机械设计基础 蜗杆传动共58页
大学机械设计基础教学课件-蜗杆传动
2、蜗杆分度圆直径、导程角
蜗杆分度圆柱上的导程角:
m
tan
zp 1x
zm 1
zm 1
z1m
d d d
1
1
1
z d m 1 mq
1 tan
d1 (分度圆周长)
蜗杆直径系数,q
z 1
tan
为了限制滚刀数目和便于标准化,规定每一模数,仅对应有限数
目的蜗杆分度圆直径d1。 蜗杆模数与分度圆直径
第四节 蜗杆传动的热平衡计算与润滑
一、蜗杆传动的热平衡计算
由于蜗杆传动时齿面间相对滑动速度大,发热量大,如果散热 条件不好会因温升过高使润滑油黏度降低,破坏润滑油膜,导 致轮齿胶合,所以对连续工作的闭式蜗杆传动进行热平衡计算
热平衡条件:
单位时间内发 热量H1=同时间 内的散热量H2
H1 1000 P1(1) H 2 Kd A(t t0 )
v
v2 v2
v 1
S
1 2 cos
d n
1 1
60 1000cos
v v
S
1
这是蜗杆传动效率低、发热量大的 根本原因。
分目录
上一页 下一页 退出
三、失效形式与设计准则
1、失效形式
(1)蜗杆:蜗杆轴强度、刚度不足 (蜗杆连续螺旋齿,强度高,很少失效)
(2)蜗轮:胶合、点蚀、磨损
2、设计准则
(1)闭式传动:按齿面接触疲劳强度设计,校核齿根弯曲疲劳强度 (2)开式传动: (磨损、断齿)按齿根弯曲疲劳强度设计 (3)按轴的计算方法计算蜗杆轴的强度和刚度 (4)系统过热:热平衡计算(闭式蜗杆)
蜗轮结构——整体式和组合式 螺栓联接式
整体式
分目录
《机械设计基础》第7章蜗杆传动
2023REPORTING 《机械设计基础》第7章蜗杆传动•蜗杆传动概述•蜗杆传动的工作原理•蜗杆传动的参数设计•蜗杆传动的性能分析•蜗杆传动的结构设计•蜗杆传动的应用实例与优缺点分析目录20232023REPORTINGPART01蜗杆传动概述有自锁性,但效率低。
传动平稳,噪声小。
结构紧凑,传动比较大。
定义:蜗杆传动是由蜗杆和蜗轮组成的一种交错轴间的传动,通常两轴交错角为90°。
特点定义与特点普通圆柱蜗杆传动阿基米德蜗杆(ZA型)、法向直廓蜗杆(ZN型)、渐开线蜗杆(KI型)等。
圆弧圆柱蜗杆传动轴向圆弧圆柱蜗杆(86型)、法向圆弧圆柱蜗杆(68型)等。
环面蜗杆传动一次包络环面蜗杆、二次包络环面蜗杆等。
用于需要自锁的场合,如卷扬机、起重机等。
特殊应用一般应用:用于传递两交错轴之间的运动和动力,通常用于减速传动。
用于分度机构或增速机构。
用于需要较大传动比的场合,如机床、汽车等。
01030204052023REPORTINGPART02蜗杆传动的工作原理蜗杆与蜗轮在传动过程中,通过螺旋面的紧密配合实现动力传递。
配合关系蜗杆和蜗轮的螺旋角、导程角、中心距等参数需满足一定的匹配关系,以确保传动的平稳性和效率。
配合条件适当的配合间隙对蜗杆传动的性能至关重要,过紧或过松的配合间隙都会影响传动的精度和寿命。
配合间隙蜗杆与蜗轮的配合蜗杆传动的传动比等于蜗轮齿数与蜗杆头数的比值,传动比较大,可实现较大的减速效果。
传动比计算转速与转矩关系传动效率在蜗杆传动中,输入转速与输出转矩成反比关系,即输入转速越高,输出转矩越小。
由于蜗杆传动存在滑动摩擦,其传动效率相对较低,一般不超过50%。
030201轴向力分析轴向力主要由蜗杆的螺旋线方向和角度决定,轴向力过大会导致轴承过早损坏和轴向窜动。
径向力分析蜗杆传动中,径向力主要由蜗杆的螺旋角和导程角决定,径向力的大小直接影响轴承的寿命和传动的稳定性。
摩擦力分析蜗杆传动中的摩擦力主要来源于蜗杆和蜗轮之间的滑动摩擦,摩擦力的大小直接影响传动的效率和寿命。
(完整版)_蜗轮蜗杆传动
对于小模数蜗杆,规定了较大的q值,以保证蜗杆有足够的刚度。
第十二章 蜗杆传动
Northwest A&F University
第二节圆柱蜗杆传动的主要参数和几何尺寸
➢ 如图所示蜗杆螺旋面与分度圆柱的交线为螺旋线。
d1
d1
px px pz
导程pz z1 px1 z1m
第十二章 蜗杆传动
§12-1 蜗杆传动的特点和类型 §12-2 圆柱蜗杆传动的主要参数和几何尺寸 §12-3 蜗杆传动的失效形式、材料和结构
§12-4 圆柱蜗杆传动的受力分析
§12-5 圆柱蜗杆传动的强度计算
§12-6 圆柱蜗杆传动的效率、润滑和热平衡计算
《机械设计基础 》
Northwest A&F University
由于蜗轮是用与蜗杆尺寸相同的蜗轮滚刀配对加工而成的,为了 限制滚刀的数目,国家标准对每一标准模数规定了一定数目的标 准蜗杆分度圆直径d1(参见表12-1)。
直径d1与模数m的比值称为蜗杆的直径系数q。即:
q d1 m
是导出值
d1 = q m≠z1m
当模数m一定时,q值增大则蜗杆直径d1增大,蜗杆的刚度提高。因此,
第一节 蜗杆传动的特点和类型
nn
阿基米德螺线
n
n
2 nn
n
n
阿基米德蜗杆(ZA)
轴面---直线
延伸渐开线 延伸渐开线蜗杆(ZI)
加工:刀具平面垂直于螺线 特点:端面---延伸渐开线
法面---直线
第十二章 蜗杆2传动
Northwest A&F University
第一节 蜗杆传动的特点和类型
渐开线
圆弧圆柱蜗杆传动
环面蜗杆传动 蜗杆的外形是圆弧回转面,同时啮合的齿数多,传动平稳; 齿面利于润滑油膜形成,传动效率较高;
《机械设计基础》第7章 蜗杆传动
tanγ= z1/q d1 = q m q是d1与m的比值,不一定是整数。 m一定时,q越小(或d1越小)导程角γ越大,传动效率 越高,但蜗杆的强度和刚度降低。 设计蜗杆传动,在刚度准许的情况下,要求传动效率高 时q选小值;要求强度和刚度大时q选大值。
蜗杆直径系数q
q = d1/m
P1----蜗杆传动输入功率,kW;ks----为散热系数,根据箱体周围通风 条件,一般取ks =10~17[w/(m2·℃)];自然通风良好地方取大值,反 之取小值; η----传动效率;A----散热面积m2。 t0----周围空气温 度℃ 通常取20℃; [t1]----许可的工作温度,通常取70~90℃。
齿圈与轮芯用铰制孔螺栓联接。由于装拆方便,常用尺寸较大或磨损后 需要更换蜗轮齿圈的场合.
浇铸式:(图7-10c) 该型式仅用于成批生产的蜗轮。齿圈最小厚度c=2m,但不小于10 mm
§7-4 蜗杆传动的强度 计算 蜗杆传动的受力分析
蜗轮旋转方向的判定
蜗轮旋转方向,按照蜗杆的螺旋线旋向和旋转方
蜗杆传动的特 点
§7-2 蜗杆传动的主要参数和几何尺 寸 概念(图7-6)
连心线:蜗杆轴线与蜗轮轴线的公垂线。 中间平面:圆柱蜗杆轴线和连心线构成的平面。 所以中间平面内蜗杆与蜗轮的啮合相当于渐开线 齿轮与齿条(直线)的啮合
规定:设计计算以中间平面参数及其几何尺寸关系为准。 主要参数
1.模数m和压力角α;2.传动比i,蜗杆头数z1和蜗 轮齿数z2 ; 3.蜗杆导程角γ; 4.蜗杆分度圆直径d1和蜗杆直径系数q ;5.中心距a。
5.中心距a。
标准蜗杆传动其中心距计算公式:
a=
d1+d2 2
= m (q+z2) 2
《机械设计基础》第12章 蜗杆传动
3、摩擦磨损问题突出,磨损是主要 的失效形式。为了减摩耐磨,蜗轮齿圈常需用青铜制造,成本较高;
4、传动效率低,具有自锁性时,效率低于50%。
由于上述特点,蜗杆传动主要用于传递运动,而在动力传输中的应用受到限制。
其齿面一般是在车床上用直线刀刃的 车刀切制而成,车刀安装位置不同, 加工出的蜗杆齿面的齿廓形状不同。
γ
β
γ=β (蜗轮、蜗杆同旋向)
一、蜗杆传动的主要参数及其选择
1、模数m和压力角α
§12-2 蜗杆传动的参数分析及几何计算
ma1= mt2= m αa1=αt2 =α=20°
在蜗杆蜗轮传动中,规定中间平面上的模数和压力角为标准值,即:
模数m按表12-1选取,压力角取α=20° (ZA型αa=20º;ZI型αn=20º) 。
阿基米德蜗杆(ZA蜗杆) 渐开线蜗杆(ZI蜗杆)
圆柱蜗杆传动
环面蜗杆传动
锥蜗杆传动
其蜗杆体在轴向的外形是以凹弧面为母线所形成的旋转曲面,这种蜗杆同时啮合齿数多,传动平稳;齿面利于润滑油膜形成,传动效率较高。
同时啮合齿数多,重合度大;传动比范围大(10~360);承载能力和效率较高。
三、分类
在轴剖面上齿廓为直线,在垂直于蜗 杆轴线的截面上为阿基米德螺旋线。
§12-5 圆柱蜗杆传动的强度计算
一、蜗轮齿面接触疲劳强度的计算
1、校核公式:
2、设计公式:
式中:a—中心距,mm;T2 —作用在蜗轮上的转矩,T2 = T1 iη; zE—材料综合弹性系数,钢与铸锡青铜配对时,取zE=150;钢与铝青铜或灰铸铁配对时, 取zE=160。 zρ—接触系数,由d1/a查图12-11,一般d1/a=0.3~0.5。取小值时,导程角大,故效率高,但蜗杆刚性较小。 kA —使用系数,kA =1.1~1.4。有冲击载荷、环境温度高(t>35oC)、速度较高时,取大值。
机械设计基础-蜗杆传动(PPT58页)
通常情况下取蜗轮齿数z2 =28~80。若z2 <28,会使传动 的平稳性降低,且易产生根切;若z2过大,蜗轮直径 增大,与之相应蜗杆的长度增加,刚度减小,从而影
响啮合的精度。z1、z2可根据传动比i按表10-1选取。
传动比i
7~13
14~27
28~40
>40
蜗杆头数z1
4
2
2,1
1
蜗轮齿数z2 28~52
第一节 概述
一、蜗杆传动的组成
螺杆与螺纹一样,有单头、多头之分,也有左旋、右 旋之分。蜗轮的形状像斜齿轮, 它的螺旋角的大小、方向和螺 杆螺旋升角的大小、方向相同, 为了改善蜗杆与蜗轮的啮合情 况,通常将蜗轮圆柱表面的母 线做成圆弧形,部分地包围着 蜗杆,故在轴向剖面中,蜗轮 轮齿沿齿宽方向是圆弧形。
通常λ=3.5°~27°,升角小时传动效率低,但可实现 自锁;升角大时传动效率高,但加工较困难。
3.蜗杆分度圆直径d1和蜗杆直径系数q 加工蜗杆时,蜗杆滚刀的参数应与相啮合的蜗杆完全 相同,几何尺寸基本相同。由
tan L d1z1 dm 1zd 1m 1
可得蜗杆的分度圆直径可写成
d1mtaz1n
第二节 蜗杆传动的主要参数和几何尺寸计算
在中间平面上,蜗轮与蜗杆的啮合相当于渐开线齿轮 与齿条的啮合,因此,设计蜗杆传动时,其参数和尺 寸均在中间平面内确定,并沿用渐开线圆柱齿轮传动 的计算公式。
一、蜗杆传动的主要参数
1.蜗杆头数z1、蜗轮齿数z2 蜗杆头数(齿数) z1即为蜗杆螺旋线的数目,蜗杆的 头数z1一般取1、2、4。当传动比大于40或要求蜗杆自 锁时,取z1 =1;当传递功率较大时,为提高传动效率 、减少能力损失,常取z1为2、4。蜗杆头数越多,加 工精度越难保证。
机械设计基础-蜗杆传动设计
蜗杆传动设计
2. 蜗杆传动的滑动速度 蜗杆蜗轮传动时,在蜗杆蜗轮的啮合面间会产生很大的 滑动速度 vs 。滑动速度 vs 的大小对齿面之间的润滑情况、 齿面的失效形式、发热以及传动效率等都有很大的影响。滑 动速度vs的方向沿蜗杆螺旋线方向,见图 5-6 ,其大小可用下 式计算
蜗杆传动设计
图 5-6 蜗杆传动的滑动速度
蜗杆传动设计
图 5-3 蜗杆蜗轮的螺旋方向
蜗杆传动设计
二、 蜗杆传动的基本参数 蜗杆传动的基本参数与基本尺寸计算是以中间平面上的
参数与尺寸为基准的。如图 5-4 所示,通过蜗杆的轴线,且垂 直于蜗轮的轴线的平面称为蜗杆传动的中间平面。
蜗杆传动设计
图 5-4 蜗杆传动的几何尺寸
蜗杆传动设计
1. 模数和压力角 与齿轮传动一样,蜗杆传动的几何尺寸计算也以模数 m 作为主要参数。我国规定的模数 m 的标准值见表 5-1 ,阿基 米德蜗杆蜗轮的压力角标准值为 α =20° 。
蜗杆传动设计
蜗杆传动设计
蜗杆传动设计
3 )蜗杆轴的刚度验算 蜗杆通常为细长轴,过大的弯曲变形将导致啮合区域接 触不良,因此当蜗杆轴的支承跨距较大时,应根据刚度计算准 则校核其刚度。
蜗杆传动设计
三、 蜗杆传动的效率、 润滑和热平衡计算 1. 蜗杆传动的效率 闭式蜗杆传动的总效率通常包括三部分:啮合齿面间摩
蜗杆传动设计 3. 蜗杆蜗轮的中心距 蜗杆传动的中心距是指蜗杆与蜗轮轴线之间的垂直距离。
标准蜗杆传动的中心距为
一般蜗杆传动的中心距 a 按表 5-5-中的数值选取。
蜗杆传动设计
蜗杆传动设计 4. 蜗杆蜗轮的传动比 设蜗杆的转速为 n1 ,蜗轮的转速为 n2 ,其传动比 i 为
机械设计基础蜗杆传动
df =1.2m
da1=m(q+2) df1=m(q-2.4)
pa1=pt2= π m
d2=mz2
ha=m df =1.2m da2=m(q+2) df2=m(q-2.4)
c=0.2 m
a=0.5(d1 + d2) m=0.5m(q+z2)
Ft1 = Fa2 =2T1 / d1 且有关系:Fa1 = Ft2 =2T2 / d2
Fr1 = Fr2 = Ft2 tgα
式中:T1 、T1分别为作用在 蜗杆与蜗轮上的扭矩。
T2= T1 i η
二、蜗杆传动的强度计算
按节点处啮合条件来进行强度计算。
齿面接触强度验算公式:
σH = 500
KT2 d1d22
mt2=ma1=m
a1 t2
λ=β 蜗轮蜗杆轮齿旋向相同.
右旋蜗杆
左旋蜗杆
3.蜗杆分度圆直径d1和蜗杆直径系数q
加工时滚刀直径等参数与蜗杆分度圆直径等参数相同,为了 限制滚刀的数量,国标规定分度圆直径只能取标准值,并与 模数相配。
定义: q=d1/m
q 为蜗杆直径Leabharlann 数 一般取: q = 8~18。要求油温: t <90 ℃
不能满足要求时,可采取冷却措施: 1)增加散热面积----加散热片; 2)提高表面传热系数---加风扇、冷却水管、循环油冷却。
普通圆柱蜗杆传动的几何尺寸计算
名称
分度圆直径 齿顶高 齿根高 顶圆直径 根圆直径
蜗杆轴向齿距、蜗轮端面齿距 径向间隙 中心距
计算公式
蜗杆
蜗轮
d1 =mq
η=(0.95~0.97)
tgλ tg(λ+ρ’
机械设计基础课件第六章蜗杆传动
例如,齿形为A、齿形角α为20°、模数为10 mm、 分度圆直径为90 mm、头数为2的右旋圆柱蜗杆;齿数 为80的蜗轮以及由它们组成的圆柱蜗杆传动的标记如下。 蜗杆标记为:蜗杆
ZA10 90 R2
蜗轮标记为:蜗轮
ZA10 80
蜗杆传动标记为: ZA10 90 R 2 / 80
6.3
6.3.1
6.4.2
蜗杆传动的强度计算
蜗轮齿面接触疲劳强度计算与斜齿轮相似,由赫 兹公式可得,蜗杆传动接触强度校核公式
中间平面
2、传动比 i 、蜗杆头数Z1、蜗轮齿数Z2 传动比——从动轮齿数比主动轮齿数
n i 1
n2
Z 2
Z1
u
蜗杆头数Z1 一般Z1=1、2、4, 单头,i大,易自锁,效率低, 但精度好;多头杆,η↑,但加工困难,精度↓ 蜗轮齿数Z2 为避免根切, Z2 26 动力传动, Z2 80 具体应用传动比 i 、蜗杆头数Z1、蜗轮齿数Z2, 可以参考教材表6-1、6-2。
蜗杆传动的失效形式、材料和结构
蜗杆传动的滑动速度
在蜗杆传动中,蜗杆蜗轮的啮合齿面间 会产生很大的相对滑动速度 s 如图所示。
s
cos
1
sin
2
式中: 1 2 ——蜗杆和蜗轮 分度圆上的圆周速度.
6.3.2
蜗杆传动的失效形式和设计Байду номын сангаас则
和齿轮传动一样,蜗杆传动的失效形式主要 有:胶合、磨损、疲劳点蚀和轮齿折断等。由于 蜗杆传动啮合面间的相对滑动速度较大,效率低, 发热量大,在润滑和散热不良时,胶合和磨损为 主要失效形式。 蜗杆传动的设计准则为:闭式蜗杆传动按蜗 轮轮齿的齿面接触疲劳强度进行设计计算,按齿 根弯曲疲劳强度校核,并进行热平衡验算;开式 蜗杆传动,按保证齿根弯曲疲劳强度进行设计。
机械设计基础-蜗杆传动解析PPT教学课件
8
上页 下页
总目录 本章
蜗杆传动的设计计算都是以中间平面内的参数和几何关系 为标准。在中间平面上,蜗轮与蜗杆的啮合相当于渐开线齿 轮与齿条的啮合。根据正确啮合条件,蜗杆的轴向模数等于 蜗轮的端面模数;蜗杆的轴向压力角等于蜗轮的端面压力角。 规定中间平面上的模数和压力角为标准值,则:
阿基米德蜗杆传动的正确啮合条件
2020/10/16
14
上页 下页
二、蜗杆传动的受力分析
力的大小 :
圆周力
Ft1
2T1 d1
Fa2
轴向力
Ft2
2T2 d2
Fa1
径向力
2020/1F 0/1r61 F r2F t2 tg
总目录 本章
15
上页 下页
总目录 本章
圆周力
Ft——主反从 同
径向力
Fr——指向各自 的轴线
轴向力 Fa1——蜗杆左、右手螺旋定则
总目录 本章
第8章 蜗杆传动
§8-1 蜗杆传动的类型和特点 §8-2 蜗杆传动的主要参数和几何尺寸计算 §8-3 蜗杆传动的强度计算 §8-4 蜗杆传动的效率、润滑及热平衡计算 §8-5 蜗杆传动的材料和结构 §8-6 普通圆柱蜗杆传动的精度等级选择及
其安装维护
2020/10/16
1
上页 下页
总目录 本章
2020/10/16
一头 两个头 三个头
12
上页 下页
总目录 的传动比仅与蜗杆的头数和蜗轮的齿数 有关,而不等于分度圆直径之比。
蜗轮齿数:
为避免蜗轮发生根切z2应不少于26个齿,但若z2过 大,蜗轮直径增加,相应蜗杆越长,刚度越小。蜗轮齿
数z2 常在28~80 范围内选取。
机械设计基础 第12章 蜗杆传动
d1 mq
pz z1 px
tan pz z1 px z1m z1 d1 d1 d1 q
蜗杆导程 蜗杆轴向齿距
蜗杆导程角
d1越小(或q越小), 越大,传动效率越高,但蜗杆的刚度
和强度越低。 通常,转速高的蜗杆可取较小的d1值,蜗轮齿 数z2较大时可取较大的d1值。
当导程角 小于当量摩擦角时,蜗轮为主动时则发生自锁。
蜗杆材料:20Cr渗碳淬火;40Cr、35CrMo淬火;45调质
蜗轮材料:ZCuSn10P1 ZCuAl10Fe3
vs 25 m/s 耐磨性好、抗胶合
vs 6 m/s 价格便宜
HT200
vs 2 m/s 经济、低速
二、 蜗杆和蜗轮的结构 蜗杆结构:通常与轴为一体,蜗杆轴
蜗轮结构:整体式(铸铁蜗轮或尺寸很小的青铜蜗轮) 组合式(有色金属齿圈+钢或铸铁轮芯)
二、 蜗杆传动的类型 因蜗轮是用形状与蜗杆相同的滚刀加工而成,故蜗杆传动 的类型是按蜗杆的不同进行分类。
按蜗杆形状分:圆柱蜗杆和环面蜗杆。
圆柱蜗杆用直线刀刃的车刀车削成形,根据刀具安装位置 的不同,可加工出阿基米德蜗杆和渐开线蜗杆等。
圆柱蜗杆传动
环面蜗杆传动
阿基米德蜗杆:刀具两刃与蜗杆轴线共面;轴面内相当于 直线齿条,端面齿形为阿基米德螺线。 渐开线蜗杆:用两把车刀,其刀刃顶面切于蜗杆基圆柱; 端面齿廓为渐开线,在切于蜗杆基圆柱的剖面内,齿廓的 一侧为直线,轴面内为凸廓曲线。 蜗杆有左、右旋之分,常用的是右旋蜗杆。
蜗轮径向力
各力方向的确定: 类似于斜齿轮
【例】图示蜗杆传动,蜗杆1主动,转向如图。试指出蜗轮2、 3轮齿旋向及转向,并画出蜗杆1上啮合处的作用力三个分力 方向。
2
机械设计基础蜗杆传动
类型与特点
圆柱蜗杆传动
圆柱蜗杆传动具有结构紧 凑、传动比大、工作平稳 、噪音小等优点。常用于 减速装置中。
环面蜗杆传动
环面蜗杆传动的特点是承 载能力高、传动效率高, 但制造和安装精度要求较 高。
锥蜗杆传动
锥蜗杆传动具有较大的传 动比和较紧凑的结构,但 制造和安装精度也较高。
降低摩擦系数
加强冷却和润滑
通过采用先进的表面处理技术或添加减摩 剂等措施,降低蜗杆和蜗轮之间的摩擦系 数,从而减少摩擦损失。
采用有效的冷却和润滑措施,控制传动的工 作温度,以降低热损失和摩擦损失。
05
蜗杆传动的结构设计与制造工艺
结构设计要点
选择适当的蜗杆类型
根据传动要求选择合适的蜗杆类型,如圆柱 蜗杆、环面蜗杆等。
04
蜗杆传动的效率与润滑Biblioteka 效率分析1 2 3
蜗杆传动效率的计算公式
效率 = (输出功率 / 输入功率) × 100%。由于蜗 杆传动中存在滑动摩擦和滚动摩擦,因此其效率 通常低于齿轮传动。
影响蜗杆传动效率的因素
包括蜗杆头数、导程角、摩擦系数、中心距、传 动比等。其中,蜗杆头数和导程角对效率影响较 大。
首先根据蜗杆和蜗轮的相对位置及运动关系,确定作用在蜗杆和蜗轮上的外力 ;然后分析这些外力在蜗杆和蜗轮上产生的内力,包括弯矩、扭矩和轴向力等 。
蜗杆传动的受力特点
由于蜗杆和蜗轮的螺旋角不同,使得作用在蜗杆和蜗轮上的外力产生不同的分 力,这些分力在蜗杆和蜗轮上产生的内力也不同。因此,蜗杆传动的受力分析 较为复杂。
装配顺序与方法
按照先内后外、先难后易的原则进行 装配,注意保证蜗杆和蜗轮的正确啮 合。
机械设计基础12蜗杆传动
§10-6 圆柱蜗杆传动的效率、润滑和热平衡计算
(一)蜗杆传动的效率: p.200
∵VS大→ 摩擦、磨损大→发热大、效率低
123 (0((.二 三95))~蜗蜗0杆.9杆7传)传tg动动(t的g的热润)平滑衡计算
(12-13)
1 tg tg( ) arctgf
η1 -啮合效率 η2、 η3 -轴承及搅油效率 ;
(二)几何尺寸计算
→表(12-3) p.193
※ C*=0.2 ; df=d-2(ha*+C*) m= d-2.4 m
§10-3 蜗杆传动的失效形式、材料和结构
(一) 蜗杆传动的失效形式 p.194
1.失效形式 : 蜗轮→
闭式
胶合、 点蚀、
↑
↑
非锡青铜、 锡青铜
开式 磨损
2.部位 : 蜗轮轮齿上(结构、材料)
→直径系数 q=d1/m
为减少滚刀的规格数量→d1定为标准值→
d1与m搭配 →表12-1 p.191
d2=mZ2
d1 =m·q ≠ m·Z1
V2
4.齿面间滑动速度Vs:
VS V12 V22 V1 / cos
Vs V1
V1:蜗杆的圆周速度 V2:蜗轮的圆周速度
5.中心距
a=0.5(d1+d2) = 0.5m(q+Z2)≠0.5m(Z1+Z2)
§12-1 蜗杆传动的特点和类型
(一)蜗杆传动的类型:
→取决于蜗杆 按 圆柱蜗杆 阿基米德蜗杆传动(ZA) 蜗 传动
杆
的
渐开线 蜗杆传动(ZI)
形 环面蜗杆传动
状 锥蜗杆传动
(二)蜗杆传动的特点:
优点: 1.i很大,一般i=8~80, 分度i=1000 2. 传动平稳, 噪音低 3.可自锁, 结构紧凑