郑文涛 混凝土搅拌机主要零部件的设计修改4

合集下载

搅拌车关键零部件和原材料清单

搅拌车关键零部件和原材料清单

关键零部件和原材料清单
(自卸车;仓栅式运输半挂车;混凝土搅拌车;运油半挂车)
序号零部件
名称
型号规格商标生产单位经销商
CCC证书号或
同等认证的
说明
1 液压泵54、64
PV0870、PV089
PV23-674PV23-281
3BA-RCDX
A4VTG90
UTP112
美国伊顿公司
意大利麦索瑞公司
美国萨奥公司
美国萨奥公司
德国力士乐公司
捷克UTP公司
产品合格证
2 液压马达54、64
MF070、MF089
MF23-516-50
MF23-3807AN-JSBJ
AA2FM80/90
UTM112
美国伊顿公司
意大利麦索瑞公司
美国萨奥公司
美国萨奥公司
德国力士乐公司
捷克UTP公司
产品合格证
3 减速器575、577、580
7BSP
TMG61.2 、
TMG71.2
DD33-MF、
DD33-MHF
P5300、P7300
PM80
意大利帮飞力公司
意大利PMP公司
美国萨奥公司
美国萨奥公司
德国ZF公司
捷克ZHP公司
产品合格证
4 后示廓灯
5 侧标志灯
6 Q345锰板
系列
δ4、δ5、δ6、δ8

太钢、首钢、武钢
7
Q235普板
系列δ2、δ3、δ6δ8

邯钢、首钢、唐钢、太

8
Q345异形
钢管系列120/140X90X8
GB/T3094-198
6
9 防护装置自制注:各种型号规格填写齐全。

混凝土搅拌机的配件和附件

混凝土搅拌机的配件和附件

混凝土搅拌机的配件和附件一、前言混凝土搅拌机是建筑行业中十分重要的一种机械设备。

在混凝土搅拌机中,配件和附件的作用至关重要,它们不仅能够提高混凝土搅拌机的工作效率,还能够保障混凝土搅拌机的安全性。

本文将对混凝土搅拌机的配件和附件进行全面的规格说明,以便于厂家、经销商和用户选择和购买。

二、配件1. 搅拌机刀臂搅拌机刀臂是混凝土搅拌机中的重要组成部分,它负责将混凝土搅拌均匀,并将混凝土从搅拌机中排出。

搅拌机刀臂一般采用优质铸钢材料制成,具有较高的硬度和耐磨性。

一般来说,混凝土搅拌机刀臂的数量应该为2-3个,长度应该为1.5-2.5米。

2. 搅拌机刀片搅拌机刀片是搅拌机刀臂上的重要零件,它们负责将混凝土混合均匀。

搅拌机刀片一般采用优质合金钢材料制成,具有较高的硬度和耐磨性。

搅拌机刀片应该根据不同的混凝土搅拌机型号来选择,一般来说,刀片数量应该为4-6个。

3. 搅拌机底盘搅拌机底盘是搅拌机的支撑结构,它不仅能够确保搅拌机的稳定性,还能够起到隔离振动的作用。

搅拌机底盘一般采用优质钢材料制成,具有较高的强度和稳定性。

搅拌机底盘应该根据不同的混凝土搅拌机型号来选择,一般来说,底盘长度应该为3-4米。

4. 搅拌机齿轮搅拌机齿轮是混凝土搅拌机中的重要零件,它负责传递动力,驱动搅拌机刀臂旋转。

搅拌机齿轮一般采用优质合金钢材料制成,具有较高的硬度和耐磨性。

搅拌机齿轮应该根据不同的混凝土搅拌机型号来选择,一般来说,齿轮直径应该为0.8-1.2米。

5. 搅拌机电机搅拌机电机是混凝土搅拌机中的动力源,它负责驱动搅拌机齿轮、刀臂等零件工作。

搅拌机电机一般采用三相异步电机,功率不同的混凝土搅拌机需要的电机功率也不同,一般来说,电机功率应该在15-50KW之间。

三、附件1. 搅拌机水箱搅拌机水箱是混凝土搅拌机中的重要附件,它负责存储混凝土搅拌过程中所需要的水。

搅拌机水箱一般采用不锈钢材料制成,容量应该根据混凝土搅拌机型号来选择,一般来说,容量应该在500-1000升之间。

搅拌机总体及搅拌装置结构设计开题报告

搅拌机总体及搅拌装置结构设计开题报告

毕业设计(论文)开题报告系别:机械工程系专业:机械设计制造及其自动化班级:学生姓名:学号:指导教师:提升到一定高度的物料的自落完成搅拌。

工作时,随着拌筒的转动,物料被搅拌筒内壁固定的叶片提升到一定高度后,依靠自重下落。

由于各物料颗粒下落的高度、时问、速度、落点和滚动距离不同,从而物料各颗粒相互穿插、渗透、扩散,最后达到均匀混合。

自落式搅拌机结构简单,可靠性高,维护简单,功率消耗小,拌筒和叶片磨损轻,但搅拌强度不高,生产效率低,搅拌质量不易保证。

此种搅拌机适于拌制普通塑性混凝土,广泛应用于中小型建筑工地。

按拌筒形状和卸料方式的不同,有鼓筒式搅拌机、双锥反转出料搅拌机、双锥倾翻出料搅拌机和对开式搅拌机等,其中鼓简式搅拌机技术性能落后,已于1987年被我国建设部列为淘汰产品。

随着多种商品混凝土的广泛使用以及建筑规模的大型化、复杂化和高层化对混凝土质量、产量不断提出的更高要求,有力地促进了混凝土搅拌设备在使用性能和技术水平方面的提高与发展。

各国研究人员开始从混凝土搅拌机的结构形式、传动方式、搅拌腔衬板材料以及搅拌生产工艺等方面进行改进和探索。

20世纪40年代后期,德国ELBA公司最先发明了强制式搅拌机,和自落式搅拌机的工作原理不同,强制式搅拌机利用旋转的叶片强迫物料按预定轨迹产生剪切、挤压、翻滚和抛出等强制搅拌作用,使物料在剧烈的相对运动中得到匀质搅拌。

强制式搅拌机工作原理如图1.3,与自落式搅拌机相比,强制式搅拌机搅拌作用强烈,搅拌质量好,搅拌效率高,但拌筒和叶片磨损大,功耗增大。

此种搅拌机适于拌制干硬性、轻骨料混凝土以及特种混凝土和专用混凝土,多用于施工现场的混凝土搅拌站和预拌混凝土搅拌楼。

根据构造特征不同,主要有立轴涡浆式搅拌机、立轴行星式搅拌机、立轴对流式搅拌机、单卧轴搅拌机和双卧轴搅拌机等。

图1 自落式搅拌机工作原理示意图图图2 强制式搅拌机工作原理示意图随着技术的发展,强制式搅拌机在德国的BHS公司和ELBA公司、美国的JOHNSON 公司和REX WORKS公司、意大利的SICOMA公司和SIMEN公司、日本的日工株式会社和光洋株式会社等企业发展迅速,目前已形成系列产品。

混凝土搅拌机组成与设计原理毕业设计

混凝土搅拌机组成与设计原理毕业设计

毕业设计(论文)题目:混凝土搅拌机组成与设计原理系别:机电工程系专业:工程机械运用于维护班级:学生姓名:指导教师:完成日期:陕铁院教务处制毕业设计(论文)任务书摘要文章介绍混凝土搅拌站的机械设计与配置的技术条件,混凝土搅拌机是将混凝土配合料按一定配合比的水泥、沙子、碎石(骨料)和水等均匀搅和而制备混凝土的专用机械。

它由搅拌主机、物料称量系统、物料输送系统、物料贮存系统和控制系统等5 大系统和其他附属设施组成。

是用于现代化混凝土建筑的主要机械。

他节约了生产时间,大大提高了生产销率。

同是文章还介绍了搅拌站的操作规程与日常维护以及一些常见故障的解决方法。

关键词: 混凝土搅拌机: 故障维修: 日常保养AbstractThe article introduces the mechanical design of concrete mixing station and configuration of technical conditions, concrete mixer is the concrete mixtures in a certain mixing ratio of cement, sand and gravel (aggregate) and water evenly mixed preparation of concrete and special machinery. It by mixing console, the material weighing system, material conveying system, material storage system and control system of large system and other ancillary facilities. Is used in modern concrete building of the main machinery. He saved the production time, greatly improving the sales. As the article also introduces the operation procedure and daily maintenance of the mixing station, and some common faults of the solution.Keywords: concrete mixer: breakdown maintenance: daily maintenanceIV基于PLC的混凝土搅拌站控制及监控程序设计摘要:混凝土搅拌站是随着水泥的诞生而产生和发展的。

搅拌机结构设计范文

搅拌机结构设计范文

搅拌机结构设计范文搅拌机是一种用来将不同物质混合搅拌的设备。

它广泛应用于食品加工、化学工业、制药工业、农业等领域。

搅拌机的结构设计对其功能和性能至关重要。

下面将详细介绍搅拌机的结构设计。

搅拌机的基本结构包括机壳、搅拌器、电机和传动装置。

1.机壳:机壳是搅拌机的外壳,用于容纳搅拌器和传动装置。

机壳应具有足够的强度和刚性,以承受搅拌过程中的力和振动。

同时,机壳还应具有良好的密封性,以防止物料外泄和污染环境。

机壳的材料通常采用不锈钢或钢板,具有抗腐蚀性和耐用性。

2.搅拌器:搅拌器是搅拌机最关键的部件之一,它负责将物料进行混合和搅拌。

搅拌器的设计应考虑到所要混合物料的特性和工艺要求。

通常,搅拌器有几种形式,如桨叶式、螺旋式、锚式等。

选择合适的搅拌器形式需考虑混合物料的黏稠度、密度、流动性等因素。

3.电机:电机是搅拌机的动力源,它提供搅拌器所需的旋转力。

电机的选型应根据搅拌机的功率需求和工作环境进行。

一般而言,电机应具有足够的功率和转速,并且具备良好的耐用性和稳定性。

电机通常应配备过载保护装置,以防止电机因过载而损坏。

4.传动装置:传动装置用于将电机的旋转运动传递给搅拌器。

传动装置的设计应根据搅拌器和电机的特性进行选择。

常见的传动方式有直接传动、间接传动、带传动等。

选用合适的传动装置可以提高搅拌机的效率和稳定性。

除了基本结构,还有一些辅助结构也需要考虑:1.加料装置:加料装置用于向搅拌机中加入物料。

加料装置的设计应方便快捷,并且能够控制物料的加入量和速度。

2.排料装置:排料装置用于将搅拌好的物料排出搅拌机。

排料装置的设计应确保物料能够充分排出,且不会漏出。

3.清洗装置:清洗装置用于清洗搅拌机,防止不同物料之间的交叉污染。

清洗装置应方便易操作,并且能够彻底清洗搅拌机的各个部件。

4.控制系统:控制系统用于控制搅拌机的工作参数,如搅拌时间、搅拌速度等。

控制系统的设计应简单易用,并且能够实现精确的控制。

综上所述,搅拌机的结构设计应综合考虑力学、流体力学和控制工程等多个方面的知识,以保证搅拌机的性能和功能。

对混凝土搅拌机各部件控制措施的若干思考

对混凝土搅拌机各部件控制措施的若干思考

对混凝土搅拌机各部件控制措施的若干思考作者:李雪锋来源:《中小企业管理与科技·上旬刊》2011年第03期摘要:混凝土搅拌机是广泛使用于一般建筑工地、道路、桥梁工程及混凝土构件等的工程机械。

因此做好其日常的维修保养和机械性能技术性改造工作,对混凝土搅拌机处于完好的技术状态,充分发挥效能具有重要的意义。

本文着重阐述了各主要部件的主要控制措施。

关键词:混凝土搅拌机部件控制我国发展沥青混凝土搅拌机技术的时间还不长,与国际水平还有一定的距离,为了提高我国的公路建设水平,提高设计、维修沥青混凝土搅拌机水平也是一个必不可少的环节。

沥青混凝土搅拌机主要由给(喂)料机、传送皮带、加热滚筒、加热设备、提升机、振动筛、热储料仓、热称料仓、搅拌锅、除尘设备、微机自动系统等设备组成。

1 给料机它的传动方式是:调速电机→减速器→链条→辊子→短皮带。

调速电机的转速决定短皮带的速度,从而决定生产量。

沥青混凝土搅拌机的供料部分一般有四个冷料仓(也有五个的),每个冷料仓盛放一种骨料,其下部固定一个给料机。

各给料机的基本硬件相同,所以各个给料机的转速比和成品料中各种骨料的配比大致是一样的。

转速过快,会使滚筒、加热设备的负荷加大,料温降低,热储料仓的积料过多,顶起振动筛。

转速过慢,导致滚筒供给不足,料温升高,搅拌锅等料,生产率降低。

所以,在生产之前应当根据生产量和配比单,计算出每个调速电机的转数。

在实际的生产中,给料机上部是锥形的料斗,要注意盛放细骨料的料仓,往往因为潮湿而堵塞。

安装间歇式仓壁振动器就能有效地解决这个问题。

还可以在每个料斗上安装有报警器,避免料斗空料。

除了用调速电机控制骨料流量外,还可以采用振动器控制,它是靠安装在料仓底部出口附近的振动器改变振荡频率而改变冷料仓的流量。

2 传送皮带给料机传送皮带给料机输出的骨料通过输送皮带运送到加热滚筒中。

它一般采用电动机或电动滚筒拖动,影响输送的主要参数就是转速。

转速快,骨料就输送的快,同一时间内加热滚筒中的骨料就少,加热效果好且节省燃料。

搅拌车结构和主要零部件用量简介

搅拌车结构和主要零部件用量简介
用途: 在规定的时间内将预搅拌混凝土搅
拌站运送到工地浇注,并保证混凝 土的质量符合相关的要求
缔造中国专用车最高品质
结构: 底盘 传动 供水 搅拌筒 系统 系统 驱动系
搅拌筒

拖轮 扶梯
进出料系统
电器系 副车架;
侧护栏 副车架 统
连接件
挡泥 板
操纵 后防 系统 护
缔造中国专用车最高品质
搅拌筒驱动系统
进出料系统
作用: 顾名思义为混凝土进入和排 出的装置
单台用量: 各一个
接长槽 总成
进料斗 总成
出料斗 总成 排料槽 总成
缔造中国专用车最高品质
Байду номын сангаас
大封头 小封头 法兰
缔造中国专用车最高品质
搅拌筒(筒体)、托轮
滚道、法兰、托轮 作用:支撑筒体及筒体旋转
物资名称
滚道 法兰 托轮
单台用 量 1 1 2
滚道 托轮
滚道
法兰
托轮
缔造中国专用车最高品质
传动系统
传动轴 作用: 前端连接取力器,
后端连接液压泵,驱动液压泵 单台用量: 一根
轴头锻造工艺
缔造中国专用车最高品质
液压泵 作用: 液压泵将机械能转换成
液压能,驱动液压马达
液压马达 作用: 将液压能转换成机械
能,驱动减速机。 减速机 作用: 调节转速,驱动罐体
搅拌混凝土
单台用量: 均为一台
减速机 液压马达
液压泵
搅拌筒(筒体)、托轮
封头 作用:形象上说就是容器的“盖子”
物资名称 大封头 小封头 水箱封头
单台用量 1 1 2

混凝土搅拌机搅拌部分设计

混凝土搅拌机搅拌部分设计

混凝土搅拌机搅拌部分设计混凝土搅拌机是一种常用于工程施工中的机械设备,主要用于将水泥、砂、石料等原料进行搅拌,形成均匀的混凝土。

搅拌部分是混凝土搅拌机的核心部件,其设计合理与否直接影响到混凝土搅拌机的工作效率和搅拌质量。

下面将从搅拌部分的结构设计、材料选择和动力系统等方面对混凝土搅拌机搅拌部分的设计进行详细阐述。

混凝土搅拌机搅拌部分的结构设计是影响其搅拌效果和维修保养的重要因素之一、一般情况下,搅拌部分由搅拌系统、传动系统和搅拌筒组成。

搅拌系统主要包括搅拌轴、搅拌叶片和搅拌桨等,其设计要保证能够充分混合原料,并提供足够的搅拌力。

搅拌轴应尽量设置可调节的转速,以满足不同类型混凝土的搅拌要求。

搅拌叶片和搅拌桨的形状和角度也需要经过仔细的计算和优化,以保证混凝土能够快速而均匀地进行搅拌。

材料的选择是混凝土搅拌机搅拌部分设计的关键。

由于混凝土搅拌机在工作过程中受到较大的力和摩擦,因此需要选择高强度、耐磨损的材料作为搅拌叶片和搅拌桨的制造材料。

常用的材料有高铬合金铸铁、高锰钢等,这些材料具有良好的耐磨性和抗冲击性能,能够有效延长搅拌部件的使用寿命。

动力系统是混凝土搅拌机搅拌部分的重要组成部分,其设计要合理、可靠,能够提供足够的动力供给。

一般情况下,混凝土搅拌机的动力系统采用电动机或柴油发动机,其选择要根据实际施工情况和工作环境来确定。

电动机一般适用于城市建筑施工等环境,柴油发动机适用于无电力供应的工地。

在动力系统的设计中,还需要考虑到机械传动部分的选型和合理配置,以提高传动效率和减少能量损失。

除了以上提到的几个方面,混凝土搅拌机搅拌部分的设计还需要考虑到结构的简化和操作的便捷性。

混凝土搅拌机的搅拌部分应尽可能简化结构,减少零部件的数量和重量,以降低成本和提高施工效率。

此外,搅拌部分的设计还应考虑到操作人员的安全和方便性,例如设置操作平台和安全防护设施等,以提供良好的工作环境。

综上所述,混凝土搅拌机搅拌部分的设计是一项复杂而重要的任务。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西京学院本科毕业设计(论文) 题目:混凝土搅拌机主要零部件的设计教学单位:机电工程系专业:机械设计制造及其自动化学号: 0811050318姓名:郑文涛指导教师:王晋鹏2012年 04月摘要本次设计的JS750混凝土搅拌机是我们的主要设计机型。

它是强制式卧轴混凝土搅拌机中的一种,强制式混凝土搅拌机不仅能搅拌干硬性混凝土,而且能搅拌轻骨料混凝土,能使混凝土达到强烈的搅拌作用,搅拌非常均匀,生产率高,质量好,成本低。

它是目前国内较为新型的搅拌机,整机结构紧凑、外型美观。

其主要组成结构包括:搅拌装置,搅拌传动系统,上料、卸料系统,供水系统,机架及行走系统,电气控制系统,润滑系统等。

本文对混凝土搅拌机的主要零部件进行了设计,主要包括:整体结构方案的确定,搅拌机搅拌功率的计算及电机的选择和主要参数计算,传动比及轴动力参数计算,包括传动比计算,高速轴动力参数计算里面的电动机轴、减速器高速轴、搅拌机轴、搅拌轴的设计与校核,搅拌机减速器的选择包括确定所需减速器的额定功率,校核热平衡许用功率,带的计算,联轴器选型,键的选择,混凝土搅拌机的装配图及零部件图的绘制。

关键词:混凝土搅拌机,减速器,槽钢。

IAbstract:This design JS750 concrete mixer is our main design model. It is forced horizontal-axis concrete mixer, forced one of concrete mixer can not only the mixing of dry, rigid concrete, and can stir light weight aggregate concrete, can make concrete achieve strong mixing effect, stirring very evenly, productivity is high, quality is good, the cost is low. It is the present domestic relatively new mixer, the machine has compact structure, good appearance. Its main composition structure including: agitator, stirring transmission system, loading, unloading system, water supply system, rack and mobile system, electric control system, lubrication system, etc.This paper is to design the main components of Concrete Mixer, and mainly covers program determination of overall structure, calculating of mixer power, selection of electric machinery and calculating of main parameters, calculating of transmission ratio and shaft dynamic parameters; design and check of reducer high speed shaft, mixer shaft and stirring shaft,as well as selection of mixer reducer,including confirming necessary rated power of reducer, checking heat balance of allowable power,calculating band,selecting coupling, choosing keys,drawings concrete mixer assembly and parts mapping.Keyword: concrete mixer, retarder, the channel。

II目录摘要 (I)目录···············································································································I II 1 JS750总体概述 ······················································································ - 1 -1.1毕业设计课题·····································································································································- 1 -1.2设计的总体要求 ································································································································- 1 -1.3设计大纲·············································································································································- 1 -1.3.1设计原则······························································································································ - 1 -1.3.2原始数据······························································································································ - 1 -1.4搅拌机概述·········································································································································- 1 -1.5毕业设计的意义 ································································································································- 2 -2 设计的主要内容 ······················································································· - 4 -2.1总体设计·············································································································································- 4 -2.1.1搅拌装置······························································································································ - 4 -2.1.2传动系统······························································································································ - 4 -2.1.3上料系统······························································································································ - 4 -2.1.4供水系统······························································································································ - 4 -2.1.5机架与支腿·························································································································· - 4 -2.1.6电气控制系统······················································································································ - 4 -2.2主要机构具体结构设计及参数设计·······························································································- 5 -2.2.1搅拌装置······························································································································ - 5 -2.2.2传动系统······························································································································ - 8 -2.2.3上料系统······························································································································ - 8 -2.2.4供水系统···························································································································· - 10 -2.2.5电气控制系统···················································································································· - 11 -2.2.6机架与支腿························································································································ - 12 -3 JS750搅拌机搅拌功率的计算及电机的选择 ········································· - 13 -4 JS750传动比及轴动力参数计算··························································· - 15 -4.1传动比计算:···································································································································- 15 -IIIIV4.2高速轴动力参数计算: ·················································································································· - 15 - 4.2.1电动机轴 ···························································································································· - 15 - 4.2.2减速器高速轴 ···················································································································· - 15 - 4.2.3搅拌机轴 ···························································································································· - 16 -5 JS750搅拌机减速器的选择及带的计算 ················································ - 17 -5.1减速器的选择: ······························································································································ - 17 - 5.1.1确定所需减速器的额定功率 ···························································································· - 17 - 5.1.2校核热平衡许用功率 ········································································································ - 17 - 5.2带的计算 ··········································································································································· - 18 - 5.2.1确定计算功率caP : ······································································································· - 18 -5.2.2选择带型: ························································································································ - 18 - 5.2.3确定带的基准直径1d d 和2d d : ················································································· - 18 -5.2.4确定中心距a和带的基准长度dL ·············································································· - 19 -5.2.5验算主动轮上的包角 : ······························································································· - 19 - 5.2.6确定带的根数Z : ············································································································· - 19 -6 JS750搅拌机联轴器的选择 ·································································· - 21 -6.1联轴器的选择: ······························································································································ - 21 - 6.2键的选择: ······································································································································· - 22 - 6.3搅拌轴的设计: ······························································································································ - 22 -7 JS750搅拌机搅拌轴与搅拌臂受力计算及校核······································ - 25 -7.1搅拌轴受力计算及校核 ·················································································································· - 25 - 7.1.1确定各叶片所受阻力作用在轴上的位置、大小及方向 ················································ - 25 - 7.1.2搅拌轴上各力分析: ········································································································ - 26 - 7.1.3搅拌轴上弯矩和扭矩分析 ································································································ - 27 - 7.1.4校核轴的强度: ················································································································ - 31 -8 结论 ····································································································· - 32 - 致谢 ··········································································································· - 33 - 参考文献 ··································································································· - 34 - 附录 ··········································································································· - 35 -。

相关文档
最新文档