精编华师大版八年级数学下《第16章分式》单元测试卷有答案

合集下载

华师大版2019-2020学年初二数学下册第16章分式单元检测题及答案

华师大版2019-2020学年初二数学下册第16章分式单元检测题及答案

八年级下第16章分式单元检测卷姓名:__________班级:__________考号:__________一 、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.某种细胞的直径是0.000067厘米,将0.000067用科学记数法表示为( )A .6.7×10﹣5B .6.7×10﹣6C .0.67×10﹣5D . 6.7×10﹣62.下列运算结果正确的是( )A .a 3•a 2=a 5B .(a 3)2=a 5C .a 3+a 2=a 5D .a ﹣2=﹣a 23.下列计算不正确的是( )A .B .C .D .4.分式与的最简公分母是A . abB . 3abC .D .5.方程=的解为( ) A .x=﹣1 B .x=0C .x=D .x=16.把,,通分过程中,不正确的是A . 最简公分母是B .C .D .7.若等于它的倒数,则的值是( )A .B .C .D . 08.已知,则的值是 A . 60B . 64C . 66D . 729.甲、乙两人沿同一个方向到同一个地点去,甲一半时间以速度a 行走,另一半时间以速度b 行走(b≠a );乙一半的路程以速度a 行走,另一半路程以速度b 行走,则先到达目的地的是( ) A .甲B .乙C .同时到达D .与路程有关10.如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则+++…+的值为( )A .B .C .D .11.对于下列说法,错误的个数是( )①是分式;②当1x ≠时,2111x x x -=+-成立;③当时,分式33x x +-的值是零;④11a b a a b ÷⨯=÷=;⑤2a a a x y x y +=+;⑥3232x x-⋅=-.A .6B .5C .4D .312.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+(x >0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边长是,矩形的周长是2(x+);当矩形成为正方形时,就有x=(0>0),解得x=1,这时矩形的周长2(x+)=4最小,因此x+(x >0)的最小值是2.模仿张华的推导,你求得式子(x >0)的最小值是( ) A .2B . 1C . 6D . 10二 、填空题(本大题共6小题,每小题3分,共18分) 13.代数式11x -有意义时,x 应满足的条件是_____________. 14.我国自主研发的某型号手机处理器采用10nm 工艺,已知1nm=0.000000001m ,则10nm 用科学记数法可表示为 m .15.已知x =2 012,y =2 013,则(x +y)·2244x y x y+-=__________.16.观察下列分式:-,-,-,…,根据你的发现,它的第8项是_____________.17.已知,则整式A-B=__________.18.已知实数m满足m2﹣3m+1=0,则代数式m2+的值等于.三、解答题(本大题共8小题,共64分)19.(1)计算:﹣(2﹣)0+()﹣2.(2)解分式方程: +=4.20.下列各式中,哪些是整式,哪些是分式,哪些是有理式?(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)21.计算:(1) (2)22.先化简,再求值:(+)÷,其中x=.23.有一道题“先化简,再求值:.其中a =-,马小虎同学做题时把“a = -”错抄成了“a =”,但他的计算结果却与别的同学一致,也是正确的,请你解释这是怎么回事?24.先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值.25.填空: =1﹣, =﹣,=﹣, =﹣,….(1)试求= ,= .(2)请猜想能表示上述规律的等式,并用含字母n(n 整数)的式子表示出来(3)请你直接利用(2)所得的结论计算下列式子:.26.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为常分数,如: ==2+=2.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:,这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如: ==1﹣;解决下列问题:(1)分式是分式(填“真分式”或“假分式”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.答案解析一、选择题1..解:将0.000067用科学记数法表示为6.7×10﹣5.故选A2.解:A.a3•a2=a5,正确,故本选项符合题意;B、(a3)2=a6,故本选项不符合题意;C、不是同类项不能合并,故本选项不符合题意;D、a﹣2=,故本选项不符合题意,故选:A.3.解:A.,正确.B. , ,正确.C. ,正确.D. 故错误.故选:D.4.解:∵分式与的分母分别是a2b、3ab2,∴最简公分母是3a2b2.故选:C.5.解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选:D.6.解:A.最简公分母是,故正确;B. ,故正确;C. ,故正确;D. ,故不正确;故选D.7.解:原式等于它的倒数,则故选:A.8.解:当时,原式,故选:A.9.解:设总路程为单位1,乙到达目的地所用的时间为t1,甲到达目的地所用的时间为t2.由题意可得:t1=+=,又∵a+b=1,∴t2=,∴t1﹣t2=﹣=>0,∴t1>t2,(因为根据题意可得a≠b)所以甲先到.故选:A.10.解:a1=3=1×3,a2=8=2×4,a3=15=3×5,a4=24=4×6,…,a n=n(n+2);∴+++…+=++++…+=(1﹣+﹣+﹣+﹣+…+﹣)=(1+﹣﹣)=,故选C.11.解:①不是分式,本选项错误;②当x≠1时,==x+1,本选项正确;③当x=-3时,分式分母为0,没有意义,错误;④a÷b×=,本选项错误;⑤+=,本选项错误;⑥2-x•=2-=,本选项错误,则错误的选项有5个.故选B12.解:得到x>0,得到=x+≥2=6,则原式的最小值为6.故选C【点评】此题考查了分式的混合运算,弄清题意是解本题的关键二、填空题13.解:由题意得,|x|﹣1≠0,解得x≠±1.故答案为:x≠±1.14.解:10nm用科学记数法可表示为1×10﹣8m,故答案为:1×10﹣8.15.解:(x +y)·2244x y x y +-=(x +y)·222222()()x y x y x y ++-=(x +y)·221x y -=(x +y)·11()()x y x y x y =+--,当x =2 012,y =2 013时, 原式=1120122013x y =--=-1. 16.解:∵第1项,第2项, 第3项, 第4项,… ∴第n 项,∴第8项, 故答案为:.17.解:因为,,所以,解得,所以, 故答案为:-1. 18.解:∵m 2﹣3m+1=0, ∴m 2=3m ﹣1, ∴m 2+=3m ﹣1+=3m﹣1+=====9,故答案为:9.三解答题19.解:(1)﹣(2﹣)0+()﹣2=﹣1+4=+3;(2)方程两边同乘(x﹣1),得:x﹣2=4(x﹣1),整理得:﹣3x=﹣2,解得:x=,经检验x=是原方程的解,故原方程的解为x=.20.解:①②④⑧⑨12是整式,③⑤⑥⑦⑩11是分式,此12个代数式全都是有理式21.解:(1)(2)==-22.解:原式=[+]×(x﹣3)2=×(x﹣3)2=x﹣3,把x=代入得:原式=﹣3=﹣.23.解:原式===+4.因为当a = -或a =时,的结果均为5,所以马小虎同学做题时把“a = -”错抄成了“a =”也能得到正确答案9.24.解:原式=•=2x+8,当x=1时,原式=2+8=10.25.解:(1)=﹣,=﹣;(2)=﹣;(3)+++…+,=﹣+﹣+﹣+…+﹣,=﹣,=,=.故答案为:(1)﹣,﹣,(2)﹣.26.解:(1)分式是真分式;故答案为:真;(2)原式==x﹣=x﹣=x﹣2+;(3)原式==2﹣,由x为整数,分式的值为整数,得到x+1=﹣1,﹣3,1,3,解得:x=﹣2,﹣4,0,2,则所有符合条件的x值为0,﹣2,2,﹣4.。

华师大版八年级下册第16章《分式》达标测试卷 含答案解析

华师大版八年级下册第16章《分式》达标测试卷  含答案解析

华师大版八年级下册第16章《分式》达标测试卷满分100分班级:________姓名:________座位:________成绩:________一.选择题(共10小题,满分30分)1.下列各式中,属于分式的是()A.x﹣1B.C.D.(x+y)2.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积0.00000065mm2,0.00000065用科学记数法表示为()A.6.5×107B.6.5×10﹣6C.6.5×10﹣8D.6.5×10﹣73.若把分式的x和y都扩大5倍,则分式的值()A.扩大到原来的5倍B.不变C.缩小为原来的倍D.扩大到原来的25倍4.把分式约分得()A.b+3B.a+3C.D.5.使分式的值等于0的x的值是()A.﹣1B.﹣1或5C.5D.1或﹣56.大拖拉机n天耕地a公顷,小拖拉机m天耕地b公顷,大拖拉机的工作效率是小拖拉机工作效率的()A.B.C.D.7.方程x2=(x﹣1)0的解为()A.x=﹣1B.x=1C.x=±1D.x=08.“双11”前,小明的妈妈花了120元钱在淘宝上购买了一批室内拖鞋,在“双11”大减价期间她发现回款的拖鞋单价每双降了5元,于是又花了100元钱购买了一批回款室内拖鞋,且比上次还多了2双.若设拖鞋原价每双为x元,则可以列出方程为()A.B.C.D.9.分式方程的解为()A.x=2B.x=﹣2C.x=﹣D.x=10.已知a为整数,且÷为正整数,求所有符合条件的a的值的和()A.0B.12C.10D.8二.填空题(共5小题,满分20分)11.若分式无意义,则x=.12.分式的最简公分母是.13.若+=3,则分式的值为.14.已知:x2+4x﹣1=0,则的值为.15.定义运算“※”:a※b=,则:①2m※3m(m>0);②若5※x=2,则x的值为.三.解答题(共7小题,满分50分)16.解分式方程:=﹣.17.化简式子(+1),并在﹣2,﹣1,0,1,2中选取一个合适的数作为m的值代入求值.18.甲、乙两个公司为某国际半程马拉松比赛各制作6400个相同的纪念品.已知甲公司的人数比乙公司人数少20%,乙公司比甲公司人均少做20个,甲、乙两公司各有多少人?19.学习了分式运算后,老师布置了这样一道计算题:,下面是一位同学有错的解答过程:=①=②=③=④;(1)该同学的解答过程的错误步骤是;(填序号),你认为该同学错误的原因是.(2)请写出正确解答过程.20.如图,“丰收1号”小麦的试验田是边长为a米(a>2)的正方形去掉一个边长为2米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a﹣2)米的正方形,两块试验田的小麦都收获了500kg.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?21.已知关于x的分式方程+=(1)若方程的增根为x=1,求m的值(2)若方程有增根,求m的值(3)若方程无解,求m的值.22.京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.参考答案一.选择题(共10小题)1.【解答】解:是分式,故选:B.2.【解答】解:0.00000065=6.5×10﹣7.故选:D.3.【解答】解:∵把分式的x和y都扩大5倍,xy扩大到原来的25倍,x+y扩大到原来的5倍,∴若把分式的x和y都扩大5倍,则分式的值扩大到原来的5倍.故选:A.4.【解答】解:==;故选:D.5.【解答】解:∵分式的值等于0,∴x2﹣4x﹣5=0,且x+1≠0,解得:x=5.故选:C.6.【解答】解:∵大拖拉机n天耕地a公顷,∴大拖拉机的工作效率是,∵小拖拉机m天耕地b公顷,∴小拖拉机的工作效率是,∴大拖机的工作效率是小拖机的工作效率÷=倍.故选:A.7.【解答】解:∵x2=(x﹣1)0,∴x2=1,且x≠1,解得:x=﹣1.故选:A.8.【解答】解:设拖鞋原价每双为x元,则“双11”大减价期间该款拖鞋价格每双为(x﹣5)元,依题意,得:=﹣2.故选:D.9.【解答】解:去分母得:2x=x﹣2,解得:x=﹣2,经检验x=﹣2是分式方程的解,则分式方程的解为x=﹣2,故选:B.10.【解答】解:÷====,∵a为整数,且分式的值为正整数,∴a﹣3=1,3,a=4,6,∴所有符合条件的a的值的和:4+6=10.故选:C.二.填空题(共5小题)11.【解答】解:由题意得:x﹣2=0,解得:x=2,故答案为:2.12.【解答】解:分式的最简公分母是(a﹣1)2(a+1),故答案为:(a﹣1)2(a+1).13.【解答】解:由+=3,得x+y=3xy,====,故答案为.14.【解答】解:由x2+4x﹣1=0,得到x2=﹣4x+1,则原式======,故答案为:.15.【解答】解:①由m>0,得到3m>2m,根据题中的新定义得:原式==3;②当x>5时,化简得:=2,解得:x=10,经检验x=10是分式方程的解;当x<5时,化简得:=2,解得:x=,经检验x=是分式方程的解,综上,x的值为或10,故答案为:3;或10三.解答题(共7小题)16.【解答】解:原方程即=﹣,两边同时乘以(2x+1)(2x﹣1)得:x+1=3(2x﹣1)﹣2(2x+1),x+1=6x﹣3﹣4x﹣2,解得:x=6.经检验:x=6是原分式方程的解.∴原方程的解是x=6.17.【解答】解:(+1)=[]=()===,∵当m=﹣1,0,1,2时,原分式无意义,∴当m=﹣2时,原式==1.18.【解答】解:设乙公司有x人,则甲公司有(1﹣20%)x人,根据题意得:﹣=20,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴(1﹣20%)x=64.答:甲公司有64人,乙公司有80人.19.【解答】解:(1)该同学的解答过程的错误步骤是②;该同学错误的原因是:用分式基本性质时,分母乘以(x+1),但是分子没有乘;故答案为:②,用分式基本性质时,分母乘以(x+1),但是分子没有乘;(2)====.20.【解答】解:(1)根据题意得:“丰收1号”小麦单位面积产量为500÷(a2﹣22)=(平方米),“丰收2号”小麦单位面积产量为500÷(a﹣2)2=(平方米),∵a>2,∴(a﹣2)2﹣(a2﹣4)=a2﹣4a+4﹣a2+4=8﹣4a<0,即(a﹣2)2<(a2﹣4),∴<,则“丰收2号”小麦单位面积产量大;(2)根据题意得:÷=•=,则高的单位面积产量是低的单位面积产量的倍.21.【解答】解:方程两边同时乘以(x+2)(x﹣1),去分母并整理得(m+1)x=﹣5,(1)∵x=1是分式方程的增根,∴1+m=﹣5,解得:m=﹣6;(2)∵原分式方程有增根,∴(x+2)(x﹣1)=0,解得:x=﹣2或x=1,当x=﹣2时,m=1.5;当x=1时,m=﹣6;(3)当m+1=0时,该方程无解,此时m=﹣1;当m+1≠0时,要使原方程无解,由(2)得:m=﹣6或m=,综上,m的值为﹣1或﹣6或1.5.22.【解答】解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要x 天.根据题意,得.解得x=90.经检验,x=90是原方程的根.∴x=×90=60.答:甲、乙两队单独完成这项工程分别需60天和90天.(2)设甲、乙两队合作完成这项工程需要y天,则有.解得y=36.需要施工费用:36×(8.4+5.6)=504(万元).∵504>500.∴工程预算的施工费用不够用,需追加预算4万元.。

华师大版数学八年级下册第16章分式测试题含答案

华师大版数学八年级下册第16章分式测试题含答案

华师大版八年级数学下册 第16章分式测试题一、单选题 1.下列代数式中,属于分式的是( ) A .5xB .3xy C .3x D 2.若代数式4x x -有意义,则实数x 的取值范围是( ) A .x =0 B .x =4 C .x ≠0 D .x ≠4 3.一种微粒的半径是0.00004米,这个数据用科学记数法表示为( )A .4×106B .4×10﹣6C .4×10﹣5D .4×105 4.下列各式正确的是A .c -a-b =-c a-bB .c -a-b =-c a b +C .c -a b +=-c a b +D .c -a-b =--c a-b5.计算2269243m m m m m-+-⋅--的结果是( ) A .32m m -+ B .23m m +- C .32m m +- D .23m m -+ 6.下列各式计算正确的是( ) A .111a b a b +=+ B .2m m m a b ab ⋅= C .11b b a a a +÷= D .110a b b a +=--7.若方程6(1)(1)1m x x x -+--=1有增根,则它的增根是( ) A .0B .1C .﹣1D .1和﹣18.设24932321x A B x x x x -=---+- (A ,B 为常数),则( ) A .71A B =⎧⎨=⎩ B .49A B =⎧⎨=-⎩ C .17A B =⎧⎨=⎩ D .3513A B =-⎧⎨=⎩二、填空题9.计算:23b a a b⨯= . 10.若分式2x x -的值是0,则x 的值为_______. 11.分式222x x +,24x x -的最简公分母是_______________. 12.若代数式62x +与4x的值相等,则x =_________. 13.若关于x 的方程2345mx m x +=-的解是x =1,则m 的值是________. 14.如果轮船在静水中航行的速度是a km/h ,水流的速度为b km/h(a>b),那么轮船顺水航行s km 比逆水航行s km 所用的时间少________小时.15.已知x -3y =0,且y≠0,则222(1)y x y x y x-+⋅-的值等于________. 16.某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x 个物件,根据题意列出的方程是 .三、解答题17.计算: (1)11()3--(2018)0×(-12)-2; (2)1111x x ++-; (3)2221211x x x x x x -+÷-+-.18.解分式方程:222x x x =---5.19.已知分式1x y xy+-的值是m ,如果分式中x ,y 分别用它们的相反数代替,那么所得的值为n ,则m ,n 有何关系?20.先化简,再求值:(x -2+32x +)÷2212x x x +++,其中x =(π-2019)0+(13)-1.21.已知a ,b ,c 为实数,且13ab a b =+,14bc b c =+,15ca c a =+,求abc ab bc ca++的值.22.某汽车销售公司经销某品牌A 款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A 款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A 款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B 款汽车,已知A 款汽车每辆进价为7.5万元,B 款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B 款汽车每辆售价为8万元,为打开B 款汽车的销路,公司决定每售出一辆B 款汽车,返还顾客现金a 万元,要使(2)中所有的方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?参考答案1.C【解析】【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,从而得出答案.【详解】根据分式的定义A.是整式,答案错误;B.是整式,答案错误;C.是分式,答案正确;D.是根式,答案错误;故选C.【点睛】本题考查了分式的定义,在解题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.2.D【解析】由分式有意义的条件:分母不为0,即x-4≠0,解得x≠4,故选D.3.C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00004=4×10﹣5. 故选C .【点睛】本题考查科学记数法—表示较小的数, 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.4.B【解析】本题考查的是分式的基本性质根据分式的基本性质对各项分析即可.A 、,故本选项错误;B 、cca b a b =---+,正确;C 、,故本选项错误;D 、,故本选项错误;故选B .5.A【解析】【分析】将第一个分式的分子、分母进行因式分解后,再约分即可得解.【详解】2269243m m m m m -+-⋅--, =2(3)2·(2)(2)3m mm m m --+--, =32m m -+.故选A.【点睛】本题考查分式的乘法,约分是分式乘法的关键. 6.D【解析】【分析】根据分式的运算法则对各选项逐一判断即可. 【详解】A. 11a ba b ab++=,故该选项错误;B. m ma b⋅=2mab,故该选项错误;C.1b ba a+÷=11b a ba b b⨯=++,故该选项错误;D.11a b b a+--=11a b a b---=0, 故该选项正确.故选D.【点睛】本题考查了分式的运算,熟练掌握运算法则是解题关键.7.B【解析】方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.故选:B.8.A【解析】【分析】对等式右边通分加减运算和,再根据对应项系数相等列方程组求解即可.【详解】()()()()()()()()()()1323249321321321A x B x A B x A B x x x x x x x --+--+-+-+-+-==. 所以3429A B A B ==-⎧⎨+⎩,解得71A B ⎧⎨⎩==. 故选A .【点睛】此题考查了分式的减法,比较灵活,需要熟练掌握分式的加减运算.9.3b【解析】 试题分析:根据分式的乘法运算法则,约分化简即可:23b a 3b a b⨯=. 10.2.【解析】【分析】根据分式分子为0分母不为0的条件,要使分式2x x-的值为0,则必须x 20{x 0-=≠,从而求解即可.【详解】解:有题意可得:x 20{x 0-=≠解得:x 2=故答案为:2.【点睛】本题考查分式的值为零的条件,掌握分式值为零即分子为零且分母不为零是本题的解题关键.11.x(x +2)(x -2)【解析】【分析】根据确定最简公分母的方法是:取各分母系数的最小公倍数;凡单独出现的字母连同它的指数作为最简公分母的一个因式;同底数幂取次数最高的,得到的因式的积就是最简公分母,先把分母因式分解,即可求出答案.【详解】 ∵()22222x x x x =++,()()2422x x x x x =-+-, ∴222x x +,24x x -的最简公分母是x (x+2)(x-2); 故答案为:x (x+2)(x-2).【点睛】此题考查了最简公分母,关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握;确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.12.4【解析】 ∵代数式62x +与4x的值相等, ∴642x x +=, 解得:x=4故答案是4.13.-196【解析】【分析】根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含有m 的新方程,解此新方程可以求得m 的值.【详解】把x=1代入原方程得,23415m m +-= 去分母得,10m+15=4m-4解得,m=-196. 故答案为:-196. 【点睛】解题关键是要掌握方程的解的定义,由已知解代入原方程得到新方程,然后解答. 14.222bs a b - 【解析】【分析】根据时间=路程÷速度,求出逆水航行的时间-顺水航行的时间,即可得到代数式.【详解】根据题意得:那么轮船顺水航行skm 与逆水航行skm 所用的时间差为:222=s s bs a b a b a b--+-. 故答案为:222bs a b -. 【点睛】本题考查理解题意的能力,时间差为,逆水航行的时间-顺水航行的时间,时间=路程÷速度.可列出代数式.15.34【解析】【分析】把小括号内分式通分并把分母分解因式,然后根据分式的乘法运算进行计算,再把x=3y 代入进行计算即可得解.【详解】2221?y x y x y x-+-(), =22222•x y y x y x y x-+--, =()()2•x x y x y x y x-+-,=+x x y, ∵x-3y=0,且y≠0,∴x=3y ,∴原式=3334y y y =+. 故答案为34. 【点睛】本题考查了分式的化简求值,一般分子、分母能因式分解的先因式分解,本题先计算然后再对分母分解因式更简便.16.. 【解析】试题解析:小华每小时分拣x 个物件,则小王每小时分拣(x +8)个物件, 根据题意得:6045.8x x=+ 故答案为6045.8x x=+ 17.(1)-1;(2)-221x ;(3) 1x . 【解析】【分析】(1)根据负整数指数幂和零次幂的运算法则进行计算即可得解;(2)按照异分母的分式加减法则进行计算即可;(3)原式利用除法法则变形,约分即可得到结果.【详解】(1)原式=3-1×4=-1. (2)原式=2112(1)(1)(1)(1)1x x x x x x x -+-=-+-+--. (3)2221 211x x x x x x -+÷-+-=2(1)(1)11(1)(1)x x x x x x x +--⨯=-+.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.18.x =3【解析】【分析】观察可得最简公分母是x-2,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】方程的两边同乘(x -2),得-2=x -5(x -2),解得x =3.检验:将x =3代入x -2,得x -2=1≠0,∴x =3是原方程的解.【点睛】此题考查了分式方程的求解方法.注意掌握转化思想的应用,注意解分式方程一定要验根.19.m 与n 互为相反数.【解析】【分析】把x 、y 的相反数代入分式中,然后化简计算可得到n 的表达式,进而得到m 、n 的关系.【详解】由题意得:n=()() 11x y x y x y xy--+=-----=-m , 则m 与n 互为相反数.【点睛】此题主要考查了分式的基本性质,关键是正确理解题意,正确对题目进行变形. 20.13. 【解析】【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出x 的值代入计算即可求出值.【详解】(x-2+32x+)÷2212x xx+++=()()2 2(2)32 []?221 x x xx x x+-+++++=()()2 1(1)2•21 x x xx x+-+++=1 +1 xx-.x=(π-2019)0+(13)-1=1-2+3=2,当x=2时,原式=2121-+=13.【点睛】此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.21.1 6 .【解析】【分析】要求abcab bc ca++的值,可先求出其倒数的值,根据13aba b=+,14bcb c=+,15cac a=+,分别取其倒数即可求解.【详解】∵13aba b=+,14bcb c=+,15cac a=+,∴a+b=3ab,b+c=4bc,c+a=5ca,∴abcab bc ca++=2222abcab bc ca++=2()()()abcab bc bc ca ab ca +++++=2()()()abcb ac c b a a b c+++++=212 abc abc=16. 【点睛】本题考查了分式的化简求值,难度不大,关键是通过先求其倒数再进一步求解. 22.(1)9万元 (2)共有5种进货方案 (3)购买A 款汽车6辆,B 款汽车9辆时对公司更有利【解析】分析:(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.(2)关系式为:公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆.(3)方案获利相同,说明与所设的未知数无关,让未知数x 的系数为0即可;多进B 款汽车对公司更有利,因为A 款汽车每辆进价为7.5万元,B 款汽车每辆进价为6万元,所以要多进B 款.详解:(1)设今年5月份A 款汽车每辆售价m 万元.则:901001m m =+, 解得:m =9.经检验,m =9是原方程的根且符合题意.答:今年5月份A 款汽车每辆售价9万元;(2)设购进A 款汽车x 辆,则购进B 款汽车(15﹣x )辆,根据题意得: 99≤7.5x +6(15﹣x )≤105.解得:6≤x ≤10.∵x 的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W 万元,购进A 款汽车x 辆,则:W =(9﹣7.5)x +(8﹣6﹣a )(15﹣x )=(a ﹣0.5)x +30﹣15a .当a =0.5时,(2)中所有方案获利相同.此时,购买A 款汽车6辆,B 款汽车9辆时对公司更有利.点睛:本题考查了分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.。

精编华东师大版八年级数学下《第16章分式》单元复习测试(有答案)

精编华东师大版八年级数学下《第16章分式》单元复习测试(有答案)

第16章分式复习试题1.下列各式中,属于分式的个数有( ) ①1x ;②-x 2;③2xy x +y ;④2x -x 3;⑤14(x 2+1). A .1个B .2个C .3个D .4个2.如果分式3x -1有意义,那么x 的取值范围是( )A .全体实数B .x ≠1C .x =1D .x >13.下列计算不正确的一项是( ) A .b 2x =by2xyB .ax bx =a bC .3x 2y ÷6y 2x =x 32yD .2a a 2-4-1a -2=1a +24.方程2x +1x -1=3的解是( )A .-45B .45C .-4D .45.计算:⎝ ⎛⎭⎪⎫a b -b a ÷a -ba 的结果为( )A .a +bbB .a -bbC .a -baD .a +ba6.分式方程xx -1-1=3(x -1)(x +2)的解为( )A .x =1B .x =-1C .无解D .x =-27.电动车每小时比自行车多行驶了25千米,自行车行驶30千米比电动车行驶40千米多用了1小时,求两车的平均速度各为多少?设自行车的平均速度为x 千米/时,应列方程为( )A .30x -1=40x -25B .30x -1=40x +25 C .30x +1=40x -25D .30x+1=40x +258.已知14m 2+14n 2=n -m -2,则1m -1n的值是( )A .1B .0C .-1D .-149.当x =6,y =3时,代数式⎝ ⎛⎭⎪⎫x x +y +2y x +y ·3xy x +2y 的值是( ) A .2B .3C .6D .910.关于x 的分式方程2x -ax +1=1的解是正数,则字母a 的取值范围为( ) A .a ≥-1 B .a >-1C .a ≤-1D .a <-111.分式方程xx -1=32(x -1)-2的解为________.12.计算:⎝ ⎛⎭⎪⎫a a +b +2b a +b ·a a +2b=________. 13.人体内某种细胞可近似地看作球体,它的直径为0.000 000 156 m ,将0.000 000 156用科学记数法表示为________.14.已知实数m 满足m 2-3m +1=0,则代数式m 2+19m 2+2的值等于________. 15.甲、乙二人做某种机械零件,已知甲每小时比乙多做4个,甲做60个所用的时间与乙做40个所用的时间相等,则乙每小时所做的零件的个数为________.16.对于正数x ,规定f (x )=x x +1,例如f (3)=33+1=34,f ⎝ ⎛⎭⎪⎫13=1313+1=14,计算:f (2 018)+f (2 017)+…+f (1)+f ⎝ ⎛⎭⎪⎫11+f ⎝ ⎛⎭⎪⎫12+…+f ⎝⎛⎭⎪⎫12 018=________. 17.计算:(1)⎝ ⎛⎭⎪⎫-a b 2×⎝ ⎛⎭⎪⎫-b a 3÷(-ab 4);(2)⎝ ⎛⎭⎪⎫-110-3+(-2 018)0-(-3)3×0.3-1;(3)(-1.4×10-10)÷(7×105)(结果用科学记数法表示).18.解下列分式方程: (1)3x -1=4x ;(2)xx +1-4x 2-1=1.19.先化简,再求值:⎝ ⎛⎭⎪⎫1-2x +1÷x 2-1x 2+x ,其中x =2.20.化简:⎝ ⎛⎭⎪⎫x 2-2x x 2-4x +4-3x -2÷x -3x 2-4,并从1,2,3,4这四个数中取一个合适的数作为x 的值代入求值.21.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?22.为了提高产品的附加值,某公司计划将研发生产的1 200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.23.商场经营的某品牌童装,4月的销售额为20 000元,为扩大销量,5月份商场对这种童装打9折销售,结果销量增加了50件,销售额增加了7 000元.(1)求该童装4月份的销售单价;(2)若4月份销售这种童装获利8 000元,6月全月商场进行“六一儿童节”促销活动.童装在4月售价的基础上一律打8折销售,若该童装的成本不变,则销量至少为多少件,才能保证6月的利润比4月的利润至少增长25%?\参考答案1.B 2.B 3.A 4.D 5.A 6.C 7.B 8.C 9.C 10.B11.x=7612.aa+b13.1.56×10-714.9 15.8 16.2 01817.(1)1a2b3(2)-909 (3)-2×10-1618.(1)x=4 (2)x=-319.原式=xx+12320.原式=x+2 当x=4时,原式=621.75个22.甲工厂每天加工40件产品,乙工厂每天加工60件产品23.(1)4月份的销售单价为200元(2)销量至少为250件。

2021学年八年级数学华东师大版下册《第16章 分式》单元测试卷(有答案)有答案

2021学年八年级数学华东师大版下册《第16章 分式》单元测试卷(有答案)有答案

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯2020-2021学年华东师大新版八年级下册数学《第16章分式》单元测试卷一.选择题1.下列各式,,,,,x+中,是分式的有()A.1个B.2个C.3个D.4个2.下列等式中不一定成立的是()A.B.C.D.3.把,,通分过程中,不正确的是()A.最简公分母是(x﹣2)(x+3)2B.=C.=D.=4.分式的最简公分母是()A.(x2﹣y2)(x﹣y)B.(x2﹣y2)(x+y)(x﹣y)C.2(x+y)(x﹣y)D.x2﹣y25.计算:a÷•b•c•d=()A.a B.C.D.ab2c2d26.要使分式有意义,则x应满足的条件是()A.x=1B.x≠1C.x=﹣3D.x≠﹣37.下列式子中,是分式方程的是()A.x﹣2=0B.=1C.D.x+y=08.使分式的值为负的条件是()A.x<0B.x>0C.x>D.x<9.方程x﹣2019+=的解是()A.x=2019B.x=﹣2019C.x=0D.无解10.下列计算中,正确的有()个.①(﹣x)3n÷(﹣x)n=(﹣x)3;②()﹣3==;③m5÷m5=m5﹣5=0;④(﹣bc)4÷(﹣bc)2=﹣b2c2.A.0个B.1个C.2个D.3个二.填空题11.如果分式的值是负数,则x的取值范围是.12.用科学记数法表示:﹣0.0009267=.13.若x+x﹣1=5,则x2+x+x﹣1+x﹣2=.14.在方程=,1+=0,+=1,=1中,分式方程有个.15.若方程有增根,则增根为.16.两名教师带若干名学生去旅游,联系了甲、乙两家旅游公司,甲公司给的优惠价是:一名教师按行业规定的统一价全价收费,其余按7.5折收费;乙公司给的优惠价是:全部按8折收费,经核算甲公司的优惠价比乙公司的优惠价便宜,则学生人数是.17.现有咖啡50克,用350克开水冲泡一壶热咖啡,则这壶咖啡的浓度为.18.计算•=.19.分式与的最简公分母是.20.当x=时,代数式和的值相等.三.解答题21.在分式的分子、分母同除以(x+1)可能为零的代数式,扩大了x的取值范围,请说明理由.22.约分:(1);(2);(3);(4);(5);(6);(7);(8);(9).23.解方程:(1)+=1+;(2)﹣=.24.某商厦进货员在甲地发现一种应季衬衫,预计能畅销市场,就用8万元购进甲地所有这种衬衫,上市后果然供不应求.于是商厦又用17.6万元从乙地购进一批这种衬衫,所购数量是从甲地购进量的2倍,但单价比甲地衬衫贵4元,商厦销售时定价每件58元,最后剩下150件8折销售,很快售完,在这笔生意中,商厦赢利多少元?25.先化简,再求值:÷+1,其中x=4.26.计算:①•÷;②b2c﹣3•;③a2b3÷×a2b.27.一种塑料颗粒是边长为1mm的小正方体,它的体积是多少立方米?(用科学记数法表示)若用这种塑料颗粒制成一个边长为1m的正方体塑料块,要用多少个颗粒?参考答案与试题解析一.选择题1.解:分式有,,,x+中共有4个.故选:D.2.解:A、=,所以A选项的计算正确;B、=,所以B选项的计算正确;C、=(z≠0),所以C选项的计算不正确;D、=,所以D选项的计算正确.故选:C.3.解:A、最简公分母为最简公分母是(x﹣2)(x+3)2,正确;B、=,通分正确;C、=,通分正确;D、通分不正确,分子应为2×(x﹣2)=2x﹣4;故选:D.4.解:分式的分母为x+y,分母分解因式为(x+y)(x﹣y),分母可以变形为﹣2(x﹣y),取各分母系数的最小公倍数2;把x+y、x﹣y作为最简公分母的因式,得到的因式的积就是最简公分母,即2(x+y)(x﹣y).故选C.5.解:原式=a•b•b•c•c•d•d=ab2c2d2.故选:D.6.解:由题意得:x+3≠0,解得:x≠﹣3,故选:D.7.解:A、分母没有未知数,不是分式方程;B、分母中含有未知数x,是分式方程;C、不是等式,不是分式方程;D、分母没有未知数,不是分式方程.故选:B.8.解:∵分式的值为负,x2+1>0,∴1﹣3x<0,解得x>.故选:C.9.解:去分母得:(x﹣2019)2+1=1,即(x﹣2019)2=0,开方得:x﹣2019=0,解得:x=2019,经检验x=2019是增根,分式方程无解.故选:D.10.解:①应为(﹣x)3n÷(﹣x)n=(﹣x)2n=x2n,故本选项错误;②()﹣3=33=27,故本选项错误;③任何数的0次幂都是1,故本选项错误;④应为(﹣bc)4÷(﹣bc)2=b2c2,故本选项错误.所以正确的个数是0个.故选:A.二.填空题11.解:∵分式的值是负数,∴x2+1一定大于0,则2x+3<0,解得:x<﹣.故答案为:x<﹣.12.解:﹣0.0009267=﹣9.267×10﹣4,故答案是:﹣9.267×10﹣4.13.解:∵x+x﹣1=5,即x+=5,∴x2+2+=25,则x2+=23,∴x2+x+x﹣1+x﹣2=x2++x+=23+5=28,故答案为:28.14.解:在方程=,1+=0,+=1,=1中,分式方程有=,1+=0,=1,一共3个.故答案为:3.15.解:分式方程的最简公分母为x﹣2,根据题意得x﹣2=0,即x=2,则方程的增根为x=2.故答案为:x=2.16.解:设学生人数为x人,标价为a元,由题意得:则甲、乙两公司的价格分别为:[a+75%a(x+1)]元,[80%a(x+2)]元,=,解得:x=8,故答案为:8.17.解:根据题意得:×100%=12.5%;则这壶咖啡的浓度为12.5%.故答案为:12.5%.18.解:原式=﹣,故答案为:﹣.19.解:分式与的最简公分母是5(a+1)(a﹣1).故答案为:5(a+1)(a﹣1).20.解:根据题意得:=,去分母得:2x+3=3x﹣6,解得:x=9,经检验x=9是分式方程的解,故答案为:9三.解答题21.解:由(x+1)(x﹣2)≠0,得x+1≠0,且x﹣2≠0,所以x≠﹣1且x≠2.当x≠﹣1且x≠2时,分式有意义;当分式的分子、分母同除以(x+1)可能为零的代数式时,①若x+1=0,原分式方程无意义.②当x+1≠0时,原式可化为,解得x≠2.故原分式的分子、分母同除以(x+1)可能为零的代数式,扩大了x的取值范围.22.解:①;②=﹣;③==;④==;⑤=;⑥=﹣2mn;⑦=;⑧==;⑨==﹣.23.解:(1)去分母得:x2﹣2(x+2)=x2﹣4+x﹣2,去括号得:x2﹣2x﹣4=x2﹣4+x﹣2,移项合并得:﹣3x=2,解得:x=﹣,经检验x=﹣是分式方程的解;(2)去分母得:12﹣2(x+3)=x﹣3,去括号得:12﹣2x﹣6=x﹣3,移项合并得:﹣3x=﹣9,解得:x=3,经检验x=3是增根,分式方程无解.24.解:设从甲地购进这种衬衫的单价为x元,则从乙地购进这种衬衫的单价为(x+4)元,根据题意得:2×=,解得:x=40,经检验,x=40是所列分式方程的解.∴80000÷40=2000(件),2000×2=4000(件),(2000+4000﹣150)×58+150×58×0.8﹣80000﹣176000=90260(元).答:在这笔生意中,商厦赢利90260元.25.解:÷+1=•+1=+1=,当x=4时,原式=2.26.解:①原式=••=x5;②原式=b2c﹣3•8b6c﹣6=8b8c﹣9=;③原式=a2b3•a2b×a2b=a6b5.27.解:0.0013=1×10﹣9(m3),1÷10﹣9=1×109=109个.答:小正方体的体积是10﹣9立方米,制成一个边长为1m的正方体塑料块,需要109颗粒.。

华师大版数学八下第16章《分式》单元测试卷及答案

华师大版数学八下第16章《分式》单元测试卷及答案

新人教八年级(下)第16章《分式》一、填空题(每小题3分,共24分)1.下列各式:()2221451, , , 532x x y x x xπ---其中分式共有( ) A .1个 B .2个 C .3个 D .4个2.下列计算正确的是( )A .m m m x x x 2=+B .22=-n n x xC .3332x x x =⋅D .264x x x -÷=3.下列约分正确的是( )A .313m m m +=+B .212y x y x -=-+ C .123369+=+a b a b D .()()y x a b y b a x =-- 4.若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A .y x 23B .223y xC .y x 232D .2323yx 5.计算xx -++1111的正确结果是( ) A .0 B .212x x - C .212x - D .122-x 6.在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段路上、下坡的平均速度是每小时( )A .221v v +千米B .2121v v v v +千米C .21212v v v v +千米 D .无法确定 7.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件,则x 应满足的方程为( )A .x+48720─548720= B .x +=+48720548720 C .572048720=-x D .-48720x +48720=5 8.若0≠-=y x xy ,则分式=-xy 11( ) A .xy1 B .x y - C .1 D .-1 二、填空题(每小题3分,共30分)9.分式12x ,212y ,15xy -的最简公分母为 .10.约分:(1)=b a ab2205__________,(2)=+--96922x x x __________.11.方程x x 527=-的解是 .12.利用分式的基本性质填空:(1)())0(,10 53≠=a axy xy a(2)() 1422=-+a a13.分式方程1111112-=+--x x x 去分母时,两边都乘以 .14.要使2415--x x 与的值相等,则x =__________.15.计算:=+-+3932a a a __________.16.若关于x 的分式方程3232-=--x m x x无解,则m 的值为__________.17.若分式231-+x x 的值为负数,则x 的取值范围是__________.18.已知2242141x y y x y y +-=-+-,则的24y y x ++值为______.三、解答题:(共56分)19.(4分)计算:(1)11123x x x ++ (2)3xy 2÷x y 2620.(4分)计算: ()3322232n m n m --⋅ 21.(4分)计算(1)168422+--x x xx(2)m n nn m m m n nm -+-+--222.(6分)先化简,后求值:222222()()12a a a a a b a ab b a b a b-÷-+--++-,其中2,33a b ==-23.(6分)解下列分式方程.(1)xx 3121=- (2)1412112-=-++x x x24.(6分)计算: 1111-÷⎪⎭⎫ ⎝⎛--x x x25.(6分)已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值.26.(6分)先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用()12-m 元,(m 为正整数,且12-m >100)如果多买60支,则可按批发价付款,同样需用()12-m 元.设初三年级共有x 名学生,则①x 的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含x 、m 的代数式表示).27.(6分)从甲地到乙地有两条公路,一条是全长600km 的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km /h ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.28.(8分)问题探索:(1)已知一个正分数mn (m >n >0),如果分子、分母同时增加1,分数的值是增大还是减小?请证明你的结论.(2)若正分数mn (m >n >0)中分子和分母同时增加2,3…k (整数k >0),情况如何?(3)请你用上面的结论解释下面的问题:建筑学规定:民用住宅窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比应不小于10%,并且这个比值越大,住宅的采光条件越好,问同时增加相等的窗户面积和地板面积,住宅的采光条件是变好还是变坏?请说明理由.。

八年级数学下册《第十六章 分式》单元测试卷及答案(华东师大版)

八年级数学下册《第十六章 分式》单元测试卷及答案(华东师大版)

八年级数学下册《第十六章 分式》单元测试卷及答案(华东师大版)一、选择题1.若分式y 1y 3-+的值是0,则y 的值是( ) A .3-B .0C .1D .1或3-2.下列分式中,是最简分式的是( )A .2xy xB .3333x x +- C .x yx y+- D .211x x +- 3.计算1a a÷的结果为( ) A .a B .21aC .1D .2a4.下列等式成立的是( )A .4453m n m n m n⋅=B .213m n m n +=+ C .2121m m n n=++D .m mm n m n=--++5.下列方程①4x x y y -=+,②15x =,③13πx x -=-,④11x a b =-中,是关于x 的分式方程的有( )个. A .1B .2C .3D .46.将分式2x yx y-中的x y ,的值同时扩大为原来的10倍,则分式的值( )A .扩大1000倍B .扩大100倍C .扩大10倍D .不变7.设11a b p a b =-++,1111q a b =-++则p ,q 的关系是( ) A .p q = B .p q > C .p q =-D .p q <8.根据规划设计,某工程队准备修建一条长1120米的盲道.由于情况改变,实际每天修建盲道的长度比原计划增加10米,结果提前2天完成了这一任务,假设原计划每天修建盲道x 米,根据题意可列方程为( )A .11201120210x x -=+ B .11201120210x x -=- C .11201120210x x-=+ D .11201120210x x-=-9.下列运算正确的是( )A .236a a a ⋅=B .()325a a =C .226235a a a +=D .()2139--= 10.成人体内成熟的红细胞的平均直径一般为0.000007245m ,保留三个有效数字的近似数,可以用科学记数法表示为( ) A .7.25×10﹣5m B .7.25×106m C .7.25×10﹣6mD .7.24×10﹣6m二、填空题11.分式256x y 和214xy 的最简公分母为 . 12.若12a b =,则分式3a b b+= . 13.已知,ab=-1,a+b=2,则式子b aa b+= .14.某化肥厂原计划五月份生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨.设原计划每天生产化肥x 吨.根据题意,列方程为 .三、解答题15.计算:.16.先化简,再求值:(21a a - ﹣a ﹣1)÷ 21a a - ,其中a =﹣2. 17.先化简,再求值:22121121x x x x x --⎛⎫-÷⎪+++⎝⎭,其中x 是1-,1,2中的一个合适的数.18.我国5G 手机产业迅速发展,5G 网络建成后,下载完一部1000MB 大小的电影,使用5G 手机比4G 手机少花190秒.已知使用5G 手机比4G 手机每秒多下载95MB ,求使用5G 手机每秒下载多少MB ?四、综合题19.我市某文具店准备购进A 、B 两种文具,A 种文具每件的进价比B 种文具每件的进价多20元,用4000元购进A 种文具的数量和用2400元购进B 种文具的数量相同.文具店将A 种文具每件的售价定为80元,B 种文具每件的售价定为45元.(1)A 种文具每件的进价和B 种文具每件的进价各是多少元?(2)文具店计划用不超过1600元的资金购进A 、B 两种文具共40件,其中A 种文具的数量不低于17件,该文具店有几种进货方案?(3)在(2)的条件下,文具店利用销售这40件文具获得的最大利润再次购进A 、B 两种文具(两种文具都买),直接写出再次购进A 、B 两种文具获利最大的进货方案.20.阅读下列材料:我们知道,分子比分母小的数叫做“真分数”:分子比分母大,或者分子、分母同样大的分数,叫做“假分数”.类似地,我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”:当分子的次数小于分母的次数时,我们称之为“真分式”.如:11x x -+,21x x -这样的分式就是假分式;再如:31x +,221x x +这样的分式就是真分式,假分数74可以化成314+(即314)带分数的形式,类似的,假分式也可以化为带分式.如:()12121111x x x x x +--==-+++. 解决下列问题: (1)分式 5x 是 (填“真分式”或“假分式”);假分式52x x ++可化为带分式 形式;(2)如果分式41x x --的值为整数,求满足条件的整数x 的值; (3)若分式22382x x ++的值为m ,则m 的取值范围是 (直接写出结果)21.佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,且很快售完,由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次购进的数量多20千克.(1)求第一次购进该水果的进价?(2)已知第一次购进的水果以每千克8元很快售完,第二次购进的水果,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?答案解析部分1.【答案】C【解析】【解答】解:由题意得:y-1=0且y+3≠0解得:y=1; 故答案为:C.【分析】分式值为0的条件:分子为0且分母不为0,据此解答即可.2.【答案】C【解析】【解答】解:A 、2xy yx x= 故此选项不合题意; B 、 ()()3133133311x x x x x x +++==--- 故此选项不合题意; C 、x yx y+- 是最简分式,故此选项符合题意; D 、 ()()21111111x x x x x x ++==-+-- 故此选项不合题意; 【分析】把一个分式中相同的因式约去的过程叫做约分,如果分式中没有可约的因式,则为最简分式,据此判断.3.【答案】B【解析】【解答】解:21111a aa a a ÷=⋅= 故答案为:B .【分析】利用分式的乘除法则计算求解即可。

华东师大版八年级下册第16章《分式》单元测试卷(原卷版+解析版)

华东师大版八年级下册第16章《分式》单元测试卷(原卷版+解析版)

华东师大版八年级下册第16章《分式》单元测试卷(原卷版)本试卷三个大题共22个小题,全卷满分120分,考试时间120分钟。

题号一二三全卷总分总分人1718 19 20 21 22 得分1、答题前,请考生务必将自己姓名、考号、班级等写在试卷相应的位置上;2、选择题选出答案后,用钢笔或黑色水笔把答案标号填写在选择题答题卡的相应号上。

一、选择题(本大题共12个小题,每小题4分,共48分.以下每小题都给出了A 、B 、C 、D 四个选项,其中只有一个是符合题目要求的。

)1、在代数式m 1,3b ,π1-x ,y x +2,aa 1+中,分式的个数是( )A 、2B 、3C 、4D 、52、下列各分式中,是最简分式的是( )A 、x x 22B 、1122+++x x xC 、x x 1+ D 、112--x x 3、将分式yx x42-中的x ,y 的值同时扩大为原来的2022倍,则变化后分式的值( )A 、扩大为原来的2022倍B 、缩小为原来的20221C 、保持不变D 、以上都不正确4、已知0132=+-x x ,则xx 1-的值是( ) A 、5B 、7±C 、5±D 、35、若b a ≠,则下列分式化简正确的是( )A 、b a b a =--22B 、b a mb a m =+C 、b ab a =22D 、b abab =26、下列运算正确的是( )A 、692432b b a a b =•B 、2323132b a b ab =+ C 、a a a 32121=+ D 、1211112-=+--a a a 7、分式方程13132=----xx x 的解为( ) A 、2=xB 、无解C 、3=xD 、3-=x8、若关于x 的分式方程2113+-=--x mx x 产生增根,则m 的值为( ) A 、1-B 、2-C 、1D 、29、随着电影《你好,李焕英》热映,其同名小说的销量也急剧上升、某书店分别用400元和600元两次购进该小说,第二次数量比第一次多1倍,且第二次比第一次进价便宜4元,设书店第一次购进x 套,根据题意,下列方程正确的是( )A 、42600400=-x x B 、42400600=-x x C 、46002400=-xx D 、44002600=-xx 10、若关于x 的分式方程21121=----x k x kx 无解,则k 的值为( ) A 、31-=kB 、1=kC 、31=k 或2 D 、0=k 11、已知关于x 的分式方程xkx x -=--343的解为负数,则k 的取值范围是( ) A 、12-≤k 且3-≠k B 、12->k C 、12-<k 且3-≠k D 、12-<k 12、若关于x 的不等式组()⎪⎩⎪⎨⎧-≤+-≥-+12224131x a x x x 有解,且使关于y 的分式方程32221-=--+--yya y y 的解为非负数、则满足条件的所有整数a 的和为( ) A 、9- B 、8- C 、5- D 、﹣4二、填空题(本大题共4个小题,每小题4分,共16分) 13、已知611=+y x ,则yxy x y xy x +-++525的值为 ; 14、对于实数a 、b ,定义一种新运算“*”为:ba ab a -=*,这里等式右边是实数运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第16章分式单元测试卷
一、选择题(每题2分,共20分)
1.在式子-x,,x+y,,+,中,是分式的有( )
A.1个
B.2个
C.3个
D.4个
2.下列各式中,正确的是( )
A.=-1
B.=-1
C.=a-b
D.-=
3.要使分式有意义,则x的取值应满足( )
A.x≠2
B.x≠-1
C.x=2
D.x=-1
4.下面是四位同学解方程+=1过程中去分母的一步,其中正确的是( )
A.2+x=x-1
B.2-x=1
C.2+x=1-x
D.2-x=x-1
5.若关于x的方程+=3的解为正数,则m的取值范围是( )
A.m<
B.m<且m≠
C.m>-
D.m>-且m≠-
6.纳米是非常小的长度单位,1纳米=10-9米,某种病菌的长度约为50纳米,用科学记数法表示该病菌的长度,结果正确的是( )
A.5×10-10米
B.5×10-9米
C.5×10-8米
D.5×10-7米
7.若关于x的分式方程+=无解,则m的值为( )
A.-6
B.-10
C.0或-6
D.-6或-10
8.遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各是多少万千克?设原计划平均每亩产量为x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为( )
A.-=20
B.-=20
C.-=20
D.+=20
9.下列运算正确的是( )
A.=-
B.3-1+(a2+1)0=-2
C.÷m·m÷=1
D.(m2n)-3=
10.轮船顺流航行40 km由A地到达B地,然后又返回A地,已知水流速度为每小时2 km,设轮船在静水中的速度为每小时x km,则轮船往返共用的时间为( )
A. h
B. h
C. h
D. h
二、填空题(每题3分,共24分)
11.已知x+=4,则代数式x2+的值为___________.
12.计算的结果是___________.
13.若整数m使为正整数,则m的值为___________.
14.不改变分式的值,把分式中分子、分母各项系数化成整数为___________.
15.使代数式÷有意义的x的取值范围是___________.
16.甲、乙两地相距s千米,汽车从甲地到乙地按每小时v千米的速度行驶,可按时到达,若每小时多行驶a千米,则汽车可提前___________小时到达.
17.若分式方程-=2有增根,则这个增根是___________.
18.已知A,B两地相距160 km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4 h到达,这辆汽车原来的速度是___________km/h.
三、解答题(19题4分,24,25题每题10分,其余每题8分,共56分)
19.计算:(π-5)0+-|-3|.
20.化简:
(1)÷;
(2)÷
21.解方程:
(1)=-.
(2)1-=.
22.先化简,再求值:÷,其中x=2.
23.先化简,再求值:·+,其中x是从-1、0、1、2中选取的一个合适的数.
24. 为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4 厚型纸单面打印,总质量为400 克,将其全部改成双面打印,用纸将减少一半;如果用A4 薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8 克,求A4薄型纸每页的质量.(墨的质量忽略不计)
25.某工厂计划在规定时间内生产24 000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.
(1)求原计划每天生产的零件个数和规定的天数.
(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排的工人人数.
参考答案
一、1.【答案】B
解:分母中含有字母是分式的根本特征,注意π是常数,所以只有,是分式.
2.【答案】B
3.【答案】A
4.【答案】D
5.【答案】B
6.【答案】C
7.【答案】D
解:去分母得:x+2+x+m=3x-6,∴x=m+8,∵原方程无解,
∴m+8=2或m+8=-2,∴m=-6或-10.
8.【答案】A 9.【答案】C 10.【答案】D
二、11.【答案】14
12.【答案】1-2a
13.【答案】0,1,2,5
解:由题意可得1+m是6的因数,所以当1+m=1时,m=0;当1+m=6时,m=5;当1+m=2时,m=1;当1+m=3时,m=2.
14.【答案】15.【答案】x≠±3且x≠-4
16.【答案】
解:-=-=(小时).
17.【答案】1
18.【答案】80
解:设这辆汽车原来的速度是x km/h,由题意列方程得-0.4=,解得x=80.经检验,x=80是原方程的解,且符合题意,所以这辆汽车原来的速度是80 km/h.
三、19.解:原式=1+2-3=0.
20.解:(1)原式=÷
=×=;
(2)原式=×

=×=-.
21.解:(1)方程两边同时乘以2(2x-1),
得2=2x-1-3.
化简,得2x=6.解得x=3.
检验:当x=3时,2(2x-1)=2×(2×3-1)≠0,
所以,x=3是原方程的解.
(2)去分母,得x-3-2=1,
解这个方程,得x=6.
检验:当x=6时,x-3=6-3≠0,
∴x=6是原方程的解.
22.解:÷=
÷=
×=.
当x=2时,原式==1.
23.解:原式=·+
=+
=+
=.当x=0时,原式=-.
24.解:设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克.根据题意,得
×=.
解得x=3.2.经检验,x=3.2是原分式方程的根,且符合题意.
答:A4薄型纸每页的质量为3.2克.
25.解:(1)设原计划每天生产零件x个,由题意得,=,
解得x=2 400,
经检验,x=2 400是原方程的根,且符合题意.
∴规定的天数为24 000÷2 400=10(天).
答:原计划每天生产零件2 400个,规定的天数是10天.
(2)设原计划安排的工人人数为y人,由题意得,
[5×20×(1+20%)×+2400]×(10-2)=24 000, 解得y=480.
经检验,y=480是原方程的根,且符合题意. 答:原计划安排的工人人数为480人.。

相关文档
最新文档