2015-2016年河北省保定市竞秀区八年级上学期期末数学试卷及参考答案
2015-2016人教版八年级数学第一学期期末考试试卷及答案
2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。
每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。
点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。
BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。
对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。
使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。
河北区2015-2016上学期期末初二数学试题及答案
二、填空题(3×8=24) 1 9. 若分式 3 − 有意义,则 x 的取值范围是 x 10. PM2.5 是指大气中直径小于或等于 0.0000025m 的颗粒物,将 0.0000025 用科学计数法表示为 11. 若 a+3b-2=0,则 3 ·27 = 12. 因式分解 x -xy =
a b 3 2
3/4
22. 如图,在平面直角坐标系中,O 为坐标原点,A、B 两点的坐标分别为 A(0,m) 、B(n,0) ,且 m - n - 3 + 2n − 6 = 0 ,点 P 从 A 出发,以每秒 1 个单位的速度沿射线 AO 匀速运动,设点 P 的运动时 间为 t 秒 (1)求 OA,OB 的长 (2)连接 PB,设△POB 的面积为 S,用 t 的式子表示 S (3)过点 P 做直线 AB 的垂线,垂足为 D,直线 PD 与 x 轴交于点 E,在点 P 运动的过程中,是否存在这样的 点 P,使△EOP≌△AOB?若存在,请求出 t 的值,若不存在,请说明理由
19. 如图,△ABC 中 BD、CD 平分∠ABC、∠ACB,过 D 做直线平行于 BC,交 AB、AC 于 E、F,求证:EF=BE+CF
2/4
20. 如图,△ABC 为等边三角形,AE=CD,AD、BE 相交于点 P,BQ⊥AD 于点 Q,PQ=3,PE=1 (1)求证:AD=BE (2)求 AD 的长
【考点】幂的乘方与积的乘方;同底数幂的乘法. 【分析】根据幂的乘方运算以及同底数幂的乘法运算法则得出即可. 【解答】解:∵a+3b﹣2=0, ∴a+3b=2, 则 3a27b=3a×33b=3a+3b=32=9. 故答案为:9. 12.因式分解:x3﹣xy2= x(x﹣y) (x+y) .
2015-2016学年度第一学期期末八年级数学试题(含答案)
2015—2016学年度第一学期期末考试八 年 级 数 学 试 卷试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分,考试时间100分钟。
答题前,学生务必将自己的姓名和学校、班级、学号等填写在答题卷上;答案必须写在答题卷各题目指定区域内的相应位置上;考试结束后,只需将答题卷交回。
第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项正确) 1、9的平方根是( ).A .3B .-3C .±3D .±32、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ).A .1、2、3B . 2、3、4C . 3、4、5D .4、5、63、下列说法:①实数与数轴上的点一一对应;②2a 没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1.其中正确的有( ) A .1个 B .2个 C .3个 D .4个4、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A B C D5、若一个多边形的内角和等于720°,则这个多边形的边数是( ). A .5 B .6 C .7 D .86、为筹备本班元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A .中位数 B .平均数 C .加权平均数 D .众数7、如图,已知棋子“车”的坐标为(-2,3),棋子“马” 的坐标为 (1,3),则棋子“炮”的坐标为( ).A .(3,1)B .(2,2)C .(3,2)D .(-2,2)8.下列一次函数中,y 的值随着x 值的增大而减小的是( ). A .y =x B .y =-x C .y =x +1 D .y = x -19、如图所示,两张等宽的纸条交叉重叠在一起,则重叠部分ABCD 一定是( ). A .菱形 B .矩形 C .正方形 D .梯形10、一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3)与放水时间t (时)的函数关系用图表示为( )A B C D(第9题图)(第7题图)第Ⅱ卷(非选择题)二、填空题(本大题共5小题,每小题3分,共15分,将答案填写在题中横线上) 11、比较大小:3(填“>”、“<”、或“=”).12、写出一个你所学过的既是轴对称又是中心对称图形的四边形: .13、如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是 度.14、 如图,若直线l 1:32-=x y 与l 2:3+-=x y 相交于点P ,则根据图象可得,二元一次方程组⎩⎨⎧=+=-332y x y x 的解是 . 15、 如图,在直角坐标平面内的△ABC 中,点A 的坐标为(0,2),点C 的坐标为(5,5),要使以A 、B 、 C 、D 为顶点的四边形是平行四边形,且点D 坐标在第一象限,那么点D 的坐标是 .三、解答题(本大题共10小题,共75分。
(2021年整理)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】
(完整)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】的全部内容。
2015—2016学年度第一学期末测试一、选择题:1.如下书写的四个汉字,是轴对称图形的有( )个. A 。
1 B2 C.3 D.4 2。
与3—2相等的是( )A.91B.91- C.9D.-9 3。
当分式21-x 有意义时,x 的取值范围是( )A.x <2 B 。
x >2 C.x ≠2 D 。
x ≥2 4.下列长度的各种线段,可以组成三角形的是( ) A 。
1,2,3B.1,5,5 C 。
3,3,6 D 。
4,5,6 5.下列式子一定成立的是( )A 。
3232a a a =+B 。
632a a a =• C. ()623a a = D 。
326a a a =÷6.一个多边形的内角和是900°,则这个多边形的边数为( ) A.6 B 。
7 C.8 D 。
97。
空气质量检测数据pm2。
5是值环境空气中,直径小于等于2。
5微米的颗粒物,已知1微米=0。
000001米,2。
5微米用科学记数法可表示为( )米。
A 。
2。
5×106B.2.5×105C 。
2.5×10—5D 。
2.5×10-68。
已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )。
保定市八年级上学期数学期末考试试卷
保定市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017八上·中江期中) 下列银行标志中,不是轴对称图形的为()A .B .C .D .2. (2分)如图,△ABC的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC的对称图形,得到△A′B′C′,若点A的对应点A′的坐标是(3,5),那么点B的对应点B′的坐标是()A . (0,3)B . (1,2)C . (0,2)D . (4,1)3. (2分)一个长方形花坛长是x3米,宽是(xy2)2米,则此长方形花坛的面积为()A . x6y4米2B . x6y2米2C . x5y4米2D . x5y2米24. (2分)(2016·成都) 分式方程 =1的解为()A . x=﹣2B . x=﹣3C . x=2D . x=35. (2分)李明的作业本上有四道题:(1)a·a=a2 ,(2)(2b)3=8b3 ,(3)-(x+1)=x+1,(4)4a÷(-2a)=-2,如果你是他的数学老师,请找出他做错的题是()A . (1)B . (2)C . (3)D . (4)6. (2分) (2017七下·宜兴期中) 下列各式从左到右的变形中,因式分解正确的是()A . x2﹣7x+12=x(x﹣7)+12B . x2﹣7x+12=(x﹣3)(x+4)C . x2﹣7x+12=(x﹣3)(x﹣4)D . x2﹣7x+12=(x+3)(x+4)7. (2分) (2020九上·沈河期末) 若==≠0,则下列各式正确的是()A . 2x=3y=4zB . =C . =D . =8. (2分)如图,点D、E在△ABC的BC边上,AB=AC,AD=AE,则图中全等三角形共有()A . 0对B . 1对C . 2对D . 3对9. (2分) (2016八上·射洪期中) 如果x2+y2=8,x+y=3,则xy=()A . 1B .C . 2D . ﹣10. (2分) (2017八下·南召期中) 如果分式的值是零,则x的取值是()A . x=1B . x=﹣1C . x=±1D . x=011. (2分) (2019八上·天台期中) 如图△ABC和△DEF,下列条件中①∠B=∠E=90°,AC=DF;②∠B=∠E,AB=DE,AC=DF;③在Rt△ABC和Rt△DEF中,BC=EF,AC=DF;④∠A=∠D,∠B=∠E,∠C=∠F;⑤∠A=∠D,BC=EF,∠C=∠F,能证明△ABC≌△DEF的是()A . ③ ⑤B . ① ③⑤C . ①② ③⑤D . ①② ③④⑤12. (2分) (2015八上·永胜期末) 如图,在△ABC中,AB=AC,AB的中垂线DE交AC于点D,交AB于E点,如果BC=10,△BDC的周长为22,那么△ABC的周长是()A . 24B . 30C . 32D . 34二、填空题 (共8题;共8分)13. (1分) (2016八上·卢龙期中) 点A(a,4)、点B(3,b)关于x轴对称,则(a+b)2010的值为________.14. (1分)正八边形的每个外角的度数为________° .15. (1分)长度为2cm、3cm、4cm和5cm的4根木棒,从中任取3根,可搭成________种不同的三角形.16. (1分) (2016八上·柘城期中) 如图所示,△ABC中,∠A=90°,BD是角平分线,DE⊥BC,垂足是E,AC=10cm,CD=6cm,则DE的长为________ cm.17. (1分)(2012·徐州) 分解因式:a2﹣4=________18. (1分) (2017八上·德惠期末) 计算:﹣3xy2z•(x2y)2=________.19. (1分) (2018八上·如皋期中) 如图,点B、A、E在同一直线上,△ADB≌△ACE,∠E=40°,∠C=25°,则∠DAC=________°20. (1分) (2018八上·仁寿期中) 如右图所示,AD∥BC,AB∥DC,点O为线段AC的中点,过点O作一条直线分别与AB、CD交于点M、N.点E、F在直线MN上,且OE=OF.图中全等的三角形共有________对.三、解答题 (共7题;共70分)21. (10分)(2011·义乌) 计算下面各题(1)计算:;(2)解分式方程:.22. (9分)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程解:设x2﹣4x=y,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的(填序号).A . 提取公因式B . 平方差公式C . 两数和的完全平方公式D . 两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?________.(填“是”或“否”)如果否,直接写出最后的结果________.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.23. (5分) (2017八下·东台期中) 先化简代数式(1﹣)÷ ,再从0,﹣2,2,﹣1,1中选取一个恰当的数作为a的值代入求值.24. (11分)(2019·封开模拟) 如图,在矩形ABCD中,AB=4,BC=2,点E是边BC的中点.动点P从点A 出发,沿着AB运动到点B停止,速度为每秒钟1个单位长度,连接PE,过点E作PE的垂线交射线AD与点Q,连接PQ,设点P的运动时间为t秒.(1)当t=1时,sin∠PEB=________;(2)是否存在这样的t值,使△APQ为等腰直角三角形?若存在,求出相应的t值,若不存在,请说明理由;(3)当t为何值时,△PEQ的面积等于10?25. (10分) (2016八上·上城期末) 如图,在Rt△ABC中,∠ACB=90°.(1)实践与操作:利用直尺和圆规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法);①作AB的垂直平分线交AB于点D,连接CD;②分别作∠ADC、∠BDC的平分线,交AC、BC于点E、F.(2)求证:CE=DF.26. (10分)(2017·江北模拟) 我市“尚品”房地产开发公司预计今年10月份将竣工一商品房小区,其中包括高层住宅区和别墅区一共60万平方米,且高层住宅区的面积不少于别墅区面积的3倍.(1)别墅区最多多少万平方米?(2)今年一月初,“尚品”公司开始出售该小区,其中高层住宅区的销售单价为8000元/平方米,别墅区的销售单价为12000元/平方米,并售出高层住宅区6万平方米,别墅区4万平方米,二月时,受最新政策“去库存,满足刚需”以及银行房贷利率打折的影响,该小区高层住宅区的销售单价比一月增加了a%,销售面积比一月增加了2a%;别墅区的销售单价比一月份减少了10%,销售面积比一月增加了a%,于是二月份该小区高层住宅区的销售总额比别墅区的销售总额多10080万元,求a的值.27. (15分) (2017九下·莒县开学考) 在边长为2的正方形ABCD中,点P、Q分别是边AB、BC上的两个动点(与点A、B、C不重合),且始终保持BP=BQ,AQ⊥QE,QE交正方形外角平分线CE于点E,AE交CD于点F,连结PQ.(1)求证:△APQ≌△QCE;(2)求∠QAE的度数;(3)设BQ=x,当x为何值时,QF∥CE,并求出此时△AQF的面积.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共8题;共8分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共7题;共70分)21-1、21-2、22-1、22-2、22-3、23-1、24-1、24-2、24-3、25-1、25-2、26-1、26-2、27-1、27-2、27-3、。
定市竞秀区2016-2017学年八年级(上)期末数学试卷(解析版)
2016-2017学年河北省保定市竞秀区八年级(上)期末数学试卷一、选择题(1-10题,每小题3分,11-16题,每小题3分,共42分)1.下列实数中是无理数的是()A.B.πC.0.D.﹣2.下列各式中,正确的是()A.=±4 B.±=4 C.=﹣3 D.=﹣43.在下列各组数据中,不能作为直角三角形的三边边长的是()A.3,4,6 B.7,24,25 C.6,8,10 D.9,12,154.下列各组数值是二元一次方程x﹣3y=4的解的是()A.B.C.D.5.点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(﹣4,3)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)6.当b<0时,一次函数y=x+b的图象大致是()A.B. C. D.7.如图,平面上直线a,b分别过线段OK两端点(数据如图),则a,b相交所成的锐角是()A.20°B.30°C.70°D.80°8.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个 B.2个 C.3个 D.4个9.在平面直角坐标系中,直线l经过(﹣3,0),(0,﹣5)两点,直线l′经过点(2,4)且与y轴平行,则这两条直线的交点位置在()A.第一象限B.第二象限C.第三象限D.第四象限10.要使二次根式有意义,字母x必须满足的条件是()A.x≥1 B.x>0 C.x≥﹣1 D.任意实数11.统计小强5次射击的成绩如下:(单位:环)5,9,7,10,9.其方差为3.2,如果他再射击1次,命中8环,那么他的射击成绩的方差()A.变大B.变小C.不变D.无法确定12.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时13.如图,四边形ABCD中DC∥AB,将四边形沿对角线AC折叠,使点B落在点B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114° D.124°14.将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()A.x>4 B.x>﹣4 C.x>2 D.x>﹣215.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m,同时梯子的顶端B下降至B′,那么BB′()A.小于1m B.大于1m C.等于1m D.小于或等于1m16.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A.222 B.280 C.286 D.292二、填空题(本题共3个小题,共10分,17-18小题各3分,19小题有两空,每空2分)17.﹣8的立方根是.18.已知关于x,y的二元一次方程组的解互为相反数,则k的值是.19.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则B2的坐标为;点B2016的坐标为.三、解答题(本题共68分,解答应写出文字说明、证明过程或演算步骤)20.(1)计算: +﹣(2)计算:(+)(﹣)﹣(3)解方程组:.21.如图,在平面直角坐标系中有一个△ABC,顶点A(﹣1,3),B(2,0),C (﹣3,﹣1).(1)画出△ABC关于y轴的对称轴图形△A1B1C1(不写画法);点A1的坐标为;点B1的坐标为;点C1的坐标为.(2)若网格上的每个小正方形的边长为1,则△ABC的面积是.22.如图,点B、E、C、F在同一直线上,AC与DE相交于点G,∠A=∠D,AC ∥DF,求证:AB∥DE.23.某机械厂有15名工人,某月这15名工人加工的零件数统计如下:人数(名)112632加工零件件数(件)540450300240210120请你根据上述内容解答下列问题:(1)这15名工人该月加工的零件数的平均数为260件,中位数为件,众数为件;(2)假如部门负责人把每位工人每月加工零件的任务确定为260件,你认为是否合理?为什么?如果不合理,你认为多少较为合适?(3)去掉一个最高件数540,和一个最低件数120后,请你计算出其他13名工人该月加工零件的平均数(结果保留整数),并判断用它确定每位工人每月加工零件的任务是否合适?24.阅读下面的情景对话,然后解答问题:老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.小华:等边三角形一定是奇异三角形!小明:那直角三角形是否存在奇异三角形呢?(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是命题(填“真”或“假”)(2)在Rt△ABC中,两边长分别是、c=10,这个三角形是否是奇异三角形?请说明理由.2016-2017学年河北省保定市竞秀区八年级(上)期末数学试卷参考答案与试题解析一、选择题(1-10题,每小题3分,11-16题,每小题3分,共42分)1.下列实数中是无理数的是()A.B.πC.0.D.﹣【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=2是整数,是有理数,选项错误;B、π是无理数,选项正确;C、0.是无限循环小数,是有理数,选项错误;D、﹣是分数,是有理数,选项错误.故选B.2.下列各式中,正确的是()A.=±4 B.±=4 C.=﹣3 D.=﹣4【考点】二次根式的混合运算.【分析】根据算术平方根的定义对A进行判断;根据平方根的定义对B进行判断;根据立方根的定义对C进行判断;根据二次根式的性质对D进行判断.【解答】解:A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=﹣3=,所以C选项正确;D、原式=|﹣4|=4,所以D选项错误.故选:C.3.在下列各组数据中,不能作为直角三角形的三边边长的是()A.3,4,6 B.7,24,25 C.6,8,10 D.9,12,15【考点】勾股数.【分析】根据勾股定理的逆定理,只需验证两较小边的平方和是否等于最长边的平方即可.【解答】解:A、32+42≠62,故A符合题意;B、72+242=252,故B不符合题意;C、62+82=102,故C不符合题意;D、92+122=152,故D不符合题意.故选:A.4.下列各组数值是二元一次方程x﹣3y=4的解的是()A.B.C.D.【考点】二元一次方程的解.【分析】将四个选项中的x与y的值代入已知方程检验,即可得到正确的选项.【解答】解:A、将x=1,y=﹣1代入方程左边得:x﹣3y=1+3=4,右边为4,本选项正确;B、将x=2,y=1代入方程左边得:x﹣3y=2﹣3=﹣1,右边为4,本选项错误;C、将x=﹣1,y=﹣2代入方程左边得:x﹣3y=﹣1+6=5,右边为4,本选项错误;D、将x=4,y=﹣1代入方程左边得:x﹣3y=4+3=7,右边为4,本选项错误.故选A5.点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(﹣4,3)B.(﹣3,﹣4)C.(﹣3,4)D.(3,﹣4)【考点】点的坐标.【分析】先根据P在第二象限内判断出点P横纵坐标的符号,再根据点到坐标轴距离的意义即可求出点P的坐标.【解答】解:∵点P在第二象限内,∴点的横坐标<0,纵坐标>0,又∵P到x轴的距离是4,即纵坐标是4,到y轴的距离是3,横坐标是﹣3,∴点P的坐标为(﹣3,4).故选:C.6.当b<0时,一次函数y=x+b的图象大致是()A.B. C. D.【考点】一次函数的图象;一次函数图象与系数的关系.【分析】根据一次函数系数的正负,可得出一次函数图象经过的象限,由此即可得出结论.【解答】解:∵k=1>0,b<0,∴一次函数y=x+b的图象经过第一、三、四象限.故选B.7.(2016-2017·保定竞秀区期末)如图,平面上直线a,b分别过线段OK两端点(数据如图),则a,b相交所成的锐角是()A.20°B.30°C.70°D.80°【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:a,b相交所成的锐角=100°﹣70°=30°.故选:B.8.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个 B.2个 C.3个 D.4个【考点】命题与定理.【分析】根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据三角形外角性质对③进行判断;根据非负数的性质对④进行判断.【解答】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;三角形的一个外角大于任何一个不相邻的内角,所以③错误;如果x2>0,那么x≠0,所以④错误.故选A.9.在平面直角坐标系中,直线l经过(﹣3,0),(0,﹣5)两点,直线l′经过点(2,4)且与y轴平行,则这两条直线的交点位置在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】两条直线相交或平行问题.【分析】首先求出直线l和直线l′的解析式,再组成方程组,解方程组即可得结果.【解答】解:设直线l的解析式为y=kx+b,将(﹣3,0),(0,﹣5)两点代入可得,,解得:,∴直线l的解析式为y=x﹣5,过点(2,4)且平行于y轴的直线上的点的横坐标与点的横坐标2相同,l′经过点Q (2,4)且平行y轴的直线可以表示为直线x=2,将直线l和直线l′的解析式组成方程组,,解得,所以这两条直线的交点位置在第四象限,故选D.10.要使二次根式有意义,字母x必须满足的条件是()A.x≥1 B.x>0 C.x≥﹣1 D.任意实数【考点】二次根式有意义的条件.【分析】二次根式的被开方数是非负数.【解答】解:依题意,得x2+1≥0,∵x2+1≥1,∴字母x必须满足的条件是:任意实数.故选:D.11.统计小强5次射击的成绩如下:(单位:环)5,9,7,10,9.其方差为3.2,如果他再射击1次,命中8环,那么他的射击成绩的方差()A.变大B.变小C.不变D.无法确定【考点】方差.【分析】根据方差公式求出小强6次的方差,再进行比较即可.【解答】解:∵前5次小强的方差是3.2,小强再射击1次,分别命中8环,∴小强这六次射击成绩的方差是×[3.2×5+(8﹣8)2]=1.367,∵1.367<3.2,∴小强这六次射击成绩的方差会变小;故选B.12.图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时【考点】函数的图象.【分析】结合图象得出张强从家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离张强家的距离;进而得出锻炼时间以及整个过程所用时间.由图中可以看出,体育场离张强家2.5千米;平均速度=总路程÷总时间.【解答】解:A、由函数图象可知,体育场离张强家2.5千米,故A选项正确;B、由图象可得出张强在体育场锻炼30﹣15=15(分钟),故B选项正确;C、体育场离张强家2.5千米,体育场离早餐店距离无法确定,因为题目没说体育馆,早餐店和家三者在同一直线上,故C选项错误;D、∵张强从早餐店回家所用时间为95﹣65=30(分钟),距离为1.5km,∴张强从早餐店回家的平均速度1.5÷0.5=3(千米/时),故D选项正确.故选:C.13.(2016-2017·保定竞秀区期末)如图,四边形ABCD中DC∥AB,将四边形沿对角线AC折叠,使点B落在点B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114° D.124°【考点】多边形内角与外角;平行线的性质.【分析】由平行四边形的性质和折叠的性质得出∠ACD=∠BAC=∠B′AC,由三角形的外角性质求出∠BAC=∠ACD=∠B′AC=∠1=22°,再由三角形内角和定理求出∠B即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°.故选:C.14.将一次函数y=x的图象向上平移2个单位,平移后,若y>0,则x的取值范围是()A.x>4 B.x>﹣4 C.x>2 D.x>﹣2【考点】一次函数图象与几何变换.【分析】首先得出平移后解析式,进而求出函数与坐标轴交点,即可得出y>0时,x的取值范围.【解答】解:∵将一次函数y=x的图象向上平移2个单位,∴平移后解析式为:y=x+2,当y=0时,x=﹣2,所以y>0,x的取值范围是:x>﹣2.故选D.15.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m,同时梯子的顶端B下降至B′,那么BB′()A.小于1m B.大于1m C.等于1m D.小于或等于1m【考点】勾股定理的应用.【分析】由题意可知OA=2,OB=7,先利用勾股定理求出AB,梯子移动过程中长短不变,所以AB=A′B′,又由题意可知OA′=3,利用勾股定理分别求OB′长,把其相减得解.【解答】解:在直角三角形AOB中,因为OA=2,OB=7由勾股定理得:AB=,由题意可知AB=A′B′=,又OA′=3,根据勾股定理得:OB′=,∴BB′=7﹣<1.故选A.16.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是()A.222 B.280 C.286 D.292【考点】规律型:图形的变化类.【分析】设连续搭建三角形x个,连续搭建正六边形y个,根据搭建三角形和正六边形共用了2016根火柴棍,并且三角形的个数比正六边形的个数多6个,列方程组求解【解答】解:设连续搭建三角形x个,连续搭建正六边形y个.由题意得,,解得:.故选D.二、填空题(本题共3个小题,共10分,17-18小题各3分,19小题有两空,每空2分)17.﹣8的立方根是﹣2.【考点】立方根.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.18.已知关于x,y的二元一次方程组的解互为相反数,则k的值是﹣1.【考点】二元一次方程组的解.【分析】将方程组用k表示出x,y,根据方程组的解互为相反数,得到关于k 的方程,即可求出k的值.【解答】解:解方程组得:,因为关于x,y的二元一次方程组的解互为相反数,可得:2k+3﹣2﹣k=0,解得:k=﹣1.故答案为:﹣1.19.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则B2的坐标为(6,2);点B2016的坐标为.【考点】坐标与图形变化﹣旋转;规律型:点的坐标.【分析】首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差6个单位长度,根据这个规律可以求得B2016的坐标.【解答】解:∵A(,0),B(0,2),∴Rt△AOB中,AB=,∴OA+AB1+B1C2=+2+=6,∴B2的横坐标为:6,且B2C2=2,即B2(6,2),∴B4的横坐标为:2×6=12,∴点B2016的横坐标为:2016÷2×6=6048,点B2016的纵坐标为:2,即B2016的坐标是.故答案为:(6,2),.三、解答题(本题共68分,解答应写出文字说明、证明过程或演算步骤)20.(1)计算: +﹣(2)计算:(+)(﹣)﹣(3)解方程组:.【考点】二次根式的混合运算;解二元一次方程组.【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)利用平方差公式和二次根式的除法法则运算;(3)利用代入消元法解方程组.【解答】解:(1)原式=+3﹣2=2;(2)原式=3﹣2﹣(﹣)=1﹣(2﹣)=1﹣2+=﹣1;(3),把②代入①得2(y﹣1+1)﹣y+6,解得y=6,把y=6代入②得x=5,所以方程组的解为.21.(2016-2017·保定竞秀区期末)如图,在平面直角坐标系中有一个△ABC,顶点A(﹣1,3),B(2,0),C(﹣3,﹣1).(1)画出△ABC关于y轴的对称轴图形△A1B1C1(不写画法);点A1的坐标为(1,3);点B1的坐标为(﹣2,0);点C1的坐标为(3,﹣1).(2)若网格上的每个小正方形的边长为1,则△ABC的面积是9.【考点】作图﹣轴对称变换.【分析】(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用三角形面积求法得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求,点A1的坐标为:(1,3);点B1的坐标为:(﹣2,0);点C1的坐标为:(3,﹣1);故答案为:(1,3),(﹣2,0),(3,﹣1);(2)△ABC的面积是:4×5﹣×3×3﹣×2×4﹣×1×5=9.故答案为:9.22.如图,点B、E、C、F在同一直线上,AC与DE相交于点G,∠A=∠D,AC ∥DF,求证:AB∥DE.【考点】平行线的判定与性质.【分析】由平行线的性质得出∠D=∠EGC,由已知条件得出∠A=∠EGC,由平行线的判定方法即可得出结论.【解答】证明:∵AC∥DF,∴∠D=∠EGC,又∵∠A=∠D,∴∠A=∠EGC,∴AB∥DE.23.某机械厂有15名工人,某月这15名工人加工的零件数统计如下:人数(名)112632加工零件件数(件)540450300240210120请你根据上述内容解答下列问题:(1)这15名工人该月加工的零件数的平均数为260件,中位数为240件,众数为240件;(2)假如部门负责人把每位工人每月加工零件的任务确定为260件,你认为是否合理?为什么?如果不合理,你认为多少较为合适?(3)去掉一个最高件数540,和一个最低件数120后,请你计算出其他13名工人该月加工零件的平均数(结果保留整数),并判断用它确定每位工人每月加工零件的任务是否合适?【考点】众数;统计表;加权平均数;中位数.【分析】(1)中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.本题中应是第7个数.众数又是指一组数据中出现次数最多的数据.240出现6次.(2)应根据中位数和众数综合考虑.(3)根据平均数的定义,计算剩余13个数的平均数,继而可得结论.【解答】解:(1)∵数据由低到高排序为:120,120,210,210,210,240,240,240,240,240,240,300,300,450,540∴中位数为240.∵240出现了6次,∴众数是240,故答案为:240,240.(2)工作任务确定为260件,不合理.由题意得每月能完成260件的人数是4人,有11人不能完成此任务.尽管260是平均数,但不利于调动工人的积极性,而240既是中位数又是众数,故任务确定为240较合理;(3)=≈249,用它确定每位工人每月加工零件的任务是合适的.24.阅读下面的情景对话,然后解答问题:老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.小华:等边三角形一定是奇异三角形!小明:那直角三角形是否存在奇异三角形呢?(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题(填“真”或“假”)(2)在Rt△ABC中,两边长分别是、c=10,这个三角形是否是奇异三角形?请说明理由.【考点】勾股定理;等边三角形的性质.【分析】(1)根据题中所给的奇异三角形的定义直接进行判断即可;(2)分c是斜边和b是斜边两种情况,再根据勾股定理判断出所给的三角形是否符合奇异三角形的定义;【解答】解:(1)设等边三角形的一边为a,则a2+a2=2a2,∴符合奇异三角形”的定义.∴“等边三角形一定是奇异三角形”是真命题;故答案为:真;(2)①当c为斜边时,b==5∴a=b∴a2+c2≠2b2(或b2+c2≠2a2),∴Rt△ABC不是奇异三角形.②当b为斜边时,b==5,∵a2+b2=200∴2c2=200∴a2+b2=2c2∴Rt△ABC是奇异三角形.。
河北省-学年八年级上学期期末考试数学试卷(PDF版 含答案)
1图2卷Ⅰ(选择题,共36分)一、细心选一选,一锤定音.(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)得分评卷人1.下列轴对称图形中,·只·有一条对称轴的是…………………………………………()A.顶角不等于60°的等腰三角形B.正方形C.长方形D.圆2.下列计算结果为x 6的是……………………………………………………………()A.x 2·x 3B.(-x 2)3·x C.(x 3)4÷x 2D.(-x 3y 2)2÷y 43.将四根长度均为8cm 的细木条首尾相接,用钉子钉成四边形ABCD 木架,要使该木架不变形,需在AC 上再钉一根木条,如图1所示,则该木条的长度·不·可·能是…………………………………………()A.8cmB.10cmC.11cmD.17cm4.将一副三角板按如图2所示的位置放置,使得两条直角边在一条直线上,则∠1的度数是…………………………………………()A.90°B.75°C.60°D.45°5.下列计算结果·不·正·确的是………………………………………………………()A.2xy 24x 2y =y 2x B.2-a a 2-4a+4=12-a C.2x x+2+4x+2=2D.2y x-2y +x 2y-x=16.图3中王涵的得分是…()A.40分B.60分C.80分D.100分姓名:王涵分数:判断题.(每题20分,共100分)1.3-a 4π是分式.(√)2.3-1÷32的结果为127.(√)3.将0.000617用科学记数法可表示为6.17×10-4.(√)4.8x 2y 2是分式12xy 2和14x 2y的最简公分母.(×)5.当x=-3时,分式x+3x 2-9的值为0.(×)图3数学试卷(人教版)本试卷分卷Ⅰ和卷Ⅱ两部分.卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷共6页.总分120分,考试时间120分钟.……………………………………………密……………………………………………封…………………………………………线………………………………………………班级姓名考场考号座位号学校市、区、乡总分核分人八年级第一学期期末考试ADC B图1八年级期末数学试卷(人教版)第1页(共6页)AEDC B图9AOF E CB图6AFE DCB图5图7AE DCB图8CA′BAB′AO EDCB图47.若一个六边形的五个内角都是115°,则第六个内角的度数为………………………………()A.145°B.135°C.125°D.115°8.把多项式3x 3-12x 2+12x 分解因式,下列结果正确的是……………………………………()A.x (3x+4)(x-3)B.3x (x 2-4x+4)C.x (3x 2-12x+12)D.3x (x-2)29.如图4,已知CE 和BD 分别是△ABC 的角平分线和高线,且AE=CE ,若∠ABC=75°,则∠BOE 的度数为……………………………………()A.75°B.60°C.55°D.45°10.师徒两人做工艺品,已知徒弟每天比师傅少做6个,徒弟做48个所用的时间与师傅做72个所用的时间相同,则师傅每天做………………………………………………………………()A.12个B.18个C.20个D.24个11.如图5,在△ABC 中,AD 是高线,过点D 作DE ⊥AB 于点E ,DF ⊥AC 于点F ,且DE=DF ,则下列判断中·不·正·确的是…………………………()A.AD 是∠BAC 的平分线B.AB=ACC.AE=DED.图中有3对全等三角形12.如图6,在△ABC 中,∠ABC=∠ACB ,∠ABC 与∠ACB 的平分线交于点O ,过点O 作平行于BC 的直线,交AB 于点E ,交AC 于点F ,则图中的等腰三角形有…………………………………………………………()A.2个B.3个C.5个D.6个卷Ⅱ(非选择题,共84分)二、细心填一填,相信你填得又快又准.(本大题共5个小题,每小题3分,共15分.把答案写在题中横线上)得分评卷人13.计算:(2a+b )(2a-b )+b (2a+b )=.14.如果a-5b=12,那么a 2-10ab+25b 2a ÷a-5b a 的结果为.15.如图7,已知△ABC 的周长为13,根据图中尺规作图的痕迹,若AE=2,则△ABD 的周长为.16.如图8,已知△ABC ≌△A′B′C ,点B′在边AB 上,若∠ABC=60°,∠ACB=75°,则∠A′CB 的度数为.17.如图9,△ABC 和△CDE 都是等边三角形,且点E 在边AD 上,若∠CBE=30°,CD=2,则BE 的长度为.八年级期末数学试卷(人教版)第2页(共6页)三、开动脑筋,你一定能做对.(本大题共7个小题,共69分.解答应写出文字说明、证明过程或演算步骤)得分评卷人18.(每小题4分,共计8分)按要求完成下列各小题.(1)因式分解:4a 2-25b 2;(2)先化简,再求值:(1-1a-2)÷a-3a 2-4,其中a=-3.得分评卷人19.(本小题满分9分)如图10,△ABC 在平面直角坐标系中,点B 的坐标为(3,-5).(1)在图中画出与△ABC 关于x 轴对称的△A′B′C′,并写出点A′的坐标;(2)请在图中的y 轴上画出一点P ,使得△B′PC′的周长最短.图10ABCxOy111212345678910题号答案八年级期末数学试卷(人教版)第3页(共6页)如图11,在△ABC 中,∠ABC=40°,∠BAC=50°,点D 在边BC 上,且∠ADB=108°,AM 平分∠BAD.(1)求∠CAD 和∠MAC 的度数;(2)以AD 为边,在AD 的左侧作正五边形ADEFG ,求∠BAG 的度数.得分评卷人21.(本小题满分10分)王涵想复习分式方程,由于印刷问题,有一个数“?”看不清楚:x x-3=2-?x-3.(1)她把这个数“?”猜成-2,请你帮王涵解这个分式方程;(2)王涵的妈妈说:“我看到标准答案是:x=3是方程的增根,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?AM GDCB图11八年级期末数学试卷(人教版)第4页(共6页)图12AEDCBF所谓完全平方式,就是对于一个整式A ,如果存在另一个整式B ,使A=B 2,则称A 是完全平方式.例如:a 4=(a 2)2,a 2+2a+1=(a+1)2,则a 4和a 2+2a+1都是完全平方式.(1)下列各式中属于完全平方式的序号为;①a 8;②a 2+ab+b 2;③4b 2-4b+1;④y 2+y+14;⑤(a+b )2-14(a+b )+49;(2)若(a-b )2+mab (m ≠0)是完全平方式,(x+1)(x-3)=x 2+nx-3,求(m+n )-2的值.得分评卷人23.(本小题满分11分)如图12,已知在△ABC 和△DCB 中,∠A=∠D=90°,AB=CD ,AC 与BD 交于点E ,过点E 作EF ⊥BC 于点F.(1)求证:AC=BD ;(2)求证:EF 垂直平分BC ;(3)若EF=DE ,求∠ABE 的度数.八年级期末数学试卷(人教版)第5页(共6页)………………………………………………密……………………………………………封…………………………………………线………………………………………………得分评卷人24.(本小题满分12分)在△ABC 中,AB=AC ,BC=8,点M 从点B 出发沿射线BA 移动,同时点N 从点C 出发沿线段AC 的延长线移动,点M ,N 移动的速度相同,MN 与BC 相交于点D.(1)如图13-1,过点M 作ME ∥AC ,交BC 于点E ,求证:△DME ≌△DNC ;(2)如图13-2,∠A=60°,当点M 移动到AB 的中点时,求CD 的长度;(3)如图13-3,过点M 作MF ⊥BC 于点F.在点M 从点B 向点A (点M 不与点A ,B 重合)移动的过程中,线段BF+CD 的长度和是否保持不变?若保持不变,请求出BF+CD 的长度和;若改变,请说明理由.N F A B CMD图13-3A M E D CB N图13-1A B C MN D 图13-2八年级期末数学试卷(人教版)第6页(共6页)。
冀教版2015八年级第一学期期末数学试题
冀教版2015—2016学年八年级第一学期期末考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷共6页,总分100分,考试时间90分钟.卷Ⅰ(选择题,共20分)一、选择题(本大题共10个小题,每小题2分,满分20分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. -8的立方根是( )A .-2 B. 2 C. ±2 D. 22-2. 分式21-x 有意义的条件是 ( ) A .2≥x B.2≠x C.2=x D. 2 x3.下列图形中,是轴对称图形但不是中心对称图形的是 ( )4.下面结论正确的是 ( )A .无限小数是无理数B . 无限不循环小数是无理数C .带根号的数是无理数D . 无理数是开方开不尽的数 5.如图,△ABC ≌△ADE ,若∠BAE=130°, ∠BAD=50°,则∠BAC 的度数为 ( ) A .130° B. 50° C.30° D. 80°6.如图,已知△ABC 中AB =6,AC =4,AD 为角平分线,DE ⊥AB , DE =2,则△ABC的面积为( )A .6B .8C .10D .97.已知直角三角形的两边长为3、4则第三边长为 ( )A .5B .7C .5D .5或7 8.如图,在△ABC 中,OB , OC 分别是∠ABC ,∠ACB的平分线,OM ∥BC ,分别交AB ,AC 于点M ,N .若MB =8,NC =6则MN 的长是 ( )A .10B .8C .14D .6A B C D6题图AB D E5题图8题图9.如图,AB = AC .BE ⊥AC 于E ,CF ⊥AB 于F , BE 、CF 交于点D ,则下列结论中不正确的是( ).A . △ABE ≌△ACFB . 点D 在∠BAC 的平分线上 C .△BDF ≌△CDED .点D 是BE 的中点10.观察下面分母有理化的过程:121212)12)(12()12(1121-=--=-+-⨯=+, 从计算过程中体会方法,并利用这一方法计算(201420151341231121++++++++ )∙()12015+的值是( )A .20142015-B . 12015+C .2014D .20142- 卷Ⅱ(非选择题,共80分)注意事项:1.第Ⅱ卷共4页.2.答卷前将密封线内的项目填写清楚.二、填空题(本大题共10个小题,每小题3分,共30分,把答案写在题中横线上)11.25 = .12.化简ba b b a a ---22的结果是是 . 13. 如图,ABC ∆是等边三角形,CBD ∠=90°,BD=BC , 则1∠的度数是________.14.关于x 的分式方程15=-x a 如果有增根,则增根是 .15.如图,在△ABC 和△DEF ,若AB=DE ,BE=CF ,要使△ABC ≌△DEF ,还需添加一个条件(只要写出一个就可以)是_________.16.小峰与小月进行跳绳比赛.在相同的时间内,小峰跳了100个,小月跳了110个.如果小月比小峰每分钟多跳20个,若小峰每分钟跳绳x 个,则x 满足的方程为_____ _.17.已知:如图,在△ABC 中,BD ,CE 分别是边AC ,AB 上的高,点F 在BC 上,BF=CF .则图中与EF 相等的线段是 .F E D CB A 9题图13题图AB C D115题图18.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形边长是cm 7,则正方形A 、B 、C 、D 的面积和是 cm ². 19.将一副三角板按如图所示叠放,若设AB =1,则四边形ABCD 的面积为 .20.铁路上A ,B 两站(视为直线上两点)相距25km ,C ,D 为两村庄(视为两点),DA ⊥AB 于点A ,CB⊥AB 于点B(如图),已知DA=15km ,CB=10km ,现要在铁路AB 上建设一个土特产品收购站E ,使C ,D 两村到E 站的距离相等,则E 站应建在距A 站________km 处.三、解答题:(本大题共6个小题,共50分.解答写出文字说明、证明过程或演算步骤)21. (本小题满分6分)计算:(63 +28)÷7 22.(本小题满分9分) 解方程:1412112-=-++x x x20题图18题DC BA 7cm BCD19题图23.(本小题满分10分)已知线段AB和点O,画出线段AB关于点O的中心对称图形.保留必要的作图痕迹,并完成填空:解:(1)连结AO,BO,并延长AO到点C,延长BO到点D,使得OC= ,OD= .(2)连结 .线段CD即为所求.观察作图结果,你认为线段AB与线段CD的位置关系是 .理由如下:依作图过程可证△ABO ≌,证明三角形全等所依据的判定公理简称为,由三角形全等可得∠A = ,从而根据判定出线段AB与CD的位置关系.24.(本小题满分8分)对于题目:“化简并求值:1a+15a=.”甲、乙两人的解答不同,甲的解答是:111115aa a a a==+-=;乙的答案是:11112495a aa a a a a=+=+-=-=.谁的解答是错误的?谁的解答是正确的?为什么?24.观察下列各式及其验证过程:322322=+,验证:错误!嵌入对象无效。
2015~2016学年度上学期期末考试试卷八年级数学附答案
2015~2016学年度上学期期末考试试卷八年级数学一、选择题(每空3分,共30分)1、要使分式1x 有意义,则x 应满足的条件是( ) A .x ≠1B .x ≠﹣1C .x ≠0D .x >12、下列计算正确的是( ) A . 6a 3•6a 4=6a 7B .(2+a )2=4+2a + a 2C .(3a 3)2=6a 6D .(π﹣3.14)0=13、如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得OA=15米,OB =10米,A 、B 间的距离不可能是( ) A .5米B .10米C .15米D .20米4、一张长方形按如图所示的方式折叠,若∠AEB ′=30°,则∠B ′EF=( ) A .60°B .65°C .75°D .95°5、如图,已知△ABC 中,AB=AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合),第3题EADCBFC ’B ’第4题AB C EF P第5题第9题第10题给出以下四个结论:①AE=CF ;②△EPF 是等腰直角三角形;③2S 四边形AEPF =S △ABC ;④BE +CF =EF .上述结论中始终正确的有( ) A .4个 B .3个C .2个D .1个6、如果2925x kx ++是一个完全平方式,那么k 的值是 ( ) A 、30B 、±30C 、15D 、±157、计算:()20162014133⎛⎫-⨯-= ⎪⎝⎭( )A .13B .13- C .﹣3D .198、点M (1,2)关于x 轴对称的点的坐标为( )A.(—1,2)B.(-1,-2)C.(1,-2)D.(2,-1)9、如图,两个正方形的边长分别为a 和b ,如果10a b +=,20ab =,那么阴影部分的面积是( ) A.20B .30C.40D .1010、如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( ) A .10 B .7 C .5 D .4二、填空题(每小题3分, 共18分)11、有四条线段,长分别是为3cm 、5cm 、7cm 、9cm,如果用这些线段组成三角形,可以组成 个三角形 。
2015-2016学年度第一学期八年级数学上册期末考试试卷
八年级数学 第1页,共3页密学校 班级姓名 学号密 封 线 内 不 得 答 题2015-2016学年第一学期期末考试 座次号:八年级数学试卷一.选择题(每题3分,共30分)1. 下列各式中,正确的是( )A .()222-=- B .()932=- C .39±= D .39±=±2.在坐标平面内,有一点P (a ,b ),若ab=0,那么点P 的位置在…( ) A. 原点 B. 坐标轴上 C. y 轴 D. x 轴上3.一次函数y=-2x-3的图像不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 4.到三角形三个顶点的距离相等的点是三角形( )的交点.A. 三个内角平分线B. 三边垂直平分线C. 三条中线D. 三条高线 5.如图,函数y 1=ax +b 与y 2=bx+a 正确的图象为( )1 6. 方程组{4x 3y=k 2x+3y=5-的解x 与y 的值相等,则k =( )A. 1或-1B. -5C.5D. 1 则这12名队员年龄的众数、中位数分别是( ) A. 20,19 B. 19,19 C. 19,20.5 D. 19,208. 如图,△ABC 中,AB=5,AC=6,BC=4,边AB 的垂直平分线交 AC 于点D ,则△BDC 的周长是( )A .8B .9C .10D .11 9.如图,下列判断正确的是( )A .若∠1=∠2,则AD∥BCB .若∠1=∠2,则AB∥CDC .若∠A=∠3,则AD∥BCD .若∠A+∠ADC=180°, 则AD∥BC10. 如图,在△ABC 中,点D ,E 分别在边AC ,AB 上,BD 与CE 交于点O ,给出下列四个条件:①∠EBO=∠DCO ;②BE=CD ;③OB=OC ;④OE=OD .从上述四个条件中,选取两个条件,不能判定△ABC 是等腰三角形的是( ) A .①② B .①③ C .③④ D .②③二、填空题(每题4分,共40分)11.的平方根是 .12.把命题“对顶角相等”写成“如果…那么…”的形式 为: . 13. 已知x 、y 是实数,且,则(x ﹣y )2016= .14.已知等腰三角形的两边长分别为5㎝、3㎝,则该等腰三角形的 周长是15.已知直线y=(2m+1)x + m -3与直线 y=3x +3平行,则m= 16.已知数据1,2,3,4,5的方差为2,则11,12,13,14,15的方差为 标准差为17.小明参加了某电视台招聘记者的三项素质测试,成绩如下:采访写作70分,计算机操作60分,创意设计88分,如果采访写作、计算机操作和创意设计的成绩按4:1:3计算,则他的素质测试平均成绩为 分. 18.如右图,已知函数y ax b =+和y kx =的图象交于点P ,则根据图象可得,关于y ax by kx =+⎧⎨=⎩的二元一次方程组的解是 .19.如图,在△ABC 中,∠A=50°, ∠ABC、∠ACB 的角平分线相交于点P , 则∠BPC 的度数为 .20.==第2页,共3 页的规律用含自然数n(n≥1)的等式表示出来___________________。
2015-2016年河北省保定市竞秀区八年级第一学期期末数学试卷带答案
2015-2016年河北省保定市竞秀区八年级第一学期期末数学试卷带答案2015-2016学年河北省保定市竞秀区初二(上)期末数学试卷一、选择题(共16小题,每小题3分,满分48分)1.(3分)下列实数是无理数的是()A.B.C.D.3.1415926 2.(3分)小手盖住的点的坐标可能为()A.(3,﹣4)B.(﹣6,3)C.(5,2)D.(﹣4,﹣6)3.(3分)如图所示是荆州博物馆某周五天参观人数的折线统计图,则由图中信息可知这五天参观人数(单位:百人)的极差是()A.1B.2C.3D.44.(3分)下列计算正确的是()A.×=1B.=1C.=2D.=±25.(3分)下列语句中,不是命题的是()A.自然数也是整数B.延长线段ABC.两个锐角的和一定是直角D.同角的余角相等6.(3分)下列说法:①﹣是17的一个平方根;②的立方根是;③0.1的算术平方根是0.01;④实数和数轴上的点一一对应.其中,正确的有()A.①③B.①④C.②③D.②④7.(3分)将一副三角板按图中的方式叠放,则∠α等于()A.75°B.60°C.45°D.30°8.(3分)某商场对上月笔袋销售的情况进行统计如下表所示:经理决定本月进笔袋时多进一些蓝色的,经理的这一决定应用了哪个统计知识()A.平均数B.方差C.中位数D.众数9.(3分)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=3,BE=4,则阴影部分的面积是()A.19B.15C.12D.610.(3分)如图,下列判断中错误的是()A.由∠A+∠ADC=180°得到AB∥CD B.由AB∥CD得到∠ABC+∠C=180°C.由∠1=∠2得到AD∥BC D.由AD∥BC得到∠3=∠411.(3分)成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米.设小汽车和客车的平均速度为x千米/小时和y千米/小时,则下列方程组正确的是()A.B.。
八年级数学上学期期末考试试题(含解析) 新人教版4
河北省保定市满城区2015-2016学年八年级数学上学期期末考试试题一、选择题(每小题3分,共30分)1.以下列各组线段为边,不能组成三角形的是( )A.1cm,2cm,3cm B.2cm,3cm,4cm C.1cm,2cm,2cm D.2cm,2cm,3cm 2.下面四个图案中,是轴对称图形的是( )A.B.C.D.3.正多边形的一个外角等于45°,这个多边形的边数是( )A.6 B.8 C.10 D.124.下列运算正确的是( )A.x8÷x2=x4B.(x2)3=x5C.(﹣3xy)2=6x2y2D.2x2y•3xy=6x3y25.下列分式中,无论x取何值,分式总有意义的是( )A.B.C.D.6.点P(2,﹣3)关于x轴的对称点是( )A.(﹣2,3)B.(2,3)C.(﹣2,3)D.(2,﹣3)7.下列因式分解结果正确的是( )A.10a3+5a2=5a(2a2+a)B.4x2﹣9=(4x+3)(4x﹣3)C.a2﹣2a﹣1=(a﹣1)2D.x2﹣5x﹣6=(x﹣6)(x+1)8.下列各式中,正确的是( )A.B.C.D.9.如图,直线m表示一条河,M,N表示两个村庄,欲在m上的某处修建一个给水站,向两个村庄供水,现有如图所示的四种铺设管道的方案,图中实线表示铺设的管道,则所需管道最短的方案是( )A.B.C.D.10.如图,△ABC中,AB=AC,∠A=36°,∠ABC和∠ACB的平分线BE和CD相交于点O,则图中等腰三角形的个数是( )A.4 B.6 C.7 D.8二、填空题(毎小题3分,共30分)11.△ABC中,已知∠B=40°,∠C的外角等于100°,则∠A=__________.12.一个多边形的内角和是1440°,那么这个多边形边数是__________.13.计算4x2y•(﹣x)=__________.14.计算:()﹣2=__________.15.如图,AB+AC=7,D是AB上一点,若点D在BC的垂直平分线上,则△ACD的周长为__________.16.如图,己知∠1=∠2,要根据ASA判定△ABD≌△ACD,则需要补充的一个条件为__________.17.若点A(1﹣m,6)与B(2+n,6)关于某坐标轴对称,则m﹣n=__________.18.已知a﹣b=2,那么a2﹣b2﹣4b的值为__________.19.分式方程的解是__________.20.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形的边时反弹,第一次碰到长方形的边时的位置为P1(3,0),当点P第2015次碰到长方形的边时,点P的坐标为__________.三、解答题(本題共8个小題,共60分)21.计算:(1)(2a﹣3b)(﹣3b﹣2a)(2)(a+1+)•.22.分解因式:(1)3m2﹣24m+48(2)x3y﹣4xy.23.解方程:2﹣=.24.尺规作图:己知直线AB和AB外一点C(如图)求作:一点P,使点P与点C位于直线AB的两侧,且点P到直线AB的距离是点C到线AB 距离的2倍.(不写作法,保留作图痕迹)25.已知:如图,AB=AC,∠DAC=∠EAB,∠B=∠C.求证:BD=CE.26.如图,D为AB的中点,点E在AC上,将△ABC沿DE折叠,使点A落在BC边上的点F 处.求证:EF=EC.27.小明是学校图书馆A书库的志愿者,小伟是学校图书馆B书库的志愿者,他们各自负责本书库读者当天还回图书的整理工作.已知某天图书馆A书库恰有120册图书需整理,而B 书库恰有80册图书需整理,小明每小时整理图书的数量是小伟每小时整理图书数量的1.2倍,他们同时开始工作,结果小伟比小明提前15分钟完成工作.求小明和小伟每小时分别可以整理多少册图书?28.如图,AD是△ABC的角平分线,点F,E分别在边AC,AB上,且FD=BD.(1)求证:∠B+∠AFD=180°;(2)如果∠B+2∠DEA=180°,探究线段AE,AF,FD之间满足的等量关系,并证明.2015-2016学年河北省保定市满城区八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.以下列各组线段为边,不能组成三角形的是( )A.1cm,2cm,3cm B.2cm,3cm,4cm C.1cm,2cm,2cm D.2cm,2cm,3cm 【考点】三角形三边关系.【分析】根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.【解答】解:A、∵1+2=3,∴1,2,3不能组成三角形,故本选项正确;B、∵2+3=5>4,∴2,3,4能组成三角形,故本选项错误;C、∵1+2=3>2,∴1,2,2能组成三角形,故本选项错误;D、∵2+2=4>1=3,∴2,2,3能组成三角形,故本选项错误.故选A.【点评】本题考查了三角形的三边关系,是基础题,熟记三边关系是解题的关键.利用三边关系判断时,常用两个较小边的和与较大的边比较大小.两个较小边的和>较大的边,则能组成三角形,否则,不可以.2.下面四个图案中,是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.正多边形的一个外角等于45°,这个多边形的边数是( )A.6 B.8 C.10 D.12【考点】多边形内角与外角.【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:外角和是360°,且正多边形的每个外角相等,则多边形的边数是:360÷45=8,故选B.【点评】本题考查了外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握,比较简单.4.下列运算正确的是( )A.x8÷x2=x4B.(x2)3=x5C.(﹣3xy)2=6x2y2D.2x2y•3xy=6x3y2【考点】同底数幂的除法;幂的乘方与积的乘方;单项式乘单项式.【分析】根据同底数幂的除法底数不变指数相减;幂的乘方底数不变指数相乘;积的乘方等于乘方的积;单项式的乘法,系数相乘、同底数的幂相乘,可得答案.【解答】解:A、同底数幂的除法底数不变指数相减,故A错误;B、幂的乘方底数不变指数相乘,故B错误;C、积的乘方等于乘方的积,故C错误;D、单项式的乘法,系数相乘、同底数的幂相乘,故D正确;故选:D.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.5.下列分式中,无论x取何值,分式总有意义的是( )A.B.C.D.【考点】分式有意义的条件.【分析】根据分式有意义的条件对各选项进行逐一分析即可.【解答】解:A、∵x2≥0,∴x2+1>0,∴无论x取何值,分式总有意义,故本选项正确;B、当x+1=0,即x=﹣1时分式无意义,故本选项错误;C、当x3﹣1=0,即x=1时分式无意义,故本选项错误;D、当x=0时分式无意义,故本选项错误.故选A.【点评】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.6.点P(2,﹣3)关于x轴的对称点是( )A.(﹣2,3)B.(2,3)C.(﹣2,3)D.(2,﹣3)【考点】关于x轴、y轴对称的点的坐标.【分析】根据平面直角坐标系中对称点的规律解答.【解答】解:点P(2,﹣3)关于x轴的对称点坐标为:(2,3).故选:B.【点评】此题主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.下列因式分解结果正确的是( )A.10a3+5a2=5a(2a2+a)B.4x2﹣9=(4x+3)(4x﹣3)C.a2﹣2a﹣1=(a﹣1)2D.x2﹣5x﹣6=(x﹣6)(x+1)【考点】因式分解-十字相乘法等;因式分解-提公因式法;因式分解-运用公式法.【分析】分别根据提取公因式法以及公式法、十字相乘法分解因式得出即可.【解答】解:A、10a3+5a2=5a2(2a+1),故此选项错误;B、4x2﹣9=(2x+3)(2x﹣3),故此选项错误;C、a2﹣2a﹣1,无法因式分解,故此选项错误;D、x2﹣5x﹣6=(x﹣6)(x+1),此选项正确.故选:D.【点评】此题主要考查了提取公因式法以及公式法、十字相乘法分解因式,正确记忆公式是解题关键.8.下列各式中,正确的是( )A.B.C.D.【考点】分式的基本性质;分式的加减法.【分析】根据分式的分子分母都乘以或除以同一个不为零的整式,分式的值不变,可得答案.【解答】解:A 分母中的a没除以b,故A错误;B 异分母分式不能直接相加,故B错误;C 分式的分子分母没同乘或除以同一个不为零整式,故C错误;D 分式的分子分母都乘以(a﹣2),故D正确;故选:D.【点评】本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为零的整式,分式的值不变,注意不能一部分乘或除.9.如图,直线m表示一条河,M,N表示两个村庄,欲在m上的某处修建一个给水站,向两个村庄供水,现有如图所示的四种铺设管道的方案,图中实线表示铺设的管道,则所需管道最短的方案是( )A.B.C.D.【考点】轴对称-最短路线问题.【分析】利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.【解答】解:作点M关于直线m的对称点P′,连接nP′交直线L于P.根据两点之间,线段最短,可知选项D铺设的管道,则所需管道最短.故选D.【点评】本题考查了最短路径的数学问题.这类问题的解答依据是“两点之间,线段最短”.由于所给的条件的不同,解决方法和策略上又有所差别.10.如图,△ABC中,AB=AC,∠A=36°,∠ABC和∠ACB的平分线BE和CD相交于点O,则图中等腰三角形的个数是( )A.4 B.6 C.7 D.8【考点】等腰三角形的判定与性质.【分析】由在△ABC中,AB=AC,∠A=36°,根据等边对等角,即可求得∠ABC与∠ACB的度数,又由BD、CE分别为∠ABC与∠ACB的角平分线,即可求得∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,然后利用三角形内角和定理与三角形外角的性质,即可求得∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,由等角对等边,即可求得答案.【解答】解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB==72°,∵BD、CE分别为∠ABC与∠ACB的角平分线,∴∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,∴AE=CE,AD=BD,BO=CO,∴△ABC,△ABD,△ACE,△BOC是等腰三角形,∵∠BEC=180°﹣∠ABC﹣∠BCE=72°,∠CDB=180°﹣∠BCD﹣∠CBD=72°,∠EOB=∠DOC=∠CBD+∠BCE=72°,∴∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,∴BE=BO,CO=CD,BC=BD=CO,∴△BEO,△CDO,△BCD,△CBE是等腰三角形.∴图中的等腰三角形有8个.故选D.【点评】本题考查了等腰三角新的判定与性质、三角形内角和定理以及三角外角的性质.此题难度不大,解题的关键是求得各角的度数,掌握等角对等边与等边对等角定理的应用.二、填空题(毎小题3分,共30分)11.△ABC中,已知∠B=40°,∠C的外角等于100°,则∠A=60°.【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠B=40°,∠C的外角等于100°,∴∠A=100°﹣40°=60°.故答案为:60°.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.12.一个多边形的内角和是1440°,那么这个多边形边数是10.【考点】多边形内角与外角.【分析】利用多边形的内角和为(n﹣2)•180°即可解决问题.【解答】解:设它的边数为n,根据题意,得(n﹣2)•180°=1440°,所以n=10.故答案为:10.【点评】本题考查了多边形的内角和,利用多边形的内角和公式结合方程即可解决问题.13.计算4x2y•(﹣x)=﹣x3y.【考点】单项式乘单项式.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:4x2y•(﹣x)=﹣x3y.故答案为:﹣x3y.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.14.计算:()﹣2=.【考点】负整数指数幂.【分析】根据分式的乘方:分子分母分别乘方可得,再根据a﹣p=(a≠0,p为正整数)进行计算.【解答】解:原式==•=.故答案为:.【点评】此题主要考查了负整数指数幂,关键是掌握a﹣p=(a≠0,p为正整数).15.如图,AB+AC=7,D是AB上一点,若点D在BC的垂直平分线上,则△ACD的周长为7.【考点】线段垂直平分线的性质.【分析】先根据点D在BC的垂直平分线上得出BD=CD,故△ACD的周长=AD+CD+AC=AD+BD+AC=AB+AC.【解答】解:∵AB+AC=7,D是AB上一点,点D在BC的垂直平分线上,∴BD=CD,∴△ACD的周长=AD+CD+AC=AD+BD+AC=AB+AC=7.故答案为:7.【点评】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.16.如图,己知∠1=∠2,要根据ASA判定△ABD≌△ACD,则需要补充的一个条件为AAS.【考点】全等三角形的判定.【专题】开放型.【分析】添加∠B=∠C,再加上∠1=∠2和公共边AD=AD可利用AAS可判定△ABD≌△ACD.【解答】解:添加∠B=∠C,∵在△ADB和△ADC中,∴△ABD≌△ACD(AAS),故答案为:AAS.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.17.若点A(1﹣m,6)与B(2+n,6)关于某坐标轴对称,则m﹣n=3.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,根据移项、合并同类项,可得答案.【解答】解:由点A(1﹣m,6)与B(2+n,6)关于某坐标轴对称,得1﹣m=﹣2﹣n,移项,得m﹣n=3,故答案为:3.【点评】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.18.已知a﹣b=2,那么a2﹣b2﹣4b的值为4.【考点】完全平方公式.【分析】求出a=2+b,代入a2﹣b2﹣4b,再进行计算即可.【解答】解:∵a﹣b=2,∴a=2+b,∴那么a2﹣b2﹣4b的=(2+b)2﹣b2﹣4b=4+4b+b2﹣b2﹣4b=4,故答案为:4.【点评】本题考查了完全平方公式的应用,主要考查学生的化简能力.19.分式方程的解是x=9.【考点】解分式方程.【专题】计算题.【分析】观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘x(x﹣3),得3x﹣9=2x,解得x=9.检验:把x=9代入x(x﹣3)=54≠0.∴原方程的解为:x=9.故答案为:x=9.【点评】本题考查了解分式方程,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.20.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形的边时反弹,第一次碰到长方形的边时的位置为P1(3,0),当点P第2015次碰到长方形的边时,点P的坐标为(1,4).【考点】规律型:点的坐标.【专题】推理填空题;规律型.【分析】由图可知,每6次反弹为一个循环组依次循环,用2015除以6,根据商和余数的情况确定所对应的点的坐标即可.【解答】解:根据题意可得P(0,3),P1(3,0),P2(7,4),P3(8,3),P4(5,0),P5(1,4),P6(0,3)…经过6次反弹后动点回到出发点(0,3),∵2015÷6=335…5,∴当点P第2015次碰到矩形的边时为第336个循环组的第5次反弹,∴点P的坐标为(1,4).故答案为(1,4).【点评】本题主要考查了点的坐标的规律,由图形观察出每6次反弹为一个循环组依次循环是解题的关键.三、解答题(本題共8个小題,共60分)21.计算:(1)(2a﹣3b)(﹣3b﹣2a)(2)(a+1+)•.【考点】分式的混合运算;平方差公式.【专题】计算题.【分析】(1)根据多项式乘以多项式,然后合并同类项即可解答本题;(2)先将括号内的式子通分,然后根据同分母分式的加法合并然后再化简即可.【解答】解:(1)(2a﹣3b)(﹣3b﹣2a)=﹣6ab﹣4a2+9b2+6ab=﹣4a2+9b2(2)(a+1+)•====a.【点评】本题考查分式的混合运算和平方差公式,解题的关键是明确分式的混合运算的计算方法和平方差公式.22.分解因式:(1)3m2﹣24m+48(2)x3y﹣4xy.【考点】提公因式法与公式法的综合运用.【分析】(1)直接提取公因式3,进而利用完全平方公式分解因式即可;(2)直接提取公因式xy,再利用平方差公式分解因式.【解答】解:(1)原式=3(m2﹣8m+16)=3(m﹣4)2;(2)原式=xy(x2﹣4)=xy(x﹣2)(x+2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.23.解方程:2﹣=.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边都乘x(x+1),得2x(x+1)﹣1=x(2x+1),去括号得:2x2+2x﹣1=2x2+x,整理,得x=1,检验,当x=1时,x(x+1)≠0,则x=1是原分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.24.尺规作图:己知直线AB和AB外一点C(如图)求作:一点P,使点P与点C位于直线AB的两侧,且点P到直线AB的距离是点C到线AB 距离的2倍.(不写作法,保留作图痕迹)【考点】作图—复杂作图.【专题】作图题.【分析】过点P作PD⊥AB于D,然后在CD的延长线上截取PD=2CD即可得到点P.【解答】解:如图,点P为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.25.已知:如图,AB=AC,∠DAC=∠EAB,∠B=∠C.求证:BD=CE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】要证BD=CE,可利用判定两个三角形全等的方法“两角和它们的夹边对应相等的两个三角形全等”证△DAB≌△EAC,然后由全等三角形对应边相等得出.【解答】证明:∵∠DAC=∠EAB,∴∠DAC+∠BAC=∠EAB+∠BAC.∴∠EAC=∠DAB.在△EAC和△DAB中,,∴△DAB≌△EAC(ASA),∴BD=CE.【点评】本题主要考查了两个三角形全等的其中一种判定方法,即“角边边”判定方法.由∠EAB=∠DAC得∠EAC=∠DAB是解决本题的关键.26.如图,D为AB的中点,点E在AC上,将△ABC沿DE折叠,使点A落在BC边上的点F处.求证:EF=EC.【考点】翻折变换(折叠问题).【专题】证明题.【分析】根据折叠的性质得到DA=DF,AE=FE,∠ADE=∠FDE,根据等腰三角形性质得∠B=∠DFB,再根据三角形外角性质得到∠ADE+∠FDE=∠B+∠DFB,则∠ADE=∠B,所以DE∥BC,易得DE为△ABC的中位线,得到AE=EC,于是EF=EC.【解答】证明:∵△ABC沿DE折叠,使点A落在BC边上的点F处,∴DA=DF,AE=FE,∠ADE=∠FDE,∴∠B=∠DFB,∵∠ADF=∠B+∠DFB,即∠ADE+∠FDE=∠B+∠DFB,∴∠ADE=∠B,∴DE∥BC,而D为AB的中点,∴DE为△ABC的中位线,∴AE=EC,∴EF=EC.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了三角形中位线性质.27.小明是学校图书馆A书库的志愿者,小伟是学校图书馆B书库的志愿者,他们各自负责本书库读者当天还回图书的整理工作.已知某天图书馆A书库恰有120册图书需整理,而B 书库恰有80册图书需整理,小明每小时整理图书的数量是小伟每小时整理图书数量的1.2倍,他们同时开始工作,结果小伟比小明提前15分钟完成工作.求小明和小伟每小时分别可以整理多少册图书?【考点】分式方程的应用.【分析】设小伟每小时可以整理x册图书,则小明每小时可以整理1.2x册图书,根据同时开始工作,小伟比小明提前15分钟完成工作.列方程求解.【解答】解:设小伟每小时可以整理x册图书,则小明每小时可以整理1.2x册图书.由题意得,=+,解得:x=80,经检验:x=80是原方程的解且符合实际,则1.2x=1.2×80=96(册),答:小伟每小时可以整理80册图书,小明每小时可以整理96册图书.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.28.如图,AD是△ABC的角平分线,点F,E分别在边AC,AB上,且FD=BD.(1)求证:∠B+∠AFD=180°;(2)如果∠B+2∠DEA=180°,探究线段AE,AF,FD之间满足的等量关系,并证明.【考点】全等三角形的判定与性质.【分析】(1)在AB上截取AG=AF,进而得出∠FAD=∠DAG,利用SAS得出△AFD≌△AGD,进而得出∠AFD=∠AGD,FD=GD,即可得出∠B+∠AFD=∠DGB+∠AGD=180°;(2)首先过点E作∠DEH=∠DEA,点H在BC上,进而得出∠AFD=∠AGD=∠GEH,则GD∥EH,求出AE=AG+GE=AF+FD.【解答】解:(1)在AB上截取AG=AF.∵AD是△ABC的角平分线,∴∠FAD=∠DAG.在△AFD和△AGD中,∴△AFD≌△AGD(SAS),∴∠AFD=∠AGD,FD=GD,∵FD=BD,∴BD=GD,∴∠DGB=∠B,∴∠B+∠AFD=∠DGB+∠AGD=180°;(2)AE=AF+FD.过点E作∠DEH=∠DEA,点H在BC上.∵∠B+2∠DEA=180°,∴∠HEB=∠B.∵∠B+∠AFD=180°,∴∠AFD=∠AGD=∠GEH,∴GD∥EH.∴∠GDE=∠DEH=∠DEG.∴GD=GE.又∵AF=AG,∴AE=AG+GE=AF+FD.【点评】本题考查三角形全等的性质和判定方法以及等边三角形的性质.判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.。
初中数学河北省保定市八年级(上)期末数学考试卷
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:8的立方根是()A.2 B.﹣2 C.3 D.4试题2:一个多边形的每个内角都是108°,那么这个多边形是()A.五边形B.六边形C.七边形D.八边形试题3:下列说法中错误的是()A.四个角相等的四边形是矩形B.对角线互相垂直的矩形是正方形C.对角线相等的菱形是正方形D.四条边相等的四边形是正方形试题4:一次函数y=kx+b,则k、b的值为()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0试题5:评卷人得分以下五个大写正体字母中,是中心对称图形的共有()A.1个B.2个C.3个D.4个试题6:在下列各数中是无理数的有()﹣0.333…,,,﹣π,3.1415,,2.010101…(相邻两个1之间有1个0).A.1个B.2个C.3个D.4个试题7:计算的结果是()A.B.4 C.2 D.±4试题8:下列说法正确的是()A.数据3,4,4,7,3的众数是4B.数据0,1,2,5,a的中位数是2C.一组数据的众数和中位数不可能相等D.数据0,5,﹣7,﹣5,7的中位数和平均数都是0试题9:将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1、2、3 B.2、3、4 C.3、4、5 D.4、5、6试题10:如图,在新型俄罗斯方块游戏中(出现的图案可进行顺时针、逆时针旋转;向左、向右平移),已拼好的图案如图所示,现又出现一个形如的方块正向下运动,你必须进行以下哪项操作,才能拼成一个完整的图形()A.顺时针旋转90°,向右平移B.逆时针旋转90°,向右平移C.顺时针旋转90°,向左平移D.逆时针旋转90°,向左平移试题11:= .试题12:16的算术平方根是.试题13:化简:= .试题14:菱形有一个内角是60°,边长为5cm,则它的面积是cm2.试题15:一个多边形的内角和等于它的外角和的3倍,它是边形.试题16:是方程组的解,则2m+n= .试题17:点(4,﹣3)关于原点对称的点的坐标是.试题18:从双柏到楚雄的距离为60千米,一辆摩托车以平均每小时30千米的速度从双柏出发到楚雄,则摩托车距楚雄的距离s(千米)与行驶时间t(时)的函数表达式为s= .试题19:如图是学校与小明家位置示意图,如果以学校所在位置为坐标原点,水平方向为x轴建立直角坐标系,那么小明家所在位置的坐标为________试题20:如图,以数轴的单位长线段为边作一个矩形,以数轴的原点为旋转中心,将过原点的对角线逆时针旋转,使对角线的另一端点落在数轴负半轴的点A处,则点A表示的数是.试题21:计算:(1)(2).试题22:解方程组:试题23:已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数的图象相交于点(2,a).(1)求a的值.(2)求一次函数y=kx+b的表达式.(3)在同一坐标系中,画出这两个函数的图象.试题24:八年级二班数学期中测试成绩出来后,李老师把它绘成了条形统计图如下,请仔细观察图形回答问题:(1)该班有多少名学生?(2)估算该班这次测验的数学平均成绩?试题25:动手画一画:(1)在图①中的方格纸上有A、B、C、D四点(每个小方格的边长为1个单位长度):自己建立适当的直角坐标系,分别写出点A、B、C、D的坐标;(2)如图②,经过平移,小船上的点A移到了点B,作出平移后的小船.试题26:矩形ABCD的对角线相交于点O,DE∥AC,CE∥DB,CE、DE交于点E,请问:四边形DOCE是什么四边形?请说明理由.试题27:如图,l1表示某商场一天的手提电脑销售额与销售量的关系,l2表示该商场一天的销售成本与手提电脑销售量的关系.(1)当销售量x=2时,销售额= 万元,销售成本= 万元,利润(收入﹣成本)= 万元.(2)一天销售台时,销售额等于销售成本.(3)当销售量时,该商场赢利(收入大于成本),当销售量时,该商场亏损(收入小于成本).(4)l1对应的函数表达式是y=x .(5)写出利润与销售额之间的函数表达式.考点:立方根.专题:计算题.分析:根据立方根的定义进行解答即可.解答:解:∵23=8,∴8的立方根是2.故选A.点评:本题考查的是立方根的定义,即如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.试题2答案:考点:多边形内角与外角.分析:利用多边形的内角和=180(n﹣2)可得.解答:解:108=180(n﹣2)÷n解得n=5.故选A.点评:本题主要考查了多边形的内角和定理.考点:正方形的判定;矩形的判定.专题:证明题.分析:根据正方形和矩形的判定对各个选项进行分析从而得到最后答案.解答:解:A正确,符合矩形的定义;B正确,符合正方形的判定;C正确,符合正方形的判定;D不正确,也可能是菱形;故选D.点评:此题主要考查学生对矩形的判定及正方形的判定的理解.试题4答案:考点:一次函数图象与系数的关系.分析:根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.解答:解:∵一次函数y=kx+b的图象经过第二、四象限,∴k<0时,又∵直线与y轴正半轴相交,∴b>0.故k<0,b>0.故选C.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.试题5答案:考点:中心对称图形.分析:根据中心对称图形的概念作答.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,这个旋转点,就叫做中心对称点.解答:解:G不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180度以后,能够与它本身重合,不满足中心对称图形的定义.不符合题意;S是中心对称图形,符合题意;M不是中心对称图形,因为找不到任何这样的一点,使它绕这一点旋转180度以后,能够与它本身重合,即不满足中心对称图形的定义.不符合题意;X、Z是中心对称图形,符合题意.共3个中心对称图形.故选C.点评:掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后与原图重合.试题6答案:考点:无理数.专题:计算题.分析:根据无理数的定义对各数进行逐一分析即可.解答:解:﹣0.333…是循环小数,不是无理数;=2,不是无理数;是无理数;﹣π是无理数;3.1415,是有限小数,不是无理数;是负分数,不是无理数;2.010101…(相邻两个1之间有1个0)是循环小数,不是无理数.无理数共2个.故选B.点评:此题主要考查了无理数的定义.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.试题7答案:考点:二次根式的乘除法.分析:根据二次根式的乘法法则进行计算即可.解答:解:原式===4.故选B.点评:本题考查的是二次根式的乘法法则,即•=(a≥0,b≥0).试题8答案:考点:算术平均数;中位数;众数.分析:运用平均数,中位数,众数的概念采用排除法即可解.解答:解:A、数据3,4,4,7,3的众数是4和3.故错误;B、数据0,1,2,5,a的中位数因a的大小不确定,故中位数也无法确定.故错误;C、一组数据的众数和中位数会出现相等的情况.故错误;D、数据0,5,﹣7,﹣5,7的中位数和平数数都是0.对.故选D.点评:本题重点考查平均数,中位数,众数的概念及求法.试题9答案:考点:勾股数.分析:判断是否能组成直角三角形,只要验证两小边的平方和是否等于最长边的平方即可.解答:解:A、∵12+22≠32,∴不能组成直角三角形,故此选项错误;B、∵22+32≠42,∴不能组成直角三角形,故此选项错误;C、∵32+42=52,∴组成直角三角形,故此选项正确;D、∵42+52≠62,∴不能组成直角三角形,故此选项错误.故选C.点评:此题考查了勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.试题10答案:考点:生活中的旋转现象;生活中的平移现象.分析:在俄罗斯方块游戏中,要使其自动消失,要把三行排满,需要旋转和平移,通过观察即可得到.解答:解:由图可知,把又出现的方块顺时针旋转90°,然后向右平移即可落入已经拼好的图案的空格处.故选A.点评:本题考查了生活中的旋转现象与平移现象,准确观察又出现的方块与已经拼好的空格的形状是解题的关键,要注意看清是顺时针还是逆时针旋转,旋转多少度,难度不大.试题11答案:算术平方根.分析:表示9的算术平方根,即=3,然后根据相反数的定义即可求出结果.解答:解:∵=3,∴=﹣3.点评:此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.试题12答案:考点:算术平方根.专题:计算题.分析:根据算术平方根的定义即可求出结果.解答:解:∵42=16,∴=4.点评:此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.试题13答案:二次根式的混合运算;平方差公式.专题:计算题.分析:利用平方差公式的形式进行化简计算,即可得出答案.解答:解:原式=﹣12=1.故答案为:1.点评:本题考查了二次根式的混合运算,解答本题关键是套用平方差公式,难度一般.试题14答案:考点:菱形的性质;特殊角的三角函数值.分析:先求菱形的高,再运用公式:底×高计算.可画出草图分析.解答:解:如图,∠B=60°,AB=BC=5cm.作AE⊥BC于E,则AE=AB•sinB=5×sin60°=.∴面积S=BC•AE=5×=(cm2).点评:本题考查的是菱形的面积求法.菱形的面积有两种求法:(1)利用底乘以相应底上的高;(2)利用菱形的特殊性,菱形面积=×两条对角线的乘积.具体用哪种方法要看已知条件来选择.试题15答案:考点:多边形内角与外角.分析:根据多边形的内角和公式及外角的特征计算.解答:解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.点评:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.试题16答案:考点:二元一次方程组的解.分析:所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于m,n的二元一次方程组,解得m,n的值,即可求2m+n的值.解答:解:根据定义把代入方程,得,所以,那么2m+n=11.点评:此题主要考查了二元一次方程组解的定义以及解二元一次方程组的基本方法.试题17答案:考点:关于原点对称的点的坐标.分析:点关于原点的对称点,横、纵坐标都互为相反数,据此知道(x,y)关于原点的对称点是(﹣x,﹣y).解答:解:点(4,﹣3)关于原点对称的点的坐标是(﹣4,3).点评:本题主要是通过作图总结规律,记住,然后应用.试题18答案:考点:函数关系式.分析:根据摩托车距楚雄的距离y=60﹣行驶的距离=60﹣速度×时间,即可列出函数关系式.解答:解:∵一辆摩托车以平均每小时30千米的速度从双柏出发到楚雄,∴摩托车行驶的距离为:30t,∵从双柏到楚雄的距离为60千米,∴摩托车距楚雄的距离s=60﹣30t.故答案为s=60﹣30t.点评:本题考查了函数关系式,对于这类问题,找到所求量的等量关系是解决问题的关键.试题19答案:考点:坐标确定位置.分析:根据题意建立的平面直角坐标系,可直接确定小明家所在位置的坐标.解答:解:如图,以学校所在位置为坐标原点,水平方向为x轴建立直角坐标系,小明家所在位置的坐标为(10,2).故填空答案为:(10,2).点评:本题考查了在平面直角坐标系中确定点的坐标.试题20答案:考点:实数与数轴;勾股定理的应用;矩形的性质.分析:根据勾股定理求出所作矩形对角线的长度,也就是原点到A的长度,再根据点A在数轴的负半轴解答.解答:解:矩形的对角线长==,∴OA=,∴点A表示的数是﹣.故答案为:﹣.点评:本题考查了实数与数轴的关系,以及无理数在数轴上的作法,是基础题,需熟练掌握.试题21答案:考点:二次根式的混合运算;二次根式的加减法.分析:(1)二次根式的加减运算,先化简,再合并;(2)有除法运算和加减运算,先做乘法运算,再化简,最后合并.解答:解:(1)原式=9﹣14+4=﹣;(2)原式=﹣43=﹣12=﹣11.点评:熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.试题22答案:考点:解二元一次方程组.分析:观察原方程组中,两个方程的y系数互为相反数,可用加减消元法求解.解答:解:(1)+(2)得:4x=8,x=2.将x=2代入(2)得:y=﹣.∴方程组的解为.点评:此题主要考查的是二元一次方程组的解法.试题23答案:考点:待定系数法求一次函数解析式;一次函数的图象.专题:作图题;待定系数法.分析:(1)将点(2,a)代入正比例函数求出a的值.(2)根据(1)所求,及已知可知一次函数y=kx+b的图象经过两点(﹣1,﹣5)、(2,1),用待定系数法可求出函数关系式.(3)由于一次函数与正比例函数的图象是一条直线,所以只需根据函数的解析式求出任意两点的坐标,然后经过这两点画直线即可.解答:解:(1)∵正比例函数的图象过点(2,a)∴a=1.(2)∵一次函数y=kx+b的图象经过两点(﹣1,﹣5)、(2,1)∴,解得∴y=2x﹣3.故所求一次函数的解析式为y=2x﹣3.(3)函数图象如图:点评:本题要注意利用正比例函数与一次函数的特点,来列出方程(组),求出未知数,写出解析式.试题24答案:考点:频数(率)分布直方图.专题:图表型.分析:(1)把纵坐标上的人数加起来就是该班的总人数;(2)用每一小组的中间值乘以该组人数,求和,最后除以总人数.解答:解:(1)4+8+10+12+16=50(人),答:该班有50名学生;(2)(55×4+65×8+75×10+85×16+95×12)÷50≈80(分)答:该班这次测验的数学平均成绩约是80分.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.试题25答案:考点:利用平移设计图案.专题:网格型;开放型.分析:(1)本题是一道开放题,直角坐标系的位置不固定,但要有方向原点.并依次建立的坐标系写出各点的坐标.(2)图二中A点移动了AB个单位,所以从小船的各点作AB的平行线,且长度为AB个单位,找到新的顶点,顺次连接即可.解答:解:(1)如图建立直角坐标系(答案不唯一).可知A(2,5),B(5,4),C(6,3),D(3,2)(4分)(2)平移后的小船如图所示(4分).点评:本题主要考查了学生画直角坐标系的能力和平移变换作图.作平移图形时,找关键点的对应点是关键的一步.试题26答案:菱形的判定;平行线的性质;矩形的性质.专题:探究型.分析:首先判断出DOCE是平行四边形,而ABCD是矩形,由OC、OD是矩形对角线的一半,知OC=OD,从而得出DOCE是菱形.解答:解:四边形DOCE是菱形.理由:∵DE∥AC,CE∥DB,∴四边形DOCE是平行四边形,又∵四边形ABCD是矩形,∴AC=BD,OC=OA=AC,OB=OD=BD,∴OC=OD,∴四边形DOCE是菱形(一组邻边相等的平行四边形是菱形).点评:本题属于开放型试题,一般先从已知出发,推出一些中间结论,将它们结合起来,得出问题的结论.试题27答案:考点:一次函数的应用.专题:图表型.分析:(1)利用图象,即可求出当销售量x=2时,销售额=2万元,销售成本=3万元,利润(收入﹣成本)=2﹣3=﹣1万元.(2)利用图象,找两直线的交点,可知一天销售4台时,销售额等于销售成本.(3)由图象可知,当销售量>4时,该商场赢利(收入大于成本),当销售量<4时,该商场亏损(收入小于成本).(4)可设l1的解析式为y=kx,因为当x=2时,y=2,所以y=x(5)可设销售x台时的利润为y万元,由图象可知,当x=2时,y=2﹣3=﹣1当x=4时,y=4﹣4=0,所以可列出方程组,解之即可求出答案.解答:解:(1)2;3;﹣1(2)4(3)大于4;小于4(4)设l1的解析式为y=kx,则:当x=2时,y=2,所以y=x(5)设销售x台时的利润为y万元,则:当x=2时,y=2﹣3=﹣1当x=4时,y=4﹣4=0所以解得.所以y=x﹣2.点评:本题需仔细分析图象,利用待定系数法解决问题.。
河北省保定市八年级上学期期末数学试卷
河北省保定市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共9题;共18分)1. (2分) (2017七上·杭州月考) 有下列说法:①任何有理数都是有限小数;②实数与数轴上的点一一对应;③在 1 和 3 之间的无理数有且只有,,,这4个;④近似数 5.60 所表示的准确数 x 的范围是:5.595≤x<5.605.其中正确的个数是()A . 1B . 2C . 3D . 42. (2分)点C在x轴的下方,y轴的右侧,距离x轴3个单位长度,距离y轴5个单位长度,则点C的坐标为().A . (-3,5)B . (3,-5)C . (5,-3)D . (-5,3)3. (2分) (2017七上·商城期中) 下列各式计算中,正确的是()A . 2a+2=4aB . ﹣2x2+4x2=2x2C . x+x=x2D . 2a+3b=5ab4. (2分) 2015年是国际“光”年,某校“光学节”的纪念品是一个底面为等边三角形的三棱镜(如图).在三棱镜的侧面上,从顶点A到顶点A′镶有一圈金属丝,已知此三棱镜的高为8cm,底面边长为2cm,则这圈金属丝的长度至少为()A . 8cmB . 10cmC . 12cmD . 15cm5. (2分) (2017七下·单县期末) 若一个正多边形的一个外角是45°,则这个正多边形的边数是()A . 5B . 6C . 7D . 86. (2分) (2019八上·利辛月考) 已知(-2,y1),(0,y2)在一次函数y= a(x+1)(a<0)的图象上,则y1 ,y2 , 0的大小关系是()A . y1>0>y2B . y2>0>y1C . y1>y2>0D . y2>y1>07. (2分)如图,在等边△ABC中,D为BC边上的一点,E为AC边上的一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为()A . 9B . 12C . 15D . 188. (2分) (2015八上·龙岗期末) 下列命题中,不成立的是()A . 两直线平行,同旁内角互补B . 同位角相等,两直线平行C . 一个三角形中至少有一个角不大于60度D . 三角形的一个外角大于任何一个内角9. (2分)如图,将一张长方形纸片ABCD按图中那样折叠,若AE=3,AB=4,BE=5,则重叠部分的面积是()A . 8B . 10C . 12D . 13二、填空题 (共9题;共10分)10. (1分) (2017七上·下城期中) 已知有理数,满足:,且,则 ________.11. (1分)(2019·宁波) 如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的OP与△ABC的一边相切时,AP的长为________.12. (1分)若一次函数y=3x+7的图象与y轴的交点坐标满足二元一次方程﹣2x+my=18,则m的值为________ .13. (1分)(2019·福州模拟) 如图是甲、乙两射击运动员10次射击成绩的折线统计图,则这10次射击成绩更稳定的运动员是________.14. (2分)在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是(________,________).15. (1分)(2016·鸡西模拟) 某超市将甲、乙两种商品进价各自提价30%后,又同时降价30元出售,售出后两种商品的总利润为60元,则甲、乙两种商品进价之和为________元.16. (1分) (2017八上·金牛期末) 如图,已知AE∥BD,∠1=130°,∠2=30°,则∠C=________.17. (1分) (2020七上·德江期末) 已知,则 ________;18. (1分)已知:如图所示,M(3,2),N(1,-1).点P在y轴上使PM+PN最短,则P点坐标为________.三、解答题 (共8题;共92分)19. (20分)计算下列各题(1)(4+ )(4﹣)(2)4 + ﹣ +4(3)已知函数y=(x+1)(x﹣1)﹣1中自变量x=2 ,求函数值;(4)求直线L1:y=3x﹣2与L2:y=﹣3x+1的交点坐标.20. (5分)解方程组:.21. (15分)(2011·金华) 如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连接OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB 于点E、F,点E为垂足,连接CF.(1)当∠AOB=30°时,求弧AB的长度;(2)当DE=8时,求线段EF的长;(3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似?若存在,请求出此时点E的坐标;若不存在,请说明理由.22. (12分) (2017七下·同安期中) 完成下列推理说明:(1)如图1,已知∠1=∠2,∠B=∠C,可推出AB∥CD.理由如下:因为∠1=∠2(已知),且∠1=∠4(________)所以∠2=∠4(等量代换)所以CE∥BF(________)所以∠________=∠3(________)又因为∠B=∠C(已知)所以∠3=∠B(等量代换)所以AB∥CD(________)(2)如图2,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD (________)∴∠B=________(________)又∵∠B=∠D(已知),∴∠________=∠________(等量代换)∴AD∥BE(________)∴∠E=∠DFE(________)23. (5分)某一天,蔬菜经营户老李用了145元从蔬菜批发市场批发一些黄瓜和茄子,到菜市场去卖,黄瓜和茄子当天的批发价与零售价如下表所示:品名黄瓜茄子批发价(元/千克)34零售价(元/千克)47当天他卖完这些黄瓜和茄子共赚了90元,这天他批发的黄瓜和茄子分别是多少千克?24. (10分) (2017八下·东营期末) 垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表测试序号12345678910成绩(分)7687758787(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么? (参考数据:三人成绩的方差分别为、、 )25. (15分) (2018九上·渝中开学考) 如图,已知直线lAC:y=﹣交x轴、y轴分别为A、C两点,直线BC⊥AC交x轴于点B.(1)求点B的坐标及直线BC的解析式;(2)将△OBC关于BC边翻折,得到△O′BC,过点O′作直线O′E垂直x轴于点E,F是y轴上一点,P是直线O′E上任意一点,P、Q两点关于x轴对称,当|PA﹣PC|最大时,请求出QF+ FC的最小值;(3)若M是直线O′E上一点,且QM=3 ,在(2)的条件下,在平面直角坐标系中,是否存在点N,使得以Q、F、M、N四点为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.26. (10分) (2017九上·五莲期末) 某商场试销一种成本为每件50元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于40%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=60时,y=50;x=70时,y=40.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?参考答案一、选择题 (共9题;共18分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、二、填空题 (共9题;共10分)10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共92分)19-1、19-2、19-3、19-4、20-1、21-1、22-1、22-2、23-1、24-1、24-2、25-1、25-2、25-3、26-1、26-2、。
河北省保定市八年级上学期期末数学试卷
河北省保定市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题. (共10题;共20分)1. (2分)若a、b为实数,则下面说法正确的是()A . a为无理数,a2 一定是有理数B . 有理数与无理数的积一定是无理数C . 无理数与无理数的和一定还是无理数D . 若a为无理数,且(a+1)(b+1)=0,则b=-12. (2分)计算3n•(﹣9)•3n+2的结果是()A . ﹣32n+2+2B . ﹣3n+4C . ﹣32n+4D . ﹣3n+63. (2分)五根小木棒,其长度分别为7,15,20,24,25,现想把它们摆成两个直角三角形,图中正确的是()A .B .C .D .4. (2分)如图是某城市6月份1日至7日每天的最高、最低气温的折线统计图,在这7天中,日温差最大的一天是()A . 6月1日B . 6月2日C . 6月3日D . 6月5日5. (2分)下列计算正确的是()A . a2•a3=a6B . (a+b)(a-2b)=a2-2b2C . (ab3)2=a2b6D . 5a-2a=36. (2分)下列作图语句错误的是()A . 过直线外的一点画已知直线的平行线B . 过直线上的一点画已知直线的垂线C . 过∠AOB内的一点画∠AOB的平分线D . 过直线外一点画此直线的两条斜线,一条垂线7. (2分)下列命题:①等腰三角形的角平分线、中线和高重合,②等腰三角形两腰上的高相等;③等腰三角形的最小边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形.其中正确的有()A . 1个B . 2个C . 3个D . 4个8. (2分)下列能够说明“任何数的立方都是非负数”是假命题的反例是()A . -3B . 0C .D . 3.59. (2分)下列运算正确的是()A .B .C .D .10. (2分) (2017八上·东台月考) 有一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A . 三角形的三条中线的交点B . 三角形三边的垂直平分线的交点C . 三角形三条内角平分线的交点D . 三角形三条高所在直线的交点二、填空题. (共6题;共9分)11. (1分)已知:若的整数部分为a,小数部分为b,则2a﹣(b+3)2=________.12. (1分)(2017·蜀山模拟) 把多项式4x2y﹣4xy2﹣x3分解因式的结果是________.13. (1分) (2016七上·临清期末) 某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有________人.14. (1分)(2017·百色) 下列四个命题中:①对顶角相等;②同旁内角互补;③全等三角形的对应角相等;④两直线平行,同位角相等,其中假命题的有________(填序号)15. (1分) (2017八上·盐城开学考) 计算: =________.16. (4分)(2014·温州) 勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜地发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2 .证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB=S△ACD+S△ABC= b2+ ab.又∵S四边形ADCB=S△ADB+S△DCB= c2+ a(b﹣a)∴ b2+ ab= c2+ a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2证明:连结________∵S五边形ACBED=________又∵S五边形ACBED=________∴________∴a2+b2=c2 .三、解答题 (共9题;共111分)17. (5分)(2016·深圳模拟) 计算:.18. (10分)一块边长为(3m﹣1)米的正方形广场,经扩建后仍为正方形,其边长比原来长3米.(1)求扩建后的广场面积(2)求扩建后的广场面积比原来增加了多少平方米.(结果用含m的代数式表示,要求化简).19. (30分)计算:(1)a•a2•a3(2)(﹣3ab2c3)2(3)a3b2•(﹣ab3)3(4)(﹣x3y3)(7xy2﹣9x2y)(5)﹣3x(4x2﹣ x﹣ y)(6)(x﹣3)(x+4)20. (10分)(2017·南山模拟) 如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.(1)求证:△ABF≌△EDF;(2)若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.21. (10分)保障房建设是民心工程,某市从2009年加快保障房建设工程.现统计该市从2009年到2013年这5年新建保障房情况,绘制成如图1、2所示的折线统计图和不完整的条形统计图.(1)小颖看了统计图后说:“该市2012年新建保障房的套数比2011年少了.”你认为小颖的说法正确吗?请说明理由;(2)求2012年新建保障房的套数.22. (10分) (2017九下·东台期中) 本市新建一座圆形人工湖,为测量该湖的半径,小杰和小丽沿湖边选取A,B,C三根木柱,使得A,B之间的距离与A,C之间的距离相等,并测得BC长为120米,A到BC的距离为4米,如图所示.(1)请你帮他们求出该湖的半径;(2)如果在圆周上再另取一点P,建造一座连接B,C,P三点的三角形艺术桥,且△BCP为直角三角形,问:这样的P点可以有几处?如何找到?23. (10分) (2017八上·甘井子期末) 计算:(1)(15x2y﹣10xy2)÷5xy(2)(4y﹣1)(5﹣y)24. (16分)(2018·赣州模拟) 【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;(2)在(1)所画图形中,∠AB′B=________.(3)【问题解决】如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC=120°,求△APC的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)(4)【灵活运用】如图③,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k为常数),求BD的长(用含k的式子表示).25. (10分)如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA= ,抛物线y=ax2-ax-a经过点B(2, ),与y轴交于点D(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由·参考答案一、选择题. (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题. (共6题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共111分)17-1、18-1、18-2、19-1、19-2、19-3、19-4、19-5、19-6、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、24-4、25-1、25-2、。
保定市八年级上学期数学期末考试试卷
保定市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共11题;共21分)1. (2分) (2017七下·柳州期末) 在﹣1,,,0.7中,无理数是()A . ﹣1B .C .D . 0.72. (2分)在平面直角坐标系中,点P(2,-m2-1)(m是实数)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分) (2016九上·海南期中) 矩形ABCD的面积是16,它的长与宽的比为4:1,则该矩形的宽为()A . 1B . 2C . 3D . 44. (2分) (2016八上·昌江期中) 在下列说法中是错误的是()A . 在△ABC中,若∠A:∠B:∠C=5:2:3,则△ABC为直角三角形B . 在△ABC中,∠C=∠A﹣∠B,则△ABC为直角三角形C . 在△ABC中,若a= c,b= c,则△ABC为直角三角形D . 在△ABC中,若a:b:c=2:2:4,则△ABC为直角三角形5. (2分)点(-2,-3)关于x轴的对称点的坐标是()A . (-2,3)B . (2,3)C . (2,-3)D . (3,-2)6. (2分)两条平行线被第三条直线所截,则()A . 一对内错角的平分线互相平行B . 一对同旁内角的平分线互相平行C . 一对对顶角的平分线互相平行D . 一对邻补角的平分线互相平行7. (2分) (2020七下·古冶月考) 已知是二元一次方程 x+3ky=4 的解,则 k=()A .B . -3C .D . 28. (2分)某班体育委员统计了全班45名同学一周的体育锻炼时间(单位:小时),并绘制了如图所示的折线统计图,下列说法中错误的是()A . 众数是9B . 中位数是9C . 平均数是9D . 锻炼时间不低于9小时的有14人9. (2分)如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A . y=-x+2B . y=x+2C . y=x-2D . y=-x-210. (2分)如果一次函数y=3x+6与y=2x﹣4的图象交点坐标为(a,b),则是方程组()的解.A .B .C .D .11. (1分)若代数式y-7与2y-1的值相等,则y的值是 ________.二、填空题 (共8题;共9分)12. (1分) (2016八下·费县期中) 已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=________度.13. (1分) (2017八下·南江期末) 点P1(x1 , y1),点P2(x2 , y2)是直线上的两个点,且x1<x2 ,则y1与y2的大小关系是________。
保定市八年级上学期期末数学试卷
保定市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选一选,比比谁细心 (共8题;共16分)1. (2分) (2019八上·白云期末) 下列各图形中,是轴对称图形的是()A .B .C .D .2. (2分)下列调查适合抽样调查的是()A . 审核书稿中的错别字B . 对某社区的卫生死角进行调查C . 对八名同学的身高情况进行调查D . 对中学生目前的睡眠情况进行调查3. (2分)下列数中是无理数的是()A .B .C . π﹣3.14D .4. (2分)已知等腰三角形两边长是8cm和4cm,那么它的周长是()A . 12cmB . 16cmC . 16cm或20cmD . 20cm5. (2分)不论m取何实数,抛物线y=2(x+m)2+m的顶点一定在下列哪个函数图象上()A . y=2x2B . y=-xC . y=-2xD . y=x6. (2分)(2018·河北模拟) 如图,已知∠O=30°,点B是OM边上的一个点光源,在边ON上放一平面镜.光线BC经过平面镜反射后,反射光线与边OM的交点记为E,则△OCE是等腰三角形的个数有()A . 1个B . 2个C . 3个D . 3个以上7. (2分) (2017八下·福清期末) 如图,点A,D分别在两条直线y=3x和y=x上,AD//x轴,已知B,C都在x轴上,且四边形ABCD是矩形,则的值是()A .B .C .D .8. (2分)如图,在平面直角坐标系中,点A(-2,4),B(4,2),在x轴上取一点P,使点P到点A和点B的距离之和最小,则点P的坐标是()A . (-2,0)B . (4,0)C . (2,0)D . (0,0)二、填一填,看看谁仔细 (共10题;共14分)9. (2分) (2016八上·无锡期末) 25的平方根是________;64的立方根是________.10. (4分)将下列各数填入相应的集合中.﹣7,0,,﹣22 ,﹣2.55555…,3.01,+9,﹣2π.+10%,4.020020002…(每两个2之间依次增加1个0),无理数集合:{________…};负有理数集合:{________…};正分数集合:{________…};非负整数集合:{________…}.11. (1分)为了创建文化校园,某初中l1个班级举行班级文化建设比赛,学校设置了5个获奖名额,得分均不相同.若知道某班的得分,要判断该班能否获奖,只需知道这11个班级得分的________ .12. (1分)如图,已知AD=BC,则再添加一个条件________ (只填一种),可证出△ABC≌△BAD.13. (1分)如图,已知函数y=ax+b和y=kx的图象交于点P ,则根据图象可得,关于x , y的二元一次方程组的解是________.14. (1分)(2017·浦东模拟) 如图,矩形ABCD中,AB=4,AD=7,点E,F分别在边AD、BC上,且B、F关于过点E的直线对称,如果以CD为直径的圆与EF相切,那么AE=________.15. (1分)(2017·微山模拟) 如图,点D是等边△ABC内一点,DA=8,BD=10,CD=6,则∠ADC的度数是________.16. (1分)小明参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,今从中任选一个,选中________的可能性较小.17. (1分)如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:________18. (1分)一次函数y=(m+2)x+3﹣m,若y随x的增大而增大,函数图象与y轴的交点在x轴的上方,则m的取值范围是________.三、解答题 (共7题;共86分)19. (10分)观察下列各等式及验证过程.= ,验证 = = = ;= ,验证: = = = ;= ,验证: = = = .(1)按照上述三个等式及其验证过程的基本思想,猜想的变形结果并进行验证.(2)针对上述各式反映的规律,写出用n(n为正整数)表示的等式,并证明.20. (21分) (2017八下·启东期中) 为了让同学们了解自己的体育水平,初二1班的体育康老师对全班45名学生进行了一次体育模拟测试(得分均为整数)成绩满分为10分,成绩达到9分以上(包含9分)为优秀,成绩达到6分以上(包含6分)为合格,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数合格率优秀率男生28795%40%女生7.92 1.99896%36%根据以上信息,解答下列问题:(1)在这次测试中,该班女生得10分的人数为4人,则这个班共有女生________人;(2)补全初二1班男生体育模拟测试成绩统计图,并把相应的数据标注在统计图上;(3)补全初二1班体育模拟测试成绩分析表;(4)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由;(5)体育康老师说,从整体看,1班的体育成绩在合格率方面基本达标,但在优秀率方面还不够理想,因此他希望全班同学继续加强体育锻炼,争取在期末考试中,全班的优秀率达到60%,若男生优秀人数再增加6人,则女生优秀人数再增加多少人才能完成康老师提出的目标?21. (8分) (2016八上·南开期中) 在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称△A1B1C1;(2)写出△ABC关于x轴对称△A2B2C2的各顶点坐标:A2________;B2________;C2________.22. (10分) (2020九下·盐城月考) 如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.(1)求证:四边形ADEF是平行四边形;(2)若∠ABC=60°,BD=6,求DE的长.23. (10分) (2016八上·蓬江期末) 已知:如图,AD∥BC,AD=BC,E为BC上一点,且AE=AB.求证:(1)∠DAE=∠B;(2)△ABC≌△EAD.24. (15分)(2017·都匀模拟) 在我市双城同创的工作中,某社区计划对1200m2的区域进行绿化,经投标,由甲、乙两个施工队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为300m2区域的绿化时,甲队比乙队少用3天.(1)甲、乙两施工队每天分别能完成绿化的面积是多少?(2)设先由甲队施工x天,再由乙队施工y天,刚好完成绿化任务,求y与x的函数关系式.(3)若甲队每天绿化费用为0.4万元,乙队每天绿化费用为0.15万元,且甲、乙两队施工的总天数不超过14天,则如何安排甲、乙两队施工的天数,使施工费用最少?并求出最少费用.25. (12分) (2019八上·黄陂期末) 在平面直角坐标系中,点A(a,0),B(0,b),且a,b满足a2-2ab+b2+(b-4)2=0,点C为线段AB上一点,连接OC.(1)直接写出a=________,b=________;(2)如图1,P为OC上一点,连接PA,PB.若PA=B0,∠BPC=30°.求点P的纵坐标;(3)如图2,在(2)的条件下,点M是AB上一动点,以OM为边在OM的右侧作等边△OMN,连接CN.若OC=t,求ON+CN的最小值(结果用含t的式子表示).参考答案一、选一选,比比谁细心 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填一填,看看谁仔细 (共10题;共14分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共86分)19-1、19-2、20-1、20-2、20-3、20-4、20-5、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、第11 页共12 页第12 页共12 页。
河北省保定市八年级上学期数学期末考试试卷
河北省保定市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2019·凤翔模拟) 的算术平方根是()A .B .C .D .2. (2分)若一个数的平方根与它的立方根完全相同,则这个数是()A . 0B . 1C . -1D . ±1,03. (2分)已知a=(﹣2)0 , b=()﹣1 , c=(﹣2)﹣2 ,那么a、b、c的大小关系为()A . a>b>cB . c>a>bC . c>b>aD . b>a>c4. (2分) (2019八上·鄞州期中) 如果a>b,那么下列结论一定正确的是()A . a﹣3<b﹣3B . 1+a>1+bC . ﹣3a>﹣3bD . <5. (2分)下列二次根式属于最简二次根式的是()A .B .C .6. (2分) (2018七下·浏阳期中) 下列运算中,正确是()A .B .C .D .7. (2分)(2020·百色模拟) 对于任意实数m、n,定义一种新运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:2※6=2×6﹣2﹣6+3=7.请根据上述定义解决问题:若a<4※x<8,且解集中有2个整数解,则a的取值范围是()A . ﹣1<a≤2B . ﹣1≤a<2C . ﹣4≤a<﹣1D . ﹣4<a≤﹣18. (2分) (2017八下·钦州港期中) 下列运算中,错误的是()A .B .C .D .9. (2分)(2016·黔东南) 不等式组的整数解有三个,则a的取值范围是()A . ﹣1≤a<0B . ﹣1<a≤0C . ﹣1≤a≤0D . ﹣1<a<010. (2分) (2017八上·泸西期中) 如图,AC⊥BC,DE是AB的垂直平分线,∠CAE=30°,则∠B=()B . 35°C . 40°D . 45°11. (2分)(2017·定远模拟) 如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:① = ;② = ;③ = ;④ =其中正确的个数有()A . 1个B . 2个C . 3个D . 4个12. (2分)(2017·平塘模拟) 如图,在△ABC中,AB=AC,AB=8,BC=12,分别以AB、AC为直径作半圆,则图中阴影部分的面积是()A .B . 16π﹣32C .D .二、填空题 (共6题;共6分)13. (1分) (2019八上·大连期末) 使式子有意义的实数的取值是________.14. (1分) (2017七下·大冶期末) 不等式2x﹣3≤1的正整数解为________.15. (1分) (2020八上·覃塘期末) 如图,点A、B、C、D在同一直线上,∠AEC=∠DFB,AB=DC,请补充一个条件:________能使用“ ”的方法得△ACE≌△DBF.16. (1分) (2018七上·皇姑期末) 补全下列解题过程:如图,OD是∠AOC的平分线,且∠BOC-∠AOB=40°,若∠AOC=120°,求∠BOD的度数.解:∵OD是∠AOC的平分线,∠AOC=120°∴∠DOC= ∠________=________°.∵∠BOC+∠________=120°,∠BOC-∠AOB=40°∴∠BOC=80°∴∠BOD=∠BOC-∠________=________°17. (1分) (2019八下·瑞安期末) 如图,反比例函数y=(x>0)的图象经过矩形OABC对角线的交点M,分别交AB、BC于点D、E,连结DE.若四边形ODBE的面积为9,则△ODE的面积是________.18. (1分) (2020八上·港南期末) 观察下列等式:① ;②③…参照上面等式计算方法计算:________.三、解答题 (共8题;共60分)19. (10分)先化简再求值:( + )÷ ,其中x=﹣1.20. (5分) (2016八上·瑞安期中) 下面两图均是4×4的正方形网格,格点A,格点B和直线l的位置如图所示,点P在直线l上.(1)请分别在图1和图2中作出点P,使PA+PB最短;(2)请分别在图3和图4中作出点P,使PA-PB最长.21. (10分) (2017七下·常州期末) 已知x+y=1,xy= ,求下列各式的值:(1) x2y+xy2;(2)(x2﹣1)(y2﹣1).22. (5分)某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.求原计划每天生产的零件个数和规定的天数.23. (5分)解下列不等式组,并把(1)的解集在数轴上表示出来,并指出(2)的所有的非负整数解.(1)(2).25. (10分) (2019七下·隆昌期中) 某商场计划购进A , B两种型号的手机,已知每部A型号手机的进价比每部B型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是2100元.(1)若商场用50000元共购进A型号手机10部,B型号手机20部,求A、B两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A型号手机的数量不少于B型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?(1)若∠BAE=30°,AE=3,求菱形ABCD的周长.(2)作AF⊥C D于点F,连结EF,BD,求证:EF∥BD.(3)设AE与对角线BD相交于点G,若CE=4,BE=8,四边形CDGE和△AGD的面积分别是S1和S2,求S1-S2是的值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、20-2、21-1、21-2、22-1、23-1、23-2、25-1、25-2、26-1、26-2、26-3、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年河北省保定市竞秀区八年级(上)期末数学试卷一、选择题(共16小题,每小题3分,满分48分)1.(3分)下列实数是无理数的是()A.B.C.D.3.14159262.(3分)小手盖住的点的坐标可能为()A.(3,﹣4)B.(﹣6,3)C.(5,2) D.(﹣4,﹣6)3.(3分)如图所示是荆州博物馆某周五天参观人数的折线统计图,则由图中信息可知这五天参观人数(单位:百人)的极差是()A.1 B.2 C.3 D.44.(3分)下列计算正确的是()A.×=1 B.=1 C.=2 D.=±25.(3分)下列语句中,不是命题的是()A.自然数也是整数 B.延长线段ABC.两个锐角的和一定是直角D.同角的余角相等6.(3分)下列说法:①﹣是17的一个平方根;②的立方根是;③0.1的算术平方根是0.01;④实数和数轴上的点一一对应.其中,正确的有()A.①③B.①④C.②③D.②④7.(3分)将一副三角板按图中的方式叠放,则∠α等于()A.75°B.60°C.45°D.30°8.(3分)某商场对上月笔袋销售的情况进行统计如下表所示:经理决定本月进笔袋时多进一些蓝色的,经理的这一决定应用了哪个统计知识()A.平均数B.方差C.中位数D.众数9.(3分)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=3,BE=4,则阴影部分的面积是()A.19 B.15 C.12 D.610.(3分)如图,下列判断中错误的是()A.由∠A+∠ADC=180°得到AB∥CD B.由AB∥CD得到∠ABC+∠C=180°C.由∠1=∠2得到AD∥BC D.由AD∥BC得到∠3=∠411.(3分)成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米.设小汽车和客车的平均速度为x千米/小时和y千米/小时,则下列方程组正确的是()A.B.C.D.12.(3分)正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A.B.C.D.13.(3分)某工程队有14名员工,他们的工种及相应每人每月工资如表所示:现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差()A.变小B.不变C.变大D.无法确定14.(3分)一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发,两车离乙地的路程S(千米)与行驶时间t(小时)的函数关系如图所示,则下列结论中错误的是()A.甲、乙两地的路程是400千米B.慢车行驶速度为60千米/小时C.相遇时快车行驶了150千米D.快车出发后4小时到达乙地15.(3分)如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为()A.13cm B.cm C.2cm D.20cm16.(3分)如图所示,把一个三角形纸片ABC的三个顶角向内折叠之后(3个顶点不重合),那么图中∠1+∠2+∠3+∠4+∠5+∠6的度数和是()A.180°B.270° C.360° D.540°二、填空题(共4小题,每小题3分,满分12分)17.(3分)的平方根是.18.(3分)如图,一次函数y=kx+b的图象与正比例函数y=2x的图象平行且经过点A(1,﹣2),则k+b=.19.(3分)已知是二元一次方程组的解,则3m﹣n的值为.20.(3分)“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表示式为S=a+﹣1,小明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数.请你根据图1推断公式,并运用这个公式求得图2中多边形的面积是.三、解答题(共6小题,满分60分)21.(10分)计算:(1)(2)(3)解方程组:(4)解方程组:.22.(7分)在平面直角坐标系中,每个小方格的边长为一个单位长度.(1)点A的坐标为,点B的坐标为;(2)点C关于x轴对称点的坐标为;(3)以C、D、E为顶点的三角形的面积为;(4)点P在x轴上,且△ABP的面积等于△CDE的面积,点P的坐标为.23.(10分)某市射击队甲、乙两名优秀队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:(1)请填写表格:(2)请从下列四个不同的角度对这次测试结果进行分析:①从平均数和方差向结合看,的成绩好些;②从平均数和中位数相结合看,的成绩好些;③从平均数和折线统计图走势相结合看,的成绩好些;④如果别的队的选手成绩基本在8环左右,若要选一人参加比赛,你认为应该选.24.(8分)已知:AD⊥BC,FG⊥BC,垂足分别为D、G,且∠1=∠2,求证:∠BDE=∠C.25.(12分)某建筑工地的建筑材料每天需要120吨,已知甲材料每天最多可调出80吨,乙材料场每天最多可调出90吨.若从甲材料调运50吨建筑材料、从乙材料场调运70吨建筑材料到该工地的总运费为26000元,从甲材料场调运75吨建筑材料、从乙材料场调运45吨建筑材料到该工地的总运费为27000元.(1)求从甲、乙两材料场调运一吨建筑材料到该工地的运费各是多少元?(2)设从甲材料场调运材料a吨,总运费为W元,试写出W与a的函数关系式(注明自变量取值范围),并用函数知识说明怎样安排调运方案才能使每天的总运费最省?每天的总运费最低为多少元?26.(13分)有一条公路连接A、B两地,一个骑行俱乐部上午9点从A地出发到达B地后返回,图中折线表示骑车人离A地的距离与时间的函数关系.有一辆客车9时从B地出发,以60千米/小时的速度为匀速行驶,图中的粗线表示客车离A地的距离与时间的函数关系.(1)A、B两地相距千米,骑车人最快速度是千米/小时;(2)设骑车人离A地的距离为y1,客车离A地的距离为y2,时间为x,分别求出9点到10点之间二者的函数关系式;(3)若客车到达A地后立即返回B地(乘客上下车停留时间忽略不计),在原图上画出客车返程中离A地的距离与时间的函数图象,求出函数关系式,并求出客车与骑车人第二次相遇的时间.(4)若客车以原速度往返于两地(乘客上下车停留时间忽略不计),客车和骑车人还会相遇几次?直接写出相遇的时间.2015-2016学年河北省保定市竞秀区八年级(上)期末数学试卷参考答案与试题解析一、选择题(共16小题,每小题3分,满分48分)1.(3分)下列实数是无理数的是()A.B.C.D.3.1415926【解答】解:A、是有理数,故A错误;B、=2是有理数,故B错误;C、是无理数,故C正确;D、3.1415926是有理数,故D错误;故选:C.2.(3分)小手盖住的点的坐标可能为()A.(3,﹣4)B.(﹣6,3)C.(5,2) D.(﹣4,﹣6)【解答】解:由图可知,小手盖住的点在第四象限,∵点(3,﹣4)在第四象限,点(﹣6,3)在第二象限,点(5,2)在第一象限,点(﹣4,﹣6)在第三象限.故选A.3.(3分)如图所示是荆州博物馆某周五天参观人数的折线统计图,则由图中信息可知这五天参观人数(单位:百人)的极差是()A.1 B.2 C.3 D.4【解答】解:这五天参观人数(单位:百人)的极差=5﹣2=3.故选C.4.(3分)下列计算正确的是()A.×=1 B.=1 C.=2 D.=±2【解答】解:A、×=1,正确;B、﹣=2﹣,故此选项错误;C、÷=,故此选项错误;D、=2,故此选项错误;故选:A.5.(3分)下列语句中,不是命题的是()A.自然数也是整数 B.延长线段ABC.两个锐角的和一定是直角D.同角的余角相等【解答】解:自然数也是整数,两个锐角的和一定是直角,同角的余角相等,它们都是命题,而延长线段AB为描叙性语言,它不是命题.故选B.6.(3分)下列说法:①﹣是17的一个平方根;②的立方根是;③0.1的算术平方根是0.01;④实数和数轴上的点一一对应.其中,正确的有()A.①③B.①④C.②③D.②④【解答】解:①﹣是17的一个平方根,正确;②的立方根是,故错误;③0.1的算术平方根是,故错误;④实数和数轴上的点一一对应,正确;故选:B.7.(3分)将一副三角板按图中的方式叠放,则∠α等于()A.75°B.60°C.45°D.30°【解答】解:∵∠CBA=60°,∠BCD=45°,∴∠α=180°﹣60°﹣45°=75°,故选:A.8.(3分)某商场对上月笔袋销售的情况进行统计如下表所示:经理决定本月进笔袋时多进一些蓝色的,经理的这一决定应用了哪个统计知识()A.平均数B.方差C.中位数D.众数【解答】解:由于销售最多的颜色为蓝色,且远远多于其他颜色,所以选择多进蓝色笔袋的主要根据众数.故选:D.9.(3分)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=3,BE=4,则阴影部分的面积是()A.19 B.15 C.12 D.6【解答】解:∵在Rt△AEB中,∠AEB=90°,AE=3,BE=4,由勾股定理得:AB=5,∴正方形的面积是5×5=25,∵△AEB的面积是AE×BE=×3×4=6,∴阴影部分的面积是25﹣6=19,故选A.10.(3分)如图,下列判断中错误的是()A.由∠A+∠ADC=180°得到AB∥CD B.由AB∥CD得到∠ABC+∠C=180°C.由∠1=∠2得到AD∥BC D.由AD∥BC得到∠3=∠4【解答】解:A、由∠A+∠ADC=180°得到AB∥CD(同旁内角互补,两直线平行),正确;B、由AB∥CD得到∠ABC+∠C=180°(两直线平行,同旁内角互补),正确;C、由∠1=∠2得到AD∥BC(内错角相等,两直线平行),正确;D、由AD∥BC得到∠1=∠2(两直线平行,内错角相等),所以此选项错误.故选D.11.(3分)成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米.设小汽车和客车的平均速度为x千米/小时和y千米/小时,则下列方程组正确的是()A.B.C.D.【解答】解:设小汽车和客车的平均速度为x千米/小时和y千米/小时,由题意得,.故选:D.12.(3分)正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k 的图象大致是()A.B.C.D.【解答】解:∵正比例函数y=kx(k≠0)的图象在第二、四象限,∴k<0,∴一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.观察选项,只有B选项正确.故选:B.13.(3分)某工程队有14名员工,他们的工种及相应每人每月工资如表所示:现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差()A.变小B.不变C.变大D.无法确定【解答】解:∵减少木工2名,增加电工、瓦工各1名,∴这组数据的平均数不变,但是每个数据减去平均数后平方和增大,则该工程队员工月工资的方差变大.故选C14.(3分)一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发,两车离乙地的路程S(千米)与行驶时间t(小时)的函数关系如图所示,则下列结论中错误的是()A.甲、乙两地的路程是400千米B.慢车行驶速度为60千米/小时C.相遇时快车行驶了150千米D.快车出发后4小时到达乙地【解答】解:观察图象知甲乙两地相距400千米,故A选项正确;慢车的速度为150÷2.5=60千米/小时,故B选项正确;相遇时快车行驶了400﹣150=250千米,故C选项错误;快车的速度为250÷2.5=100千米/小时,用时400÷100=4小时,故D选项正确.故选C.15.(3分)如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为()A.13cm B.cm C.2cm D.20cm【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故选D.16.(3分)如图所示,把一个三角形纸片ABC的三个顶角向内折叠之后(3个顶点不重合),那么图中∠1+∠2+∠3+∠4+∠5+∠6的度数和是()A.180°B.270° C.360° D.540°【解答】解:由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°﹣(∠B'FG+∠B'GF)﹣(∠C'HI+∠C'IH)﹣(∠A'DE+∠A'ED)=720°﹣(180°﹣∠B')﹣(180°﹣C')=(180°﹣A')=180°+(∠B'+∠C'+∠A')又∵∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.故选C.二、填空题(共4小题,每小题3分,满分12分)17.(3分)的平方根是±.【解答】解:∵,∴的平方根是±.故答案为:±.18.(3分)如图,一次函数y=kx+b的图象与正比例函数y=2x的图象平行且经过点A(1,﹣2),则k+b=﹣2.【解答】解:∵一次函数y=kx+b的图象与正比例函数y=2x的图象平行,∴k=2,∴y=2x+b,把点A(1,﹣2)代入y=2x+b得2+b=﹣2,解得b=﹣4,∴k+b=2﹣4=﹣2.故答案为﹣2.19.(3分)已知是二元一次方程组的解,则3m﹣n的值为7.【解答】解:由题意可得:,解得:,故3m﹣n=9﹣2=7.故答案为:7.20.(3分)“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表示式为S=a+﹣1,小明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数.请你根据图1推断公式,并运用这个公式求得图2中多边形的面积是17.5.【解答】解:根据图1可得,∵三角形内由1个格点,边上有8个格点,面积为4,即4=1+﹣1;矩形内由2个格点,边上有10个格点,面积为6,即6=2+﹣1;∴公式中表示多边形内部整点个数的字母是a;代入图2中,a=15,b=7,故S=15+﹣1=17.5.故答案为:17.5三、解答题(共6小题,满分60分)21.(10分)计算:(1)(2)(3)解方程组:(4)解方程组:.【解答】解:(1)原式=4﹣6﹣1=﹣3;(2)原式=+1+3﹣2=2+1;(3)方程组整理得:,①代入②可得:8﹣4x+1=5x,解得:x=1,把x=1代入①得:y=2,则方程组的解为;(4)方程组整理得:,①﹣②得:5y=30,解得:y=6,把y=6代入②得:x=24,则方程组的解为.22.(7分)在平面直角坐标系中,每个小方格的边长为一个单位长度.(1)点A的坐标为(﹣4,4),点B的坐标为(﹣3,0);(2)点C关于x轴对称点的坐标为(﹣2,2);(3)以C、D、E为顶点的三角形的面积为6;(4)点P在x轴上,且△ABP的面积等于△CDE的面积,点P的坐标为(﹣6,0)(0,0).【解答】解:(1)根据题意可得点A的坐标为(﹣4,4),点B的坐标为(﹣3,0),故答案为:(﹣4,4)(﹣3,0);(2)可得点C关于x轴对称点的坐标为(﹣2,2);故答案为:(﹣2,2);(3)C、D、E为顶点的三角形的面积=,故答案为:6;(4)因为△ABP的面积等于△CDE的面积=6,可得:点P坐标为:(﹣6,0)(0,0),故答案为:(﹣6,0)(0,0).23.(10分)某市射击队甲、乙两名优秀队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:(1)请填写表格:(2)请从下列四个不同的角度对这次测试结果进行分析:①从平均数和方差向结合看,甲的成绩好些;②从平均数和中位数相结合看,乙的成绩好些;③从平均数和折线统计图走势相结合看,乙的成绩好些;④如果别的队的选手成绩基本在8环左右,若要选一人参加比赛,你认为应该选乙.【解答】解:(1)甲:方差=[(9﹣7)2+(5﹣7)2+(7﹣7)2+(8﹣7)2+(7﹣7)2+(6﹣7)2+(8﹣7)2+(6﹣7)2+(7﹣7)2+(7﹣7)2],=(4+4+0+1+0+1+1+1+0+0),=×12,=1.2;成绩按照从小到大的顺序排列如下:5、6、6、7、7、7、7、7、8、8、9,第5、6两个数都是7,所以,中位数是7;命中9环以上的有1环;乙:平均数=(2+4+6+8+7+7+8+9+9+10)=×70=7,成绩按照从小到大的顺序排列如下:2、4、6、7、7、8、8、9、9、10,第5个数是7,第6个数是8,所以,中位数是(7+8)=7.5;命中9环以上的有3次;填表如下:(2)①从平均数和方差结合看:甲的成绩好些;因为,甲、乙的平均数一样,而甲的方差小,成绩比乙更稳定;②从平均数和中位数相结合看:乙的成绩稍微好.因为,两人的平均数相同,乙的中位数稍微高;③从平均数和命中9环以上的次数结合看:乙的成绩好些.因为,甲、乙的平均数一样,而乙的方命中9环以上的次数有3次,而甲只有1次;④综合看,甲发挥更稳定,但射击精准度差;乙发挥虽不稳定,但击中高靶环次数更多,成绩提高潜力大,更具有培养价值.应选乙.24.(8分)已知:AD⊥BC,FG⊥BC,垂足分别为D、G,且∠1=∠2,求证:∠BDE=∠C.【解答】证明:∵AD⊥BC,FG⊥BC,∴∠ADG=∠FGC=90°,∴AD∥FG,∴∠1=∠3,∵∠1=∠2,∴∠3=∠2,∴DE∥AC,∴∠BDE=∠C.25.(12分)某建筑工地的建筑材料每天需要120吨,已知甲材料每天最多可调出80吨,乙材料场每天最多可调出90吨.若从甲材料调运50吨建筑材料、从乙材料场调运70吨建筑材料到该工地的总运费为26000元,从甲材料场调运75吨建筑材料、从乙材料场调运45吨建筑材料到该工地的总运费为27000元.(1)求从甲、乙两材料场调运一吨建筑材料到该工地的运费各是多少元?(2)设从甲材料场调运材料a吨,总运费为W元,试写出W与a的函数关系式(注明自变量取值范围),并用函数知识说明怎样安排调运方案才能使每天的总运费最省?每天的总运费最低为多少元?【解答】解:(1)设甲材料场调运一吨建筑材料的运费是x元,乙材料场调运一吨建筑材料的运费是y元,解得.答:甲材料场调运一吨建筑材料的运费是240元,乙材料场调运一吨建筑材料的运费是200元;(2)W=240a+200(120﹣a)=40a+24000(30≤a≤80),∵k>0,∴w随a的增大而增大,∴a取最小值30时w有最小值25200元,此时从甲材料场调运30吨建筑材料、从乙材料场调运90吨建筑材料到该工地.26.(13分)有一条公路连接A、B两地,一个骑行俱乐部上午9点从A地出发到达B地后返回,图中折线表示骑车人离A地的距离与时间的函数关系.有一辆客车9时从B地出发,以60千米/小时的速度为匀速行驶,图中的粗线表示客车离A地的距离与时间的函数关系.(1)A、B两地相距60千米,骑车人最快速度是45千米/小时;(2)设骑车人离A地的距离为y1,客车离A地的距离为y2,时间为x,分别求出9点到10点之间二者的函数关系式;(3)若客车到达A地后立即返回B地(乘客上下车停留时间忽略不计),在原图上画出客车返程中离A地的距离与时间的函数图象,求出函数关系式,并求出客车与骑车人第二次相遇的时间.(4)若客车以原速度往返于两地(乘客上下车停留时间忽略不计),客车和骑车人还会相遇几次?直接写出相遇的时间.【解答】解:(1)根据图中纵坐标最高点为60,可知A、B两地相距60千米,结合图形可知,骑车人在13时到14时间的速度最大,且速度为=45(千米/时).故答案为:60;45.(2)设骑车人离A地的距离为y1,客车离A地的距离为y2,时间为x,且有y1=k1x+b1,y2=k2x+b2.结合图形可知(9,60)、(10,0)在y2上,(9,0)、(10,30)在y1上,∴有和,解得:,.∴y1=30x﹣270,y2=﹣60x+600.(3)画图如下(图1),结合图形可知,点(10,0)、(11,60)在y2上,∴有,解得:.∴此时y2=60x﹣600.∵在10<x≤11时,y1=30,∴有30=60x﹣600,解得:x=.故客车与骑车人第二次相遇的时间为时.(4)画图如下(图2),同(2)的方法,可以求出各个时段y1,y2的关系式,①当11<x≤12时,y1=30x﹣300,y2=﹣60x+720,令y1=y2时,有30x﹣300=﹣60x+720,解得:x=;②当12<x≤13时,结合图形可知,当x=13时,二者相遇;③当13<x≤14时,图象无交点;④当14<x≤15时,y1=﹣15x+225,y2=60x﹣840,令y1=y2时,有﹣15x+225=60x﹣840,解得:x=.综合①②③④可知:车和骑车人还会相遇3次,相遇的时间为时、13时和时.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。