人教版九年级数学第二十九章投影与视图测试题(含答案)
九年级数学下册第二十九章《投影与视图》综合经典习题(答案解析)
学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图所示的几何体的主视图是()A.B.C.D.2.一张矩形纸片在太阳光的照射下,在地面上的投影不可能是()A.正方形B.平行四边形C.矩形D.等边三角形3.如图由5个相同的小正方体组成的-个立体图形,其俯视图是()A.B.C.D.4.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是()A.6 B.5 C.4 D.35.如图所示立体图形,从上面看到的图形是()A.B.C.D.6.如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去7个小正方体),所得到的几何体的表面积是()A.78 B.72 C.54 D.487.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是( )A.(1)(2)(3)(4) B.(4)(3)(2)(1) C.(4)(3)(1)(2) D.(2)(3)(4)(1)8.下列四个几何体中,主视图是三角形的是()A.B.C.D.9.如图所示,所给的三视图表示的几何体是()A.圆锥B.四棱锥C.三棱锥D.三棱柱10.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A.B.C.D.11.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是( )A.7 B.8 C.9 D.1012.一个几何体由一些大小相同的小正方体组成,如图是它的主视图和左视图,那么组成该几何体所需小正方体的个数最少为()A.4 B.5C.6 D.713.如图,是一块带有圆形空洞和正方形空洞(圆面直径与正方形边长相等)的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的可能是().A.B.C.D.14.如图是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是()A.6个B.7个C.8个D.9个第II卷(非选择题)请点击修改第II卷的文字说明参考答案二、填空题15.10个棱长为a cm的正方体摆放成如图的形状,这个图形的表面积是____________.16.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是________(结果保留 ).17.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积是__________.18.八中食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如表:碟子的个数碟子的高度(单位:cm)1222+1.532+342+4.5……现在分别从三个方向上看若干碟子,得到的三视图如图所示,厨房师傅想把它们整齐地叠成一摞,求叠成一摞后的高度为_____cm.19.在一快递仓库里堆放着若干个相同的正方体快递件,管理员从正面看和从左面看这堆快递如图所示,则这正方体快递件最多有_____件.20.如图,小明站在距离灯杆6m的点B处.若小明的身高AB=1.5m,灯杆CD=6m,则在灯C的照射下,小明的影长BE=______m.21.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米,垂直于地面放置的标杆在地面上的影长为2米,则树的高度为___.22.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.23.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是_____.24.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.25.一个几何体的三视图如图所示,其中从上面看的视图是一个等边三角形,则这个几何体的表面积为____.26.张师傅按1:1的比例画出某直三棱柱零件的三视图,如图所示,已知EFG中,==,4512,18EF cm EG cm∠=︒,则AB的长为_____cm.EFG参考答案三、解答题27.如图是由几个小立方体所堆成的几何俯视图,小下方形里的数学字表示该位置小立方块的个数,请画出这个几何主视图和左视图:28.画出如图所示的几何体的主视图、左视图和俯视图.29.如图,王乐同学在晩上由路灯A走向路灯B.当他行到P处时发现,他往路灯B下的影长为2m,且恰好位于路灯A的正下方,接着他又走了6.5m到Q处,此时他在路灯A下的影孑恰好位于路灯B的正下方(已知王乐身高1.8m,路灯B高9m).(1)王乐站在P处时,在路灯B下的影子是哪条线段?(2)计算王乐站在Q处时,在路灯A下的影长;(3)计算路灯A的高度.30.如图,是由8块棱长都为1的小正方体组合成的简单几何体.(1)请画出这个几何体的三视图并用阴影表示出来;(2)该几何体的表面积(含下底面)为________.【参考答案】一、选择题1.C2.D3.C4.B5.C6.B7.C8.B9.D10.C11.C12.B13.B14.D二、填空题15.【分析】先画出这个图形的三视图从而可得上下面前后面左右面的小正方形的个数再根据正方形的面积公式即可得【详解】由题意画出这个图形的三视图如下:则这个图形的表面积是故答案为:【点睛】本题考查了求几何体的16.24πcm²【分析】根据三视图确定该几何体是圆柱体再计算圆柱体的侧面积【详解】解:先由三视图确定该几何体是圆柱体底面半径是4÷2=2cm高是6cm圆柱的侧面展开图是一个长方形长方形的长是圆柱的底面周17.【分析】先由勾股定理求出母线再根据圆锥侧面积公式S=r计算即可【详解】圆锥半径:r=8÷2=4S=r=20故答案为:20【点睛】本题考查圆锥侧面积的求法理解并掌握圆锥侧面积公式是解题关键18.23【分析】根据三视图得出碟子的总数由(1)知每个碟子的高度即可得出答案【详解】可以看出碟子数为x时碟子的高度为2+15(x﹣1);由三视图可知共有15个碟子∴叠成一摞的高度=15×15+05=2319.39【分析】由主视图可得组合几何体有4列由左视图可得组合几何体有4行可得最底层几何体最多正方体的个数为:4×4=16;由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得20.2【分析】首先判定△ABE∽△CDE根据相似三角形的性质可得然后代入数值进行计算即可【详解】解:∵AB⊥EDCD⊥ED∴AB∥DC∴△ABE∽△CDE∴∵AB=15mCD=6mBD=6m∴解得:EB21.6+【解析】【分析】延长AC交BF延长线于D点则BD即为AB的影长然后根据物长和影长的比值计算即可【详解】延长AC交BF延长线于D点则∠CFE=30°作CE⊥BD于E在Rt△CFE中∠CFE=30°22.64【分析】根据平行投影同一时刻物长与影长的比值固定即可解题【详解】解:由题可知:解得:树高=64米【点睛】本题考查了投影的实际应用属于简单题熟悉投影概念列比例式是解题关键23.7【解析】该几何体的主视图的面积为1×1×4=4左视图的面积是1×1×3=3所以该几何体的主视图和左视图的面积之和是3+4=7故答案为724.16【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△ECD∴解25.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC中作AD⊥BC于D则26.【分析】作EH⊥FG于点H解直角三角形求出EH即可得出AB的长度【详解】解:如图所示作EH⊥FG于点H∵∠EHF=90°∠EFG=45°∴∠EFG=∠FEH=45°∴EH=HF=∵∴EH=根据三视图三、解答题27.28.29.30.【参考解析】一、选择题1.C解析:C【分析】根据三视图的定义,主视图是底层有两个正方形,左侧有三层,即可得到答案.【详解】解:由题图可知,主视图为故选:C【点睛】本题考查了简单几何体的三视图,解题的关键是熟练掌握三视图的定义.2.D解析:D【分析】根据平行投影的性质求解可得.【详解】一张矩形纸片在太阳光线的照射下,形成影子不可能是等边三角形,故选:D.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.3.C解析:C【分析】根据立体图形三视图的性质进行判断即可.【详解】根据立体图形三视图的性质,该立体图形的俯视图为故答案为:C.【点睛】本题考查了立体图形的三视图,掌握立体图形三视图的性质是解题的关键.4.B解析:B【分析】根据主视图和俯视图分析每行每列小正方体最多的情况,即可得出答案.【详解】由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由俯视图可知左侧两行,右侧一行,于是,可确定右侧只有一个小正方体,而左侧可能是一行单层一行两层,可能两行都是两层.最多的情况如图所示,所以图中的小正方体最多5块.故选:B.【点睛】本题考查根据三视图判断小正方体个数,需要一定空间想象力,熟练掌握主视图与俯视图的定义是解题的关键.5.C解析:C【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【详解】从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点睛】本题考查了简单组合体的三视图,解决本题的关键是得到3列正方形具体数目.6.B解析:B【解析】【分析】如图所示,一、棱长为3的正方体的每个面等分成9个小正方形,那么每个小正方形的边长是1,所以每个小正方面的面积是1;二、正方体的一个面有9个小正方形,挖空后,这个面的表面积增加了4个小正方形,减少了1个小正方形,即:每个面有12个小正方形,6个面就是6×12=72个,那么几何体的表面积为72×1=72.【详解】如图所示,周边的六个挖空的正方体每个面增加4个正方形,减少了1个小正方形,则每个面的正方形个数为12个,则表面积为12×6×1=72.故选:B.【点睛】主要考查学生的空间想象能力,解决本题的关键是能够想象出物体表面积的变化情况. 7.C解析:C【分析】根据平行投影的规律:早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长可得.【详解】根据平行投影的规律知:顺序为(4)(3)(1)(2).故选C.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.8.B解析:B【解析】主视图是三角形的一定是一个锥体,只有B是锥体.故选B.9.D解析:D【解析】分析:由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为正三棱柱.详解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为三棱柱.故选D.点睛:考查了由三视图判断几何体,用到的知识点为:由左视图和俯视图可得几何体是柱体,锥体还是球体,由主视图可确定几何体的具体形状.10.C解析:C【解析】分析:俯视图就是要从问题的正上方往下看,相当于把物体投影到平面.详解:圆柱体和球体投影到平面以后都是圆形,故排除A,因为圆形的轮廓线都是可以看到的,所以选C.点睛:三视图中,可以看到的轮廓线,要化成实线,看不到的轮廓线,要化成虚线. 11.C解析:C【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行判断.【详解】解:综合三视图,这个几何体的底层有3+2+1=6个小正方体,第二层有1+1=2个小正方体,第三层有1个,因此组成这个几何体的小正方形有6+2+1=9个.故选C.【点睛】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就容易得到答案了.12.B解析:B【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】由题中所给出的主视图知物体共三列,且左侧一列高两层,中间一列高1层,右侧一列最高两层;由左视图可知左侧两,右侧一层,所以图中的小正方体最少3+2=5块.故选B.【点睛】本题主要考查三视图的相关知识:主视图主要确定物体的长和高,左视图确定物体的宽和高,俯视图确定物体的长和宽.13.B解析:B【分析】根据题意,满足条件的空间几何体的三视图中含有圆和正方形.然后分别进行判断即可.【详解】A.正方体的正视图为正方形,侧视图为正方形,俯视图也为正方形,不满足条件.B.圆柱的正视图和侧视图为相同的矩形,俯视图为圆,满足条件.C.圆锥的正视图为三角形,侧视图为三角形,俯视图为圆,不满足条件.D.球的正视图,侧视图和俯视图相同的圆,不满足条件.故选B.【点睛】本题主要考查三视图的识别和判断,解题关键在于熟练掌握常见空间几何体的三视图,比较基础.14.D解析:D【解析】由俯视图可得得最底层有5个立方体,由左视图可得第二层最少有1个立方体,最多有3个立方体,所以小立方体的个数可能是6个或7个或8个,小立方体的个数不可能是9.故选D.点睛:本题主要考查了三视图的应用,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.注意俯视图中有几个正方形,底层就有几个立方体.二、填空题15.【分析】先画出这个图形的三视图从而可得上下面前后面左右面的小正方形的个数再根据正方形的面积公式即可得【详解】由题意画出这个图形的三视图如下:则这个图形的表面积是故答案为:【点睛】本题考查了求几何体的解析:2236a cm【分析】先画出这个图形的三视图,从而可得上下面、前后面、左右面的小正方形的个数,再根据正方形的面积公式即可得.【详解】由题意,画出这个图形的三视图如下:则这个图形的表面积是()()22226262636a a cm ⨯+⨯+⨯=, 故答案为:2236a cm .【点睛】本题考查了求几何体的表面积,正确画出图形的三视图是解题关键.16.24πcm²【分析】根据三视图确定该几何体是圆柱体再计算圆柱体的侧面积【详解】解:先由三视图确定该几何体是圆柱体底面半径是4÷2=2cm 高是6cm 圆柱的侧面展开图是一个长方形长方形的长是圆柱的底面周解析:24π cm²【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】解:先由三视图确定该几何体是圆柱体,底面半径是4÷2=2cm ,高是6cm ,圆柱的侧面展开图是一个长方形,长方形的长是圆柱的底面周长,长方形的宽是圆柱的高,且底面周长为:2π×2=4π(cm),∴这个圆柱的侧面积是4π×6=24π(cm²).故答案为:24π cm².【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.17.【分析】先由勾股定理求出母线再根据圆锥侧面积公式S=r 计算即可【详解】圆锥半径:r=8÷2=4S=r=20故答案为:20【点睛】本题考查圆锥侧面积的求法理解并掌握圆锥侧面积公式是解题关键解析:20π【分析】先由勾股定理求出母线l ,再根据圆锥侧面积公式S=πr l 计算即可.【详解】圆锥半径:r=8÷2=422345l =+=S=πr l=20π故答案为:20π【点睛】本题考查圆锥侧面积的求法,理解并掌握圆锥侧面积公式是解题关键.18.23【分析】根据三视图得出碟子的总数由(1)知每个碟子的高度即可得出答案【详解】可以看出碟子数为x时碟子的高度为2+15(x﹣1);由三视图可知共有15个碟子∴叠成一摞的高度=15×15+05=23解析:23【分析】根据三视图得出碟子的总数,由(1)知每个碟子的高度,即可得出答案.【详解】可以看出碟子数为x时,碟子的高度为2+1.5(x﹣1);由三视图可知共有15个碟子,∴叠成一摞的高度=1.5×15+0.5=23(cm).故答案为:23cm.【点睛】本题考查了图形的变化类问题及由三视图判断几何体的知识,找出碟子个数与碟子高度的之间的关系式是此题的关键.19.39【分析】由主视图可得组合几何体有4列由左视图可得组合几何体有4行可得最底层几何体最多正方体的个数为:4×4=16;由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得解析:39【分析】由主视图可得组合几何体有4列,由左视图可得组合几何体有4行,可得最底层几何体最多正方体的个数为:4×4=16;由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得第3层最多正方体的个数为:3×2=6;由主视图和左视图可得第4层最多正方体的个数为:1;相加可得所求.【详解】由主视图可得组合几何体有4列,由左视图可得组合几何体有4行,最底层几何体最多正方体的个数为:4×4=16,由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得第3层最多正方体的个数为:3×2=6;由主视图和左视图可得第4层最多正方体的个数为:1;16+16+6+1=39(件).故这正方体快递件最多有39件.故答案为:39.【点睛】此题考查由视图判断几何体;得到最底层正方体的最多的个数是解决本题的突破点;用到的知识点为:最底层正方体的最多的个数=行数×列数.20.2【分析】首先判定△ABE∽△CDE根据相似三角形的性质可得然后代入数值进行计算即可【详解】解:∵AB⊥EDCD⊥ED∴AB∥DC∴△ABE∽△CDE∴∵AB=15mCD=6mBD=6m∴解得:EB解析:2【分析】首先判定△ABE∽△CDE,根据相似三角形的性质可得AB EBCD ED=,然后代入数值进行计算即可.【详解】解:∵AB⊥ED,CD⊥ED,∴AB∥DC,∴△ABE∽△CDE,∴AB EB CD ED=∵AB=1.5m,CD=6m,BD=6m,∴1.566EBEB=+解得:EB=2,故答案为2【点睛】此题主要考查了相似三角形的应用,属于简单题,关键是掌握相似三角形对应边成比例是解题关键.21.6+【解析】【分析】延长AC交BF延长线于D点则BD即为AB的影长然后根据物长和影长的比值计算即可【详解】延长AC交BF延长线于D点则∠CFE=30°作CE⊥BD于E在Rt△CFE中∠CFE=30°解析:6【解析】【分析】延长AC交BF延长线于D点,则BD即为AB的影长,然后根据物长和影长的比值计算即可.【详解】延长AC交BF延长线于D点,则∠CFE=30°,作CE⊥BD于E.在Rt△CFE中,∠CFE=30°,CF=4,∴CE=2,EF在Rt△CED中,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,CE=2,CE:DE=1:2,∴DE=4,∴BD=BF+EF+ED在Rt△ABD中,AB12=BD12=(12+23)=6+3.故答案为(6+3)米.【点睛】本题考查了相似三角形的性质.解决本题的关键是作出辅助线得到AB的影长.22.64【分析】根据平行投影同一时刻物长与影长的比值固定即可解题【详解】解:由题可知:解得:树高=64米【点睛】本题考查了投影的实际应用属于简单题熟悉投影概念列比例式是解题关键解析:6.4【分析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】解:由题可知:1.628=树高,解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.23.7【解析】该几何体的主视图的面积为1×1×4=4左视图的面积是1×1×3=3所以该几何体的主视图和左视图的面积之和是3+4=7故答案为7解析:7【解析】该几何体的主视图的面积为1×1×4=4,左视图的面积是1×1×3=3,所以该几何体的主视图和左视图的面积之和是3+4=7,故答案为7.24.16【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△EC D∴解解析:16【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA ⊥DA ,CE ⊥DA ,∴∠CED=∠OAB=90°,∵CD ∥OE ,∴∠CDA=∠OBA ,∴△AOB ∽△ECD , ∴CE OA 16OA ,DE AB 220==, 解得OA=16.故答案为16. 25.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC 中作AD ⊥BC 于D 则 解析:1823+【分析】先判断出几何体为正三棱柱,求出三棱柱的底面积,最后求表面积即可.【详解】解:由三视图得,几何体为正三棱柱,上下底为边长为2的等边三角形,侧面积为长为3,宽为2的矩形.如图,等边三角形ABC 中,作AD ⊥BC 于D ,则BD=1BC=12, 在t ABD R △中,2222AD=AB -BD =21=3-;∴11=BC AD=23=322ABC S ⨯⨯⨯⨯△, ∴三棱柱的表面积为23323=18+23⨯⨯+⨯.故答案为: 183+【点睛】本题考查了三视图,等边三角形的面积计算等知识,根据三视图判断出几何体形状是解题关键.26.【分析】作EH ⊥FG 于点H 解直角三角形求出EH 即可得出AB 的长度【详解】解:如图所示作EH ⊥FG 于点H ∵∠EHF=90°∠EFG=45°∴∠EFG=∠FEH=45°∴EH=HF=∵∴EH=根据三视图 解析:62 【分析】 作EH ⊥FG 于点H ,解直角三角形求出EH 即可得出AB 的长度.【详解】解:如图所示,作EH ⊥FG 于点H ,∵∠EHF=90°,∠EFG=45°,∴∠EFG=∠FEH=45°,∴EH=HF=22EF , ∵12EF cm ,∴EH=62,根据三视图的意义可知,AB=EH=62故答案为:62【点睛】本题考查了三视图,解直角三角形的应用,解题的关键是理解题意,灵活运用所学知识解决问题.三、解答题27.见解析【分析】利用俯视图即可得出几何体的形状,进而得出几何体的主视图和左视图.【详解】解:如图所示:.【点睛】此题主要考查了作三视图以及由三视图判断几何体的形状,正确得出几何体的形状是解题关键.28.见解析.【分析】分别从正面、左面、上面看得到的图形即可.看到的棱用实线表示,实际存在但是被挡住看不见的棱用虚线表示.【详解】【点睛】本题考查了三视图的作图.29.(1)线段CP为王乐在路灯B下的影子;(2)王乐站在Q处时,在路灯A下的影长为1.5m;(3)路灯A的高度为12m【分析】(1)影长为光线与物高相交得到的阴影部分;(2)易得Rt△CEP∽Rt△CBD,利用对应边成比例可得QD长;(3)易得Rt△DFQ∽Rt△DAC,利用对应边成比例可得AC长,也就是路灯A的高度.【详解】解:(1)线段CP为王乐在路灯B下的影子.(2)由题意得Rt△CEP∽Rt△CBD,∴1.8292 6.5QD=++,解得:QD=1.5m.所以王乐站在Q处时,在路灯A下的影长为1.5m (3)由题意得Rt△QDF∽Rt△CDA,∴FQ QD=,AC DC∴1.8 1.5=,AC10解得:AC=12m.所以路灯A的高度为12m.【点睛】本题考查了中心投影及相似的判定和性质,利用两三角形相似,对应边成比例来求线段的长.30.(1)见解析;(2)34【分析】(1)从正面看得到从左往右4列正方形的个数依次为1,3,1,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右,4列正方形的个数依次为2,1,,1,1,依此画出图形即可;(2)有顺序的计算上下面,左右面,前后面的面积之和,然后加上2个三视图中没看到的面,计算表面积之和,即可;【详解】解:(1)如下图:(2)(5×2+7×2+4×2+2)×(1×1)=(10+14+8+2)×1=34×1=34故答案为:34.【点睛】考查了作图-三视图,三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.计算几何体的表面积应有顺序的分为相对的面进行计算不易出差错.。
人教版数学九年级下学期第29章《投影与视图》测试题含答案
人教版数学九年级下学期第29章《投影与视图》测试题(测试时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.如图所示几何体的主视图是().A. B. C. D.2.如图所示的几何体的俯视图是()A. B. C. D.3.如图用6个同样大小的立方体摆成的几何体,将立方体①移走后,所得几何体与原来几何体的()A.主视图改变,左视图改变 B.俯视图不变,左视图不变C.俯视图改变,左视图改变 D.主视图改变,左视图不变4.下列四个几何体中,它们的主视图、左视图、俯视图都是正方形的是()A. B. C. D.5.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()A. B. C. D.6.如图所示是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是().A. B. C. D.7.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是( ) 8.如图,按照三视图确定该几何体的全面积为(图中尺寸单位:cm)()A.128πcm2 B.160πcm2 C.176πcm2 D.192πcm29.如图所示的几何体的左视图是()A. B. C. D.10.如图,在房子屋檐E处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区是()A.△ACE B.△ADF C.△ABD D.四边形BCED二、填空题(每小题3分,共30分)11.苏轼的诗句“横看成岭侧成峰,远近高低各不同”把此诗句用在视图上,说明的现象是________.12.如图,请写出图,图,图是从哪个方向可到的:图________;图________;图________.13.图是一个几何体的主视图、左视图和俯视图,则这个几何体是________.(填序号)14.如图,②是①中图形的________视图.②15.下列投影:①阳光下遮阳伞的影子;②灯光下小明读书的影子;③阳光下大树的影子;④阳光下农民锄地的影子;⑤路灯下木杆的影子.其中属于平行投影的是_______,属于中心投影的是_____.(填序号) 16.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是_________.17.有两根大小、形状完全相同的铁丝,甲铁丝与投影面的夹角是45°,乙铁丝与投影面的夹角是30°,那么两根铁丝在投影面的正投影的长度的大小关系是:甲____乙(填“>”“<”或“=”).18.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,那么线段AC在AB上的正投影是___,线段CD在AB上的正投影是___,线段BC在AB上的正投影是___.19.如图,是一个包装盒的三视图,则这个包装盒的表面积是(结果保留π)20.如图,小明同学在非洲旅游期间想自己测出金字塔的高度,首先小明在阳光下测量出了长1 m的木杆CD的影子CE长1.5m;其次测出金字塔中心O到影子的顶部A的距离为201m。
《好题》九年级数学下册第二十九章《投影与视图》综合经典练习卷(含答案解析)
学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,是由-些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块最后搭成一个大的长方体,至少还需要添加()个小立方块.A.26 B.38 C.54 D.562.桌面上放着长方体和圆柱体各1个,按下图所示的方式摆放在一起,其左视图是()A.B.C.D.3.如图所示的几何体的主视图是()A.B.C.D.4.一张矩形纸片在太阳光的照射下,在地面上的投影不可能是()A.正方形B.平行四边形C.矩形D.等边三角形5.如图是由一些相同的小正方体构成的立体图形的三视图.构成这个立体图形的小正方体的个数是()A.6 B.7 C.4 D.56.如图,是一个由若干个小正方体组成的几何体的三视图.则该几何体最多可由多少个小正方体组合而成?( )A.11个B.14个C.13个D.12个7.如图,是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的主视图(从正面看)是()A.B.C.D.8.圆桌面(桌面中间有一个直径为1m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为2m,桌面离地面1m,若灯泡离地面2m,则地面圆环形阴影的面积是()A.2πm2B.3πm2C.6πm2D.12πm29.已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.6个B.7个C.8个D.9个10.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A .B .C .D .11.如图,水杯的俯视图是( )A .B .C .D .12.图2是图1中长方体的三视图,若用S 表示面积,222S x x S x x ++主左=,=,则S 俯=( )A .232x x ++B .22x +C .221x x ++D .223x x + 13.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是( )A .B .C .D .14.如图所示的立体图形的主视图是()A.B.C.D.二、填空题15.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60 角时,第二次是阳光与地面成30角时,两次测量的影长相差8米,则树高______米.(结果保留根号)16.一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是个__________.17.某几何体从三个方向看到的图形分别如图,则该几何体的体积为___________.18.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的底面边长是__________.19.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图. 已知桌面直径为1.2米,桌面离地面1米. 若灯泡离地面3米,则地面上阴影部分的面积为__________(结果保留π)20.如图,是一个几何体的三视图(含有数据)则这个几何体的侧面展开图的面积等于__.21.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.22.身高相同的小明和小华站在灯光下的不同位置,如果小明离灯较远,那么小明的投影比小华的投影_________.(填长或短)23.如图,小军、小珠之间的距离为2.8m,他们在同一盏路灯下的影长分别为1.7m,1.5m,已知小军、小珠的身高分别为1.7m,1.5m,则路灯的高为________m.24.由n个相同的小正方体堆成的几何体,其视图如下所示,则n的最大值是_____.25.以下给出的几何体:球、正方体、圆柱、圆锥中,主视图是矩形,俯视图是圆形的是_____.26.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是________.三、解答题27.一个几何体的三种视图如图所示.(1)这个几何体的名称是 __,其侧面积为 __;(2)画出它的一种表面展开图;(3)求出左视图中AB的长.28.如图,AB和DE直立在地面上的两根立柱,已知AB=5m,某一时刻AB在太阳光下的影子长BC=3m.(1)在图中画出此时DE在太阳光下的影子EF;(2)在测量AB影子长时,同时测量出EF=6m,计算DE的长.29.如图,这是一个由小正方体搭成的几何体从上面看得到的平面图形,小正方形中的数字表示该位置的小正方体的个数.请你画出从它的正面和左面看得到的平面图形.30.一个几何体由大小相同的小立方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形的数字表示在该位置的小立方体块的个数,请画出从正面和从左面看到的这个几何体的形状图.【参考答案】一、选择题1.A2.C3.C4.D5.A6.A7.B8.B9.B10.C11.A12.A13.C14.A二、填空题15.【分析】设出树高利用所给角的正切值分别表示出两次影子的长然后作差建立方程即可【详解】如图在中设AB为x∴同理:∵两次测量的影长相差8米∴∴则树高为米故答案为:【点睛】本题考查了平行投影的应用太阳光线16.5【分析】根据俯视图打地基主视图疯狂盖左视图拆违章的原则解答可得【详解】几何体分布情况如下图所示:则小正方体的个数为2+1+1+1=5故答案为:5【点睛】本题考查学生对三视图的掌握程度和灵活运用能力17.3π【分析】由三视图可得这个几何体为圆柱利用圆柱的体积公式求解即可【详解】由三视图可得此几何体为圆柱所以圆柱的体积为3×π•()2=3π故答案为3π【点睛】本题考查了与三视图有关的计算根据三视图确定18.2【解析】考点:由三视图判断几何体分析:由主视图可得长方体的高和底面正方形的对角线长利用勾股定理即可求得长方体的底面边长解答:解:∵主视图的长为2俯视图为正方形∴长方体的底面边长为2÷=2∵主视图的19.081π【解析】如图由题意可知DE是☉O1的直径BC是☉O2的直径AO2⊥DE于O1AO2⊥BC于O2DE=12AO2=3O1O2=1∴DE∥BCAO1=2∴△ADE∽△ABC∴即∴BC=18∴O220.【解析】易得此几何体为圆柱底面直径为1高为2圆柱侧面积=底面周长×高代入相应数值求解即可解:主视图和左视图为长方形可得此几何体为柱体俯视图为圆可得此几何体为圆柱故侧面积=π×1×2=2π故答案为2π21.6【分析】根据题意画出示意图易得:Rt△EDC∽Rt△FDC进而可得;即DC2=EDFD代入数据可得答案【详解】根据题意作△EFC树高为CD且∠ECF=90°ED=3FD=12易得:Rt△EDC∽R22.长【解析】中心投影的特点是:等高的物体垂直地面放置时在灯光下离点光源近的物体它的影子短离点光源远的物体它的影子长据此判断即可解:中心投影的特点是:等高的物体垂直地面放置时在灯光下离点光源近的物体它的23.3【分析】如图由题意证明AB=EBAB=BF推出DB=AB﹣17BN=AB﹣15根据DN=28构建方程求解即可【详解】解:如图由题意可得:在Rt△CDE中CD=DE=17m在Rt△MNF中MN=NF24.18【分析】根据主视图和俯视图得出几何体的可能堆放从而即可得出答案【详解】综合主视图和俯视图底面最多有个第二层最多有个第三层最多有个则n的最大值是故答案为:18【点睛】本题考查了三视图中的主视图和俯25.圆柱【分析】根据三视图的基本知识分析各个几何体的三视图然后可解答【详解】解:俯视图是圆的有球圆柱圆锥主视图是矩形的有正方体圆柱故答案为:圆柱【点睛】本题考查了简单几何体的三视图熟记简单几何的三视图是26.18【分析】这个几何体的表面积是主视图左视图俯视图的面积和的2倍【详解】(3+3+3)×2=18故答案为18【点睛】本题考查了几何体的表面积的计算方法将问题转化为三视图面积和的2倍是解决问题的关键三、解答题27.28.29.30.【参考解析】一、选择题1.A解析:A【分析】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×3×3=36个小正方体,即可得出答案.【详解】解:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,∴搭成的大正方体的共有4×3×3=36个小正方体,∴至少还需要36-10=26个小正方体.故选:A.【点睛】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.2.C解析:C【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查三视图的知识,左视图是从物体的左面看得到的视图.3.C解析:C【分析】根据三视图的定义,主视图是底层有两个正方形,左侧有三层,即可得到答案.【详解】解:由题图可知,主视图为故选:C【点睛】本题考查了简单几何体的三视图,解题的关键是熟练掌握三视图的定义.4.D解析:D【分析】根据平行投影的性质求解可得.【详解】一张矩形纸片在太阳光线的照射下,形成影子不可能是等边三角形,故选:D.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.5.A解析:A【分析】利用三视图的观察角度不同得出行数与列数,结合主视图得出答案.【详解】解:如图所示:由左视图可得此图形有3行,由俯视图可得此图形有3列,由主视图可得此图形最左边一列有4个小正方体,中间一列有1个小正方体,最右边一列有1个小正方体,故构成这个立体图形的小正方体有6个.故选:A.【点睛】此题主要考查了由三视图判断几何体,利用三视图得出几何体的形状是解题关键.6.A解析:A【分析】根据画三视图的方法,得到各行构成几何体的小正方体的个数,相加即可.【详解】综合三视图,第一行:第1列没有,第2列没有,第3列有1个;第二行:第1列有2个,第2列有2个,第3列有1个;第三行:第1列3个,第2列有2个,第3列没有;一共有:1+2+2+1+3+2=11个,故选:A .【点睛】此题考查了几何体三视图的应用问题,解题的关键是根据三视图得出几何体结构特征. 7.B解析:B【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有4列,从左到右分别是1,2,3,2个正方形.【详解】由俯视图中的数字可得:主视图有4列,从左到右分别是1,2,3,2个正方形. 故选B .【点睛】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.8.B解析:B【解析】【分析】先根据AC ⊥OB ,BD ⊥OB 可得出△AOC ∽△BOD ,由相似三角形的对应边成比例可求出BD 的长,进而得出BD ′=1m ,再由圆环的面积公式即可得出结论.【详解】解:如图所示:∵AC ⊥OB ,BD ⊥OB ,∴△AOC ∽△BOD , ∴OA AC OB BD =,即112BD=, 解得:BD =2m , 同理可得:AC ′=0.5m ,则BD ′=1m ,∴S 圆环形阴影=22π﹣12π=3π(m 2).故选B .【点睛】考查的是相似三角形的应用以及中心投影,利用相似三角形的对应边成比例得出阴影部分的半径是解题关键.9.B解析:B【详解】解:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.综合三视图可知,这个几何体的底层有4个小正方体,第二层有2个小正方体,第,三层有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+2+1=7个.故选B.考点:由三视图判断几何体.10.C解析:C【解析】分析:俯视图就是要从问题的正上方往下看,相当于把物体投影到平面.详解:圆柱体和球体投影到平面以后都是圆形,故排除A,因为圆形的轮廓线都是可以看到的,所以选C.点睛:三视图中,可以看到的轮廓线,要化成实线,看不到的轮廓线,要化成虚线. 11.A解析:A【解析】【分析】找到从上面看所得到的图形即可.【详解】根据几何体的三视图,可知该几何体的俯视图是一个圆和一条线段.故选A.12.A解析:A【分析】由主视图和左视图的宽为x,结合两者的面积得出俯视图的长和宽,从而得出答案.【详解】∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2.故选A.【点睛】本题考查了由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.13.C解析:C【解析】【分析】先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.【详解】解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,后面一排分别有2个、3个、1个小正方体搭成三个长方体,并且这两排右齐,故从正面看到的视图为:.故选:C .【点睛】本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键. 14.A解析:A【解析】解:此立体图形从正面看所得到的图形为矩形,里面有一条竖线且为实线,故选A . 点睛:此题主要考查了简单几何体的三视图,关键是注意所有的看到的棱都应表现在三视图中.二、填空题15.【分析】设出树高利用所给角的正切值分别表示出两次影子的长然后作差建立方程即可【详解】如图在中设AB 为x ∴同理:∵两次测量的影长相差8米∴∴则树高为米故答案为:【点睛】本题考查了平行投影的应用太阳光线 解析:43【分析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可.【详解】如图在Rt ABC 中,设AB 为xtan ∠=AB ACB BC , ∴tan tan 60AB x BC ACB ==∠︒,同理:tan 30x BD =, ∵两次测量的影长相差8米,∴8tan 30tan 60x x -=︒︒, ∴43x ,则树高为43米.故答案为:43.【点睛】本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案. 16.5【分析】根据俯视图打地基主视图疯狂盖左视图拆违章的原则解答可得【详解】几何体分布情况如下图所示:则小正方体的个数为2+1+1+1=5故答案为:5【点睛】本题考查学生对三视图的掌握程度和灵活运用能力解析:5【分析】根据“俯视图打地基,主视图疯狂盖,左视图拆违章”的原则解答可得.【详解】几何体分布情况如下图所示:则小正方体的个数为2+1+1+1=5,故答案为:5.【点睛】本题考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案. 17.3π【分析】由三视图可得这个几何体为圆柱利用圆柱的体积公式求解即可【详解】由三视图可得此几何体为圆柱所以圆柱的体积为3×π•()2=3π故答案为3π【点睛】本题考查了与三视图有关的计算根据三视图确定解析:3π.【分析】由三视图可得这个几何体为圆柱,利用圆柱的体积公式求解即可.【详解】由三视图可得,此几何体为圆柱,所以圆柱的体积为3×π•(22)2=3π, 故答案为3π.【点睛】 本题考查了与三视图有关的计算,根据三视图确定这个几何体为圆柱是解决问题的关键. 18.2【解析】考点:由三视图判断几何体分析:由主视图可得长方体的高和底面正方形的对角线长利用勾股定理即可求得长方体的底面边长解答:解:∵主视图的长为2俯视图为正方形∴长方体的底面边长为2÷=2∵主视图的 解析:2【解析】考点:由三视图判断几何体.分析:由主视图可得长方体的高和底面正方形的对角线长,利用勾股定理即可求得长方体的底面边长.解答:解:∵主视图的长为,俯视图为正方形,∴长方体的底面边长为=2,∵主视图的高就是几何体的高,∴这个长方体的高和底面边长分别是3,2.点评:用到的知识点为:主视图反映几何体的长与高,注意物体摆放位置的不同得到主视图的形状也不同.19.081π【解析】如图由题意可知DE 是☉O1的直径BC 是☉O2的直径AO2⊥DE 于O1AO2⊥BC 于O2DE=12AO2=3O1O2=1∴DE ∥BCAO1=2∴△ADE ∽△ABC ∴即∴BC=18∴O2 解析:0.81π【解析】如图,由题意可知,DE 是☉O 1的直径,BC 是☉O 2的直径,AO 2⊥DE 于O 1,AO 2⊥BC 于O 2,DE=1.2,AO 2=3,O 1O 2=1,∴DE ∥BC ,AO 1=2,∴△ADE ∽△ABC, ∴12AO DE BC AO =,即1.223BC =, ∴BC=1.8,∴O 2C=0.9,∴S ☉O2=2(0.9)0.81ππ⋅=.点睛:本题解题的关键是作出如图所示的辅助线,这样即可构造出:△ADE∽△ABC,再利用相似三角形对应高之比等于相似比即可求得BC的长,从而即可得到☉O2的半径,使问题得到解决.20.【解析】易得此几何体为圆柱底面直径为1高为2圆柱侧面积=底面周长×高代入相应数值求解即可解:主视图和左视图为长方形可得此几何体为柱体俯视图为圆可得此几何体为圆柱故侧面积=π×1×2=2π故答案为2π解析:【解析】易得此几何体为圆柱,底面直径为1,高为2.圆柱侧面积=底面周长×高,代入相应数值求解即可.解:主视图和左视图为长方形可得此几何体为柱体,俯视图为圆可得此几何体为圆柱,故侧面积=π×1×2=2π.故答案为2π.21.6【分析】根据题意画出示意图易得:Rt△EDC∽Rt△FDC进而可得;即DC2=EDFD代入数据可得答案【详解】根据题意作△EFC树高为CD且∠ECF=90°ED=3FD=12易得:Rt△EDC∽R解析:6【分析】根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得ED DCDC FD;即DC2=ED?FD,代入数据可得答案.【详解】根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=3,FD=12,易得:Rt△EDC∽Rt△DCF,有ED DCDC FD,即DC2=ED×FD,代入数据可得DC2=36,DC=6,故答案为6.22.长【解析】中心投影的特点是:等高的物体垂直地面放置时在灯光下离点光源近的物体它的影子短离点光源远的物体它的影子长据此判断即可解:中心投影的特点是:等高的物体垂直地面放置时在灯光下离点光源近的物体它的解析:长【解析】中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.据此判断即可.解:中心投影的特点是:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长,所以小明的投影比小华的投影长.综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短23.3【分析】如图由题意证明AB=EBAB=BF推出DB=AB﹣17BN=AB﹣15根据DN=28构建方程求解即可【详解】解:如图由题意可得:在Rt△CDE中CD =DE=17m在Rt△MNF中MN=NF解析:3【分析】如图,由题意证明AB=EB,AB=BF,推出DB=AB﹣1.7,BN=AB﹣1.5,根据DN=2.8,构建方程求解即可.【详解】解:如图,由题意可得:在Rt△CDE中,CD=DE=1.7m,在Rt△MNF中,MN=NF=1.5m,∵∠CDE=∠MNF=90°,∴∠E=∠F=45°,∵AB⊥EF,∴AB=EB=BF,∴DB=AB﹣1.7,BN=AB﹣1.5,∵DN=2.8m,∴2AB﹣1.7﹣1.5=2.8,∴AB=3(m),即路灯的高为3米.故答案为:3.【点睛】本题考查了中心投影和等腰直角三角形的判定和性质,属于常考题型,熟练掌握上述知识是解题的关键.24.18【分析】根据主视图和俯视图得出几何体的可能堆放从而即可得出答案【详解】综合主视图和俯视图底面最多有个第二层最多有个第三层最多有个则n 的最大值是故答案为:18【点睛】本题考查了三视图中的主视图和俯 解析:18【分析】根据主视图和俯视图得出几何体的可能堆放,从而即可得出答案.【详解】综合主视图和俯视图,底面最多有2327++=个,第二层最多有2327++=个,第三层最多有2024++=个则n 的最大值是77418++=故答案为:18.【点睛】本题考查了三视图中的主视图和俯视图,掌握三视图的相关概念是解题关键. 25.圆柱【分析】根据三视图的基本知识分析各个几何体的三视图然后可解答【详解】解:俯视图是圆的有球圆柱圆锥主视图是矩形的有正方体圆柱故答案为:圆柱【点睛】本题考查了简单几何体的三视图熟记简单几何的三视图是 解析:圆柱.【分析】根据三视图的基本知识,分析各个几何体的三视图然后可解答.【详解】解:俯视图是圆的有球、圆柱、圆锥,主视图是矩形的有正方体、圆柱,故答案为:圆柱.【点睛】本题考查了简单几何体的三视图,熟记简单几何的三视图是解题关键.26.18【分析】这个几何体的表面积是主视图左视图俯视图的面积和的2倍【详解】(3+3+3)×2=18故答案为18【点睛】本题考查了几何体的表面积的计算方法将问题转化为三视图面积和的2倍是解决问题的关键解析:18【分析】这个几何体的表面积是主视图、左视图、俯视图的面积和的2倍.【详解】(3+3+3)×2=18.故答案为18.【点睛】本题考查了几何体的表面积的计算方法,将问题转化为三视图面积和的2倍是解决问题的关键.三、解答题27.(1)正三棱柱,72;(2)见解析;(3)23【分析】(1)由三视图可知,该几何体为正三棱柱,再根据正三棱柱侧面积计算公式计算可得; (2)画出正三棱柱的展开图即可;(3)在EFG ∆中,作EH FG ⊥于点H ,根据勾股定理求出EH ,即可得到AB .【详解】解:()1由三视图可知,该几何体为正三棱柱;这个几何体的侧面积为36472⨯⨯=;故答案为:正三棱柱;72.()2展开图如下:()3在EFG ∆中,作EH FG ⊥于点H ,则2FH =,224223EH =-=AB ∴长23【点睛】本题考查三视图、几何体的侧面展开图等知识,解题的关键是理解三视图、看懂三视图,属于中考常考题型.28.(1)详见解析;(2)10m【分析】(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影;(2)易证△ABC∽△DEF,再根据相似三角形的对应边成比例进行解答即可.【详解】(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影.(2)∵AC∥DF,∴∠ACB=∠DFE,∵∠ABC=∠DEF=90°,∴△ABC∽△DEF,∴AB:DE=BC:EF,∵AB=5m,BC=3m,EF=6m,∴5:DE=3:6,∴DE=10m.【点睛】本题主要考查相似三角形的应用,解此题的关键在于熟练掌握相似三角形的判定与性质. 29.见解析【分析】根据几何体的三视图的性质作图即可.【详解】如图所示,即为所求.【点睛】本题考查了几何体三视图的问题,掌握几何体三视图的性质是解题的关键.30.答案见解析.【分析】由已知条件可知,主视图有3列,每列小正方数形数目分别为3,2,3;左视图有2列,每列小正方形数目分别为3,3.据此可画出图形.【详解】解:作图如下:【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.。
人教版数学九年级第二十九章投影与视图单元测试精选(含答案)3
人教版数学九年级第二十九章投影与视图单元测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、单选题1.小亮在上午8时、9时、10时、12时四次到室外的阳光下观察一棵树的影子随太阳变化的情况,他发现这四个时刻这棵树影子的长度各不相同,那么影子最短的时刻为()A.上午12时B.上午10时C.上午9时D.上午8时2.下列四幅图形中,表示两棵树在同一时刻阳光下的影子的图形可能是()A.B.C.D.3.张强的身高和李华的身高一样,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长4.正方形的正投影不可能是()A.线段B.矩形C.正方形D.梯形5.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是()A.①②③④B.④①③②C.④②③①D.④③②①6.图①是五棱柱形状的几何体,则它的三视图为()A.B.C.D.7.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.两人的影子长度不确定8.下列四个几何体中,三视图都是相同图形的是()A.长方体B.圆柱C.球D.三棱柱9.如图,是一个正方体的平面展开图,原正方体中“祝”的对面是()A.考B.试C.顺D.利10.如图所示,该几何体的主视图是()A.B.C.D.11.如图是王老师展示的他昨天画的一幅写生画,他让四个学生猜测他画这幅画的时间.根据王老师标出的方向,下列给出的时间比较接近的是()A.小丽说:“早上8点”B.小强说:“中午12点”C.小刚说:“下午3点”D.小明说:“哪个时间段都行”12.如图,路灯距地面8m,身高1.6m的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长 3.5m B.变长 2.5m C.变短 3.5m D.变短 2.5m 13.给出下列结论正确的有()①物体在阳光照射下,影子的方向是相同的②物体在任何光线照射下影子的方向都是相同的③物体在路灯照射下,影子的方向与路灯的位置有关④物体在光线照射下,影子的长短仅与物体的长短有关.A.1个B.2个C.3个D.4个14.明明用纸(如图)折成了一个正方体的盒子,里面装了一瓶墨水,与其它空盒子混放在一起,只凭观察,选出墨水在哪个盒子中()A.B.C.D.15.如图是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是()A.6个B.7个C.8个D.9个16.如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.17.在同一时刻,身高1.6m的小强,在太阳光线下影长是1.2m,旗杆的影长是15m,则旗杆高为()A.22m B.20m C.18m D.16m18.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.19.如图所示的几何体是由4个相同的小正方体组成.其主视图为()A.B.C.D.20.如图的立体图形,从左面看可能是()A.B.C.D.21.如图是由几个相同的小立方块搭成的几何体的三视图,则这几个几何体的小立方块的个数是()A.4个B.5个C.6个D.7个22.如图所示的几何体是由5个大小相同的小立方体块搭成,它的俯视图是( )A.B.C.D.23.如图是某几何体的三视图,下列判断正确的是( )A.几何体是圆柱体,高为2 B.几何体是圆锥体,高为2C.几何体是圆柱体,半径为2 D.几何体是圆锥体,直径为2 24.由5个大小相同的正方体组成的几何体如图所示,其主视图是()A.B.C.D.25.如图,是由几个相同的小正方体组成的一个几何体的三视图,这个几何体可能是()A.B.C.D.26.一个几何体的三视图如图所示,则这个几何体是()A.三棱锥B.三棱柱C.圆柱D.长方体27.下面几何体中,其主视图与俯视图相同的是()A.B.C.D.28.如图所示的几何体,它的左视图正确的是()A.B.C.D.评卷人得分二、解答题29.用小立方块搭成一个几何体,从正面看和从上面看所得的平面图形如图所示,搭建这样的几何体最多要几个小立方块?最少要几个小立方块?30.下列物体是由六个棱长为1cm的正方体组成如图的几何体.(1)求出该几何体的体积和表面积;(2)分别画出从正面、左面、上面看到的立体图形的形状.31.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了______条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.32.晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF 恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC 为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长(结果精确到0.01米).33.一个几何体是由若干个棱长为3cm的小正方体搭成的,从正面、左面、上面看到的几何体的形状图如图所示:(1)在“从上面看”的图中标出各个位置上小正方体的个数;(2)求该几何体的体积.34.(1)如图是一个组合几何体,右边是它的两种视图,在右边横线上填写出两种视图的名称;视图视图(2)根据两种视图中尺寸(单位:cm),计算这个组合几何体的表面积.(π取3.14) 35.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.36.如图所示是由几个小立方体所组成几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体的主视图、左视图.37.如图,小赵和路人在路灯下行走,试确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.38.画出以下两个几何体的三视图.(1)(2)评卷人得分三、填空题39.晚上,小亮走在大街上.他发现:当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为3米,左边的影子长为1.5米.又知自己身高1.80米,两盏路灯的高相同,两盏路灯之间的距离为12米,则路灯的高为米.40.如图,直角坐标平面内,小明站在点A(﹣10,0)处观察y轴,眼睛距地面1.5米,他的前方5米处有一堵墙DC,若墙高DC=2米,则小明在y轴上的盲区(即OE 的长度)为_____米.41.如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是________.42.一个立体图形的三视图如图所示,请你根据图中给出的数据求出这个立体图形的表面积为_______.43.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是_____.44.三视图都是同一平面图形的几何体有_____、_____.(写两种即可)45.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n=_____.46.一位画家把7个边长为1m的相同正方体摆成如图的形状,然后把露出的表面(不包括底面)涂上颜色,则涂色面积为_________m2.47.圆锥的侧面展开图是________ ,圆柱的侧面展开图是________.48.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是_______49.若要使图中平面展开图按虚线折叠成正方体后,相对面上的两个数为相反数,则x +y=________.参考答案1.A2.A3.D4.D5.B6.A7.D8.C9.C10.D11.C12.C13.B14.B15.D16.B17.B18.A19.D20.A21.B22.C23.A24.A25.A26.B27.C28.B29.最少要11块.最多要17块30.(1)6cm3,24cm2;(2)详见解析. 31.(1)8;(2)答案见解析:(3)200000立方厘米32.小军身高BE的长约为1.75米.33.(1)见解析;(2)270cm334.(1)主视图俯视图(2) 207.36(cm2).35.见解析36.见解析37.作图见解析.38.作图见解析.39.6.640.2.541.22.42.8π.43.444.球正方体45.1646.2347.扇形长方形48.549.-4。
人教版九年级下《第29章投影与视图》单元测试题含答案解析
春人教版九年级数学下册第29章投影与视图单元测试题一.选择题(共10小题)1.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③2.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.3.小红和小花在路灯下的影子一样长,则她们的身高关系是()A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定4.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m5.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了.这是因为()A.汽车开的很快B.盲区减小C.盲区增大D.无法确定6.如图所示的四棱柱的主视图为()A.B.C.D.7.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.8.如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是()A.B.C.D.9.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D10.如图是从三个方向看某个几何体得出的平面图形,该几何体是()A.棱柱体B.圆柱体C.圆锥体D.球体二.填空题(共8小题)11.已知操场上的篮球架上的篮板长1.8米,高1.2米,当太阳光与地面成45°角投射到篮板时,它留在地面上的阴影部分面积为.12.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.13.从正面看、从上面看、从左面看都是正方形的几何体是.14.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图①主视图、②左视图、③俯视图中,是中心对称图形的有.15.用硬纸壳做一个如图所示的几何体,其底面是圆心角为300°的扇形,则该几何体的表面积为cm2.16.如图是一个几何体的三个视图,若这个几何体的体积是24,则它的主视图的面积是.17.如图,是由10个完全相同的小正方体堆成的几何体.若现在你还有若干个相同的小正方体,在保证该几何体的从上面、从正面、从左面看到的图形都不变的情况下,最多还能放个小正方体.18.由一些完全相同的小正方体搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是.三.解答题(共7小题)19.一个几何体的三视图如图所示,根据图示的数据计算该几何体的侧面积.20.如图是从上面看到一个由小正方体搭建的几何体的图形,其中方框内的数字为该处小立方块的个数.请你画出从正面和左面看到这个几何体的图形.21.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的体积和表面积.22.某个几何体由若干个相同的小立方体组成,从正面和左面看到的形状图如图1所示:(1)这个几何体可以是图2甲、乙、丙中的;(2)这个几何体最多由个小立方块堆成:(3)当堆成这个几何体的小立方块个数最少时,画出从上面看到的形状图.23.李明和同学们一起研究“从三个不同方向看问题的形状”.(1)图1是由几个大小相同的小立方体搭成的几何体,请画出从正面看到的这个几何体的形状图;(2)图2是由几个大小相同的小立方体搭成的几何体,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小立方体的个数.请画出从左面看到的这个几何体的形状图.24.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,一摞碟子的层数与累积高度的关系如下表:碟子层数累积高度(cm)1222+1.532+342+4.5……(1)当一摞碟子有x层时,请写出此时的累积高度(用含x的式子表示);(2)桌子上有一些碟子,如图分别是从正面、左面和上面看到的形状图,厨房师傅想把这些碟子全部叠成一摞,求叠成一摞后的累积高度.25.如图是一个大正方体切去一个小正方体组成的几何体.(1)下列三个图形中,从上面、左面、正面看到的平面图形分别是、、;(2)若大正方体的边长为20cm,小正方体的边长为10cm,求这个几何体的表面积.春人教版九年级数学下册第29章投影与视图单元测试题参考答案与试题解析一.选择题(共10小题)1.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③【分析】太阳光可以看做平行光线,从而可求出答案.【解答】解:太阳从东边升起,西边落下,所以先后顺序为:③④①②故选:C.【点评】本题考查平行投影,解题的关键是熟练知道太阳光是平行光线,本题属于基础题型.2.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.【分析】根据题意:水杯的杯口与投影面平行,即与光线垂直;则它的正投影图是应是D.【解答】解:依题意,光线是垂直照下的,故只有D符合.故选:D.【点评】本题考查正投影的定义及正投影形状的确定.3.小红和小花在路灯下的影子一样长,则她们的身高关系是()A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定【分析】根据中心投影的特点,小红和小花在同一路灯下的影长与他们到路灯的距离有关,虽然他们的身高一样,也不能判断谁的身高的高与矮.【解答】解:小红和小花在路灯下的影子一样长,在同一路灯下他们的影长与他们到路灯的距离有关,所以无法判断谁的身高的高与矮.故选:D.【点评】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.4.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m【分析】小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【解答】解:设小明在A处时影长为x,AO长为a,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴,,则,∴x=;,∴y=,∴x﹣y=3.5,故变短了3.5米.故选:C.【点评】此题考查相似三角形对应边成比例,应注意题中三角形的变化.5.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了.这是因为()A.汽车开的很快B.盲区减小C.盲区增大D.无法确定【分析】前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了,说明看到的范围减少,即盲区增大.【解答】解:根据题意我们很明显的可以看出“沉”下去的建筑物实际上是到了自己的盲区的范围内.故选:C.【点评】本题结合了实际问题考查了对视点,视角和盲区的认识和理解.6.如图所示的四棱柱的主视图为()A.B.C.D.【分析】依据从该几何体的正面看到的图形,即可得到主视图.【解答】解:由图可得,几何体的主视图是:故选:B.【点评】本题主要考查了三视图,解题时注意:视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.7.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.【分析】根据图中的主视图解答即可.【解答】解:A、图中的主视图是2,1;B、图中的主视图是2,1;C、图中的主视图是2,1;D、图中的主视图是2,2;故选:D.【点评】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置.8.如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是()A.B.C.D.【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可得到答案.【解答】解:如图,左视图如下:故选:D.【点评】本题考查了作图﹣﹣三视图、由三视图判断几何体,本题画几何体的三视图时应注意小正方形的数目及位置.9.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D【分析】主视图是从几何体的正面看所得到的视图,俯视图是从几何体的上面看所得到的图形.【解答】解:主视图是矩形且中间有两道竖杠,俯视图是两个同心圆,故选:D.【点评】此题主要考查了三视图,关键是掌握主视图和俯视图所看的位置.10.如图是从三个方向看某个几何体得出的平面图形,该几何体是()A.棱柱体B.圆柱体C.圆锥体D.球体【分析】由主视图和俯视图可得此几何体为柱体,根据左视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和俯视图都是长方形,∴此几何体为柱体,∵左视图是一个圆,∴此几何体为平放的圆柱体.故选:B.【点评】本题考查了由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.二.填空题(共8小题)11.已知操场上的篮球架上的篮板长1.8米,高1.2米,当太阳光与地面成45°角投射到篮板时,它留在地面上的阴影部分面积为 2.16m2.【分析】根据平行投影,篮板在地面上的阴影部分为矩形,此矩形的长等于篮板长,为1.8m,由于太阳光与地面成45°角,根据等腰直角三角形的性质得矩形的宽等于篮板宽,为1.2m,然后根据矩形得面积公式求解.【解答】解:因为太阳光线是平行光线,所以篮板在地面上的阴影部分为矩形,此矩形的长等于篮板长,为1.8m,由于太阳光与地面成45°角,则矩形的宽等于篮板宽,为1.2m,所以篮板长留在地面上的阴影部分面积=1.8×1.2=2.16(m2).故答案为2.16m2.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.太阳光线是平行光线.12.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为4m.【分析】利用中心投影的性质可判断△CDE∽△CBA,再根据相似三角形的性质求出BC的长,然后计算BC﹣CD即可.【解答】解:∵DE∥AB,∴△CDE∽△CBA,∴=,即=,∴CB=6,∴BD=BC﹣CD=6﹣2=4(m).故答案为4.【点评】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.13.从正面看、从上面看、从左面看都是正方形的几何体是正方体.【分析】正方体从三个方向看到的形状图都是正方形,即三视图都是正方形.【解答】解:一个几何体从三个方向看到的形状图都是正方形,即三视图均为正方形,这样的几何体是正方体.故答案为:正方体.【点评】本题考查由三视图确定几何体的形状,关键是根据对几何体的认识解答.14.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图①主视图、②左视图、③俯视图中,是中心对称图形的有③俯视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,“田”字是中心对称图形,主视图是1,2,1,不是中心对称图形,左视图是1,2,1,不是中心对称图形,故答案为:③俯视图【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.15.用硬纸壳做一个如图所示的几何体,其底面是圆心角为300°的扇形,则该几何体的表面积为(60+75π)cm2.【分析】求得该几何体的侧面积以及底面积,相加即可得到表面积.【解答】解:侧面积为10×(6+)=60+50π,底面积之和为:2×=15π,∴该几何体的表面积为60+50π+15π=60+65π,故答案为:60+65π.【点评】本题主要考查了几何体的表面积,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.16.如图是一个几何体的三个视图,若这个几何体的体积是24,则它的主视图的面积是12.【分析】由2个视图是长方形,那么这个几何体为棱柱,另一个视图是三角形,那么可得该几何体是三棱柱,由三视图知,三棱柱的正面的高是3,根据三棱柱的体积公式得到三角形的底,根据三角形公式列式计算即可.【解答】解:由三视图知,几何体是一个三棱柱,三棱柱的正面是高为3的三角形,∵这个几何体的体积是24,∴三角形的底为=8,∴它的主视图的面积=×8×3=12,故答案为:12.【点评】此题考查了由三视图判断几何体和几何体的表面积求法,正确判断出几何体的形状是解题的关键.17.如图,是由10个完全相同的小正方体堆成的几何体.若现在你还有若干个相同的小正方体,在保证该几何体的从上面、从正面、从左面看到的图形都不变的情况下,最多还能放1个小正方体.【分析】根据主视图是从正面看得到图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图,可得答案.【解答】解:主视图是第一层三个小正方形,第二层是左边一个小正方形,中间一个小正方形,第三层是左边一个小正方形,俯视图是第一层三个小正方形,第二层三个小正方形,左视图是第一层两个小正方形,第二层两个小正方形,第三层左边一个小正方形,不改变三视图,中间第二层加一个,故答案为:1.【点评】本题考查了简单几何体的三视图,主视图是从正面看得到图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图.18.由一些完全相同的小正方体搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是4或5.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,上层最多有2个,最少1个,下层一定有3个,∴组成这个几何体的小正方体的个数可能是4个或5个,故答案为:4或5.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.三.解答题(共7小题)19.一个几何体的三视图如图所示,根据图示的数据计算该几何体的侧面积.【分析】根据三视图判断出该几何体的形状,再求出侧面积即可得出答案.【解答】解:根据三视图可得该几何体是一个三棱柱,侧面积为4×3×6=72.【点评】此题考查了由三视图判断几何体,用到的知识点是长方形的面积,同时也体现了对空间想象能力方面的考查.20.如图是从上面看到一个由小正方体搭建的几何体的图形,其中方框内的数字为该处小立方块的个数.请你画出从正面和左面看到这个几何体的图形.【分析】分别利用小立方块的个数得出其形状,进而画出左视图与主视图.【解答】解:如图所示:.【点评】此题考查了作图﹣三视图,由三视图判断几何体,正确想象出立体图形的形状是解题关键.21.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的体积和表面积.【分析】首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面积即可.【解答】解:根据三视图可得:上面的长方体长4mm,高4mm,宽2mm,下面的长方体长6mm,宽8mm,高2mm,∴立体图形的体积是:4×4×2+6×8×2=128(mm3),∴立体图形的表面积是:4×4×2+4×2×2+4×2+6×2×2+8×2×2+6×8×2﹣4×2=200(mm2).【点评】此题主要考查了由三视图判断几何体以及求几何体的表面积,根据图形看出长方体的长,宽,高是解题的关键.22.某个几何体由若干个相同的小立方体组成,从正面和左面看到的形状图如图1所示:(1)这个几何体可以是图2甲、乙、丙中的甲和乙;(2)这个几何体最多由9个小立方块堆成:(3)当堆成这个几何体的小立方块个数最少时,画出从上面看到的形状图.【分析】(1)由主视图和左视图的定义求解可得;(2)构成几何体的正方体个数最少时,其正方体的构成是在乙的基础上左数第1列前面再添加1个正方形即可得;(3)正方体个数最少时如图甲,据此作出俯视图即可得.【解答】解:(1)由主视图和左视图知,这个几何体可以是图2甲、乙、丙中的甲和乙,故答案为:甲和乙;(2)这个几何体最多可以由9个小正方体组成,故答案为:9;(3)如图所示:【点评】本题考查作图﹣三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.23.李明和同学们一起研究“从三个不同方向看问题的形状”.(1)图1是由几个大小相同的小立方体搭成的几何体,请画出从正面看到的这个几何体的形状图;(2)图2是由几个大小相同的小立方体搭成的几何体,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小立方体的个数.请画出从左面看到的这个几何体的形状图.【分析】(1)观察几何体,作出三视图即可.(2)由已知条件可知,从正面看有2列,每列小正方数形数目分别为3,2;从左面看有2列,每列小正方形数目分别为2,3.据此可画出图形.【解答】解:(1)如图所示:(2)如图所示:【点评】此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.24.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,一摞碟子的层数与累积高度的关系如下表:碟子层数累积高度(cm)1222+1.532+342+4.5……(1)当一摞碟子有x层时,请写出此时的累积高度(用含x的式子表示);(2)桌子上有一些碟子,如图分别是从正面、左面和上面看到的形状图,厨房师傅想把这些碟子全部叠成一摞,求叠成一摞后的累积高度.【分析】(1)观察表格数据不难发现,每增加一个碟子高度增加1.5cm,然后写出即可;(2)根据三视图判断出碟子的个数为12个,然后代入(1)中算式计算即可得解.【解答】解:(1)由图可知,每增加一个碟子高度增加1.5cm,桌子上放有x个碟子时,高度为2+1.5(x﹣1)=1.5x+0.5;(2)由图可知,共有3摞,左前一摞有4个,左后一摞有5个,右边前面一摞有3个,共有:3+4+5=12个,叠成一摞后的高度=1.5×12+0.5=18.5cm.【点评】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状.25.如图是一个大正方体切去一个小正方体组成的几何体.(1)下列三个图形中,从上面、左面、正面看到的平面图形分别是③、②、①;(2)若大正方体的边长为20cm,小正方体的边长为10cm,求这个几何体的表面积.【分析】(1)根据从上面、左面、正面看到的三视图,可得答案.(2)依据三视图的面积,即可得到这个几何体的表面积.【解答】解:(1)由题可得,从上面、左面、正面看到的平面图形分别是③,②,①;故答案为:③,②,①;(2)∵大正方体的边长为20cm,小正方体的边长为10cm,∴这个几何体的表面积为:2(400+400+400)=2×1200=2400(cm2).【点评】本题考查了简单组合体的三视图以及几何体的表面积,画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.。
人教版九年级下《第29章投影与视图》单元检测试卷含答案
第29章投影与视图单元检测一、选择题1.如图,图中的几何体是将圆柱沿竖直方向切掉一半后,再在中心挖去一个圆柱得到的,则该几何体的左视图是()A. B. C. D.2.下列图形是正方体表面积展开图的是()A. B. C. D.3.由一些相同的立方体搭成某几何体,这个几何体的主视图和俯视图如图所示,请问搭这样一个几何体最多需要多少小立方体?()A. 4B. 5C. 6D. 74.如图所示几何体的左视图是()A.B.C.D.5.人往路灯下行走的影子变化情况是()A. 长⇒短⇒长B. 短⇒长⇒短C. 长⇒长⇒短D. 短⇒短⇒长6.下列水平放置的几何体中,俯视图是矩形的是()A. 圆柱B. 长方体C. 三棱柱D. 圆锥7.下列四个几何体中,左视图为圆的是()A. B. C. D.8.下列立体图形中,俯视图是正方形的是()A. B. C. D.9.如图四个几何体,其中,它们各自的主视图与俯视图不相同的几何体的个数是()A. 1B. 2C. 3D. 410.如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是()A. B. C. D.二、填空题11.直角坐标平面内,一点光源位于A(0,5)处,线段CD⊥x轴,D为垂足,C(3,1),则CD在x轴上的影长为________ ,点C的影子的坐标为________ .12.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图和左视图的面积之和是________13.已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为________14.一个上下底密封的纸盒的三视图如图所示,请你根据图中的数据,计算这个密封纸盒的表面积为________m2.(结果保留π)15.皮影戏中的皮影是由投影得到的________ .16.三棱柱的三视图如图所示,△EFG中,EF=10cm,EG=16cm,∠EGF=30°,则AB的长为________cm .17.某长方体包装盒的展开图如图所示,如果长方体盒子的长比宽多4cm,则这个包装盒的体积是________ cm3.18.如图是一个正方体的展开图,如果将它折成一个正方体,相对面上的数相等,则x+y的值为________.三、解答题19.如图是由6个相同的正方形拼成的图形,请你将其中一个正方形移动到合适的位置,使它与另5个正方形能拼成一个正方体的表面展开图.(请在图中将要移动的那个正方形涂黑,并画出移动后的正方形).20.有一个正方体,在它的各个面上分别标上数字1、2、3、4、5、6,甲、乙、丙三位同学从三个不同的角度去观察此正方体,观察结果如图所示:请画出正方体的一种表面展开图,(要求把数字标注在表面展开图中)21.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.22.观察:下图中的几何体是由若干个完全相同的小正方体搭成的.(1)画出几何体的主视图,左视图,俯视图;(2)能移走一个小正方体使它的三个视图都不变吗?23.如图,是一个由若干同样大小的正方体搭成的几何体俯视图,小正方形中的数字表示在该位置的立方体的个数.(1)请你画出它的从正面看和从左面看的形状图.(2)如果每个立方体的棱长为2cm,则该几何体的表面积是多少?24. 小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.参考答案一、选择题1.A2.D3.B4.B5.A6.B7. D8.B9.C 10.A二、填空题11.;(3.75,0)12.5 13.48π 14.600π 15.中心投影16.8 17.90 18. 11三、解答题19.解:答案如下:20.解:从3个小立方体上的数可知,与写有数字1的面相邻的面上数字是2,3,4,6,所以数字1面对数字5面,同理,立方体面上数字3对6.故立方体面上数字2对4.作图为:21.解:22.(1)(2)去掉粉红色的立方体,三视图不变23.解:(1)如图所示:(2)(2×2)×(6×2+6×2+5×2+4)=4×38=152(平方厘米).故该几何体的表面积是152平方厘米.24.解(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20cm,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.。
人教版九年级下册数学 第29章 投影与视图 同步练习题(含答案)
人教版九年级下册数学第29章投影与视图同步练习题29.1 投影1.小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()2.小飞晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说,广场上的大灯泡一定位于两人.3.一根笔直的小木棒(记为线段AB),它的正投影为线段CD,则下列各式中一定成立的是() A.AB=CD B.AB≤CDC.AB>CD D.AB≥CD4.如图,如果在阳光下你的身影的方向是北偏东60°方向,那么太阳相对于你的方向是()A.南偏西60°B.南偏西30°C.北偏东60° D.北偏东30°5.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()6.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD. (1)请你在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示).7.如图,已知线段AB=2 cm,投影面为P,太阳光线与地面垂直.(1)当AB垂直于投影面P时(如图1),请画出线段AB的投影;(2)当AB平行于投影面P时(如图2),请画出它的投影,并求出正投影的长;(3)在(2)的基础上,点A不动,线段AB绕点A在垂直于投影面P的平面内逆时针旋转30°,请在图3中画出线段AB的正投影,并求出其正投影长.29.2 三视图第1课时几何体的三视图1.下列立体图形中,主视图是圆的是()2.如图是由四个小正方体叠成的一个几何体,它的左视图是()3.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()4.如图所示几何体的左视图是()5.将如图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同6.图中物体的一个视图(a)的名称为.7.画出如图所示圆柱的三视图.8.画出如图所示几何体三视图.9.下列四个几何体中,主视图与左视图相同的几何体有()A.1个 B.2个C.3个D.4个10.如图是一个空心圆柱体,其左视图正确的是()11.形状相同、大小相等的两个小木块放置于桌面,其俯视图如图,则其主视图是()12.如图,一个正方体切去一个三棱锥后所得几何体的俯视图是()13.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).14.一种机器上有一个进行转动的零件叫燕尾槽(如图),为了准确做出这个零件,请画出它的三视图.15.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为下列几何体中的哪一个?选择并说明理由.第2课时由三视图确定几何体1.如图是某几何体的三视图,则这个几何体是()A.棱柱 B.圆柱C.棱锥 D.圆锥2.一个几何体的三视图如图所示,这个几何体是()A.圆柱 B.棱柱C.圆锥 D.球3.如图所示,所给的三视图表示的几何体是()A.圆锥 B.正三棱锥C.正四棱锥 D.正三棱柱4.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()5.图中的三视图所对应的几何体是()6.已知一个正棱柱的俯视图和左视图如图,则其主视图为()7.某几何体的三视图如图所示,则组成该几何体共用了小方块()A.12块B.9块C.7块D.6块8.如图所示是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体不可能是()A.6个B.7个 C.8个 D.9个第3课时由三视图确定几何体的表面积或体积1.如图是一个几何体的三视图,根据图中提供的数据(单位: cm)可求得这个几何体的体积为()A.2 cm3B.3 cm3C.6 cm3D.8 cm32.如图是一几何体的三视图,由图中数据计算此几何体的侧面积为.(结果保留π)3.如图是某工件的三视图,求此工件的全面积.4.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积,结果为 cm2.(结果可保留根号)5.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.6.如图是一个几何体的三视图(单位:cm).(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求出这个路线的最短长度.参考答案:第二十九章投影与视图29.1 投影1.B2.中间的上方.3.D4.A5.D6.解:如图所示.7.解:(1)点C为所求的投影.(2)线段CD为所求的投影,CD=2 cm.(3)线段CD为所求的投影,CD=2cos30°= 3 cm.29.2 三视图第1课时几何体的三视图1.D2.A3.D4.A5.D6.主视图.7.解:如图所示.8.解:如图所示.9. D10.B11.D12.D13.解:如图.14.解:如图.15.解:比较各几何体的三视图,考虑是否有长方形,圆及三角形即可.对于A,三视图分别为长方形、三角形、圆(含直径),符合题意;对于B,三视图分别为三角形、三角形、圆(含圆心),不符合题意;对于C,三视图分别为正方形、正方形、正方形,不符合题意;对于D,三视图分别为三角形、三角形、矩形(含对角线),不符合题意;故选A.第2课时由三视图确定几何体1.D2.A3.D4.B5.B6.D7.D8.D 提示:如图,根据左视图可以推测d=e=1,a,b,c中至少有一个为2. 当a,b,c中一个为2时,小立方体的个数为:1+1+2+1+1=6;当a,b,c中两个为2时,小立方体的个数为:1+1+2+2+1=7;当a,b,c三个都为2时,小立方体的个数为:1+1+2+2+2=8.所以小立方体的个数可能为6个、7个或8个.故选D.第3课时由三视图确定几何体的表面积或体积1.B2.10π.3.解:由三视图可知,该工件为底面半径为10 cm、高为30 cm的圆锥体.圆锥的母线长为302+102=1010(cm),圆锥的侧面积为12×20π×1010= 10010π(cm 2),圆锥的底面积为102π=100π(cm 2),圆锥的全面积为100π+10010π=100(1+10)π(cm 2).45.解:该几何体的形状是直四棱柱,由三视图知,棱柱底面菱形的对角线长分别为 4 cm ,3 cm.∴菱形的边长为(32)2+22=52(cm ),棱柱的侧面积为52×8×4=80(cm 2). 6.解:(1)圆锥.(2)表面积S =S 扇形+S 圆=πrl +πr 2=12π+4π=16π(cm 2).(3)如图将圆锥侧面展开,线段BD 为所求的最短长度.由条件,得∠BAB ′=120°,C 为弧BB ′的中点,∴BD =33(cm ).。
九年级数学(下)第二十九章《投影与视图》全章测试题含答案
九年级数学(下)第二十九章《投影与视图》全章测试题一、选择题1.平行投影中的光线是( )A.平行的B.聚成一点的C.不平行的D.向四面八方发散2.正方形在太阳光下的投影不可能是( )A.正方形B.一条线段C.矩形D.三角形3.如图1,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是( )4.由一些完全相同的小立方块搭成的几何体的三视图如图所示,那么搭成这个几何体所用的小立方块的个数是( )第4题图A.8 B.7 C.6 D.5 5.如图是某几何体的三视图及相关数据,则判断正确的是( )第5题图A.a>c B.b>cC.4a2+b2=c2D.a2+b2=c26.若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是( )A.2 B.3C.4 D.5二、填空题7.一个圆柱的俯视图是______,左视图是______.8.如果某物体的三视图如图所示,那么该物体的形状是______.第8题图9.一空间几何体的三视图如图所示,则这个几何体的表面积是______cm2.第9题图10.如图,水平放置的长方体的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的体积等于______.三、解答题11.楼房、旗杆在路灯下的影子如图所示.试确定路灯灯炮的位置,再作出小树在路灯下的影子.(不写作法,保留作图痕迹)12.画出图中的九块小立方块搭成几何体的主视图、左视图和俯视图.13.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请画出这个几何体的主视图和左视图.14.如图是一个几何体的主视图和俯视图,求该几何体的体积( 取3.14).15.拿一张长为a,宽为b的纸,作一圆柱的侧面,用不同的方法作成两种圆柱,画出图形并求这两种圆柱的表面积.答案与提示第二十九章 投影与视图全章测试1.A . 2.D . 3.A . 4.A . 5.D . 6.B . 7.圆;矩形. 8.三棱柱. 9.48π. 10.24. 11.如图:12.如图:13.如图:14.体积为π×102×32+30×25×40≈40 048(cm 3).15.第一种:高为a ,表面积为;π221b ab S +=第二种:高为b ,表面积为⋅+=π222a ab S。
精品解析2022年人教版九年级数学下册第二十九章-投影与视图章节测评试题(含答案及详细解析)
人教版九年级数学下册第二十九章-投影与视图章节测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一个水晶球摆件,它是由一个长方体和一个球体组成的几何体,则其主视图是()A.B.C.D.2、下列立体图形中,从上面看到的形状图是三角形的是( )A.B.C.D.3、如图所示的几何体,从上面看到的形状图是()A.B.C.D.4、如图,是空心圆柱体,其主视图是下列图中的()A.B.C.D.5、如图,这个几何体是将一个正方体中间挖出一个圆柱体后的剩余部分,该几何体的主视图是()A.B.C.D.6、一个由若干个相同的小正方体组成的几何体的主视图和俯视图如图所示,则小正方体的最少个数为()A.6 B.7 C.8 D.97、图1、图2均是正方体,图3是由一些大小相同的正方体搭成的几何体从正面看和左面看得到的形状图,小敏同学经过研究得到如下结论:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中∠ABC=45°;(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b=19其中正确结论的个数有()A.1个B.2个C.3个D.4个8、下面的三视图所对应的几何体是()A.B.C. D.9、下面左侧几何体的主视图是()A.B.C.D.10、如图是由5个相同的小立方块搭成的几何体,则从左面看这个几何体的形状图是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、由一些大小相同的小正方体搭成的几何体从正面和从左面看到的图形如图所示,则搭成该几何体的小正方体的个数最少是____2、一个圆柱体的三视图如图所示,根据图中数据计算圆柱的体积为___________.(答案含 )3、一个几何体是由一些大小相同的校正方体摆成的,从正面看与从上面看得到的形状如图所示,则组成这个几何体的校正方体最多有_________个4、由若干个相同的小正方体搭成的几何体的三视图相同,如图所示.至少再加_____个小正方体,该几何体可成为一个正方体.5、将7个棱长为1的小立方体摆成如图所示几何体,该几何体的俯视图的面积为_____.三、解答题(5小题,每小题10分,共计50分)1、(1)一个几何体由一些大小相同的小正方体搭成,如图是从上面看这个几何体的形状图,小正方形中的数字表示在该位置的小正方体的个数,请在网格中画出从正面和左面看到的几何体的形状图.(2)用小立方块搭一几何体,使它从正面看,从左面看,从上面看得到的图形如图所示.请在从上面看到的图形的小正方形中填人相应的数字,使得小正方形中的数字表示在该位置的小立方块的个数.其中,图1填人的数字表示最多组成该几何体的小立方块的个数,图2填入的数字表示最少组成该几何体的小立方块的个数.2、如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一棵小树,它的影子是MN.(1)画出路灯的位置(用点P表示);(2)在图中画出表示小树的线段.3、从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.4、如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,问最多可以取走几个小立方块.5、如图是由5个同样大小的小正方体搭成的几何体,请在下面方格纸中分别画出这个几何体从正面看、从左面看、从上面看的形状图.---------参考答案-----------一、单选题1、D【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看下边是一个矩形,矩形的上边是一个圆,故选:D.【点睛】本题考查了简单组合体的三视图,掌握从正面看得到的图形是主视图是解决此题关键.2、C【分析】根据三视图的性质得出主视图的形状进而得出答案.【详解】解:正方体从上面看到的形状图是正方形,故A项不符合题意;圆柱从上面看到的形状图是圆,故B项不符合题意;圆锥从上面看到的形状图是带圆心的圆,故D项不符合题意.三棱柱从上面看到的形状图是三角形,故C项符合题意;故选:C.【点睛】本题题主要考查了简单几何体的三视图,熟悉主视图性质是解题关键.3、B【分析】找出从几何体的上面看所得到的视图即可.【详解】解:从上面看到的形状图是,故选:B【点睛】此题主要考查了简单几何体的视图,注意培养学生的思考能力和对几何体三种视图的空间想象能力是解题的关键.4、C【分析】从正面观察空心圆柱体,能够看见的部分用实线表示,不能看见的部分用虚线表示,即可得到主视图.【详解】主视图是在几何体正面面观察物体得到的图形.能够看见的部分用实线表示,不能看见的部分用虚线表示.本题圆柱体的主视图整体是个矩形,中间包含两条竖直的虚线.故选:C【点睛】本题主要考查三视图, 主视图是在物体正面从前向后观察物体得到的图形;俯视图是在水平面内从上向下观察物体得到的图形;左视图是在几何体左侧面观察物体得到的图形.5、A【分析】根据主视图的概念求解即可.【详解】解:由题意可得,该几何体的主视图是:.故选:A.【点睛】此题考查了几何体的主视图,解题的关键是熟练掌握几何体主视图的概念.6、B【分析】根据几何体的三视图特点解答即可.【详解】解:根据俯视图,最底层有4个小正方体,由主视图知,第二层最少有2个小正方体,第三层最少有1个小正方体,∴该几何体最少有4+2+1=7个小正方体组成,故选:B.【点睛】本题考查几何体的三视图,掌握三视图的特点是解答的关键.7、B【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着可判断(1);正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形可判断(2)(3);作出相应的俯视图,标出搭成该几何体的小正方体的个数最多(少)时的数字即可.为【详解】解:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;正确,因为正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,所以至少要剪开12﹣5=7条棱.(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;正确,因为用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中∠ABC=45°;错误,因为△ABC是等边三角形,所以∠ABC=60°.8、C【分析】根据“俯视打地基、主视疯狂盖、左视拆违章”得出组成该几何体的小正方体分布情况,继而得出答案.【详解】解:根据三视图知,组成该几何体的小正方体分布情况如下:与之相对应的C选项,故选:C.【点睛】本题考查由三视图判断几何体,关键是由主视图和左视图、俯视图可判断确定几何体的具体形状.9、A【分析】找出从几何体的正面看所得到的图形即可.【详解】解:从几何体的正面看,是一行两个并列的矩形.故选:A.【点睛】本题主要考查了几何体的三视图,准确分析判断是解题的关键.10、D【分析】观察图形可知,从左面看到的图形是2列,分别有2,1个正方形,据此即可判断.【详解】解:从左面看这个几何体的形状图如图所示:故选D.【点睛】此题考查了从不同方向观察物体和几何体和画简单图形的三视图的方法,是基础题型.二、填空题1、4【解析】【分析】由主视图可知几何体有两列,两层;由左视图可知几何体有两排,两层,所以第一列最少1个正方体,第二列有最少有3个正方体,由此可解.【详解】解:由主视图,左视图画出几何体,如图:故答案为:4.【点睛】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.2、24【解析】【分析】根据主视图确定出圆柱体的底面直径与高,根据圆柱体的体积公式列式计算即可.【详解】解:由图知,圆柱体的底面直径为4,高为6,∴V圆柱=πr2h=π×22×6=24π.故答案为24π.【点睛】本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的体积公式.根据主视图确定出圆柱体的底面直径与高是解题的关键.3、6【解析】【分析】易得这个几何体共有2层,由主视图和俯视图可得第一层最多正方体的个数为3块,第二层最多正方体的个数为3块,相加即可.【详解】解:组成这个几何体的小正方块最多有3+3=6块.故答案为:6.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.4、4【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,依此可得有几个小正方体,再用8减去小正方体的个数即可求解.【详解】解:根据三视图可得第一层有3个正方体,第二层有1个正方体,共有4个小正方体,8﹣4=4(个).故至少再加4个小正方体,该几何体可成为一个正方体.故答案为:4.【点睛】本题主要考查三视图,能够根据三视图想象出立体图是解题的关键.5、4【解析】【分析】据从上面看得到的图形是俯视图,直接观察,可得答案.【详解】解:从上面看,底层是两个小正方形,上层是两个小正方形,如图所示,所以该几何体的俯视图的面积为4.故答案为:4.【点睛】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图是解题关键.三、解答题1、(1)见解析;(2)见解析【分析】(1)根据俯视图中小正方体的个数结合主视图,主视图是从前面向后看得到的图形,从正面看分左中右三列,左边列有2个正方形,中间列有3个正方形,右边列有4个正方形画出图形,根据俯视图中小正方体的个数结合左视图,左视图是从左边向右看得到的图形,从左边看分左中右三列,左边列1个正方形,中间列4个正方形,右边列2个正方形画出图形即可;(2)根据俯视图的图形两行三列,中间列一行,从正面看分左中右三例,左边列3个正方形,中间列1个正方形,右边列2个正方形,从左面看,分两行,前行后行,前行2个正方形,后行3个正方形,左列前行可以是1个正方体或2个正方体,左列后行3个正方体,中间列只有前行1个正方体,右边列前行2个正方体,右边列后行可以1个或2个正方体,最多10个正方体如图1,最少8个正方体如图2在俯视图中标出个数即可.【详解】解:(1)从正面看分左中右三列,左边列有2个正方形,中间列有3个正方形,右边列有4个正方形,如图从左边看分左中右三列,左边列1个正方形,中间列4个正方形,右边列2个正方形,如图所示:(2)从正面看分左中右三例,左边列3个正方形,中间列1个正方形,右边列2个正方形,从左面看,分两行,前行后行,前行2个正方形,后行3个正方形,左列前行可以是1个正方体或两个正方体,,左列后行3个正方体,中间列只有前行1个正方体,右边列前行2个正方体,后列可以1个或2个正方体,最多10个正方体如图1,最少8个正方体如图2.根据题意,填图如下:【点睛】本题考查根据俯视图画主视图与左视图,根据主视图与左视图确定组成图形的正方体的个数,从立体图形到平面图形的转化三视图,由平面图形三视图到立体图形还原几何体空间想象能力,本题难度较大,培养空间想象力,掌握相关知识是解题关键.2、(1)见解析;(2)见解析.【分析】(1)连接CA并延长与FD的延长线交于点P,点P即路灯的位置;(2)连接PN,作MG垂直于MN与PN交于点G,线段GM即为表示小树的线段.【详解】解:(1)如图,连接CA并延长与FD的延长线交于点P,点P是路灯的位置.(2)如图,连接PN,作MG垂直于MN与PN交于点G,线段MG表示小树.【点睛】此题考查了中心投影,解题的关键是熟练掌握中心投影的性质.3、见解析【分析】根据三视图的画法,直接画出主视图、左视图和俯视图即可.【详解】解:如图所示:【点睛】本题考查三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.4、最多可以取走16个小立方块.【分析】根据表面积不变,只需留11个,分别是正中心的3个和四角上各2个.【详解】解:若新几何体与原正方体的表面积相等,最多可以取走16个小正方体,只需留11个,分别是正中心的3个和四角上各2个,如图所示:答:最多可以取走16个小立方块.【点睛】本题主要考查了几何体的表面积,熟知几何体表面积的定义以及正方体的表面积公式是解答本题的关键.5、见解析【分析】根据图形及三视图的定义作图即可.【详解】解:三视图如下所示:【点睛】此题主要考查了作三视图,根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题关键.。
九年级数学下册第二十九章《投影与视图》综合测试(含答案解析)
学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,是由-些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块最后搭成一个大的长方体,至少还需要添加()个小立方块.A.26 B.38 C.54 D.562.如图是由大小相同的小正方体搭成的几何体,将其中的一个小正方体①去掉,则三视图不发生改变的是()A.主视图B.俯视图C.左视图D.俯视图和左视图3.桌面上放着长方体和圆柱体各1个,按下图所示的方式摆放在一起,其左视图是()A.B.C.D.4.如图,是由一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方体最多块数是()A.9 B.10 C.11 D.125.下面几何体的左视图是( )A.B.C.D.6.如图是由一些相同的小正方体构成的立体图形的三视图.构成这个立体图形的小正方体的个数是()A.6 B.7 C.4 D.57.从上面看下图能看到的结果是图形()A.B.C.D.8.如图所示立体图形,从上面看到的图形是()A.B.C.D.9.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是( )A.(1)(2)(3)(4) B.(4)(3)(2)(1) C.(4)(3)(1)(2) D.(2)(3)(4)(1)10.下列几何体中,其主视图、俯视图和左视图分别是图中三个图形的是()A.B.C.D.11.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体().A.6个B.5个C.4个D.3个12.如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.13.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A.B.C.D.14.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是()A .12πB .6πC .12π+D .6π+二、填空题15.已知:如图是由若干个大小相同的小正方体所搭成的几何体从正面、左面和上面看到的形状图,则搭成这个几何体的小正方体的个数是_______.16.由几个相同的小正方体搭成的一个几何体如图所示,这个几何体的主视图可以看到5个小正方体的面,则俯视图与左视图能看到的小正方体的面的个数和为______.17.广场上一个大型艺术字板块在地上的投影如图所示,则该投影属于_____.(填写“平行投影”或“中心投影”)18.如图,圆柱形容器高为18cm ,底面周长为24cm ,在杯内壁离杯底4cm 的点B 处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A 处,则蚂蚁从外币A 处到达内壁B 处的最短距离为_______.19.如图,光源P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB=2m ,CD=6m ,点P 到CD 的距离是2.7m ,则点P 到AB 间的距离是________.20.如图,是某一个几何体的俯视图,主视图、左视图,则这个几何体是________.21.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是____.22.如图所示,是从不同方向看到的由一些小立方块搭成的几何体的形状图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以便搭成一个大正方体,则至少还需要______个小立方块.23.如图,一棵树(AB)的高度为7.5米,下午某一个时刻它在水平地面上形成的树影长(BE)为10米,现在小明想要站这棵树下乘凉,他的身高为1.5米,那么他最多可以离开树干多少米才可以不被阳光晒到?____.24.如图,小军、小珠之间的距离为2.8m,他们在同一盏路灯下的影长分别为1.7m,1.5m,已知小军、小珠的身高分别为1.7m,1.5m,则路灯的高为________m.25.一个几何体的三视图如图所示,其中从上面看的视图是一个等边三角形,则这个几何体的表面积为____.26.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是________.三、解答题27.如图,若干个完全相同的小正方体堆成一个几何体.(1)请在图中方格中画出该几何体的左视图和俯视图.(2)用若干小立方体搭一个几何体,使得它的左视图和俯视图与你在方格中所画的一致,则这样的几何体最多要个小立方块.(3)若小正方体的棱长为1cm,如果将图1中几何体的表面(不含几何体之间叠合部分及与地面接触的底面)喷上油漆,求需喷漆部分的面积.28.如图所示是由几个小立方体所组成几何体从上面看到的形状,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体从正面和从左面看到的形状.A B,且木棒AB的长为8cm. 29.已知木棒AB垂直投射于投影面a上的投影为11A B长;(1)如图(1),若AB平行于投影面a,求11A B长.(2)如图(2),若木棒AB与投影面a的倾斜角为30,求这时1130.如图各图是棱长为1cm的小正方体摆成的,如图①中,从正面看有1个正方形,表面积为6cm2;如图②中,从正面看有3个正方形,表面积为18cm2;如图③,从正面看有6个正方形,表面积为36cm2;…(1)第6个图中,从正面看有多少个正方形?表面积是多少?(2)第n个图形中,从正面看有多少个正方形?表面积是多少?【参考答案】一、选择题1.A2.C3.C4.C5.C6.A7.D8.C9.C10.A11.C12.A13.D14.B二、填空题15.【分析】根据主视图和俯视图判断几何体的底层的正方体的个数根据主视图和左视图判断几何体的第二和第三层的正方体的个数计算即可【详解】解:从主视图和俯视图可知几何体的底层有4个正方体从主视图和左视图可知几16.7【分析】左视图有2列每列小正方形数目分别为21;俯视图有3列每行小正方形数目分别为121据此计算即可【详解】解:根据题意可得左视图有2列每列小正方形数目分别为21;俯视图有3列每行小正方形数目分别17.中心投影【解析】【分析】找出光源即可得出结果【详解】如图可知该投影属于中心投影故答案为:中心投影【点睛】平行投影与中心投影之间的区别是平行投影的投影线互相平行而中心投影的投影线交于一点主要从形成投影18.20cm【分析】将杯子侧面展开建立A关于EF的对称点A′根据两点之间线段最短可知A′B的长度即为所求【详解】解:如答图将杯子侧面展开作A关于EF的对称点A′连接A′B则A′B即为最短距离根据勾股定理19.09m【分析】根据AB∥CD易得△PAB∽△PCD根据相似三角形对应高之比等于对应边之比列出方程求解即可【详解】∵AB∥CD∴△PAB∽△PCD∴假设P到AB距离为x则=x=09故答案为09m【点睛20.圆柱【解析】解:这个几何体是圆柱故答案为:圆柱21.8【解析】试题分析:根据从上边看得到的图形是俯视图可知从上边看是一个梯形:上底是1下底是3两腰是2周长是1+2+2+3=8故答案为8考点:1简单组合体的三视图;2截一个几何体22.19【分析】先由主视图左视图俯视图求出原来的几何体共有8个立方块再根据搭成的大正方体的共有3×3×3=27个小立方块即可得出答案【详解】解:由主视图可知原来的几何体有三层且有3列;由左视图可知搭成的23.8【分析】设小明这个时刻在水平地面上形成的影长为x米利用同一时刻物体的高度与影长成正比得到=解得x=2然后计算两影长的差即可【详解】解:设小明这个时刻在水平地面上形成的影长为x米根据题意得=解得x=24.3【分析】如图由题意证明AB=EBAB=BF推出DB=AB﹣17BN=AB﹣15根据DN=28构建方程求解即可【详解】解:如图由题意可得:在Rt△CDE中CD=DE=17m在Rt△MNF中MN=NF25.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC中作AD⊥BC于D则26.18【分析】这个几何体的表面积是主视图左视图俯视图的面积和的2倍【详解】(3+3+3)×2=18故答案为18【点睛】本题考查了几何体的表面积的计算方法将问题转化为三视图面积和的2倍是解决问题的关键三、解答题27.28.29.30.【参考解析】一、选择题1.A解析:A【分析】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×3×3=36个小正方体,即可得出答案.【详解】解:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,∴搭成的大正方体的共有4×3×3=36个小正方体,∴至少还需要36-10=26个小正方体.故选:A.【点睛】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.2.C解析:C【分析】利用结合体的形状,结合三视图可得出主视图没有发生变化.【详解】解:主视图由原来的三列变为两列;俯视图由原来的三列变为两列;左视图不变,依然是两列,左起第一列是两个小正方形,第二列底层是一个小正方形.故选:C.【点睛】本题考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题的关键.3.C解析:C【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查三视图的知识,左视图是从物体的左面看得到的视图.4.C解析:C【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据主视图与俯视图得出答案.【详解】解:根据几何体的主视图和俯视图,可以得出那个主视图看最少5个,那个俯视图看,最左边正方形前后可以有三列,分别有三个⨯+个.故最多有332=11故选C.【点睛】本题考查了三视图的应用,根据从俯视图看,最左边正方形前后可以有三列,分别有三个从而得出答案是解决问题的关键.5.C解析:C【分析】根据三视图的定义,从左边观察可得.【详解】从左面看可得到左边有2个正方形,右边有1个正方形.故选:C.【点睛】考核知识点:三视图.注意观察的方向.6.A解析:A【分析】利用三视图的观察角度不同得出行数与列数,结合主视图得出答案.【详解】解:如图所示:由左视图可得此图形有3行,由俯视图可得此图形有3列,由主视图可得此图形最左边一列有4个小正方体,中间一列有1个小正方体,最右边一列有1个小正方体,故构成这个立体图形的小正方体有6个.故选:A.【点睛】此题主要考查了由三视图判断几何体,利用三视图得出几何体的形状是解题关键.7.D解析:D【分析】先细心观察原立体图形中的圆锥体和长方体的位置关系,结合四个选项选出答案.【详解】从上面往下看到左边一个长方形,右边一个圆,因此只有D的图形符合这个条件.故选:D.【点睛】本题考查了三视图的知识,解题的关键是熟知俯视图是从上面往下的视图.8.C解析:C【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【详解】从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点睛】本题考查了简单组合体的三视图,解决本题的关键是得到3列正方形具体数目.9.C解析:C【分析】根据平行投影的规律:早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长可得.【详解】根据平行投影的规律知:顺序为(4)(3)(1)(2).故选C.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.10.A解析:A【解析】分析:根据三视图想象立体图形,从主视图可以看出左边的一列有两个,左视图可以看出右边一列有两个,俯视图中左边的一列有两个,综合起来可得解.详解:从主视图可以看出左边的一列有两个,右边的两列只有一行(第二行);从左视图可以看出右边的一列有两个,左边的一列只有一行(第二行);从俯视图可以看出左边的一列有两个,右边的两列只有一行(第一行).故选A..做这类题时要借助三种视图表示物体的特点,从主点睛:本题考查由三视图想象立体图形视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.11.C解析:C【分析】这些正方体分前、后两排,左、右两行.后排左边是一列2个正方体,右边一个正方体;前排1个正方体,与后排右列对齐.【详解】如图搭成此展台共需这样的正方体(如下图)共需4个这样的正方体.故选C.【点睛】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.12.A解析:A【分析】根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.13.D解析:D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】从正面看易得第一层左侧有1个正方形,第二层有3个正方形.故选D.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.14.B解析:B【解析】【分析】根据三视图确定该几何体是圆柱体,再根据主视图上的数据计算圆柱体的侧面积即可.【详解】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1,高是3.所以该几何体的侧面积为2π×1×3=6π.故选:B.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.二、填空题15.【分析】根据主视图和俯视图判断几何体的底层的正方体的个数根据主视图和左视图判断几何体的第二和第三层的正方体的个数计算即可【详解】解:从主视图和俯视图可知几何体的底层有4个正方体从主视图和左视图可知几解析:6【分析】根据主视图和俯视图判断几何体的底层的正方体的个数,根据主视图和左视图判断几何体的第二和第三层的正方体的个数,计算即可.【详解】解:从主视图和俯视图可知,几何体的底层有4个正方体,从主视图和左视图可知,几何体的第二和第三层各一个正方体,则搭成这个几何体的小正方体的个数为:4+1+1=6,故答案为:6.【点睛】本题考查的是由三视图判断几何体,掌握几何体的主视图、左视图和俯视图的概念是解题的关键.16.7【分析】左视图有2列每列小正方形数目分别为21;俯视图有3列每行小正方形数目分别为121据此计算即可【详解】解:根据题意可得左视图有2列每列小正方形数目分别为21;俯视图有3列每行小正方形数目分别解析:7【分析】左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为1,2,1.据此计算即可.【详解】解:根据题意可得左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为1,2,1.∴俯视图与左视图能看到的小正方体的面的个数和为:2+1+1+2+1=7.故答案为:7【点睛】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.17.中心投影【解析】【分析】找出光源即可得出结果【详解】如图可知该投影属于中心投影故答案为:中心投影【点睛】平行投影与中心投影之间的区别是平行投影的投影线互相平行而中心投影的投影线交于一点主要从形成投影解析:中心投影【解析】【分析】找出光源即可得出结果.【详解】如图可知,该投影属于中心投影.故答案为:中心投影【点睛】平行投影与中心投影之间的区别是平行投影的投影线互相平行,而中心投影的投影线交于一点.主要从形成投影的光线来比较两者的区别.18.20cm【分析】将杯子侧面展开建立A关于EF的对称点A′根据两点之间线段最短可知A′B的长度即为所求【详解】解:如答图将杯子侧面展开作A关于EF的对称点A′连接A′B则A′B即为最短距离根据勾股定理解析:20 cm.【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得2222A B A D BD121620'='+=+=(cm).故答案为:20cm.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.19.09m【分析】根据AB∥CD易得△PAB∽△PCD根据相似三角形对应高之比等于对应边之比列出方程求解即可【详解】∵AB∥CD∴△PAB∽△PCD∴假设P 到AB距离为x则=x=09故答案为09m【点睛解析:0.9m【分析】根据AB∥CD,易得,△PAB∽△PCD,根据相似三角形对应高之比等于对应边之比,列出方程求解即可.【详解】∵AB∥CD,∴△PAB∽△PCD,∴ 2.7ABx CD=,假设P到AB距离为x,则2.7x=26,x=0.9.故答案为0.9m.【点睛】考查了相似三角形的性质和判定.本题考查了相似三角形的判定和性质,常用的相似判定方法有:平行线,AA,SAS,SSS;常用到的性质:对应角相等;对应边的比值相等;相似三角形对应高之比等于对应边之比;面积比等于相似比的平方.解此题的关键是把实际问题转化为数学问题(三角形相似问题).20.圆柱【解析】解:这个几何体是圆柱故答案为:圆柱解析:圆柱【解析】解:这个几何体是圆柱.故答案为:圆柱.21.8【解析】试题分析:根据从上边看得到的图形是俯视图可知从上边看是一个梯形:上底是1下底是3两腰是2周长是1+2+2+3=8故答案为8考点:1简单组合体的三视图;2截一个几何体解析:8【解析】试题分析:根据从上边看得到的图形是俯视图,可知从上边看是一个梯形:上底是1,下底是3,两腰是2,周长是1+2+2+3=8,故答案为8.考点:1、简单组合体的三视图;2、截一个几何体22.19【分析】先由主视图左视图俯视图求出原来的几何体共有8个立方块再根据搭成的大正方体的共有3×3×3=27个小立方块即可得出答案【详解】解:由主视图可知原来的几何体有三层且有3列;由左视图可知搭成的解析:19【分析】先由主视图、左视图、俯视图求出原来的几何体共有8个立方块,再根据搭成的大正方体的共有3×3×3=27个小立方块,即可得出答案.【详解】解:由主视图可知,原来的几何体有三层,且有3列;由左视图可知,搭成的几何体共有3行;由俯视图易得最底层有5个小立方体,第二层有2个小立方体,第三层有1个小立方块,共有5+2+1=8个小立方块,∵搭成的大正方体的共有3×3×3=27个小立方块,∴至少还需要27−8=19个小立方块.故答案为:19.【点睛】本题考查了三视图,重点培养学生的空间想象能力,解题的关键是求出原来的几何体及搭成的大正方体共有多少个小立方块.23.8【分析】设小明这个时刻在水平地面上形成的影长为x米利用同一时刻物体的高度与影长成正比得到=解得x=2然后计算两影长的差即可【详解】解:设小明这个时刻在水平地面上形成的影长为x米根据题意得=解得x=解析:8【分析】设小明这个时刻在水平地面上形成的影长为x 米,利用同一时刻物体的高度与影长成正比得到1.5x =107.5,解得x =2,然后计算两影长的差即可. 【详解】解:设小明这个时刻在水平地面上形成的影长为x 米, 根据题意得1.5x =107.5,解得x =2, 小明这个时刻在水平地面上形成的影长为2米,因为10﹣2=8(米),所以他最多离开树干8米才可以不被阳光晒到.故答案为:8.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.同一时刻物体的高度与影长成正比.24.3【分析】如图由题意证明AB =EBAB =BF 推出DB =AB ﹣17BN =AB ﹣15根据DN =28构建方程求解即可【详解】解:如图由题意可得:在Rt △CDE 中CD =DE =17m 在Rt △MNF 中MN =NF解析:3【分析】如图,由题意证明AB =EB ,AB =BF ,推出DB =AB ﹣1.7,BN =AB ﹣1.5,根据DN =2.8,构建方程求解即可.【详解】解:如图,由题意可得:在Rt △CDE 中,CD =DE =1.7m ,在Rt △MNF 中,MN =NF =1.5m ,∵∠CDE =∠MNF =90°,∴∠E =∠F =45°,∵AB ⊥EF ,∴AB =EB =BF ,∴DB =AB ﹣1.7,BN =AB ﹣1.5,∵DN =2.8m ,∴2AB ﹣1.7﹣1.5=2.8,∴AB =3(m ),即路灯的高为3米.故答案为:3.【点睛】本题考查了中心投影和等腰直角三角形的判定和性质,属于常考题型,熟练掌握上述知识是解题的关键.25.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC 中作AD ⊥BC 于D 则 解析:1823+ 【分析】 先判断出几何体为正三棱柱,求出三棱柱的底面积,最后求表面积即可. 【详解】 解:由三视图得,几何体为正三棱柱,上下底为边长为2的等边三角形,侧面积为长为3,宽为2的矩形.如图,等边三角形ABC 中,作AD ⊥BC 于D ,则BD=1BC=12, 在t ABD R △中,2222AD=AB -BD =21=3-;∴11=BC AD=23=322ABC S ⨯⨯⨯⨯△, ∴三棱柱的表面积为23323=18+23⨯⨯+⨯.故答案为: 183+【点睛】本题考查了三视图,等边三角形的面积计算等知识,根据三视图判断出几何体形状是解题关键.26.18【分析】这个几何体的表面积是主视图左视图俯视图的面积和的2倍【详解】(3+3+3)×2=18故答案为18【点睛】本题考查了几何体的表面积的计算方法将问题转化为三视图面积和的2倍是解决问题的关键解析:18【分析】这个几何体的表面积是主视图、左视图、俯视图的面积和的2倍.【详解】(3+3+3)×2=18.故答案为18.【点睛】本题考查了几何体的表面积的计算方法,将问题转化为三视图面积和的2倍是解决问题的关键.三、解答题27.30cm(1)见解析;(2)14;(3)2【分析】(1)从上面看得到从左往右3列正方形的个数依次为3,2,1,依此画出图形即可;从左面看得到从左往右3列正方形的个数依次为3,2,1,;依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最多个数相加即可;(3)数一数有多少个正方形露在外面即可求得面积.【详解】解:(1)如图所示:(2)由俯视图易得最底层有6个小立方块,第二层最多有5个小立方块,第三层最多有3个小立方块,所以最多有6+5+3=14个小立方块.故答案为:14;(3)若将图1中几何体的表面(不含几何体之间叠合部分及与地面接触的底面)喷上油漆,30cm,则需要喷6×2+6×2+6=30个小正方形,面积为230cm.故需喷漆部分的面积为2【点睛】本题考查了作图-三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形,俯视图决定底层立方块的个数,易错点是由左视图得到其余层数里最多的立方块个数.。
人教版九年级数学下册第29章《投影与视图》测试带答案解析
7.下列几何体中,主视图为等腰三角形的是()
A. B. C. D.
8.如图,一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是圆,关于这个几何体的说法错误的是()
A.该几何体是圆柱B.几何体底面积是
C.主视图面积是4D.几何体侧面积是
9.如图,在直角坐标系中,点P(2,2)是一个光源.木杆AB两端的坐标分别为(0,1),(3,1).则木杆AB在x轴上的投影长为()
参考答案:
1.C
【分析】根据常见几何体的主视图特征判断即可;
【详解】解:A.主视图为圆,不符合题意;
B.主视图为等腰梯形,不符合题意;
C.主视图为长方形,符合题意;
D.主视图为三角形,不符合题意;
故选:C.
【点睛】本题考查了主视图:在正面内得到的由前向后观察物体的视图,叫做主视图;掌握常见几何体的三视图特征是解题关键.
【详解】如图所示:
.
【点睛】本题考查简单组合体的三视图,掌握三视图的画法是画出三视图的关键.
18.图见解析.
【分析】根据几何体的三视图,可得从正面看有3列,每列小方形数目为2,1,3;从左面看有2列,每列小方形数目为2,3;从上面看有3列,每列小方形数目为1,1,2;分别画出即可求解.
【详解】解:如图所示.
16.如图,这是一个底面为等边三角形的正三棱柱和它的主视图、俯视图,则它的左视图的面积是___________.
三、解答题(共9个小题,17、18每小题8分,19-25每小题10分,共86分)
17.一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状图,小正方形中的数字表示在该位置的小正方块儿的个数,请在相应网格中画出从正面和左面看到的几何体的形状图.
人教版九年级数学下《第二十九章投影与视图》单元练习题含答案
第二十九章投影与视图一、选择题1.下列四个几何体的俯视图中与众不同的是()A.B.C.D.2.下面几何体的主视图是()A.B.C.D.3.如图是一只茶壶,从不同方向看这只茶壶,你认为是俯视效果图的是()A.B.C.D.4.小亮在上午8时、9时、10时、12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为()A.上午12时B.上午10时C.上午9时D.上午8时5.有一圆柱形的水池,已知水池的底面直径为4米,水面离池口2米,水池内有一小青蛙,它每天晚上都会浮在水面上赏月,则它能观察到的最大视角为()A. 45°B. 60°C. 90°D. 135°6.如图,该几何体主视图是()A.B.C.D.7.如图,下列四幅图中一定有两种不同的光源同时照射下的图案是()A.B.C.D.8.在下面的四个几何体中,它们各自的主视图与左视图可能相同的是() A.B.C.D.9.下列四个立体图形中,主视图、左视图、俯视图都相同的是()A.B.C.D.10.如图是一个几何体的三视图,则这个几何体的表面积是()A. 18 cm2B. 20 cm2C. (18+2) cm2D. (18+4) cm2二、填空题11.如图是一个由若干个正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是________(多填或错填得0分,少填酌情给分).12.现有m,n两堵墙,两个同学分别站在A处和B处,请问小明在哪个区域内活动才不被这两个同学发现(用阴影部分的序号表示)________.13.一块直角三角形板ABC,∠ACB=90°,BC=12 cm,AC=8 cm,测得BC边的中心投影B1C1长为24 cm,则A1B1长为________ cm.14.主视图与俯视图的________一致;主视图与左视图的________一致;俯视图与左视图的________一致.15.直角坐标系内,身高为1.5米的小强面向y轴站在x轴上的点A(-10,0)处,他的前方5米处有一堵墙,已知墙高2米,则站立的小强观察y(y>0)轴时,盲区(视力达不到的地方)范围是________.16.如图是某几何体的三视图,则该几何体的体积是_________.17.长方体、球体、三棱柱、圆柱体,这四个几何体中有三个的某一种视图都是同一种几何图形,则这一个几何体是________.18.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是________.19.如图是某个几何体的三视图,该几何体是_________.20.在直角坐标平面内,一点光源位于A(0,5)处,线段CD垂直于x轴,D为垂足,C(3,1),则CD在x轴上的影子长________,点C的影子E的坐标为________.三、解答题21.如图,李平和张亮分别骑自行车从两条小胡同驶向马路,当他们分别行驶到图中的A,B位置时,哪个看到的范围更大一些?为什么?你还能举出生活中类似的例子吗?22.如图假设一座大楼高30米,观众坐在距大楼500米处,魔术师只需做一个屏障,屏障上的图画和没有大楼以后的景物一样,将屏障立在大楼前100米处,这样观众看上去好像大楼突然消失了.若要完全挡住大楼,请你找到一个方法计算出屏障至少要多高?(人身高忽略不计)23.(1)夜晚,小明在路灯下散步.已知小明身高1.5米,路灯的灯柱高4.5米.①如图1,若小明在相距10米的两路灯AB、CD之间行走(不含两端),他前后的两个影子长分别为FM=x米,FN=y米,试求y与x之间的函数关系式,并指出自变量x的取值范围?②有言道:形影不离.其原意为:人的影子与自己紧密相伴,无法分离.但在灯光下,人的速度与影子的速度却不是一样的!如图2,若小明在灯柱PQ前,朝着影子的方向(如图箭头),以0.8米/秒的速度匀速行走,试求他影子的顶端R在地面上移动的速度.(2)我们知道,函数图象能直观地刻画因变量与自变量之间的变化关系.相信,大家都听说过龟兔赛跑的故事吧.现有一新版龟兔赛跑的故事:由于兔子上次比赛过后不服气,于是单挑乌龟再来另一场比赛,不过这次路线由乌龟确定……比赛开始,在同一起点出发,按照规定路线,兔子飞驰而出,极速奔跑,直至跑到一条小河边,遥望着河对岸的终点,兔子呆坐在那里,一时不知怎么办.过了许久,乌龟一路跚跚而来,跳入河中,以比在陆地上更快的速度游到对岸,抵达终点,再次获胜.根据新版龟兔赛跑的故事情节,请在同一坐标系内(如图3),画出乌龟、兔子离开终点的距离s与出发时间t的函数图象示意图.(实线表示乌龟,虚线表示兔子)24.从这个图形的表面上你观察到哪些平面图形?25.王芹家住在A楼5层,杨雨家住在A楼正前方的B楼里,B楼没有A楼高.一天,站在自己家窗口的王芹,看见杨雨正从B楼的正前方往自己住的楼走去,一会儿就看不见杨雨了,请你在如图所示中找出从哪点开始,王芹看不见杨雨.26.已知一个模型的三视图如图,其边长如图所示(单位:cm).制作这个模型的木料密度为150 kg/m3,则这个模型的质量是多少kg?如果油漆这个模型,每千克油漆可以漆4 m2,需要油漆多少kg?(质量=密度×体27.一个几何体的三视图如图所示,分别求出这个几何体的体积和表面积.28.试确定图中路灯的位置,并画出此时小明在路灯下的影子.答案解析1.【答案】B【解析】A的俯视图是第一列两个小正方形,第二列一个小正方形,B的俯视图是第一列是两个小正方形,第二列是两个小正方形,C的俯视图是第一列两个小正方形,第二列一个小正方形,D的俯视图是第一列两个小正方形,第二列一个小正方形,故选B.2.【答案】D【解析】主视图有3列,从左往右小正方形的个数为2,1,1故选D.3.【答案】A【解析】由立体图形可得其俯视图为.故选A.4.【答案】D【解析】在上午,时间越早,太阳光线与地平面的夹角越小,则物体的影长越长,所以这四个时刻中,上午8时,向日葵的影子最长.故选D.5.【答案】C【解析】利用已知条件可以推出△OBC,△OAD均为等腰直角三角形,此时再利用已知条件就很容易求得所求的角的度数.∵AB=4,O为圆心,∴AO=BO=2,∵BC=2,BC⊥AB,∴△OBC为等腰直角三角形,∴∠COB=45°,同理∠AOD=45°,∴∠COD=90°.故选C.6.【答案】B【解析】三棱柱的主视图为矩形,∵正对着的有一条棱,∴矩形的中间应该有一条实线,故选B.7.【答案】C【解析】由于只有C选项有两个投影,其余三个选项都只有一个,所以C选项中的物体一定有两种光源同时照射,故选C.8.【答案】B【解析】A.此几何体主视图与左视图不相同,故此选项错误;B.立方体的主视图与左视图都是矩形,故此选项正确;B.三棱柱主视图是矩形,左视图也是矩形,矩形宽不相同,故此选项错误;D.四棱柱的主视图是矩形,左视图也是矩形,矩形宽不相同,故此选项错误;故选B.9.【答案】B【解析】∵球的主视图、左视图、俯视图都是圆,∴主视图、左视图、俯视图都相同的是B,故选B.10.【答案】C【解析】根据三视图可知,几何体是一个直三棱柱,由侧视图知,底面是边长为2 cm的等边三角形,边上的高是cm,且侧棱与底面垂直,侧棱长是3 cm,∴该几何体的表面积S=2××2×+3×2×3=18+2(cm2),故选C.11.【答案】①②③【解析】综合左视图跟主视图,从正面看,第一行第1列有3个正方体,第一行第2列有1个或第二行第2列有一个或都有一个.第二行第1列有2个正方体.故答案为①②③.12.【答案】①②③【解析】由图可知,①②③都在AB两个视点的盲区内,因此在这三处,不会被两个同学发现,因此选①②③.13.【答案】8【解析】∵∠ACB=90°,BC=12 cm,AC=8 cm,∴AB=4,∵△ABC∽△A1B1C1,∴A1B1∶AB=B1C1∶BC=2∶1,即A1B1=8cm.14.【答案】长高宽【解析】根据三视图的特征,主视图与俯视图长对正;主视图与左视图高平齐;俯视图与左视图的宽相等进行填空即可.故答案为长、高、宽.15.【答案】0<y≤2.5【解析】过D作DF⊥OC于F,交BE于H,OF=1.5,BH=0.5,三角形DBH中,tan∠BDH=BH∶DH=0.5∶5,因此三角形CDF中,CF=DF·tan∠BDH=1,因此,OC=OF+CF=1+1.5=2.5.因此盲区的范围在0<y≤2.5.16.【答案】108【解析】由三视图可知该几何体是底面边长为6,高为2的正六棱柱,由俯视图可知,梯形的高为=3,它的体积是×(6+12)×3×2×2=108.故答案为108.17.【答案】球体【解析】视图是同一种几何图形的几何体是正方体或者球体,所给选项中有球体,故答案为球体.18.【答案】5【解析】综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个,所以这个几何体的体积是5.故答案为5.19.【答案】三棱柱【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.20.【答案】(,0)【解析】如图:∵CD⊥x轴,∴CD∥OA,∴△ECD∽△EAO,∴DE∶OE=CD∶OA,∵A(0,5),C点坐标为(3,1),∴DE∶(DE+3)=1∶5,∴DE=,∴CD在x轴上的影长E的坐标为(,0).故答案是,(,0).21.【答案】解B位置看到的范围大一些.实际生活中:人离窗子越远,向外眺望时此人的盲区是就变大,相反就变小.【解析】根据视角和盲区的定义直接判断得出即可,进而举出实际生活中的实例.22.【答案】解连接OA,交CD于E,由题意知,AB⊥OB,CD⊥OB,∠EDO=∠ABO=90°.则tan∠EOD=tan∠AOB==,故=,解得ED=24(m).答:屏障至少是24 m.【解析】根据已知,得出tan∠EOD=tan∠AOB==,进而求出即可.23.【答案】解(1)∵EF∥AB,∴∠MEF=∠A,∠MFE=∠B.∴△MEF∽△MAB.①如图1,∴===.∴=,MB=3x,BF=3x-x=2x.同理,DF=2y.∵BD=10,∴2x+2y=10,∴y=-x+5,∵当EF接近AB时,影长FM接近0;当EF接近CD时,影长FM接近5,∴0<x<5;②如图2,设运动时间为t秒,则EE′=FF′=0.8t,∵EF∥PQ,∴∠REF=∠RPQ,∠RFE=∠RQP,∴△REF∽△RPQ,∴===,∴=,∵EE′∥RR′,∴∠PEE′=∠PRR′,∠PE′E=∠PR′R,∴△PEE′∽△PRR′,∴=,∴=,∴RR′=1.2t,∴V影子==1.2米/秒.(2)如图3,【解析】(1)易证△MEF∽△MAB,根据相似三角形的对应边的比相等.可以把BF用x表示出来,同理,DF也可以用y表示出来.根据BD=10,就可以得到x,y的一个关系式,从而求出函数的解析式.根据△REF∽△RPQ就可以求出PE与RP的比值,同理.根据△PEE′∽△PRR′,求得EE′与RR′的比值.则影子的速度就可以得到.(2)根据故事的叙述,就可以作出图象.24.【答案】解如图所示:【解析】从正面看可得到一个长方形;从左面看得到一个正方形;从上面看得到一个长方形.25.【答案】解从点P开始进入盲区,即开始看不见杨雨.【解析】根据题意画出盲区即可判断出答案.26.【答案】解模型的体积=300×200×100+50×80×80=6 320 000 cm3=6.32 m3,模型的质量=6.32×150=948 kg;模型的表面积=2(100×200+100×300+200×300)+2(50×80+80×80+50×80)-2×80×80=236 000cm2=23.6 m2,需要油漆:23.6÷4=5.9 kg.答:这个模型的质量是948 kg;需要油漆5.9 kg.【解析】先计算模型的体积,再根据质量=体积×密度,求质量,再根据需要先求模型的表面积,再求所需油漆的重量.27.【答案】解3×1×3+3×3×1=9+9=18,(3×3+1×3)×2+(3×3+3×1+3×1)×2=(9+3)×2+(9+3+3)×2=12×2+15×2=24+30=54.答:这个几何体的体积是18,表面积是54.【解析】观察三视图可知,这个几何体的体积=长3宽1高3的长方体的体积+长3宽3高1的长方体的体积;这个几何体的表面积=长3宽1高3的长方体的侧面积+长3宽3高1的长方体的表面积;依此列出算式计算即可求解.28.【答案】解如图所示:【解析】分别过物体的顶点及其影子的顶点作射线,两条射线的交点即为光源的位置,进而画出小明的影子即可.。
人教版数学九年级下册第二十九章 投影与视图 达标测试卷(含答案)
第二十九章投影与视图达标测试卷(本试卷满分120分)一、选择题(每小题3分,共30分)1.下列几何体的左视图为长方形的是()A B C D2.下列图形能表示两根立柱所形成的投影是平行投影的是()A B C D3.如图是一个正三棱柱的三视图,则这个三棱柱摆放方式正确的是()A B C D第3题图第5题图第6题图4.下列结论:①同一地点、同一时刻,不同物体在阳光照射下影子的方向是相同的;②不同物体在任何光线照射下影子的方向都是相同的;③同一物体在路灯照射下影子的方向与路灯的位置有关;④物体在光线照射下影子的长短仅与物体的长短有关.其中正确的有()A.1个B.2个C.3个D.4个5.如图,两个等直径圆柱构成如图所示的T形管道,则其俯视图是()A B C D6.如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是()A.主视图B.俯视图C.左视图D.主视图和俯视图7.与图中所示的三种视图相对应的几何体是()A B C D 第7题图8.在同一天的四个不同时刻,某学校旗杆的影子如图所示,下列选项中按时间先后顺序排列正确的是()A.②④③①B. ②③④①C. ③④①②D. ④③①②第8题图9.应县木塔是中国现存最高最古的一座木构塔式建筑,主要借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼.如图,甲构件带有榫头,乙构件带有卯眼,两个构件恰好可以完全咬合,根据图中标示的方向,乙构件的主视图是()A B C D第9题图第10题图10.如图是一个几何体的三视图,其中主视图与左视图完全一样,则这个几何体的表面积是()A.80﹣2πB.80+4πC.80 D.80+6π二、填空题(每小题3分,共18分)11.如果一个几何体的主视图、左视图都是等腰三角形,俯视图为圆,那么我门可以确定这个几何体是.12.如图是一个球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球的影子会_________.(填“逐渐变大”或“逐渐变小”)第12题图第13题图第14题图13.一圆柱按如图所示方式放置,若其左视图的面积为48,则该圆柱的侧面积为_______.14.如图,晚上小红由路灯A走向路灯B,当她走到点P时,发现她的影子顶部正好接触到路灯B的底部,此时她与路灯A的距离为20 m,与路灯B的距离为5 m.如果小红的身高为1.2 m,那么路灯A的高度是___________m.15.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.第15题图第16题图16.如图,甲楼AB高18米,乙楼CD坐落在甲楼的正北面,已知当地冬至中午12时,物高与影长的比是1:2,已知两楼相距20米,那么甲楼的影子落在乙楼上的高DE为米.(结果保留根号)三、解答题(本大题共8小题,共72分)17.(6分)画出如图所示几何体的三视图.第17题图第18题图18.(6分)如图是小明与爸爸(线段AB)、爷爷(线段CD)在同一路灯下的情景(粗线分别表示三人的影子).请根据要求,进行作图.(不写画法,但要保留作图痕迹).(1)在图中画出灯泡所在的位置;(2)在图中画出小明的身高.19.(8分)(1)由大小相同的小立方块搭成的几何体如图,请在如图的方格中画出该几何体的俯视图和左视图;第19题图(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在方格中所画的图一致,则这样的几何体最多要个小立方块.20. (8分)如图所示为一几何体的三视图.(1)这个几何体的名称为__________;(2)画出它的任意一种表面展开图;(3)若主视图是长方形,其长为10 cm,俯视图是等边三角形,其边长为4 cm,求这个几何体的侧面积.第20题图第21题图21.(8分)如图,在Rt△ABC中,∠ACB=90°,投影线方向如图所示,点C在斜边AB上的正投影为点D. (1)试写出边AC,BC在AB上的投影;(2)试探究线段AC,AB和AD之间的关系;(3)线段BC,AB和BD之间也有类似的关系吗?请直接写出结论.22.(10分)某几何体的主视图和俯视图如图所示(单位:mm),求该几何体的体积.第22题图第23题图23.(12分)在一个阳光明媚的上午,数学陈老师组织学生测量小山坡上一棵大树CD的高度,山坡OM与地面ON的夹角为30°(∠MON=30°),同一时刻站在水平地面上身高1.7米的小明AB在地面的影长BP为1.2米,此刻大树CD在斜坡上的影长DQ为5米,求大树的高度.24.(14分)如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他(EF)在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).第24题图(1)请在图中画出灯光光源O的位置及小明位于点F时在这一灯光下的影长FM(不写画法);(2)求小明原来的速度.投影与视图达标测试卷一、1.C 2.B 3.B 4.B 5.B 6.C 7.D 8.B 9.C 10.B二、11.圆锥 12.逐渐变大 13.48π 14.6 15.108 16.18-102三、17.解:如图所示:第17题图18.解:(1)如图所示,点O即为灯泡所在的位置.(2)如图所示,EF即为小明的身高.第18题图19. 解:(1)如图所示:第19题图(2)7 提示:由俯视图可知最底层有4个小立方块,第二层最多有3个小立方块,所以最多要4+3=7(个)小立方块.20. 解:(1)该几何体是三棱柱.(2)展开图如图所示(答案不唯一):第20题图(3)三棱柱的侧面展开图是长方形,长方形的长是等边三角形的周长即4×3=12(cm).由题意,知主视图的长是三棱柱的高,所以三棱柱侧面展开图的面积为12×10=120(cm2). 所以这个几何体的侧面积是120 cm2.21. 解:(1)边AC,BC在AB上的投影分别为AD,BD.(2)因为点C在斜边AB上的正投影为点D,所以CD⊥AB.所以∠ADC=90°.因为∠A=∠A,∠ADC=∠ACB,所以△ADC∽△ACB.所以AC ADAB AC=,即AC2=AD•AB.(3)BC2=BD•AB.提示:同(2)可证△BCD∽△BAC,所以BC BDBA BC=,即BC2=BD•AB.22.解:由主视图和俯视图可知,该几何体是上下两个圆柱的组合图形.所以该几何体的体积为16×π×2162⎛⎫⎪⎝⎭+4×π×282⎛⎫⎪⎝⎭=1088π(mm3).23. 解:过点Q作QE⊥DC于点E.由题意,得△ABP∽△CEQ,所以AB BPCE EQ=.所以AB CEBP EQ=,即1.71.2CEEQ=.因为EQ∥NO,所以∠1=∠2=30°.因为QD=5,所以DE=52,EQ=532.所以1.71.2532CE=,解得CE=85324.所以CD=CE+DE=52+85324=6085324+(米).答:大树的高度为6085324+米.第23题图24.解:(1)灯光光源O,影长FM如图所示:第24题图(2)设小明原来的速度为x 米/秒,则AD=DF=CE=2x,AM=AF-MF=2x+2x-1.2=4x-1.2,EG=FH=2×1.5x=3x,MB=AB-AM=12-(4x-1.2)=13.2-4x.因为点C,E,G在一条直线上,CG∥AB,所以∠OCE=∠A,∠OEC=∠OMA,∠OEG=∠OMB,∠OCE=∠B.所以△OCE∽△OAM,△OEG∽△OMB.所以CE OEAM OM=,EG OEMB OM=.所以CE EGAM MB=,即234 1.213.24x xx x=--,解得x=1.5.经检验,x=1.5为原分式方程的根. 答:小明原来的速度为1.5米/秒.。
九年级数学下册第二十九章《投影与视图》综合经典题(含答案解析)
学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图是某个几何体的三视图,则该几何体是()A.圆锥B.三棱柱C.圆柱D.三棱锥2.如图,是由一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方体最多块数是()A.9 B.10 C.11 D.123.如图是由一些相同的小正方体构成的立体图形的三视图.构成这个立体图形的小正方体的个数是()A.6 B.7 C.4 D.54.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A.B.C.D.5.下图是一些完全相同的小立方块搭成的几何体的三视图,那么搭成这个几何体所用的小立方块的最多个数是()A.9 B.8 C.7 D.66.如图是一个由相同小立方块搭成的几何体从上面看到的形状图,小正方形中的数字表示该位置上小立方块的个数,则该几何体从正面看是()A.B.C.D.7.下列几何体中,三视图有两个相同而另一个不同的是()A.(1)(2)B.(2)(3)C.(2)(4)D.(3)(4)8.如图所示立体图形,从上面看到的图形是()A.B.C.D.9.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图10.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A.B.C.D.11.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体()A.3个B.4个C.5个D.6个12.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体().A.6个B.5个C.4个D.3个13.下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:914.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A.B.C.D.二、填空题15.如图所示,是由一些相同的小立方体搭成的几何体分别从正面、左面、上面看到的该几何体的形状图,那么构成这个立体图形的小正方形有________个.16.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是________(结果保留 ).17.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积是__________.18.一个几何体由若干个大小相同的小正方体搭成,如图是从三个不同方向看到的形状图,则搭成这个几何体所用的小正方体的个数是个__________.19.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为_____.20.为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高______米.(结果精确到1米.3≈1.732,2≈1.414)21.一个几何体由一些完全相同的小立方块搭成,从正面和从上面看到的这个几何体的形状如下,那么搭成这样一个几何体,最少需要_____个这样的小立方块,最多需要_____个这样的小立方块.22.由几个相同小正方体搭成的几何体的主视图与左视图如图所示,则该几何体最少由________个小正方体搭成.23.如图是某几何体的三视图,则该几何体左视图的面积为_________.24.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图. 已知桌面直径为1.2米,桌面离地面1米. 若灯泡离地面3米,则地面上阴影部分的面积为__________(结果保留π)25.如图,体育兴趣小组选一名身高1.6m的同学直立于旗杆影子的顶端处,其他人分为两部分,一部分同学测得该同学的影长为1.2m,另一部分同学测得同一时刻旗杆影长为9m,那么旗杆的高度是__m.26.张师傅按1:1的比例画出某直三棱柱零件的三视图,如图所示,已知EFG中,==,4512,18EF cm EG cm∠=︒,则AB的长为_____cm.EFG参考答案三、解答题27.由大小相同的5个小立方块搭成的几何体如图所示,请在方格中画出该几何体从上面和左面看到的形状图(用黑色笔将虚线画为实线).28.如图,是由8个大小相同的小正方体组合成的简单几何体.(1)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图:(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和主视图不变,那么请画出添加小正方体后所得几何体所有可能的左视图.29.下图所示的几何体(*)由若干个大小相同的小正方体构成.(1)下面五个平面图形中有三个是从三个方向看到的图形,把看到的图形与观测位置连接起来;(2)已知小正方体的边长为a,求这个几何体(*)的体积和表面积.30.画图,探究:(1)一个正方体组合图形的主视图、左视图(如图1)所示.①这个几何体可能是(图2)甲、乙中的;②这个几何体最多可由个小正方体构成,请在图3中画出符合最多情况的一个俯视图.(2)如图,已知一平面内的四个点A、B、C、D,根据要求用直尺画图.①画线段AB,射线AD;②找一点M,使M点即在射线AD上,又在直线BC上;③找一点N,使N到A、B、C、D四个点的距离和最短.【参考答案】一、选择题1.B2.C3.A4.C5.A6.A7.B8.C9.C10.C11.B12.C13.B14.D二、填空题15.5【分析】易得这个几何体共有2层由俯视图可得第一层正方体的个数由主视图和左视图可得第二层正方体的个数相加即可【详解】解:由从上面看到的图形易得最底层有4个正方体第二层有1个正方体那么共有4+1=5(16.24πcm²【分析】根据三视图确定该几何体是圆柱体再计算圆柱体的侧面积【详解】解:先由三视图确定该几何体是圆柱体底面半径是4÷2=2cm高是6cm圆柱的侧面展开图是一个长方形长方形的长是圆柱的底面周17.【分析】先由勾股定理求出母线再根据圆锥侧面积公式S=r计算即可【详解】圆锥半径:r=8÷2=4S=r=20故答案为:20【点睛】本题考查圆锥侧面积的求法理解并掌握圆锥侧面积公式是解题关键18.5【分析】根据俯视图打地基主视图疯狂盖左视图拆违章的原则解答可得【详解】几何体分布情况如下图所示:则小正方体的个数为2+1+1+1=5故答案为:5【点睛】本题考查学生对三视图的掌握程度和灵活运用能力19.3cm2【分析】由三视图想象几何体的形状首先应分别根据主视图俯视图和左视图想象几何体的前面上面和左侧面的形状然后综合起来考虑整体形状【详解】解:该几何体是一个三棱柱底面等边三角形边长为2cm底面三角20.24【解析】【分析】过点C作CE⊥BD与点E可得四边形CABE是矩形知CE=AB=40AC=BE=1在Rt△CDE中DE=tan30°•CE求出DE的长由DB=DE+EB可得答案【详解】如图过点C作21.68【解析】【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由主视图可得第二层立方体的可能的个数相加即可【详解】综合主视图和俯视图这个几何体的底层有4个小正方体第二层最少有2个最多有4个22.【解析】【分析】仔细观察该几何体的主视图和左视图发挥空间想象能力便可得出几何体的形状【详解】仔细观察物体的主视图和左视图可知:该几何体的下面最少要有三个小正方体上面最少要有一个小正方体故该几何体最少23.【解析】【分析】由视图知此几何体的侧视图为一个长方形故由题设条件求出侧视图的面积即可【详解】由几何体的主视图与俯视图可得几何体为三棱柱所以该几何体的左视图的面积为2×6=12故答案为:【点睛】本题考24.081π【解析】如图由题意可知DE是☉O1的直径BC是☉O2的直径AO2⊥DE于O1AO2⊥BC于O2DE=12AO2=3O1O2=1∴DE∥BCAO1=2∴△ADE∽△ABC∴即∴BC=18∴O225.12【分析】在同一时刻物体的实际高度和影长成比例据此列方程即可解答【详解】解:由题意得∴16:12=旗杆的高度:9∴旗杆的高度为12m故答案为:1226.【分析】作EH⊥FG于点H解直角三角形求出EH即可得出AB的长度【详解】解:如图所示作EH⊥FG于点H∵∠EHF=90°∠EFG=45°∴∠EFG=∠FEH=45°∴EH=HF=∵∴EH=根据三视图三、解答题27.28.29.30.【参考解析】一、选择题1.B解析:B根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱,故选B.2.C解析:C【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据主视图与俯视图得出答案.【详解】解:根据几何体的主视图和俯视图,可以得出那个主视图看最少5个,那个俯视图看,最左边正方形前后可以有三列,分别有三个⨯+个.故最多有332=11故选C.【点睛】本题考查了三视图的应用,根据从俯视图看,最左边正方形前后可以有三列,分别有三个从而得出答案是解决问题的关键.3.A解析:A【分析】利用三视图的观察角度不同得出行数与列数,结合主视图得出答案.【详解】解:如图所示:由左视图可得此图形有3行,由俯视图可得此图形有3列,由主视图可得此图形最左边一列有4个小正方体,中间一列有1个小正方体,最右边一列有1个小正方体,故构成这个立体图形的小正方体有6个.故选:A.【点睛】此题主要考查了由三视图判断几何体,利用三视图得出几何体的形状是解题关键.4.C解析:C【分析】根据左视图是从左面看所得到的图形进行解答即可.【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.A【分析】根据俯视图可看出最底层小正方体的个数及形状,再从左视图看出每一层小正方体可能的数量,并再俯视图中标出个数,即可得出答案.【详解】根据左视图在俯视图中标注小正方形最多时的个数如图所示:1+1+2+2+2+1=9,故选A.【点睛】本题考查根据三视图判断小正方形的个数,根据左视图在俯视图中标注小正方形的个数是关键,需要一定的空间想象力.6.A解析:A【分析】由已知条件可知,主视图有3列,每列小正方形数目分别为1,2,1;左视图有2列,每列小正方形数目分别为2,2,据此可画出图形.【详解】根据图形可知:主视图有3列,每列小正方形数目分别为1,2,1.故选A.【点睛】本题考查了几何体的三视图画法.由几何体的俯视图及小正方形中的数字,可知主视图有3列,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图有2列,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.7.B解析:B【解析】【分析】根据三视图的定义即可解答.【详解】正方体的三视图都是正方形,故(1)不符合题意;圆柱的主视图、左视图都是矩形,俯视图是圆,故(2)符合题意;圆锥的主视图、左视图都是三角形,俯视图是圆形,故(3)符合题意;三棱锥主视图是、左视图是,俯视图是三角形,故(4)不符合题意;故选B.【点睛】本题考查了简单几何体的三视图,熟知三视图的定义是解决问题的关键.8.C解析:C【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【详解】从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点睛】本题考查了简单组合体的三视图,解决本题的关键是得到3列正方形具体数目.9.C解析:C【解析】【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键. 10.C解析:C【解析】分析:俯视图就是要从问题的正上方往下看,相当于把物体投影到平面.详解:圆柱体和球体投影到平面以后都是圆形,故排除A,因为圆形的轮廓线都是可以看到的,所以选C.点睛:三视图中,可以看到的轮廓线,要化成实线,看不到的轮廓线,要化成虚线. 11.B解析:B【解析】试题根据俯视图而得出,第一行第一列有2个正方形,第二列有1个正方体,第二行第二列有1个正方体,共需正方体2+1+1=4.故选B.12.C解析:C【分析】这些正方体分前、后两排,左、右两行.后排左边是一列2个正方体,右边一个正方体;前排1个正方体,与后排右列对齐.【详解】如图搭成此展台共需这样的正方体(如下图)共需4个这样的正方体.故选C.【点睛】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.13.B解析:B【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B.【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.14.D解析:D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】从正面看易得第一层左侧有1个正方形,第二层有3个正方形.故选D.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.二、填空题15.5【分析】易得这个几何体共有2层由俯视图可得第一层正方体的个数由主视图和左视图可得第二层正方体的个数相加即可【详解】解:由从上面看到的图形易得最底层有4个正方体第二层有1个正方体那么共有4+1=5(解析:5【分析】易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.【详解】解:由从上面看到的图形易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5(个)正方体组成.故答案为5.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.16.24πcm²【分析】根据三视图确定该几何体是圆柱体再计算圆柱体的侧面积【详解】解:先由三视图确定该几何体是圆柱体底面半径是4÷2=2cm高是6cm 圆柱的侧面展开图是一个长方形长方形的长是圆柱的底面周解析:24π cm²【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】解:先由三视图确定该几何体是圆柱体,底面半径是4÷2=2cm,高是6cm,圆柱的侧面展开图是一个长方形,长方形的长是圆柱的底面周长,长方形的宽是圆柱的高,且底面周长为:2π×2=4π(cm),∴这个圆柱的侧面积是4π×6=24π(cm²).故答案为:24π cm².【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.17.【分析】先由勾股定理求出母线再根据圆锥侧面积公式S=r计算即可【详解】圆锥半径:r=8÷2=4S=r=20故答案为:20【点睛】本题考查圆锥侧面积的求法理解并掌握圆锥侧面积公式是解题关键解析:20π【分析】先由勾股定理求出母线l,再根据圆锥侧面积公式S=πr l计算即可.【详解】圆锥半径:r=8÷2=422345l=+=S=πr l=20π故答案为:20π【点睛】本题考查圆锥侧面积的求法,理解并掌握圆锥侧面积公式是解题关键.18.5【分析】根据俯视图打地基主视图疯狂盖左视图拆违章的原则解答可得【详解】几何体分布情况如下图所示:则小正方体的个数为2+1+1+1=5故答案为:5【点睛】本题考查学生对三视图的掌握程度和灵活运用能力解析:5【分析】根据“俯视图打地基,主视图疯狂盖,左视图拆违章”的原则解答可得.【详解】几何体分布情况如下图所示:则小正方体的个数为2+1+1+1=5,故答案为:5.【点睛】本题考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.19.3cm2【分析】由三视图想象几何体的形状首先应分别根据主视图俯视图和左视图想象几何体的前面上面和左侧面的形状然后综合起来考虑整体形状【详解】解:该几何体是一个三棱柱底面等边三角形边长为2cm底面三角解析:33cm2.【分析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.【详解】解:该几何体是一个三棱柱,底面等边三角形边长为2cm,底面三角形的高为3cm,三棱柱的高为3cm,∴其左视图为长方形,长为3cm,宽为3cm,∴面积为:3×3=33(cm2),故答案为:33cm2.【点睛】本题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.20.24【解析】【分析】过点C作CE⊥BD与点E可得四边形CABE是矩形知CE=AB=40AC=BE=1在Rt△CDE中DE=tan30°•CE求出DE的长由DB=DE+EB可得答案【详解】如图过点C作解析:24【解析】【分析】过点C作CE⊥BD与点E,可得四边形CABE是矩形,知CE=AB=40,AC=BE=1.在Rt△CDE 中DE=tan30°•CE求出DE的长,由DB=DE+EB可得答案.【详解】如图,过点C作CE⊥BD与点E.在Rt△CDE中,∠DCE=30°,CE=AB=40,则DE=tan30°•CE33=⨯40≈23,而EB=AC=1,∴BD=DE+EB=23+1=24(米).【点睛】本题考查了解直角三角形的应用.注意能根据题意构造直角三角形,并能借助于解直角三角形的知识求解是解答此题的关键.21.68【解析】【分析】易得这个几何体共有2层由俯视图可得第一层立方体的个数由主视图可得第二层立方体的可能的个数相加即可【详解】综合主视图和俯视图这个几何体的底层有4个小正方体第二层最少有2个最多有4个解析:6 8【解析】【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【详解】综合主视图和俯视图,这个几何体的底层有4个小正方体,第二层最少有2个,最多有4个,因此搭成这样的一个几何体至少需要小正方体木块的个数为:4+2=6个,至多需要小正方体木块的个数为:4+4=8个,故答案为6,8.【点睛】此题主要考查了几何体的三视图,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.22.【解析】【分析】仔细观察该几何体的主视图和左视图发挥空间想象能力便可得出几何体的形状【详解】仔细观察物体的主视图和左视图可知:该几何体的下面最少要有三个小正方体上面最少要有一个小正方体故该几何体最少解析:4【解析】【分析】仔细观察该几何体的主视图和左视图,发挥空间想象能力,便可得出几何体的形状.【详解】仔细观察物体的主视图和左视图可知:该几何体的下面最少要有三个小正方体,上面最少要有一个小正方体,故该几何体最少有4个小正方体组成,故答案为:4.【点睛】本题考查了由三视图判断几何体,主视图是从物体的前面看得到的视图,左视图是从物体的左面看得到的视图,熟练掌握是关键.23.【解析】【分析】由视图知此几何体的侧视图为一个长方形故由题设条件求出侧视图的面积即可【详解】由几何体的主视图与俯视图可得几何体为三棱柱所以该几何体的左视图的面积为2×6=12故答案为:【点睛】本题考解析:2123cm 【解析】 【分析】 由视图知,此几何体的侧视图为一个长方形,故由题设条件求出侧视图的面积即可.【详解】由几何体的主视图与俯视图可得,几何体为三棱柱,所以该几何体的左视图的面积为23×6=123,故答案为:2123cm .【点睛】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三视图中的侧视图面积,解决本题的关键是由题设条件得出侧视图的形状及侧视图的几何特征.求解本题的关键是准确熟练理解三视图的投影规则,其规则是:主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等.24.081π【解析】如图由题意可知DE 是☉O1的直径BC 是☉O2的直径AO2⊥DE 于O1AO2⊥BC 于O2DE=12AO2=3O1O2=1∴DE ∥BCAO1=2∴△ADE ∽△ABC ∴即∴BC=18∴O2 解析:0.81π【解析】如图,由题意可知,DE 是☉O 1的直径,BC 是☉O 2的直径,AO 2⊥DE 于O 1,AO 2⊥BC 于O 2,DE=1.2,AO 2=3,O 1O 2=1,∴DE ∥BC ,AO 1=2,∴△ADE ∽△ABC,∴12AO DE BC AO =,即1.223BC =, ∴BC=1.8,∴O 2C=0.9,∴S ☉O2=2(0.9)0.81ππ⋅=.点睛:本题解题的关键是作出如图所示的辅助线,这样即可构造出:△ADE ∽△ABC ,再利用相似三角形对应高之比等于相似比即可求得BC 的长,从而即可得到☉O 2的半径,使问题得到解决.25.12【分析】在同一时刻物体的实际高度和影长成比例据此列方程即可解答【详解】解:由题意得∴16:12=旗杆的高度:9∴旗杆的高度为12m 故答案为:12解析:12【分析】在同一时刻,物体的实际高度和影长成比例,据此列方程即可解答.【详解】解:由题意得∴1.6:1.2=旗杆的高度:9.∴旗杆的高度为12m .故答案为:12.26.【分析】作EH ⊥FG 于点H 解直角三角形求出EH 即可得出AB 的长度【详解】解:如图所示作EH ⊥FG 于点H ∵∠EHF=90°∠EFG=45°∴∠EFG=∠FEH=45°∴EH=HF=∵∴EH=根据三视图 解析:62 【分析】 作EH ⊥FG 于点H ,解直角三角形求出EH 即可得出AB 的长度.【详解】解:如图所示,作EH ⊥FG 于点H ,∵∠EHF=90°,∠EFG=45°,∴∠EFG=∠FEH=45°,∴EH=HF=22EF , ∵12EF cm ,∴EH=62,根据三视图的意义可知,AB=EH=62故答案为:62【点睛】本题考查了三视图,解直角三角形的应用,解题的关键是理解题意,灵活运用所学知识解决问题.三、解答题27.【分析】从上面看可以得到3列正方形的个数一次为1,2,1,依此画出图形即可;从左面看得到从左往右2列正方形的个数依次为2,1,依此画出图形即可.【详解】解:如图所示【点睛】本题主要考查作三视图,需要注意我们从物体的正面、左面和上面看所得到的图形的不同,每个观察面所对应的最大数需要注意.28.(1)详见解析;(2)详见解析.【分析】(1)左视图有两列,小正方形的个数分别是3,1;俯视图有两排,上面-排有4个小正方形,下面一排有2个小正方形;(2) 根据题意可得此正方体应该添加在前排第2个小正方体上,进而可得左视图.【详解】(1)如图所示;(2)添加后可得如图所示的几何体:左视图分别是:【点睛】此题主要考查了画三视图,关键是掌握在画图时一定要将物体的边缘、棱、 顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.29.(1)详见解析;(2)体积是:34a ,表面积是:218a .【分析】(1)根据从物体不同方向看图的定义求解;(2)几何体的体积=原正方体体积-挖去的棱长为1的小正方体的体积;表面积与原来相同.【详解】解:(1)如图所示:(2)这个几何体的体积是:344a a a a ⨯⨯⨯=,表面积是:21818a a a ⨯⨯=.【点睛】此题主要考查了平面图形,以及求几何体的体积和表面积,掌握主视图、左视图、俯视图是从那个角度所得到的图形是解题的关键.30.(1)①乙;②9;图见解析;(2)①见解析;② 见解析;③见解析;【分析】(1)①结合主视图和左视图对甲、乙逐一判断可得;②当第一层有6个,第二层有2。
人教版九年级数学下册第二十九章-投影与视图综合测评试题(含解析)
人教版九年级数学下册第二十九章-投影与视图综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示的领奖台是由三个长方体组合而成的几何体,则这个几何体的左视图是()A.B.C.D.2、如图是由6个大小相同的小正方体组成的几何体,它的左视图是()A.B.C.D.3、如图是由几个大小相同的小正方体搭成的几何体,若去掉1号小正方体,则下列说法正确的是()A.左视图和俯视图不变B.主视图和左视图不变C.主视图和俯视图不变D.都不变4、下列立体图形的主视图是()A.B.C.D.5、一个几何体从不同方向看到的图形如图所示,这个几何体是( )A.球B.圆柱C.圆锥D.立方体6、如图,图形从三个方向看形状一样的是()A.B.C.D.7、下列几何体中,俯视图为三角形的是()A.B.C.D.8、如图,几何体的左视图是()A.B.C.D.9、如图为某几何体的三视图,则该几何体是()A.圆锥B.圆柱C.三棱柱D.四棱柱10、四个相同的小正方体组成的立体图形如图所示,它的主视图为()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个圆柱形橡皮泥,底面积是212cm.高是5cm.如果用这个橡皮泥的一半,把它捏成高为5cm的圆锥,则这个圆锥的底面积是______2cm2、如图所示是从不同的方向观察一个圆柱体得到的形状图,由图中数据计算此圆柱体的侧面积为________(结果保留 ).从正面看从左面看从上面看3、阳光下,同学们整齐地站在操场上做课间操,小勇和小宁站在同一列,小勇的影子正好落到后面一个同学身上,而小宁的影子却没有落到后面一个同学身上,据此判断他们的队列方向是______(填“背向太阳”或“面向太阳”),小宁比小勇_______(填“高”、“矮”、或“一样高”).4、一个立体图形,从正面看到的形状是,从左面看到的形状图是.搭这样的立体图形,最少需要________个小正方体,最多可以有________个正方体.5、如图,是一个由若干个小正方体搭成的几何体的主视图与视图,设搭这样的几何体最多需要m块小立方块,最少需要n块小立方块,则m+n=_____.三、解答题(5小题,每小题10分,共计50分)1、画出几何体的三种视图.2、如图,是由若干个完全相同的棱长为1的小正方体组成的一个几何体.(1)请画出这个几何体的三视图;(2)该几何体的表面积(含下底面)为;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和左视图不变,那么最多可以再添加个小正方体.3、下列几何体是用相同的正方体搭成的,画出从三个不同方向看到的图形4、(1)如图1所示,快下降到地面的某伞兵在灯光下的影子为AB.试确定灯源P的位置,并画出竖立在地面上木桩的影子EF.(保留作图痕迹,不要求写作法)(2)画出图2实物的三视图.5、如图是由大小相同的小正方体组合成的简单几何体.(1)在下面的网格中画出该几何体从正面看和从左面看的形状图.(2)每个正方体棱长为1cm,那么搭成这个几何体的表面积是cm2.---------参考答案-----------一、单选题1、C【分析】左视图是从左边看得到的视图,结合选项即可得出答案.【详解】解:A是俯视图,B、D不是该几何体的三视图,C是左视图.故选:C.【点睛】本题考查了简单组合体的三视图,属于基础题,从正面看到的图是主视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.2、D【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【详解】解:从物体左面看,是左边2个正方形,右边1个正方形.故选:D..【点睛】本题考查了三视图的知识,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.3、A【分析】根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图,再从看到的小正方形的个数与排列方式两个方面逐一分析可得答案.【详解】解:若去掉1号小正方体,主视图一定变化,主视图中最右边的一列由两个小正方形变为一个,从上面看过去,看到的小正方形的个数与排列方式不变,所以俯视图不变,从左边看过去,看到的小正方形的个数与排列方式不变;所以左视图不变,所以A符合题意,B,C,D不符合题意;故选:A.【点睛】本题考查的是由小正方体堆砌而成的图形的三视图,掌握“三视图的含义”是解本题的关键.4、A【分析】主视图是从正面所看到的图形,根据定义和立体图形即可得出选项.【详解】解:主视图是从正面所看到的图形,是:故选:A【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5、B【分析】根据各个几何体的三视图,依次判别即可;【详解】解:A、球的三视图均为圆形;B、圆柱的三视图与题图相符;C、圆锥的主视图和左视图为等腰三角形;D、立方体的三视图均为四边形.故选:B.【点睛】本题考查了由三视图判断几何体,熟悉相关性质是解题的关键.6、C【分析】根据从上面看得到的图形是俯视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【详解】解:A.从上面看是一个圆,从正面和从左边看是一个矩形,故本选项不合题意;B.从上面看是一个有圆心的圆,从正面和从左边看是一个等腰三角形,故本选项不合题意;C.从三个方向看形状一样,都是圆形,故本选项符合题意;D.从上面看是一个正方形,从正面和从左边看是一个长方形形,故本选项不合题意.故选:C.【点睛】本题考查了简单几何体的三视图,从上面看到的图形是俯视图,从正面看到的图形是主视图,从左面看到的图形是左视图.7、(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b=错误,应该是a=6,b =11,a+b=17.故选:B.【点睛】此题主要考查了正方体的展开图的性质,截正方体以及简单组合体的三视图等知识,根据展开图的性质得出一个平面图形必须5条棱连接是解题关键.19.D【分析】从正面、上面和左面三个不同的方向看一个物体,并描绘出所看到的三个图形,即几何体的三视图.【详解】从上方朝下看只有D选项为三角形.故选:D.【点睛】本题考查了简单几何体的三视图,三视图是从正面、左面、上面以平行视线观察物体所得的图形.从视图反过来考虑几何体时,它有多种可能性.例如,正方体的主视图是一个正方形,但主视图是正方形的几何体有很多,如三棱柱、长方体、圆柱等.因此在学习时应结合实物,亲自变换角度去观察,才能提高空间想象能力.8、C【分析】找到从左面看所得到的图形,比较即可.【详解】解:观察可知,从物体的左边看是一个竖长横短的长方形,由于右边有一条横向棱被遮挡看不见,画为虚线,如图所示的几何体的左视图是:.故选C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.9、C【分析】根据三视图判断该几何体即可.【详解】解:根据该几何体的主视图与左视图均是矩形,主视图中还有一条棱,俯视图是三角形可以判断该几何体为三棱柱.故选:C.【点睛】本题考查三视图,解题的关键是理解三视图的定义,属于中考常考题型.10、A【分析】根据几何体的三视图解答即可.【详解】根据立体图形得到:主视图为:,左视图为:,俯视图为:,故选:A【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.二、填空题1、18【解析】【分析】首先求出圆柱体积,根据题意得出圆柱体积的一半即为圆锥的体积,根据圆锥体积计算公式列出方程,即可求出圆锥的底面积.【详解】V圆柱=Sh =212560cm , 这个橡皮泥的一半体积为:2160302V cm ,把它捏成高为5cm的圆锥,则圆锥的高为5cm,故1303Sh,即15=303S,解得=18S(cm2),故填:18.【点睛】本题考查了圆柱的体积和圆锥的体积计算公式,解题关键是理解题意,熟练掌握圆柱体积和圆锥体积计算公式.2、6π【解析】【分析】根据主视图确定出圆柱体的底面直径与高,然后根据圆柱体的侧面积公式列式计算即可得解.【详解】解:由图可知,圆柱体的底面直径为2,高为3,所以,侧面积236ππ=⋅⨯=.故答案为:6π.【点睛】本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,解题的关键是根据主视图判断出圆柱体的底面直径与高.3、面向太阳矮【解析】【分析】根据小勇的影子正好落到后面一个同学身上可得他们的队列方向是面向太阳,根据同时同地,身高与影长成正比可得答案.【详解】∵小勇的影子正好落到后面一个同学身上,∴他们的队列方向是面向太阳,∵小宁的影子却没有落到后面一个同学身上,∴小勇的影子比小宁的影子长,∴小宁比小勇矮.故答案为:面向太阳,矮【点睛】本题考查平行投影,熟练掌握同时同地,身高与影长成正比是解题关键.4、 6 10【解析】【分析】根据题中所给的正面的形状和左面的形状即可得.【详解】解:根据题中所给的正面的形状和左面的形状可知,最少需要6个,将小正方体横着摆5个,再在任意一个小正方体的后面放一个小正方体;最多需要10个,将小正方体横着摆5个,再在每一个小正方体的后面放一个小正方体;故答案为:6,10.【点睛】本题考查了三视图,解题的关键是根据三视图得出立体图形.5、15【解析】【分析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数为4,由主视图可得第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,相加即可.【详解】解:有两种可能;有主视图可得:这个几何体共有3层,由俯视图可得:第一层正方体的个数为4,由主视图可得第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,故:最多m为3+4+1=8个小立方块,最少n为个2+4+1=7小立方块.m+n=15,故答案为:15【点睛】此题主要考查了由三视图判断几何体,关键是掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就很容易得到答案.三、解答题1、见详解【分析】从正面看从左往右3列正方形的个数依次为1,3,2;从左面看从左往右3列正方形的个数依次为3,1;从上面看从左往右3列正方形的个数依次为1,2,1.依此画出图形.【详解】解:如图所示:【点睛】本题考查了三视图的画法;得到从各个方向看得到的每列正方形的个数是解决本题的关键.2、(1)见解析;(2)28;(3)2【分析】(1)从正面看得到从左往右3列正方形的个数依次为1,3,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;(2)有顺序的计算上下面,左右面,前后面的表面积之和即可;(3)根据保持这个几何体的主视图和左视图不变,可知添加小正方体是1列和3列各加1个,依此即可求解.【详解】(1)如图所示:(2)(4×2+6×2+4×2)×(1×1)=(8+12+8)×1=28故答案为:28(3)由分析可知,最多可以再添加2个小正方体,如图,故答案为:2【点睛】此题考查了作图−三视图,用到的知识点为:计算几何体的表面积应有顺序的分为相对的面进行计算不易出差错;三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.3、见解析【分析】从正面看:共有3列,从左往右分别有3,2,1个小正方形;从左面看:共有2列,从左往右分别有3,1个小正方形;从上面看:共分3列,从左往右分别有2,1,1个小正方形.据此可画出图形.【详解】解:如图所示:【点睛】本题考查画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.4、(1)见解析;(2)见解析【分析】BD AC,两射线交于点P即可求得P的位置,过P和木桩的顶(1)如图,分别以,A B为端点作射线,端,以P为端点做射线,与底面交于点F,木桩底部为E点,连接EF,则EF即为竖立在地面上木桩的影子;(2)根据三视图的作法要求画三视图即可,主视图为等边三角形,左视图为矩形,俯视图为矩形,中间有一条实线【详解】(1)如图所示,P为灯源,EF为竖立在地面上木桩的影子,(2)如图所示,【点睛】本题考查了中心投影,三视图,掌握中心投影与三视图的作图方法是解题的关键.5、(1)图见解析;(2)38.【分析】(1)由已知条件可知,从正面看的视图有3列,每列小正方数形数目分别为3,1,2,据此可画出图形;从左面看的视图有3列,每列小正方形数目分别为3,2,1;(2)根据三视图的面积和被挡住的面积即可计算总面积;【详解】解:(1)如图所示:(2)搭成这个几何体的表面积是:6×2+6×2+6×2+2=38 cm2.【点睛】本题考查从不同方向看几何体,几何体的表面积等知识.解题的关键是熟练掌握基本知识,属于中考常考题型.。
人教版九年级数学下-第二十九章-《投影与视图》单元练习题(含答案)
第二十九章《投影与视图》单元练习题一、选择题1.如图,是一组几何体,它的俯视图是()A.B.C.D.2.如图是某几何体的三视图,则与该三视图相对应的几何体是()A.B.C.D.3.如图所示的四棱台,它的俯视图是下面所示的图形的()A.B.C.D.4.由下列光源产生的投影,是平行投影的是()A.太阳B.路灯C.手电筒D.台灯5.某几何体的主视图和左视图完全一样均如图所示,则该几何体的俯视图不可能是()A.B.C.D.6.如图是一个圆柱体和一个长方体组成的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图为()A.B.C.D.7.如图所示,平地上一棵树高为6米,两次观察地面上的影子,第一次是当阳光与地面成60°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长()A. 6-3B. 4C. 6D. 3-28.下列图形中,表示两棵小树在同一时刻阳光下的影子的图形可能是()A.B.C.D.分卷II二、填空题9.若某几何体的三视图如图所示,则该几何体是_________.10.如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=24 m,小明和小华的身高都是1.6 m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2 m和1 m,那么塔高AB为________ m.11.一位工人师傅要制造某一工件,想知道工件的高,他须看到在视图的________或________.12.在下列关于盲区的说法中,正确的有________.(填序号①②等)①我们把视线看不到的地方称为盲区;②我们上山与下山时视野盲区是相同的;③我们坐车向前行驶,有时会发现高大的建筑物会被比它矮的建筑物挡住;④人们说“站得高,看得远”,说明在高处视野盲区要小些,视野范围要大些.13.如图,是小明在一天中四个时刻看到的一棵树的影子的俯视图,请你将它们按时间的先后顺序进行排列________.14.从上面看圆柱和从上面看圆锥,其形状是一样的,都是圆,但是它们的俯视图是有区别的,其区别是________________.15.主视图与俯视图的________一致;主视图与左视图的________一致;俯视图与左视图的________一致.16.一块直角三角形板ABC,∠ACB=90°,BC=12 cm,AC=8 cm,测得BC边的中心投影B1C1长为24 cm,则A1B1长为________ cm.三、解答题17.看教室黑板上的同一幅画,是离黑板近,视角大;还是离黑板远,视角大呢?是离黑板近看得清还是远看得清呢?由此你可以得出一个什么样的结论?18.当你去看电影的时候,你想坐得离屏幕近一些,可是又不想为了看屏幕边缘的镜头不停地转动眼睛.如图所示,点A、B分别为屏幕边缘两点,若你在P点,则视角为∠APB.如果你觉得电影院内P点是观看的最佳位置,可是已经有人坐在那了,那么你会找到一个位置Q,使得在Q、P两点有相同的视角吗?请在图中画出来(保留画图痕迹,不写画法).19.如图所示,太阳光与地面成60°角,一颗倾斜的大树在地面上所成的角为30 °,这时测得大树在地面上的影长约为10 m,试求此大树的长约是多少?(得数保留整数)20.如图,两棵树的高度分别为AB=6 m,CD=8 m,两树的根部间的距离AC=4 m,小强沿着正对这两棵树的方向从左向右前进,如果小强的眼睛与地面的距离为1.6 m,当小强与树AB的距离小于多少时,就不能看到树CD的树顶D?21.如图所示,一段街道的两边沿所在直线分别为AB,PQ,并且AB∥PQ,建筑物的一端DE所在的直线MN⊥AB于点M,交PQ于点N,小亮从胜利街的A处,沿着AB方向前进,小明一直站在点P的位置等待小亮.(1)请你画出小亮恰好能看见小明的视线,以及此时小亮所在的位置(用点C标出).(2)已知:MN=30 m,MD=12 m,PN=36 m.求(1)中的点C到胜利街口的距离.第二十九章《投影与视图》单元练习题答案解析1.【答案】B【解析】如图摆放的位置,从上面看三棱柱可得到左右相邻的两个长方形;六棱柱为一个六边形,故选B.2.【答案】C【解析】由主视图和左视图发现应该有一个正四棱锥和正方体的组合体,根据俯视图发现正方体位于正四棱柱的右前方,故选C.3.【答案】B【解析】四棱台的俯视图是两个大小相套的正方形,全部为实线.故选B.4.【答案】A【解析】用平行光线照射物体所产生的投影为平行投影,而用路灯、手电筒、台灯等照射物体所产生的投影为中心投影.故选A.5.【答案】C【解析】几何体的主视图和左视图完全一样均如图所示则上面的几何体从正面看和左面看的长度相等,只有等边三角形不可能,故选C.6.【答案】C【解析】从上边看矩形内部是个圆,故选C.7.【答案】B【解析】利用所给角的正切值分别求出两次影子的长,然后作差即可.第一次观察到的影子长为6×tan 30°=2(米);第二次观察到的影子长为6×tan 60°=6(米).两次观察到的影子长的差=6-2=4(米).故选B.8.【答案】A【解析】平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.A.影子平行,且较高的树的影子长度大于较低的树的影子,故本选项正确;B.影子的方向不相同,故本选项错误;C.影子的方向不相同,故本选项错误;D.相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,故本选项错误.故选A.9.【答案】长方体【解析】从正面看,是一个矩形;从左面看,是一个矩形;从上面看,是矩形,这样的几何体是长方体.10.【答案】28.8【解析】过点D作DF∥AE,如图,根据题意得=,即=,解得BF=9.6;=,即=,解得AF=19.2,所以AB=AF+FD=19.2+9.6=28.8(m).故答案为28.8.11.【答案】正视图左视图【解析】从正面看某一工件,看到的是工件的长和高,从左面看到的是工件的宽和高,从上面看到的是工件的长和宽,由此问题得解.要想知道工件的高,需从正面或左面看到高,因此需知道正视图或左视图.12.【答案】①③④【解析】盲区是指看不见的区域,仰视时越向前视野越小盲区越大,俯视时越向前视野越大,盲区越小.②中上山和下山时盲区是不同的,要记住仰视时越向前视野越小盲区越大,俯视时越向前视野越大,盲区越小.而①③④都是正确的,因此选①③④.13.【答案】④②①③【解析】西为④,西北为②,东北为①,东为③,故其按时间的先后顺序为④②①③.14.【答案】圆锥的俯视图圆心处有一实心点【解析】15.【答案】长高宽【解析】根据三视图的特征,主视图与俯视图长对正;主视图与左视图高平齐;俯视图与左视图的宽相等进行填空即可.故答案为长、高、宽.16.【答案】8【解析】∵∠ACB=90°,BC=12 cm,AC=8 cm,∴AB=4,∵△ABC∽△A1B1C1,∴A1B1∶AB=B1C1∶BC=2∶1,即A1B1=8cm.17.【答案】解根据视角的定义可得:离黑板近视角大,离黑板近看得清.结论:视角大,看得清.【解析】人眼到视平面的距离视固定的(视距),视平面左右两个边缘到人眼的连线得到的角度就是视角.18.【答案】解作AB,AP的中垂线,交点为O,以O为圆心,OP长为半径做三角形ABP的外接圆,在圆上P点同侧找一点Q,连接AQ,BQ,则点Q即可所求点.【解析】作AB,AP的中垂线,找到交点O,然后以O为圆心,OP长为半径做三角形ABP的外接圆,圆上每一点与A,B的连线所成的角都与∠APB相等,找到一个和P点同侧的Q点连接AQ,BQ即可.19.【答案】解过B作BM⊥AC于M,∵∠A=30°,∴BM=BC=5,AM=5,又∵∠CBE=60°,∴∠ACB=30°,∴AB=CB,∴CM=AM=5,∴AC=10≈17.答:此大树的长约是17 m.【解析】先过B作BM⊥AC于M,构造含30°角的直角三角形,求得AM的长,再根据△ABC为等腰三角形,利用三线合一求得AC的长.20.【答案】解设FG=x米.那么FH=x+GH=x+AC=x+4(米),∵AB=6 m,CD=8 m,小强的眼睛与地面的距离为1.6 m,∴BG=4.4 m,DH=6.4 m,∵BA⊥PC,CD⊥PC,∴AB∥CD,∴FG∶FH=BG∶DH,即FG·DH=FH·BG,∴x×6.4=(x+4)×4.4,解得x=8.8(米),因此小于8.8米时就看不到树CD的树顶D.【解析】根据盲区的定义结合图片,我们可看出在FG之间时,是看不到树CD的树顶D的.因此求出FG就是本题的关键.已知了AC的长,BG、DH的长,那么可根据平行线分线段成比例来得出关于FG、FH、BG、DH 的比例关系式,用FG表示出FG后即可求出FG的长.21.【答案】解(1)如图所示,CP为视线,点C为所求位置.(2)∵AB∥PQ,MN⊥AB于M,∴∠CMD=∠PND=90°.又∵∠CDM=∠PDN,∴△CDM∽△PDN,∴=.∵MN=30 m,MD=12 m,∴ND=18 m.∴=,∴CM=24(m).∴点C到胜利街口的距离CM为24 m.【解析】本题以生活场景为载体,考查学生运用知识解决实际问题能力,本题可根据生活常识得第(1)问,第(2)问由相似三角形性质求出.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级数学第二十章投影与视图测试题(含答案)
一、单选题(共25题;共75分)
1.小明看到了“实验楼”三个字,而且能看到该楼所有的门窗,则小明看到的图是()
A. 俯视图
B. 左视图
C. 主视图
D. 都有可能
2.(2016•宁波)如图所示的几何体的主视图为()
A. B. C. D.
3.(2017•湘潭)如图所示的几何体的主视图是()
A. B. C. D.
4.一个物体的三视图如下图所示,则该物体是()
A. 圆锥
B. 球
C. 圆柱
D. 长方体
5.(2017•哈尔滨)五个大小相同的正方体搭成的几何体如图所示,其左视图是()
A. B. C. D.
6.下列四个几何体中,主视图是三角形的是()
A. B. C. D.
7.(2016•滨州)如图是由4个大小相同的正方体组合而成的几何体,其主视图是()
A. B. C. D.
8.(2017•海南)如图是一个几何体的三视图,则这个几何体是()
A. 三棱柱
B. 圆柱
C. 圆台
D. 圆锥
9.(2015•十堰)如图的几何体的俯视图是()
A. B. C. D.
10.如图所示的几何体的俯视图是()
A. B. C. D.
11.如图,这是由5个大小相同的小正方体摆成的立体图形,它的俯视图是()
A. B. C. D.
12.(2014•河池)如图所示的几何体,其主视图是()
A. B. C. D.
13.如图是某几何体从不同角度看到的图形,这个几何体是()
A. 圆锥
B. 圆柱
C. 正三棱柱
D. 三棱锥
14.(2015•河南)如图所示的几何体的俯视图是()
A. B. C. D.
15.下列四个立体图形中,主视图为圆的是()
A. B. C. D.
16.(2017•郴州)如图所示的圆锥的主视图是()
A. B. C. D.
17.如图是一个长方体形状包装盒的表面展开图.折叠制作完成后得到长方体的容积是(包装材料厚度不计,单位:mm)( )
A. 112 000 mm3
B. 294 000 mm3
C. 144 000 mm3
D. 168 000 mm3
18.如图所示正三棱柱的主视图是()
A. B. C. D.
19.下列几何体中,俯视图为四边形的是()
A. B. C. D.
20.如图所示的几何体是由五个完全相同的正方体组成的,它的俯视图是()
A. B. C. D.
21.(2015•庆阳)某几何体由一些大小相同的小正方体组成,如图分别是它的主视图和俯视图,那么要组成该几何体,至少需要多少个这样的小正方体()
A. 3
B. 4
C. 5
D. 6
22.(2017•云南)下面长方体的主视图(主视图也称正视图)是()
A. B. C. D.
23.下列四个几何体中,主视图、左视图与俯视图相同的几何体是()
A. 圆锥
B. 圆柱
C. 球
D. 三棱柱
24.如图所示的几何体的俯视图是()
A. B. C. D.
25.铅球的左视图是()
A. 圆
B. 长方形
C. 正方形
D. 三角形
二、填空题(共5题;共15分)
26.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为________.
27.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)
28.下图是某天内,电线杆在不同时刻的影长,按先后顺序应当排列为________.
29.如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为________ m.
30.若圆柱的底面圆半径为3cm,高为5cm,则该圆柱的侧面展开图的面积为________cm2.
三、作图题(共2题;共10分)
31.画出如图所示立体图的三视图.
32.如图,在路灯的同侧有两根高度相同的木棒,请分别画出这两根木棒的影子.
答案解析部分
一、单选题
1.C
2.B
3.D
4.C
5.C
6.B
7.C
8.D
9.C 10.D 11.A 12.A 13.A 14.B
15.B 16.A 17.D 18.B 19.D 20.A 21.B 22.C 23.C 24.B 25.A
二、填空题
26.5
27.24π
28.DABC
29.3
30.30π
三、作图题
31.解:如图所示:
32.解:如图所示,BE、DF分别为AB、CD的影子。