2005年高考文科数学试题北京卷

合集下载

2005年全国各地高考数学试题及解答分类汇编大全(16计数原理、二项式定理)

2005年全国各地高考数学试题及解答分类汇编大全(16计数原理、二项式定理)

2005年全国各地高考数学试题及解答分类汇编大全(16计数原理、二项式定理)一、选择题:1. (2005北京文)五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有(A )1444C C 种 (B )1444C A 种 (C )44C 种 (D )44A 种 【答案】B【详解】分两个步骤进行。

第一步:先考虑安排甲工程队承建的项目,有C 14种方法;第二步:其余的4个队任意安排,有44A 种方法。

故,不同的承建方案共有1444C A 种。

【名师指津】排列组合中的分步计数原理与分类计数原理做为解决此类问题的基础.2.(2005北京理)北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作,若每天早、中、晚三班,每4人,每人每天最多值一班,则开幕式当天不同的排班种数为 ( )A .484121214C C CB .484121214A A CC .33484121214A C C C D .33484121214A C C C【答案】A【详解】本题可以先从14人中选出12人即1214C ,然后从这12人中再选出4人做为早班即412C ,最后再从剩余的8人选出4人安排为中班即48C ,剩下的4个安排为晚班,以上为分步事件应用乘法原理可得不同的排法为:124414128C C C .【名师指津】 排列组合中的分步计数原理与分类计数原理做为解决此类问题的基础.3.(2005福建文、理)从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 ( ) A .300种 B .240种 C .144种 D .96种 解:分三种情况:情况一,不选甲、乙两个去游览:则有44P 种选择方案,情况二:甲、乙中有一人去游览:有11332343C C C P 种选择方案;情况三:甲、乙两人都去游览,有22132433C C C P 种选择方案,综上不同的选择方案共有44P +11332343C C C P +22132433C C C P =240,选(B)4.(2005湖北文)把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是 ( ) A .168 B .96 C .72 D .144 解:本题主要关键是抓连续编号的2张电影票的情况,可分四种情况:情况一:连续的编号的电影票为1,2;3,4;5,6,这时分法种数为222432C P P情况二:连续的编号的电影票为1,2;4,5,这时分法种数为222422C P P 情况三:连续的编号的电影票为2,3;4,5;这时分法种数为222422C P P 情况四:连续的编号的电影票为2,3;5,6,这时分法种数为222422C P P综上, 把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是222432C P P +3222422C P P =144(种)5.(2005湖南文)设直线的方程是0=+By Ax ,从1,2,3,4,5这五个数中每次取两个不同的数作为A 、B 的值,则所得不同直线的条数是 ( ) A .20 B .19 C .18D .16[评析]:本题考查直线方程和排列组合知识交汇问题. 【思路点拨】本题涉及直线的位置关系与排列组合知识.【正确解答】[解法一]:从1,2,3,4,5中每次取两个不同的数的排列有25A 种其中取1,2和2,4或2,1和4,2表示相同直线.所以所得不同直线条数为:。

高考卷05高考文科数学(北京卷)试题及答案

高考卷05高考文科数学(北京卷)试题及答案

高考卷 05高考文科数学(北京卷)试题及答案(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. (2分)已知函数f(x)=x²2x+1,则f(x)的最小值为:A. 0B. 1C. 1D. 22. (2分)下列函数中,奇函数是:A. y=x³B. y=x²C. y=|x|D. y=x⁴3. (2分)直线y=2x+1与圆(x1)²+(y2)²=4相交,则交点的坐标为:A. (1,3)B. (0,1)C. (2,5)D. (3,7)4. (2分)已知等差数列{an},a1=1,a3=3,则公差d为:A. 1B. 2C. 3D. 45. (2分)若复数z满足|z|=1,则z的共轭复数z的模为:A. 0B. 1C. 2D. z6. (2分)在三角形ABC中,a=8, b=10, sinA=3/5,则sinB的值为:A. 3/5B. 4/5C. 3/4D. 4/37. (2分)已知函数g(x)=|x1|,则g(x)在x=1处的导数为:A. 0B. 1C. 1D. 不存在二、判断题(每题1分,共20分)8. (1分)函数y=cosx在区间[0,π]上是单调递减的。

()9. (1分)若a、b为实数,且a²+b²=0,则a=b=0。

()10. (1分)两个平行线的斜率相等。

()11. (1分)对数函数的定义域为全体实数。

()12. (1分)若a、b为实数,且a>b,则a²>b²。

()13. (1分)等差数列的通项公式为an=a1+(n1)d。

()14. (1分)在直角坐标系中,点(0,0)到直线y=x的距离为1。

()三、填空题(每空1分,共10分)15. (2分)已知函数f(x)=3x²4x+1,则f(1)=______,f(2)=______。

16. (3分)已知三角形ABC的三边长分别为a=5, b=7, c=8,则cosA=______,cosB=______,cosC=______。

2005年高考数学试卷 全国文科

2005年高考数学试卷    全国文科

2005年普通高等学校招生全国统一考试文科数学(全国卷Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3到10页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 334R V π= n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径()(1)k K n k n n P k C P P -=-一、 选择题(1) 函数 |cos sin |)(x x x f +=的最小正周期是(A ) 4π (B) 2π (C) π (D)2π (2)正方体 ABCD-A 1B 1C 1D 1中P 、Q 、R 分别是AB 、AD 、B 1C 1的中点,那么,正方体的过P 、Q 、R 的截面图形是(A )三角形 (B)四边形 (C)五边形 (D)六边形(3)函数 )0(12≤-=x x y 反函数是 (A)1+=x y )1(-≥x (B)y = -1+x )1(-≥x(C)y =1+x )0(≥x (D)y =-1+x )0(≥x(4)已知函数wx y tan =在)2,2(ππ-内是减函数,则 (A)10≤<w (B)01<≤-w (C)1≥w (D)1-≤w(5)抛物线y x 42=上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为(A) 2 (B) 3 (C) 4 (D) 5 (6)双曲线19422=-y x 的渐近线方程是 (A) x y 32±= (B) x y 94±= (C) x y 23±= (D)x y 49±= (7)如果数列||n a 是等差数列,则(A) 1345a a a a ++< (B)1345a a a a +=++(C)1345a a a a +>+ (D)1345a a a a = (8)10)2(y x -的展开式中46y x 项的系数是 (A)840 (B)-840 (C)210 (D) -210(9)已知点)0,3(),0,0(),1,3(C B A 设BAC ∠的平分线AE 与BC 相交于E,那么有λ=其中λ等于(A) 2 (B) 21 (C)-3 (D)31- (10)已知集合2{|47},{|60}M x x N x x x =-≤≤=-->则N M ⋂为(A){|4237}x x x -≤<-<≤或 (B){|4237}x x x -<≤-≤<或(C){|23}x x x ≤->或 (D){|23}x x x <-≥或(11)点P 在平面上作匀速直线运动,速度向量)3,4(-=v (即点P 的运动方向与v 相同,且每秒移动的距离|v |个单位).设开始时点P 的坐标为(-10,10),则5秒后点P 的坐标为(A)(-2,4) (B)(-30,25) (C)(10,-5) (D)(5,-10)(12)△ABC 的顶点B 在平面a 内,A 、C 在a 的同一侧,AB 、BC 与a 所成的角分别是30°和45°,若AB=3,BC=24 ,AC=5,则AC 与a 所成的角为(A)60° (B)45° (C)30° (D)15°第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。

北京卷2005年文科

北京卷2005年文科

2005年普通高等学校招生全国统一考试(北京卷)数学(文史类)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. (2005•北京•文)设集合{|1}M x x =>,2{|1}P x x =>,则下列关系中正确的是A.M P =B.P ⫋MC.M ⫋PD.M P R = 2. (2005•北京•文)为了得到函数321x y -=-的图象,只需把函数2xy =上所有点A.向右平移3个单位长度,再向下平移1个单位长度B.向左平移3个单位长度,再向下平移1个单位长度C.向右平移3个单位长度,再向上平移1个单位长度D.向左平移3个单位长度,再向上平移1个单位长度 3. (2005•北京•文)“12m =”是“直线(2)310m x my +++=与直线(2)(m x m -++ 2)30y -=相互垂直”的A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件4. (2005•北京•文)若||1a =,||2b =,c a b =+,且c a ⊥,则向量a 与b 的夹角为A.30°B.60°C.120°D.150° 5. (2005•北京•文)从原点向圆2212270x y y +-+=作两条切线,则这两条切线的夹角的大小为A.6π B.3π C.2π D.23π 6. (2005•北京•文)对任意的锐角α,β,下列不等关系中正确的是A.sin()sin sin αβαβ+>+B.sin()cos cos αβαβ+>+C.cos()sin sin αβαβ+<+D.cos()cos cos αβαβ+<+ 7. (2005•北京•文)在正四面体P ABC -中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论中不成立...的是 A.BC ∥平面PDF B.DF ⊥平面PAE C.平面PDF ⊥平面ABC D.平面PAE ⊥平面ABC8. (2005•北京•文)五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有A.1444C C 种B.1444C A 种C.44C 种D.44A 种二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上. 9. (2005•北京•文)抛物线24y x =的准线方程是_______;焦点坐标是_______. 10. (2005•北京•文)61()x x-的展开式中的常数项是_____________(用数字作答).11. (2005•北京•文)函数1()2f x x=-的定义域为____________.12. (2005•北京•文)在ABC ∆中,AC =45A ∠=︒,75C ∠=︒,则BC 的长为___________.13. (2005•北京•文)对于函数()f x 定义域中任意的1x ,212()x x x ≠,有如下结论:①1212()()()f x x f x f x +=;②1212()()()f x x f x f x =+;③1212()()0f x f x x x ->-;④1212()()()22x x f x f x f ++<.当()lg f x x =时,上述结论中正确结论的序号是_. 14. (2005•北京•文)已知n 次多项式101()n n n P x a x a x -=++…1n n a x a -++.如果在一种算法中,计算0(kx k =2,3,4,…,)n 的值需要1k -乘法,计算30()P x 的值共需要9次运算(6次乘法,3次加法),那么计算100()P x 的值共需要_______次运算.下面给出一种减少运算次数的算法:00()P x a =,11()()k k k P x xP x a ++=+(k =0,1,2,...,1)n -.利用该算法,计算30()P x 的值共需要6次运算,计算100()P x 的值共需要_________次运算.三、解答题:本大题共6小题,共12+14+13+13+14+14=80分.解答应写出文字说明、证明过程或演算步骤. 15. (2005•北京•文)已知tan22α=,求:⑴tan()4πα+的值; ⑵6sin cosαα+的值. 16. (2005•北京•文)如图,在直三棱柱111中,,,5AB =,14AA =,点D 是AB 的中点. ⑴求证:1AC BC ⊥;⑵求证:1AC ∥平面1CDB ;⑶求异面直线1AC 与1B C 所成角的余弦值.⑴证明:三棱柱111ABC A B C -为直三棱柱 ∴ 1CC ⊥平面ABC ∴ 1AC CC ⊥又3AC =,4BC =,5AB = ∴ ABC ∆为直角三角形,AC BC ⊥又1BC CC C = ∴ AC ⊥平面11BCC B ∴ 1AC BC ⊥ ⑵直线1BC 直线1B C E =,则点E 为1B C 的中点.连接DE又点D 是AB 的中点 ∴ 11//2DE AC 又1AC ⊄平面1CDB ,DE ⊂平面1CDB ∴ 1//AC 平面1CDB⑶1//DE AC ∴ BED ∠即为异面直线1AC 与1B C 所成角或其补角 又在BDE ∆中,2211115222DE AC AC CC ==+=,1522BD AB ==,2211112222BE BC BC CC ==+=,即BDE ∆是等腰三角形,故有 1222cos 5BEBED DE ∠== 即异面直线1AC 与1B C 所成角的余弦值为22517. (2005•北京•文)数列{}n a 的前n 项和为n S ,且11a =,13n n a S +=,*n N ∈,求⑴2a ,3a ,4a 的值及数列{}n a 的通项公式; ⑵a a a +++...a +的值. 解:⑴11a =,111S a ==,故211133a S ==,21243S a a =+=,321439a S ==,323169S S a =+=,43116327a S ==18. (2005•北京•文)甲、乙两人各进行3次射击,甲每次击中目标的概率为2,乙每次击中目标的概率为32.⑴甲恰好击中目标2次的概率; ⑵乙至少击中目标2次的概率;19. (2005•北京•文)已知函数()39f x x x x a =-+++.⑴求()f x 的单调递减区间;⑵若()f x 在区间[2-,2]上的最大值为20,求它在该区间上的最小值.解:⑴2()369f x x x '=-++解不等式23690x x -++<得1x <-或3x >,故()f x 的单调递减区间为(-∞,1)-和(3,)+∞.⑵由⑴可知,函数()f x 在[2-,1]-上单调递减,在[1-,2]上单调递增,因此函数()f x 在区间[2-,2]上的最小值为(1)f -.又(2)2f a -=+,(2)22f a =+所以函数()f x 在区间[2-,2]上的最大值为(2)f 即2220a +=,2a =- 故(1)7f -=-即函数()f x 在区间[2-,2]上的最小值为7-20. (2005•北京•文)如图,直线1l :(0)y kx k =>与直线2l :y kx =-之间的阴影区域(不含边界)记为W ,其左半部分记为1W ,右半部分记为2W . ⑴分别用不等式组表示1W 和2W;⑵若区域W 中的动点(P x ,)y 到1l ,2l 的距离之积等于2d ,求点P 的轨迹C 的方程;⑶设不过原点O 的直线l 与⑵中的曲线C 相交于1M ,2M 两点,且与1l ,2l 分别交于3M ,4M 两点.求证12OM M ∆的重心与34OM M ∆的重心重合.。

2005年高考文科数学(全国卷Ⅰ)试题及答案

2005年高考文科数学(全国卷Ⅰ)试题及答案

2005年高考文科数学(全国卷Ⅰ)试题及答案第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑擦干净后,再选涂其它答案标号不能答在试题卷上3.本卷共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径kn kkn n P P C k P --=)1()(一、选择题(1)设直线l 过点)0,2(-,且与圆122=+y x 相切,则l 的斜率是(A )1± (B )21± (C )33±(D )3±(2)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是(A )Φ=⋃⋂)(321S S S C I (B )123I I S C S C S ⊆⋂() (C )Φ=⋂⋂)321S C S C S C I I I(D )123I I S C S C S ⊆⋃()(3)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为(A )π28(B )π8(C )π24(D )π4(4)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =(A )2 (B )3 (C )4 (D )5(5)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为(A )32 (B )33(C )34 (D )23(6)已知双曲线)0( 1222>=-a yax 的一条准线为23=x ,则该双曲线的离心率为(A )23 (B )23 (C )26 (D )332(7)当20π<<x 时,函数xxx x f 2sin sin82cos 1)(2++=的最小值为(A )2(B )32 (C )4 (D )34(8))21( 22≤≤-=x x x y 反函数是(A ))11( 112≤≤--+=x x y (B ))10( 112≤≤-+=x x y(C ))11( 112≤≤---=x x y (D ))10( 112≤≤--=x x y(9)设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x 的取值范围是(A ))0,(-∞(B )),0(+∞ (C ))3log,(a -∞(D )),3(log+∞a(10)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为(A )2 (B )23 (C )223 (D )2(11)在ABC ∆中,已知C B A sin 2tan=+,给出以下四个论断:①1cot tan =⋅B A ②2sin sin 0≤+<B A③1cossin22=+B A④C B A 222sin coscos=+其中正确的是 (A )①③(B )②④(C )①④(D )②③(12)点O 是三角形ABC 所在平面内的一点,满足OA OC OC OB OB OA ⋅=⋅=⋅,则点O 是ABC ∆的(A )三个内角的角平分线的交点(B )三条边的垂直平分线的交点 (C )三条中线的交点(D )三条高的交点第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上2.答卷前将密封线内的项目填写清楚3.本卷共10小题,共90分二、本大题共4小题,每小题4分,共16分,把答案填在题中横线上(13)若正整数m 满足m m 102105121<<-,则m = )3010.02l g ≈(14)8)1(xx -的展开式中,常数项为 (用数字作答)(15)从6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法共有 种(16)在正方形''''D C B A ABCD -中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 (写出所有正确结论的编号)三、解答题:本大题共6小题,共74分解答应写出文字说明,证明过程或演算步骤 (17)(本大题满分12分)设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线=x(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间; (Ⅲ)画出函数)(x f y =在区间],0[π上的图像(18)(本大题满分12分)已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90 底面ABCD ,且PA=AD=DC=21AB=1,M 是PB 的中点(Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小(19)(本大题满分12分)已知二次函数)(x f 的二次项系数为a ,且不等式x x f 2)(->的解集为3,1( (Ⅰ)若方程06)(=+a x f 有两个相等的根,求)(x f 的解析式; (Ⅱ)若)(x f 的最大值为正数,求a的取值范围(20)(本大题满分12分)9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种(Ⅰ)求甲坑不需要补种的概率;(Ⅱ)求3个坑中恰有1个坑不需要补种的概率; (Ⅲ)求有坑需要补种的概率(精确到01.0)(21)(本大题满分12分) 设正项等比数列{}n a 的首项211=a ,前n 项和为n S ,且0)12(21020103010=++-S S S (Ⅰ)求{}n a 的通项; (Ⅱ)求{}n nS 的前n 项和n T(22)(本大题满分14分)已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与(3,1)a =-共线(Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R OB OA OM ∈+=μλμλ,证明22μλ+为定值。

2005年高考数学文科全国卷2 试题及答案

2005年高考数学文科全国卷2 试题及答案

【试题答案】2005年普通高等学校招生全国统一考试文科数学试题(必修+选修I)参考答案一. 选择题:1. C2. D3. B4. B5. D6. C7. B 8. A 9. C 10. A 11. C 12. C二. 填空题:13. 216 14.15. 192 16. ①,④三. 解答题:17. 本小题主要考查有关角的和、差、倍的三角函数的基本知识,以及分析能力和计算能力。

满分12分。

解法一:为第二象限的角,,所以所以为第一象限的角,,所以所以解法二:为第二象限角,,所以为第一象限角,,所以故所以18. 本小题主要考查相互独立事件概率的计算,运用概率知识解决实际问题的能力,满分12分。

解:单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为1-0.6=0.4(I)记“甲队胜三局”为事件A,“甲队胜二局”为事件B,则所以,前三局比赛甲队领先的概率为(II)若本场比赛乙队3:2取胜,则前四局双方应以2:2战平,且第五局乙队胜,所以,所求事件的概率为19. 本小题主要考查等差数列、等比数列的基本知识以及运用这些知识的能力。

满分12分。

(1)证明:成等差数列,即又设等差数列的公差为d,则这样从而这时是首项,公比为的等比数列(II)解:所以20. 本小题主要考查直线与平面垂直、直线与平面所成角的有关知识,及思维能力和空间想象能力,考查应用向量知识解决数学问题的能力。

满分12分。

方法一:(I)证明:连结EPDE在平面ABCD内,又CE=ED,PD=AD=BC为PB中点由三垂线定理得在中,又PB、FA为平面PAB内的相交直线平面PAB(II)解:不妨设BC=1,则AD=PD=1为等腰直角三角形,且PB=2,F为其斜边中点,BF=1,且与平面AEF内两条相交直线EF、AF都垂直平面AEF连结BE交AC于G,作GH//BP交EF于H,则平面AEF 为AC与平面AEF所成的角由可知由可知与平面AEF所成的角为方法二:以D为坐标原点,DA的长为单位,建立如图所示的直角坐标系(1)证明:设E(a,0,0),其中,则C(2a,0,0),A(0,1,0),B(2a,1,0),P(0,0,1),F(a,,)又平面PAB,平面PAB,平面PAB(II)解:由,得可知异面直线AC、PB所成的角为又,EF、AF为平面AEF内两条相交直线平面AEF与平面AEF所成的角为即AC与平面AEF所成的角为 21. 本小题主要考查导数的概念和计算,应用导数研究函数性质的方法及推理和运算能力,满分12分。

2005年全国高考文科数学试题及答案(卷Ⅲ)

2005年全国高考文科数学试题及答案(卷Ⅲ)

2005年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P(A)+P(B) 如果事件A 、B 相互独立,那么P (A ·B )=P(A)·P(B)如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:每小题5分,共60分. 1.已知α为第三象限角,则2α所在的象限是 ( )A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限2.已知过点A(-2,m)和B(m ,4)的直线与直线2x+y-1=0平行,则m 的值为( )A .0B .-8C .2D .10 3.在8)1)(1(+-x x 的展开式中5x 的系数是( )A .-14B .14C .-28D .284.设三棱柱ABC-A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B-APQC 的体积为 ( )A .16V B .14V C .13V D .12V 5.设713=x,则( )A .-2<x<-1B .-3<x<-2C .-1<x<0D .0<x<1 6.若ln 2ln 3ln 5,,235a b c ===,则( )A .a <b<cB .c<b<aC .c<a <bD .b<a <c球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径7.设02x π≤≤,sin cos x x =-,则 ( )A .0x π≤≤B .744x ππ≤≤C .544x ππ≤≤ D .322x ππ≤≤8.αααα2cos cos 2cos 12sin 22⋅+ =( )A .tan αB .tan 2αC .1D .129.已知双曲线1222=-y x 的焦点为F 1、F 2,点M 在双曲线上且120,MF MF ⋅=则点M 到 x 轴的距离为( )A .43 B .53C D 10.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 ( )A B C .2 D 111.不共面的四个定点到平面α的距离都相等,这样的平面α共有 ( ) A .3个 B .4个 C .6个 D .7个12.计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数A .6EB .72C .5FD .B0第Ⅱ卷二.填空题:每小题4分,共(16分)13.经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”态度的多12人,按分层抽样方法从全班选出部分学生座 谈摄影,如果选出的5位“喜欢”摄影的同学、1位“不喜欢”摄影的同学和3位执“一 般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多 人. 14.已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k= .15.曲线32x x y -=在点(1,1)处的切线方程为 .16.已知在△ABC 中,∠ACB=90°,BC=3,AC=4,P 是AB 上的点,则点P 到AC 、BC的距离乘积的最大值是 三.解答题:共74分. 17.(本小题满分12分)已知函数].2,0[,2sin sin 2)(2π∈+=x x x x f 求使()f x 为正值的x 的集合.18.(本小题满分12分)设甲、乙、丙三台机器是否需要照顾相互之间没有影响。

2005年全国各地高考数学试题及解答分类汇编大全(11解析几何初步)

2005年全国各地高考数学试题及解答分类汇编大全(11解析几何初步)

2005年全国各地高考数学试题及解答分类汇编大全(11解析几何初步)一、选择题:1、(2005春招北京文)直线20x -=被圆22(1)1x y -+=所截得的线段的长为( C )A .1 BCD .22. (2005北京文)从原点向圆 x 2+y 2-12y +27=0作两条切线,则这两条切线的夹角的大小为 (A )6π (B )3π (C )2π(D )32π 【答案】B 【详解】 将圆的方程配方得:22(6)9x y +-=圆心在(0,6)半径为3,如图: 在图中Rt PAO ∆中,62OP PA ==,从而得到30oAOP ∠=,即60.oAOB ∠=所以两条切线的夹角的大小为3π. 【名师指津】 以数形结合的思想解决此类题,抓图中直角三角形中边角关系.3.(2005北京理)从原点向圆0271222=+-+y y x 作两条切线,则该圆夹在两条切线间的劣弧长为( ) A .π B .2π C .4π D .6π 【答案】B 【详解】 将圆的方程配方得:22(6)9x y +-=圆心在(0,6)半径为3,如图: 在图中Rt PAO ∆中,62OP PA ==,从而得到30oAOP ∠=,即60.oAOB ∠=可求120.oBPA ∠=P 的周长为236ππ⨯=劣弧长为周长的13,可求得劣弧长为2π. 【名师指津】 以数形结合的思想解决此类题,抓图中直角三角形中边角关系.4.(2005湖南理)设P 是△ABC 内任意一点,S △ABC 表示△ABC 的面积,λ1=ABc PBC S S ∆∆, λ2=ABCPCA S S∆∆, λ3=ABCPAB S S ∆∆,定义f (P)=(λ1, λ, λ3),若G 是△ABC 的重心,f (Q)=(21,31,61),则 ( )A .点Q 在△GAB 内 B .点Q 在△GBC 内C .点Q 在△GCA 内D .点Q 与点G 重合[评述]:本题是一道很好的信息题,本题考查学生理性思维问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2005年普通高等学校招生全国统一考试(北京卷)数 学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第I 卷(选择题 共40分)注意事项: 1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试卷上。

一、本大题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1.设集合}1|{},1|{2>=>=x x P x x M ,则下列关系中正确的是 ( )A .M=PB .P MC .M PD .M ∪P=R2.为了得到函数123-=-x y 的图象,只需把函数x y 2=的图象上所有的点( )A .向右科移3个单位长度,再向下平移1个单位长度B .向左平移3个单位长度,再向下平移1个单位长度C .向右平移3个单位长度,再向上平移1个单位长度D .向左平移3个单位长度,再向上平移1个单位长度3.“21=m ”是“直线03)2()2(013)2(=-++-=+++y m x m my x m 与直线相互垂直”的 ( ) A .充分必要条件 B .充分而不必要条件 C .必要而不充分条件 D .既不充分也不必要条件4.若| a |=1,| b |=2,c = a + b ,且c ⊥a ,则向量a 与b 的夹角为 ( )A .30°B .60°C .120°D .150°5.从原点向圆0271222=+-+y y x 作两条切线,则这两条切线的夹角的大小为( )A .6πB .3π C .2π D .32π 6.对任意的锐角βα,,下列不等关系中正确的是( )A .βαβαsin sin )sin(+>+B .βαβαcos cos )sin(+>+C .βαβαsin sin )cos(+<+D .βαβαcos cos )cos(+<+7.在正四面体P —ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立...的是 ( ) A .BC//平面PDF B .DF ⊥平面PAE C .平面PDF ⊥平面ABC D .平面PAE ⊥平面ABC8.五个工程队承建某项工程的5个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有 ( ) A .C 14C 44种B .C 14A 44种C .C 44种D .A 44种第Ⅱ卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上。

2.答卷前将密封线内的项目填写清楚。

二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在题中横线上. 9.抛物线x y 42=的准线方程是 ,焦点坐标是 .10.6)1(xx -的展开式中的常数项是 . (用数字作答) 11.函数xx x f -++=211)(的定义域为 .12.在△ABC 中,AC=3,∠A=45°,∠C=75°,则BC 的长为 . 13.对于函数)(x f 定义域中任意的)(,2121x x x x ≠,有如下结论:①)()()(2121x f x f x x f ⋅=+; ②)()()(2121x f x f x x f +=⋅;③;0)()(2121>--x x x f x f④.2)()()2(2121x f x f x x f +>+x x f lg )(=当时,上述结论中正确结论的序号是 .14.已知n 次式项式n n n n n a x a x a x a x P ++++=--1110)( .如果在一种算法中,计算),,4,3,2(0n k x k=的值需要k -1次乘法,计算P 3(x 0)的值共需要9次运算(6次乘法,3次加法),那么计算P 10(x 0)的值共需要 次运算. 下面给出一种减少运算次数的算法:P 0(x )=a 0,P k +1(x )=x P k (x )+a k +1(k =0,1,2,…,n -1).利用该算法,计算P 3(x 0)的值共需要6次运算,计算P 10(x 0)的值共需要 次运算.三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. 15.(本小题共12分)已知tan22=α,求:(Ⅰ)4tan(πα+)的值;(Ⅱ)ααααcos 2sin 3cos sin 6-+的值.16.(本小题共14分) 如图,在直三棱柱ABC —A 1B 1C 1中,AC=3,BC=4,AB=5,AA 1=4,点D 是AB 的中点.(Ⅰ)求证AC ⊥BC 1;(Ⅱ)求证AC 1//平面CDB 1;(Ⅲ)求异面直线AC 1与B 1C 所成角的余弦值. 17.(本小题共13分)数列}{n a 的前n 项和为S n ,且 ,3,2,1,31,111===+n S a a n n ,求: (Ⅰ)432,,a a a 的值及数列}{n a 的通项公式;(Ⅱ)n a a a a 2642++++ 的值. 18.(本小题共13分)甲、乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率为,32求:(Ⅰ)甲恰好击中目标2次的概率; (Ⅱ)乙至少击中目标2次的概率;(Ⅲ)乙恰好比甲多击中目标2次的概率. 19.(本小题共14分)已知函数.93)(23a x x x x f +++-=(Ⅰ)求)(x f 的单调递减区间;(Ⅱ)若)(x f 在区间[-2,2]上的最大值为20,求它在该区间上的最小值.20.(本小题共14分)如图,直线kx y l k kx y l -=>=:)0(:21与直线之间的阴影区域(不含边界)记为W. 其左半部分记为W 1,右半部分记为W 2. (Ⅰ)分别用不等式组表示W 1和W 2;(Ⅱ)若区域W 中的动点P (x ,y )到l 1,l 2的距离之积等于d 2,求点P 的轨迹C 的方程;(Ⅲ)设不过原点O 的直线l 与(Ⅱ)中的曲线C 相交于M 1,M 2两点,且与l 1,l 2分别交于M 3,M 4两点. 求证△OM 1M 2的重心与△OM 3M 4的重心重合.绝密★启用前2005年普通高等学校招生全国统一考试(北京卷)数学(文史类)参考答案一、选择题(本大题共8小题,每小题5分,共40分) 1.C 2.A 3.B 4.C 5.B 6.D 7.C 8.B 二、填空题(本大题共6小题,每小题5分,共30分)l 1l 2xyO9.)0,1(,1-=x 10.-20 11.),2()2,1[+∞- 12.2 13.②③ 14.65 20三、解答题(本大题共6小题,共80分) 15.(共12分)解:(Ⅰ)因为,3441222tan12tan2tan ,22tan-=-⨯=-==ααα所以.71341134tan 11tan 4tantan 14tantan )4tan(-=++-=-+=-+=+ααπαπαπα所以(Ⅱ)由(Ⅰ),,34tan -=α.672)34(31)34(62tan 31tan 6cos 2sin 3cos sin 6=--+-=-+=-+αααααα所以16.(共14分) 解法一:(Ⅰ)∵直三棱柱ABC —A 1B 1C 1底面三边长AC=3,BC=4,AB=5, ∴AC ⊥BC ,且BC 1在平面ABC 内的射影为BC ,∴AC ⊥BC 1.(Ⅱ)设CB 1与C 1B 的交点为E ,连结DE , ∵D 是AB 的中点,E 是BC 1的中点, ∴DE//AC 1,∵DE ⊂平面CDB 1,AC 1⊄平面CDB 1, ∴AC 1//平面CDB 1.(Ⅲ)∵DE//AC 1,∴∠CED 为AC 1与B 1C 所成的角, 在△CED 中,ED 121AC ==,2221,2521,251====CB CE AB CD .522252228cos =⋅⋅=∴CED ∴异面直线AC 1与B 1C 所成角的余弦值为.522 解法二:∵直三棱柱ABC —A 1B 1C 1底面三边长AC=3,BC=4,AB=5, ∴AC ,BC ,C 1C 两两垂直.如图,以C 为坐标原点,直线CA ,CB ,CC 1分别为x 轴, y 轴,z 轴,建立空间直角坐标系, 则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0), B 1(0,4,4),D (23,2,0). (Ⅰ)),4,4,0(),0,0,3(1-=-=BC AC ..011BC AC BC AC ⊥∴=⋅∴(Ⅱ)设CB 1与C 1B 的交点为E ,则E (0,2,2). 111//,21),4,0,3(),2,0,23(AC DE AC AC ∴=∴-=-=.//,,11111CDB AC CDB AC CDB DE 平面平面平面∴⊄⊂(Ⅲ)),4,4,0(),4,0,3(11=-=CB AC.522,cos 111111=>=<∴CB AC ∴异面直线AC 1与B 1C 所成角的余弦值为.522 17.(共13分) 解:(Ⅰ)由得,,3,2,1,31,111 ===+n S a a n n.313131112===a S a⎪⎩⎪⎨⎧≥==≥==≥=≥=-=-=++===+==--+-+.2,)34(31,1,1}{,).2()34(31,31),2(,34),2(31)(31.2716)(3131,94)(3131222111321342123n n a a n a a n a a n a S S a a a a a S a a a S a n n n n n n n n n n n 的通项公式为数列所以所以又得由(Ⅱ)由(I )可知a 2,a 4,…,a 2n ,是首项为,31公比为(34)2,项数为n 的等比数列, 所以].1)34[(73)34(1)34(1312222642-=--⋅=++++n n n a a a a 18.(共13分) 解:(I )甲恰好击中目标2次的概率为.83)21(323=C (II )乙至少击中目标2次的概率为.2720)32(31)32(333223=+⋅C C (III )设乙恰好比甲多击中目标2次为事件A ,乙恰好击中目标2次且甲恰好击中目标0次为事件B 1,乙恰好击中目标3次且甲恰好击中目标1次为事件B 2,则A=B 1+B 2,B 1,B 2为互斥事件.P (A )=P (B 1)+P (B 2).6191181)21()32()21(31)32(313333303223=+=⋅+⋅⋅=C C C C 所以,乙恰好比甲多击中目标2次的概率为.6119.(共14分)解:(1)令,963)(2++-='x x x f ,31,0)(>-<<'x x x f 或解得所以函数)(x f 的单调递减区间为).,3(),1,(+∞--∞ (II )因为,218128)2(a a f +=+-+=-).2()2(,2218128)2(->+=+++-=f f a a f 所以因为(-1,3)上,0)(>'x f 所以)(x f 在[-1,2]上单调递增,又由于)(x f 在 [-2,-1]上单调递减,因此)2(f 和)1(-f 分别是)(x f 在区间[-2,2]上的最大值和最小值..7]2,2[)(,72931)1(,293)(,2,202223---=--+=--++-=-==+上的最小值为在区间即函数因此故解得于是有x f f x x x x f a a20.(共14分)解:(I )},0,|),{(1<-<<=x kx y kx y x W}.0,|),{(2><<-=x kx y kx y x W (II )直线.0:,0:21=+=-y kx l y kx l 直线由题意得 .0)1(.0)1(,1,0,),(,1||,1||1||22222222222222222222222222=+--=+--=-->-∈=+-=++++-d k y x k C P d k y x k d k y x k y x k W y x P d k y x k d k y kx k y kx 的方程为的轨迹所以动点所以知由即 (III )当直线l 与x 轴垂直时,可设直线l 的方程为)0(≠=a a x . 由于直线l ,曲线C关于x 轴对称,且l 1与l 2关于x 轴对称,于是M 1M 2,M 3M 4的中点坐标都为(a ,0),所以△OM 1M 2,△OM 3M 4的重心坐标都为)0,32(a ,即它们的重心重合. 当直线l 与x 轴不垂直时,设直线l 的方程为).0(≠+=n n mx y由.02)(,0)1(222222222222=-----⎩⎨⎧+==+--d d k n mnx x m k nmx y d k y x k 得由直线l 与曲线C 有两个不同交点,可知且,022≠-m k ),,(),,(,.2)(,2),,(),,(,,0)()(4)2(443343212122212211212222222y x y x M M n x x m y x mk mn x x y x y x M M d d k n m k mn 的坐标分别为设则的坐标分别为设++=+-=+>++⨯-+=∆ ,3030,3030,2)(2)(,2,,,,432143212121434321224343y y y y x x x x y y n x x m n x x m y y x x mk mn x x m k n x m k n x n mx y kx y n mx y kx y ++=++++=+++=++=++=++=-=++-=-=⎩⎨⎧+=-=⎩⎨⎧+==所以所以从而得及由于是△OM 1M 2的重心与△OM 3M 4的重心也重合.。

相关文档
最新文档