让甲从B、C中选取一个项目,然后其余三人分成2组(2+1)服务两个不同的比赛项目,故不同的安排方案共有C12C23A22=12种;②甲和另一名大学生两人一组服务一个比赛项目,则先从其余三人中选取一个与甲组成一组,再从B、C中选取一个项目,最后剩余两人与两个项目进行全排列即可,所以不同的安排方案共有C13C12A22=12种.由分类计数原理可得,不同的安排方案为12+12=24种.故选B.答案:B5.(2014某某省山大附中高三模拟)如图所示是某个区域的街道示意图(每个小矩形的边表示街道),那么从A到B的最短线路有________条.( )A.100 B.400C.200 D.250解析:从A到B的最短线路有两条:A-M-B;A-N-B.①若线路为A-M-B,则从A到M只需走5条街道,则需要从这五条街道中走3条向右,剩余2条街道则需要向北走,不同的走法为C35=10种;从M到B只需走5条街道,则需要从这五条街道中走2条向右,剩余3条街道则需要向北走,不同的走法为C25=10种.由分步计数原理可得,不同的走法为10×10=100种.②若线路为A-N-B,则从A到N只需走5条街道,则需要从这五条街道中走2条向右,剩余3条街道则需要向北走,不同的走法为C25=10种;从N到B只需走5条街道,则需要从这五条街道中走3条向右,剩余2条街道则需要向北走,不同的走法为C35=10种.由分步计数原理可得,不同的走法为10×10=100种.由分类计数原理可得,不同的走法共有100+100=200种.故选C.6.(2014某某市高中毕业班第四次调研)若数列{a n }满足规律:a 1>a 2<a 3>…<a 2n -1>a 2n <…,则称数列{a n }为余弦数列,现将1,2,3,4,5排列成一个余弦数列的排法种数为( )A .12B .14C .16D .18解析:①a 1,a 3,a 5从3,4,5中取值时,a 2,a 4从1,2中取值.共A 33A 22=12种.②a 1,a 3,a 5依次取2,4,5时,a 2,a 4依次取1,3, a 1,a 3,a 5依次取2,5,4时,a 2,a 4依次取1,3,a 1,a 3,a 5依次取4,5,2时,a 2,a 4依次取3,1,a 1,a 3,a 5依次取5,4,2时,a 2,a 4依次取3,1.由分类加法计数原理得,不同的排法为12+4=16种,故选C.答案:C二、填空题7.(2014某某省某某市高三第三次模拟)将标号为1,2,3,4,5,6的6X 卡片放入3个不同的信封中,若每个信封放2X 卡片,其中标号为1,2的卡片放入同一信封,则不同的方法总数为________.解析:先将标号为3,4,5,6的卡片平均分成两组,不同的分法有C 24C 22A 22=3种. 再将3组分别装入3个信封中,不同的装法有A 33=6种.由分步计数原理得不同方法的总数为3×6=18.答案:188.(2014某某省四校联考)某铁路货运站对6列货运列车进行编组调度,决定将这6列列车编成两组,每组3列,且甲与乙两列列车不在同一小组,如果甲所在小组3列列车先开出,那么这6列列车先后不同的发车顺序共有________种.解析:先进行分组,从其余4列火车中任取2列与甲一组,不同的分法为C 24=6种. 由分步计数原理得不同的发车顺序为C 24·A 33·A 33=216种.答案:2169.用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形,使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且标号为“1、5、9”的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.789解析:第一步,从红、黄、蓝三种颜色中任选一种去涂标号为“1、5、9”的小正方形,涂法有3种;第二步,涂标号为“2、3、6”的小正方形,若“2、6”同色,涂法有2×2种,若“2、6”不同色,涂法有2×1种;第三步,涂标号为“4、7、8”的小正方形,涂法同涂标号为“2、3、6”的小正方形的方法一样.所以符合条件的所有涂法共有3×(2×2+2×1)×(2×2+2×1)=108(种).答案:10810.某国家代表队要从6名短跑运动员中选4人参加亚运会4×100 m接力,如果其中甲不能跑第一棒,乙不能跑第四棒,共有______种参赛方法.解析:分情况讨论:①若甲、乙均不参赛,则有A44=24(种)参赛方法;②若甲、乙有且只有一人参赛,则有C12·C34(A44-A33)=144(种);③若甲、乙两人均参赛,则有C24(A44-2A33+A22)=84(种),故一共有24+144+84=252(种)参赛方法.答案:252三、解答题11.将红、黄、绿、黑四种不同的颜色涂入图中的五个区域内,要求相邻的两个区域的颜色都不相同,则有多少种不同的涂色方法?解:给区域标记号A、B、C、D、E(如图所示),则A区域有4种不同的涂色方法,B区域有3种,C区域有2种,D区域有2种,但E区域的涂色依赖于B与D涂色的颜色,如果B与D颜色相同有2种涂色方法,不相同,则只有一种.因此应先分类后分步.(1)当B与D同色时,有4×3×2×1×2=48种.(2)当B与D不同色时,有4×3×2×1×1=24种.故共有48+24=72种不同的涂色方法.12.用0、1、2、3、4这五个数字,可以组成多少个满足下列条件的没有重复数字的五位数?12.用0、1、2、3、4这五个数字,可以组成多少个满足下列条件的没有重复数字的五位数?(1)比21034大的偶数;(2)左起第二、四位是奇数的偶数.解:(1)法一可分五类,当末位数字是0,而首位数字是2时,有6个;当末位数字是0,而首位数字是3或4时,有A12A33=12(个);当末位数字是2,而首位数字是3或4时,有A12A33=12(个);当末位数字是4,而首位数字是2时,有3个;当末位数字是4,而首位数字是3时,有A33=6(个);故有39个.法二不大于21034的偶数可分为三类:万位数字是1的偶数,有A13·A33=18(个);万位数字是2,而千位数字是0的偶数,有A22个;还有一个为21034本身.而由0、1、2、3、4组成的五位偶数有,A44+A12·A13·A33=60(个),故满足条件的五位偶数共有60-A13·A33-A22-1=39(个).(2)法一可分为两类:末位数是0,有A22·A22=4(个);末位数是2或4,有A22·A12=4(个);故共有A22·A22+A22·A12=8(个).法二第二、四位从奇数1、3中取,有A22个,首位从2、4中取,有A12个;余下的排在剩下的两位,有A22个,故共有A22A12A22=8(个).。
2015年高考数学总复习(人教A版,理科)配套教案:第十章 计数原理 10.1
§10.1分类加法计数原理与分步乘法计数原理1.分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理完成一件事需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.3.分类加法计数原理与分步乘法计数原理,都涉及完成一件事的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(×)(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(√)(3)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都不能完成这件事,只有两个步骤都完成后,这件事情才算完成.(√)(4)如果完成一件事情有n个不同步骤,在每一步中都有若干种不同的方法m i(i=1,2,3,,…,n),那么完成这件事共有m1m2m3…m n种方法.(√)2.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有________种.答案32解析每位同学有两种不同的报名方法,而且只有这5位同学全部报名结束,才算事件完成.所以共有2×2×2×2×2=32(种).3.有不同颜色的4件上衣与不同颜色的3件长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数是________.答案12解析由分步乘法计数原理,一条长裤与一件上衣配成一套,分两步,第一步选上衣有4种选法,第二步选长裤有3种选法,所以有4×3=12(种)选法.4.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有________种.答案24解析分步完成.首先甲、乙两人从4门课程中同选1门,有4种方法,其次甲从剩下的3门课程中任选1门,有3种方法,最后乙从剩下的2门课程中任选1门,有2种方法,于是,甲、乙所选的课程中恰有1门相同的选法共有4×3×2=24(种).5.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)答案14解析数字2,3至少都出现一次,包括以下情况:“2”出现1次,“3”出现3次,共可组成C14=4(个)四位数.“2”出现2次,“3”出现2次,共可组成C24=6(个)四位数.“2”出现3次,“3”出现1次,共可组成C34=4(个)四位数.综上所述,共可组成14个这样的四位数.题型一分类加法计数原理的应用例1高三一班有学生50人,男生30人,女生20人;高三二班有学生60人,男生30人,女生30人;高三三班有学生55人,男生35人,女生20人.(1)从高三一班或二班或三班中选一名学生任学生会主席,有多少种不同的选法?(2)从高三一班、二班男生中,或从高三三班女生中选一名学生任学生会体育部长,有多少种不同的选法?思维启迪用分类加法计数原理.解(1)完成这件事有三类方法第一类,从高三一班任选一名学生共有50种选法;第二类,从高三二班任选一名学生共有60种选法;第三类,从高三三班任选一名学生共有55种选法,根据分类加法计数原理,任选一名学生任校学生会主席共有50+60+55=165(种)选法.(2)完成这件事有三类方法第一类,从高三一班男生中任选一名共有30种选法;第二类,从高三二班男生中任选一名共有30种选法;第三类,从高三三班女生中任选一名共有20种选法.综上知,共有30+30+20=80(种)选法.思维升华 分类时,首先要根据问题的特点确定一个适合它的分类标准,然后在这个标准下进行分类;其次分类时要注意满足一个基本要求,就是完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,只有满足这些条件,才可以用分类加法计数原理.(1)在所有的两位数中,个位数字比十位数字大的两位数有多少个?(2)方程x 2m +y 2n=1表示焦点在y 轴上的椭圆,其中m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},那么这样的椭圆有多少个?解 (1)分析个位数字,可分以下几类:个位是9,则十位可以是1,2,3,…,8中的一个,故有8个;个位是8,则十位可以是1,2,3,…,7中的一个,故有7个;同理,个位是7的有6个;个位是6的有5个;…个位是2的只有1个.由分类加法计数原理,满足条件的两位数有1+2+3+4+5+6+7+8=36(个).(2)以m 的值为标准分类,分为五类.第一类:m =1时,使n >m ,n 有6种选择;第二类:m =2时,使n >m ,n 有5种选择;第三类:m =3时,使n >m ,n 有4种选择;第四类:m =4时,使n >m ,n 有3种选择;第五类:m =5时,使n >m ,n 有2种选择.∴共有6+5+4+3+2=20(种)方法,即有20个符合题意的椭圆.题型二 分步乘法计数原理的应用例2 有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(不一定六名同学都能参加)(1)每人恰好参加一项,每项人数不限;(2)每项限报一人,且每人至多参加一项;(3)每项限报一人,但每人参加的项目不限.思维启迪可以根据报名过程,使用分步乘法计数原理.解(1)每人都可以从这三个比赛项目中选报一项,各有3种不同选法,由分步乘法计数原理,知共有选法36=729(种).(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步乘法计数原理,得共有报名方法6×5×4=120(种).(3)由于每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,由分步乘法计数原理,得共有不同的报名方法63=216(种).思维升华利用分步乘法计数原理解决问题:①要按事件发生的过程合理分步,即分步是有先后顺序的;②各步中的方法互相依存,缺一不可,只有各个步骤都完成了才算完成这件事.已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则:(1)y=ax2+bx+c可以表示多少个不同的二次函数;(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数.解(1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y=ax2+bx+c可以表示5×6×6=180(个)不同的二次函数.(2)y=ax2+bx+c的图象开口向上时,a的取值有2种情况,b、c的取值均有6种情况,因此y=ax2+bx+c可以表示2×6×6=72(个)图象开口向上的二次函数.题型三两个原理的综合应用例3如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法总数.思维启迪染色问题是常见的计数应用问题,可从选颜色、选顶点进行分类、分步,从不同角度解决问题.解方法一可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法计数原理即可得出结论.由题设,四棱锥S—ABCD的顶点S、A、B所染的颜色互不相同,它们共有5×4×3=60(种)染色方法.当S、A、B染好时,不妨设其颜色分别为1、2、3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法;若C染5,则D可染3或4,有2种染法.可见,当S、A、B已染好时,C、D还有7种染法,故不同的染色方法有60×7=420(种).方法二以S、A、B、C、D顺序分步染色.第一步,S点染色,有5种方法;第二步,A点染色,与S在同一条棱上,有4种方法;第三步,B点染色,与S、A分别在同一条棱上,有3种方法;第四步,C点染色,也有3种方法,但考虑到D点与S、A、C相邻,需要针对A与C是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C 与S、B也不同色,所以C点有2种染色方法,D点也有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420(种).方法三按所用颜色种数分类.第一类,5种颜色全用,共有A55种不同的方法;第二类,只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2×A45种不同的方法;第三类,只用3种颜色,则A与C、B与D必定同色,共有A35种不同的方法.由分类加法计数原理,得不同的染色方法总数为A55+2×A45+A35=420(种).思维升华用两个计数原理解决计数问题时,关键是明确需要分类还是分步.(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成任务,根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.(3)对于复杂问题,可同时运用两个计数原理或借助列表、画图的方法来帮助分析.用红、黄、蓝、白、黑五种颜色涂在“田”字形的4个小方格内,每格涂一种颜色,相邻两格涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?解如图所示,将4个小方格依次编号为1,2,3,4,第1个小方格可以从5种颜色中任取一种颜色涂上,有5种不同的涂法.①当第2个、第3个小方格涂不同颜色时,有A24=12(种)不同的涂法,第4个小方格有3种不同的涂法.由分步乘法计数原理可知,有5×12×3=180(种)不同的涂法;②当第2个、第3个小方格涂相同颜色时,有4种涂法,由于相邻方格不同色,因此,第4个小方格也有4种不同的涂法,由分步乘法计数原理可知.有5×4×4=80(种)不同的涂法.由分类加法计数原理可得,共有180+80=260(种)不同的涂法.对两个基本原理认识不清致误典例:(10分)(1)把3封信投到4个信箱,所有可能的投法共有() A.24种B.4种C.43种D.34种(2)某人从甲地到乙地,可以乘火车,也可以坐轮船,在这一天的不同时间里,火车有4趟,轮船有3次,问此人的走法可有________种.易错分析解决计数问题的基本策略是合理分类和分步,然后应用加法原理和乘法原理来计算.解决本题易出现的问题是完成一件事情的标准不清楚导致计算出现错误,对于(1),选择的标准不同,误认为每个信箱有三种选择,所以可能的投法有34种,没有注意到一封信只能投在一个信箱中;对于(2),易混淆“类”与“步”,误认为到达乙地先坐火车后坐轮船,使用乘法原理计算.解析(1)第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法.只要把这3封信投完,就做完了这件事情,由分步乘法计数原理可得共有43种方法.(2)因为某人从甲地到乙地,乘火车的走法有4种,坐轮船的走法有3种,每一种方法都能从甲地到乙地,根据分类加法计数原理,可得此人的走法可有4+3=7(种).答案(1)C(2)7温馨提醒(1)每封信只能投到一个信箱里,而每个信箱可以装1封信,也可以装2封信,其选择不是唯一的,所以应注意由信来选择信箱,每封信有4种选择.(2)在处理具体的应用问题时,首先必须弄清楚“分类”与“分步”的具体标准是什么.选择合理的标准处理事情,可以避免计数的重复或遗漏.方法与技巧1.分类加法和分步乘法计数原理,都是关于做一件事的不同方法的种数的问题,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.2.混合问题一般是先分类再分步.3.分类时标准要明确,做到不重复不遗漏.4.要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.失误与防范1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.2.分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.3.确定题目中是否有特殊条件限制.A组专项基础训练一、选择题1.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为() A.3 B.4 C.6 D.8答案 D解析按从小到大顺序有124,139,248,469共4个,同理按从大到小顺序也有4个,故这样的等比数列的个数为8个.2.现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有()A.24种B.30种C.36种D.48种答案 D解析共有4×3×2×2=48(种),故选D.3.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是() A.9 B.14 C.15 D.21答案 B解析当x=2时,x≠y,点的个数为1×7=7(个);当x≠2时,x=y,点的个数为7×1=7(个),则共有14个点,故选B.4.(2013·山东)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为() A.243 B.252 C.261 D.279答案 B解析0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个).∴有重复数字的三位数有900-648=252(个).5.(2013·四川)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a -lg b的不同值的个数是()A .9B .10C .18D .20答案 C 解析 由于lg a -lg b =lg a b (a >0,b >0),从1,3,5,7,9中任取两个作为a b 有A 25=20种,又13与39相同,31与93相同,∴lg a -lg b 的不同值的个数有A 25-2=20-2=18,选C. 二、填空题6.一个乒乓球队里有男队员5名,女队员4名,从中选取男、女队员各一名组成混合双打,共有________种不同的选法.答案 20解析 先选男队员,有5种选法,再选女队员有4种选法,由分步乘法计数原理知共有5×4=20(种)不同的选法.7.某次活动中,有30人排成6行5列,现要从中选出3人进行礼仪表演,要求这3人中的任意2人不同行也不同列,则不同的选法种数为________(用数字作答).答案 7 200解析 其中最先选出的一个人有30种方法,此时不能再从这个人所在的行和列上选人,还剩一个5行4列的队形,故选第二个人有20种方法,此时不能再从该人所在的行和列上选人,还剩一个4行3列的队形,此时第三个人的选法有12种,根据分步乘法计数原理,总的选法种数是30×20×12=7 200.8.已知集合M ={1,-2,3},N ={-4,5,6,-7},从M ,N 这两个集合中各选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是________.答案 6解析 分两类:第一类,第一象限内的点,有2×2=4(个);第二类,第二象限内的点,有1×2=2(个).共4+2=6(个).三、解答题9.某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语和日语的各一人,有多少种不同的选法?解 由题意得有1人既会英语又会日语,6人只会英语,2人只会日语.第一类:从只会英语的6人中选1人说英语,共有6种方法,则说日语的有2+1=3(种),此时共有6×3=18(种);第二类:不从只会英语的6人中选1人说英语,则只有1种方法,则选会日语的有2种,此时共有1×2=2(种);所以根据分类加法计数原理知共有18+2=20(种)选法.10.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为多少?解方法一分0个相同、1个相同、2个相同讨论.(1)若0个相同,则信息为1001.共1个.(2)若1个相同,则信息为0001,1101,1011,1000.共4个.(3)若2个相同,又分为以下情况:①若位置一与二相同,则信息为0101;②若位置一与三相同,则信息为0011;③若位置一与四相同,则信息为0000;④若位置二与三相同,则信息为1111;⑤若位置二与四相同,则信息为1100;⑥若位置三与四相同,则信息为1010.共6个.故与信息0110至多有两个对应位置上的数字相同的信息个数为1+4+6=11.方法二若0个相同,共有1个;若1个相同,共有C14=4(个);若2个相同,共有C24=6(个).故共有1+4+6=11(个).B组专项能力提升1.三边长均为整数,且最大边长为11的三角形的个数为() A.24 B.26 C.36 D.37答案 C解析设另两边长分别为x、y,且不妨设1≤x≤y≤11,要构成三角形,必须x+y≥12.当y取11时,x=1,2,3,…,11,可有11个三角形;当y取10时,x=2,3,…,10,可有9个三角形;……;当y取6时,x只能取6,只有1个三角形.∴所求三角形的个数为11+9+7+5+3+1=36.2.将1,2,3,4,5,6,7,8,9这9个数字填在如图的9个空格中,要求每一行从左到右、每一列从上()A.4 B.6 C.9 D.12答案 B解析如图所示,根据题意,1,2,9三个数字的位置是确定的,余下的数中,5只能在a,c位置,8只能在b,d位置,依(a,b,c,d)顺序,具体有(5,8,6,7),(5,6,7,8),(5,7,6,8),(6,7,5,8),(6,8,5,7),(7,8,5,6)12a34bc d 93.如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为()A.96 B.84 C.60 D.48答案 B解析可依次种A、B、C、D四块,当C与A种同一种花时,有4×3×1×3=36(种)种法;当C与A所种花不同时,有4×3×2×2=48(种)种法,由分类加法计数原理,不同的种法总数为36+48=84.4.直线方程Ax+By=0,若从0,1,2,3,5,7这6个数字中任取两个不同的数作为A、B的值,则可表示________条不同的直线.答案22解析分成三类:A=0,B≠0;A≠0,B=0和A≠0,B≠0,前两类各表示1条直线;第三类先取A有5种取法,再取B有4种取法,故有5×4=20(种).所以可以表示22条不同的直线.5.某电子元件,是由3个电阻组成的回路,其中有4个焊点A、B、C、D,若某个焊点脱落,整个电路就不通,现在发现电路不通了,那么焊点脱落的可能情况共有________种.答案15解析方法一当线路不通时焊点脱落的可能情况共有2×2×2×2-1=15(种).方法二恰有i个焊点脱落的可能情况为C i4(i=1,2,3,4)种,由分类加法计数原理,当电路不通时焊点脱落的可能情况共C14+C24+C34+C44=15(种).6.五名学生报名参加四项体育比赛,每人限报一项,则报名方法的种数为________.五名学生争夺四项比赛的冠军(冠军不并列),获得冠军的可能性有________种.答案4554解析报名的方法种数为4×4×4×4×4=45(种).获得冠军的可能情况有5×5×5×5=54(种).7.已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是从A到B的映射.(1)若B中每一元素都有原象,这样不同的f有多少个?(2)若B中的元素0必无原象,这样的f有多少个?(3)若f满足f(a1)+f(a2)+f(a3)+f(a4)=4,这样的f又有多少个?解(1)显然对应是一一对应的,即为a1找象有4种方法,a2找象有3种方法,a3找象有2种方法,a4找象有1种方法,所以不同的f共有4×3×2×1=24(个).(2)0必无原象,1,2,3有无原象不限,所以为A中每一元素找象时都有3种方法.所以不同的f共有34=81(个).(3)分为如下四类:第一类:A中每一元素都与1对应,有1种方法;第二类:A中有两个元素对应1,一个元素对应2,另一个元素与0对应,有C24·C12=12(种)方法;第三类,A中有两个元素对应2,另两个元素对应0,有C24·C22=6(种)方法;第四类,A中有一个元素对应1,一个元素对应3,另两个元素与0对应,有C14·C13=12(种)方法.所以不同的f共有1+12+6+12=31(个).。
2015高考数学(理)(北师大版)复习配套-五年高考真题分类汇编:第9章 计数原理、概率、随机变量及其分布汇编
计数原理、概率、随机变量及其分布一、选择题1.【合肥二模】从1到1O 这十个自然数中随机取三个数,则其中一个数是另两个数之和的概率是( )A .B .C .D .2.(白山一模)盒中装有形状,大小完全相同的5个球,其中红色球3个,黄色球2个,若从中随机取出2个球,已知其中一个为红色,则另一个为黄色的概率为( ) A. 35 B. 910 C. 23 D. 253. (兰州诊断)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有( )种A.150B.300C.600D.9005.(白山一模)二项式102x⎛+ ⎝的展开式中的常数项是( )A.第10项B.第9项C.第8项D.第7项6. (海淀期末) 322x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为( )A. 12B. 12-C.6D. 6-7.【云南省第二次高中毕业生复习统一检测】 两位同学一起参加某单位的招聘面试,单位负责人对他们说:“我们要从面试的人中招聘3人,假设每位参加面试的人被招聘的概率相等,你们俩同时被招聘的概率是701”.根据这位负责人的话可以推断出这次参加该单位招聘面试的人有( ) (A )44人 (B )42人(C )22人(D )21人10.【玉溪一中高三上学期月考】6(42)x x -+的展开式中的常数项是 ( ) (A )1 (B )6 (C )15 (D )2012.【哈尔滨市九中高三月考】5(2)x a +的展开式中,2x 的系数等于40,则0(2)ax e x dx +⎰等于( )A. eB. 1e -C. 1D. 1e +13.(德州月考)已知()|2||4|f x x x =++-的最小值是n ,则二项式1()nx x-展开式中2x 项的系数为( )A .15B .15-C .30D .30-14.(青岛期末考试)六张卡片上分别写有数字1,1,2,3,4,5,从中取四张排成一排,可以组成不同的四位奇数的个数为( )A .180B .126C .93D .6015.(烟台期末考试)将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率()P A B ,()P B A 分别是( ) A.6091,12B.12,6091C.518,6091D.91216,1216.【淮南二中高三上学期月考数学】袋中标号为1,2,3,4的四只球,四人从中各取一只,其中甲不取1号球,乙不取2号球,丙不取3号球,丁不取4号球的概率为( ) A. 41 B. 83 C. 2411 D. 242317.【望江四中高三上学期月考】一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有( ) A .12种 B .15种C .17种D .19种18.【合肥二模】已知a=[(sin )2﹣]dx :,则(ax+)9展开式中关于x 的一次项的系数为( )A .﹣B .C . ﹣D .考点: 二项式定理;微积分基本定理. 专题: 计算题;概率与统计.分析: 先求定积分得到a 的值,在二项展开式的通项公式中,令x 的幂指数等于1,求出r 的值,即可求得关于x 的一次项的系数.19.【望江四中高三上学期月考】一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有( ) A .12种 B .15种C .17种D .19种【答案】D20.【望江四中高三上学期月考】在下列命题中, ①“2απ=”是“sin 1α=”的充要条件;②341()2x x+的展开式中的常数项为2;③设随机变量ξ~(0,1)N ,若(1)P p ξ≥=,则1(10)2P p ξ-<<=-. 其中所有正确命题的序号是( )A .②B .②③C .③D .①③21.【福建莆田一中段考】三个学校分别有1名、2名、3名学生获奖,这6名学生要排成一排合影,则同校学生排在一起的概率是( ) A .130B .115C .110D .15二、填空题22.【江南十校高三摸底联考】已知集合(){},2,,,A x y x y x y Z =+≤∈集合(){}22,2,,,B x y xy x y Z =+≤∈在集合A 中任取一个元素a ,则a B ∈的概率是 .概率是913. 考点:概率的计算(古典概型).23.【望江四中高三上学期月考】若正整数,,,w x y z 满足!!!!w x y z =++,则数组(),,,w x y z 可能是 .24.【安徽池州一中高三月考】已知3sin a xdx π=⎰,则71x x ax ⎛⎫+ ⎪⎝⎭的展开式中的常数项是_________(用数字作答).25.【福建莆田一中段考】732x⎛⎝的展开式中常数项为 .26.(普陀调研)在nx )3(-的展开式中,若第3项的系数为27,则=n.27.(白山一模)已知实数a,b 满足11,11a b -≤≤-≤≤,则函数f(x)= 32153x ax bx -++的两个极值点都在(0,1)内的概率为______ 【答案】112【解析】不等式11,11a b -≤≤-≤≤表示正方形,其面积为4; 易知2()2f x x ax b '=-+,若函数f(x)=32153x ax bx -++的两个极值点都在(0,1)内,需满足:2440(0)0(1)12001a b f b f a b a ⎧∆=->⎪'=>⎪⎨'=-+>⎪⎪<<⎩, 此约束条件表示的面内(在正方形内的部分)为,故所求的概率为。
2015届高考数学(理)一轮复习题库 :第九章分类加法计数原理、概率、随+机变量及其分布 9.2排列与组合
第2课时排列与组合1.理解排列、组合的概念.2.能利用计数原理推导排列数公式、组合数公式.3.能解决简单的实际问题.【梳理自测】一、排列1.若从6名志愿者中选出4名分别从事翻译、导游、导购、保洁四项不同的工作,则选派方案有()A.180种B.360种C.15种D.30种2.8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为()A.A88A29B.A88C29C.A88A27D.A88C27答案:1.B 2.A◆以上题目主要考查了以下内容:(1)排列的定义:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(2)排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m A m n表示.(3)排列数公式:A m n=n(n-1)(n-2)…(n-m+1).(4)全排列:n个不同元素全部取出的一个排列,叫做n个元素的一个全排列,A n n=n·(n-1)·(n-2)·…·2·1=n!,排列数公式写成阶乘的形式为A m n=n!(n-m)!,这里规定0!=1.二、组合1.C14+C25+…+C1720等于()A.C1721B.C1721-1C.C1821-1 D.C18212.一个平面内的8个点,若只有4个点共圆,其余任何4点不共圆,那么这8个点最多确定的圆的个数为()A.C34·C44B.C38-C34C.2C14·C24+C34D.C38-C34+13.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有________种.答案:1.B 2.D 3.14◆以上题目主要考查了以下内容:(1)组合的定义:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用C m n表示.(3)组合数的计算公式:C m n=A m nA m m=n!m!(n-m)!=n(n-1)(n-2)…(n-m+1)m!,由于0!=1,所以C0n=1.(4)组合数的性质:①C m n=C n-mn __;②C m n+1=C m n+C m-1n.1.一个区别排列与组合,排列与组合最根本的区别在于“有序”和“无序”.取出元素后交换顺序,如果与顺序有关是排列,如果与顺序无关即是组合.2.两个公式(1)排列数公式A m n=n!(n-m)!(2)组合数公式C m n=n!m!(n-m)!,利用这两个公式可计算排列问题中的排列数和组合问题中的组合数.①解决排列组合问题可遵循“先组合后排列”的原则,区分排列组合问题主要是判断“有序”和“无序”,更重要的是弄清怎样的算法有序,怎样的算法无序,关键是在计算中体现“有序”和“无序”.考向一排列问题(2014·金华联考)有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)选5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体排成一排,甲不站排头也不站排尾;(4)全体排成一排,女生必须站在一起;(5)全体排成一排,男生互不相邻.【审题视点】本题是排队问题,以人或以位置分析其特殊性、优先考虑,选取合适的方法:捆绑法、插空法、间接法等.【典例精讲】(1)从7人中选5人排列,有A57=7×6×5×4×3=2 520(种).(2)分两步完成,先选3人站前排,有A37种方法,余下4人站后排,有A44种方法,共有A37·A44=5 040(种).(3)法一:(特殊元素优先法)先排甲,有5种方法,其余6人有A66种排列方法,共有5×A66=3 600(种).法二:(特殊位置优先法)首尾位置可安排另6人中的两人,有A26种排法,其他有A55种排法,共有A26A55=3 600(种).(4)(捆绑法)将女生看作一个整体与3名男生一起全排列,有A44种方法,再将女生全排列,有A44种方法,共有A44·A44=576(种).(5) (插空法)先排女生,有A44种方法,再在女生之间及首尾5个空位中任选3个空位安排男生,有A35种方法,共有A44·A35=1 440(种).【类题通法】解决排列类应用题时,对于相邻问题,常用“捆绑法”;对于不相邻问题,常用“插空法”(特殊元素后考虑);对于“在”与“不在”的问题,常常使用“直接法”或“排除法”(特殊元素先考虑).1.六个人按下列要求站成一排,分别有多少种不同的站法?(1)甲不站在两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间恰有两人;(5)甲不站在左端,乙不站在右端;(6)甲、乙、丙三人顺序已定.解析:(1)A25A44=480.(2)A22A55=240.(3)A44A25=480.(4)A22A24A33=144.(5)A66-2A55+A44=504.(6)A36=120.考向二 组合问题某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中 (1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法? (2)甲、乙均不能参加,有多少种选法?(3)甲、乙两人至少有一人参加,有多少种选法?(4)队中至少有一名内科医生和一名外科医生,有几种选法?【审题视点】 要注意分析特殊元素是“含”、“不含”、“至少”、“至多”. 【典例精讲】 (1)共有C 318=816(种). (2)共有C 518=8 568(种).(3)分两类:甲、乙中有一人参加,甲、乙都参加,共有C 12C 418+C 318=6 936(种). (4)(间接法):由总数中减去五名都是内科医生和五名都是外科医生的选法种数,得 C 520-(C 512+C 58)=14 656(种).【类题通法】 (1)“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”、“最多”的问题:解这类题必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.2.从7名男生5名女生中选取5人,分别求符合下列条件的选法总数. (1)A ,B 必须当选;(2)A ,B 不全当选.解析:(1)由于A ,B 必须当选,那么从剩下的10人中选取3人即可,有C 310=120(种).(2)全部选法有C 512种,A ,B 全当选有C 310种,故A ,B 不全当选有C 512-C 310=672(种).考向三 分组分配问题 按下列要求分配6本不同的书,各有多少种不同的分配方式? (1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本; (3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本; (5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本; (7)甲得1本,乙得1本,丙得4本.【审题视点】 本题是分组分配问题,要注意区分平均、不平均分组或分配的区别与联系.【典例精讲】 (1)无序不均匀分组问题.先选1本,有C 16种选法;再从余下的5本中选2本,有C 25种选法;最后余下3本全选,有C 33种选法.故共有C 16C 25C 33=60(种). (2)有序不均匀分组问题.由于甲、乙、丙是不同的三人,在(1)题基础上,还应考虑再分配,共有C 16C 25C 33A 33=360(种). (3)无序均匀分组问题.先分三步,则应是C 26C 24C 22种方法,但是这里出现了重复.不妨记六本书为A ,B ,C ,D ,E ,F ,若第一步取了AB ,第二步取了CD ,第三步取了EF ,记该种分法为(AB ,CD ,EF ),则C 26C 24C 22种分法中还有(AB ,EF ,CD ),(CD ,AB ,EF ),(CD ,EF ,AB ),(EF ,CD ,AB ),(EF ,AB ,CD ),共有A 33种情况,而这A 33种情况仅是AB ,CD ,EF 的顺序不同,因此只能作为一种分法,故分配方式有C 26C 24C 22A 33=15(种).(4)有序均匀分组问题.在(3)的基础上再分配给3个人,共有分配方式C 26C 24C 22A 33·A 33=C 26C 24C 22=90(种).(5)无序部分均匀分组问题.共有C 46C 12C 11A 22=15(种).(6)有序部分均匀分组问题. 在(5)的基础上再分配给3个人,共有分配方式C 26C 12C 11A 22·A 33=90(种).(7)直接分配问题.甲选1本,有C 16种方法;乙从余下的5本中选1本,有C 15种方法,余下4本留给丙,有C 44种方法,故共有分配方式C 16C 15C 44=30(种).【类题通法】 均匀分组与不均匀分组、无序分组与有序分组是组合问题的常见题型.解决此类问题的关键是正确判断分组是均匀分组还是不均匀分组,无序均匀分组要除以均匀组数的阶乘数,还要充分考虑到是否与顺序有关;有序分组要在有无序分组的基础上乘以分组数的阶乘数.3.4个不同的球,4个不同的盒子,把球全部放入盒内. (1)恰有1个盒不放球,共有几种放法? (2)恰有1个盒内有2个球,共有几种放法?解析:(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步乘法计数原理,共有C 14C 24C 13×A 22=144(种).(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法. 排列、组合问题的解答方法(2013·高考全国大纲卷)6个人排成一行,其中甲、乙两人不相邻的不同排法共有________种.(用数字作答)【方法分析】 ①题目条件:6个元素全排,其中特殊元素,甲、乙不相邻. ②解题目标:求排法总数.③关系探究:(ⅰ)甲、乙不相邻,即甲、乙中间有人,让甲、乙两人插入别人之间——插空法.(ⅱ)6人的全排中只有两类:甲、乙相邻或不相邻先确定甲、乙相邻的排法,则剩下的为所求.【解答过程】 方法一:先把除甲、乙外的4个人全排列,共有A 44种方法.再把甲、乙两人插入这4人形成的五个空位中的两个,共有A 25种不同的方法.故所有不同的排法共有A 44·A 25=24×20=480(种).方法二:6人排成一排,所有不同的排法有A 66=720(种),其中甲、乙相邻的所有不同的排法有A 55A 22=240(种),所以甲、乙不相邻的不同排法共有720-240=480(种).【答案】 480【回归反思】 解决排列类应用题的主要方法 (1)直接法:把符合条件的排列数直接列式计算;(2)特殊元素(或位置)优先安排的方法,即先排特殊元素或特殊位置;(3)捆绑法:相邻问题捆绑处理的方法,即可以把相邻元素看作一个整体参与其他元素排列,同时注意捆绑元素的内部排列;(4)插空法:不相邻问题插空处理的方法,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中;(5)分排问题直排处理的方法;(6)“小集团”排列问题中先集体后局部的处理方法;(7)定序问题除法处理的方法,即可以先不考虑顺序限制,排列后再除以定序元素的全排列. 1.(2013·高考山东卷)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是( )A .9B .10C .18D .20解析:选C.利用排列知识求解.从1,3,5,7,9这五个数中每次取出两个不同数的排列数为A 25=20,但lg 1-lg 3=lg 3-lg 9,lg3-lg 1=lg 9-lg 3,所以不同值的个数为20-2=18,故选C. 2.(2013·高考北京卷)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________.解析:先分组后用分配法求解,5张参观券分为4组,其中有2个连号的有4种分法,每一种分法中的排列方法有A 44种,因此共有不同的分法4A 44=4×24=96(种).答案:96 3.(2013·高考广东卷)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有________种.(用数字作答)解析:利用排列组合知识列式求解. 由题意知,所有可能的决赛结果有C 16C 25C 33=6×5×42×1=60(种).答案:60 4.(2013·高考重庆卷)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是____________(用数字作答).解析:根据计数原理合理分类,还要注意每一类中的合理分步.分三类:①选1名骨科医生,则有C 13(C 14C 35+C 24C 25+C 34C 15)=360(种);②选2名骨科医生,则有C 23(C 14C 25+C 24C 15)=210(种);③选3名骨科医生,则有C 33C 14C 15=20(种),∴骨科、脑外科和内科医生都至少有1人的选派方法种数是360+210+20=590. 答案:590。
2015届高考数学(理)一轮复习真题汇编模拟训练10-1《分类加法计数原理与分步乘法计数原理》
1. [2014·四川德阳诊断]现有4名同学去听同时进行的3个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( )A. 81B. 64C. 48D. 24解析:每个同学都有3种选择,所以不同选法共有34=81(种),故选A.答案:A2. [2014·三门峡联考]有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有( )A. 8种B. 9种C. 10种D. 11种解析:设四位监考教师分别为A、B、C、D,所教班分别为a、b、c、d,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c、d时,也分别有3种不同方法,由分类加法计数原理共有3+3+3=9(种).答案:B3. [2013·怀化模拟]将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( )A. 12种B. 18种C. 36种D. 54种解析:先将1,2捆绑后放入信封中,有C13种方法,再将剩余的4张卡片放入另外两个信封中,有C24C22种方法,所以共有C13C24C22=18(种)方法.答案:B4. [2014·济南调研]用0,1,2,3,4,5六个数字组成无重复数字的四位数,若把每位数字比其左邻的数字小的数叫做“渐降数”,则上述四位数中“渐降数”的个数为( )A. 14B. 15C. 16D. 17解析:由已知可知,只需找出组成“渐降数”的四个数字即可,等价于六个数字中去掉两个不同的数字.从前向后先取0有0与1,0与2,0与3,0与4,0与5,共5种情况;再取1有1与2,1与3,1与4,1与5,共4种情况;依次向后分别有3,2,1种情况.因此,共有1+2+3+4+5=15(个)“渐降数”.答案:B5. [2014·北京模拟]如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂1种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有( )A. 72种B. 96种C. 108种D. 120种解析:若1,3不同色,则1,2,3,4必不同色,有3A44=72种涂色法;若1,3同色,有C14A33=24种涂色法.根据分类加法计数原理可知,共有72+24=96种涂色法.答案:B。
2015高考数学一轮复习配套课件:10-1分类加法计数原理与分步乘法计数原理
第十章 第1讲
第4页
第四页,编辑于星期五:十二点 二十六分。
金版教程 ·高三一轮总复习 ·新课标 ·数学(理)
抓住2个必备考点
突破3个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训
(2)原理关键:分类的关键在于要做到“不重不漏”,分步的关键 在于要正确设计分步的步骤,既要合理分类,又要准确分步. 3 项必须注意——利用两个计数原理解题时的注意点 (1) 有 些 较 复 杂 的 问 题 往 往 要 将 “ 分 类 ”“ 分 步 ” 结 合 起 来 运 用.一般是先“分类”,然后再在每一类中“分步”,综合应用 两个原理.
共有 2C24=12 种情形.所有可能出现的情形共有 2+6+12=20 种.
[答案] (1)C (2)D
第十章 第1讲
第19页
第十九页,编辑于星期五:十二点 二十六分。
金版教程 ·高三一轮总复习 ·新课标 ·数学(理)
抓住2个必备考点
突破3个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训
使用分类加法计数原理计数的两个条件 一是根据问题的特点能确定一个适合于它的分类标准,然后 在这个标准下进行分类; 二是完成这件事的任何一种方法必须属于某一类,并且分别 属于不同类的两种方法是不同的方法,只有满足这些条件,才可 以用分类加法计数原理.
破译5类高考密码
迎战2年高考模拟
限时规范特训
(3)如果完成一件事情有 n 个不同步骤,在每一步中都有若干
种 不 同 的 方 法 mi(i = 1,2,3 , … , n) , 那 么 完 成 这 件 事 共 有 m1m2m3…mn 种方法.(√)
第十章 第1讲
第13页
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
05限时规范特训
A级基础达标
1.[2014·聊城模拟]将3张不同的奥运会门票分给10名同学中的3人,每人1张,则不同的分法种数有()
A.2610 B.720
C.240 D.120
解析:第1张有10种分法,第2张有9种分法,第3张有8种分法,∴一共有10×9×8=720(种).
答案:B
2.某城市的街道如图,某人要从A地前往B地,则路程最短的走法有()
A.8种B.10种
C.12种D.32种
解析:从A到B若路程最短,需要走三段横线段和两段竖线段,可转化为三个a和两个b的不同排法,第一步:先排a有C35种排法,第二步:再排b有1种排法,共有10种排法,选B项.答案:B
3.某县从10名大学毕业的选调生中选3个人担任镇长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为() A.85 B.56
C.49 D.28
解析:由条件可分为两类:一类是甲、乙2人只入选一个的选法,有C12×C27=42种;另一类是甲、乙都入选的选法,有C22×C17=7种,所以共有42+7=49种,选C.
答案:C
4.体育场南侧有4个大门,北侧有3个大门,某人到该体育场晨练,则他进出门的方案有()
A. 12种
B. 7种
C. 24种
D. 49种
解析:第一步,他进门,有7种选择;第二步,他出门,有7种选择.根据分步乘法计数原理可得他进出门的方案有7×7=49(种).答案:D
5.[2014·郑州模拟]5位同学站成一排准备照相的时候,有两位老师碰巧路过,同学们强烈要求与老师合影留念,如果5位同学顺序一定,那么两位老师与同学们站成一排照相的站法总数为() A.6 B.20
C.30 D.42
解析:因为五位学生已经排好,第一位老师站进去有6种选择,当第一位老师站好后,第二位老师站进去有7种选择,所以两位老师与学生站成一排的站法共有6×7=42种.
答案:D
6.暑假期间,华光中学安排3名职工从周一到周五值班,每天只安排一名职工值班,每人至少安排一天,至多安排两天,且这两天必须相邻,那么不同的安排方法有()
A.10种B.12种
C.18种D.36种
解析:这五天可分成三组,共三种情况:(1,2),(3,4),5;1,(2,3),(4,5);(1,2),3,(4,5),因此不同的安排方法3A33=18种.答案:C
7.[2014·贵阳模拟]三张卡片的正反面分别写有1和2,3和4,5和6,若将三张卡片并列,可得到不同的三位数(6不能作9用)的个数为()
A.8 B.6
C.14 D.48
解析:先排首位6种可能,十位数从剩下2张卡中任取一数有4种可能,个位数1张卡片有2种可能,∴一共有6×4×2=48(种).答案:D
8.如果把个位数是1,且恰有3个数字相同的四位数叫作“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.
解析:当相同的数字不是1时,有C13个;当相同的数字是1时,共有C13C13个,由分类加法计数原理知共有“好数”C13+C13C13=12个.答案:12
9.[2014·伊春调研]某校有6间不同的电脑室,每天晚上至少开放2间,要求不同安排方案的种数.现有四位同学分别给出下列四个结果:①C26;②C36+2C46+C56+C66;③26-7;④A26.其中正确结论的序号是________.
解析:用直接法:因为C26=C46,故C36+2C46+C56+C66=C26+C36+C46+C56+C66,故②正确;用间接法:因为C06+C16=7,所以26-7,故③正确.
答案:②③
10.有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(不一定六名同学都能参加)
(1)每人恰好参加一项,每项人数不限;
(2)每项限报一人,且每人至多参加一项;
(3)每项限报一人,但每人参加的项目不限.
解:(1)每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步乘法计数原理,可得共有不同的报名方法36=729种.
(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,根据分步乘法计数原理,可得共有不同的报名方法6×5×4=120种.
(3)每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,根据分步乘法计数原理,可得共有不同的报名方法63=216种.
11.[2014·钦州模拟]从2名女教师和5名男教师中选出3名教师(至少有1名女教师)参加某考场的监考工作.要求1名女教师在室内流动监考,另外2名教师固定在室内监考,求有多少种不同的安排方案.
解:分两类进行:第一类,在2名女教师中选出1名,从5名男教师中选出2名,且该女教师只能在室内流动监考,有C12×C25种选法;第二类,选2名女教师和1名男教师,有C22×C15种选法,再从选中的2名女教师中选1名作为室内流动监考人员,即有C22×C15×C12种选法.∴共有C12×C25+C22×C15×C12=30种不同的安排方案.12.7个人排成一排,按下列要求各有多少种排法?
(1)其中甲不站排头,乙不站排尾;
(2)其中甲、乙、丙3人必须相邻;
(3)其中甲、乙、丙3人两两不相邻;
(4)其中甲、乙中间有且只有1人;
(5)其中甲、乙、丙按从左到右的顺序排列.
解:(1)方法一(直接法):如果甲站排尾,其余6人有A 66种排法,
如果甲站中间5个位置中的一个,而乙不站排尾,则有A 15A 15A 55种排
法,故共有排法A 66+A 15A 15A 55=3720种.
方法二(间接法):7个人排成一排有A 77种排法,其中甲在排头有
A 66种排法,乙在排尾有A 66种排法,甲在排头且乙在排尾共有A 55种排
法,故共有排法A 77-A 66-A 66+A 55=3720种.
(2)(捆绑法)将甲、乙、丙捆在一起作为一个元素与其他4个元素
作全排列有A 55种,然后甲、乙、丙内部再作全排列有A 33种,故有不
同的排法A 55A 33=720种.
(3)(插空法)先排甲、乙、丙外的4人有A 44种排法,这四人之间及
两端留出五个空位,然后把甲、乙、丙插入到五个空位中有A 35种排
法,故共有A 44A 35=1440种排法.
(4)甲、乙两人有A 22种排法,现从剩下的五人中选一个插入甲、乙中间,有A 15种排法,然后再将这三人看作一个元素,和其他四个
元素作全排列,有A 55种排法,故共有A 22A 15A 55=1200种排法.
(5)七个人的全排列为A 77,其中若只看甲、乙、丙不同顺序的排
法有A 33种排法,但只有一种顺序符合要求,故符合要求的不同排法
有A 77A 33
=840种.
B级知能提升
1.[2014·青岛模拟]如图所示的五个区域中,中心区域是一幅图画,现有要求在其余四个区域中涂色,现有四种颜色可供选择.要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()
A.64 B.72
C.84 D.96
解析:分成两类:A和C同色时有4×3×3=36(种);A和C不同色时4×3×2×2=48(种),∴一共有36+48=84(种).答案:C
2.[2013·湖南长郡中学、衡阳八中等十二校一联]用红、黄、蓝三种颜色去涂图中标号为1、2、…、9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1、5、9的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.
解析:5、9,有3种涂法.第二部分4、7、8,当5、7同色时,4、8各有2种涂法,共4种涂法;当5、7异色时,7有2种涂法,4、8均只有1种涂法,故第二部分
共4+2=6种涂法.第三部分与第二部分一样,共6种涂法.由分步计数原理,可得共有3×6×6=108种涂法.
答案:108
3.[2014·济南模拟]某区有7条南北向街道,5条东西向街道(如图).
(1)图中共有多少个矩形?
(2)从A点走向B点最短的走法有多少种?
解:本题主要考查组合问题的求解,解题关键是合理选取格点.
(1)在7条竖线中任选2条,5条横线中任选2条,这样的4条线可组成1个矩形,故可组成矩形C27C25=210个.
(2)每条东西向街道被分成6段,每条南北向街道被分成4段.从A到B最短的走法中,无论怎样走,一定包括10段,其中6段方向相同,另4段方向也相同.每种走法即是从10段中选出6段,这6段是东西方向的(剩下4段即是走南北方向的),共有C610=210种走法(同样可以从10段中选4段走南北方向,每种选法是1种走法,即C410=210).。