2011中考数学试题分类汇编阅读理解型
2011年全国各地100份中考数学试卷分类汇编-平移、旋转与对称
2011年全国各地100份中考数学试卷分类汇编第31章 平移、旋转与对称一、选择题1. (2011浙江省舟山,3,3分)如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为( ) (A )30°(B )45° (C )90° (D )135°【答案】C2. (2011广东广州市,4,3分)将点A (2,1)向左..平移2个单位长度得到点A ′,则点A ′的坐标是( ) A .(0,1) B.(2,-1) C.(4,1) D.(2,3) 【答案】A[来源:]3. (2011广东广州市,8,3分)如图1所示,将矩形纸片先沿虚线AB 按箭头方向向右..对折,接着将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )A .B .C .D .【答案】D4. (2011江苏扬州,8,3分)如图,在Rt △ABC 中,∠ACB=90º,∠A=30º,BC =2,将△ABC 绕点C 按顺时针方向旋转n 度后,得到△EDC ,此时,点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )CDB (A )ABABCD图1ABOCD(第3题)A. 30,2B.60,2C. 60,23D. 60,3 【答案】C 5. (2011山东菏泽,5,3分)如图所示,已知在三角形纸片ABC 中,BC =3, AB =6,∠BCA =90°,在AC 上取一点E ,以BE 为折痕,使AB 的一部分与BC 重合,A 与BC 延长线上的点D 重合,则DE 的长度为A .6B .3C . 23D .3【答案】C6. (2011山东泰安,3,3分)下列图形:其中是中心对称图形的个数为( )A.1B.2C.3D.4 【答案】B7. (2011浙江杭州,2,3)正方形纸片折一次,沿折痕剪开,能剪得的图形是( )A .锐角三角形B .钝角三角形C .梯形D .菱形 【答案】C8. (2011 浙江湖州,7,3)下列各图中,经过折叠不能..围成一个立方体的是【答案】D9. (2011 浙江湖州,8,3)如图,已知△OAB 是正三角形,OC ⊥OB ,OC =OB ,将△OAB 绕A B C D E点O按逆时针方向旋转,使得OA与OC重合,得到△OCD,则旋转的角度是A.150°B.120°C.90°D.60°[来源:学§科§网]【答案】A10.(2011浙江省,2,3分)下列图形中,既是轴对称图形又是中心对称图形的是()【答案】D11.(2011浙江义乌,6,3分)下列图形中,中心对称图形有()A.4个B.3个C.2个D.1个【答案】B12. (2011四川重庆,3,4分)下列图形中,是中心对称图形的是()A.B.C.D.【答案】B13. (2011浙江省嘉兴,3,4分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD 是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()(A)30°(B)45°(C)90°(D)135°【答案】C14. (2011台湾台北,21)21.坐标平面上有一个线对称图形,)25,3(-A、)211,3(-B两点在此图形上且互为对称点。
#24-综合六:阅读理解类(超级清晰版)2011年中考试题汇编
2011中考物理分类汇编——阅读理解类1阅读理解类 (2)一、选择题 (2)二、填空题 (7)三、解答题 (8)四、计算题 (18)阅读理解类一、选择题(2011泸州)1.如图甲所示,长方体金属块在细绳竖直向上拉力作用下从水中开始一直竖直向上做匀速直线运动,上升到离水面一定的高度处。
图乙是绳子拉力F随时间t变化的图像,取g=10N/kg。
根据图像信息,下列判断正确的是A.该金属块重力的大小为34NB.浸没在水中的金属块受到的浮力大小是20NC.在t1至t2时间段金属块在水中受到的浮力逐渐增大D.该金属块的密度是3.4×103kg/m3答案:B(2011黑龙江龙东地区)2.某种材料制成空心球漂浮在甲液体的液面上,沉在足够深的乙液体底部。
通过这个信息可知A.该材料的密度一定小于甲液体的密度B.该材料的密度一定大于乙液体的密度C.该材料的密度一定等于甲液体的密度D.该材料的密度一定等于乙液体的密度答案:B(2011济南)3.世界上密度最小的固体“气凝胶”是人类在探索新材料中取得的重要成果。
该物质的坚固耐用程度不亚于钢材,且能承受1400℃的高温,而密度只有3kg/m3。
一架用钢材(ρ钢=7.9×103kg/m3)制成的质量约160吨的大型飞机,如果用“气凝胶”做成,其质量相当于A.一片鸡毛的质量B.一只鸡蛋的质量C.一个成年人的质量D.一台大卡车的质量答案:C(2011黑龙江龙东地区)4.动车组是靠电力作为能源的列车,机车由大功率的电动机提供动力,动车组在到站前可以利用减速发电。
减速发电原理是先停止供电,使车速从200km/h减到90km/h,这段时间内列车利用惯性前进。
关闭电源后,电动机线圈随车轮一起转动切割磁感线,产生感应电流,自动输入电网,这样既可以减少机械磨损又可以存储能量。
在90km/h以下才进行机械刹车。
关于动车组下列说法正确的是(多选)A.列车正常运行时,使用通电导体在磁场中受到力的作用的原理来工作B.车速从200km/h减到90km/h过程中,电能转化为机械能C.车速从200km/h减到90km/h过程中,减速发电使用了电磁感应原理D.车速在90km/h以下进行机械刹车至车停稳的过程中,内能转化为机械能答案:AC(2011济南)5.据美媒体报道,在此前美国刚刚宣布恐怖组织头目本-拉登已死之后,NBA联盟就准备在即将开始的季后赛半决赛中使用金属探测器,以防止恐怖组织的报复行动。
2011年全国各地中考数学真题分类汇编:第6章不等式
2011年全国各地100份中考数学试卷分类汇编第6章 不等式(组)一、选择题1. (2011湖南永州,15,3分)某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费2.0元,以后每分钟收费1.0元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为5.0元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费4.0元.如果你想给某同学打市话,准备通话10分钟,则你所需要的电话费至少为( ) A .6.0元 B .7.0元 C .8.0元 D .9.0元 【答案】B .二、填空题1. (2011山东临沂,17,3分)有3人携带会议材料乘坐电梯,这3人的体重共210kg ,每捆材料中20kg ,电梯最大负荷为1050kg ,则该电梯在此3人乘坐的情况下最多还能搭载 捆材料. 【答案】422. (2011湖北襄阳,15,3分)我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记5 分.小明参加本次竞赛得分要超过100分,他至少要答对 道题. 【答案】14 3.三、解答题1. (2011广东广州市,21,12分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元? (2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算? 【答案】(1)120×0.95=114(元) 所以实际应支付114元.(2)设购买商品的价格为x 元,由题意得:0.8x +168<0.95x解得x>1120所以当购买商品的价格超过1120元时,采用方案一更合算.2. (2011湖北鄂州,20,8分)今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有A 、B 两水库各调出14万吨水支援甲、乙两地抗旱.从A 地到甲地50千米,到乙地30千米;从B 地到甲地60千米,到乙地45千米. ⑴设从A 水库调往甲地的水量为x 万吨,完成下表甲 乙 总计 A x 14B14调入地 水量/万吨调出地总计15 13 28⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)【答案】⑴(从左至右,从上至下)14-x 15-x x-1⑵y=50x+(14-x)30+60(15-x)+(x-1)45=5x+1275解不等式1≤x≤14所以x=1时y取得最小值y min=12803. (2011 浙江湖州,23,10)我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼.有关成本、销售额见下表:(1) 2011年,王大爷养殖甲鱼20亩,桂鱼10亩.求王大爷这一年共收益多少万元?(收益=销售额-成本)(2) 2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2011年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?(3) 已知甲鱼每亩需要饲料500kg,桂鱼每亩需要饲料700kg.根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每载装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需全部饲料比原计划减少了2次.求王大爷原定的运输车辆每次可装载饲料多少kg?【答案】解:(1)2011年王大爷的收益为:20.+.⨯⨯(3-24)10(25-2)=17(万元)(2)设养殖甲鱼x亩,则养殖桂鱼(30-x)亩.由题意得2.42(30)70,x x+-≤解得25x≤,又设王大爷可获得收益为y万元,则0.60.5(30)y x x=+-,即11510y x=+.∵函数值y随x的增大而增大,∴当x=25,可获得最大收益.答:要获得最大收益,应养殖甲鱼25亩,养殖桂鱼5亩.(3)设王大爷原定的运输车辆每次可装载饲料a kg,由(2)得,共需饲料为50025+700516000⨯⨯=(kg),根据题意,得160001600022a a-=,解得4000()a kg=.答:王大爷原定的运输车辆每次可装载饲料4000kg.4. (2011浙江绍兴,22,12分)筹建中的城南中学需720套担任课桌椅(如图),光明厂承担了这项生产任务,该厂生产桌子的必须5人一组,每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均每天要生产多少套单人课桌椅?(2)先学校筹建组组要求至少提前1天完成这项生产任务,光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.【答案】7206=120÷,∴光明厂平均每天要生产120套单人课桌椅.(2)设x人生产桌子,则(84)x-人生产椅子,则125720,584245720, 4xx⨯⨯≥-⨯⨯≥⎧⎨⎩解得6060,60,8424x x x≤≤∴=-=,∴生产桌子60人,生产椅子24人。
2011年全国各地100份中考数学试卷分类汇编(含答案)
方程的应用一、选择题A 组1、(2011年北京四中中考模拟20)某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x ,则下面所列方程正确的是( )A 、256)x 1(2892=-B 、289)x 1(2562=-C 、256)x 21(289=-D 、289)x 21(256=-答案A2.(2011年浙江仙居)近年来,全国房价不断上涨,某县201 0年4月份的房价平均每平方米为3600元, 比2008年同期的房价平均每平方米上涨了2000元,假设这两年该县房价的平均增长率均为x ,则关于x 的方程为( )A .()212000x +=B .()2200013600x +=C .()()3600200013600x -+=D .()()23600200013600x -+=答案:D3.(浙江省杭州市党山镇中2011年中考数学模拟试卷)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为 ( )(A ) 18%)201(160400160=+-+x x (B )18%)201(400160=++xx (C ) 18%20160400160=-+xx (D )18%)201(160400400=+-+x x 答案:AB 组1. (2011浙江慈吉 模拟)2010年元旦的到来, 宁波市各大商厦纷纷推出各种优惠以答谢顾客, 其中银泰百货贴出的优惠标语是: 买200元物品, 送100元购物券, 买400元物品送200购物券,……依次类推; 于是小红陪着她的妈妈一起来到大厦买东西, 没过多少时间小红就看中了一件衣服, 一问价钱需要600元. 她心想贵是贵了点,但是能送300元的购物券还是挺划算的, 于是就花600元把这件衣服买了, 同时也得到了300元购物券. 后来小红又用这300元购物券恰好买了一双鞋子, 这时就没有购物券送了. 则下列优惠中, 与小红在这次购物活动中所享受的优惠最接近的是( )A. 5折B. 6折C. 7折D. 8折 答案:C2.(2011湖北省崇阳县城关中学模拟)一种原价均为m 元的商品,甲超市连续两次打八折;乙超市一次性打六折;丙超市第一次打七折,第二次再打九折;若顾客要购买这种商品,最划算应到的超市是( ▲ )A. 甲或乙或丙B. 乙C. 丙D. 乙或丙答案:B3.(2011湖北武汉调考模拟二)黄陂木兰旅游产业发展良好,2008年为640万元,2010年为1000万元,2011年增长率与2008至2010年年平均增长率相同,则2011年旅游收入为( )A.1200万元B.1250万元C.1500万元D.1000万元答案:B4. (2011湖北武汉调考一模)某县为发展教育事业,加强了对教育经费的投入,2 0019年投入3 000万元,预计2011年投入5000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )A.3000( l+x )2=5000B.3000x 2=5000C.3000( l+x ﹪ )2=5000D.3000(l+x)+3000( l+x)2=5000答案:A5. (2011年杭州市模拟)如图,矩形的长与宽分别为a 和b ,在矩形中截取两个大小相同的圆作为圆柱的上下底面,剩余的矩形作为圆柱的侧面,刚好能组合成一个没有空隙的圆柱,则a 和b 要满足的数量关系是 A.121+=πb a B.122+=πb a C.221+=πb a D.12+=πb a 答案:D6.(2011灌南县新集中学一模)某超市一月份的营业额为200万元,已知第一季度....的总营业第5题额共1000万元, 如果平均每月增长率为x,则由题意列方程应为【 】A .200(1+x)2=1000 B .200+200×2x=1000C .200+200×3x=1000D .200[1+(1+x)+(1+x)2]=1000答案:D二、填空题 A 组1、(2011重庆市纂江县赶水镇)含有同种果蔬但浓度不同的A 、B 两种饮料,A 种饮料重 40千克,B 种饮料重60千克现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再 将每种饮料所倒出的部分与另一种饮料余下的部分混合,如果混合后的两种饮料所含的果蔬 浓度相同,那么从每种饮料中倒出的相同的重量是_____________千克.答案:242、(重庆一中初2011级10—11学年度下期3月月考)某公司生产一种饮料是由A 、B 两种原料液按一定比例配制而成,其中A 原料液的成本价为15元/千克,B 原料液的成本价为10元/千克,按现行价格销售每千克获得70%的利润率.由于市场竞争,物价上涨,A 原料液上涨20%,B 原料液上涨10%,配制后的总成本增加了12%,公司为了拓展市场,打算再投入现总成本的25%做广告宣传,如果要保证每千克利润不变,则此时这种饮料的利润率是__________.答案:50%3、(2011年北京四中三模)某商场销售一批电视机,一月份每台毛利润是售出价的20% (毛利润=售出价-买入价),二月份该商场将每台售出价调低10%(买入价不变),结 果销售台数比一月份增加120%,那么二月份的毛利润总额与一月份毛利润总额的比 是 .答案:11:124.(淮安市启明外国语学校2010-2011学年度第二学期初三数学期中试卷)某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 .答案:100)1(1202=-x5、(2011浙江杭州模拟16)由于人民生活水平的不断提高,购买理财产品成为一个热门话题。
2011中考数学真题解析110 阅读理解题(含答案)
(2012年1月最新最细)2011全国中考真题解析120考点汇编阅读理解题一、选择题1.(2011四川广安,8,3分)在直角坐标平面内的机器人接受指令“[],Aα”(α≥0,0︒<A<180︒)后的行动结果为:在原地顺时针旋转A后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y轴的负半轴,则它完成一次指令[]2,60︒后位置的坐标为()A.(1,-B.(1,-C.(-)D.()考点:创新题,阅读理解题,解直角三角形专题:创新题,阅读理解题,分析:根据题意画出图形如图所示机器人由原点位置按指令[]2,60︒到达点M的位置,作MN⊥y轴于点N,由题意可知∠MON=60°,OM=2,所以ON=OM·cos60°=1212⨯=,MN=OM·sin60°=22⨯=M在第三象限,所以该点的坐标为()1-.解答:C点评:解答本题的关键是在读懂题意的基础上画出符合题意的图形,把该问题转化为数学问题,通过添加辅助线构造直角三角形,把求点的坐标转化为求直角三角形中的直角边的长.2. (2011广西百色,14,4分)相传古印度一座梵塔圣殿中,铸有一片巨大的黄铜板,之上树立了三米高的宝石柱,其中一根宝石柱上插有中心有孔的64枚大小两两相异的一寸厚的金盘,小盘压着较大的盘子,如图,把这些金盘全部一个一个地从1柱移到3柱上去,移动过程不许以大盘压小盘,不得把盘子放到柱子之外.移动之日,喜马拉雅山将变成一座金山.设h(n)是把n个盘子从1柱移到3柱过程中移动盘子之最少次数n=1时,h(1)=1;n=2时,小盘→2柱,大盘→3柱,小柱从2柱→3柱,完成.即h(2)=3;n=3时,小盘→3柱,中盘→2柱,小柱从3柱→2柱.[即用h(2)种方法把中.小两盘移到2柱,大盘3柱;再用h(2)种方法把中.小两盘从2柱3柱,完成;我们没有时间去移64个盘子,但你可由以上移动过程的规律,计算n=6时,h(6)=()A.11 B.31 C.63 D.127考点:规律型:图形的变化类.专题:阅读型;规律型.分析:根据移动方法与规律发现,随着盘子数目的增多,都是分两个阶段移动,用盘子数目减1的移动次数都移动到2柱,然后把最大的盘子移动到3柱,再用同样的次数从2柱移动到3柱,从而完成,然后根据移动次数的数据找出总的规律求解即可.解答:解:根据题意,n=1时,h(1)=1,n=2时,小盘→2柱,大盘→3柱,小柱从2柱→3柱,完成,即h(2)=3=22﹣1;n=3时,小盘→3柱,中盘→2柱,小柱从3柱→2柱,[用h(2)种方法把中.小两盘移到2柱,大盘3柱;再用h(2)种方法把中.小两盘从2柱3柱,完成],h(3)=h(2)×h(2)+1=3×2+1=7=23﹣1,h(4)=h(3)×h(3)+1=7×2+1=15=24﹣1,…以此类推,h(n)=h(n﹣1)×h(n﹣1)+1=2n﹣1,∴h(6)=26﹣1=64﹣1=63.故选C.点评:本题考查了图形变化的规律问题,根据题目信息,得出移动次数分成两段计数,利用盘子少一个时的移动次数移动到2柱,把最大的盘子移动到3柱,然后再用同样的次数从2柱移动到3柱,从而完成移动过程是解题的关键,本题对阅读并理解题目信息的能力要求比较高.3.(2011•德州,7,3分)一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是()A、a4>a2>a1B、a4>a3>a2C、a1>a2>a3D、a2>a3>a4考点:正多边形和圆;等边三角形的判定与性质;多边形内角与外角;平行四边形的判定与性质。
2011年中考数学试题分类45 阅读理解型
第45章 阅读理解型1. (2011江苏南京,28,11分) 问题情境已知矩形的面积为a (a 为常数,a >0),当该矩形的长为多少时,它的周长最小?最小值是多少? 数学模型设该矩形的长为x ,周长为y ,则y 与x 的函数关系式为2()(0)ay x x x=+>. 探索研究⑴我们可以借鉴以前研究函数的经验,先探索函数1(0)y x x x=+>的图象性质. ① 填写下表,画出函数的图象:②观察图象,写出该函数两条不同类型的性质;③在求二次函数y=ax 2+bx +c (a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数1y x x=+(x >0)的最小值. 解决问题⑵用上述方法解决“问题情境”中的问题,直接写出答案.【答案】解:⑴①174,103,52,2,52,103,174. 函数1y x x=+(0)x >的图象如图.②本题答案不唯一,下列解法供参考.当01x <<时,y 随x 增大而减小;当1x >时,y 随x 增大而增大;当1x =时函数1y x x =+(0)x >的最小值为2. ③1y x x =+=22+=22+-=22+,即1x =时,函数1y x x=+(0)x >的最小值为2.2. (2011江苏南通,27,12分)(本小题满分12分)已知A (1,0), B (0,-1),C (-1,2),D (2,-1),E (4,2)五个点,抛物线y =a (x -1)2+k (a >0),经过其中三个点. (1) 求证:C ,E 两点不可能同时在抛物线y =a (x -1)2+k (a >0)上; (2) 点A 在抛物线y =a (x -1)2+k (a >0)上吗?为什么? (3)求a 和k 的 值.【答案】(1)证明:将C ,E 两点的坐标代入y =a (x -1)2+k (a >0)得,4292a k a k +=⎧⎨+=⎩,解得a =0,这与条件a >0不符, ∴C ,E 两点不可能同时在抛物线y =a (x -1)2+k (a >0)上. (2)【法一】∵A 、C 、D 三点共线(如下图),∴A 、C 、D 三点也不可能同时在抛物线y =a (x -1)2+k (a >0)上. ∴同时在抛物线上的三点有如下六种可能: ①A 、B 、C ; ②A 、B 、E ; ③A 、B 、D ; ④A 、D 、E ; ⑤B 、C 、D ; ⑥B 、D 、E .将①、②、③、④四种情况(都含A 点)的三点坐标分别代入y =a (x -1)2+k (a >0),解得:①无解;②无解;③a =-1,与条件不符,舍去;④无解. 所以A 点不可能在抛物线y =a (x -1)2+k (a >0)上. 【法二】∵抛物线y =a (x -1)2+k (a >0)的顶点为(1,k )假设抛物线过A (1,0),则点A 必为抛物线y =a (x -1)2+k (a >0)的顶点,由于抛物线的开口向上且必过五点A 、B 、C 、D 、E 中的三点,所以必过x 轴上方的另外两点C 、E ,这与(1)矛盾,所以A 点不可能在抛物线y =a (x -1)2+k (a >0)上. (3)Ⅰ.当抛物线经过(2)中⑤B 、C 、D 三点时,则 142a k a k +=-⎧⎨+=⎩,解得12a k =⎧⎨=-⎩Ⅱ. 当抛物线经过(2)中⑥B 、D 、E 三点时,同法可求:38118a k ⎧=⎪⎪⎨⎪=-⎪⎩.∴12a k =⎧⎨=-⎩或38118a k ⎧=⎪⎪⎨⎪=-⎪⎩.3. (2011四川凉山州,28,12分)如图,抛物线与x 轴交于A (1x ,0)、B (2x ,0)两点,且12x x <,与y 轴交于点()0,4C -,其中12x x ,是方程24120x x --=的两个根。
2011全国各省市中考数学试题分类汇编-—有理数
2011全国各省市中考数学试题分类汇编-—有理数(附答案) 一. 选择题1.(2011安徽中考)1. -2,0,2,-3这四个数中最大的是…………………【 】A.-1B.0C.1D.22.(2011广东中考)1.-2的倒数是( )A .2B .-2C .21 D .21-3.(2011扬州市中考)1.-5的倒数是( )A .-5B .5C .- 15D .154.(2011广东茂名市中考)1、计算:0)1(1---的结果正确..的是( ) A .0 B .1 C .2 D .2-5.(2011武汉市中考)1.有理数-3的相反数是( ) A.3. B.-3. C.31 D.31-.6.(2011连云港市中考)1.-2的相反数是( )A .2B .-2C . 2D .127.(2011苏州市中考)1.12()2⨯-的结果是( )A .-4B .-1C .14- D .328.(2011宿迁市中考)1.下列各数中,比0小的数是(▲)A .-1B .1C .2D .π9.(2011泰州市中考)1.21-的相反数是( )A .21- B .21 C .2 D .2-10.(2011大连市中考)1.-12的相反数是 ( ) A .-2 B .-12C .12D .211.(2011赤峰市中考)1.下列计算正确的是( )(A )088=--)( (B )1221=⨯)()(--(C )011--=() (D )22-|-|=12.(2011德州市中考)1.下列计算正确的是( )(A )088=--)( (B )1221=⨯)()(-- (C )011--=() (D )22-|-|=13.(2011菏泽市中考)1. -32的倒数是( )A.32B.23C.32- D.23-14.(2011·济宁中考)1、计算 -1-2的结果是( ) A.-1 B.1 C.-3 D. 315.(2011泰安市中考)1. 54-的倒数是( )(A )54 (B )45 (C )54- (D )45-16.(2011乐山市中考)1.小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为( )(A )4℃ (B )9℃ (C )-1℃ (D )-9℃17.(2011温州市中考)1、计算:2)1(+-的结果是( ) A 、-1 B 、1 C 、-3 D 、318.(2011无锡市中考)1.︳-3︳的值等于 ( ▲ ) A .3 8.-3 C .±3 D .319.(2011无锡市中考)2.若a>b ,则 ( ▲ ) A .a>-b B .a<-b C .-2a>-2b D .-2a<-2b20.(2011舟山市中考)1.-6的绝对值是( ▲ ) (A )-6(B )6(C )61 (D )61-21.(2011金华市中考)1.下列各组数中,互为相反数的是( ▲ )A .2和-2B .-2和12C .-2和12-D .12和222.(2011金华市中考)4.有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ▲ )A .+2B .-3C .+3D .+423.(2011宁波市中考)1.下列各数中是正整数的是( )A .-1B . 2C .0.5D . 224.(2011台州市中考)1.在12、0、1、-2这四个数中,最小的数是【 】A .1 2B .0C .1D .-225.(2011盐城市中考)1.-2的绝对值是( )A .-2B .- 12C .2D .1226.(2011杭州市中考)3. =⨯36)102(( )A. 9106⨯B. 9108⨯C. 18102⨯ D. 18108⨯27.(2011重庆市中考)1.在-6,0,3,8这四个数中,最小的数是( ) A . -6 B .0 C .3 D . 828.(2011台湾中考)2.計算33)4(7-+之值為何?( ) (A) 9 (B) 27 (C) 279 (D) 40729.(2011台湾中考)12.判斷312是96的幾倍?( ) (A) 1 (B) (31)2(C) (31)6 (D) (-6)230.(2011台北市中考)1.图(一)数在线的O 是原点,A 、B 、C 三点所表示的数分别为a 、b 、c 。
2011年全国各地中考数学真题分类汇编:第2章实数
第2章 实数一、选择题1. (2011福建泉州,1,3分)如在实数0,32-,|-2|中,最小的是( ).A .32-B .C .0D .|-2|【答案】B2. (2011广东广州市,1,3分)四个数-5,-0.1,12,3中为无理数的是( ).A. -5B. -0.1C. 12D. 3【答案】D3. (2011山东滨州,1,3分)在实数π、13sin30°,无理数的个数为( ) A.1 B.2 C.3 D.4 【答案】B4. (2011福建泉州,2,3分)(-2)2的算术平方根是( ).A . 2B . ±2C .-2D .2【答案】A5. (2011四川成都,8,3分)已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是 (A)0>m (B)0<n (C)0<mn (D)0>-n m【答案】C6. (2011江苏苏州,1,3分)2×(-21)的结果是( ) A.-4 B.-1 C. -41 D.23【答案】B7. (2011山东济宁,1,3分)计算 ―1―2的结果是 A .-1 B .1 C .- 3 D .3 【答案】C8. (2011四川广安,2,3分)下列运算正确的是( )A .(1)1x x --+=+B =C 22=D .222()a b a b -=-【答案】C9. ( 2011重庆江津, 1,4分)2-3的值等于( )A.1B.-5C.5D.-1· 【答案】D ·10. (2011四川绵阳1,3)如计算:-1-2= A.-1 B.1 C.-3 D.3 【答案】C11. (2011山东滨州,10,3分)在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为 ( ) A.1,2 B.1,3 C.4,2 D.4,3 【答案】A12. (2011湖北鄂州,10,3分)计算()221222-+---1(-)=( ) A .2 B .-2 C .6 D .10【答案】A13. (2011山东菏泽,6,3分)定义一种运算☆,其规则为a ☆b =1a +1b,根据这个规则、计算2☆3的值是A . 56B . 15C .5D .6【答案】A14. (2011四川南充市,5,3分) 下列计算不正确的是( )(A )31222-+=- (B )21139⎛⎫-= ⎪⎝⎭ (C )33-= (D = 【答案】A15. (2011浙江温州,1,4分)计算:(一1)+2的结果是( ) A .-1 B .1 C .-3 D .3 【答案】B16. (2011浙江丽水,4,3分)有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ) A .+2 B .-3 C .+3 D .+4 【答案】A17. (2011台湾台北,2)计算(-3)3+52-(-2)2之值为何?A .2B . 5C .-3D .-6 【答案】D18. (2011台湾台北,11)计算45.247)6.1(÷÷--之值为何?A .-1.1B .-1.8C .-3.2D .-3.919. (2011台湾台北,19)若a 、b 两数满足a 567⨯3=103,a ÷103=b ,则b a ⨯之值为何?A .9656710B .9356710C .6356710 D .56710 【答案】C20.(2011四川乐山1,3分)小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为A .4℃B .9℃C .-1℃D .-9℃ 【答案】 C21. (2011湖北黄冈,10,3分)计算()221222-+---1(-)=( ) A .2 B .-2 C .6 D .10 【答案】A22. (2011湖北黄石,2,3分)黄石市2011年6月份某日一天的温差为11o C ,最高气温为t o C ,则最低气温可表示为A. (11+t )oCB.(11-t ) oCC.(t -11) oCD. (-t -11) oC 【答案】C23. (2011广东茂名,1,3分)计算:0)1(1---的结果正确..的是 A .0 B .1C .2D .2-【答案】D24. (2011山东德州1,3分)下列计算正确的是(A )088=--)( (B )1221=⨯)()(-- (C )011--=() (D )22-|-|= 【答案】B25. (2011河北,1,2分)计算03的结果是( ) A .3B .30C .1D .0【答案】C26. (2011湖南湘潭市,1,3分)下列等式成立是 A. 22=- B. 1)1(-=-- C.1÷31)3(=- D.632=⨯- 【答案】A27.(2011台湾全区,2)计算33)4(7-+之值为何? A .9 B . 27 C . 279 D . 407 【答案】C28. (2011台湾全区,12)12.判断312是96的几倍?A . 1B . (31)2 C . (31)6 D . (-6)229. (2011台湾全区,14)14.计算)4(433221-⨯++之值为何?A .-1B .-611C .-512D .-323 【答案】B30. (2011湖南常德,9,3分)下列计算错误的是( )A.020111=9=± C.1133-⎛⎫= ⎪⎝⎭D.4216=【答案】B31. (2011湖北襄阳,6,3分)下列说法正确的是A.0)2(π是无理数B.33是有理数 C.4是无理数 D.38-是有理数【答案】D32.(20011江苏镇江,1,2分)在下列实数中,无理数是( )13答案【 C 】33. (2011贵州贵阳,6,3分)如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是(第6题图)(A )2.5 (B )2 2 (C ) 3 (D ) 5 【答案】D34(2011湖北宜昌,5,3分)如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( )A . a < b B.a = b C. a > b D .ab > 0(第5题图)【答案】C35. (2011广东茂名,9,3分)对于实数a 、b ,给出以下三个判断: ①若b a =,则 b a =. ②若b a <,则 b a <.③若b a -=,则 22)(b a =-.其中正确的判断的个数是 A .3 B .2 C .1 D .0 【答案】C二、填空题1. (2011安徽,12,5分)根据里氏震级的定义,地震所释放的相对能量E 与震级n 的关系为E =10n ,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是 . 【答案】1002. (2011广东省,8,4分)按下面程序计算:输入x =3,则输出的答案是__ _ .【答案】263. (2011山东日照,13,4分)计算sin30°﹣2-= . 【答案】23-; 4. (2011四川南充市,11,3分)计算(π-3)0= . 【答案】15. (2011江西,9,3分)计算:-2-1= . 【答案】-36. (2011湖南常德,8,3分)先找规律,再填数:1111111111111111,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则 【答案】110067. (2011江苏连云港,13,3分)如图,是一个数值转换机.若输入数为3,则输出数是______.【答案】658. (2011江西南昌,9,3分)计算:-2-1= . 【答案】-39. (2011湖南怀化,11,3分)定义新运算:对任意实数a 、b ,都有ab=a 2-b,例如,32=32-2=7,那么21=_____________. 【答案】310.(2011安徽,14,5分)定义运算a b=a (1-b ),下面给出了关于这种运算的几个结论:( )2-1 输出数 减去5①2✞(-2)=6 ②a ✞b= b ✞ a ③若a +b=0,则(a ✞ a )+(b ✞ b )=2 ab ④若a ✞b=0,则a =0 其中正确结论的序号是 .(在横线上填上你认为所有正确结论的序号) 【答案】①③11. (2011广东汕头,8,4分)按下面程序计算:输入x =3,则输出的答案是__ _ .【答案】2612. (20011江苏镇江,9,2分)计算:-(-12)=______;12-=______;012⎛⎫- ⎪⎝⎭=______; 112-⎛⎫- ⎪⎝⎭=_______. 答案:12,12,1,-2 13.(2011广东湛江20,4分)已知:23233556326,54360,5432120,6543360A A A A =⨯==⨯⨯==⨯⨯⨯==⨯⨯⨯=,,观察前面的计算过程,寻找计算规律计算27A = (直接写出计算结果),并比较59A 310A (填“>”或“<”或“=”)【答案】>14. (2010湖北孝感,17,3分)对实数a 、b ,定义运算★如下:a ★b=(,0)(,0)bb a a b a a a b a -⎧>≠⎪⎨≤≠⎪⎩,例如2★3=2-3=18.计算[2★(﹣4)]×[(﹣4)★(﹣2)] 【答案】115. (2011湖南湘潭市,16,3分)规定一种新的运算:ba b a 11+=⊗,则=⊗21____. 【答案】112三、解答题1. (2011浙江金华,17,6分)计算:|-1|-128-(5-π)0+4cos45°. 【解】原式=1-12×22-1+4×22=1-2-1+22=2.2. (2011广东东莞,11,6分)计算:0011)2--【解】原式=1+2-4 =03. (1) (2011福建福州,16(1),7分)计算:0|-4|+2011 【答案】解:原式414=+-1=4. (2011江苏扬州,19(1),4分)(1)30)2(4)2011(23-÷+---【答案】(1)解:原式=)8(4123-÷+-=21123--=0 5. (2011山东滨州,19,6分)计算:()101-3cos30 1.2π-︒⎛⎫+-+- ⎪⎝⎭【答案】解:原式=21122=2--+-6. (2011山东菏泽,15(1),60(4)6cos302-π-+- 解:原式=6-=1 7. (2011山东济宁,16,504sin 45(3)4︒+-π+-【答案】.解:原式4142=⨯++ 5=8. (2011山东济宁,18,6分)观察下面的变形规律:211⨯ =1-12; 321⨯=12-31;431⨯=31-41;…… 解答下面的问题:(1)若n 为正整数,请你猜想)1(1+n n = ;(2)证明你猜想的结论;(3)求和:211⨯+321⨯+431⨯+…+201020091⨯ . 【答案】(1)111n n -+ ·············································································································· 1分(2)证明:n 1-11+n =)1(1++n n n -)1(+n n n =1(1)n nn n +-+=)1(1+n n . ·························· 3分(3)原式=1-12+12-31+31-41+…+20091-20101=12009120102010-=. ………………5分9. (2011 浙江湖州,17,6)计算:0022sin30)π-- 【答案】解:原式=1222142-⨯++= 10.(2011浙江衢州,17(1),4分) 计算:()0232cos 45π---+︒.【答案】解:(1)原式2121=-+=+11. (2011浙江绍兴,17(1),4分)(1012cos454π-+︒+(-2);【答案】解:原式11224+⨯+3=.412. (2011浙江省,17(1),4分)(1)计算:12)21(30tan 3)21(01+-+---【答案】(1)解:12)21(30tan 3)21(01+-+---= 3213332++⨯--=13-13. (2011浙江台州,17,8分)计算:203)12(1+-+- 【答案】解:原式= 1+1+9=1114. (2011浙江温州,17(1),5分)计算:20(2)(2011)-+-【答案】解:20(2)(2011)415-+-=+-=-15. (2011浙江义乌,17(1),6分)(1)计算: 45sin 2820110-+;【答案】(1)原式=1+22-2=1+ 216. (2011广东汕头,11,6分)计算:0011)2--【解】原式=1+2-4 =017. (2011浙江省嘉兴,17,8分)(1)计算:202(3)+- 【答案】原式=4+1-3=218. (2011浙江丽水,17,6分)计算:|-1|-128-(5-π)0+4cos45°.【解】原式=1-12×22-1+4×22=1-2-1+22=2.19. (2011福建泉州,18,9分)计算:()()2201113132π-⎛⎫-+-⨯- ⎪⎝⎭.【答案】解:原式=3+(-1)⨯1-3+4…………………………(6分) =3…………………………(9分)20.(2011湖南常德,17,5分)计算:()317223-÷-⨯【答案】2921. (2011湖南邵阳,17,8分)计算:020103-。
2011年中考数学试题及答案
2011年高中阶段教育学校招生考试数学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1. -4的相反数是( )A. 4B. -4C. 14D.14-2. 某运动品牌经销商到一所学校对某年级学生的鞋码大小进行抽样调查,经销商最感兴趣的是所得数据的( )A. 中位数B. 众数C. 平均数D. 方差3. 下列计算中,正确的是( )A. 234265+= B. 333236⨯= C. 2733÷= D. 2(3)3-=-4. 如图1,已知射线OP的端点O在直线MN上,∠2比∠1的2倍少30°,设∠2的度数为x,∠1的度数为y,则x、y满足的关系为( )A.180,230x yx y+=⎧⎨=+⎩B.180,230x yx y+=⎧⎨=-⎩C.90,230x yy x+=⎧⎨=-⎩D.180,230x yy x+=⎧⎨=-⎩图1资阳市数学试卷第1页(共13页)资阳市数学试卷第2页(共13页)5. 图2所示的几何体的左视图是( )6. 将一张正方形纸片如图3所示折叠两次,并在上面剪下一个菱形小洞,纸片展开后是( )7. 如图4,在数轴上表示实数14的点可能是( ) A. 点M B. 点N C. 点PD. 点Q8. 如图5,若正方形EFGH 由正方形ABCD 绕某点旋转得到,则可以作为旋转中心的是( )A. M 或O 或NB. E 或O 或CC. E 或O 或ND. M 或O 或C9. 在某校校园文化建设活动中,小彬同学为班级设计了一个班徽,这个班徽图案由一对大小相同的较大半圆挖去一对大小相同的较小半圆而得.如图6,若它们的直径在同一直线上,较大半圆O 1的弦AB ∥O 1O 2,且与较小半圆O 2相切, AB =4,则班徽图案的面积为( )A. 25πB. 16πC. 8πD. 4π10. 给出下列命题:①若m =n +1,则22120m mn n -+-=;② 对于函数(0)y kx b k =+≠,若y 随x 的增大而增大,则其图象不能同时经过第二、四象限;③ 若a 、b (a ≠b )为2、3、4、5这四个数中的任意两个,则满足2a b ->4的有序数组(a ,b )共有5组.其中所有正确....命题的序号是( )A . ①②B . ①③C . ②③D. ①②③图4图2图3图5图6资阳市数学试卷第3页(共13页)2011年高中阶段教育学校招生考试数 学第Ⅱ卷(非选择题 共90分)题号 二 三总 分总分人171819202122232425得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11. 一元二次方程x 2+x =0的两根为________________. 12. 若正n 边形的一个外角等于40°,则n =____________ .13. 在资阳市团委发起的“暖冬行动”中,某班50名同学响应号召,纷纷捐出零花钱.若不同捐款金额的捐款人数百分比统计结果如图7所示,则该班同学平均每人捐款________元.14. 如图8,在△ABC 中,若AD ⊥BC 于D ,BE ⊥AC 于E ,且AD 与BE 相交于点F ,BF =AC ,则∠ABC =_________°.15. 将抛物线221y x =-沿x 轴向右平移3个单位后,与原抛物线交点的坐标为________.16. 甲、乙、丙三位同学组成乒乓球兴趣小组参加课外活动,约定活动规则如下:两人先打,输了的被另一人换下,赢了的继续打,下一次活动接着上一次进行.假设某段时间内甲打的场次为a ,乙打的场次为b ,丙打的场次为c .若a =b ,显然有c 最大值=a +b ;若a ≠b ,通过探究部分情况,得到c 的最大值如上表所示. 进一步探究可得,当a =27,b =20时,c 的最大值是____________.a1 2 23 3 34 4 4 45 5 5 5 56 6 6 6 6 6 …b 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 …c 的 最大 值1 不存在 3 不存在2 5 不存在 不存在 4 7 不存在 不存在3 6 9 不存在 不存在 不存在 5 8 11 …图8 图7资阳市数学试卷第4页(共13页)三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17. (本小题满分6分)化简:219(1)44x x x --÷++.18. (本小题满分7分)如图9,已知四边形ABCD 为平行四边形,AE ⊥BD 于E ,CF ⊥BD 于F . (1) 求证:BE = DF ;(5分)(2) 若 M 、N 分别为边AD 、BC 上的点,且DM =BN ,试判断四边形MENF 的形状(不必说明理由).(2分)19. (本小题满分7分)某校某年级秋游,若租用48座客车若干辆,则正好坐满;若租用64座客车,则能少租1辆,且有一辆车没有坐满,但超过一半.(1) 需租用48座客车多少辆? (5分)解 设需租用48座客车x 辆.则需租用64座客车_________辆.当租用64座客车时,未坐满的那辆车还有___________________个空位(用含x 的代数式表示).由题意,可得不等式组:解这个不等式组,得:图9因此,需租用48座客车辆.(2) 若租用48座客车每辆250元,租用64座客车每辆300元,应租用哪种客车较合算?(2分)资阳市数学试卷第5页(共13页)资阳市数学试卷第6页(共13页)20. (本小题满分8分)小国同学的父亲参加旅游团到某地旅游,准备买某种礼物送给小国.据了解,沿旅游线路依次有A 、B 、C 三个地点可以买到此种礼物,其质量相当,价格各不相同,但不知哪家更便宜.由于时间关系,随团旅游车不会掉头行驶.(1) 若到A 处就购买,写出买到最低价格礼物的概率;(2分)(2) 小国同学的父亲认为,如果到A 处不买,到B 处发现比A 处便宜就马上购买,否则到C 处购买,这样更有希望买到最低价格的礼物.这个想法是否正确?试通过树状图分析说明.(6分)21. (本小题满分8分)如图10,A 、B 、C 、D 、E 、F 是⊙O 的六等分点.(1) 连结AB 、AD 、AF ,求证:AB +AF = AD ;(5分)(2) 若P 是圆周上异于已知六等分点的动点,连结PB 、PD 、PF ,写出这三条线段长度的数量关系(不必说明理由).(3分)图10资阳市数学试卷第7页(共13页)22. (本小题满分8分)如图11,已知反比例函数y =mx(x >0)的图象与一次函数y =-x +b 的图象分别交于A (1,3)、B 两点.(1) 求m 、b 的值;(2分)(2) 若点M 是反比例函数图象上的一动点,直线MC ⊥x 轴于C ,交直线AB 于点N ,MD ⊥y 轴于D ,NE ⊥y 轴于E ,设四边形MDOC 、NEOC 的面积分别为S 1、S 2,S =S 2 –S 1,求S 的最大值.(6分)23. (本小题满分9分)如图12-1,在梯形ABCD 中,已知AD ∥BC ,∠B =90°,AB =7,AD =9,BC =12,在线段BC 上任取一点E ,连结DE ,作EF DE ,交直线AB 于点F .(1) 若点F 与B 重合,求CE 的长;(3分)(2) 若点F 在线段AB 上,且AF =CE ,求CE 的长; (4分)(3) 设CE =x ,BF =y ,写出y 关于x 的函数关系式 (直接写出结果即可).(2分)图11资阳市数学试卷第8页(共13页)24. (本小题满分9分)在一次机器人测试中,要求机器人从A 出发到达B 处.如图13-1,已知点A在O 的正西方600cm 处,B 在O 的正北方300cm 处,且机器人在射线AO 及其右侧(AO 下方)区域的速度为20cm/秒,在射线AO 的左侧(AO 上方)区域的速度为10cm/秒.(1) 分别求机器人沿A →O →B 路线和沿A →B 路线到达B 处所用的时间(精确到秒);(3分)(2) 若∠OCB =45°,求机器人沿A →C →B 路线到达B 处所用的时间(精确到秒);(3分)(3) 如图13-2,作∠OAD =30°,再作BE ⊥AD 于E ,交OA 于P .试说明:从A 出发到达B 处,机器人沿A →P →B 路线行进所用时间最短.(3分) (参考数据:2≈1.414,3≈1.732,5≈2.236,6≈2.449)资阳市数学试卷第9页(共13页)25. (本小题满分10分)已知抛物线C :y =ax 2+bx +c (a <0)过原点,与x 轴的另一个交点为B (4,0),A为抛物线C 的顶点.(1) 如图14-1,若∠AOB =60°,求抛物线C 的解析式;(3分) (2) 如图14-2,若直线OA 的解析式为y =x ,将抛物线C 绕原点O 旋转180°得到抛物线C ′,求抛物线C 、C ′的解析式;(3分)(3) 在(2)的条件下,设A ′为抛物线C ′的顶点,求抛物线C 或C ′上使得PB PA '=的点P 的坐标.(4分)图14-1图14-22011年高中阶段教育学校招生考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分.3. 考生的解答可以根据具体问题合理省略非关键步骤.4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.5. 给分和扣分都以1分为基本单位.6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题(每小题3分,共10个小题,满分30分):1-5. ABCBD;6-10. CCADD.二、填空题(每小题3分,共6个小题,满分18分):11.x1=0,x2=-1;12. 9;13. 14;14. 45;15. (32,72);16. 35.三、解答题(共9个小题,满分72分):17.219(1)44xx x--÷++=(4)14xx+-+÷294xx-+·························································································2分=(4)14xx+-+÷(3)(3)4x xx+-+················································································4分=34xx++×4(3)(3)xx x++-······················································································5分=13x-. ······································································································6分18. (1) ∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,·····················································································1分∴∠ABD=∠CDB. ························································································2分∵AE⊥BD于E,CF⊥BD于F,∴∠AEB=∠CFD =90°.·······································3分∴△ABE≌△CDF(A.A.S.), ·············································································4分∴BE=DF.···································································································5分资阳市数学试卷第10页(共13页)资阳市数学试卷第11页(共13页)(2) 四边形MENF 是平行四边形. ···································································· 7分19. (1) (x -1) ··································································································· 1分(16x -64)(此空没有化简同样给分). ······························································ 2分 16640,166432.x x ->⎧⎨-<⎩······························································································· 4分 (注:若只列出一个正确的不等式,得1分)解得 4<x <6.∵ x 为整数,∴x =5. ··································································· 5分 因此需租用48座客车5辆.(2) 租用48座客车所需费用为5×250=1250(元),租用64座客车所需费用为(5-1)×300=1200(元), ················································· 6分 ∵ 1200<1250,∴ 租用64座客车较合算. ························································· 7分 因此租用64座客车较合算.20. (1) P A 处买到最低价格礼物=13. ··················································································· 2分 (2) 作出树状图如下:·························································· 6分由树状图可知:P 购到最低价格礼物=36=12, ································································· 7分 ∵12>13,∴他的想法是正确的. ······································································ 8分 (注:若判断了想法正确,但没有说理,得1分)21. (1) 连结OB 、OF . ······················································································· 1分∵A 、B 、C 、D 、E 、F 是⊙O 的六等分点,∴ AD 是⊙O 的直径,····················································································· 2分 且∠AOB =∠AOF =60°, ··················································································· 3分 ∴ △AOB 、△AOF 是等边三角形. ···································································· 4分 ∴AB =AF =AO ,∴AB +AF = AD . ······································································· 5分(2) 当P 在BF 上时,PB +PF = PD ;当P 在BD 上时,PB +PD = PF ;当P 在DF 上时,PD +PF =PB . ························································································································ 8分(注:若只写出一个关系式且未注明点P 的位置,不得分;若写出两个关系式且未注明点P 的位置,得1分;若写出三个关系式且未注明点P 的位置,得2分.)22. (1) 把A (1,3)的坐标分别代入y =m x、y =-x +b ,可求得m =3,b =4. ······················· 2分 (2) 由(1)知,反比例函数的解析式为y =3x,一次函数的解析式为y =-x +4. ∵ 直线MC ⊥x 轴于C ,交直线AB 于点N ,资阳市数学试卷第12页(共13页) ∴ 可设点M 的坐标为(x ,3x),点N 的坐标为(x ,-x +4),其中,x >0. ···················· 3分 又∵ MD ⊥y 轴于D ,NE ⊥y 轴于E ,∴ 四边形MDOC 、NEOC 都是矩形, ··············· 4分∴ S 1=x ·3x=3,S 2=x ·(-x +4)=-x 2+4x , ································································ 5分 ∴ S =S 2 –S 1=(-x 2+4x )-3=-(x -2)2+1.其中,x >0. ············································· 6分 ∴ 当x =2时,S 取得最大值,其最大值为1. ······················································ 8分23. (1) ∵F 与B 重合,且EF ⊥DE ,∴DE ⊥BC , ····················································· 1分∵AD ∥BC ,∠B =90°,∴∠A =∠B =90°,∴四边形ABED 为矩形, ················································································· 2分 ∴BE =AD =9,∴CE =12-9=3. ···························································································· 3分(2) 作DH ⊥BC 于H ,则DH = AB =7,CH =3.设AF =CE =x ,∵F 在线段AB 上,∴点E 在线段BH 上,∴HE =x -3,BF =7 –x , ·········································································· 4分∵∠BEF +90°+∠HED =180°,∠HDE +90°+∠HED =180°,∴∠BEF =∠HDE ,又∵∠B =∠DHE =90°,∴△BEF ∽△HDE , ······················································································· 6分 ∴73127x x x --=-,整理得x 2-22x +85=0,(x -5)(x -17)=0,∴x =5或17,经检验,它们都是原方程的解,但x =17不合题意,舍去.∴x =CE =5. ······················································ 7分(3) y =2211536(03),77711536(312).777x x x x x x ⎧-+≤<⎪⎪⎨⎪-+-≤≤⎪⎩ ··································································· 9分 (注:未写x 取值范围不扣分,写出一个关系式得1分)24. (1) 沿A →O →B 路线行进所用时间为:600÷20+300÷10=60(秒), ····························· 1分在Rt △OBA 中,由勾股定理,得AB =22600300+=3005(cm). ··························· 2分 ∴沿A →B 路线行进所用时间为:3005÷10≈300×2.236÷10≈67(秒).························ 3分(2) 在Rt △OBC 中,OB =300,∠OCB =45°,∴OC = OB =300cm,BC =300sin 45º=3002(cm) ····· 4分 ∴AC =600-300=300(cm).∴沿A →C →B 路线行进所用时间为:AC ÷20+BC ÷10=300÷20+3002÷10≈15+42.42≈57(秒). ·················································································································· 6分(3) 在AO 上任取异于点P 的一点P ′,作P ′E ′⊥AD 于E ′,连结P ′B ,在Rt △APE 和Rt △AP ′E ′中,sin30°=EP AP =E P AP ''',∴EP =2AP ,E ′P ′=2AP '.················· 7分 ∴沿A →P →B 路线行进所用时间为:AP ÷20+PB ÷10= EP ÷10+PB ÷10=(EP +PB )÷10=110BE (秒), 沿A →P ′→B 路线行进所用时间为:AP ′÷20+P ′B ÷10= E ′P ′÷10+P ′B ÷10=(E ′P ′+P ′B )÷10= 110(E ′P ′+P ′B )(秒). ······················· 8分 连结BE ′,则E ′P ′+P ′B > BE ′>BE ,∴110BE <110(E ′P ′+P ′B ).。
2011年数学中考试题分类赏析
2011年数学中考试题分类赏析1.传承数学文化、让学生体验数学化的科学价值新课标指出:“数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分”。
“是人类社会进步的产物,也是推动社会发展的动力”。
中考作为一种社会文化现象,必然要从属和服务于社会意识形态和特定的文化结构,必须要承载社会赋予其特定的功能——数学化。
例1:(温州)我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1—1)。
图1—2由弦图变化得到,它是由八个全等的直角三角形拼接而成。
记图1—2中正方形,正方形,正方形的面积分别为,若=10,则的值是。
LCX型罗茨油泵解析:由题意可知,,,。
又由=10,易得:的值是CYZ型自吸式离心油泵安装尺寸及曲线图赏析:勾股定理是人类最伟大的十个科学发现之一。
有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,因为这个定理太贴近人们的生活实际,以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨和研究它。
赵爽的证明可谓别具匠心,极富创新意识。
他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。
学生通过解此题,进一步体验了形数统一的思想方法,又一次经历了认识勾股定理的数学化过程。
受到优秀文化的熏陶,传承了中华民族悠悠五千年文化史。
2. 关注问题情境、让学生经历数学化的思维过程渣油泵在命制中考试题中,如何创设试题情境是一种智慧的挑战。
试题情境需要命题教师对教学本身进行周密思考与精心设计,试题情境要学生在应试过程中自己去经历、体会、理解,要有让学生思考的时间和空间,使学生在一个曾经历过的熟悉的背景下,产生一种巨大的无形的导引效应,使自己全身心投入到解决问题的数学化过程活动中,从自己的经验出发,运用属于自己的方式和策略,寻找解决问题的方法,发现和整理属于自己的不同形式的解题策略,经历数学化的过程。
2011年全国各地中考数学真题分类汇编
) .
D.x ≤ -2.
【答案】C 30. (2011 湖北黄石,10,3 分)已知梯形 ABCD 的四个顶点的坐标分别为 A(-1,0),B (5,0),C(2,2),D(0,2),直线 y=kx+2 将梯形分成面积相等的两部分,则 k 的值为 A. -
2 3
B. -
2 9
C. -
4 7
D. -
2 7
【答案】B 3. (2011 广东广州市,9,3 分)当实数 x 的取值使得 x-2有意义时,函数 y=4x+1 中 y 的取值范围是( ). A.y≥-7 B.y≥9 C.y>9 D.y≤9 【答案】B 4. (2011 山东滨州,6,3 分)关于一次函数 y=-x+1 的图像,下列所画正确的是( )
【答案】A 25. (2011 四川乐山 3,3 分)下列函数中,自变量 x 的取值范围为 x<1 的是 A. y 【答案】 D 26. (2011 四川乐山 8,3 分)已知一次函数 y ax b 的图象过第一、二、四象限,且与 x 轴交于点(2,0),则关于 x 的不等式 a( x 1) b 0 的解集为 A.x<-1 【答案】A B.x> -1 C. x>1 D.x<1
x 中自变量x的取值范围是( x 1
)
33. (2011贵州安顺,7,3分)函数x≠l C.x<0 D.x≥0且 x≠l 【答案】D 34. (2011 河北,5,2 分)一次函数 y=6x+1 的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【答案】D 35.. (2011 浙江绍兴,9,4 分)小敏从 A 地出发向 B 地行走,同时小聪从 B 地出发向 A 地行走, 如图所示, 相交于点 P 的两条线段 l1、l2 分别表示小敏、 小聪离 B 地的距离 y (km)
2011年全国各地中考数学试卷试题分类汇编——第17章《事件与概率》
1 9
B.
1 3
C.
2 3
D.
2 9
【答案】A 8. (2011 浙江绍兴,7,4 分)在一个不透明的盒子中装有 8 个白球,若干个黄球,它们除 颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为 ( ) A.2 【答案】B 9. (2011 浙江义乌,9,3 分)某校安排三辆车,组织九年级学生团员去敬老院参加学雷 锋活动, 其中小王与小菲都可以从这三辆车中任选一辆搭乘, 则小王与小菲同车的概率为 ( ) 1 A. 3 【答案】A 10. (2011 浙江省嘉兴,12,5 分)从标有 1 到 9 序号的 9 张卡片中任意抽取一张,抽到序 号是 3 的倍数的概率是 【答案】 . 1 B. 9 1 C. 2 2 D. 3 B.4 C.12 D.16
【答案】C 21. (2011 山东临沂,10,3 分)如图,A、B 是数轴上的亮点,在线段 AB 上任取一点 C, 则点 C 到表示-1 的点的距离不大于 ...2 的概率是( A. ) D.
1 2
B.
2 3
C.
3 4
4 5
【答案】D 22. (2011 四川凉山州,4,4 分)下列说法正确的是( A.随机抛掷一枚均匀的硬币,落地后反面一定朝上。 B.从 1,2,3,4,5 中随机取一个数,取得奇数的可能性较大。 C.某彩票中奖率为 36 0 0 ,说明买 100 张彩票,有 36 张中奖。 D.打开电视,中央一套正在播放新闻联播。 【答案】B 23. (2011 四川绵阳 3,3)掷一个质地均匀且六个面上分别刻有 1 到 6 的点数的正方体骰 子,如图.观察向上的ー面的点数,下列属必然事件的是 )
1 【答案】 3 2. (2011 浙江省舟山,12,4 分)从标有 1 到 9 序号的 9 张卡片中任意抽取一张,抽到序 号是 3 的倍数的概率是 【答案】 .
2011年全国各地中考数学真题分类汇编:第15章 数据的集中趋势与离散程度
第15章 数据的集中趋势与离散程度1. (2011浙江省舟山,8,3分)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月【答案】C2.(2011 浙江湖州,5,3)数据1,2,3,4,5的平均数是A .1B .2C .3D .4 【答案】C3. (2011广东广州市,3,3分)某车间5名工人日加工零件数分别为6,10,4,5,4,则这组数据的中位数是( ). A.4B.5C.6D.10【答案】B4. (2011山东德州5,3分)某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:5101520253035404550123456789101112甲乙对这两名运动员的成绩进行比较,下列四个结论中,不正确...的是 (A )甲运动员得分的极差大于乙运动员得分的极差 (B )甲运动员得分的的中位数大于乙运动员得分的的中位数 (C )甲运动员的得分平均数大于乙运动员的得分平均数 (D )甲运动员的成绩比乙运动员的成绩稳定 【答案】D5. (2011山东泰安,9 ,3分)某校篮球班21名同学的身高如下表:10203040506070809012345678某班学生1~8月课外阅读数量折线统计图3670585842287583本数月份(第8题)12345678身高(cm ) 180 186 188 192 208 人数(个)46542则该校篮球班21名同学身高的众数和中位数分别是(单位:cm )( )A.186,186B.186,187C.186,188D.208,188【答案】C6. (2011山东威海,2,3分)今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学的测试成绩(单位:个/分钟). 176 180 184 180 170 176 172 164 186 180该组数据的众数、中位数、平均数分别为( )A .180, 180, 178B .180, 178, 178C .180, 178, 176.8D .178, 180, 176.8【答案】C7. (2011山东烟台,8,4分)体育课上测量立定跳远,其中一组六个人的成绩(单位:米)分别是:1.0,1.3,2.2,2.0,1.8,1.6 ,则这组数据的中位数和极差分别是( )A.2.1,0.6B. 1.6,1.2C.1.8,1.2D.1.7,1.2 【答案】D8. (2011四川南充市,2,3分)学校商店在一段时间内销售了四种饮料共100瓶,各种饮料的销售量如下表:品牌 甲 乙 丙 丁 销售量(瓶)12321343建议学校商店进货数量最多的品牌是( )(A )甲品牌 (B )乙品牌 (C )丙品牌 (D )丁品牌 【答案】D9. (2011广东湛江9,3分)甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是20.65S =甲,20.55S =乙,20.50S =丙20.45S =丁,则射箭成绩最稳定的是A 甲B 乙C 丙D 丁 【答案】D10. (2011贵州安顺,4,3分)我市某一周的最高气温统计如下表:最高气温(℃)25 26 27 28 天 数1123则这组数据的中位数与众数分别是( ) A .27,28 B .27.5,28 C .28,27 D .26.5,27 【答案】A11. (2011浙江衢州,1,3分)在九年级体育中考中,某校某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):44,45,42,48,46,47,45.则这组数据的极差为( ) A.2 B.4 C.6 D.8 【答案】C12. (2011浙江省,4,3分)某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A .中位数B .众数C .平均数D . 极差 【答案】A13. (2011浙江台州,3,4分)要反映台州某一周每天的最高气温的变化趋势,宜采用( )A . 条形统计图B . 扇形统计图C . 折线统计图D .频数分布直方图【答案】C14. (2011浙江温州,2,4分)某校开展形式多样的“阳光体育”活动,七(3)班同学积极响应,全班参与,晶晶绘制了该班同学参加体育项目情况的扇形统计图(如图所示),由图可知参加人数最多的体育项目是()A .排球B .乒乓球C .篮球D .跳绳 【答案】C16. (2011浙江省嘉兴,8,4分)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月【答案】C18. (2011台湾台北,14)图(四)为某班甲、乙两组模拟考成绩的盒状图。
中考数学试题分类阅读理解型.doc
辽宁省大连市2011年中考数学试卷一、选择题(本题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个选项正确)1、(2011•大连)﹣的相反数是()A、﹣2B、﹣C、D、2考点:相反数。
专题:应用题。
分析:根据相反数的意义解答即可.解答:解:由相反数的意义得:﹣的相反数是.故选C.点评:本题主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2、(2011•大连)在平面直角坐标系中,点P(﹣3,2)所在象限为()A、第一象限B、第二象限C、第三象限D、第四象限考点:点的坐标。
分析:根据点在第二象限的坐标特点即可解答.解答:解:∵点的横坐标﹣3<0,纵坐标2>0,∴这个点在第二象限.故选B.点评:解决本题的关键是记住平面直角坐标系中各个象限内点的符号:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3、(2011•大连)实数的整数部分是()A、2B、3C、4D、5考点:估算无理数的大小。
专题:探究型。
分析:先估算出的值,再进行解答即可.解答:解:∵≈3.16,∴的整数部分是3.故选B.点评:本题考查的是估算无理数的大小,≈3.16是需要识记的内容.4、(2011•大连)如图是由四个完全相同的正方体组成的几何体,这个几何体的左视图是()A、B、C、D、考点:简单组合体的三视图。
专题:应用题。
分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.解答:解:从左边看是竖着叠放的2个正方形,故选C.点评:本题主要考查了几何体的三种视图和学生的空间想象能力,难度适中.5、(2011•大连)不等式组的解集是()A、﹣1≤x<2B、﹣1<x≤2C、﹣1≤x≤2D、﹣1<x<2考点:解一元一次不等式组;不等式的性质;解一元一次不等式。
专题:计算题。
分析:求出不等式①②的解集,再根据找不等式组解集得规律求出即可.解答:解:,由①得:x<2由②得:x≥﹣1∴不等式组的解集是﹣1≤x<2,故选A.点评:本题主要考查对解一元一次不等式组,不等式的性质,解一元一次不等式等知识点的理解和掌握,能根据找不等式组解集的规律找出不等式组的解集是解此题的关键.6、(2011•大连)下列事件是必然事件的是()A、抛掷一次硬币,正面朝上B、任意购买一张电影票,座位号恰好是“7排8号”C、某射击运动员射击一次,命中靶心D、13名同学中,至少有两名同学出生的月份相同考点:随机事件。
2011年全国各地中考数学试卷试题分类汇编——第12章《反比例函数》
2011年全国各地中考数学试卷试题分类汇编第12章反比例函数一、选择题1. (2011广东汕头,6,4分)已知反比例函数kyx=的图象经过(1,-2).则k=.【答案】-22.(2011湖南邵阳,5,3分)已知点(1,1)在反比例函数kyx=(k为常数,k≠0)的图像上,则这个反比例函数的大致图像是()【答案】C提示:反比例函数过第一象限(也可由点(1,1)求得k=1),故选C。
3.(2011江苏连云港,4,3分)关于反比例函数4yx=的图象,下列说法正确的是()A.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.两个分支关于原点成中心对称【答案】D4. (2011甘肃兰州,15,4分)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数221k kyx++=的图象上。
若点A的坐标为(-2,-2),则k的值为A.1 B.-3 C.4 D.1或-3【答案】D5. (2011湖南怀化,5,3分)函数2y x =与函数1y x-=在同一坐标系中的大致图像是【答案】D6. (2011江苏淮安,8,3分)如图,反比例函数ky x=的图象经过点A (-1,-2).则当x >1时,函数值y 的取值范围是( )A.y >1B.0<y <1C. y >2D.0< y <2【答案】D7. (2011四川乐山10,3分)如图(6),直线 6y x =- 交x 轴、y 轴于A 、B 两点,P是反比例函数4(0)y x x=>图象上位于直线下方的一点,过点P 作x 轴的垂线,垂足为点M ,交AB 于点E ,过点P 作y 轴的垂线,垂足为点N ,交AB 于点F 。
则AF BE ⋅=A .8B .6C .4D . 【答案】A8. (2011湖北黄石,3,3分)若双曲线y=x k 12-的图象经过第二、四象限,则k 的取值范围是 A.k >21 B. k <21 C. k =21D. 不存在 【答案】B9. (2011湖南邵阳,5,3分)已知点(1,1)在反比例函数ky x=(k 为常数,k ≠0)的图像上,则这个反比例函数的大致图像是( )【答案】C10. (2011贵州贵阳,10,3分)如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3)、B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是(第10题图)(A )-1<x <0 (B )-1<x <1(C )x <-1或0<x <1 (D )-1<x <0或x >1 【答案】C11. (2011广东茂名,6,3分)若函数xm y 2+=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是 A .2->m B .2-<mC .2>mD .2<m【答案】B12.(2011江苏盐城,6,3分)对于反比例函数y = 1x,下列说法正确的是A .图象经过点(1,-1)B .图象位于第二、四象限C .图象是中心对称图形D .当x <0时,y 随x 的增大而增大 【答案】C13. (2011山东东营,10,3分)如图,直线l 和双曲线(0)ky k x=>交于A 、B 亮点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别是C 、D 、E,连接OA 、OB 、OP,设△AOC 面积是S 1、△B OD 面积是S 2、△P OE 面积是S 3、则( )A. S 1<S 2<S 3B. S 1>S 2>S 3C. S 1=S 2>S 3D. S 1=S 2<S 3 【答案】D14. (2011福建福州,4,4分)图1是我们学过的反比例函数图象,它的函数解析式可能是 ( ) A .2y x =B .4y x=C .3y x=-D .12y x =【答案】 B15. (2011江苏扬州,6,3分)某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是( )A. (-3,2)B. (3,2)C. (2,3)D. (6,1) 【答案】A16. (2011山东威海,5,3分)下列各点中,在函数6y x=-图象上的是( ) A .(-2,-4) B .(2,3) C .(-1,6)D .1(,3)2-【答案】C17. (2011四川南充市,7,3分) 小明乘车从南充到成都,行车的平均速度y (km/h)和行车时间x (h)之间的函数图像是( )【答案】B.18. (2011浙江杭州,6,3)如图,函数11y x =-和函数22y x=的图象相交于点M (2,m ),N (-1,n ),若12y y >,则x 的取值范围是( )A .102x x <-<<或B .12x x <->或C .1002x x -<<<<或D .102x x -<<>或图1【答案】D19. (2011浙江台州,9,4分)如图,反比例函数xmy =的图象与一次函数b kx y -=的图象交于点M ,N ,已点M 的坐标为(1,3),点N 的纵坐标为-1,根据图象信息可得关于x 的方程xm=b kx -的解为( ) A. -3,1 B. -3,3 C. -1,1 D.3,-1【答案】A20. (2011浙江温州,4,4分)已知点P (-l ,4)在反比例函数(0)ky k x=≠的图象上,则k 的值是( )A .14- B .14C .4D .-4【答案】D21. (2011甘肃兰州,2,4分)如图,某反比例函数的图象过点(-2,1),则此反比例函数表达式为A .2y x=B .2y x=-C .12y x=D .12y x=-【答案】B22. (2011广东湛江12,3分)在同一直角坐标系中,正比例函数y x =与反比例函数2y x=的图像大致是A B C D【答案】B23. (2011河北,12,3分)根据图5—1所示的程序,得到了y 与x 的函数图象,过点M 作PQ ∥x 轴交图象于点P,Q ,连接OP,OQ.则以下结论 ①x <0时,x2y =, ②△OPQ 的面积为定值, ③x >0时,y 随x 的增大而增大 ④MQ=2PM⑤∠POQ 可以等于90°图5—2图5—1PQM其中正确的结论是( )A .①②④B .②④⑤C .③④⑤D .②③⑤【答案】B24. (2011山东枣庄,8,3分)已知反比例函数xy 1=,下列结论中不正确的是( ) A.图象经过点(-1,-1) B.图象在第一、三象限C.当1>x 时,10<<yD.当0<x 时,y 随着x 的增大而增大 【答案】D25. ( 2011重庆江津, 6,4分)已知如图,A 是反比例函数xky =的图像上的一点,AB ⊥x 轴于点B,且△ABO 的面积是3,则k 的值是( ) A.3 B.-3 C.6 D.-6·【答案】C ·第6题图26. (2011湖北宜昌,15,3分)如图,直线y=x +2与双曲线y=xm 3-在第二象限有两个交点,那么m 的取值范围在数轴上表示为( )(第15题图) 【答案】B 二、填空题1. (2011浙江金华,16,4分)如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOC =60°,点A 在第一象限,过点A 的双曲线为y = kx,在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ′B ′. (1)当点O ′与点A 重合时,点P 的坐标是.(2)设P (t ,0)当O ′B ′与双曲线有交点时,t 的取值范围是 .【答案】(1)(4,0);(2)4≤t ≤25或-25≤t ≤-4 2. (2011广东东莞,6,4分)已知反比例函数ky x=的图象经过(1,-2).则k = . 【答案】-23. (2011山东滨州,18,4分)若点A(m ,-2)在反比例函数4y x=的图像上,则当函数值y ≥-2时,自变量x 的取值范围是___________. 【答案】x ≤-2或x>04. (2011四川南充市,14,3分)过反比例函数y=xk(k≠0)图象上一点A ,分别作x 轴,y 轴的垂线,垂足分别为B,C ,如果⊿ABC 的面积为3.则k 的值为 .【答案】6或﹣6.5. (2011宁波市,18,3分)如图,正方形A 1B 1P 1P 2的顶点P 1、P 2在反比例函数y =2x(x >0)的图像上,顶点A 1、B 1分别在x 轴和y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数y =2x(x >0)的图象上,顶点A 3在x 轴的正半轴上,则点P 3的坐标为【答案】(3+1,3-1)6. (2011浙江衢州,5,4分)在直角坐标系中,有如图所示的t ,R ABO AB x ∆⊥轴于点B ,(0)kx x=>的图像经过AO 的中点C ,且与【答案】382(,)7. (2011浙江绍兴,13,5分) 若点12(1,),(2,)A y B y 是双曲线3y x=上的点,则 1y 2y (填“>”,“<”“=”). 【答案】>8. (2011浙江丽水,16,4分)如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOC =60°,点A 在第一象限,过点A 的双曲线为y = k x,在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ′B ′.(1)当点O ′与点A 重合时,点P 的坐标是 .(2)设P (t ,0)当O ′B ′与双曲线有交点时,t 的取值范围是.【答案】(1)(4,0);(2)4≤t ≤25或-25≤t ≤-49. (2011湖南常德,5,3分)如图1所示的曲线是一个反比例函数图象的一支,点A 在此曲线上,则该反比例函数的解析式为_______________. 【答案】3y x10.(2011江苏苏州,18,3分)如图,已知点A 的坐标为(3,3),AB ⊥x 轴,垂足为B ,连接OA ,反比例函数y=xk(k>0)的图象与线段OA 、AB 分别交于点C 、D.若AB=3BD ,以点C 为圆心,CA 的45倍的长为半径作圆,则该圆与x 轴的位置关系是___________(填“相离”、“相切”或“相交”)【答案】相交11. (2011山东济宁,11,3分)反比例函数1m y x-=的图象在第一、三象限,则m 的取值范围是 . 【答案】x >112. (2011四川成都,25,4分)在平面直角坐标系xOy 中,已知反比例函数2(0)ky k x=≠满足:当0x <时,y 随x 的增大而减小.若该反比例函数的图象与直线y x =-都经过点P ,且OP =k=_________. 【答案】37. 13. (2011安徽芜湖,15,5分)如图,在平面直角坐标系中有一正方形AOBC ,反比例函数ky x=经过正方形AOBC 对角线的交点,半径为(4-ABC ,则k 的值为 .【答案】414. (2011广东省,6,4分)已知反比例函数ky x=的图象经过(1,-2).则k = . 【答案】-215. (2011江苏南京,15,2分)设函数2y x=与1y x =-的图象的交战坐标为(a ,b ),则11a b-的值为__________. 【答案】12-16. (2011上海,11,4分)如果反比例函数ky x=(k 是常数,k ≠0)的图像经过点(-1,2),那么这个函数的解析式是__________.【答案】2y x=-17. (2011湖北武汉市,16,3分)如图,□ABCD 的顶点A ,B 的坐标分别是A (-1,0),B (0,-2),顶点C ,D 在双曲线y=x k 上,边AD 交y 轴于点E ,且四边形BCDE 的面积是△ABE面积的5倍,则k =_____.【答案】1218. (2011湖北黄冈,4,3分)如图:点A 在双曲线ky x=上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k=______.【答案】-419. (2011湖北黄石,15,3分)若一次函数y=kx +1的图象与反比例函数y =x1的图象没有公共点,则实数k 的取值范围是 。
【2011-2019年】2019版中考数学真题汇编专题(5)阅读理解问题
专题五 阅读理解问题A 组 2019年全国中考题组一、填空题1.(2019·湖南株洲,16,4分)“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S =a +b 2-1,孔明只记得公式中的S 表示多边形的面积,a 和b 中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a 还是b 表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是_____,并运用这个公式求得图2中多边形的面积是_____.解析 如题图1,∵三角形内由1个格点,边上有8个格点,面积为4,即4=1+82-1;矩形内由2个格点,边上有10个格点,面积为6,即6=2+102-1;∴公式中表示多边形内部整点个数的字母是a ;题图2中,a =15,b =7,故S =15+72-1=17.5.答案 a 17.52.(2019·四川资阳,16,4分)已知抛物线p :y =ax 2+bx +c 的顶点为C ,与x轴相交于A 、B 两点(点A 在点B 左侧),点C 关于x 轴的对称点为C ′,我们称以A 为顶点且过点C ′,对称轴与y 轴平行的抛物线为抛物线p 的“梦之星”抛物线,直线AC ′为抛物线p 的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y =x 2+2x +1和y =2x +2,则这条抛物线的解析式为________.解析 ∵y =x 2+2x +1=(x +1)2,∴A 点坐标为(-1,0),解方程组⎩⎨⎧y =x 2+2x +1,y =2x +2得⎩⎨⎧x =-1,y =0或⎩⎨⎧x =1,y =4,∴点C ′的坐标为(1,4),∵点C 和点C ′关于x 轴对称,∴C (1,-4),设原抛物线解析式为y =a (x -1)2-4,把A (-1,0)代入得4a -4=0,解得a =1,∴原抛物线解析式为y =(x -1)2-4=x 2-2x -3.答案 y =x 2-2x -3二、解答题3.(2019·浙江绍兴,21,10分)如果抛物线y =ax 2+bx +c 过定点M (1,1),则称此抛物线为定点抛物线.(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式,小敏写出了一个答案:y =2x 2+3x -4.请你写出一个不同于小敏的答案.(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y =-x 2+2bx +c +1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.解 (1)不唯一,如y =x 2-2x +2.(2)∵定点抛物线的顶点坐标为(b ,c +b 2+1),且-1+2b +c +1=1,∴c =1-2b ,∵顶点纵坐标c +b 2+1=2-2b +b 2=(b -1)2+1,∴当b =1时,c +b 2+1最小,抛物线顶点纵坐标的值最小;此时c =-1,∴抛物线的解析式为y =-x 2+2x .4.(2019·浙江温州,20,8分)各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形,如何计算它的面积?奥地利数学家皮克(G.Pick,1859~1942年)证明了格点多边形的面积公式:S=a+12b-1,其中a表示多边表内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积.如图,a=4,b=6,S=4+12×6-1=6.(1)请在图甲中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积;(2)请在图乙画一个格点三角形,使它的面积为72,且每条边上除顶点外无其它格点.解(1)画法不唯一,如图①或图②,面积分别为9,5.(2)画法不唯一,如图③,图④等.5.(2019·浙江宁波,24,10分)在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a,边界上的格点数为b,则格点多边形的面积可表示为S=ma+nb-1,其中m,n为常数.(1)在下面的方格纸中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;(2)利用(1)中的格点多边形确定m,n的值.解(1)答案不唯一(2)三角形:a=4,b=6,S=6;平行四边形:a=3,b=8,S=6;菱形:a=5,b=4,S=6;任选两组数据代入S=ma+nb-1,解得m=1,n=1 2.6.(2019·浙江杭州,19,8分)如图1,⊙O的半径为r(r>0),若点P′在射线OP 上,满足OP′·OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.解因为OA′·OA=16,且OA=8,所以OA′=2,同理可知,OB′=4,即B点的反演点B′与B重合.设OA交⊙O于点M,连结B′M.因为∠BOA=60°,OM=OB′,所以△OB′M为正三角形,又因为点A′为OM的中点,所以A′B′⊥OM.根据勾股定理,得:OB′2=OA′2+A′B′2,即16=4+A′B′2,解得:A′B′=2 3.B 组 2019~2011年全国中考题组一、选择题1.(2012·浙江嘉兴,9,4分)定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”.如“947”就是一个“V 数”.若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V 数”的概率是( ) A.14 B.310 C.12 D.34解析 从1,3,4,5中任选两数共有12种可能情况,其中属于“V 数”的有6种可能情况,所以从1,3,4,5中任选两数,能与2组成“V 数”的概率是12,故选C.答案 C 2.(2013·山东潍坊,12,3分)对于实数x ,我们规定[x ]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3,若[x +410]=5,则x 的取值可以是( )A .40B .45C .51D .56解析 法一 ∵将x =40代入[x +410]得[40+410]=4,选项A 错误;将x =45代入[x +410]得[45+410]=4,选项B 错误;将x =51代入[x +410]得[51+410]=5,选项C 正确;将x =56代入[x +410]得[56+410]=6,选项D 错误.故选C.法二由[x +410]=5得⎩⎪⎨⎪⎧x +410≥5,x +410<6,解得46≤x <56,故选C. 答案 C二、填空题3.(2019·山东德州,17,4分)如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3,…A n,….将抛物线y=x2沿直线L:y=x向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…M n,…都在直线L:y=x上;②抛物线依次经过点A1,A2,A3,…A n,…,则顶点M2 014的坐标为(________________).解析∵抛物线的顶点M1,M2,M3,…M n,…都在直线L:y=x上,∴设平移后的抛物线为y=(x-m)2+m,由题意可知抛物线y=(x-m)2+m经过点A2 014(2019,2 0142),∴2 0142=(2019-m)2+m,解得m=4 027或m=0(不合题意舍去),∴M2 014(4 027,4 027),故答案为:(4 027,4 027).答案(4 027,4 027)4.(2019·北京,22,5分)阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD =75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.图1图2小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).请回答:∠ACE的度数为________,AC的长为________.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,BC的长为________.解析∵CE∥AB,∴∠BAC+∠ACE=180°.∵∠BAD=75°,∠CAD=30°,∴∠ACE=180°-∠BAC=180°-75°-30°=75°,∠E=∠BAD=75°,∴∠E=∠ACE,∴AC=AE.∵CE∥AB,∴△ABD∽△ECD,∴ADED=BDCD.∵BD=2DC,∴AD=2ED.∵AD=2,∴ED=1,∴AC=AE=AD+ED=2+1=3.过点D作DF⊥AC于点F,∵∠BAC=90°,∴AB∥DF,∴△ABE∽△FDE.∴ABFD=AEFE=BEDE=2,∴EF=1,AF=AE+EF=3.∵∠CAD=30°,∴DF=AF·tan 30°=3,AD=2DF=2 3.∵∠ADC=75°,∴∠ACD=180°-∠ADC-∠CAD=75°.∴AD=AC,∴AC=2 3.∵ABFD=2,∴AB=2 3.在Rt△ABC中,由勾股定理得BC=AB2+AC2=2 6.答案75°232 65.★(2013·山东菏泽,12,3分)我们规定:将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”,“面线”被这个平面图形截得的线段图3叫做该图形的“面径”(例如圆的直径就是它的“面径”).已知等边三角形的边长为2,则它的“面径”长可以是________(写出1个即可).解析 如图,(1)等边三角形的高AD 是它的一条面径,AD =32×2=3;(2)当EF ∥BC 时,EF 为它的一条面径,此时,⎝ ⎛⎭⎪⎫EF BC 2=12,解得EF = 2. 所以,它的面径长可以是2, 3.答案 2或 3三、解答题6.(2019·安徽,22,12分)若两个二次函数图象的顶点,开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x 的二次函数y 1=2x 2-4mx +2m 2+1,和y 2=ax 2+bx +5,其中y 1的图象经过点A (1,1),若y 1+y 2与y 1为“同簇二次函数”,求函数y 2的表达式,并求当0≤x ≤3时,y 2的最大值.解 (1)答案不唯一,如顶点是原点,开口向上的二次函数,y =x 2和y =2x 2;(2)把点A (1,1)坐标代入到y 1=2x 2-4mx +2m 2+1中,得2×12-4m ×1+2m 2+1=1,解得m =1.∴y 1=2x 2-4x +3,∵y 1+y 2=2x 2-4x +3+ax 2+bx +5=(a +2)x 2+(b -4)x +8,又∵y 1=2x 2-4x +3=2(x -1)2+1,其顶点为(1,1),且y 1+y 2与y 1为“同簇二次函数”,∴⎩⎪⎨⎪⎧-b -42(a +2)=1,4(a +2)×8-(b -4)24(a +2)=1,解得⎩⎨⎧a =5,b =-10.∴y 2=5x 2-10x +5=5(x -1)2,当x ≥1时,y 随x 的增大而增大,当x =3时,y =5×(3-1)2=20,当x <1时,y 随x 的增大而减小,当x =0时,y =5×(0-1)2=5, 故当0≤x ≤3时,y 2的最大值是20.7.(2012·浙江绍兴,21,10分)联想三角形外心的概念,我们可引入如下概念.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若P A =PB ,则点P 为△ABC 的准外心.应用:如图2,CD 为等边三角形ABC 的高,准外心P 在高CD 上,且PD =12AB ,求∠APB 的度数.探究:已知△ABC 为直角三角形,斜边BC =5,AB =3,准外心P 在AC 边上,试探究P A 的长.解 应用:若PB =PC ,则∠PCB =∠PBC .∵CD 为等边三角形的高,∴AD =BD ,∠PCB =30°,∴∠PBD =∠PBC =30°,∴PD =33DB =36AB .与已知PD =12AB 矛盾,∴PB ≠PC .若P A =PC ,同理可得P A ≠PC .若P A =PB ,由PD =12AB ,得PD =BD =AD ,因此点A ,P ,B 在以AB 为直径的圆上,∴∠APB =90°,故∠APB =90°.探究:若PB =PC ,设P A =x ,则x 2+32=(4-x )2,∴x =78,即P A =78.若P A =PC ,则P A =2.若P A=PB,在Rt△P AB中,不可能.故P A=2或7 8.8.(2012·浙江台州,24,14分)定义:P,Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的距离.已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是______;当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为______.(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M.①求出点M随线段BC运动所围成的封闭图形的周长;②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值使以A、M、H为顶点的三角形与△AOD相似,若存在,求出m的值;若不存在,请说明理由.解(1)2 5(2)如图甲,过点A 作直线EF ⊥x 轴,当点B 落在圆A 上,且位于EF 的右侧(或EF 上)时,线段BC 与线段OA 的距离即圆A 的半径,此时4≤m ≤6,且d =2.如图乙,当点B 落在圆A 上,且位于EF 的左侧时,过点B 作BN ⊥x 轴于点N ,垂线段BN 的长即为线段BC 与线段OA 的距离,此时2≤m <4.图甲图乙在Rt △ABN 中,∠ANB =90°,AN =4-m ,AB =2,由勾股定理可得:d =BN =22-(4-m )2=4-16+8m -m 2=-m 2+8m -12.∴d 关于m 的函数解析式为:d =⎩⎨⎧-m 2+8m -12 (2≤m <4),2 (4≤m ≤6).(3)①如图丙,由题意可知:当线段BC 的端点B 或端点C 沿环形跑道运动时,方可使得动线段BC 与线段OA 的距离始终为2,由线段PI ,IJG ︵,线段GK ,KQP ︵所围成的封闭图形就是点M 随线段BC 运动所围成的.∴点M 随BC 运动所围成的封闭图形的周长为:2×π×2+2×2×4=16+4π.图丙 ②∵m ≥0,n ≥0,∴点M 随线段BC 运动所形成的图形是M 0E ,EF ︵,如图丁所示.图丁∵Rt △AOD 中,OD ∶OA =1∶2,∴若△AMH 与△AOD 相似,则必有MH ∶HA =1∶2或MH ︰HA =2∶1. ∵当2≤m +2<4时,显然M 1H 1>H 1A ,∴M 1H 1∶H 1A =2∶1.∵M 1H 1=2,∴H 1A =1,∴OH 1=3.∴m 1=3-2=1.当4≤m +2≤6时,即点M 2在线段TE 上时,同理可求:m 2=5-2=3.当6<m +2≤8时,即点M 3在EF ︵上时,∵AH 3≥2≥M 3H 3,∴M 3H 3∶AH 3=1∶2.设M 3H 3=x ,则AH 3=2x ,∴RH 3=2x -2.∵RM 3=2,∴(2x -2)2+x 2=22,解方程可得:x 1=85,x 2=0(不合题意,舍去).∴此时,OH 3=4+2x =365.∴m 3=365-2=265.综上所述,在平移过程中存在△AHM 与△AOD 相似,相应m 的值为1,3,265.。
广东省13市2011年中考数学试题分类解析汇编(12份)-7
广东2011年中考数学试题分类解析汇编专题2:代数式和因式分解一、选择题1.(佛山3分)在①42a a ⋅;②23()a -;③122a a ÷;④23a a ⋅中,计算结果为6a 的个数是A 、1个B 、2个C 、3个D 、4个【答案】A 。
【考点】同底幂乘法运算法则,幂的乘方运算法则,同底幂除法运算法则。
【分析】根据同底幂乘、除法运算法则和幂的乘方运算法则,有①42426==a a a a +⋅;②23236()==a a a ⨯---;③12212210==a a a a -÷;④23235==a a a a +⋅。
故选A 。
2.(广州3分)下面的计算正确的是21世纪教育网A 、3x 2•4x 2=12x 2B 、x 3•x 5=x 15C 、x 4÷x =x 3D 、(x 5)2=x 7【答案】C 。
【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;单项式乘单项式。
【分析】根据单项式的乘法、同底数幂的乘法和除法、幂的乘方等知识点进行判断:A 、3x 2•4x 2=12x 4,故本选项错误;B 、x 3•x 5=x 8,故本选项错误;C 、正确;D 、(x 5)2=x 10,故本选项错误。
故选C 。
3.(河源3分)下列各式运算正确的是()32352352331025A. B. C. D. a a a a a a ab a b a a a +⋅==÷= = 【答案】B 。
【考点】合并同类项,同底幂乘法、积和幂的乘方、同底幂除法运算法则。
【分析】根据合并同类项,同底幂乘法、积和幂的乘方、同底幂除法运算法则,A.指数不同不可以相加,选项错误;B.选项正确;C.()3236ab a b =,选项错误;D.1028 a a a ÷=选项错误。
故选B 。
[来源:21世纪教育网]4.(清远3分)下列选项中,与x y 2是同类项的是A .—2x y 2B .2x 2yC .x yD .x 2y 2【答案】A 。
2011年全国各地中考数学模拟题分类51 阅读理解型问题(含答案)
阅读理解型问题一、选择题1、(2011浙江杭州模拟16)按100分制60分及格来算,满分是150分的及格分是( )A 、60分B 、72分C 、90分D 、105分答案:C 二、填空题1、1、(2011年浙江省杭州市中考数学模拟22)15、阅读下列方法:为了找出序列3、8、15、24、35、48、……的规律,我们有一种“因式分解法”。
如下表:分解因式: 1×8 1×15 1×241×35 1×482×12 2×243×16 4×12 因此,我们得到第n 项是n(n+2),请你利用上述方法,说出序列:0、5、12、21、32、45、……的第n 项是 。
答案:(n-1)(n+3) 三、解答题1、(2011浙江杭州模拟16)数形结合作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,即 “以数解形”;或者借助形的几何直观性来阐明数之间的某种关系,即 “以形助数”。
如浙教版九上课本第109页作业题第2题:如图1,已知在△ABC 中,∠ACB=900,CD ⊥AB ,D 为垂足。
易证得两个结论:(1)AC·BC = AB·CD (2)AC 2= AD·AB(1)请你用数形结合的“以数解形”思想来解:如图2,已知在△ABC 中(AC>BC ),∠ACB=900,CD ⊥AB ,D 为垂足, CM 平分∠ACB,且BC 、AC 是方程x 2-14x+48=0的两个根,求AD 、MD 的长。
(2)请你用数形结合的“以形助数”思想来解: 设a 、b 、c 、d 都是正数,满足a :b=c :d,且a 最大。
求证:a+d>b+c (提示:不访设AB=a,CD=d,AC=b,BC=c ,构造图1) 答案:解:(1)显然,方程x 2-14x+48=0的两根为6和8, 又AC>BC ∴AC=8,BC=6 由勾股定理AB=10△ACD ∽△ABC ,得AC 2= AD·AB ∴AD=6.4 -------------------------------2分 ∵CM 平分∠ACB ∴AM :MB=AC :CB解得,AM=740--------------------------------- 1分 ∴MD=AD-AM=3524-----------------------------1分(2)解:不访设AB=a,CD=d,AC=b,BC=c 由三角形面积公式,得AB·CD=AC·BC2AB·CD=2AC·BC -------------------------1分 又勾股定理,得AB 2=AC 2+BC 2∴AB 2+2AB·CD =AC 2+BC 2+2AC·BC(等式性质) ∴AB 2+2AB·CD =(AC+BC )2----------------------1分 ∴AB 2+2AB·CD+CD 2 >(AC+BC )2--------------------2分 ∴(AB+CD) 2 >(AC+BC )2 又AB 、CD 、AC 、BC 均大于零∴AB+CD>AC+BC 即a+d>b+c--------------------1分B 组一、选择题 1、(2011年黄冈浠水模拟2)国际上通常用恩格尔系数(记作n )来衡量一个国家和地区人民的生活水平的状况,它的计算公式:xn y=(x :家庭食品支出总额;y :家庭消费支和2003年完全相同的情况下多支出2000元,并且y=2x+3600(单位:元),则该家庭2003年属于 ( )A .贫困B .温饱C .小康D .富裕 答案:C二、填空题三、解答题 1.(2011安徽中考模拟)如图,在直角坐标系中,已知点P 0的坐标为(1,0),将线段OP 0按逆时针方向旋转45°,将其长度伸长为OP 0的2倍,得到线段OP 1;再将线段OP 1按逆时针方向旋转45°,长度伸长为OP 1的2倍,得到线段OP 2;如此下去,得到线段OP 3,OP 4,…,OP n (n 为正整数)(1)求点P 6的坐标;(2)求△P 5OP 6的面积; (3)我们规定:把点P n (x n ,y n )(n =0,1,2,3,…)的横坐标x n 、纵坐标y n 都取绝对值后得到的新坐标(|x n |,| y n |)称之为点P n 的“绝对坐标”.根据图中点P n 的分布规律,请你猜想点P n 的“绝对坐标”,并写出来.答案:(1)根据旋转规律,点P 6落在y 轴的负半轴,而点P n 到坐标原点的距离始终等于前一个点到原点距离的2倍, 故其坐标为P 6(0,26),即P 6(0,64); (2)由已知可得,△P 0OP 1∽△P 1OP 2∽…∽△P n -1OP n . 设P 1(x 1,y 1),则y 1=2sin45°S △P 0OP 1=12×又6132OP OP = 560123210241P OP P OP S S ⎛⎫∴== ⎪⎝⎭△△,561024P OP S ==△ (3)由题意知,OP 0旋转8次之后回到x 轴正半轴,在这8次中,点P n 分别落在坐标第17题图0045sin 3060sin sin sin =∠=∠AB A BC ACB AB 即象限的平分线上或x 轴或y 轴上,但各点绝对坐标的横、纵坐标均为非负数,因此,点P n 的坐标可分三类情况:令旋转次数为n ,①当n =8k 或n =8k +4时(其中k 为自然数),点P n 落在x 轴上,此时,点P n 的绝对坐标为(2n ,0);②当n =8k +1或n =8k +3或n =8k +5或n =8k +7时(其中k 为自然数),点P n 落在各象限的平分线上,此时,点P n2n2n),即(2n —,2n —; ③当n =8k +2或n =8k +6时(其中k 为自然数),点P n 落在y 轴上, 此时,点P n 的绝对坐标为(0,2n ).2.(2011杭州上城区一模)观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,过A 作AD ⊥BC 于D (如图),则sinB =c AD ,sinC =bAD,即AD =c sin B ,AD =bsinC ,于是csinB =bsinC ,即C c B b sin sin =.同理有:A a C c sin sin =,BbA a sin sin =, 所以CcB b A a sin sin sin == 即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图,△ABC 中,∠B =450,∠C =750,BC =60,则∠A = ;AC = ;(2)如图,一货轮在C 处测得灯塔A 在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B 处,此时又测得灯塔A 在货轮的北偏西75°的方向上(如图),求此时货轮距灯塔A 的距离AB .解:(1)∠A=600,AC=620 (2)如图,依题意:BC=60×0.5=30(海里) ∵CD ∥BE , ∴∠DCB+∠CBE=1800∵∠DCB=300,∴∠CBE=1500∵∠ABE=750。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年全国各地中考数学试卷分类汇编阅读理解型1.(2011湖南邵阳,23,8分)数学课堂上,徐老师出示了一道试题:如图(十)所示,在正三角形ABC 中,M 是BC 边(不含端点B ,C )上任意一点,P 是BC 延长线上一点,N 是∠ACP 的平分线上一点,若∠AMN=60°,求证:AM=MN 。
(1)经过思考,小明展示了一种正确的证明过程,请你将证明过程补充完整。
证明:在AB 上截取EA=MC ,连结EM ,得△AEM 。
∵∠1=180°-∠AMB-∠AMN ,∠2=180°-∠AMB -∠B ,∠AMN=∠B=60°, ∴∠1=∠2.又∵CN 、平分∠ACP ,∴∠4=12∠ACP=60°。
∴∠MCN=∠3+∠4=120°。
………………① 又∵BA=BC ,EA=MC ,∴BA-E A=BC -MC ,即BE=BM 。
∴△BEM 为等边三角形,∴∠6=60°。
∴∠5=10°-∠6=120°。
………………② 由①②得∠MCN=∠5. 在△AEM 和△MCN 中,∵__________,____________,___________, ∴△AEM ≌△MCN (ASA )。
∴AM=MN.(2)若将试题中的“正三角形ABC ”改为“正方形A 1B 1C 1D 1”(如图),N 1是∠D 1C 1P 1的平分线上一点,则当∠A 1M 1N 1=90°时,结论A 1M 1=M 1N 1是否还成立?(直接给出答案,不需要证明) (3)若将题中的“正三角形ABC ”改为“正多边形A n B n C n D n …X n ”,请你猜想:当∠A n M n N n =______°时,结论A n M n =M n N n 仍然成立?(直接写出答案,不需要证明) 【答案】解:(1)∠5=∠MCN ,AE=MC ,∠2=∠1; (2)结论成立; (3)2180n n-⨯。
2. (2011江苏南京,28,11分)问题情境已知矩形的面积为a (a 为常数,a >0),当该矩形的长为多少时,它的周长最小?最小值是多少?数学模型设该矩形的长为x ,周长为y ,则y 与x 的函数关系式为2()(0)a y x x x=+>.探索研究⑴我们可以借鉴以前研究函数的经验,先探索函数1(0)y x x x=+>的图象性质.① 填写下表,画出函数的图象:②观察图象,写出该函数两条不同类型的性质;③在求二次函数y=ax 2+bx +c (a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数1y x x=+(x >0)的最小值.解决问题⑵用上述方法解决“问题情境”中的问题,直接写出答案. 【答案】解:⑴①174,103,52,2,52,103,174.函数1y x x=+(0)x >的图象如图.②本题答案不唯一,下列解法供参考.当01x <<时,y 随x 增大而减小;当1x >时,y 随x 增大而增大;当1x =时函数1y x x=+(0)x >的最小值为2.③1y x x=+=22+=22+-=22+=0,即1x =时,函数1y x x=+(0)x >的最小值为2.⑵时,它的周长最小,最小值为2. (2011江苏南通,27,12分)(本小题满分12分) 已知A (1,0), B (0,-1),C (-1,2),D (2,-1),E (4,2)五个点,抛物线y =a (x -1)2+k (a >0),经过其中三个点.(1) 求证:C ,E 两点不可能同时在抛物线y =a (x -1)2+k (a >0)上;(2) 点A 在抛物线y =a (x -1)2+k (a >0)上吗?为什么? (3) 求a 和k 的 值.【答案】(1)证明:将C ,E 两点的坐标代入y =a (x -1)2+k (a >0)得,4292a k a k +=⎧⎨+=⎩,解得a =0,这与条件a >0不符, ∴C ,E 两点不可能同时在抛物线y =a (x -1)2+k (a >0)上. (2)【法一】∵A 、C 、D 三点共线(如下图),∴A 、C 、D 三点也不可能同时在抛物线y =a (x -1)2+k (a >0)上. ∴同时在抛物线上的三点有如下六种可能: ①A 、B 、C ; ②A 、B 、E ; ③A 、B 、D ; ④A 、D 、E ; ⑤B 、C 、D ; ⑥B 、D 、E .将①、②、③、④四种情况(都含A 点)的三点坐标分别代入y =a (x -1)2+k (a >0),解得:①无解;②无解;③a =-1,与条件不符,舍去;④无解. 所以A 点不可能在抛物线y =a (x -1)2+k (a >0)上.【法二】∵抛物线y =a (x -1)2+k (a >0)的顶点为(1,k )假设抛物线过A (1,0),则点A 必为抛物线y =a (x -1)2+k (a >0)的顶点,由于抛物线的开口向上且必过五点A 、B 、C 、D 、E 中的三点,所以必过x 轴上方的另外两点C 、E ,这与(1)矛盾,所以A 点不可能在抛物线y =a (x -1)2+k (a >0)上. (3)Ⅰ.当抛物线经过(2)中⑤B 、C 、D 三点时,则142a k a k +=-⎧⎨+=⎩,解得12a k =⎧⎨=-⎩Ⅱ. 当抛物线经过(2)中⑥B 、D 、E 三点时,同法可求:38118a k ⎧=⎪⎪⎨⎪=-⎪⎩.∴12a k =⎧⎨=-⎩或38118a k ⎧=⎪⎪⎨⎪=-⎪⎩.3. (2011四川凉山州,28,12分)如图,抛物线与x 轴交于A (1x ,0)、B (2x ,0)两点,且12x x <,与y 轴交于点()0,4C -,其中12x x ,是方程24120x x --=的两个根。
(1)求抛物线的解析式;(2)点M 是线段A B 上的一个动点,过点M 作M N ∥B C ,交A C 于点N ,连接C M ,当C M N △的面积最大时,求点M 的坐标;(3)点()4,D k 在(1)中抛物线上,点E 为抛物线上一动点,在x 轴上是否存在点F ,使以A D E F 、、、为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点F 的坐标,若不存在,请说明理由。
【答案】(1)∵24120x x --=,∴12x =-,26x =。
∴(2,0)A -,(6,0)B 。
又∵抛物线过点A 、B 、C ,故设抛物线的解析式为(2)(6)y a x x =+-,将点C 的坐标代入,求得13a =。
∴抛物线的解析式为214433y x x =--。
(2)设点M 的坐标为(m ,0),过点N 作N H x ⊥轴于点H (如图(1))。
∵点A 的坐标为(2-,0),点B 的坐标为(6,0), ∴8A B =,2A M m =+。
∵MN BC ,∴M N A B C △∥△。
∴N H A M C OA B=,∴248N H m +=,∴22m N H +=。
∴1122C M N A C M A M N S S S A M C O A M N H =-=-△△△2121(2)(4)3224m m m m +=+-=-++21(2)44m =--+。
∴当2m =时,C M N S △有最大值4。
此时,点M 的坐标为(2,0)。
(3)∵点D (4,k )在抛物线214433y x x =--上,28题图∴当4x =时,4k =-, ∴点D 的坐标是(4,4-)。
① 如图(2),当A F 为平行四边形的边时,A FD E ,∵D (4,4-),∴4D E =。
∴1(6,0)F -,2(2,0)F 。
② 如图(3),当A F 为平行四边形的对角线时,设(,0)F n , 则平行四边形的对称中心为(22n -,0)。
∴E '的坐标为(6n -,4)。
把E '(6n -,4)代入214433y x x =--,得216360n n -+=。
解得 8n =±。
3(80)F -,4(80)F +。
图(1)图(2)4. (2011江苏苏州,28,9分)(本题满分9分)如图①,小慧同学吧一个正三角形纸片(即△OAB )放在直线l 1上,OA 边与直线l 1重合,然后将三角形纸片绕着顶点A 按顺时针方向旋转120°,此时点O 运动到了点O 1处,点B 运动到了点B 1处;小慧又将三角形纸片AO 1B 1绕B 1点按顺时针方向旋转120°,点A 运动到了点A 1处,点O 1运动到了点O 2处(即顶点O 经过上述两次旋转到达O 2处).小慧还发现:三角形纸片在上述两次旋转过程中,顶点O 运动所形成的图形是两段圆弧,即弧OO 1和弧O 1O 2,顶点O 所经过的路程是这两段圆弧的长度之和,并且这两端圆弧与直线l1围成的图形面积等于扇形AOO 1的面积、△AO 1B 1的面积和扇形B 1O 1O 2的面积之和.小慧进行类比研究:如图②,她把边长为1的正方形纸片OABC 放在直线l 2上,OA 边与直线l 2重合,然后将正方形纸片绕着顶点A 按顺时针方向旋转90°,此时点O 运动到了点O 1处(即点B 处),点C 运动到了点C 1处,点B 运动到了点B 1处;小慧又将正方形纸片AO 1C 1B 1绕B 1点按顺时针方向旋转90°,……,按上述方法经过若干次旋转后,她提出了如下问题: 问题①:若正方形纸片OABC 按上述方法经过3次旋转,求顶点O 经过的路程,并求顶点O 在此运动过程中所形成的图形与直线l 2围成图形的面积;若正方形OABC 按上述方法经过5次旋转,求顶点O 经过的路程;问题②:正方形纸片OABC 按上述方法经过多少次旋转,顶点O 经过的路程是222041+π?请你解答上述两个问题.【答案】解问题①:如图,正方形纸片OABC 经过3次旋转,顶点O 运动所形成的图形是三段弧,即弧OO 1、弧O 1O 2以及弧O 2O 3, ∴顶点O 运动过程中经过的路程为πππ)221(1802902180190+=⋅⋅+⨯⋅⋅.顶点O 在此运动过程中所形成的图形与直线l 2围成图形的面积为11212360)2(90236019022⨯⨯⨯+⋅⋅+⨯⋅⋅ππ=1+π.正方形OABC 经过5次旋转,顶点O 经过的路程为πππ)2223(1802903180190+=⋅⋅+⨯⋅⋅.问题②:∵方形OABC 经过4次旋转,顶点O 经过的路程为πππ)221(1802902180190+=⋅⋅+⨯⋅⋅∴222041+π=20×)221(+π+21π.∴正方形纸片OABC 经过了81次旋转. 5.。