压轴题5

合集下载

2024中考压轴题05 圆的综合(5题型+解题模板+技巧精讲)(原卷版)

2024中考压轴题05 圆的综合(5题型+解题模板+技巧精讲)(原卷版)

压轴题05圆的综合目录题型一切线的判定题型二圆中求线段长度题型三圆中的最值问题题型四圆中的阴影部分面积题型五圆中的比值(相似)问题下图为二次函数图象性质与几何问题中各题型的题型一切线的判定解题模板:技巧:有切点,连半径,证垂直(根据题意,可以证角为90°,如已有90°角,可以尝试证平行) 没切点,作垂直,证半径(通常为证全等,也可以通过计算得到与半径相等)【例1】1.(2023-四川攀枝花-中考真题)如图,AB 为O 的直径,如果圆上的点D 恰使ADC B ∠=∠,求证:直线CD 与O 相切.【变式1-1】(2023-辽宁-中考真题)如图,ABC 内接于O ,AB 是O 的直径,CE 平分ACB ∠交O 于点E ,过点E 作EF AB ∥,交CA 的延长线于点F .求证:EF 与O 相切;【变式1-2】(2023-辽宁-中考真题)如图,AB 是O 的直径,点C E ,在O 上,2CAB EAB ∠=∠,点F 在线段AB 的延长线上,且AFE ABC ∠=∠.(1)求证:EF与O相切;(2)若41sin5BF AFE=∠=,,求BC的长.【变式1-3】(2023-湖北鄂州-中考真题)如图,AB为O的直径,E为O上一点,点C为EB的中点,过点C作CD AE⊥,交AE的延长线于点D,延长DC交AB的延长线于点F.(1)求证:CD是O的切线;题型二圆中求线段长度解题模板:【例2】(2023-西藏-中考真题)如图,已知AB为O的直径,点C为圆上一点,AD垂直于过点C的直线,交O于点E,垂足为点D,AC平分BAD∠.(1)求证:CD 是O 的切线; (2)若8AC =,6BC =,求DE 的长.【变式2-1】(2023-内蒙古-中考真题)如图,AB 是⊙O 的直径,E 为⊙O 上的一点,点C 是AE 的中点,连接BC ,过点C 的直线垂直于BE 的延长线于点D ,交BA 的延长线于点P .(1)求证:PC 为⊙O 的切线;(2)若PC =,10PB =,求BE 的长.【变式2-2】(2023-辽宁大连-中考真题)如图1,在O 中,AB 为O 的直径,点C 为O 上一点,AD 为CAB ∠的平分线交O 于点D ,连接OD 交BC 于点E .(1)求BED ∠的度数;(2)如图2,过点A 作O 的切线交BC 延长线于点F ,过点D 作DG AF ∥交AB 于点G .若AD =4DE =,求DG 的长.【变式2-3】(2023-湖北恩施-中考真题)如图,ABC 是等腰直角三角形,90ACB ∠=︒,点O 为AB 的中点,连接CO 交O 于点E ,O 与AC 相切于点D .(1)求证:BC是O的切线;(2)延长CO交O于点G,连接AG交O于点F,若AC FG的长.题型三圆中的最值问题解题模板:技巧精讲:1、辅助圆模型【例3】(2023-湖南长沙-三模)如图1:在O 中,AB 为直径,C 是O 上一点,3,4AC BC ==.过O 分别作OH BC ⊥于点H ,OD AC ⊥于点D ,点E 、F 分别在线段BC AC 、上运动(不含端点),且保持90EOF ∠=︒.(1)OC =______;四边形CDOH 是______(填矩形/菱形/正方形); CDOH S =四边形______; (2)当F 和D 不重合时,求证:OFD OEH ∽;(3)⊙在图1中,P 是CEO 的外接圆,设P 面积为S ,求S 的最小值,并说明理由;⊙如图2:若Q 是线段AB 上一动点,且1QAQB n =∶∶,90EQF ∠=︒,M 是四边形CEQF 的外接圆,则当n 为何值时,M 的面积最小?最小值为多少?请直接写出答案.【变式3-1】(2023-安徽-模拟预测)如图,半圆的直径4AB =,弦CD AB ∥,连接,,,AC BD AD BC .(1)求证:ADC BCD △≌△;(2)当ACD 的面积最大时,求CAD ∠的度数.【变式3-2】(2023-四川-中考真题)如图1,已知线段AB ,AC ,线段AC 绕点A 在直线AB 上方旋转,连接BC ,以BC 为边在BC 上方作Rt BDC ,且30DBC ∠=︒.(1)若=90BDC ∠︒,以AB 为边在AB 上方作Rt BAE △,且90AEB ∠=︒,30EBA ∠=︒,连接DE ,用等式表示线段AC 与DE 的数量关系是 ;(2)如图2,在(1)的条件下,若DE AB ⊥,4AB =,2AC =,求BC 的长;(3)如图3,若90BCD ∠=︒,4AB =,2AC =,当AD 的值最大时,求此时tan CBA ∠的值.【变式3-3】(2023-陕西西安-模拟预测)【问题情境】如图1,在ABC 中,120A ∠=︒,AB AC =,BC =ABC 的外接圆的半径值为______; 【问题解决】如图2,点P 为正方形ABCD 内一点,且90BPC ∠=︒,若4AB =,求AP 的最小值; 【问题解决】如图3,正方形ABCD 是一个边长为的书展区域设计图,CE 为大门,点E 在边BC 上,CE =,点P 是正方形ABCD 内设立的一个活动治安点,到B 、E 的张角为120︒,即120BPE ∠=︒,点A 、D 为另两个固定治安点,现需在展览区域内部设置一个补水供给点Q ,使得Q 到A 、D 、P 三个治安点的距离和最小,试求QA QD QP ++的最小值.(结果精确到0.1m 1.7≈,214.3205≈)题型四 圆中的阴影部分面积【例4】(2024-西藏拉萨-一模)如图,等腰ABC 的顶点A ,C 在O 上, BC 边经过圆心0且与O 交于D 点,30B ∠=︒.(1)求证:AB 是O 的切线; (2)若6AB =,求阴影部分的面积【变式4-1】(2023-陕西西安-一模)如图,正六边形ABCDEF 内接于O .(1)若P 是CD 上的动点,连接BP ,FP ,求BPF ∠的度数;(2)已知ADF △的面积为O 的面积.【变式4-2】(2023-浙江衢州-中考真题)如图,在Rt ABC △中,90,ACB O ∠=︒为AC 边上一点,连结OB .以OC 为半径的半圆与AB 边相切于点D ,交AC 边于点E .(1)求证:BC BD =.(2)若,2OB OA AE ==.⊙求半圆O 的半径.⊙求图中阴影部分的面积.【变式4-3】(2023-辽宁阜新-中考真题)如图,AB 是O 的直径,点C ,D 是O 上AB 异侧的两点,DE CB ⊥,交CB 的延长线于点E ,且BD 平分ABE ∠.(1)求证:DE 是O 的切线.(2)若60ABC ∠=︒,4AB =,求图中阴影部分的面积.【变式4-4】(2023-山东枣庄-中考真题)如图,AB 为O 的直径,点C 是AD 的中点,过点C 做射线BD 的垂线,垂足为E .(1)求证:CE 是O 切线;(2)若34BE AB ==,,求BC 的长;(3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示).题型五 圆中的比值(相似)问题 技巧精讲:【例5】(2024-陕西西安-模拟预测)如图,AB 为O 的直径, 点 D 为O 上一点, 过点 B 作O 切线交AD 延长线于点 C ,CE 平分ACB ∠,CE BD ,交于F .(1)求证:BE BF =;(2)若O 半径为2,3sin 5A =,求DF 的长度. 【变式5-1】(2023-湖南湘西-二模)如图,AB 是O 的直径,点C ,D 在O 上,AD 平分CAB ∠,交BC 于点E ,连接BD .(1)求证:BED ABD △△.(2)当3tan 4ABC ∠=,且10AB =时,求线段BD 的长.(3)点G 为线段AE 上一点,且BG 平分ABC ∠,若GE =,3BG =,求CE 的长.【变式5-2】(2024-陕西西安-一模)如图,AB 是O 的直径CD 与O 相切于点C ,与BA 的延长线交于点D ,连接BC ,点E 在线段OB 上,过点E 作BD 的垂线交DC 的延长线于点F ,交BC 于点G .(1)求证:FC FG =;(2)若220AO AD ==,点E 为OB 的中点,求GE 的长.【变式5-3】(2024-陕西西安-一模)如图,AB 是O 的直径,点D 在直径AB 上(D 与,A B 不重合),CD AB ⊥且CD AB =,连接CB ,与O 交于点F ,在CD 上取一点E ,使EF 与O 相切.(1)求证:EF EC =;(2)若D 是OA 的中点,4AB =,求BF 的长.一、解答题1.(2024-云南-模拟预测)如图,四边形ABCD 内接于O ,对角线AC 是O 的直径,过点C 作AC 的垂线交AD 的延长线于点E ,F 为CE 的中点,连接BD ,DF ,BD 与AC 交于点P .(1)求证:DF 是O 的切线;(2)若45DPC ∠=︒,228PD PB +=,求AC 的长.2.(2024-湖北黄冈-模拟预测)如图,PO 平分APD ∠,PA 与⊙O 相切于点A ,延长AO 交PD 于点C ,过点O 作OB PD ⊥,垂足为B .(1)求证:PB 是⊙O 的切线;(2)若⊙O 的半径为4,5OC =,求PA 的长.3.(2024-江苏淮安-模拟预测)如图,已知直线l 与O 相离,OA l ⊥于点A ,交O 于点 P ,点 B 是O 上一点,连接BP 并延长,交直线l 于点 C ,使得AB AC =.(1)判断直线AB 与O 的位置关系并说明理由;(2)4PC OA ==,求线段 PB 的长.4.(2024-四川凉山-模拟预测)如图,CD 是O 的直径,点P 是CD 延长线上一点,且AP 与O 相切于点A ,弦AB CD ⊥于点F ,过D 点作DE AP ⊥于点E .(1)求证:∠∠EAD FAD =;(2)若4PA =,2PD =,求O 的半径和DE 的长.5.(2024-四川凉山-模拟预测)如图,在Rt ABC △中,90ACB ∠=︒,以AC 为直径的O 交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点F .(1)求证:DE 是O 的切线;(2)若30A ∠=︒,3DF =,求CE 长.6.(2024-山东泰安-一模)如图,AB CD ,是O 的两条直径,过点C 的O 的切线交AB 的延长线于点E ,连接AC BD ,.(1)求证:ABD CAB ∠=∠;(2)若B 是OE 的中点,12AC =,求O 的半径.7.(2024-福建南平-一模)如图1,点D 是ABC 的边AB 上一点.AD AC =,CAB α∠=,O 是BCD △的外接圆,点E 在DBC 上(不与点C ,点D 重合),且90CED α∠=︒-.(1)求证:ABC 是直角三角形;(2)如图2,若CE 是⊙O 的直径,且2CE =,折线ADF 是由折线ACE 绕点A 顺时针旋转α得到. ⊙当30α=︒时,求CDE 的面积;⊙求证:点C ,D ,F 三点共线.8.(2023-四川甘孜-中考真题)如图,在Rt ABC △中,=90ABC ∠︒,以BC 为直径的O 交AC 边于点D ,过点C 作O 的切线,交BD 的延长线于点E .(1)求证:=DCE DBC ∠∠;(2)若=2AB ,=3CE ,求O 的半径.9.(2023-湖北黄石-中考真题)如图,AB 为O 的直径,DA 和O 相交于点F ,AC 平分DAB ∠,点C 在O 上,且CD DA ⊥,AC 交BF 于点P .(1)求证:CD 是O 的切线;(2)求证:2AC PC BC ⋅=;(3)已知23BC FP DC =⋅,求AF AB的值.10.(2023-辽宁鞍山-中考真题)如图,四边形ABCD 内接于O ,AB 为O 的直径,过点D 作DF BC ⊥,交BC 的延长线于点F ,交BA 的延长线于点E ,连接BD .若180EAD BDF ∠+∠=︒.(1)求证:EF 为O 的切线.(2)若10BE =,2sin 3BDC ∠=,求O 的半径.11.(2023-湖南湘西-中考真题)如图,点D ,E 在以AC 为直径的O 上,ADC ∠的平分线交O 于点B ,连接BA ,EC ,EA ,过点E 作EH AC ⊥,垂足为H ,交AD 于点F .(1)求证:2AE AF AD =⋅;(2)若sin 5ABD AB ∠==,求AD 的长. 12.(2023-辽宁沈阳-中考真题)如图,AB 是O 的直径,点C 是O 上的一点(点C 不与点A ,B 重合),连接AC 、BC ,点D 是AB 上的一点,AC AD =,BE 交CD 的延长线于点E ,且BE BC =.(1)求证:BE 是O 的切线;(2)若O 的半径为5,1tan 2E =,则BE 的长为______ .13.(2023-黑龙江大庆-中考真题)如图,AB 是O 的直径,点C 是圆上的一点,CD AD ⊥于点D ,AD 交O 于点F ,连接AC ,若AC 平分DAB ∠,过点F 作FG AB ⊥于点G ,交AC 于点H ,延长AB ,DC 交于点E .(1)求证:CD 是O 的切线;(2)求证:AF AC AE AH ⋅=⋅;(3)若4sin 5DEA ∠=,求AH FH的值.14.(2023-四川雅安-中考真题)如图,在Rt ABC △中,90ABC ∠=︒,以AB 为直径的O 与AC 交于点D ,点E 是BC 的中点,连接BD ,DE .(1)求证:DE 是O 的切线;(2)若2DE =,1tan 2BAC ∠=,求AD 的长;(3)在(2)的条件下,点P 是O 上一动点,求PA PB +的最大值.15.(2023-辽宁营口-中考真题)如图,在ABC 中,AB BC =,以BC 为直径作O 与AC 交于点D ,过点D 作DE AB ⊥,交CB 延长线于点F ,垂足为点E .(1)求证:DF 为O 的切线;(2)若3BE =,4cos 5C =,求BF 的长.。

二次函数压轴题培优(5)——周长最小、面积问题、相似问题

二次函数压轴题培优(5)——周长最小、面积问题、相似问题

二次函数压轴题培优(5)——周长最小、面积问题、相似问题1.如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.(1)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.2.已知二次函数y=x2﹣(m﹣2)x+的图象经过(﹣1,6),(1)求m的值并在平面直角坐标系中画出该二次函数的图象;(2)设此二次函数的图象与x 轴的交点为A、B(A在B右边),与y轴交于点C,P在抛物线的对称轴上,当∠APC=90°时,求P点的坐标.3.如图,抛物线的顶点D的坐标为(1,﹣4),与y轴交于点C(0,﹣3),与x轴交于A、B两点.(1)求该抛物线的函数关系式;(2)在抛物线上存在点P(不与点D重合),使得S△PAB=S△ABD,请求出P点的坐标.4.如图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,﹣4)(1)求出图象与x轴的交点A、B的坐标;(2)在二次函数的图象上是否存在点P,使S△PAB=S△MAB?若存在,求出点P的坐标;若不存在,请说明理由.5.如图,在平面直角坐标系xOy中,把抛物线C1:y=﹣x2沿x轴翻折,再平移得到抛物线C2,恰好经过点A(﹣3,0)、B(1,0),抛物线C2与y轴交于点C,抛物线C1:y=﹣x2与抛物线C2的对称轴交于D 点.(1)求抛物线C2的表达式.(2)在抛物线C2的对称轴上是否存在一点M,使得以M、O、D为顶点的三角形与△BOD相似?若存在,求点M坐标;若不存在,说明理由.二次函数压轴题培优(5)——周长最小、面积问题、相似问题(参考答案)1.(2015•黑龙江)如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.(1)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)由题意得,,解得b=4,c=3,∴抛物线的解析式为.y=x2﹣4x+3;(2)∵点A与点C关于x=2对称,∴连接BC与x=2交于点P,则点P即为所求,根据抛物线的对称性可知,点C的坐标为(3,0),y=x2﹣4x+3与y轴的交点为(0,3),∴设直线BC的解析式为:y=kx+b,,解得,k=﹣1,b=3,∴直线BC的解析式为:y=﹣x+3,则直线BC与x=2的交点坐标为:(2,1)∴点P的坐标为:(2,1).2.(2015秋•宜兴市校级期末)已知二次函数y=x2﹣(m﹣2)x+的图象经过(﹣1,6),(1)求m的值并在平面直角坐标系中画出该二次函数的图象;(2)设此二次函数的图象与x 轴的交点为A、B(A在B右边),与y轴交于点C,P在抛物线的对称轴上,当∠APC=90°时,求P点的坐标.【解答】解:(1)∵二次函数y=x2﹣(m﹣2)x+的图象经过(﹣1,6),∴6=+(m﹣2)+,∴m=5,∴y=x2﹣3x+,(2)令y=0,则x2﹣3x+=0,解得x1=1,x2=5,∴A(5,0),B(1,0),令x=0,则y=,∴C(0,),∵y=x2﹣3x+,∴对称轴x=3,∵P在抛物线的对称轴上,设P(3,n),当∠APC=90°时,∴=解得n=﹣或n=4,∴P(3,﹣)或(3,4).3.(2015秋•东海县期末)如图,抛物线的顶点D的坐标为(1,﹣4),与y轴交于点C(0,﹣3),与x 轴交于A、B两点.(1)求该抛物线的函数关系式;(2)在抛物线上存在点P(不与点D重合),使得S△PAB=S△ABD,请求出P点的坐标.【解答】解:(1)∵抛物线的顶点D的坐标为(1,﹣4),∴设抛物线的函数关系式为y=a(x﹣1)2﹣4,又∵抛物线过点C(0,﹣3),∴﹣3=a(0﹣1)2﹣4,解得a=1,∴抛物线的函数关系式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;(2)∵S△PAB=S△ABD,且点P在抛物线上,∴点P到线段AB的距离一定等于顶点D到AB的距离,∴点P的纵坐标一定为4.令y=4,则x2﹣2x﹣3=4,4.(2015秋•冠县期末)如图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,﹣4)(1)求出图象与x轴的交点A、B的坐标;(2)在二次函数的图象上是否存在点P,使S△PAB=S△MAB?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线解析式为y=(x+m)2+k的顶点为M(1,﹣4)∴令y=0得(x﹣1)2﹣4=0解得x1=3,x2=﹣1∴A(﹣1,0),B(3,0)(2)∵△PAB与△MAB同底,且S△PAB=S△MAB,∴,即y P=±5又∵点P在y=(x﹣1)2﹣4的图象上∴y P≥﹣4∴∴存在合适的点P,坐标为(4,5)或(﹣2,5).5.(2016•咸阳模拟)如图,在平面直角坐标系xOy中,把抛物线C1:y=﹣x2沿x轴翻折,再平移得到抛物线C2,恰好经过点A(﹣3,0)、B(1,0),抛物线C2与y轴交于点C,抛物线C1:y=﹣x2与抛物线C2的对称轴交于D点.(1)求抛物线C2的表达式.(2)在抛物线C2的对称轴上是否存在一点M,使得以M、O、D为顶点的三角形与△BOD相似?若存在,求点M坐标;若不存在,说明理由.【解答】解:(1)设抛物线C2的表达式为y=a(x+3)(x﹣1).∵由翻折可平移的性质可知抛物线C1与抛物线C2的开口大小相同,方向相反,∴抛物线C2的二次项系数与抛物线C1的二次项系数互为相反数.∴抛物线C2的二次项系数为1,即a=1.(2)如图所示:∵抛物线C2的对称轴x=﹣=﹣1,∴点E的坐标为(﹣1,0).∵将x=﹣1代入y=﹣x2得:y=﹣1,∴D(﹣1,﹣1).∴OE=DE=1.∴△OED为等腰直角三角形.∴OD=,∠EOD=∠EDO=45°.∴∠DOB=135°.在Rt△EDB中,DB==.∵∠DOB=135°,∴M点只能在D点下方.∵∠BDM=∠BOD=135°,∴当或时,以M、O、D为顶点的三角形与△BOD相似.∵当时,=,解得:MD=2.∴点M的坐标为(﹣1,﹣3).∵当时,=,解得:MD=1,∴点M的坐标为(﹣1,﹣2).综上所述点M的坐标为(﹣1,﹣2)或(﹣1,﹣3).。

初三中考压轴题5-折叠拉手问题

初三中考压轴题5-折叠拉手问题

初三中考压轴题5-折叠拉手问题折叠填空题:1.将一个直角三角形纸片ABO放置在平面直角坐标系中,点A(3,0),点B(0,1),点O (0,0),P是AB边上一点,(点P不与A,B重合),沿着OP折叠该纸片,得点A的对应点A’,当∠BPA’=30°时,点P的坐标为()4,BC=6,∠B=45°,D为BC边上一动点,将ΔABC沿着过点D的直线折2、在ΔABC中,AB=2叠使点C落在AB边上,则CD的取值范围()3、正方形ABCD边长为2,E是CD的中点,连接AE,沿AE折叠,使得点D落在正方形内的点F处,连接BF并延长,交AE的延长线于点G,则tan∠CBG=()4.等腰直角三角形ABC中,∠ACB=90°,AC=BC=2,请用直尺与圆规,作出符合下列条件的各点。

(1)作AB上一点D,BC上一点E,使得CD+BE=2,且BE最大。

(2)在第一问的条件下,作CD上一点F,AC上一点G,使得CF=AG,且DG+AF最小,并直接写出这个最小值。

变式:在正三角形ABC中,AD┴BC,BC=4,点E、F分别是AD、AC上的动点,且AE=CF,则BF+CE的最小值是()5.用平行线分线段成比例解决如下问题:已知ΔABC 和线段a ,请用直尺和圆规作ΔA ’B ’C ’。

满足:(1)ΔA ’B ’C ’∽ΔABC ;(2)ΔA ’B ’C ’的周长等于线段a 的长度。

保留痕迹6、已知有两个以O 为顶点且不全等的直角三角形ΔAOB 和COD ,其中∠ABO=∠DCO=30°,(1)如图1,设∠BOD=α(0<α<60°),点E 、F 、M 分别是AC 、CD 、DB 的中点,连接FM 、EM ,请问:随着α的变化,试判断EMFM 的值是否发生变化?若不变,请求出其值;若变化,说明理由。

(2)如图2,若BO=3,点N 在线段OD 上,且NO=1,点P 是线段AB 上的一个动点,将ΔCOD 固定,ΔAOB 绕点O 旋转的过程中,线段PN 长度的最小值为( ),最大值为( )7.已知,如图1,抛物线c bx x y ++=2与x 轴交于A (-1,0),B (3,0)两点,与y 轴交于点C ,D 为顶点。

2022中考数学压轴题专题突破05 一次函数问题

2022中考数学压轴题专题突破05 一次函数问题

一、单选题1.晓琳和爸爸到太子河公园运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,晓琳继续前行5分钟后也原路返回,两人恰好同时到家.晓琳和爸爸在整个运动过程中离家的路程y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示,下列结论:①两人同行过程中的速度为200米/分;②m的值是15,n的值是3000;③晓琳开始返回时与爸爸相距1800米;④运动18分钟或30分钟时,两人相距900米.其中正确结论的个数是()A.1个B.2个C.3个D.4个【答案】C④设爸爸返回的解析式为y2=kx+b,把(15,3000)(45,0)代入得,解得∴y2=-100x+4500∴当0≤x≤20时,y1=200xy1-y2=900∴200x-(-100x+4500)=900∴x=18当20≤x≤45时,y1=ax+b,将(20,4000)(45,0)代入得,∴y1=-160x+7200y1-y2=900 ,(-160x+7200)-(-100x+4500)=900,x=30∴④正确故选:C.【关键点拨】本题考查了一次函数的应用,明确横纵坐标的实际意义是解题得关键.2.如图,在平面直角坐标系中,直线l1:y=﹣x+1与x轴,y轴分别交于点A和点B,直线l2:y=kx(k≠0)与直线l1在第一象限交于点C.若∠BOC=∠BCO,则k的值为()A.B.C.D.2【答案】B得:k,即k.故选B.【关键点拨】本题考查了两直线相交或平行问题,两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.3.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元与上网时间x(h)的函数关系如图所示,则下列判断错误的是A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【答案】D将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x-100(x≥50),当x=70时,y B=3x-100=110<120,∴结论D错误.故选D.【关键点拨】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.4.如图,已知直线l:y=2x,分别过x轴上的点A1(1,0)、A2(2,0)、…、A n(n,0),作垂直于x轴的直线交l于点B1、B2、…、B n,将△OA1B1,四边形A1A2B2B1、…、四边形A n−1A n B n B n−1的面积依次记为S1、S2、…、S n,则S n=()A.n2B.2n+1C.2n D.2n−1【答案】D5.如图,点A的坐标为(-1,0),点B在直线上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.(,)C.(,)D.(,)【答案】B【关键点拨】本题考查了一次函数的性质,坐标与图形性质,垂线段最短,等腰直角三角形等知识,熟练掌握垂线段最短是解决本题的关键.6.如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A.x>2B.x<2C.x≥2D.x≤2【答案】B【关键点拨】本题考查了一次函数的图象与性质和一元一次不等式及其解法,解题的关键是掌握一次函数与一元一次不等式之间的内在联系.7.如图,在平面直角坐标系中,的顶点在第一象限,点、的坐标分别为、,,,直线交轴于点,若与关于点成中心对称,则点的坐标为()A.B.C.D.【答案】A【解析】∵点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,∴△ABC是等腰直角三角形,∴A(4,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=x﹣1,令x=0,则y=﹣1,∴P(0,﹣1),又∵点A与点A'关于点P成中心对称,∴点P为AA'的中点,设A'(m,n),则=0,=﹣1,∴m=﹣4,n=﹣5,∴A'(﹣4,﹣5),故选:A.【关键点拨】本题考查了中心对称和等腰直角三角形的运用,利用待定系数法得出直线AB的解析式是解题的关键.8.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过的集中药物喷洒,再封闭宿舍,然后打开门窗进行通风,室内每立方米空气中含药量与药物在空气中的持续时间之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过集中喷洒药物,室内空气中的含药量最高达到B.室内空气中的含药量不低于的持续时间达到了C.当室内空气中的含药量不低于且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于时,对人体才是安全的,所以从室内空气中的含药量达到开始,需经过后,学生才能进入室内【答案】C【关键点拨】本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.9.已知一系列直线分别与直线相交于一系列点,设的横坐标为,则对于式子,下列一定正确的是( ) A.大于1 B.大于0 C.小于-1 D.小于0【答案】B【解析】由题意x i=-,x j=-,∴式子>0,故选:B.【关键点拨】本题考查一次函数图象上点的坐标特征,待定系数法等知识,解题的关键是灵活运用所学知识解决问题.10.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F 运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【答案】CBE=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a2=22+(a-1)2.解得a=.故选:C.【关键点拨】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.11.如图,直线与x轴、y轴分别交于A、B两点,点P是以C(﹣1,0)为圆心,1为半径的圆上一点,连接PA,PB,则△PAB面积的最小值是()A.5B.10C.15D.20【答案】A【解析】作CH⊥AB于H交⊙O于E、F.连接BC.【关键点拨】本题考查了一次函数图象上的点的坐标特征、一次函数的性质、直线与圆的位置关系等知识,解题的关键是学会添加常用辅助线,利用直线与圆的位置关系解决问题,属于中考填空题中的压轴题.12.如图,正方形ABCD中,E为CD的中点,AE的垂直平分线分别交AD,BC及AB的延长线于点F,G,H,连接HE,HC,OD,连接CO并延长交AD于点M.则下列结论中:①FG=2AO;②OD∥HE;③;④2OE2=AH•DE;⑤GO+BH=HC正确结论的个数有()A.2B.3C.4D.5【答案】B同理可得:直线CO的方程为:,可得M点坐标(,2),可得:①FG=,AO==,故FG=2AO,故①正确;②:由O点坐标,D点坐标(2,2),可得OD的方程:,由H点坐标(0,),E点坐标(2,1),可得HE方程:,由两方程的斜率不相等,可得OD不平行于HE,故②错误;③由A(0,2),M(,2),H(0,),E(2,1),可得:BH=,EC=1,AM=,MD=,故=,故③正确;④:由O点坐标,E(2,1),H(0,),D(2,2),可得:,AH=,DE=1,有2OE2=AH•DE,故④正确;【关键点拨】本题主要考查一次函数与矩形的综合,及点与点之间的距离公式,难度较大,灵活建立直角坐标系是解题的关键.二、填空题13.如图,在平面直角坐标系xOy中,有一个由六个边长为1的正方形组成的图案,其中点A,B的坐标分别为(3,5),(6,1).若过原点的直线l将这个图案分成面积相等的两部分,则直线l的函数解析式为_____.【答案】【解析】【关键点拨】本题考查了中心对称图形的性质、待定系数法求解析式,熟知过中心对称图形对称中心的直线把这个图形分成面积相等的两个图形是解题的关键.14.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为_____.【答案】﹣2<x<2【解析】∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式组的解集为故答案为:【关键点拨】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.15.如图,直线与两坐标轴分别交于、两点,将线段分成等份,分点分别为,,P3,,… ,过每个分点作轴的垂线分别交直线于点,,,… ,用,,,…,分别表示,,…,的面积,则___________.【答案】【关键点拨】本题考查一次函数的应用,规律型−点的坐标、三角形的面积、矩形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分割法求阴影部分面积.16.如图,直线y1=-x+a与y2=bx-4相交于点P,已知点P的坐标为(1,-3),则关于x的不等式-x+a<bx-4的解集是_______.【答案】【关键点拨】本题考查了一次函数与一元一次不等式的关系,解决这类题目的关键是找出两个函数图像的交点坐标,再根据图象的位置确定x的取值范围.17.如图,在平面直角坐标系中,函数和的图象分别为直线,,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,依次进行下去,则点的横坐标为__.【答案】【关键点拨】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,找出题目中点的横坐标的变化规律.18.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是_____.【答案】x=2【解析】∵一次函数y=ax+b的图象与x轴相交于点(2,0),∴关于x的方程ax+b=0的解是x=2,故答案为:x=2.【关键点拨】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.19.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是________.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=﹣2.1时,[x]+(x)+[x)=﹣7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.【答案】②③④∵﹣1<x<1时,∴当﹣1<x<﹣0.5时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当﹣0.5<x<0时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当x=0时,y=[x]+(x)+x=0+0+0=0,当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,∵y=4x,则x﹣1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,∴当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有三个交点,故④错误,故答案为:②③.20.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为_____米.【答案】200【关键点拨】本题考查了一次函数的图象的性质的运用,路程=速度×时间之间的关系的运用,分别求小玲和妈妈的速度是关键,解答时熟悉并理解函数的图象.21.已知直线l1:y=(k﹣1)x+k+1和直线l2:y=kx+k+2,其中k为不小于2的自然数.(1)当k=2时,直线l1、l2与x轴围成的三角形的面积S2=______;(2)当k=2、3、4,……,2018时,设直线l1、l2与x轴围成的三角形的面积分别为S2,S3,S4,……,S2018,则S2+S3+S4+……+S2018=______.【答案】 1【解析】当y=0时,有(k-1)x+k+1=0,解得:x=-1-,∴直线l1与x轴的交点坐标为(-1-,0),同理,可得出:直线l2与x轴的交点坐标为(-1-,0),∴两直线与x轴交点间的距离d=-1--(-1-)=-.联立直线l1、l2成方程组,得:,解得:,∴直线l1、l2的交点坐标为(-1,-2).(1)当k=2时,d=-=1,∴S2=×|-2|d=1.故答案为:1.【关键点拨】本题考查了一次函数图象上点的坐标特征以及规律型中图形的变化类,利用一次函数图象上点的坐标特征求出两直线与x轴交点间的距离是解题的关键.22.如图,射线OM在第一象限,且与x轴正半轴的夹角为60°,过点D(6,0)作DA⊥OM于点A,作线段OD的垂直平分线BE交x轴于点E,交AD于点B,作射线OB.以AB为边在△AOB的外侧作正方形ABCA1,延长A1C交射线OB于点B1,以A1B1为边在△A1OB1的外侧作正方形A1B1C1A2,延长A2C1交射线OB于点B2,以A2B2为边在△A2OB2的外侧作正方形A2B2C2A3……按此规律进行下去,则正方形A2017B2017C2017A2018的周长为______________.【答案】【关键点拨】本题考查规律型问题、解直角三角形、点的坐标等知识,解题的关键是学会探究规律的方法,根据获取的规律解决问题.23.如图,直线与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为________.【答案】∴A(,0);∴OA=,设D(x,) ,∴E(x,- x+2),延长DE交OA于点F,∴EF=-x+2,OF=x,在Rt△OEF中利用勾股定理得:,解得:x1=0(舍),x2=;∴EF=1,∴S△AOE=·OA·EF=2.故答案为:.【关键点拨】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了菱形的性质.三、解答题24.某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.(1)求一件A型、B型丝绸的进价分别为多少元?(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.①求m的取值范围.②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式.【答案】(1)一件A型、B型丝绸的进价分别为500元,400元;(2)①,②.(2)①根据题意得:,的取值范围为:,②设销售这批丝绸的利润为,根据题意得:,,(Ⅰ)当时,,时,销售这批丝绸的最大利润;(Ⅱ)当时,,销售这批丝绸的最大利润;(Ⅲ)当时,当时,销售这批丝绸的最大利润.综上所述:.【关键点拨】本题综合考察了分式方程、不等式组以及一次函数的相关知识.在第(2)问②中,进一步考查了,如何解决含有字母系数的一次函数最值问题.25.“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?【答案】(1)20;(2)乙地离小红家30千米.当x=2.5时,解得y=30,∴乙地离小红家30千米.【关键点拨】本题考查一次函数的应用,读懂图象信息,掌握待定系数法是解题的关键.26.某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为_____件,图中d值为_____.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?【答案】80770∴,解得,∴y=130x﹣400(4≤x≤9)(3)由题意得:80x+130x﹣400=1000,解得:x=答:甲车间加工天时,两车间加工零件总数为1000件【关键点拨】一次函数实际应用问题,关键是根据一次函数图象的实际意义和根据图象确定一次函数关系式解答.27.如图,已知A(6,0),B(8,5),将线段OA平移至CB,点D在x轴正半轴上(不与点A重合),连接OC,AB,CD,BD.(1)求对角线AC的长;(2)设点D的坐标为(x,0),△ODC与△ABD的面积分别记为S1,S2.设S=S1﹣S2,写出S关于x的函数解析式,并探究是否存在点D使S与△DBC的面积相等?如果存在,用坐标形式写出点D的位置;如果不存在,说明理由.【答案】(1)AC=;(2)点D的坐标为(x,0)(x>6).∴S=S1﹣S2=-()=5x﹣15,当点D在OA的延长线上时,S1=,S2==,∴S=S1﹣S2=-()=15,由上可得,S=,∵S△DBC==15,∴点D在OA的延长线上的任意一点都满足条件,∴点D的坐标为(x,0)(x>6).【关键点拨】本题考查一次函数的应用、勾股定理的应用、平移的性质、两点间的距离公式,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和分类讨论的数学思想解答.28.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?【答案】(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.(2)设购买A型空调a台,则购买B型空调(30-a)台,,解得,10≤a≤12,∴a=10、11、12,共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,方案三:采购A型空调12台,B型空调18台;【关键点拨】本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.29.“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理、两种型号的净水器,每台型净水器比每台型净水器进价多200元,用5万元购进型净水器与用4.5万元购进型净水器的数量相等.(1)求每台型、型净水器的进价各是多少元;(2)槐荫公司计划购进、两种型号的净水器共50台进行试销,其中型净水器为台,购买资金不超过9.8万元.试销时型净水器每台售价2500元,型净水器每台售价2180元.槐荫公司决定从销售型净水器的利润中按每台捐献元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为,求的最大值.【答案】(1)型净水器每台进价2000元,型净水器每台进价1800元.(2)的最大值是元.【解析】(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m-200)元,根据题意得:,解得:m=2000,经检验,m=2000是分式方程的解,∴m-200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.【关键点拨】本题考查了分式方程的应用、一次函数的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出W关于x的函数关系式.30.某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:(1)甲车间每天加工大米吨,a=.(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢?【答案】(1)20,15;(2)y=35x﹣55;(3)再过1天装满第二节车厢.【解析】(1)由图象可知,第一天甲乙共加工220﹣185=35吨,第二天,乙停止工作,甲单独加工185﹣165=20吨,则乙一天加工35﹣20=15吨,a=15,故答案为:20,15;(2)设y=kx+b,把(2,15),(5,120)代入得,解得:,∴y=35x﹣55(2≤x≤5);【关键点拨】本题为一次函数实际应用问题,应用了待定系数法、分类讨论思想等,解答要注意通过对这两个函数图象实际意义对比分析得到问题答案.31.已知:在平面直角坐标系中,点O为坐标原点,点A在x轴的负半轴上,直线y=﹣x+与x轴、y 轴分别交于B、C两点,四边形ABCD为菱形.(1)如图1,求点A的坐标;(2)如图2,连接AC,点P为△ACD内一点,连接AP、BP,BP与AC交于点G,且∠APB=60°,点E 在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.【答案】(1)A(﹣,0).(2)49;(3)P(﹣,3)【解析】(1)如图1中,(2)如图2中,连接CE、CF.∵OA=OB,CO⊥AB,∴AC=BC=7,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠APB=60°,∴∠APB=∠ACB,∵∠PAG+∠APB=∠AGB=∠CBG+∠ACB,∴∠PAG=∠CBG,∵AE=BF,∴△ACE≌△BCF,∴CE=CF,∠ACE=∠BCF,∴∠ECF=∠ACF+∠ACE=∠ACF+∠BCF=∠ACB=60°,∴△CEF是等边三角形,∴∠CFE=60°,EF=FC,∵∠AFE=30°,∴∠AFC=∠AFE+∠CFE=90°,在Rt△ACF中,AF2+CF2=AC2=49,∴AF2+EF2=49.(3)如图3中,延长CE交FA的延长线于H,作PQ⊥AB于Q,PK⊥OC于K,在BP设截取BT=PA,连接AT、CT、CF、PC.∴△CPE≌△H AE,∴∠PCE=∠H,∴PC∥FH,∵∠CAP=∠CBT,AC=BC,∴△ACP≌△BCT,∴CP=CT,∠ACP=∠BCT,∴∠PCT=∠ACB=60°,∴△CPT是等边三角形,∴CT=PT,∠CPT=∠CTP=60°,∵CP∥FH,∴∠HFP=∠CPT=60°,∵∠APB=60°,∴△APF是等边三角形,∴∠CFP=∠AFC-∠∠AFP=30°,∴∠TCF=∠CTP-∠TFC=30°,∴∠TCF=∠TFC,∴TF=TC=TP,【关键点拨】本题考查一次函数综合题、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、菱形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建方程解决问题,属于中考压轴题.32.某书店现有资金7700元,计划全部用于购进甲、乙、丙三种图书共20套,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元.书店将甲、乙、丙三种图书的售价分别定为每套550元,430元,310元.设书店购进甲种图书x套,乙种图书y套,请解答下列问题:(1)请求出y与x的函数关系式(不需要写出自变量的取值范围);(2)若书店购进甲、乙两种图书均不少于1套,则该书店有几种进货方案?(3)在(1)和(2)的条件下,根据市场调查,书店决定将三种图书的售价作如下调整:甲种图书的售价不变,乙种图书的售价上调a(a为正整数)元,丙种图书的售价下调a元,这样三种图书全部售出后,所获得的利润比(2)中某方案的利润多出20元,请直接写出书店是按哪种方案进的货及a的值.【答案】(1)y=﹣x+18(2)三种购买方案(3)甲种图书6套,乙种图书8套,丙种图书6套,a=10即有三种购买方案:①甲、乙、丙三种图书分别为3套,13套,4套,②甲、乙、丙三种图书分别为6套,8套,6套,③甲、乙、丙三种图书分别为9套,3套,8套,(3)若按方案一:则有13a﹣4a=20,解得a=(不是正整数,不符合题意),若按方案二:则有8a﹣6a=20,解得a=10(符合题意),若按方案三:则有3a﹣8a=20,解得a=﹣4(不是正整数,不符合题意),所以购买方案是:甲种图书6套,乙种图书8套,丙种图书6套,a=10.【关键点拨】本题主要考查一次函数与不等式等知识的综合,注意运算的准确性及灵活根据题意进行方案选择.33.如图,在平面直角坐标系中,一次函数y=﹣x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.【答案】(1)(4,0);(2)①当0<t≤1时,S =t2;②当1<t≤时,S =﹣t2+18t;③当<t≤2时,S =﹣3t2+12;(3)OT+PT的最小值为.(2)当点Q在原点O时,OQ=6,∴AP=OQ=3,∴t=3÷3=1,①当0<t≤1时,如图1,令x=0,∴y=4,∴B(0,4),∴OB=4,∵A(6,0),∴OA=6,∴CN=t,∴S=S正方形PQMN﹣S△CDN=(3t)2﹣t×t=t2;②当1<t≤时,如图2,同①的方法得,DN=t,CN=t,∴S=S矩形OENP﹣S△CDN=3t×(6﹣3t)﹣t×t=﹣t2+18t;③当<t≤2时,如图3,S=S梯形OBDP=(2t+4)(6﹣3t)=﹣3t2+12;(3)如图4,由运动知,P(6﹣3t,0),Q(6﹣6t,0),∴M(6﹣6t,3t),∵T是正方形PQMN的对角线交点,∴T(6﹣t,t)∴点T是直线y=﹣x+2上的一段线段,(﹣3≤x<6),作出点O关于直线y=﹣x+2的对称点O'交此直线于G,过点O'作O'F⊥x轴,则O'F就是OT+PT的最小值,由对称知,OO'=2OG,【关键点拨】此题是一次函数综合题,主要考查了正方形的面积,梯形,三角形的面积公式,正方形的性质,勾股定理,锐角三角函数,用分类讨论的思想解决问题是解本题的关键,找出点T的位置是解本题(3)的难点.34.如图,在平面直角坐标系中,点F的坐标为(0,10).点E的坐标为(20,0),直线l1经过点F和点E,直线l1与直线l2 、y=x相交于点P.(1)求直线l1的表达式和点P的坐标;(2)矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.已知矩形ABCD以每秒个单位的速度匀速移动(点A移动到点E时止移动),设移动时间为t秒(t>0).①矩形ABCD在移动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;②若矩形ABCD在移动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.【答案】(1)直线l1的表达式为y=﹣x+10,点P坐标为(8,6);(2)①t值为或;②当t=时,△PMN的面积等于18.(2)①如图,当点D在直线上l2时,∵AD=9∴点D与点A的横坐标之差为9,∴将直线l1与直线l2的解析式变形为x=20﹣2y,x=y,∴y﹣(20﹣2y)=9,解得:y=,∴x=20﹣2y=,。

2020年江苏中考数学压轴题精选精练5(解析版)

2020年江苏中考数学压轴题精选精练5(解析版)

2020年中考数学压轴题精选精练5一、选择题1.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是()A.无实数根B.有两个正根C.有两个根,且都大于﹣3mD.有两个根,其中一根大于﹣m2.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP =QO,则的值为()A.B.C.D.3.如图,D是△ABC内一点,BD⊥CD,AD=7,BD=4,CD=3,E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH的周长为()A.12 B.14 C.24 D.214.如图,AB是半圆O的直径,且AB=12,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是()A.4πB.5πC.6πD.8π5.如图,△ABC和△DCE都是边长为8的等边三角形,点B,C,E在同一条直线上接BD,AE,则四边形FGCH的面积为()A.B.C.D.6.如图,△ABC内接于⊙O,∠A=60°,BC=4,当点P在上由B点运动到C点时,弦AP的中点E运动的路径长为()A.πB.πC.πD.2二、填空题1.如图,四边形ABCD中,已知AB=AD,∠BAD=60°,∠BCD=120°,若四边形ABCD 的面积为4,则AC=.第1题第2题2.如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为.3.如图,边长为5的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN 长度的最小值是.第3题第4题4.如图,AB为⊙O的直径,点C、D分别是半圆AB的三等分点,AB=4,点P自A点出发,沿弧ABC向C点运动,T为△P AC的内心.当点P运动到使BT最短时就停止运动,点T运动的路径长为5.如图,在四边形ABCD中,∠ADC=90°,∠BAD=60°,对角线AC平分∠BAD,且AB=AC=4,点E、F分别是AC、BC的中点,连接DE、EF、DF,则DF的长为.第3题第4题6.如图,AB为半圆O的直径,点C在半圆O上,AB=8,∠CAB=60°,P是弧上的一个点,连接AP,过点C作CD⊥AP于点D,连接BD,在点P移动过程中,BD长的最小值为.三、解答题1.如图,△ABC是等边三角形,D是BC边的中点,以D为顶点作一个120°的角,角的两边分别交直线AB、直线AC于M、N两点.以点D为中心旋转∠MDN(∠MDN的度数不变),当DM与AB垂直时(如图①所示),易证BM+CN=BD.(1)如图②,当DM与AB不垂直,点M在边AB上,点N在边AC上时,BM+CN=BD是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(2)如图③,当DM与AB不垂直,点M在边AB上,点N在边AC的延长线上时,BM+CN =BD是否仍然成立?若不成立,请写出BM,CN,BD之间的数量关系,不用证明.2.如图,抛物线23(0)y ax ax c a =-+≠与x 轴交于A ,B 两点,交y 轴于点C ,其中A (-1,0),C (0,3). (1) 求抛物线的解析式(2) 点P 是线段BC 上方抛物线上一动点(不与B ,C 重合),过点P 作PD ⊥x 轴,垂足为D ,交BC 于点E ,作PF ⊥直线BC 于点F ,设点P 的横坐标为x ,△PEF 的周长记为l ,求l 关于x 的函数关系式,并求出l 的最大值及此时点P 的坐标(3) 点H 是直线AC 上一点,该抛物线的对称轴上一动点G ,连接OG ,GH ,则两线段OG ,GH 的长度之和的最小值等于______,此时点G 的坐标为_____(直接写出答案。

专题05 勾股定理必考压轴题(学生版)

专题05 勾股定理必考压轴题(学生版)

专题05勾股定理一.选择题1.(2分)(2022秋•长安区校级期末)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC 为0.7m,梯子顶端到地面的距离AC 为2.4m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离为1.5m,则小巷的宽为()A.2m B.2.5m C.2.6m D.2.7m2.(2分)(2022秋•城关区校级期末)以下列各组数为边长,能构成直角三角形的是()A.B.、、C.、、D.、、3.(2分)(2022春•温州校级月考)如图,在Rt△ABC 中,∠C=90°,以△ABC 的三边为边向外做正方形ACDE,正方形CBGF,正方形AHIB,连结EC,CG,作CP⊥CG 交HI 于点P,记正方形ACDE 和正方形AHIB 的面积分别为S 1,S 2,若S 1=4,S 2=7,则S △ACP :S △BCP 等于()A.2:B.4:3C.:D.7:44.(2分)(2022春•海安市期中)《九章算术》中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?题意是:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?设折断处离地面的高度为x 尺,则可列方程为()A.x 2−3=(10−x)2B.x 2−32=(10−x)2C.x 2+3=(10−x)2D.x 2+32=(10−x)25.(2分)(2022春•南岗区校级期中)如图,在四边形ABCD中,∠ABC=90°,AB=1,BC=2,CD=2,,则四边形ABCD的面积是()A.B.4C.D.6.(2分)(2022秋•榕城区期中)勾股定理是一个古老的数学定理,它有很多种证明方法,如图所示四幅几何图形中,不能用于证明勾股定理的是()A.B.C.D.7.(2分)(2022春•静海区校级期中)如图,在△ABC中,AD⊥BC于点D,若AB=17,BD=15,DC=6,则AC 的长为()A.11B.10C.9D.88.(2分)(2022春•康县期末)若一个直角三角形的两边长为4和5,则第三边长为()A.3B.C.8D.3或9.(2分)(2022春•丹凤县期末)如图,在△ABC 中,∠C=90°,AC=3,BC=2,以AB 为一条边向三角形外部作正方形,则正方形的面积是()A.13B.12C.6D.310.(2分)(2022春•朝天区期末)如图,在四边形ABCD 中,∠DAB=∠BCD=90°,分别以四边形ABCD 的四条边为边向外作四个正方形,面积分别为S 1,S 2,S 3,S 4.若S 1=48,S 2+S 3=135,则S 4=()A.183B.87C.119D.81二.填空题11.(2分)(2022秋•莱阳市期末)如图,在△ABC 中,∠C=90°,点D 是BC 上的点,若BD=2,DC=3,则AB 2﹣AD 2的值为.12.(2分)(2022秋•增城区期末)如图,四边形ABCD 中,AB=14,BC=10,CD=8,DA=6,其中∠D=90°,则四边形ABCD 的面积是.13.(2分)(2022春•鄂州期中)学习完《勾股定理》后,尹老师要求数学兴趣小组的同学测量学校旗杆的高度.同学们发现系在旗杆顶端的绳子垂到了地面并多出了一段,但这条绳子的长度未知.如图,经测量,绳子多出的部分长度为1米,将绳子沿地面拉直,绳子底端距离旗杆底端4米,则旗杆的高度为米.14.(2分)(2022春•丹江口市期末)如图,已知,∠MON=∠BAC=90°,且点A在OM上运动,点B在ON上运动,若AB=8,AC=6,则OC的最大值为.15.(2分)(2022春•武侯区校级期末)如图,在正方形网格中,每个小正方形的边长均为1,点A,B,C,D,P 都在格点上,连接AP,CP,CD,则∠PAB﹣∠PCD=.16.(2分)(2022春•黔东南州期末)如图Rt△ABC中,∠ABC=90°,BC=,AC=5,分别以三边为直径画半圆,则两月形图案的面积之和(阴影部分的面积)是.17.(2分)(2022春•长汀县期末)课堂上,王老师将一副标准三角板如图放置,若DB=2,那么点A到BC的距离为.18.(2分)(2022春•宁乡市期末)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC,BD交于点O.若AB=3,CD=2,则AD2+BC2=.19.(2分)(2021春•大冶市期中)如图,在正方形ABCD的对角线AC上取一点E,使得∠CDE=15°,连接BE 并延长BE到F,使CF=CB,BF与CD相交于点H,若AB=,有下列四个结论:①∠CBE=15°;②AE=+1;=;④CE+DE=EF.则其中正确的结论有.(填序号)③S△DEC20.(2分)(2021春•罗湖区校级期末)如图,在△ABC中,∠BAC=120°,AB=4,D为BC的中点,AD⊥AB,则AC的长为.21.(2分)(2022春•莘县期末)如图,“赵爽弦图”由4个完全一样的直角三角形所围成,在Rt△ABC中,AC =b,BC=a,∠ACB=90°,若图中大正方形的面积为60,小正方形的面积为10,则(a+b)2的值为.三.解答题22.(6分)(2022秋•沈丘县期末)如图,△ABC的顶点在正方形网格中的格点上,若小方格边长为1,请你根据所学的知识解决下列问题.(1)△ABC的面积为;(2)判断△ABC是什么形状,并说明理由.23.(6分)(2022春•开福区校级月考)如图所示,三个村庄A,B,C之间的距离分别是AB=5km,BC=12km,AC=13km,要从B修一条公路BD直达AC,已知公路的造价260万元/km,修这条公路的最低造价是多少?24.(6分)(2022春•闽侯县期中)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB.若AC=4,BC=22,求AB及CD的长.25.(8分)(2022春•漳平市期末)如图,有一个长方形水池,它的长是4米,池中央长了一棵芦苇,露出水面1米,将芦苇拽至池边,它的顶端刚好与水面一样平,求水有多深?芦苇有多长?26.(8分)(2022春•朝天区期末)城市绿化是城市重要的基础设施,是改善生态环境和提高广大人民群众生活质量的公益事业.某小区在社区管理人员及社区居民的共同努力之下,在临街的拐角清理出了一块可以绿化的空地(如图),已知AB=4m,BC=3m,AD=12m,CD=13m,∠B=90°.现计划在空地内种草,若每平方米草地造价30元,求这块地全部种草的费用.27.(8分)(2022春•黄冈期末)如图,某工人在两墙AB,CD之间施工(两墙与地面垂直),架了一架长为2.5m 的梯子DE,此时梯子底端E距离墙角C点0.7m,由于E点没有固定好,向后滑动到墙角B处,使梯子顶端D沿墙下滑了0.4m到F处,求梯子底端E向后滑动的距离BE的长.28.(8分)(2022春•霍邱县期末)LED感应灯是一种通过感应模块自动控制光源点亮的一种新型智能照明产品.当人(或动物)移至LED灯一定距离时灯亮,人走开灯灭,给人们的生活带来了极大的方便.如图,有一个由传感器A控制的LED灯安装在门的上方,离地面高4.5m的墙壁上,当人移至距离该灯5m及5m以内时,灯就会自动点亮.请问:如果一个身高1.5m的人走到离门多远的地方,该灯刚好点亮?29.(8分)(2022春•大观区校级期末)如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°得△DAE,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE 面积等于Rt△BAE和Rt△BFE的面积之和,根据图形写出一种证明勾股定理的方法.。

挑战中考数学压轴题5-6

挑战中考数学压轴题5-6

因动点产生的梯形问题1、已知平面直角坐标系xOy中,抛物线y=ax2-(a+1)x与直线y=kx的一个公共点为A(4,8).(1)求此抛物线和直线的解析式;(2)若点P在线段OA上,过点P作y轴的平行线交(1)中抛物线于点Q,求线段PQ 长度的最大值;(3)记(1)中抛物线的顶点为M,点N在此抛物线上,若四边形AOMN恰好是梯形,求点N的坐标及梯形AOMN的面积.2、已知二次函数的图象经过A(2,0)、C(0,12)两点,且对称轴为直线x=4,设顶点为点P,与x轴的另一交点为点B.(1)求二次函数的解析式及顶点P的坐标;(2)如图1,在直线y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒2个单位长度的速度由点P向点O运动,过点M作直线MN//x轴,交PB于点N.将△PMN沿直线MN对折,得到△P1MN.在动点M的运动过程中,设△P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒,求S关于t的函数关系式.3、如图1,在平面直角坐标系xOy 中,抛物线的解析式是y =2114x +,点C 的坐标为(–4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上.(1)写出点M 的坐标;(2)当四边形CMQP 是以MQ ,PC 为腰的梯形时.①求t 关于x 的函数解析式和自变量x 的取值范围;②当梯形CMQP 的两底的长度之比为1∶2时,求t 的值.图14、已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线x y 32-=与边BC 相交于点D . (1)求点D 的坐标;(2)抛物线c bx ax y ++=2经过点A 、D 、O ,求此抛物线的表达式;(3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.图15、如图1,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),△ABC 的面积为45. (1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与△ABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使以A 、B 、C 、D 为顶点的四边形为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由.6、如图1,在Rt △ABC 中,∠C =90°,AC =3,AB =5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设P 、Q 运动的时间是t 秒(t >0).(1)当t =2时,AP =_____,点Q 到AC 的距离是________;(2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式(不必写出t 的取值范围);(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值;若不能,请说明理由;(4)当DE 经过点C 时,请直接写出t 的值.因动点产生的面积问题1、如图1,直线l 经过点A (1,0),且与双曲线m y x=(x >0)交于点B (2,1).过点(,1)P p p -(p >1)作x 轴的平行线分别交曲线m y x =(x >0)和m y x=-(x <0)于M 、N 两点. (1)求m 的值及直线l 的解析式;(2)若点P 在直线y =2上,求证:△PMB ∽△PNA ;(3)是否存在实数p ,使得S △AMN =4S △AMP ?若存在,请求出所有满足条件的p 的值;若不存在,请说明理由.2、如图1,在平面直角坐标系xOy 中,直角梯形OABC 的顶点O 为坐标原点,顶点A 、C 分别在x 轴、y 轴的正半轴上,CB ∥OA ,OC =4,BC =3,OA =5,点D 在边OC 上,CD =3,过点D 作DB 的垂线DE ,交x 轴于点E .(1)求点E 的坐标;(2)二次函数y =-x 2+bx +c 的图像经过点B 和点E .①求二次函数的解析式和它的对称轴;②如果点M 在它的对称轴上且位于x 轴上方,满足S △CEM =2S △ABM ,求点M 的坐标.3、如图1,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1).点D是线段BC上的动点(与端点B、C不重合),过点D作直线12y x b=-+交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由.4、如图1,在△ABC中,∠C=90°,A C=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.(1)求线段AD的长;(2)若EF⊥AB,当点E在斜边AB上移动时,①求y与x的函数关系式(写出自变量x的取值范围);②当x取何值时,y有最大值?并求出最大值.(3)若点F在直角边AC上(点F与A、C不重合),点E在斜边AB上移动,试问,是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.5、如图1,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴上运动,当P点到D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图2所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标.(4)如果点P、Q保持原速度速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.6、在直角坐标系中,抛物线c+=2经过点(0,10)和点(4,2).xbxy+(1)求这条抛物线的解析式.(2)如图1,在边长一定的矩形ABCD中,CD=1,点C在y轴右侧沿抛物线c+=2y+bxx滑动,在滑动过程中CD∥x轴,AB在CD的下方.当点D在y轴上时,AB落在x轴上.①求边BC的长.②当矩形ABCD在滑动过程中被x轴分成两部分的面积比为1:4时,求点C的坐标.。

压轴题05 立体几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用-理)

压轴题05 立体几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用-理)

压轴题05立体几何压轴题题型/考向一:点、线、面间的位置关系和空间几何体的体积、表面积题型/考向二:外接球、内切球等相关问题题型/考向三:平行关系、垂直关系、二面角等相关问题一、空间几何体的体积、表面积热点一空间几何体的侧面积、表面积柱体、锥体、台体和球的表面积公式:(1)若圆柱的底面半径为r,母线长为l,则S侧=2πrl,S表=2πr(r+l).(2)若圆锥的底面半径为r,母线长为l,则S侧=πrl,S表=πr(r+l).(3)若圆台的上、下底面半径分别为r′,r,则S侧=π(r+r′)l,S表=π(r2+r′2+r′l +rl).(4)若球的半径为R,则它的表面积S=4πR2.热点二空间几何体的体积柱体、锥体、台体和球的体积公式:(1)V柱体=Sh(S为底面面积,h为高);Sh(S为底面面积,h为高);(2)V锥体=13(S上+S下+S上S下)h(S上、S下分别为上、下底面面积,h为高);(3)V台体=13(4)V球=4πR3.3二、外接球、内切球问题类型一外接球问题考向1墙角模型墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长.长方体同一顶点的三条棱长分别为a,b,c,外接球半径为R.则(2R)2=a2+b2+c2,即2R=a2+b2+c2.常见的有以下三种类型:考向2对棱相等模型对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长,如图所示,(2R )2=a 2+b 2+c 2(长方体的长、宽高分别为a ,b ,c ),即R 2=18(x 2+y 2+z 2),如图.考向3汉堡模型汉堡模型是直三棱柱、圆柱的外接球模型,模型如下,由对称性可知,球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2的连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=h 2,所以R 2=r 2+h 24.考向4垂面模型垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球;如图所示,由对称性可知球心O 的位置是△CBD 的外心O 1与△AB 2D 2的外心O 2连线的中点,算出小圆O1的半径CO1=r,OO1=h2,则R=r2+h24.类型二内切球问题内切球问题的解法(以三棱锥为例)第一步:先求出四个表面的面积和整个锥体的体积;第二步:设内切球的半径为r,建立等式V P-ABC=V O-ABC+V O-P AB+V O-P AC+V O-PBC⇒V P-ABC=13S△ABC·r+13S△P AB·r+13S△P AC·r+13S PBC·r=13(S△ABC+S△P AB+S△P AC+S△PBC)r;第三步:解出r=3V P-ABCS△ABC+S△P AB+S△P AC+S△PBC.类型三球的截面问题解决球的截面问题抓住以下几个方面:(1)球心到截面圆的距离;(2)截面圆的半径;(3)直角三角形(球心到截面圆的距离、截面圆的半径、球的半径构成的直角三角形).三、平行关系和垂直关系的证明、二面角等热点一空间线、面位置关系的判定判断空间线、面位置关系的常用方法(1)根据空间线面平行、垂直的判定定理和性质定理逐项判断,解决问题.(2)利用直线的方向向量、平面的法向量判断.(3)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线、面的位置关系,并结合有关定理进行判断.热点二几何法证明平行、垂直1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.热点三空间向量法证明平行、垂直1.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,在平面α内的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.2.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.四、空间角、距离问题热点一异面直线所成的角求异面直线所成角的方法方法一:综合法.步骤为:①利用定义构造角,可固定一条直线,平移另一条直线,或将两条直线同时平移到某个特殊的位置;②证明找到(或作出)的角即为所求角;③通过解三角形来求角.方法二:空间向量法.步骤为:①求出直线a ,b 的方向向量,分别记为m ,n ;②计算cos 〈m ,n 〉=m ·n|m ||n |;③利用cos θ=|cos 〈m ,n 〉|,以及θ,π2,求出角θ.热点二直线与平面所成的角求直线与平面所成角的方法方法一:几何法.步骤为:①找出直线l 在平面α上的射影;②证明所找的角就是所求的角;③把这个角置于一个三角形中,通过解三角形来求角.方法二:空间向量法.步骤为:①求出平面α的法向量n 与直线AB 的方向向量AB →;②计算cos 〈AB →,n 〉=AB →·n |AB →||n |;③利用sin θ=|cos 〈AB →,n 〉|,以及θ∈0,π2,求出角θ.热点三平面与平面的夹角求平面与平面的夹角方法方法一:几何法.步骤为:①找出二面角的平面角(以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角就是二面角的平面角);②证明所找的角就是要求的角;③把这个平面角置于一个三角形中,通过解三角形来求角.求二面角的平面角的口诀:点在棱上,边在面内,垂直于棱,大小确定.方法二:空间向量法.步骤为:①求两个平面α,β的法向量m ,n ;②计算cos 〈m ,n 〉=m ·n|m |·|n |;③设两个平面的夹角为θ,则cos θ=|cos 〈m ,n 〉|.热点四距离问题1.空间中点、线、面距离的相互转化关系2.空间距离的求解方法有:(1)作垂线段;(2)等体积法;(3)等价转化;(4)空间向量法.一、单选题1.在正方体1111ABCD A B C D -中,直线m 、n 分别在平面ABCD 和11ABB A 内,且m n ⊥,则下列命题中正确的是()A .若m 垂直于AB ,则n 垂直于AB B .若m 垂直于AB ,则n 不垂直于ABC .若m 不垂直于AB ,则n 垂直于ABD .若m 不垂直于AB ,则n 不垂直于AB【答案】C【详解】AB 选项,若m 垂直于AB ,由面ABCD ⊥面11ABB A ,面ABCD ⋂面11ABB A AB =,可得m 垂直于面11ABB A ,即面11ABB A 内的所有直线均与m 垂直,而n 可能垂直于AB ,也可能不垂直于AB ,故A 错误,B 错误;CD 选项,若m 不垂直于AB ,则,BC m 为面ABCD 内的两条相交直线,由题可知BC n ⊥,m n ⊥,则n 垂直面ABCD ,又AB ⊂面ABCD ,所以n 垂直于AB ,故C 正确,D 错误.故选:C2.在中国古代数学经典著作《九章算术》中,称图中的多面体ABCDEF 为“刍甍”.书中描述了刍甍的体积计算方法:求积术曰,倍下袤,上袤从之,以广乘之,又以高乘之,六而一,即()216V AB EF AD h =+⨯⨯,其中h 是刍甍的高,即点F 到平面ABCD 的距离.若底面ABCD 是边长为4的正方形,2EF =,且//EF AB ,ADE V 和BCF △是等腰三角形,90AED BFC ∠=∠= ,则该刍甍的体积为()A .3B .3C .D .403【答案】B【详解】如图所示,设点F 在底面的射影为G ,,H M 分别为,BC AD 的中点,连接,,EM FH MH ,则FG 即为刍甍的高,-P ABC 面积恰为该容器的表面积)展开后是如图所示的边长为10的正方形123APP P (其中点B 为23P P 中点,点C为12PP 中点),则该玩具的体积为()A .6253B .1253C .125D .2503【答案】B【详解】该玩具为三棱锥-P ABC ,即三棱锥A PBC -,则PA ⊥底面PBC ,且10PA =,PBC 面积为252,所以12512510323P ABC V -=⨯⨯=.故选:B.4.攒尖是中国古代建筑中屋顶的一种结构形式,宋代称为撮尖,清代称攒尖.通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,也有单檐和重檐之分,多见于亭阁式建筑、园林建筑.如图所示的建筑屋顶是圆形攒尖,可近似看作一个圆锥,已知其轴截面(过圆锥旋转轴的截面)是底边长为6m ,腰长为5m 的等腰三角形,则该屋顶的体积约为()A .38πmB .39πmC .310πmD .312πm 【答案】D【详解】如图所示为该圆锥轴截面,由题知该圆锥的底面半径为15.已知为两条不同的直线,,为两个不同的平面,则下列命题中正确的是()A .若//,//a b b α,则//a αB .若//,,//a b a b αβ⊥,则αβ⊥C .若//,//,//a b αβαβ,则//a bD .若//,//,a b αβαβ⊥,则a b⊥【答案】B【详解】对于A ,若//,//a b b α,则//a α或a α⊂,故A 错误;对于B ,若//,//a b b β,则a β⊂或//a β,若a β⊂,因为a α⊥,则αβ⊥,若//a β,如图所示,则在平面β一定存在一条直线//m a ,因为a α⊥,所以m α⊥,又m β⊂,所以αβ⊥,综上若//,,//a b a b αβ⊥,则αβ⊥,故B 正确;对于C ,若//,//,//a b αβαβ,则直线,a b 相交或平行或异面,故C 错误;对于D ,若//,//,a b αβαβ⊥,则直线,a b 相交或平行或异面,故D 错误.故选:B.6.在直三棱柱111ABC A B C -中,ABC 为等腰直角三角形,若三棱柱111ABC A B C -的体积为32,则该三棱柱外接球表面积的最小值为()A .12πB .24πC .48πD .96π7.已知三棱锥-P ABC 中,底面ABC 是边长为的正三角形,点P 在底面上的射影为底面的中心,且三棱锥-P ABC 外接球的表面积为18π,球心在三棱锥-P ABC 内,则二面角P AB C --的平面角的余弦值为()A .12B .13C 22D 即PDC ∠为二面角P AB C --的平面角,由23AB =,得22OC OD ==,显然三棱锥线段PO 上,由三棱锥-P ABC 的外接球的表面积为8.已知三棱锥-P ABC 的四个顶点都在球O的球面上,4PB PC AB AC ====,2PA BC ==,则球O 的表面积为()A .316π15B .79π15C .158π5D .79π5而,,AB AC A AB AC =⊂ 平面ABC ,因此在等腰ABC 中,4,2AB AC BC ===,则215sin 1cos ABC ABC ∠=-∠=,二、多选题9.已知直线a ,b ,c 两两异面,且a c ⊥,b c ⊥,下列说法正确的是()A .存在平面α,β,使a α⊂,b β⊂,且c α⊥,c β⊥B .存在平面α,β,使a α⊂,b β⊂,且c α∥,c β∥C .存在平面γ,使a γ∥,b γ∥,且c γ⊥D .存在唯一的平面γ,使c γ⊂,且a ,b 与γ所成角相等【答案】ABC【详解】对于A,平移直线b 到与直线a 相交,设平移后的直线为b ',因为b c ⊥,所以b c '⊥,设直线,a b '确定的平面为α,则a c ⊥,b c '⊥,直线b '和a 相交,所以c α⊥,同理可得:c β⊥,故A 对;对于B,平移直线c 到与直线a 相交,设平移后的直线为c ',设直线,a c '确定的平面为α,因为c //c ',且α⊄c ,所以c α∥,同理可得:c β∥,故B 对;对于C,同时平移直线b 和直线a ,令平移后的直线相交,设平移后的直线为,a b '''',因为a c ⊥,b c ⊥,所以a c ''⊥,b c ''⊥,设直线,a b ''''确定的平面为γ,则a γ∥,b γ∥,且c γ⊥,故C 对;对于D ,由对称性可知,存在两个平面γ,使c γ⊂,且a ,b 与γ所成角相等,故D 错误;故选:ABC.10.已知正方体1111ABCD A B C D -的外接球表面积为12π,,,M N P 分别在线段1BB ,1CC ,1DD 上,且,,,A M N P 四点共面,则().A .AP MN=B .若四边形AMNP 为菱形,则其面积的最大值为C .四边形AMNP 在平面11AAD D 与平面11CC D D 内的正投影面积之和的最大值为6D .四边形AMNP 在平面11AA D D 与平面11CC D D 内的正投影面积之积的最大值为4设正方体1111ABCD A B C D -依题意,234π()12π2a ⋅=,解得因为平面11BCC B ∥平面ADD则M 在平面11AA D D 上的投影落在设为H ,则四边形AGHP 为四边形AMNP 由于,AM PN GM HN ==,则(当1x y ==时取“=”),故C 错误,D 正确,故选:ABD三、解答题11.如图,四棱锥S ABCD -的底面为菱形,60BAD ∠=︒,2AB =,4SD =,SD ⊥平面ABCD ,点E 在棱SB 上.(1)证明:AC DE ⊥;(2)若三棱锥E ABC -,求点E 到平面SAC 的距离.【详解】(1)证明:如图,连接BD ,因为四边形ABCD 为菱形,所以AC BD ⊥,因为SD ⊥平面ABCD ,AC ⊂平面ABCD ,所以SD AC ⊥,又因为SD BD D = ,所以AC ⊥平面SBD ,又因为DE ⊂平面SBD ,所以AC DE ⊥.(2)解:设点E 到平面ABC 则三棱锥E ABC -的体积V (11sin 18032AB BC =⨯⨯⨯⨯︒-12.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,,AB AD O =为BD 的中点.(1)证明:OA CD ⊥;(2)已知OCD 是边长为1的等边三角形,已知点E 在棱AD 的中点,且二面角E BC D --的大小为45 ,求三棱锥A BCD -的体积.【详解】(1)证明:AB AD = ,O 为BD 的中点,AO BD ∴⊥,又平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,AO ⊂平面BCD ,所以AO ⊥平面BCD ,又CD ⊂平面BCD ,AO CD ∴⊥.(2)取OD 的中点F ,因为OCD 为等边三角形,所以CF OD ⊥,过O 作//OM CF ,与BC 交于M ,则OM OD ⊥,由(1)可知OA ⊥平面BCD ,设OA a =,因为OA ⊥平面BCD ,所以设平面BCE 的一个法向量为n =3300x y n BC ⎧+=⎪⎧⋅= ○热○点○题○型二外接球、内切球等相关问题一、单选题1.已知ABC 是边长为3的等边三角形,其顶点都在球O 的球面上,若球O 的体积为323π,则球心O 到平面ABC 的距离为()A B .32C .1D 因为ABC 是边长为3的等边三角形,且所以13O B =,又因为球O 的体积为32π2.已知三棱锥-P ABC 的底面ABC 是边长为1的正三角形,侧棱,,PA PB PC 两两垂直,若此三棱锥的四个顶点都在同一个球面上,则该球的表面积是()A .3πB .πC .3π4D .3π23.一个圆锥的底面圆和顶点都恰好在一个球面上,且这个球的半径为5,则这个圆锥的体积的最大值时,圆锥的底面半径为()A .103B .2C .3D 【答案】C【详解】解:如图,设圆锥的底面半径为r ,球半径5R =,球心为O .过圆锥的顶点P 作底面的垂线2125OO r =-.所以圆锥的高h PO =4.已知圆锥的侧面积为2π,母线与底面所成角的余弦值为2,则该圆锥的内切球的体积为()A .4π3B .43π9C.27D5.如图,几何体Ω为一个圆柱和圆锥的组合体,圆锥的底面和圆柱的一个底面重合,圆锥的顶点为A ,圆柱的上、下底面的圆心分别为B 、C ,若该几何体Ω存在外接球(即圆锥的顶点与底面圆周在球面上,且圆柱的底面圆周也在球面上).已知24BC AB ==,则该组合体的体积等于()A .56πB .70π3C .48πD .64π【答案】A【详解】设该组合体外接球的球心为O ,半径为R ,易知球心在BC 中点,则224R AO ==+=.6.已知矩形ABCD的顶点都在球心为的体积为43,则球O的表面积为()A.76πB.112πC D.3故球的表面积为:2476πR π=,故选:A .7.水平桌面上放置了4个半径为2的小球,4个小球的球心构成正方形,且相邻的两个小球相切.若用一个半球形的容器罩住四个小球,则半球形容器内壁的半径的最小值为()A .4B .2C .2D .6此时,如上图示,O 为半球的球心,体的体对角线,且该小球与半球球面上的切点与8.已知三棱锥-PABC的四个顶点均在球的球面上,,PB AC== PC AB=Q为球O的球面上一动点,则点Q到平面PAB 的最大距离为()A2211BC2211D2223BD BE AB∴+==,BD2226BD BE BF∴++=,∴球在PAB中,cosABABP∠=二、填空题9.在三棱锥-P ABC 中,PA ⊥平面ABC ,14AB AC PA AB AC ⊥=+=,,,当三棱锥的体积最大时,三棱锥-P ABC 外接球的体积为______.则三棱锥-P ABC 外接球的直径为2R PA =因此,三棱锥-P ABC 外接球的体积为34π3R10.如图,在直三棱柱111中,1.设为1的中点,三棱锥D ABC -的体积为94,平面1A BC ⊥平面11ABB A ,则三棱柱111ABC A B C -外接球的表面积为______.【答案】27π【详解】取1A B 的中点E ,连接AE ,如图.因为1AA AB =,所以1AE A B ⊥.又面1A BC ⊥面11ABB A ,面1A BC ⋂面111ABB A A B =,且AE ⊂面11ABB A ,所以⊥AE 面1A BC ,BC ⊂面1A BC ,所以AE BC ⊥.在直三棱柱111ABC A B C -中,1BB ⊥面ABC ,BC ⊂面ABC ,所以1BB BC ⊥.又AE ,1BB ⊂面11ABB A ,且AE ,1BB 相交,所以BC ⊥面11ABB A ,AB ⊂面11ABB A ,所以BC AB ⊥.11.如图,直三棱柱111的六个顶点都在半径为1的半球面上,,侧面11BCC B 是半球底面圆的内接正方形,则直三棱柱111ABC A B C -的体积为___________.12.如图所示的由4个直角三角形组成的各边长均相等的六边形是某棱锥的侧面展开图,若该六边形的面积为12+,则该棱锥的内切球半径为___.由题意,侧面展开图的面积由,PD AD PD DC ⊥⊥,○热○点○题○型三平面关系、垂直关系、二面角等相关问题1.已知多面体ABCDEF 中,四边形CDEF 是边长为4的正方形,四边形ABCD 是直角梯形,90ADC DAB ∠=∠=︒,36BE AB ==,4=AD .(1)求证:平面ADF ⊥平面BCE ;(2)求直线AF 与平面BCF 所成角的正弦值.【详解】(1)因为四边形CDEF 是边长为4的正方形,所以CE ⊥DF ,ED ⊥DC ,因为四边形ABCD 是直角梯形,90ADC DAB ∠=∠=︒,所以AD ⊥CD ,AB ⊥AD ,故直线AF与平面BCF所成角的正弦值为-PA 2.如图,在四棱锥P ABCD平面PAD⊥平面ABCD.Array(1)证明:平面CDM⊥平面PAB;(2)若AD BC ∥,2AD BC =,2AB =,直线PB 与平面MCD ,求三棱锥P MCD -的体积.【详解】(1)取AD 中点为N ,连接PN ,因为PAD 为等边三角形,所以PN AD ^,且平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PN ⊂面PAD ,所以PN ^平面ABCD ,又AB ⊂平面ABCD ,所以PN AB ⊥,又因为PD AB ⊥,PN PD P = ,,PN PD ⊂平面PAD ,所以AB ⊥平面PAD ,又因为DM ⊂平面PAD ,所以AB DM ⊥,因为M 为AP 中点,所以DM PA ⊥,且PA AB A = ,,PA PB ⊂平面PAD ,所以DM ⊥平面PAB ,且DM ⊂平面CDM ,所以平面CDM ⊥平面PAB .(2)由(1)可知,PN AB ⊥且PD AB ⊥,PN PD P = ,所以AB ⊥平面PAD ,△为边长为6的等边三角形,E为BD的中点,F为AE的三等分点,且2AF FE ABD=.(1)求证://FM 面ABC ;(2)若二面角A BD C --的平面角的大小为23π,求直线EM 与面ABD 所成角的正弦值.【详解】(1)在BE 上取一点N ,使得12BN NE =,连接FN ,NM ,∵6BD =,∴116BN BD ==,2NE =,3ED =,∵12AF FE =,∴12BN AF NE FE ==,则FN AB ∥,又FN ⊄面ABC ,AB ⊂面ABC ,∴FN ∥面ABC ,∵15BN CM ND MD ==,∴NM BC ∥.∵NM ⊄面ABC ,BC ⊂面ABC ,∴NM ∥面ABC ,∵FN NM N = ,,FN NM ⊂面FNM ,∴面FNM ∥面ABC ,又FM ⊂面FNM ,4.已知底面是正方形,平面,,,点E 、F 分别为线段PB 、CQ 的中点.(1)求证://EF平面PADQ ;(2)求平面PCQ 与平面CDQ 夹角的余弦值;(3)线段PC 上是否存在点M ,使得直线AM 与平面PCQ 所成角的正弦值是7,若存在求出PM MC的值,若不存在,说明理由.【详解】(1)证明:法一:分别取AB 、CD 的中点G 、H ,连接EG 、GH 、FH ,由题意可知点E 、F 分别为线段PB 、CQ 的中点.所以//EG PA ,//FH QD ,因为//PA DQ ,所以//EG FH ,所以点E 、G 、H 、F 四点共面,因为G 、H 分别为AB 、CD 的中点,所以//GH AD ,因为AD ⊂平面ADQP ,GH ⊄平面ADQP ,所以//GH 平面ADQP ,又因为//FH QD ,QD ⊂平面ADQP ,FH ⊄平面ADQP ,所以//FH 平面ADQP ,法二:因为ABCD 为正方形,且以点A 为坐标原点,以AB 、空间直角坐标系,则()0,0,3P 、()3,3,0C 、()0,3,1Q 所以()0,3,1EF =- ,易知平面PADQ 所以0a EF ⋅= ,所以E F a ⊥ ,EF ⊄ADQP EF所在平面和圆所在的平面互相垂直,已知2,1AB EF ==.(1)求证:平面DAF ⊥平面CBF ;(2)当AD 的长为何值时,二面角C EF B --的大小为60︒?设()0AD t t =>,则(1,0,C -∴(1,0,0)EF = ,33,22CF ⎛= ⎝6.如图,在三棱柱111中,四边形11是边长为4的菱形,AB BC =,点D 为棱AC 上的动点(不与A 、C 重合),平面1B BD 与棱11AC 交于点E .(1)求证1BB DE //;(2)若平面ABC ⊥平面11AAC C ,160A AC ∠= ,判断是否存在点D 使得平面11A ABB 与平面1B BDE 所成的锐二面角为π3,并说明理由.【详解】(1)11//BB CC ,且1BB ⊂/平面11ACC A ,1CC ⊂平面11ACC A ,∴1//BB 平面11ACC A ,又∵1BB ⊂平面1B BD ,且平面1B BD 平面11ACC A DE =,∴1BB DE //;(2)连接1AC ,取AC 中点O ,连接1AO ,BO ,在菱形11ACC A 中,160A AC ∠=︒,∴1A AC △是等边三角形,又∵O 为AC 中点,∴1A O ⊥∵平面ABC ⊥平面11ACC A ,平面ABC ⋂平面11ACC A AC =∴1A O ⊥平面ABC ,OB ⊂平面。

小学六年级数学期末考试压轴题5

小学六年级数学期末考试压轴题5

小学六年级数学期末考试压轴题5
1.某商品的平均价格在一月份上调了10%,到二月份又下调了10%,这种商品从原价到二月份的价格变动情况如何?
解:设这种商品的原价为1
(1)一月份售价为(1+10%)
(2)二月份的售价为(1+10%)×(1-10%)
(3)所以二月份售价比原价下降了
1-(1+10%)×(1-10%)=1%
答:二月份比原价下降了1%
【数量关系】利润=售价-进货价
利润率=(售价-进货价)÷进货价×100%
售价=进货价×(1+利润率)
亏损=进货价-售价
亏损率=(进货价-售价)÷进货价×100%
【解题思路和方法】简单的题目可以直接利用公式,复杂的题目变通后利用公式。

2.在家家乐学校的运动会上,进行体操表演的同学排成方阵,每行22人,参加体操表演的同学一共有多少人?
解:22×22=484(人)
答:参加体操表演的同学一共有484人
【数量关系】(1)方阵每边人数与四周人数的关系:
四周人数=(每边人数-1)×4
每边人数=四周人数÷4+1
(2)方阵总人数的求法:
实心方阵:总人数=每边人数×每边人数
空心方阵:总人数=(外边人数)-(内边人数)内边人数=外边人数-层数×2
(3)若将空心方阵分成四个相等的矩形计算,则:总人数=(每边人数-层数)×层数×4。

三角形(五大压轴题专练)(解析版)-2023-2024学年八年级数学上册单元速记巧练(人教版)

三角形(五大压轴题专练)(解析版)-2023-2024学年八年级数学上册单元速记巧练(人教版)

三角形(五大压轴题专练)【题型一三角形中高线的综合问题】(1)如图1,连接AB 、AC ,求ABC 的面积;(2)如图2,延长BA 交直线m 交于点D ,在CD 上存在点P 坐标;(3)请在备用图中画图探究:若点P 是直线m 上的一个动点,连接1CMP BCM S S -=△时,直接写出点M的坐标.【答案】(1)3(2)点P 的坐标(3,2)或(9,2),(3)点M 的坐标为2(,0)3或2(,0)3-【分析】(1)根据点A 、B 、C 的坐标得2,OA OC OB ===(2)设(,2),(,2)D m P n ,根据BCD △的面积:113322m ⨯=⨯113(6)3(6)2222n n ⨯-⨯-⨯-⨯=,或11(6)3(6)22n n ⨯-⨯-⨯-(3)设(,2),(,2)D m P n ,根据+PCB BCM PCM S S S =△△△得132⨯1CMP BCM S S -=△得111231223t t ⨯⨯-⨯⨯=,计算得2t =,则BCD △的面积:11322m ⨯=⨯6m =,∵12ABP ABC S S =△△,∴11(6)3(6)22n n ⨯-⨯-⨯-⨯解得,3n =或9n =,∴点P 的坐标(3,2)或(9,2);(3)解:如图3中,设(D m +PCB BCM PCM S S S =△△△,111332222t a t ⨯⨯=⨯⨯=⨯⨯,13a t =,∵1CMP BCM S S -=△,(1)在题干的基础上,①如图2,点P 为BC 上一点,作PM AB ⊥,PN AC ⊥,设②如图3,当点P 在CB 延长线上时,猜想1d 、2d 之间又有什么样的数量关系,请证明你的猜想;(2)如图4,在ABC 中,10AB AC ==,12BC =,ABC S △点B 作BE BC ⊥,点P 是直线BE 上一动点,点Q 是直线值.【答案】(1)①见解析;②猜想:213412d d -=,证明见解析222∴124312d d +=②猜想:213412d d -=理由如下:,作PM AB ⊥,PN (2)作点D 关于直线BE 的对称点∴PD PD '=,PD PQ PD PQ'+=+∵点D 在BC 延长线上,则D ¢、B 、【点睛】本题考查了三角形高的定义,垂线段最短,熟练掌握等面积法求线段的长是解题的关键.3.在平面直角坐标系中,有点(),0A a ,(0,B 单位得到线段CD .(1)直接写出=a ______,b =______;(2)如图1,点E 为线段CD 上任意一点,点F 为线段AB 上任意一点,,求则OP CD AB ∥∥,∴180DEO EOP ∠+∠=︒,∴DEO EOP AFO ∠+∠+∠即33135360x y ++︒=︒,∴75x y +=︒,过G 作GH CD ∥,则GH ∴EGH DEG x ∠=∠=,∵6k =,∴()0,3C ,()6,6D ,设(),3K n ,∵BCK ABC ACK S S S =+△△△,∴1116663222n n ⨯⨯=⨯⨯+⨯⨯,【题型二三角形中中线的综合问题】【深入探究】(1)如图2,点D 在ABC 的边BC 上,点P 在AD 上.①若AD 是ABC 的中线,求证:APB APC S S =△△;②若3BD DC =,则:APB APC S S =△△______.【拓展延伸】∵点A、B、C、D分别为∴AG,BC,CE,∴12 GAH GADS S S==∴12 ADC ADGS S S==(1)如图2,延长ABC 的边BC 到点D ,使CD BC =,连接DA .若ACD 的面积为1S ,则1S =代数式表示);(2)如图3,延长ABC 的边BC 到点D ,延长边CA 到点E ,使CD BC =,AE CA =,连接DE .若面积为2S ,则2S =(用含a 的代数式表示);(3)在图3的基础上延长AB 到点F ,使BF AB =,连接FD ,FE ,得到DEF (如图4).若阴影部分的面积为3S ,则3S =(用含a 的代数式表示);拓展应用:(4)如图5,点D 是ABC 的边BC 上任意一点,点E ,F 分别是线段AD ,CE 的中点,且ABC 的面积为延长ABC 的边BC ∴12ACD AED ECD S S S ∆∆∆==22ECD ABC S S a ∆∆∴==,即22S a =;(3)由(2)得ECD S ∆同理:2EFA ABC S S ∆∆=3ECD EFA S S S ∆∆∴=++(4)2BEF S a =△,理由如下:理由:∵点E 是线段∴ABE BDE S S = ,S △∴12BCE ABC S S = .=,连接FD,FE,得到(3)在图3的基础上延长AB到点F,使BF AB积为3S,则3S=___________;(用含a的代数式表示)拓展与应用:(4)如图5,已知四边形ABCD的面积是a,E、F、G、H分别是AB、BC【答案】(1)a;(2)2a;(3)6a;(4)12 a.延长ABC∆的边BC∴12ACD AED ECD S S S∆∆∆==22ECD ABCS S a∆∆∴==,(4)解:如图5所示,连接则1,2AEO ABO S S S ∆∆=∴AEO AHO S S S ∆∆∆++【点睛】此题考查了阅读与理解:三角形中线的性质即等底同高的三角形面积相等,灵活运用这个结论并适当添加辅助线是解答此题的关键.【题型三三角形中角平分线的综合问题】1.已知,AB DE ∥,点C 是直线AB ,DE 下方一点,连接BC ,DC .【点睛】本题考查平方数、二次根式的非负性,利用面积法求点的坐标,角平分线的定义,三角形内角和定理等,难度一般,解第二问的关键是熟练运用数形结合思想,解第三问的关键是利用角度等量代换.【题型四三角形内角和与外角和的综合问题】1.在ABC 中,点E 是CA 延长线上一点.(1)如图1,过点B 作BD BC ⊥,交CE 于点F ,D C ∠=∠.①若36C ∠=︒,则DAF ∠=______°;②试写出DAF ∠与C ∠的数量关系,并说明理由;③当DAF D ∠=∠时,求C ∠的度数;④若D ABD ∠=∠,请说明BA CF ⊥;(2)如图2,BD 交CE 于点F ,D C ∠=∠,直接写出DAC ∠、C ∠与DBC ∠之间的数量关系.【答案】(1)①18;②290DAF C ∠+∠=︒,理由见解析;③30C ∠=︒;④见解析(2)2DAC C DBC∠=∠+∠【分析】(1)①根据180BFC C DBC ∠=︒-∠-∠,DAF BFC D ∠=∠-∠,即可求得答案.②根据180BFC C DBC ∠=︒-∠-∠,DAF BFC D ∠=∠-∠,结合等量代换,即可求得答案.③根据②的结论,采用等量代换即可求得答案.④根据2+18090DAF C DAF D ABD FAB ∠+∠=∠+∠∠=︒-∠=︒,即可求得FAB ∠的度数,问题即可得证.(2)延长BA 至K ,根据DAC DAK CAK ∠=∠+∠,结合三角形的外角的性质可求得答案.【详解】(1)①∵0910********BFC C DBC ∠︒=︒-∠-∠=︒-︒=︒-,∴543618DAF BFC D ∠︒=︒-∠-==∠︒.故答案为:18.②290DAF C ∠+∠=︒.理由如下:∵DAK D DBA∠∠=∠+∠,CAK∴DAC DAK CAK D∠=∠+∠=∠+【点睛】本题主要考查三角形内角和定理、三角形的外角的性质(三角形的一个外角等于与它不相邻的两个内角的和),牢记三角形的外角的性质是解题的关键.中,点2.(1)如图①所示,ABC,不用说明理由,直接填空.(2)如图③所示,13OBC DBC ∠=∠,13OCB ECB ∠=∠,若A α∠=,则BOC ∠填空并说明理由.【答案】(1)902α︒+,1203α︒+.;(2)1203α︒-1(1)如图1,若AD BC ∥,求证:AC BD ∥;(2)如图2,若BD BC ⊥,垂足为B ,BD 交CE 于点G ,请探究DAE ∠论,并说明理由;(3)如图3,在(2)的条件下,过点D 作DF BC ∥交射线CE 于点F ,当(1)如图1,如果点F 在线段AE 上,且50C ∠=︒,30B ∠=︒,则EFD ∠=______.(2)如果点F 在ABC 的外部,分別作出CAE ∠和EDF ∠的角平分线,交于点K ,请在图2中补全图形,探究AKD ∠、C ∠、B ∠三者之间的数量关系,并说明理由:(3)如图3,若点F 与点A 重合,PE 、PC 分别平分AEC ∠和ABC 的外角ACM ∠,连接PA PG BC ⊥交BC 延长线于点G ,PH AB ⊥交BA 的延长线于点H ,若EAD CAD ∠=∠,且44(3)解:设EAD CAD ∠=∠=∵AE 平分BAC ∠,∴BAE CAE EAD ∠=∠=+∠∠∴6BAD α∠=,∵AD BC⊥【题型五多边形的内角和与外角和综合问题】1.【感知】如图1所示,在四边形AEFC 中,EB FD 、分别是边AE CF 、的延长线,我们把BEF DFE ∠∠、称为四边形AEFC 的外角,若220A C ∠+∠=︒,则BEF DFE ∠+∠=___________;【探究】如图2所示,在四边形AECF 中,EB FD 、分别是边AE AF 、的延长线,我们把BEC DFC ∠∠、称为四边形AECF 的外角,试探究A C ∠∠、与BEC DFC ∠∠、之间的数量关系,并说明理由;【应用】如图3所示,FM EM 、分别是四边形AEFC 的外角DFE BEF ∠∠、的平分线,若200A C ∠+∠=︒,则M ∠的度数为___________.【答案】(感知)220︒;(探究)A C BEC DFC∠+∠=∠+∠,理由见解析;(应用)【分析】(感知)根据四边形的内角和和邻补角的定义即可求出答案.(探究)根据四边形的内角和和邻补角的定义即可求出答案.(应用)根据四边形的内角和和邻补角定义可求出BEF DFE∠+∠的度数,结合角平分线的定义即可求出∠的度数.MFE MEF∠+∠度数,最后利用三角形内角和即可求出M①如图1,若B C ∠=∠,则C ∠=________︒;②如图2,若ABC ∠的平分线BE 交DC 于点E 、且BE AD ∥,则C ∠=③如图3,若ABC ∠和BCD ∠的平分线相交于点E ,则BEC ∠=________(2)如图3,当A D αβ∠=∠=,时,若ABC ∠和BCD ∠的平分线交于点数量关系.∵,BE CE 平分,ABC ∠∴111,222ABC ∠=∠∠=∴112(2ABC ∠+∠=∠∴在BCE 中,BEC ∠故答案为:110︒.(2)解:在四边形ABCD ∴360ABC BCD ∠+∠=∵ABC ∠和BCD ∠的平分线交于点∴111,222ABC ∠=∠∠=、两外角平分线所成的(1)如图2,在四边形ABCD 中,BP 、CP 分别平分ABC ∠和BCD ∠,则(2)如图3,在四边形ABCD 中,BM 、CM 分别平分EBC ∠和BCF ∠,请探究并说明理由.(3)在四边形ABCD 中,F ∠为ABC ∠的平分线与边CD 和BC 延长线所成角的平分线所在的直线构成的锐角,若设A α∠=,D β∠=,则F ∠=.(用α、β表示)【答案】(1)()1P A D ∠=∠+∠BF 平分ABC ∠,CF 平分12CBF ABC ∴∠=∠,DCF ∠180DCG BCD ∠=︒-∠ ,。

2020年上海中考物理压强压轴题专题05 在容器里加物体后,有液体溢出(解析版)

2020年上海中考物理压强压轴题专题05 在容器里加物体后,有液体溢出(解析版)

上海市备战2020年中考物理压强压轴题专项大剖析专题05 在容器里加物体后,有液体溢出一、常见题目类型1.将物体甲浸没在柱形容器乙的液体中(图1)。

2.将物块丙放入容器甲的液体中、叠放在柱体乙的上方(图2)。

3.将甲、乙两个实心均匀光滑小球先后分别放入容器中(图3)。

4.在柱形物体乙上方沿水平方向切去一部分,并将切去部分竖直放在甲容器内(浸没或不浸没)(图4)。

二、例题【例题1】柱形轻质薄壁容器的底面积为1×10-2米2,如图1所示,内盛0.2米深度的水后置于水平地面上。

① 求容器底部受到水的压强p 水。

② 现将一块质量为1.5千克、体积为1×10-3米3的物体完全浸没在容器的水中后,测得容器底部受到水的压强为2450帕。

求此时容器对水平桌面的压强p 容。

【答案】①1960帕;②2940帕。

【解析】①p 水=ρ水g h 图 1 甲图4 图3 乙图1 甲乙 甲乙 图2 丙=1×103千克/米3×9.8牛/千克×0.2米3=1960帕②物体浸没在容器的水中后,容器底部受到水的压强为2450帕可求现在水的深度h ':p '水=ρ水g h ' h '= p '/ρ水gh '=2450帕/1×103千克/米3×9.8牛/千克=0.25米容器内剩余水的体积为V 剩余水= S h '-V 物=0.25米×1×10-2米2-1×10-3米3=1.5×10-3米3现在容器对水平桌面的压力F 容=G 容=(m 剩余水+m 物)g=(1.5×10-3米3×1×103千克/米3+1.5千克)×9.8牛/千克=29.4牛对水平桌面的压强P 容= F 容/S =29.4牛/ 1×10-2米2=2940帕(注意:此题不计算溢出水的质量,更简单。

也可用其他方法求解)【例题2】如图2所示,盛有水的轻质薄壁圆柱形容器甲和实心均匀圆柱体乙均放置于水平地面上,它们的底面积分别为1×10-2米2和0.5×10-2米2。

压轴题、专题训练卷(5):函数综合应用专题2222222

压轴题、专题训练卷(5):函数综合应用专题2222222

压轴题、专题训练卷(5):函数综合应用专题班级 姓名 号数一、选择题1、已知y 关于x 的函数图象如图所示,则当0y <时,自变量x 的取值范围是( )A .0x <B .11x -<<或2x >C .1x >-D .1x <-或12x <<2、二次函数221y x x =-+与x 轴的交点个数是(A .0B .1C .2D .33、在同一坐标系中一次函数y ax b =+和二次函数2y ax bx =+的图象可能为( ).4、反比例函数y =x k(k>0),在第一象限的图象如图4,点M 是图象上一点,MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是( )A .1B .2C .4D .215、已知圆柱的侧面积是100cm 2,若圆柱底面半径为r(cm),高线长h(cm),则h 关于r 的函数的大致图象是( )6、若关于x的一元一次方程2210nxx --=无实数根,则一次函数(1)y n x n =+-的图像不经过( ) A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限ABCD2y x =xyOP 1 P 2P 3 P 4 1234二、填空题:7、某一次函数的图形经过点(-1,2),且函数y 的值随自变量x 的增大而减小,请你写出一个符合上述条件的函数关系式:__________________. 820b +=,点M (a ,b )在反比例函数ky x=的图象上,则反比例函数的解析式为 .9、小汽车刹车距离s (m )与速度v (km/h )之间的函数关系式为21001v s=,在前方80m 处停放一辆故障车,此时刹车 有危险(填“会”或“不会”)10、如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3y x=(0x >)上的一个动点,当点B 的横坐标逐渐增大时, OAB △的面积将会 .11、如图为二次函数y=ax 2+bx +c 的图象,在下列说法中: ①ac <0; ②方程ax 2+bx +c=0的根是x 1= -1, x 2= 3 ③a +b +c >0 ④当x >1时,y 随x 的增大而增大。

中考数学突破专题训练---第五题:压轴题(5)

中考数学突破专题训练---第五题:压轴题(5)

中考突破专题训练---第五题:压轴题(5)(时间:40分钟,满分27分)五解答题(本大题共3小题,每小题9分,共27分)请将答案写在答卷相应题号 的位置上。

20.如图,在△ABC 中,∠ACB =90°,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在射线DE 上,并且EF =AC . (1)求证:AF=CE ;(2)当∠B 的大小满足什么条件时,四边形ACEF 是菱形?请回答并证明你的结论; (3)四边形ACEF 有可能是正方形吗?为什么?21.已知等边OAB △的边长为a ,以AB 边上的高1OA 为边,按逆时针方向作等边11OA B △,11A B 与OB 相交于点2A .(1)求线段2OA 的长;(2)若再以2OA 为边按逆时针方向作等边22OA B △,22A B 与1OB 相交于点3A ,按此作法进行下去,得到33OA B △,44OA B △, ,n n OA B △ (如图).求66OA B △的周长.ABCDEF (第20题)(第21题)A1B2A1B3A 2B4A3B5A 4B6A5B7A 6B 7BO22.如下图,在矩形ABCD中,AB=12 cm,BC=6 cm.点P沿AB边从点A开始向点B以2 cm/s的速度移动;点Q沿DA边从点D开始向点A以1 cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6)那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)求四边形QAPC的面积,提出一个与计算结果有关的结论;(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?B CP中考突破专题训练---压轴题(5)答案20解:(1)∵∠ACB=900,BC ⊥BC ∴DF ∥AC 又∵EF=AC∴四边形EFAC 是平行四边形 ∴AF=CE(2)当∠B=300时四边形EFAC 是菱形 ∵点E 在BC 的垂直平分线上 ∴DB=DC=21BC ,BE=EC ,∠B=∠ECD=300∵DF ∥AC∴△BDE ∽△BCA ∴21==BC BD BA BE 即BE=AE ∴AE=CE又∠ECA=900 – 300 =600∴△AEC 是等边三角形 ∴CE=AC所以四边形EFAC 是菱形 21ABCDEF(第20题)22 (1)对于任何时刻t ,AP =2t ,DQ =t ,QA =6-t .当QA =AP 时,△QAP 为等腰直角三角形,即:6-t =2t ,解得:t =2(s), 所以,当t =2 s 时,△QAP 为等腰直角三角形.(2)在△QAC 中,QA =6-t ,QA 边上的高DC =12, ∴ S △QAC =21QA ·DC =21(6-t )·12=36-6t . 在△APC 中,AP =2t ,BC =6, ∴ S △APC =21AP ·BC =21·2t ·6=6t . ∴ S 四边形QAPC =S △QAC +S △APC =(36-6t )+6t =36(cm 2).由计算结果发现:在P 、Q 两点移动的过程中,四边形QAPC 的面积始终保持不变.(也可提出:P 、Q 两点到对角线AC 的距离之和保持不变)(3)根据题意,可分为两种情况来研究,在矩形ABCD 中:①当BC APAB QA =时,△QAP ∽△ABC ,那么有:62126t t =-,解得t =56=1.2(s), 即当t =1.2 s 时,△QAP ∽△ABC ; ②当AB APBC QA =时,△P AQ ∽△ABC ,那么有:12266tt =-,解得t =3(s), 即当t =3 s 时,△P AQ ∽△ABC ;所以,当t =1.2 s 或3 s 时,以点Q 、A 、P 为顶点的三角形与△ABC 相似.BCP。

2014中考数学压轴题练习(5):函数相似三角形问题

2014中考数学压轴题练习(5):函数相似三角形问题

2014中考数学压轴题练习(5):函数相似三角形问题1直线113y x =-+分别交x 轴、y 轴于A 、B 两点,△AOB 绕点O 按逆时针方向旋转90°后得到△COD ,抛物线y =ax 2+bx +c 经过A 、C 、D 三点.(1) 写出点A 、B 、C 、D 的坐标;(2) 求经过A 、C 、D 三点的抛物线表达式,并求抛物线顶点G 的坐标;(3) 在直线BG 上是否存在点Q ,使得以点A 、B 、Q 为顶点的三角形与△COD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.2 Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)k y k x=≠在第一象限内的图像与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2.(1)求m 与n 的数量关系;(2)当tan ∠A =12时,求反比例函数的解析式和直线AB 的表达式;(3)设直线AB 与y 轴交于点F ,点P 在射线FD 上,在(2)的条件下,如果△AEO 与△EFP 相似,求点P 的坐标.3 如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3).(1)直接写出抛物线的对称轴、解析式及顶点M 的坐标;(2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移,分别交抛物线于点O 1、A 1、C 1、B 1,得到如图2的梯形O 1A 1B 1C 1.设梯形O 1A 1B 1C 1的面积为S ,A 1、 B 1的坐标分别为 (x 1,y 1)、(x 2,y 2).用含S 的代数式表示x 2-x 1,并求出当S =36时点A 1的坐标;(3)在图1中,设点D 的坐标为(1,3),动点P 从点B 出发,以每秒1个单位长度的速度沿着线段BC 运动,动点Q 从点D 出发,以与点P 相同的速度沿着线段DM 运动.P 、Q 两点同时出发,当点Q 到达点M 时,P 、Q 两点同时停止运动.设P 、Q 两点的运动时间为t ,是否存在某一时刻t ,使得直线PQ 、直线AB 、x 轴围成的三角形与直线PQ 、直线AB 、抛物线的对称轴围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.图1 图24 如图1,已知点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上.(1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形A A ′B ′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB ′ 的交点为C ,试在x 轴上找一个点D ,使得以点B ′、C 、D 为顶点的三角形与△ABC 相似.。

压轴题05 三角函数与解三角形范围与最值问题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题05 三角函数与解三角形范围与最值问题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题05三角函数与解三角形范围与最值问题三角函数与解三角形是每年高考常考内容,在选择、填空题中考查较多,有时会出现在选择题、填空题的压轴小题位置,综合考查以解答题为主,中等难度.考向一:ω取值与范围问题考向二:面积与周长的最值与范围问题考向三:长度的范围与最值问题1、正弦定理和余弦定理的主要作用,是将三角形中已知条件的边、角关系转化为角的关系或边的关系,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素.2、与三角形面积或周长有关的问题,一般要用到正弦定理或余弦定理,进行边和角的转化.要适当选用公式,对于面积公式111sin sin sin222S ab C ac B bc A===,一般是已知哪一个角就使用哪个公式.3、对于利用正、余弦定理解三角形中的最值与范围问题,主要有两种解决方法:一是利用基本不等式,求得最大值或最小值;二是将所求式转化为只含有三角形某一个角的三角函数形式,结合角的范围,确定所求式的范围.4、利用正、余弦定理解三角形,要注意灵活运用面积公式,三角形内角和、基本不等式、二次函数等知识.5、正弦定理和余弦定理是求解三角形周长或面积最值问题的杀手锏,要牢牢掌握并灵活运用.利用三角公式化简三角恒等式,并结合正弦定理和余弦定理实现边角互化,再结合角的范围、辅助角公式、基本不等式等求其最值.6、三角形中的一些最值问题,可以通过构建目标函数,将问题转化为求函数的最值,再利用单调性求解.7、“坐标法”是求解与解三角形相关最值问题的一条重要途径.充分利用题设条件中所提供的特殊边角关系,建立恰当的直角坐标系,选取合理的参数,正确求出关键点的坐标,准确表示出所求的目标,再结合三角形、不等式、函数等知识求其最值.一、单选题1.(2023·浙江金华·模拟预测)已知函数π()sin cos (0)6f x x x ωωω⎛⎫=-+> ⎪⎝⎭在[0,π]上有且仅有2个零点,则ω的取值范围是()A .131,6⎡⎤⎢⎥⎣⎦B .713,66⎡⎫⎪⎢⎣⎭C .7,26⎡⎫⎪⎢⎣⎭D .131,6⎡⎫⎪⎢⎣⎭【答案】B【解析】π1()sin cos sin sin 62f x x x x x x ωωωωω⎫⎛⎫=-+=--⎪ ⎪⎪⎝⎭⎝⎭3sin cos 22x x ωω=-1sin cos 22x x ωω⎫=-⎪⎪⎭π6x ω⎛⎫=- ⎪⎝⎭因为()f x 在 [0,π]上仅有2个零点,当 [0,π]x ∈时,πππ,π666x ωω⎡⎤-∈--⎢⎥⎣⎦(0ω>),所以πππ6ππ2π6ωω⎧-≥⎪⎪⎨⎪-<⎪⎩,解得71366ω≤<.故选:B.2.(2023·吉林长春·统考三模)已知函数()π2cos 13f x x ω⎛⎫=-+ ⎪⎝⎭,(0ω>)的图象在区间()0,2π内至多存在3条对称轴,则ω的取值范围是()A .50,3⎛⎤ ⎥⎝⎦B .25,33⎛⎤ ⎥⎝⎦C .57,36⎡⎫⎪⎢⎣⎭D .5,3⎡⎫+∞⎪⎢⎣⎭【答案】A【解析】因为()0,2πx ∈,0ω>,所以πππ,2π333x ωω⎛⎫-∈-- ⎪⎝⎭,画出2cos 1y z =+的图象,要想图象在区间()0,2π内至多存在3条对称轴,则ππ2π,3π33ω⎛⎤-∈- ⎥⎝⎦,解得50,3ω⎛⎤∈ ⎥⎝⎦.故选:A3.(2023·河南·许昌实验中学校联考二模)已知函数())π2sin 06f x x ωω⎛⎫=-> ⎪⎝⎭在3π0,4⎡⎤⎢⎥⎣⎦内有且仅有两个零点,则ω的取值范围是()A .75,93⎛⎤⎥⎝⎦B .75,93⎡⎫⎪⎢⎣⎭C .1010,93⎡⎫⎪⎢⎣⎭D .1010,93⎛⎤⎥⎝⎦【答案】C【解析】由题意知π3sin 62x ω⎛⎫-= ⎪⎝⎭在3π0,4⎡⎤⎢⎥⎣⎦内有且仅有两个解.因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以ππ3ππ,6646x ωω⎡⎤-∈--⎢⎥⎣⎦,则需2π3ππ7π3463ω≤-<,解得101093ω≤<.故选:C4.(2023·广西·统考一模)定义平面凸四边形为平面上每个内角度数都小于180︒的四边形.已知在平面凸四边形ABCD 中,30,105,2A B AB AD ∠=︒==︒∠=,则CD 的取值范围是()A .⎫⎪⎪⎣⎭B .⎣⎭C .⎣⎭D .212⎫⎪⎢⎪⎣⎭【答案】A【解析】在ABD △中,由余弦定理得:2222cos 3422cos301BD AB AD AB AD A =+-⋅=+-⨯=,显然2224AB BD AD +==,即90ABD ∠=o ,60ADB ∠=o ,在BCD △中,1BD =,15CBD ∠= ,因为ABCD 为平面凸四边形,则有0120BDC <∠< ,因此45165BCD <∠< ,而62sin165sin15sin(4530)sin 45cos30cos 45sin 302==-=-=,由正弦定理sin sin CD BD CBD BCD =∠∠得:sin 62sin 4sin BD CBD CD BCD BCD∠==∠∠,当4590BCD <∠≤ 时,sin 12BCD <∠≤,当90165BCD <∠< 时,sin 1BCD <∠<,sin 1BCD <∠≤,11sin BCD ≤<∠1CD ≤<,所以CD 的取值范围是62[4.故选:A5.(2023·全国·校联考二模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,3b =,若2222b a c =+,则△ABC 面积的最大值为()A .2B .34C .1D .32【答案】D【解析】因为2222b a c =+,所以()222cos ,0,π22a c b aB B ac c+-==-∈,所以sin B =42c=,所以△ABC 的面积14sin 24ABCS ac B == =222194122a c a +-⨯()22421122a c +=⨯32=,当且仅当22249c a a -=,即a c ==ABC 面积的最大值为32.故选:D6.(2023·广西柳州·柳州高级中学校联考模拟预测)在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知60B = ,4b =,则ABC 面积的最大值为()A .B .C .D .6【答案】B【解析】由余弦定理可得22222162cos 2b a c ac B a c ac ac ac ac ==+-=+-≥-=,即16ac ≤,当且仅当4a c ==时,等号成立,故1sin 162ABC S ac B ac =⨯= .因此,ABC面积的最大值为故选:B.7.(2023·全国·模拟预测)已知函数()sin()(0)f x x ωϕω=+>是在区间π5π,1836⎛⎫⎪⎝⎭上的单调减函数,其图象关于直线π36x =-对称,且f (x )的一个零点是7π72x =,则ω的最小值为()A .2B .12C .4D .8【答案】C【解析】因为函数()()sin f x x ωϕ=+的图象关于直线π36x =-对称,所以πππ362n ωϕ-⋅+=+,n ∈Z ,所以ϕ=1π236n ω⎛⎫++ ⎪⎝⎭,n ∈Z ,根据π5π1836x <<,则π5π1836x ωωω<<,所以π5π1836x ωωϕωϕϕ+<+<+,因为()()sin f x x ωϕ=+是在区间π5π,1836⎛⎫⎪⎝⎭上的单调减函数.所以ππ2π,1825π3π2π,362k k k k ωϕωϕ⎧+≥+∈⎪⎪⎨⎪+≤+∈⎪⎩Z Z ,所以π1ππ2π,,1823625π13ππ2π,,362362n k n k n k n k ωωωω⎧⎛⎫+++≥+∈∈ ⎪⎪⎪⎝⎭⎨⎛⎫⎪+++≤+∈∈ ⎪⎪⎝⎭⎩Z Z Z Z ,即112,,1823625132,,362362n k n k n k n k ωωωω⎧⎛⎫+++≥+∈∈ ⎪⎪⎪⎝⎭⎨⎛⎫⎪+++≤+∈∈ ⎪⎪⎝⎭⎩Z Z Z Z ,解得()()122621k n k n ω-≤≤-+,n ∈Z ,k ∈Z ,因为0ω>,所以20k n -=或21k n -=,当20k n -=时,06ω<≤,当21k n -=时,1212ω≤≤;由于π7π5π187236<<,且f (x )的一个零点是7π72x =,所以()7π21π72m ωϕ⨯+=+,m ∈Z ,所以()7π1π21π72236n m ωω⎛⎫⨯+++=+ ⎪⎝⎭,m ∈Z ,n ∈Z ,即()824m n ω=-+,m ∈Z ,n ∈Z .根据06ω<≤或1212ω≤≤,可得4ω=,或12ω=,所以ω的最小值为4.故选:C.二、多选题8.(2023·安徽滁州·统考二模)在平面直角坐标系xOy 中,△OAB 为等腰三角形,顶角OAB θ∠=,点()3,0D 为AB 的中点,记△OAB 的面积()S f θ=,则()A .()18sin 54cos f θθθ=-B .S 的最大值为6C .AB 的最大值为6D .点B 的轨迹方程是()22400x y x y +-=≠【答案】ABD【解析】由OAB θ∠=,OA AB =,()3,0D 为AB 的中点,若(,)A x y 且0y ≠,则(6,)B x y --,故222222(62)(2)4(3)4x y x y x y +=-+-=-+,整理得:22(4)4x y -+=,则A 轨迹是圆心为(4,0),半径为2的圆(去掉与x 轴交点),如下图,由圆的对称性,不妨令A 在轨迹圆的上半部分,即02A y <≤,令22OA AB AD a ===,则222||||2cos OD OA AD OA AD θ=+-,所以2254cos 9a a θ-=,则2954cos a θ=-,所以2118sin sin 2sin 254cos OAB OAD OBD S S S OA AB a θθθθ=+===- ,A 正确;由113(0,6]22OAB OAD OBD A B A S S S y OD y OD y =+=⋅+⋅=∈ ,则S 的最大值为6,B 正确;由下图知:(2,6)OA AB =∈,所以AB 无最大值,C 错误;令(,)B m n ,则60A A x my n =-⎧⎨=-≠⎩代入A 轨迹得22(2)4m n -+=,即2240m m n -+=,所以B 轨迹为2240x x y -+=且0y ≠,D正确;故选:ABD三、填空题9.(2023·青海·校联考模拟预测)在锐角ABC 中,内角A ,B ,C 所对应的边分别是a ,b ,c ,且()2sin 2sin cos sin 2c B A a A B b A -=+,则ca的取值范围是______.【答案】()1,2【解析】由正弦定理和正弦二倍角公式可得()2sin sin 2sin sin cos sin sin 2C B A A A B B A-=+()2sin sin cos 2sin sin cos 2sin sin cos sin cos A A B B A A A A B B A =+=+()2sin sin A A B =+,因为π0<<,π2C C A B -=+,所以()()0s s in s in πin C A C B =-=≠+,可得()sin sin B A A -=,因为ππ0022A B <<<<,,所以ππ22B A -<-<,所以2B A =,π3C A =-,由202πB A <=<,203ππC A <<=-可得ππ64A <<,cos 22A <<,213cos 24A <<,由正弦定理得()sin 2sin sin 3sin 2cos cos 2sin sin sin sin sin A A c C A A A A Aa A A A A++====()222cos cos 24cos 11,2A A A =+=-∈.故答案为:()1,2.10.(2023·上海金山·统考二模)若函数πsin 3y x ω⎛⎫=- ⎪⎝⎭(常数0ω>)在区间()0,π没有最值,则ω的取值范围是__________.【答案】506ω<≤【解析】因为0ω>,()0,πx ∈,所以ππππ333x ωω-<-<-,又因为函数πsin 3y x ω⎛⎫=- ⎪⎝⎭(常数0ω>)在区间()0,π没有最值,所以πππ32ω-≤,解得506ω<≤,所以ω的取值范围是506ω<≤故答案为:506ω<≤.11.(2023·全国·校联考二模)设锐角三角形ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且sin sin sin b B a A a C =+,则3b ca-的取值范围是______.【答案】132,]4【解析】由sin sin sin b B a A a C =+,得22b a ac =+,由余弦定理得2222cos 222b c a c ac a cA bc bc b+-++===,由正弦定理得sin sin cos 22sin a c A C A b B++==,即s sin 2sin c i o n s C B A A +=,又()sin sin C A B =+,所以sin sin cos cos sin 2cos sin A A B A B A B ++=,即sin sin os sin cos A Bc A A B =-,所以()sin sin A B A =-,因为,A B 为ABC 的内角,所以πB A A -+=(舍去)或B A A -=,所以2B A =.由正弦定理得33sin sin 3sin 2sin()3sin 2sin 3sin sin sin b c B C A B A A Aa A A A---+-===因为()2sin 3sin 2sin 2cos cos 2sin 2sin cos cos 2sin A A A A A A A A A A A =+=+=+,又(0,π),sin 0A A ∈≠,所以236sin cos 2sin cos cos 2sin sin b c A A A A A Aa A---=2226cos 2cos cos 26cos 2cos 2cos 1A A A A A A =--=--+223134cos 6cos 14(cos )44A A A =-++=--+,由于π2(0,)2B A =∈得π(0,)4A ∈,由πππ3(0,)2C A B A =--=-∈,得ππ(,)63A ∈,则ππ(,)64A ∈,所以2cos 2A ∈,当3cos 4A =时,23134(cos )44A --+取最大值134,当cos A =23134(cos )44A --+等于2,当cos A =23134(cos )44A --+等于1,而21>,所以3b ca -取值范围是132,]4,故答案为:132,]412.(2023·上海嘉定·统考二模)如图,线段AB 的长为8,点C 在线段AB 上,2AC =.点P 为线段CB 上任意一点,点A 绕着点C 顺时针旋转,点B 绕着点P 逆时针旋转.若它们恰重合于点D ,则CDP △的面积的最大值为__________.【答案】【解析】由题意可知,6C AB C B A =-=,即6PC PB +=.在CDP △中,有CD AC 2==,DP PB =,所以6PC DP +=.由余弦定理可得,()222224cos 22PC DP PC DP PC DP CD CPD PC DP PC DP+-⋅-+-∠==⋅⋅3624162PC DP PC DP PC DP PC DP-⋅--⋅==⋅⋅,所以22sin 1cos CPD CPD ∠=-∠2161PC DP PC DP -⋅⎛⎫=- ⎪⋅⎝⎭2221632PC DP PC DP -+⋅=⋅,所以有221sin 2CDPS PC PD CPD ⎛⎫=⋅∠ ⎪⎝⎭△22221256324PC DPPC DP PC DP -+⋅=⋅⋅⋅⋅864PC DP =⋅-2864896482PC DP +⎛⎫≤-=⨯-= ⎪⎝⎭,当且仅当3PC PB ==时,等号成立.所以,28CDP S ≤△,所以,CDP S ≤△CDP △的面积的最大值为故答案为:四、解答题13.(2023·湖南益阳·统考模拟预测)ABC 中,角,,A B C 的对边分别为,,a b c ,从下列三个条件中任选一个作为已知条件,并解答问题.①sin sin 2B Cc a C +=;②sin 1cos a C A=-;③ABC )222b c a +-.(1)求角A 的大小;(2)求sin sin B C 的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.【解析】(1)选择①:由正弦定理可得,sin cossin sin 2AC A C =,因为(0,π),sin 0C C ∈>,所以cossin 2A A =,即cos 2sin cos 222A A A =,因为π022A <<,所以cos 02A >,所以1sin 22A =,所以π26A =,即π3A =;选择②sin 1cos a CA=-,则sin cos a C A =,由正弦定理得sin sin cos A C C C A =-,因为(0,π),sin 0C C ∈>,所以sin A A =,即π3sin 32A ⎛⎫+= ⎪⎝⎭,因为0πA <<,所以ππ4π333A <+<,所以π2π33A +=,即π3A =;选择③:由()2221sin 42ABC S b c a bc A =+-= ,222sin 2b c a A bc+-=sin A A =,所以tan A =0πA <<,故π3A =.(2)方法一:πsin sin sin sin 3B C B B ⎛⎫=⋅+ ⎪⎝⎭1sin sin cos 22B B B ⎛⎫=+ ⎪ ⎪⎝⎭21sin sin cos 22B B B =+11cos244B B =-11πsin 2426B ⎛⎫=+- ⎪⎝⎭因为2π03B <<,所以ππ7π2666B -<-<,所以1πsin 2126B ⎛⎫-<-≤ ⎪⎝⎭,所以11π3024264B ⎛⎫<+-≤ ⎪⎝⎭,即sin sin B C 的取值范围为30,4⎛⎤⎥⎝⎦.方法二:由余弦定理,222222cos a b c bc A b c bc =+-=+-,再由正弦定理,222sin sin sin sin sin A B C B C =+-,因为π3A =,所以223sin sin sin sin 2sin sin sin sin 4B C B C B C B C =+-≥-,即3sin sin 4B C ≥,当且仅当sin sin 2B C ==时“=”成立.又因为sin 0B >,sin 0C >,所以30sin sin 4B C <≤,即sin sin B C 的取值范围为30,4⎛⎤⎥⎝⎦.14.(2023·陕西榆林·统考三模)已知,,a b c 分别为ABC 的内角,,A B C 所对的边,4AB AC ⋅=,且sin 8sin ac B A =.(1)求A ;(2)求sin sin sin A B C 的取值范围.【解析】(1)cos 4AB AC bc A ⋅==,由sin 8sin ac B A =及正弦定理,得8abc a =,得8bc =,代入cos 4bc A =得1cos 2A =,又因为(0,π)A ∈,所以π3A =.(2)由(1)知π3A =,所以2ππ3C A B B =--=-.所以2ππsin sin sin sin sin 33A B C B B B B ⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭213cos sin sin cos sin 22244B B B B B B ⎛⎫=+=+ ⎪ ⎪⎝⎭3sin 228B B =+π2468B ⎛⎫=-+ ⎪⎝⎭,因为2π03B <<,所以ππ7π2666B -<-<,所以1πsin 2126B ⎛⎫-<-≤ ⎪⎝⎭,所以3π333024688B ⎛⎫<-+ ⎪⎝⎭,故sin sin sin A B C 的取值范围是⎛ ⎝⎦.15.(2023·上海浦东新·统考二模)已知,0R ωω∈>,函数cos y x x ωω-在区间[0,2]上有唯一的最小值-2,则ω的取值范围为______________.【解析】πcos 2sin 6y x x x ωωω⎛⎫=-=- ⎪⎝⎭,因为[]0,2x ∈,0ω>,所以πππ,2666x ωω⎡⎤-∈--⎢⎥⎣⎦,因为函数π2sin 6y x ω⎛⎫=- ⎪⎝⎭在[]0,2x ∈上有唯一的最小值-2,所以π3π7π2,622ω⎡⎫-∈⎪⎢⎣⎭,解得5π11π,66ω⎡⎫∈⎪⎢⎣⎭,故ω的取值范围是5π11π,66⎡⎫⎪⎢⎣⎭.故答案为:5π11π,66⎡⎫⎪⎢⎣⎭16.(2023·浙江金华·模拟预测)在ABC 中,角A ,B ,C 所对应的边为a ,b ,c .已知ABC 的面积4ac S =,其外接圆半径2R =,且()224cos cos ()sin A B b B -=.(1)求sin A ;(2)若A 为钝角,P 为ABC 外接圆上的一点,求PA PB PB PC PC PA ⋅+⋅+⋅的取值范围.【解析】(1)由1sin 42ac S ac B ==,得1sin 2B =,()()()()2222224cos cos 41sin 1sin 4sin sin A B A B B A ⎡⎤-=---=-⎣⎦,由正弦定理24sin sin a bR A B===,4sin ,4sin a A b B ==,则2()sin 4sin 4sin b B B A B =-,由()224cos cos ()sin A B b B -=,得()2224sin sin 4sin 4sin B A B A B -=-,化简得2sin sin A A B =,由()0,πA ∈,sin 0A ≠,解得sin A B =,因此sin A =.(2)由(1)得,若A 为钝角,则120A =o ,则3030B C == ,,如图建立平面直角坐标系,则(0,2),(A B C ,设(2cos ,2sin )P θθ.则(2cos ,22sin )PA θθ=-- ,(2cos ,12sin )PB θθ=- ,2cos ,12sin )PC θθ=-,有66sin PA PB θθ⋅=-+ ,66sin PA PC θθ⋅=-- ,24sin PB PC θ⋅=-,则1416sin PA PB PA PC PB PC ⋅+⋅+⋅=-θ.由sin [1,1]θ∈-,则1416sin [2,30]-∈-θ,所以PA PB PB PC PC PA ⋅+⋅+⋅的取值范围为[2,30]-.17.(2023·山西·校联考模拟预测)已知函数()()()sin 0,0f x A x A ωϕω=+>>的图象是由π2sin 6y x ω⎛⎫=+ ⎪⎝⎭的图象向右平移π6个单位长度得到的.(1)若()f x 的最小正周期为π,求()f x 的图象与y 轴距离最近的对称轴方程;(2)若()f x 在π3π,22⎡⎤⎢⎥⎣⎦上有且仅有一个零点,求ω的取值范围.【解析】(1)由2ππω=,得2ω=,所以()πππ2sin 22sin 2666f x x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令ππ2π62x k -=+,k ∈Z ,解得ππ23k x =+,k ∈Z ,取0k =,得π3x =,取1k =-,得π6x =-,因为ππ63-<,所以与y 轴距离最近的对称轴方程为π6x =-.(2)由已知得()()1πππ2sin 2sin666f x x x ωωω-⎡⎤⎡⎤⎛⎫=-+=+⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎣⎦,令()1ππ6x k ωω-+=,k ∈Z ,解得61π6k x ωω+-=,k ∈Z .因为()f x 在π3π,22⎡⎤⎢⎥⎣⎦上有且仅有一个零点,所以π613ππ26267ππ<62653ππ>62k k k ωωωωωω+-⎧≤≤⎪⎪+-⎪⎨⎪++⎪⎪⎩()k ∈Z 所以616182676528k k k k ωω--⎧≤≤⎪⎪⎨-+⎪<<⎪⎩.因为0ω>,所以616102861026567082k k k k k --⎧-≥⎪⎪⎪->⎨⎪⎪+-->⎪⎩,解得133618k <<,k ∈Z ,所以1k =,解得51188ω≤<,即ω的取值范围为511,88⎡⎫⎪⎢⎣⎭.18.(2023·山东德州·统考一模)在锐角ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2cos c b A b -=.(1)求证:2A B =;(2)若A 的角平分线交BC 于D ,且2c =,求ABD △面积的取值范围.【解析】(1)因为2cos c b A b -=,由正弦定理得sin 2sin cos sin C B A B -=又πA B C ++=,所以()()sin 2sin cos sin cos cos sin sin sin A B B A A B A B A B B+-=-=-=因为ABC 为锐角三角形,所以π0,2A ⎛⎫∈ ⎪⎝⎭,π0,2B ⎛⎫∈ ⎪⎝⎭,ππ,22A B ⎛⎫-∈- ⎪⎝⎭又sin y x =在ππ,22⎛⎫- ⎪⎝⎭上单调递增,所以A B B -=,即2A B =;(2)由(1)可知,2A B =,所以在ABD △中,ABC BAD ∠=∠,由正弦定理得:()2sin sin π2sin2AD AB B B B ==-,所以1cos AD BD B==,所以1sin sin tan 2cos ABD BS AB AD B B B=⨯⨯⨯== .又因为ABC 为锐角三角形,所以π02B <<,0π22B <<,0π3π2B <-<,解得π6π4B <<,所以tan B ⎫∈⎪⎪⎝⎭,即ABD △面积的取值范围为⎫⎪⎪⎝⎭.19.(2023·江西吉安·统考一模)在直角坐标系xOy 中,M 的参数方程为cos ,2sin x y θθ=⎧⎨=⎩(θ为参数),直线:sin 4l πρθ⎛⎫+= ⎪⎝⎭(1)求M 的普通方程;(2)若D 为M 上一动点,求D 到l 距离的取值范围.【解析】(1)由22sin cos 1θθ+=得M 的普通方程为2214y x +=.(2)直线l 即sin cos 4ρθρθ+=,由cos ,sin x y ρθρθ==得直线l 的普通方程为40x y +-=,设(cos ,2sin )D θθ,则d =其中cos ϕϕ==因为cos()[1,1]θϕ-∈-,⎤⎥⎣⎦,所以D 到l 距离的取值范围为4210421022⎡⎢⎣⎦.20.(2023·江西九江·统考二模)在锐角ABC 中,角A ,B ,C 所对的边为a ,b ,c ,已知()()0a b c a b c ab -+--+=,sin 3cos 3cos bc C c A a C =+.(1)求c ;(2)求a b +的取值范围.【解析】(1)()()0a b c a b c ab -+--+= ,222a b c ab ∴+-=,即222122a b c ab +-=,1cos 2C ∴=,又0πC << ,π3C ∴=,sin C ∴=,sin 3cos 3cos bc C c A a C =+,sin C=sin 3(sin cos sin cos )3sin()3sin 2B cC A A C A C B∴⋅⋅=+=+=,0πB << ,即sin 0B ≠,32c =,解得c =.(2)由正弦定理得,4sin sin sin a b c A B C ===,∴4sin a A =,4sin b B =,∴4sin 4sin a b A B +=+,πA B C ++=,π3C =,∴2π3B A =-则2π4sin 4sin 3a b A A ⎛⎫+=+-⎪⎝⎭14(sin cos sin )2A A A =+6sin A A=+π6A ⎛⎫=+ ⎪⎝⎭,ABC 为锐角三角形,∴π0,2A ⎛⎫∈ ⎪⎝⎭,π0,2B ⎛⎫∈ ⎪⎝⎭∴ππ,62A ⎛⎫∈ ⎪⎝⎭∴ππ2π,633A ⎛⎫+∈ ⎪⎝⎭,∴πsin ,162A ⎛⎤⎛⎫+∈⎥ ⎪ ⎝⎭⎝⎦,∴(π6,6A ⎛⎫+∈ ⎪⎝⎭,即(6,a b +∈.21.(2023·广东汕头·金山中学校考模拟预测)在锐角ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知sin sin sin B A Cb c b a-=-+.(1)求角A 的值;(2)若2c =,求a b +的取值范围.【解析】(1)由正弦定理sin sin sin a b cA B C==得:b a cb c b a-=-+,整理得:222b c a bc +-=,由余弦定理得:2221cos 222b c a bc A bc bc +-===,∵(0,π)A ∈,则π3A =.(2)由(1)可得:π3A =,且2c =,锐角ABC 中,由正弦定理得:sin sin sin a b cA B C==,可得π2sin sin sin 31sin sin sin C c A c B a b C C C ⎛⎫+ ⎪⋅⋅⎝⎭====则)21cos 21111sin 2sin cos tan 222CC a b C C C C ++=++=+=+∵ABC 锐角三角形,且π3A =,则π02π02C B ⎧<<⎪⎪⎨⎪<<⎪⎩,即π022ππ032C C ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得ππ62C <<,即ππ1224C <<,且ππtantanπππ34tan tan 2ππ12341tan tan 34-⎛⎫=-==- ⎪⎝⎭+⋅可得()tan 22C ∈,则(114tan 2C++,故a b +的范围是(14+.22.(2023·湖南长沙·湖南师大附中校考一模)在ABC 中,角,,A B C 的对边分别为,,a b c ,已知7b =,且sin sin sin sin a b A Cc A B+-=-.(1)求ABC 的外接圆半径R ;(2)求ABC 内切圆半径r 的取值范围.【解析】(1)由正弦定理,sin sin sin sin a b A C a cc A B a b+--==--,可得222,b a c ac =+-再由余弦定理,1cos 2B =,又()0,πB ∈,所以π3B =.因为2sin3bRB==,所以3R=.(2)由(1)可知:2249a c ac+-=,则2()493a c ac+=+.()11sin22ABCS ac B a b c r==++⋅则)23()497277ac a cr a ca c a c+-===+-++++.在ABC中,由正弦定理,sin sin sina c bA C B===,sina A c C,则)1431432πsin sin sin sin333a c A C A A⎡⎤⎛⎫+=+=+-⎪⎢⎥⎝⎭⎣⎦14331sin cos sin322A A A⎛⎫=+⎪⎪⎝⎭31πsin cos14sin cos14sin226A A A A A⎫⎛⎫⎛⎫==+⋅=+⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,又ππ2π0,,333A⎛⎫⎛⎫∈⋃⎪ ⎪⎝⎭⎝⎭,所以ππππ5π,,66226A⎛⎫⎛⎫+∈⋃⎪⎝⎭⎝⎭,所以π1sin,162A⎛⎫⎛⎫+∈⎪ ⎪⎝⎭⎝⎭,()π14sin7,146A⎛⎫+∈⎪⎝⎭,所以r⎛∈⎝⎭.23.(2023·黑龙江哈尔滨·哈尔滨市第六中学校校考一模)在锐角ABC中,设边,,a b c 所对的角分别为,,A B C,且22a b bc-=.(1)求角B的取值范围;(2)若4c=,求ABC中AB边上的高h的取值范围.【解析】(1)因为22a b bc-=,所以2222cos 222b c a c bc c bA bc bc b+---===,所以2cos c b b A -=,sin sin 2sin cos C B B A -=,又()πC A B =-+,所以()sin sin 2sin cos A B B B A =+-,整理可得()sin sin A B B -=,所以A B B -=或πA B B -+=(舍去),所以2A B =,又ABC 为锐角三角形,所以π02π022π0π32B A B C B ⎧<<⎪⎪⎪<=<⎨⎪⎪<=-<⎪⎩,所以64ππ,B ⎛⎫∈ ⎪⎝⎭;(2)由题可知11sin 22S ch ac B ==,即sin h a B =,又()sin 2sin sin π3a b cB B B ==-,所以4sin 2sin 3Ba B=,所以4sin 2sin 4sin 2sin sin sin 3sin 2cos cos 2sin B B B Bh a B B B B B B===+248tan 81133tan tan tan tan 2tan B B B B B B===-+-,由64ππ,B ⎛⎫∈ ⎪⎝⎭,可得tan B ⎫∈⎪⎪⎝⎭,所以3tan tan B B ⎛-∈ ⎝⎭,所以)4h ∈,即ABC 中AB 边上的高h 的取值范围是)4.24.(2023·辽宁鞍山·统考二模)请从①2sin cos cos cos a B B C B =;②()22sin sin sin sin sin A C B A C -=-;③sin 1cos Aa B=+这三个条件中任选一个,补充在下面问题中,并加以解答(如未作出选择,则按照选择①评分.选择的编号请填写到答题卡对应位置上)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若___________,(1)求角B 的大小;(2)若△ABC 为锐角三角形,1c =,求22a b +的取值范围.【解析】(1)若选①因为2sin cos cos cos a B B C B =,由正弦定理得2sin sin cos cos cos A B B B C C B =,即sin sin (sin cos sin cos )A B B B C C B +sin()B B C =+,所以sin sin sin A B B A =,由(0,π)A ∈,得sin 0A ≠,所以sin B B =,即tan B =因为(0,π)B ∈,所以π3B =.若选②由22(sin sin )sin sin sin A C B A C -=-,化简得222sin sin sin sin sin A C B A C +-=.由正弦定理得:222a cb ac +-=,即222122a cb ac +-=,所以1cos 2B =.因为(0,π)B ∈,所以π3B =.若选③sin A =sin sin (1cos )B A A B =+,因为0πA <<,所以sin 0A ≠,1cos B B =+,所以π1sin 62B ⎛⎫-= ⎪⎝⎭,又因为ππ5π666B -<-<,所以π3B =.(2)在ABC 中,由正弦定理sin sin a c A C =,得sin sin c A a C =,sin sin 2sin c B b C C ==由(1)知:π3B =,又с=1代入上式得:222223sin 3sin 3sin()22cos 12()cos 1cos 1cos sin sin sin sin A A B C a b c ab C C C CC C C C ++=+=+⨯=+=+22π1sin()3321cos 1cos 1sin 2tan C C C C C +=+==+因为ABC 为锐角三角形,所以π022ππ032C C ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得ππ,62C ⎛⎫∈ ⎪⎝⎭,所以tan C1tan C ∴∈,所以()2222331711,72tan 2tan 2tan 68a b C C C ⎛+=++=++∈ ⎝⎭.25.(2023·福建·统考模拟预测)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且π2sin 6b c A ⎛⎫=+ ⎪⎝⎭.(1)求C ;(2)若1c =,D 为ABC 的外接圆上的点,2BA BD BA ⋅=,求四边形ABCD 面积的最大值.【解析】(1)因为π2sin 6b c A ⎛⎫=+ ⎪⎝⎭,在ABC 中,由正弦定理得,i s n in 2sin πs 6B AC ⎛⎫=+ ⎪⎝⎭.又因为()()sin sin πsin B A C A C =--=+,所以()πsin 2s n sin i 6A C A C ⎛⎫+=+⎪⎝⎭,展开得sin cos cos sin sin sin cos 122A C A C C A A ⎫+=+⎪⎪⎝⎭,即sin cos 0n sin A C C A =,因为sin 0A ≠,故cos C C =,即tan C =又因为()0,πC ∈,所以π6C =.(2)解法一:如图1设ABC 的外接圆的圆心为O ,半径为R ,因为2BA BD BA ⋅= ,所以()0BA BD BA ⋅-= ,即0BA AD ⋅=,所以DA BA ⊥,故BD 是O 的直径,所以BC CD ⊥.在ABC 中,1c =,122πsin sin 6c A R BC =∠==,所以2BD =.在ABD △中,AD =.设四边形ABCD 的面积为S ,BC x =,CD y =,则224x y +=,ABD CBD S S S =+△△111222AB BC xyAD CD =+⋅=⋅22112222x y +≤+⋅=,当且仅当x y ==时,等号成立.所以四边形ABCD1+.解法二:如图1设ABC 的外接圆的圆心为O ,半径为R ,BD 在BA上的投影向量为BA λ ,所以()2BA BD BA BA BA λλ⋅=⋅= .又22BA BD BA BA ⋅== ,所以1λ=,所以BD 在BA 上的投影向量为BA ,所以DA BA ⊥.故BD 是O 的直径,所以BC CD ⊥.在ABC 中,1c =,122πsin sin 6c A R BC =∠==,所以2BD =,在ABD △中,AD =.设四边形ABCD 的面积为S ,CBD θ∠=,π0,2θ⎛⎫∈ ⎪⎝⎭,则2cos CB θ=,2sin CD θ=,所以ABD CBD S S S =+△△1122B AD CD AB C =⋅⋅+sin 22θ=+,当π22θ=时,S 最大,所以四边形ABCD1.解法三:如图1设ABC 的外接圆的圆心为O ,半径为R ,因为2BA BD BA ⋅= ,所以()0BA BD BA ⋅-= ,即0BA AD ⋅= ,所以DA BA ⊥.故BD 是O 的直径,所以BC CD ⊥.在ABC 中,1c =,122πsin sin 6c A R BC =∠==,所以2BD =.在ABD △中,AD =.设四边形ABCD 的面积为S ,点C 到BD 的距离为h ,则ABD CBD S S S =+△△1122AD h AB BD ⋅+⋅=2h =+,当1h R ==时,S 最大,所以四边形ABCD1.解法四:设ABC 的外接圆的圆心为O ,半径为R ,在ABC 中,1c =,122πsin sin 6c A R BC =∠==,故ABC 外接圆O 的半径1R =.即1OA OB AB ===,所以π3AOB ∠=.如图2,以ABC 外接圆的圆心为原点,OB 所在直线为x 轴,建立平面直角坐标系xOy ,则12A ⎛ ⎝⎭,()10B ,.因为C ,D 为单位圆上的点,设()cos ,sin C αα,()cos ,sin D ββ,其中()0,2πα∈,()0,2πβ∈.所以122BA ⎛⎫=- ⎪ ⎪⎝⎭,()cos 1,sin BD ββ=- ,代入2BA BD BA ⋅= ,即1BA BD ⋅=,可得11cos 122ββ-+=,即π1sin 62β⎛⎫-= ⎪⎝⎭.由()0,2πβ∈可知ππ11π,666β⎛⎫-∈- ⎪⎝⎭,所以解得ππ66β-=或π5π66β-=,即π3β=或πβ=.当π3β=时,A ,D 重合,舍去;当πβ=时,BD 是O 的直径.设四边形ABCD 的面积为S ,则11sin sin 2222ABD CBD S S S BD BD αα=+=⋅+⋅=+△△,由()0,2πα∈知sin 1α≤,所以当3π2α=时,即C 的坐标为()0,1-时,S 最大,所以四边形ABCD 面积最大值为12+.26.(2023·山西·校联考模拟预测)如图,在四边形ABCD 中,已知2π3ABC ∠=,π3BDC ∠=,AB BC ==(1)若BD =AD 的长;(2)求ABD △面积的最大值.【解析】(1)在BCD △中,由余弦定理,得2222cos BC BD DC BD DC BDC =+-⋅⋅∠,∴222π2cos 3CD CD =+-⨯⋅,整理得2720CD --=,解得CD =CD =-∴2222221c os27BD BC CD DBC BD BC +-∠===⋅,而2π(0,)3DBC ∠∈,故sin DBC ∠=,∴2π1311cos cos cos sin 32214ABD DBC DBC DBC ⎛⎫∠=-∠=-∠+∠= ⎪⎝⎭,故在ABD △中,2222cos AD AB BD AB BD ABD=+-⋅⋅∠221125714=+-⨯=,∴AD =(2)设,2π(0,)3CBD θθ∠=∈,则在BCD △中,sin sin BC BD BDC BCD=∠∠,则2πsin()sin π314sin()2πsin 3sin 3BC BCD BD BDCθθ-∠===+∠,所以π2π11sin sin 2214sin()()33ABD S AB BD ABD θθ=+=⨯⨯∠-⋅△2π34()θ=+,当2πsin (13θ+=,即π6θ=时,ABD △面积取到最大值27.(2023·湖南·校联考二模)在ABC 中,内角A ,B ,C 所对的边长分别为a ,b ,c ,且满足236sin02A Ba b b +-+=.(1)求证:3cos 0a b C +=;(2)求tan A 的最大值.【解析】(1)∵236sin02A Ba b b +-+=,∴22π36sin36cos 022C Ca b b a b b --+=-+=,∴1cos 3602Ca b b +-+⋅=,∴3cos 0a b C +=.(2)由(1)可得:sin 3sin cos 0A B C +=,且C 为钝角,即4sin cos cos sin 0B C B C +=,即4tan tan 0B C +=,tan 4tan C B =-,()2tan tan 3tan 3tan tan 11tan tan 4tan 14tan tan B C B A B C B C B B B+=-+=-==-++34=,当且仅当14tan tan B B =,即1tan 2B =时取等号.故tan A 的最大值为34.28.(2023·黑龙江大庆·铁人中学校考二模)在ABC 中,a ,b ,c 分别是ABC 的内角A ,B ,C 所对的边,且sin sin sin sin b a c A C B C-=+-.(1)求角A 的大小;(2)记ABC 的面积为S ,若12BM MC = ,求2AMS的最小值.【解析】(1)因为sin sin sin sin b a c A C B C -=+-,即sin sin sin sin B C a cA C b--=+由正弦定理可得,b c a ca c b--=+,化简可得222a b c bc =+-,且由余弦定理可得,2222cos a b c bc A =+-,所以1cos 2A =,且()0,πA ∈,所以π3A =.(2)因为12BM MC = ,则可得1233AM AC AB =+ ,所以222212144cos 33999AM AC AB AC AC AB A AB ⎛⎫=+=+⋅+ ⎪⎝⎭22142999b c =++且1sin 2S bc A ==,即2221424299999b c bc bc bcAM S+++= 当且仅当1233b c =,即2b c =时,等号成立.所以2minAM S ⎛⎫ ⎪=⎪ ⎪⎝⎭ 29.(2023·云南·统考二模)ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,π3A =.(1)若2b =,3c =.求证:tan sin a bA B+=(2)若D 为BC 边的中点,且ABC的面积为AD 长的最小值.【解析】(1)证明:π3A =Q ,2b =,3c =,由余弦定理可得22212cos 4922372a b c bc A =+-=+-⨯⨯⨯=,a ∴=ππtan sin tan sin tan sin 33a b a a A B A A ∴+=+.(2)由1sin 24ABC S bc A bc ===V 24bc =.D 为边BC 的中点,则0DB DC +=,()()2AB AC AD DB AD DC AD ∴+=+++=,所以,()222222π422cos3AD AB ACAB AC AB AC c b cb =+=++⋅=++222372b c bc bc bc bc =++≥+==,即AD ≥当且仅当b c ==AD 长的最小值为30.(2023·广西·统考一模)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,满足(2)cos cos 0b a C c B ++=.(1)求C ;(2)若角C 的平分线交AB 于点D ,且2CD =,求2a b +的最小值.【解析】(1)因为(2)cos cos 0b a C c B ++=,由正弦定理得(sin 2sin )cos sin cos 0B A C C B ++=,即sin cos sin cos 2sin cos B C C B A C +=-,所以()sin sin 2sin cos B C A A C +==-,又()0,πA ∈,则sin 0A >,所以1cos 2C =-,又因()0,πC ∈,所以2π3C =;(2)因为角C 的平分线交AB 于点D ,所以π3ACD BCD ∠=∠=,由ABC ACD BCD S S S =+△△△,得12π1π1πsinsin sin 232323ab CD b CD a =⋅+⋅,即22a b ab +=,所以221ab+=,则()222422666b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥+=+ ⎪ ⎪⎝⎭⎝⎭当且仅当24b a a b=,即2b ==时取等号,所以2a b +的最小值为6+.31.(2023·安徽宣城·统考二模)设ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知1sin 1cos 2cos sin 2A BA B--=.(1)判断ABC 的形状,并说明理由;(2)求2254cos a a c c B-的最小值.【解析】(1)ABC 为钝角三角形,证明如下:由21sin 1cos 22sin sin cos sin 22sin cos cos A B B B A B B B B--===,则有cos sin cos sin cos B A B B A -=,所以cos sin()B A B =+,因为()0,πA B +∈,所以()cos sin 0B A B =+>,则B 为锐角.所以()cos sin sin 2πB B A B ⎛⎫=-=+⎪⎝⎭,所以π2B A B -=+或()2πB A B π⎛⎫-++= ⎪⎝⎭,则22πA B +=或π2A =,由题意知cos 0A ≠,所以π2A ≠,所以22πA B +=,所以,22C πA B B πππ⎛⎫=--=+∈ ⎪⎝⎭,故ABC 为钝角三角形.(2)由(1)知22πA B +=,π2C B =+,由正弦定理,有22225sin 5sin 4cos sin 4sin cos a a A Ac c B C C B-=-22sin 25sin 222sin 4sin cos 22B B B B B ππππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭=-⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭222cos 25cos 2cos 4cos B B B B =-222222cos 15(2cos 1)cos 4c ()os B B B B --=-42224cos 4cos 155cos 4cos 2B B B B -+=+-229134cos 4cos 2B B =+-132≥12=-当且仅当2294cos 4cos B B=时等号成立,由B 为锐角,则cos 2B =,所以当π6B =时取最小值12-.32.(2023·全国·模拟预测)已知ABC 是斜三角形,角A ,B ,C 满足cos(2)cos sin 2A B A B ++=.(1)求证:cos sin 0C B +=;(2)若角A ,B ,C 的对边分别是边a ,b ,c ,求22245a b c+的最小值,并求此时ABC 的各个内角的大小.【解析】(1)由()cos 2cos sin2A B A B ++=得cos cos2sin sin2cos sin2A B A B A B -+=,所以()()cos 1cos21sin sin2A B A B +=+,所以()22cos cos 21sin sin cos A B A B B =+.因为ABC 是斜三角形,所以cos 0B ≠,所以()cos cos 1sin sin A B A B =+,所以cos cos sin sin sin 0A B A B B --=,所以()cos sin 0A B B +-=,又A B C π++=,所以cos sin 0C B +=.(2)在ABC 中,有sin 0B >,由(1)知cos sin 0C B +=,所以cos 0C <,于是角C 为钝角,角B 为锐角,根据cos cos 2C B π⎛⎫=+⎪⎝⎭,所以2C B π=+.由正弦定理,得()2222222222224sin 25sin 4sin 5sin 454sin 5sin 22sin sin sin C C B C B a b A B c C C Cππ⎛⎫⎛⎫-+- ⎪ ⎪++++⎝⎭⎝⎭===()()2222242222412sin 55sin 4cos 25cos 16sin 21sin 9sin sin sin CCC CC C CCC-+-+-+===,22916sin 21213sin C C=+-≥=,当且仅当22916sin sin C C =,即23sin 4C =,sin 2C =时等号成立,又角C 为钝角,所以120C =︒时,等号成立,由2C B π=+,得30B =︒,由180A B C ++=︒,得30A =︒,因此22245a b c +的最小值为3,此时三角形ABC 的各个内角为30A =︒,30B =︒,120C =︒.33.(2023·吉林·统考三模)如图,圆O 为ABC 的外接圆,且O 在ABC 内部,1OA =,2π3BOC ∠=.(1)当π2AOB ∠=时,求AC ;(2)求图中阴影部分面积的最小值.【解析】(1)法一:由题意可知,π2π5π2π236AOC ∠=--=,在AOC 中,由余弦定理得2222311211cos 22AC OA OC OA O AOC C ⎛∠=+-⨯⨯⨯-=+⎭-⎝=+⋅∴622AC =.法二:在ABC 中,π2π5π2π236AOC ∠=--=,1OA =,1π24ACB AOB ∠=∠=,15π212ABC AOC ∠=∠=,AB =由正弦定理得sin sin AB ACACB ABC=∠∠,∴π5πsin sin 412AC=,5πππππππsin sin()sin cos cos sin 124646464=+=+=,∴2AC =.(2)设AOB θ∠=,则4π3AOC θ∠=-114π1π11sin 11sin sin sin 22323AOB AOC S S θθθθ⎡⎤⎛⎫⎛⎫+=⨯⨯⨯+⨯⨯⨯-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦△△13πsin sin 22226θθθ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭,设阴影部分面积为S ,优弧 BC所对的扇形BOC 面积为S 扇形,则212π2π12π233S ⎛⎫=⨯⨯-= ⎪⎝⎭扇形,∴()π2πsin 263AOB AOC S S S S θ⎛⎫=-+=-+ ⎪⎝⎭扇形△△,∵点O 在ABC 内部,∴ππ3θ<<,∴ππ5π666θ<-<,当ππ62θ-=时,即2π3θ=时,min 2π3S =-。

中考数学压轴题小专题5:旋转辅助线

中考数学压轴题小专题5:旋转辅助线

中考数学压轴题分析:旋转辅助线广州每年的几何与函数压轴题都挺不错。

不过考查的知识点和方法往往都是那几类,今年仍然是以圆为背景的题目,利用旋转或者对称进行构造辅助线解决问题。

【中考真题】(2020•广州)如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧AB上运动(不与点A,B重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.【分析】题(1)主要是利用圆周角定理及其推论进行解答即可;题(2)要求面积,由于四边形直接求不好求,所以需要考虑进行转化。

本题的关键条件就是等边三角形。

而且点D在三角形外部,所以这种图形就是平时练习中超级常见的类型。

只需要进行旋转,或者说截长补短即可。

将△ADC绕点C逆时针旋转60°,得到上图。

可以把四边形的面积转化为等边三角形CDH的面积即可。

当然,如果把△BCD绕着点C顺时针旋转60°也是可以的。

题(3)是最短路径问题,求三个动点组成的三角形周长最小。

与人教版八年级上课本的课后作业题差不多。

就是牧马人先带马去吃草,再到河边饮水,然后回到帐篷。

通过对称即可把三条线段化为两点间的线段即可。

【答案】证明:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵∠ADC=∠ABC=60°,∠BDC=∠BAC=60°,∴∠ADC=∠BDC,∴DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数,理由如下:如图1,将△ADC绕点逆时针旋转60°,得到△BHC,∴CD=CH,∠DAC=∠HBC,∵四边形ACBD是圆内接四边形,∴∠DAC+∠DBC=180°,∴∠DBC+∠HBC=180°,∴点D,点B,点H三点共线,∵DC=CH,∠CDH=60°,∴△DCH是等边三角形,∵四边形ADBC的面积S=S△ADC+S△BDC=S△CDH=√3/4CD²,∴S=√3/4x²;(3)如图2,作点D关于直线AC的对称点E,作点D关于直线BC的对称点F,∵点D,点E关于直线AC对称,∴EM=DM,同理DN=NF,∵△DMN的周长=DM+DN+MN=FN+EM+MN,∴当点E,点M,点N,点F四点共线时,△DMN的周长有最小值,则连接EF,交AC于M,交BC于N,连接CE,CF,DE,DF,∴△DMN的周长最小值为EF=t,∵点D,点E关于直线AC对称,∴CE=CD,∠ACE=∠ACD,∵点D,点F关于直线BC对称,∴CF=CD,∠DCB=∠FCB,∴CD=CE=CF,∠ECF=∠ACE+∠ACD+∠DCB+∠FCB=2∠ACB=120°,∵CP⊥EF,CE=CF,∠ECF=120°,∴EP=PF,∠CEP=30°,∴PC=1/2EC,PE=√3PC=√3/2EC,∴EF=2PE=√3EC=√3CD=t,∴当CD有最大值时,EF有最大值,即t有最大值,∵CD为⊙O的弦,∴CD为直径时,CD有最大值4,∴t的最大值为4√3.【总结】旋转最短路径问题。

电磁感应压轴题(5法突破)(解析版)

电磁感应压轴题(5法突破)(解析版)

电磁感应是高中物理的重要知识板块,对于简单的电磁感应问题,一般可直接利用法拉第电磁感应定律和楞次定律及其相关知识解答。

而对于比较复杂的电磁感应问题,运用以下五种物理思想方法,可快速破解,事半功倍。

一、等效法在电磁感应中,闭合电路中的一部分导体做切割磁感线运动将产生感应电动势,对于一些弯曲导体在磁场中做切割磁感线运动,我们可以把弯曲导体等效为沿垂直运动方向的直导体。

对于正弦式感应电流,可以用有效值计算产生的热量。

涉及最大功率的问题,有的需要找出等效电路和等效电源。

[例1] 如图所示,da 、bc 为相距为L 的平行导轨(导轨电阻不计)。

a 、b 间连接一个定值电阻,阻值为R 。

长直金属杆MN 可以按任意角θ架在平行导轨上,并以速度v 匀速滑动(平移),v 的方向与da 平行,杆MN 每单位长度的阻值也为R 。

整个空间充满匀强磁场,磁感应强度的大小为B ,方向垂直纸面向里。

求:(1)定值电阻上消耗的电功率最大时,θ的值;(2)杆MN 上消耗的电功率最大时,θ的值。

(要求写出推导过程)[方法导入] 长直金属杆可以按任意角θ架在平行导轨上,利用等效法可将其等效为长为L 的金属杆切割磁感线。

计算杆MN 上消耗的最大电功率时,可以把定值电阻等效为电源内阻,把杆MN 接入电路的电阻等效为可变化的外电阻。

[解析] (1)无论θ角多大,感应电动势E =BL v 不变根据P =I 2R 可知,总电流越大,定值电阻上消耗的电功率越大。

由闭合电路欧姆定律,MN 接入电路的电阻(相当于电源内阻)越小,电流越大,定值电阻上消耗的电功率越大。

即θ=π2时,定值电阻上消耗的电功率最大。

(2)法一:令MN 接入电路的电阻为r ,则有r =L sin θ R 由P MN =I 2r 和I =BL v R +r可得 P MN =⎝ ⎛⎭⎪⎪⎫BL v LR sin θ+R 2·LR sin θ 化简得P MN =B 2L 3v 2R ⎝⎛⎭⎫L 2sin θ+sin θ+2L θ∈⎝⎛⎦⎤0,π2,由均值不等式可知L 2sin θ+sin θ+2L ≥4L ,当且仅当sin θ=L ,即θ=arcsin L 时等号成立,此时0<L ≤1 m 。

江苏省无锡地区中考数学选择填空压轴题专题5三角形综合问题(含答案)67

江苏省无锡地区中考数学选择填空压轴题专题5三角形综合问题(含答案)67

专题05三角形综合问题例1.以下列图,矩形ABCD中,AB=4,BC=43,点E是折线ADC上的一个动点〔点E与点A 不重合〕,点P是点A对于BE的对称点.在点E运动的过程中,使△PCB为等腰三角形的点E的地点共有〔〕A.2个B.3个C.4个D.5个同类题型:如图,在钝角△ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形ABE和等腰直角三角形ACF,EM均分∠AEB交AB于点M,取BC中点D,AC中点N,连结DN、DE、DF.以下结论:①EM=DN;②S1=S△CDN3四边形ABDN;③DE=DF;④DE⊥DF.此中正确的结论的个数是〔〕A.1个B.2个C.3个D.4个同类题型:如图,D,E分别是△ABC的边BC,AC上的点,假定∠B=∠C,∠ADE=∠AED,那么〔〕A.当∠B为定值时,∠C.当∠2为定值时,∠CDE为定值CDE为定值B.当∠1D.当∠3为定值时,∠为定值时,∠CDE为定值CDE为定值同类题型:如图,在△ABC中,AB=AC=23,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.假定BD=2CE,那么DE的长为______________.例2.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE =15°,且AE=AD.连结DE交对角线AC于H,连结BH.以下结论:①ACD≌△ACE;②△CDE为等边三角形;③S△AEHEH=2EB;④=S△CEH EHCD.此中正确的结论是________.同类题型:以下列图,:点A〔0,0〕,B〔3,0〕,C〔0,1〕在△ABC内挨次作等边三角形,使一边在x轴上,另一个极点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,,那么第n个等边三角形的边长等于____________.同类题型:如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°获得P'C,连结AP',那么sin∠PAP'的值为_________.例3.如图,在△ABC中,∠ABC和∠ACB的均分线订交于点O,过点O 作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.以下四个结论:1①∠BOC=90°+2∠A;②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;1③EF是△ABC的中位线;④设OD=m,AE+AF=n,那么S△AEF=2mn.此中正确的结论是〔〕A.①②③B.①③④C.②③④D.①②④同类题型:以下列图,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.那么BD的长为〔〕A. 14 B. 15 C.3 2 D.2 3同类题型:如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,以下结论:①假定C、O两点对于AB对称,那么OA=23;②C、O两点距离的最大值为4;π③假定AB均分CO,那么AB⊥CO;④斜边AB的中点D运动路径的长为2;此中正确的选项是______________〔把你以为正确结论的序号都填上〕.同类题型:如图,直角△ABC中,∠B=30°,点O是△ABC的重心,连结CO并延伸交AB于点E,过点E作EF⊥AB交BC于点F,连结AF交CE于点M,MO那么MF的值为〔〕1523A.2B.4C.3D.3例4.如图,在△ABC中,4AB=5AC,AD为△ABC的角均分线,点E在BC的延伸线上,EF⊥AD于点F,点G在AF上,FG=FD,连结EG交AC于点H.假定点HAG是AC的中点,那么FD的值为________.同类题型:如图,CO1是△ABC的中线,过点O1作O1E1∥AC交BC于点E1,连结AE1交CO1于点O2;过点O2作O2E2∥AC交BC于点E2,连结AE2交CO1于点O3;过点O3作O3E3∥AC交BC于点E3,,这样持续,能够挨次获得点O4,O5,,On和点E4,E5,,En,那么O2021E2021=_________AC.同类题型:如图,过锐角△ABC的极点A作DE∥BC,AB恰巧均分∠DAC,AF1均分∠EAC交BC的延伸线于点F.在AF上取点M,使得AM=3AF,连结CM并延伸交直线DE 于点.假定=2,△的面积是1,那么1的值是H AC AMH12tan∠ACH___________.例5.如图,△ABC的面积为S.点P1,P2,P3,,Pn-1是边BC的n等分点〔n≥3,且n为整数〕,点M,N分别在边AB,AC上,且AMAN1,连==nABAC接MP,MP,MP,,MP,连结NB,NP,NP,,NP,线123n-112n-1段MP与NB订交于点D,线段MP与NP订交于点D,线段MP与NP订交1121232于点D,,线段MP与NP订交于点D ,那么△NDP,△NDP,n-1n-2n-11122ND3P3,,△NDn-1Pn-1的面积和是____________.〔用含有S与n的式子表示〕同类题型:如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′,且B′C=3,那么AM的长是〔〕A. B.2 C. D.同类题型:如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折获得△AED,连CE,那么线段CE的长等于〔〕557A.2B.4C.3D.5同类题型:如图,在Rt△ABC中,∠A=90°,AB=AC,BC=2+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′一直落在边AC上,假定△MB′C为直角三角形,那么BM的长为____________.同类题型:如图,在矩形ABCD中,∠B的均分线BE与AD交于点E,∠BED的均分线EF与DC 交于点F,假定AB=9,DF=2FC,那么BC=_________________.〔结果保留根号〕参照答案例1.以下列图,矩形ABCD中,AB=4,BC=43,点E是折线ADC上的一个动点〔点E与点A 不重合〕,点P是点A对于BE的对称点.在点E运动的过程中,使△PCB为等腰三角形的点E的地点共有〔〕A.2个B.3个C.4个D.5个解:①BP为等腰三角形一腰长时,切合点E的地点有2个,是BC的垂直均分线与以B为圆心BA 为半径的圆的交点即是点P;BP为底边时,C为极点时,切合点E的地点有2个,是以B为圆心BA为半径的圆与以C为圆心BC 为半径的圆的交点即是点P;③以PC为底边,B为极点时,这样的等腰三角形不存在,由于以B为圆心BA为半径的圆与以B为圆心BC为半径的圆没有交点.选C.同类题型:如图,在钝角△ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形ABE和等腰直角三角形ACF,EM均分∠AEB交AB于点M,取BC中点D,AC中点N,连结DN、DE、DF.以下结论:①EM=DN;②S=1△CDN3;③DE=DF;④DE⊥DF.此中正确的结论的个数是〔〕四边形ABDNA.1个B.2个C.3个D.4个解:∵D是BC中点,N是AC中点,∴DN是△ABC的中位线,1DN∥AB,且DN=2AB;∵三角形ABE是等腰直角三角形,EM均分∠AEB交AB于点M,∴M是AB的中点,1EM=2AB,1又∵DN=2AB,EM=DN,∴结论①正确;∵DN∥AB,∴△CDN∽ABC,1DN=2AB,1∴S=S,△CDN4△ABC1S=S_(四边形ABDN),△CDN3∴结论②正确;如图1,连结MD、FN,D是BC中点,M是AB中点,∴DM是△ABC的中位线,1DM∥AC,且DM=2AC;∵三角形ACF是等腰直角三角形,N是AC的中点,1FN=2AC,1又∵DM=2AC,DM=FN,DM∥AC,DN∥AB,∴四边形AMDN是平行四边形,∴∠AMD=∠AND,又∵∠EMA=∠FNA=90°,∴∠EMD=∠DNF,在△EMD和△DNF中,EM=DN∠EMD=∠DNF,MD=NF∴△EMD≌△DNF,DE=DF,∴结论③正确;如图2,连结MD,EF,NF,∵三角形ABE是等腰直角三角形,EM均分∠AEB,M是AB的中点,EM⊥AB,EM=MA,∠EMA=90°,∠AEM=∠EAM=45°,EM2∴=sin45°=,EA2D是BC中点,M是AB中点,∴DM是△ABC的中位线,1DM∥AC,且DM=2AC;∵三角形ACF是等腰直角三角形,N是AC的中点,1FN=2AC,∠FNA=90°,∠FAN=∠AFN=45°,1又∵DM=2AC,2DM=FN=2FA,∵∠EMD=∠EMA+∠AMD=90°+∠AMD,EAF=360°-∠EAM-∠FAN-∠BAC360°-45°-45°-〔180°-∠AMD〕90°+∠AMD∴∠EMD=∠EAF,在△EMD和△∠EAF中,EMDM 2==EAFA 2∠EMD=∠EAF∴△EMD∽△∠EAF,∴∠MED=∠AEF,∵∠MED+∠AED=45°,∴∠AED+∠AEF=45°,即∠DEF=45°,又∵DE=DF,∴∠DFE=45°,∴∠EDF=180°-45°-45°=90°,DE⊥DF,∴结论④正确.∴正确的结论有4个:①②③④.选D.同类题型:如图,D,E分别是△ABC的边BC,AC上的点,假定∠B=∠C,∠ADE=∠AED,那么〔〕A.当∠B为定值时,∠CDE为定值B.当∠1为定值时,∠CDE为定值C.当∠2为定值时,∠CDE为定值D.当∠3为定值时,∠CDE为定值解:在△CDE中,由三角形的外角性质得,∠AED=∠CDE+∠C,在△ABD中,由三角形的外角性质得,∠B+∠1=∠ADC=∠ADE+∠CDE,∵∠B=∠C,∠ADE=∠AED,∴∠B+∠1=∠CDE+∠C+∠CDE=2∠CDE+∠B,∴∠1=2∠CDE,∴当∠1为定值时,∠CDE为定值.选B.同类题型:如图,在△ABC中,AB=AC=23,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.假定BD=2CE,那么DE的长为______________.解:将△ABD绕点A逆时针旋转120°获得△ACF,取CF的中点G,连结EF、EG,以下列图.AB=AC=23,∠BAC=120°,∴∠ACB=∠B=∠ACF=30°,∴∠ECG=60°.CF=BD=2CE,CG=CE,∴△CEG为等边三角形,EG=CG=FG,1∴∠EFG=∠FEG=2∠CGE=30°,∴△CEF为直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.AD=AF在△ADE和△AFE中,∠DAE=∠FAE=60°,AE=AE∴△ADE≌△AFE〔SAS〕,DE=FE.设EC=x,那么BD=CD=2x,DE=FE=6-3x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,2 2EF=CF-EC=3x,6-3x=3x,x=3-3,∴DE=3x=3 3-3.例2.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE =15°,且AE=AD.连结DE交对角线AC于H,连结BH.以下结论:①ACD≌△ACE;②△CDE为等边三角形;③S△AEHEH=2EB;④=S△CEH EHCD.此中正确的结论是________.解:①∵∠ABC=90°,AB=BC,∴∠BAC=∠ACB=45°,又∵∠BAD=90°,∴∠BAC=∠DAC,在△ACD和△ACE中,AD=AE∠EAC=∠DAC,AC=AC∴△ACD≌△ACE 〔SAS〕;故①正确;②同理∠AED=45°,∠BEC=90°-∠BCE=90°-15°=75°,∴∠DEC=60°,∵△ACD≌△ACE,CD=CE,∴△CDE为等边三角形.故②正确.③∵△CHE为直角三角形,且∠HEC=60°EC=2EH∵∠ECB=15°,EC≠4EB,EH≠2EB;故③错误.④∵AE=AD,CE=CD,∴点A与C在DE的垂直均分线上,AC是DE的垂直均分线,即AC⊥DE,∴CE>CH,∵CD=CE,∴CD>CH,∵∠BAC=45°,∴AH=EH,S△AEHAHEH∵==,S△CEH CHCHS△AEHEH∴>,故④错误.S△CEHCD答案为:①②.同类题型:以下列图,:点A〔0,0〕,B〔3,0〕,C〔0,1〕在△ABC内挨次作等边三角形,使一边在x轴上,另一个极点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,,那么第n个等边三角形的边长等于____________.解:∵OB=3,OC=1,BC=2,∴∠OBC=30°,∠OCB=60°.而△AA1B1为等边三角形,∠A1AB1=60°,∴∠COA=30°,那么∠CAO=90°.3 1 143在Rt△CAA1中,AA1=2OC=2,13同理得:B1A2=2A1B1=22,3依此类推,第n个等边三角形的边长等于.2n同类题型:如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°获得P'C,连结AP',那么sin∠PAP'的值为_________.解:连结PP ′,如图,∵线段PC 绕点C 顺时针旋转60°获得P'C ,CP =CP ′=6,∠PCP ′=60°,∴△CPP ′为等边三角形, PP ′=PC =6,∵△ABC 为等边三角形,CB =CA ,∠ACB =60°,∴∠PCB =∠P ′CA , 在△PCB 和△P ′CA 中 PC =P ′C ∠PCB =∠P ′CA , CB =CA∴△PCB ≌△P ′CA , PB =P ′A =10, ∵62+82=102,2 2 2,∴PP ′+AP =P ′A ∴△APP ′为直角三角形,∠APP ′=90°, PP ′63sin∠PAP ′=P ′A =10=5.同类题型:例3.如图,在△ABC 中,∠ABC 和∠ACB 的均分线订交于点 O ,过点O 作EF ∥BC 交AB 于E ,交AC 于F ,过点O 作OD ⊥AC 于D .以下四个结论: 1①∠BOC =90°+2∠A ;②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;③EF是△ABC的中位线;1④设OD=m,AE+AF=n,那么S△AEF=2mn.此中正确的结论是〔〕A.①②③B.①③④C.②③④D.①②④解:∵在△ABC中,∠ABC和∠ACB的均分线订交于点O,1 1∴∠OBC=2∠ABC,∠OCB=2∠ACB,∠A+∠ABC+∠ACB=180°,1∴∠OBC+∠OCB=90°-2∠A,1∴∠BOC=180°-〔∠OBC+∠OCB〕=90°+2∠A;故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连结OA,∵在△ABC中,∠ABC和∠ACB的均分线订交于点O,ON=OD=OM=m,1 1 1 1S△AEF=S△AOE+S△AOF=2AE﹒OM+2AF﹒OD=2OD﹒〔AE+AF〕=2mn;故④正确;∵在△ABC中,∠ABC和∠ACB的均分线订交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB,EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EBO=∠EOB,∠FOC=∠FCO,EB=EO,FO=FC,EF=EO+FO=BE+CF,∴以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切,故②正确,依据不可以推出E、F分别是AB、AC的中点,故③正确,∴此中正确的结论是①②④选D.同类题型:以下列图,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.那么BD的长为〔〕A. 14 B. 15 C.3 2 D.2 3解:以A为圆心,AB长为半径作圆,延伸BA交⊙A于F,连结DF.DC∥AB,⌒⌒∴DF=BC,∴DF=CB=1,BF=2+2=4,∵FB是⊙A的直径,∴∠FDB=90°,∴BD =22.BF-DF=15选B.同类题型:如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM、ON上滑动,以下结论:①假定C、O两点对于AB对称,那么OA=23;C、O两点距离的最大值为4;③假定AB均分CO,那么AB⊥CO;π④斜边AB的中点D运动路径的长为2;此中正确的选项是______________〔把你以为正确结论的序号都填上〕.解:在Rt△ABC中,∵BC=2,∠BAC=30°,AB=4,AC=42-22=23,①假定C、O两点对于AB对称,如图1,∴AB是OC的垂直均分线,那么OA=AC=23;因此①正确;②如图1,取AB的中点为E,连结OE、CE,∵∠AOB=∠ACB=90°,1OE=CE=AB=2,2当OC经过点E时,OC最大,那么C、O两点距离的最大值为4;因此②正确;③如图2,当∠ABO=30°时,∠OBC=∠AOB=∠ACB=90°,∴四边形AOBC是矩形,∴AB与OC相互均分,但AB与OC的夹角为60°、120°,不垂直,因此③不正确;1④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的4,那么:90π×2=π,180因此④不正确;综上所述,本题正确的有:①②.同类题型:如图,直角△ABC中,∠B=30°,点O是△ABC的重心,连结CO并延伸交AB于点E,过点E作EF⊥AB交BC于点F,连结AF交CE于点M,那么MOMF的值为〔〕1523A.2B.4C.3D.3解:∵点O是△ABC的重心,2OC=3CE,∵△ABC是直角三角形,CE=BE=AE,∵∠B=30°,∴∠FAE=∠B=30°,∠BAC=60°,∴∠FAE=∠CAF=30°,△ACE是等边三角形,1CM=2CE,2 1 1 1OM=3CE-2CE=6CE,即OM=6AE,∵BE=AE,3EF=3AE,∵EF⊥AB,∴∠AFE=60°,∴∠FEM=30°,1MF=2EF,3MF=6AE,1MO 6AE3∴==.MF 3 3AE选D.例4.如图,在△ABC中,4AB=5AC,AD为△ABC的角均分线,点E在BC的延伸线上,EF⊥AD于点F,点G在AF上,FG=FD,连结EG交AC于点H.假定点HAG是AC的中点,那么FD的值为________.解:AD为角均分线,那么点D到AB、AC的距离相等,设为h.1BDS△ABD2AB﹒h AB5∵====,CDS1AC4△AC DAC﹒h25BD=4CD.如右图,延伸AC,在AC的延伸线上截取AM=AB,那么有AC=4CM.连结DM.在△ABD与△AMD中,AB=AM∠BAD=∠MADAD=AD∴△ABD≌△AMD〔SAS〕,5MD=BD=4CD.过点M作MN∥AD,交EG于点N,交DE于点K.MN∥AD,CKCM1∴==,CDAC41CK=4CD,5KD=4CD.MD=KD,即△DMK为等腰三角形,∴∠DMK=∠DKM.由题意,易知△EDG为等腰三角形,且∠1=∠2;∵MN∥AD,∴∠3=∠4=∠1=∠2,又∵∠DKM=∠3〔对顶角〕∴∠DMK=∠4,DM∥GN,∴四边形DMNG为平行四边形,MN=DG=2FD.∵点H为AC中点,AC=4CM,AH2∴=.∵MH3∵MN∥AD,∴AGAHAG2=,即=,MNMH2FD3∴AG4.=3FD同类题型:如图,CO是△ABC的中线,过点O作OE∥AC交BC于1111点E,连结AE交CO于点O ;过点O作OE∥AC交BC于点E,连结AE111222222交CO于点O;过点O作OE∥AC交BC于点E,,这样持续,能够挨次133333获得点,O,,O和点E,E,,E,那么OE=_________AC.45n45n20212021解:∵O1E1∥AC,∴∠BOE11=∠BAC,∠BEO11=∠BCA,∴△BO1E 1∽△BAC ,BO1 O1E1BA =AC .∵CO1是△ABC 的中线,BO OE 11 11∴BA =AC =2.O1E 1∥AC ,∴∠O1E1O2=∠CAO2,∠E1O1O2=∠ACO2,∴△E1O1O 2∽△ACO2,∵ E1O1 E1O2 1∵ AC =AO =2.2∵ O2E 2∥AC ,E1O2 O2E2 1E1A=AC=3,1OE=AC.2231AC.同理:O n E n=n+11 1O2021E2021=2021+1=2021.同类题型:如图,过锐角△ABC的极点A作DE∥BC,AB恰巧均分∠DAC,AF1均分∠EAC交BC的延伸线于点F.在AF上取点M,使得AM=3AF,连结CM并11延伸交直线DE于点H.假定AC=2,△AMH的面积是12,那么tan∠ACH的值是___________.解:过点H作HG⊥AC于点G,AF均分∠CAE,DE∥BF,∴∠HAF=∠AFC=∠CAF,∴AC=CF=2,1AM=3AF,AM1∴=,∵MF2∵DE∥CF,∴△AHM∽△FCM,AMAH∴=,MFCFAH=1,设△AHM中,AH边上的高为m,△FCM中CF边上的高为n,mAM1∴==,n MF211∵△AMH的面积为:12,2112=2AH﹒m1∴m=6,1∴n=3,设△AHC的面积为S,S m+n∴==3,S△AHM m1S=3S△AHM=4,1 12AC﹒HG=4,1HG=4,15∴由勾股定理可知:AG=4,∴CG=AC-AG=2-1541CG∴==8-15.tan∠ACHHG例5.如图,△ABC的面积为S.点P1,P2,P3,,Pn-1是边BC的n 等分点〔n≥3,且n为整数〕,点M,N分别在边AB,AC上,且AMAN,连==ABAC接MP1,MP2,MP3,,MPn-1,连结NB,NP1,NP2,,NPn-1,线段MP1与NB订交于点D1,线段MP2与NP1订交于点D2,线段MP3与NP2订交于点D3,,线段MPn-1与NPn-2订交于点Dn-1,那么△NDP11,△NDP22,△ND3P3,,△NDn-1Pn-1的面积和是____________.〔用含有S与n的式子表示〕解:连结MN,设BN交MP1于O1,MP2交NP1于O2,MP3交NP2于O3.AMAN1∵==,∴ABACn∴MN∥BC,MNAM1∴==,BCABn∵点P1,P2,P3,,Pn-1是边BC的n均分点,∴MN=BP1=P1P2=P2P3,∴四边形MNPB,四边形MNPP,四边形MNPP都是平行四边形,1232易知S=1﹒S,S=n-1﹒S,S=n-1﹒S,△ABN n△BCN n△MNB2nn-1∴S△BP1O1=S△P1P2O2=S△P3P2O3=2n2﹒S,∴S=S-〔n-1〕﹒SO-SC=n-1n-1﹒S-〔n-1〕﹒阴△NBC△BP11△NPn-1n2n2 n-1(n-1)2﹒S-2S=2﹒S.n2n同类题型:如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′,且B′C=3,那么AM的长是〔〕A.B.2C.D.解:设AM=x,连结BM,MB′,222在Rt△ABM中,AB+AM=BM,222在Rt△MDB′中,B′M=MD+DB′,∵MB=MB′,2+2=2=′2=2+′2,ABAMBMBMMDDB即92+x2=〔9-x〕2+〔9-3〕2,解得x=2,即AM=2,应选B.同类题型:如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折获得△AED,连CE,那么线段CE的长等于〔〕557A.2B.4C.3D.5解:如图连结BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,BC=32+42=5,∵CD=DB,5AD=DC=DB=2,1 12﹒BC﹒AH=2﹒AB﹒AC,12AH=5,∵AE=AB,∴点A在BE的垂直均分线上.∵DE=DB=DC,∴点D在BE使得垂直均分线上,△BCE是直角三角形,∴AD垂直均分线段BE,1 12﹒AD﹒BO=2﹒BD﹒AH,12∴OB=5,24∴BE=2OB=5,在Rt△BCE中,EC=222247BC-BE=5-(5)=5,选D.同类题型:如图,在Rt△ABC中,∠A=90°,AB=AC,BC=2+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′一直落在边AC上,假定△MB′C为直角三角形,那么BM的长为____________.解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,1 1 1BM=2BC=22+2;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,CM=2MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,BM=B′M,CM=2BM,∵BC=2+1,CM+BM=2BM+BM=2+1,BM=1,1 1综上所述,假定△MB′C为直角三角形,那么BM的长为22+2或1.同类题型:如图,在矩形ABCD中,∠B的均分线BE与AD交于点E,∠BED的均分线EF与DC 交于点F,假定AB=9,DF=2FC,那么BC=_________________.〔结果保留根号〕解:延伸EF和BC,交于点G∵矩形ABCD中,∠B的角均分线BE与AD交于点E,∴∠ABE=∠AEB=45°,AB=AE=9,∴直角三角形ABE中,BE=92+92=9 2,又∵∠BED的角均分线EF与DC交于点F,∴∠BEG=∠DEFAD∥BC∴∠G=∠DEF∴∠BEG=∠GBG=BE=92由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC CGCF CF 1∴===DEDF2CF2设CG=x,DE=2x,那么AD=9+2x=BCBG=BC+CG92=9+2x+x解得x=3 2-3∴BC=9+2〔32-3〕=6 2+3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.如图,已知直线y=kx-6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.2.如图,抛物线经过、两点,与轴交于另一点. (1)求抛物线的解析式;(2)已知点在第一象限的抛物线上,求点关于直线对称的点的坐标; (3)在(2)的条件下,连接,点为抛物线上一点,且,求点的坐标.24y ax bx a =+-(10)A -,(04)C ,x B (1)D m m +,D BC BD P 45DBP ∠=°P3.(满分14分)如图,抛物线n x x y +-=22与直线3-=x y 相交于A 、B 两点(点A 在x 轴上,点B 在y 轴上),与x 轴的另一个交点为点C. (1) 求抛物线n x x y +-=22的解析式;(2) 在x 轴下方,当x m ≤-232<313+m 时,抛物线y 随x 增大而减小,求实数m 的取值范围;(3) 在抛物线上,是否存在点F ,使得△BCF 是直角三角形?若存在,求出所有..满足条件的点F 的坐标;若不存在,请说明理由.(第3题)4如图,在直角坐标系中有一直角三角形AOB ,O 为坐标原点, OA =1,tan∠BAO =3,将此三角形绕原点O 逆时针旋转90°,得到△DOC .抛物线经过点A 、B 、C . (1)求抛物线的解析式.(2)若点P 是第二象限内抛物线上的动点,其横坐标为t .①设抛物线对称轴与x 轴交于一点E ,连接PE ,交CD 于F ,求出当△CEF 与△COD 相似时点P 的坐标.②是否存在一点P ,使△PCD 的面积最大?若存在,求出△PCD 面积的最大值;若不存在,请说明理由.2y ax bx c =++l 第4题备用图第4题图5.已知在ABC 中,边BC 的长与BC 边上的高的和为20. ⑴写出ABC 的面积与BC 的长之间的函数关系式,并求出面积为48时BC 的长;⑵当BC 多长时,ABC 的面积最大?最大面积是多少?⑶当ABC 面积最大时,是否存在其周长最小的情形?如果存在,请说明理由,并求出其最小周长;如果不存在,请给予说明.∆∆yx ∆∆6如图,抛物线22y ax ax c =-+(0a ≠)交x 轴于A 、B 两点,A 点坐标为(3,0),与y 轴交于点C (0,4),以OC 、OA 为边作矩形OADC 交抛物线于点G 。

(1)求抛物线的解析式; (2)抛物线的对称轴l 在边OA (不包括O 、A 两点)上平行移动,分别交x 轴于点E ,交CD 于点F ,交AC 于点M ,交抛物线于点P ,若点M 的横坐标为m ,请用含m 的代数式表示PM 的长。

(3)在(2)的条件下,连结PC ,则在CD 上方的抛物线部分是否存在这样的点P ,使得以P 、C 、F 为顶点的三角形和AEM △相似?若存在,求出此时m 的值,并直接判断PCM △的形状;若不存在,请说明理由。

(第6题图)1.解:(1)把A(1,-4)代入y=kx-6,得k=2,∴y=2x-6,∴B(3,0).∵A为顶点,∴设抛物线的解析为y=a(x-1)2-4,解得a=1,∴y=(x-1)2-4=x2-2x-3(2)存在.∵OB=OC=3,OP=OP,∴当∠POB=∠POC时,△POB≌△POC,此时PO平分第三象限,即PO的解析式为y=-x.设P(m,-m),则-m=m2-2m-3,解得m=(m=>0,舍),∴P(,).(3)①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴,即,∴DQ1=,∴OQ1=,即Q1(0,);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴,即,∴OQ2=,即Q2(0,);③如图,当∠AQ3B=90°时,作AE⊥y轴于E,则△BOQ3∽△Q3EA,∴,即,∴OQ32-4OQ3+3=0,∴OQ3=1或3,即Q3(0,-1),Q4(0,-3).综上,Q点坐标为(0,)或(0,)或(0,-1)或(0,-3)2.解:(1)抛物线经过,两点, 解得抛物线的解析式为.(2)点在抛物线上,,即,或.点在第一象限,点的坐标为. 由(1)知. 设点关于直线的对称点为点.,,且,,点在轴上,且.,. 即点关于直线对称的点的坐标为(0,1). (3)方法一:作于,于.由(1)有:, .,且.,. ,. 设,则,,.24y ax bx a =+-(10)A -,(04)C ,404 4.a b a a --=⎧∴⎨-=⎩,13.a b =-⎧⎨=⎩,∴234y x x =-++ (1)D m m +,2134m m m ∴+=-++2230m m --=1m ∴=-3m = D ∴D (34),45OA OB CBA =∴∠=,°D BC E (04)C ,CD AB ∴∥3CD =45ECB DCB ∴∠=∠=°E ∴y 3CE CD ==1OE ∴=(01)E ∴,D BC PF AB ⊥F DE BC ⊥E 445OB OC OBC ==∴∠=,°45DBP CBD PBA ∠=∴∠=∠ °,(04)(34)C D ,,,CD OB ∴∥3CD =45DCE CBO ∴∠=∠=°2DE CE ∴==4OB OC == BC ∴=BE BC CE ∴=-=3tan tan 5DE PBF CBD BE ∴∠=∠==3PF t =5BF t =54OF t ∴=-(543)P t t ∴-+,点在抛物线上,,(舍去)或,. 方法二:过点作的垂线交直线于点,过点作轴于.过点作于.. ,又,.,,. 由(2)知,. ,直线的解析式为.解方程组得 点的坐标为.3.(满分14分) 解⑴ 方法一:当0=x 时, 3-=y ∴()3,0-B …………………2分∵n x x y +-=22经过点B ∴3-=n∴322--=x x y …………………4分 方法二:当0=y 时, 3=x ∴()0,3A …………………2分 ∵n x x y +-=22经过点AP ∴23(54)3(54)4t t t =--++-++0t ∴=2225t =266525P ⎛⎫∴- ⎪⎝⎭,D BD PB Q D DH x ⊥H Q QG DH ⊥G 45PBD QD DB ∠=∴= °,QDG BDH ∴∠+∠90=°90DQG QDG ∠+∠=°DQG BDH ∴∠=∠QDG DBH ∴△≌△4QG DH ∴==1DG BH ==(34)D ,(13)Q ∴-,(40)B ,∴BP 31255y x =-+23431255y x x y x ⎧=-++⎪⎨=-+⎪⎩,1140x y =⎧⎨=⎩,;222566.25x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴P 266525⎛⎫- ⎪⎝⎭,∴03232=+⨯-n ∴3-=n ∴322--=x x y …………………4分 (2)当0=y 时 0322=--x x解得:3=x 或 1-=x ∴)(0,1-C ………………5分 ∵11222=⨯--=-a b ∴该二次函数的对称轴为1=x …………6分 ∵在x 轴下方,当1-<x <1时,抛物线y 随x 增大而减小 又∵313232+≤≤-m x m ∴⎪⎪⎩⎪⎪⎨⎧≤+->-13131232m m …………………7分 解得:3221≤<m …………………8分 (3)解:设()32,2--x x x F 有三种情况:① 当090FCB ∠=时: (如图1)过F 作FD x ⊥轴,垂足为D ,则090FDC BOC ∠=∠= ∴090OBC BCO ∠+∠=∵090ACF BCO ∠+∠=∴DCF OBC ∠=∠ ∴ ~BOC CDF ∆∆…………………9分∴ FD CDOC OB =∴ 223113x x x --+=解得:1103x =或21x =-(不合题意,舍去)∴1013,39F ⎛⎫⎪⎭⎝…………………10分② 当 90=∠FBC 时:过F 作EF y ⊥轴垂足为E ,则090BOC EBF ∠=∠=∴090EFB ZBF ∠=∠=∵090CBO EBF ∠+∠=∴CBO EFB ∠=∠∴ ~BOC FEB ∆∆…………………11分 ∴ EF BE OB OC =∴ ()()133232----=x x x 解得:371=x 或02=x (不合题意,舍去) ∴⎪⎭⎫ ⎝⎛-920,37F …………………12分 ③ 当090BFC ∠=时:则F 在以BC 为直径的⊙M 上过B 作BG BC ⊥交抛物线于G ∴点F 在BG 上方 由②得⎪⎭⎫ ⎝⎛-920,37G ∵BC=()()101322=-+- ∴()BC BG 21109739203722>=⎥⎦⎤⎢⎣⎡--⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛= 由此可得:对称轴右侧,BG 上方抛物线上的点一定在⊙M 外∵点F 在⊙M 上∴F 不在抛物线上…………………13分综上所述:点F 的坐标分别是⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-913,310920,37…………………14分4解:5.【解析】⑴依题意得:, 解方程得:,∴当ABC 面积为48时BC 的长为12 或8; ⑵由⑴得:, ∴当即BC=10时,ABC 的面积最大,最大面积是50;⑶ABC 的周长存在最小的情形,理由如下:由⑵可知ABC 的面积最大时,BC=10,BC 边上的高也为10,过点A 作直线L 平行于BC ,作点B 关于直线L 的对称点,连接交直线L 于点,再连接,则由对称性得:,∴,当点A 不在线段上时,则由三角形三边关系可得:,当点A 在线段上时,即点A与重合,这时,因此当点A 与重合时,ABC 的周长最小; 这时由作法可知:,∴,∴, 因此当ABC 面积最大时,存在其周长最小的情形,最小周长为.()()211201002022y x x x x x =-=--<<2148102x x =--1212,8x x ==∆()221110105022y x x x =--=--+10x =∆∆∆'B 'B C 'A ','A B AB ''','A B A B AB AB ==''''''A B A C A B A C B C +=+='B C ''L AB AC BC AB AC BC B C BC =++=++>+'B C 'A ''''L AB AC BC A B A C BC B C BC =++=++=+'A ∆'20BB='B C ==10L =∆10L C B6。

相关文档
最新文档