2014高考数学易错知识点归纳总结(一)

合集下载

高中数学高考知识点总结2014版

高中数学高考知识点总结2014版

专题一 集合与简易逻辑1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

{}{}{}|lg |lg (,)|lg A x y x B y y x C x y y x A B C ======如:集合,,,、、中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。

∅注重借助于数轴和文氏图解集合问题空集是一切集合的子集,是一切非空集合的真子集。

{}{}2|230|1A x x x B x ax =--===如:集合,B A a ⊂若,则实数的值构成的集合为3. 注意下列性质:{}12(1)n a a a 集合,,……,的所有子集的个数是(2)A B A B A A B B ⊆⇔==若,;(3)()()U U A B AB C C ==,4. 你会用补集思想解决问题吗?(排除法、间接法)25035ax x M M M a x a-<∈∉-如:已知关于的不等式的解集为,若且,求实数的取值范围。

5. ()()∨∧可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和“非”().⌝p q ∧⇔若为真, ;p q ∨⇔若为真, ;p ⌝⇔若为真,6.①命题的四种形式及其相互关系是什么?②若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件.若p q ⇔,则p 是q 的充要条件 ③你了解全称命题与特称命题吗?知道如何写出它们的否定形式吗?例如:1.若命题p 为:011>-x ,则p ⌝: ; 2. 、若p 是q 的充分不必要条件,则q ⌝是p ⌝的 条件专题二 函数与导数1. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B 中有元素无原象。

)2. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)3. 求函数的定义域有哪些常见类型? lg 3y x =-例:函数4.求复合函数的解析式的方法是什么?(特别要注明有时要注明函数的定义域)().xfex f x =+如:,求5.了解指数函数与对数函数互为反函数 (这两个函数的图象关于 对称)6. 如何用证明函数的单调性?(①用定义:取值、作差、判正负;②求导) [)30()1a f x x a x a >=-+∞如:已知,函数在,上是单调增函数,则的最大值是7. 函数f (x )具有奇偶性的必要(非充分)条件是什么?(f (x )定义域关于原点对称) ()()()f x f x f x -=-⇔⇔若总成立为奇函数函数图象关于原点对称 ()()()f x f x f x y-=⇔⇔若总成立为偶函数函数图象关于轴对称 注意:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

2014高考数学必考、易错知识点全面扫描数列问题篇

2014高考数学必考、易错知识点全面扫描数列问题篇

2014高考数学必考、易错知识点全面扫描:数列问题篇高考数学之数列问题的题型与方法数列是高中数学的重要内容,又是学习高等数学的基础。

高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。

有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。

本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

(3)数列的应用问题,其中主要是以增长率问题为主。

试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

知识整合1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

3.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.。

高中数学易错题大汇总及其解析

高中数学易错题大汇总及其解析

【目录】一、导言二、易错题汇总及解析1. 二次函数的基本性质及应用2. 数列与数学归纳法3. 平面向量的运算及应用4. 不定积分与定积分5. 空间几何与三视图6. 概率统计及应用三、总结与展望【正文】一、导言数学作为一门基础学科,对培养学生的逻辑思维能力、数学建模能力和问题解决能力有着举足轻重的作用。

而在高中阶段,数学的难度也相应提升,很多学生容易在一些常见的易错题上犯错。

本文将对高中数学易错题进行大汇总,并给出详细的解析,希望能够帮助同学们更好地理解和掌握这些知识点。

二、易错题汇总及解析1. 二次函数的基本性质及应用(1)易错题案例:已知二次函数f(x)=ax²+bx+c的图象经过点(1,2),且在点(2,1)处的切线斜率为3,求a、b、c的值。

解析:首先利用已知条件列方程,得到三元一次方程组。

然后利用切线的斜率性质,得到关于a和b的关系式。

最后代入已知条件解方程组即可求得a、b、c的值。

(2)易错题案例:已知函数f(x)=ax²+bx+c的图象经过点a、b、c,求a、b、c的值。

解析:利用函数过定点的性质列方程,再利用函数在定点处的斜率为求得a、b、c的值。

2. 数列与数学归纳法(1)易错题案例:已知等差数列{an}的前n项和为Sn=n²,求an。

解析:利用等差数列的前n项和公式列方程,然后利用数学归纳法求得an的表达式。

(2)易错题案例:已知{an}是等比数列,且a₁=2,a₃=18,求通项公式。

解析:利用等比数列的通项公式列方程,再利用已知条件求出通项公式的值。

3. 平面向量的运算及应用(1)易错题案例:已知向量a=3i+4j,b=5i-2j,求a与b的夹角。

解析:利用向量的夹角公式求出a与b的夹角。

(2)易错题案例:已知平面向量a=2i+j,b=i-2j,求2a-3b的模。

解析:利用向量的运算规则,先求出2a和3b,然后再求它们的差向量,最后求出差向量的模。

高考数学重难知识点归纳总结

高考数学重难知识点归纳总结

高考数学重难知识点归纳总结一、函数与方程1. 一元二次函数- 定义:形如y=ax²+bx+c,其中a≠0,称为一元二次函数。

- 重点:顶点坐标、对称轴方程、开口方向及判别式的应用。

2. 指数与对数函数- 定义:指数函数为y=aˣ,其中a>0且a≠1;对数函数为y=logₐx,其中a>0且a≠1。

- 重点:指数函数的性质、对数函数的性质、指对关系及换底公式的应用。

3. 三角函数- 定义:正弦、余弦、正切函数等。

- 重点:函数图像、周期性质、辅助角公式及和差化积的应用。

4. 方程与不等式- 重点:二次方程根的性质、应用相关不等式、绝对值等式与不等式的解法。

二、几何与向量1. 相似三角形- 定义:对应角相等,对应边成比例的两个三角形称为相似三角形。

- 重点:相似三角形的判定、比例等分线、相似三角形中角度的性质。

2. 平面向量- 定义:具有大小和方向的量称为向量。

- 重点:向量的加减、数量积、向量共线的判定和平方模长的应用。

3. 圆的性质- 重点:切线与圆的关系、弦长定理、切割定理以及圆锥曲线的相关概念。

4. 空间几何- 重点:平面与直线的位置关系、球的方程及交线性质。

三、概率与统计1. 随机事件与概率- 定义:试验的每个可能结果称为样本点,若试验的样本空间S与每个样本点的结果发生的事件A有一一对应的关系,则称事件A为随机事件。

- 重点:事件的概率、概率的运算及组合与排列的概率计算。

2. 统计与抽样- 重点:统计的基本概念、频率分布、抽样调查、误差分析等。

四、解析几何1. 直线与圆的方程- 重点:直线的一般式、点斜式、两点式、圆的标准式、一般式及与其他几何图形的方程关系。

2. 参数方程与极坐标- 重点:参数方程与直线、圆、曲线的关系、极坐标基本概念与坐标变换。

五、数列与数学归纳法- 重点:等差数列与等比数列的概念、通项公式、前n项和及数列的应用。

六、解题方法与技巧1. 倒着解题法2. 反设法3. 插值法4. 巧用画图法5. 分解因式法6. 枚举法7. 特殊取值法以上是高考数学中的重难知识点的归纳总结,希望对你的复习有所帮助。

2014高考数学易错知识点总结(一)

2014高考数学易错知识点总结(一)

2014年高考数学易错知识点总结(一)一、集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。

2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道否命题与命题的否定形式的区别。

6.求解与函数有关的问题易忽略定义域优先的原则。

7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。

8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。

9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。

例如:。

10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号和或单调区间不能用集合或不等式表示。

12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题)。

这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17.实系数一元二次方程有实数解转化时,你是否注意到:当时,方程有解不能转化为。

若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?二、不等式18.利用均值不等式求最值时,你是否注意到:一正;二定;三等。

19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用根轴法解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是定义域为前提,函数的单调性为基础,分类讨论是关键,注意解完之后要写上:综上,原不等式的解集是。

高考数学数列易错知识点总结

高考数学数列易错知识点总结

高考数学数列易错知识点总结高考数学中,数列是一个重要的考点,也是学生易错的地方之一。

在解题过程中,经常会遇到一些易错的知识点。

下面总结了一些高考数学数列易错知识点,希望能够帮助到你:1. 数列的递推公式与通项公式的区别:很多学生容易混淆数列的递推公式和通项公式。

递推公式是用前一项的表达式来表示后一项的公式,通项公式是用项数n的表达式来表示第n项的公式。

在解题时,要明确区分递推公式和通项公式的用法和含义。

2. 数列的基本性质:数列的基本性质包括数列的有界性、单调性和有限性。

有界性指的是数列的项都在一定的范围内,可以是上界或下界;单调性指的是数列的项是递增或递减的;有限性指的是数列的项是有限的,不存在无限项。

在解题时,要注意数列的基本性质,根据题目中给出的条件判断数列的性质。

3. 等差数列和等差数列的前n项和公式:等差数列是指数列中相邻两项之间的差值相等的数列。

等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。

等差数列的前n项和公式为Sn = (a1 + an)n/2,其中Sn为前n项和。

在解题时,要熟练掌握等差数列的相关公式,并进行灵活运用。

4. 等比数列和等比数列的前n项和公式:等比数列是指数列中相邻两项之间的比值相等的数列。

等比数列的通项公式为an = a1 *r^(n-1),其中a1为首项,r为公比,n为项数。

等比数列的前n项和公式为Sn = a1 * (1 - r^n)/(1 - r),其中Sn为前n项和。

在解题时,要熟练掌握等比数列的相关公式,并进行灵活运用。

5. 通项公式的证明与应用:在解题过程中,有时会遇到需要证明通项公式的问题。

要能够灵活运用数学归纳法和代数方法,进行通项公式的证明。

同时,要能够根据通项公式,求解具体的问题,包括求某一项的值、判断第n项的性质等。

6. 数列极限的计算与判断:数列极限是数列中项随着项数增大而趋于的值。

在解题过程中,要能够根据给定的数列,计算出数列的极限值,并进行判断。

2014高考数学易错知识点归纳总结(二)

2014高考数学易错知识点归纳总结(二)

2014高考数学易错知识点归纳总结(二)2014高考数学易错知识点归纳总结(二):六、解析几何43.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?44.用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。

45.直线的倾斜角、到的角、与的夹角的取值范围依次是。

46.定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?47.对不重合的两条直线(建议在解题时,讨论后利用斜率和截距)48.直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。

49.解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达。

(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列平行线,找到并求出最优解⑦应用题一定要有答。

)50.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?51.圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?52.利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?53.通径是抛物线的所有焦点弦中最短的弦。

(想一想在双曲线中的结论?)54.在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制。

(求交点,弦长,中点,斜率,对称,存在性问题都在下进行)。

55.解析几何问题的求解中,平面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?七、立体几何56.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。

57.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?58.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见59.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行而导致证明过程跨步太大。

2014年高考(文科数学)知识点归纳总结

2014年高考(文科数学)知识点归纳总结

2014年高考(文科数学)知识点归纳总结一.常见的数集自然数集:N ;正整数集:N *或N +;整数集:Z ;有理数集:Q ;实数集:R 。

复数集:C 二.集合间基本关系的几个结论(1)A ⊆A (任何一个集合是本身子集).(2)∅⊆A (空集是任何集合的子集);(3)∅A (非空集合)(空集是任何非空集合的真子集) (4).若A 含有n 个元素,则A 的子集有2n 个,A 的非空子集有2n -1个,A 的非空真子集有2n -2个. 3.集合的运算及其性质(1)集合的交、并、补运算:交集:A ∩B ={x|x ∈A ,且x ∈B};并集:A ∪B ={x|x ∈A ,或x ∈B};补集:∁U A ={x|x ∈U ,且x ∉A}.U 为全集,∁U A 表示A 相对于全集U 的补集.(2)集合的交、并、补运算性质:①A ∪B =A ⇔B ②A ∩B =A ⇔A ③ A ∪(∁U A)=U ④A ∩(∁U A)=∅⑤⑤∁U (∁U A)=A.⑥∁U (A ∪B) =(∁U A) ∩ (∁U A)⑦∁U (A ∩B) =(∁U A) ∪ (∁U A) 三:映 射与函数1.映射:设A 、B 是两个非空集合,如果按某一种对应法则f ,对于A 中的每一个元素,在B 中都有唯一确定的元素与之对应,那么这样的单值对应叫做集合A 到集合B 的映射.A 中的元素叫做原象,B 中的相应元素叫做象。

在A 到B 的映射中,从A 中元素到B 中元素的对应,可以多对一,不可以一对多。

2.函数:设A ,B 是两个非空的数集,如果按照某种对应法则f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么这样的对应叫做从A 到B 的一个函数,记作y =f(x),x ∈A 函数三要素:定义域A :x 取值范围组成的集合。

值域B :y 取值范围组成的集合。

对应法则f :y 与x 的对应关系。

有解析式和图像和映射三种表示形式 3.函数与映射的区别在于:(1)两个集合必须是数集; (2)不能有剩余的象,即每个函数值y 都能找到相应的自变量x 与其对应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【摘要】:进入秋季,各个高中都已经进入了高三年级一轮复习阶段。

一轮复习是高考复习中内容最全面、最细致的一轮,也决定了同学们赖以迎接考试的知识基础是否牢靠。

因此,如果希望在高考中取得优异的成绩,一轮复习时需要有良好的方法和复习效果。

在此,查字典数学网小编为同学们整理了2014高考数学易错知识点归纳,希望能对大家所有帮助。

2014高考数学易错知识点归纳(一):一、集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。

2.在应用条件时,易A 忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道否命题与命题的否定形式的区别。

6.求解与函数有关的问题易忽略定义域优先的原则。

7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。

8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。

9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。

例如:。

10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号和或单调区间不能用集合或不等式表示。

12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题)。

这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17.实系数一元二次方程有实数解转化时,你是否注意到:当时,方程有解不能转化为。

若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?二、不等式18.利用均值不等式求最值时,你是否注意到:一正;二定;三等。

19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用根轴法解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是定义域为前提,函数的单调性为基础,分类讨论是关键,注意解完之后要写上:综上,原不等式的解集是。

22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意同号可倒即a》b》0,a三、数列24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在已知,求的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。

)28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。

四、三角函数29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角。

异角化同角,异名化同名,高次化低次)33.反正弦、反余弦、反正切函数的取值范围分别是34.你还记得某些特殊角的三角函数值吗?35.掌握正弦函数、余弦函数及正切函数的图象和性质。

你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?36.函数的图象的平移,方程的平移以及点的平移公式易混:(1)函数的图象的平移为左+右-,上+下-如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即。

(2)方程表示的图形的平移为左+右-,上-下+如直线左移2个个单位且下移3个单位得到的图象的解析式为,即。

(3)点的平移公式:点按向量平移到点,则。

37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)38.形如的周期都是,但的周期为。

39.正弦定理时易忘比值还等于2R.五、平面向量40.数0有区别,的模为数0,它不是没有方向,而是方向不定。

可以看成与任意向量平行,但与任意向量都不垂直。

41.数量积与两个实数乘积的区别:在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出。

已知实数,且,则a=c,但在向量的数量积中没有。

在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量。

42.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。

总结:以上就是2014高考数学易错知识点归纳全部内容,谢谢。

相关文档
最新文档