2019年中考数学真题分类汇编—几何题汇总

合集下载

2019年全国各地中考数学压轴题分类汇编:几何综合(浙江专版)(原卷)

2019年全国各地中考数学压轴题分类汇编:几何综合(浙江专版)(原卷)

2019年全国各地中考数学压轴题分类汇编(浙江专版)几何综合1.(2019•杭州)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.2.(2019•杭州)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.3.(2019•宁波)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.4.(2019•宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC 于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.5.(2019•宁波)如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB的延长线交于点D,E,连结DE,BF⊥EC交AE于点F.(1)求证:BD=BE.(2)当AF:EF=3:2,AC=6时,求AE的长.(3)设=x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.6.(2019•温州)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E 三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD=AB时,求⊙O的直径长.7.(2019•嘉兴)在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).8.(2019•嘉兴)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6,AD=4,求正方形PQMN的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P',画正方形P'Q'M'N',使Q',M'在BC边上,N'在△ABC 内,连结BN'并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PPQMN.小波把线段BN称为“波利亚线”.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM=时,猜想∠QEM的度数,并尝试证明.请帮助小波解决“温故”、“推理”、“拓展”中的问题.9.(2019•湖州)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(﹣3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2:y=3x﹣3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动点,以Q为圆心,2为半径画圆.①当点Q与点C重合时,求证:直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点,连结QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.10.(2019•湖州)如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A,C分别在x 轴和y轴的正半轴上,连结AC,OA=3,tan∠OAC=,D是BC的中点.(1)求OC的长和点D的坐标;(2)如图2,M是线段OC上的点,OM=OC,点P是线段OM上的一个动点,经过P,D,B 三点的抛物线交x轴的正半轴于点E,连结DE交AB于点F.①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标;②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动路径的长.11.(2019•绍兴)在屏幕上有如下内容:如图,△ABC内接于⊙O,直径AB的长为2,过点C的切线交AB的延长线于点D.张老师要求添加条件后,编制一道题目,并解答.(1)在屏幕内容中添加条件∠D=30°,求AD的长.请你解答.(2)以下是小明、小聪的对话:小明:我加的条件是BD=1,就可以求出AD的长小聪:你这样太简单了,我加的是∠A=30°,连结OC,就可以证明△ACB与△DCO全等.参考此对话,在屏幕内容中添加条件,编制一道题目(可以添线添字母),并解答.12.(2019•绍兴)有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.13.(2019•绍兴)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.14.(2019•绍兴)如图,矩形ABCD中,AB=a,BC=b,点M,N分别在边AB,CD上,点E,F 分别在边BC,AD上,MN,EF交于点P,记k=MN:EF.(1)若a:b的值为1,当MN⊥EF时,求k的值.(2)若a:b的值为,求k的最大值和最小值.(3)若k的值为3,当点N是矩形的顶点,∠MPE=60°,MP=EF=3PE时,求a:b的值.15.(2019•金华)如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.(1)求的度数.(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.16.(2019•金华)如图,在等腰Rt△ABC中,∠ACB=90°,AB=14,点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.(2)已知点G为AF的中点.①如图2,若AD=BD,CE=2,求DG的长.②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.17.(2019•衢州)如图,在等腰△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E.(1)求证:DE是⊙O的切线.(2)若DE=,∠C=30°,求的长.18.(2019•衢州)如图,在Rt△ABC中,∠C=90°,AC=6,∠BAC=60°,AD平分∠BAC交BC于点D,过点D作DE∥AC交AB于点E,点M是线段AD上的动点,连结BM并延长分别交DE,AC于点F、G.(1)求CD的长.(2)若点M是线段AD的中点,求的值.(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得∠CPG=60°?19.(2019•台州)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;()②若AD=BE=CF,则六边形ABCDEF是正六边形.()20.(2019•台州)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由.。

2019年全国中考数学真题分类汇编:代数几何综合压轴题(包含答案)

2019年全国中考数学真题分类汇编:代数几何综合压轴题(包含答案)

2019年全国中考数学真题分类汇编:代数几何综合压轴题一、选择题1. (2019年四川省达州市)矩形OABC在平面直角坐标系中的位置如图所示,已知B(2,2),点A在x轴上,点C在y轴上,P是对角线OB上一动点(不与原点重合),连接PC,过点P作PD⊥PC,交x轴于点D.下列结论:①OA=BC=2;②当点D运动到OA的中点处时,PC2+PD2=7;③在运动过程中,∠CDP是一个定值;④当△ODP为等腰三角形时,点D的坐标为(,0).其中正确结论的个数是()A.1个B.2个C.3个D.4个【考点】矩形的性质、锐角三角函数、相似三角形的判定和性质、勾股定理、等腰三角形的性质【解答】解:①∵四边形OABC是矩形,B(2,2),∴OA=BC=2;故①正确;②∵点D为OA的中点,∴OD=OA=,∴PC2+PD2=CD2=OC2+OD2=22+()2=7,故②正确;③如图,过点P作PF⊥OA于F,FP的延长线交BC于E,∴PE⊥BC,四边形OFEC是矩形,∴EF=OC=2,设PE=a,则PF=EF﹣PE=2﹣a,在Rt△BEP中,tan∠CBO===,∴BE=PE=a,∴CE=BC﹣BE=2﹣a=(2﹣a),∵PD⊥PC,∴∠CPE+∠FPD=90°,∵∠CPE+∠PCE=90°,∴∠FPD=∠ECP,∵∠CEP=∠PFD=90°,∴△CEP∽△PFD,∴=,∴=,∴FD=,∴tan∠PDC===,∴∠PDC=60°,故③正确;④∵B(2,2),四边形OABC是矩形,∴OA=2,AB=2,∵tan∠AOB==,∴∠AOB=30°,当△ODP为等腰三角形时,Ⅰ、OD=PD,∴∠DOP=∠DPO=30°,∴∠ODP=60°,∴∠ODC=60°,∴OD=OC=,Ⅱ、OP=OD,∴∠ODP=∠OPD=75°,∵∠COD=∠CPD=90°,∴∠OCP=105°>90°,故不合题意舍去;Ⅲ、OP=PD,∴∠POD=∠PDO=30°,∴∠OCP=150°>90°故不合题意舍去,∴当△ODP 为等腰三角形时,点D 的坐标为(,0).故④正确,故选:D . 二、解答题1. (2019年四川省攀枝花市)已知抛物线2y x bx c =-++的对称轴为直线x=1,其图像与x 轴相交于A 、B 两点,与y 轴交于点(0,3)C 。

2019年江苏省中考数学真题分类汇编 专题10 图形的性质之选择题(解析版)

2019年江苏省中考数学真题分类汇编 专题10 图形的性质之选择题(解析版)

专题10 图形的性质之选择题参考答案与试题解析一.选择题(共19小题)1.(2019•连云港)一个几何体的侧面展开图如图所示,则该几何体的底面是()A.B.C.D.【答案】解:由题意可知,该几何体为四棱锥,所以它的底面是四边形.故选:B.【点睛】本题主要考查了几何体的展开图,熟练掌握棱锥的展开图是解答本题的关键.2.(2019•常州)如图,在线段P A、PB、PC、PD中,长度最小的是()A.线段P A B.线段PB C.线段PC D.线段PD【答案】解:由直线外一点到直线上所有点的连线中,垂线段最短,可知答案为B.故选:B.【点睛】本题考查的是直线外一点到直线上所有点的连线中,垂线段最短,这属于基本的性质定理,属于简单题.3.(2019•苏州)如图,已知直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=54°,则∠2等于()A.126°B.134°C.136°D.144°【答案】解:如图所示:∵a∥b,∠1=54°,∴∠1=∠3=54°,∴∠2=180°﹣54°=126°.故选:A.【点睛】此题主要考查了邻补角的性质以及平行线的性质,正确得出∠3的度数是解题关键.4.(2019•宿迁)一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等于()A.105°B.100°C.75°D.60°【答案】解:由题意知∠E=45°,∠B=30°,∵DE∥CB,∴∠BCF=∠E=45°,在△CFB中,∠BFC=180°﹣∠B﹣∠BCF=180°﹣30°﹣45°=105°,故选:A.【点睛】本题考查了特殊直角三角形的性质,平行线的性质,三角形内角和定理等,解题关键是要搞清楚一副三角板是指一个等腰直角三角形和一个含30°角的直角三角形.5.(2019•徐州)下列长度的三条线段,能组成三角形的是()A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,10【答案】解:∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确,故选:D.【点睛】本题考查三角形三边关系,解答本题的关键是明确三角形两边之和大于第三边.6.(2019•淮安)下列长度的3根小木棒不能搭成三角形的是()A.2cm,3cm,4cm B.1cm,2cm,3cmC.3cm,4cm,5cm D.4cm,5cm,6cm【答案】解:A、2+3>4,能构成三角形,不合题意;B、1+2=3,不能构成三角形,符合题意;C、4+3>5,能构成三角形,不合题意;D、4+5>6,能构成三角形,不合题意.故选:B.【点睛】此题考查了三角形三边关系,看能否组成三角形的简便方法:看较小的两个数的和能否大于第三个数.7.(2019•泰州)如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方形的顶点上,则△ABC的重心是()A.点D B.点E C.点F D.点G【答案】解:根据题意可知,直线CD经过△ABC的AB边上的中线,直线AD经过△ABC的BC边上的中线,∴点D是△ABC重心.故选:A.【点睛】本题主要考查了三角形的重心的定义,属于基础题意,比较简单.8.(2019•扬州)已知n是正整数,若一个三角形的3边长分别是n+2、n+8、3n,则满足条件的n的值有()A.4个B.5个C.6个D.7个【答案】解:①若n+2<n+8≤3n,则,解得,即4≤n<10,∴正整数n有6个:4,5,6,7,8,9;②若n+2<3n≤n+8,则,解得,即2<n≤4,∴正整数n有2个:3和4;综上所述,满足条件的n的值有7个,故选:D.【点睛】本题主要考查了三角形三边关系的运用,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.9.(2019•盐城)如图,点D、E分别是△ABC边BA、BC的中点,AC=3,则DE的长为()A.2 B.C.3 D.【答案】解:∵点D、E分别是△ABC的边BA、BC的中点,∴DE是△ABC的中位线,∴DE AC=1.5.故选:D.【点睛】此题主要考查了三角形中位线定理,正确得出DE是△ABC的中位线是解题关键.10.(2019•镇江)如图,菱形ABCD的顶点B、C在x轴上(B在C的左侧),顶点A、D在x轴上方,对角线BD的长是,点E(﹣2,0)为BC的中点,点P在菱形ABCD的边上运动.当点F(0,6)到EP所在直线的距离取得最大值时,点P恰好落在AB的中点处,则菱形ABCD的边长等于()A.B.C.D.3【答案】解:如图1中,当点P是AB的中点时,作FG⊥PE于G,连接EF.∵E(﹣2,0),F(0,6),∴OE=2,OF=6,∴EF2,∵∠FGE=90°,∴FG≤EF,∴当点G与E重合时,FG的值最大.如图2中,当点G与点E重合时,连接AC交BD于H,PE交BD于J.设BC=2a.∵P A=PB,BE=EC=a,∴PE∥AC,BJ=JH,∵四边形ABCD是菱形,∴AC⊥BD,BH=DH,BJ,∴PE⊥BD,∵∠BJE=∠EOF=∠PEF=90°,∴∠EBJ=∠FEO,∴△BJE∽△EOF,∴,∴,∴a,∴BC=2a,故选:A.【点睛】本题考查菱形的性质,坐标与图形的性质,相似三角形的判定和性质,垂线段最短等知识,解题的关键是理解题意,学会添加常用辅助线,构造相似三角形解决问题,属于中考选择题中的压轴题.11.(2019•连云港)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC 与CD总长为12m,则该梯形储料场ABCD的最大面积是()A.18m2B.18m2C.24m2D.m2【答案】解:如图,过点C作CE⊥AB于E,则四边形ADCE为矩形,CD=AE=x,∠DCE=∠CEB=90°,则∠BCE=∠BCD﹣∠DCE=30°,BC=12﹣x,在Rt△CBE中,∵∠CEB=90°,∴BE BC=6x,∴AD=CE BE=6x,AB=AE+BE=x+6x x+6,∴梯形ABCD面积S(CD+AB)•CE(x x+6)•(6x)x2+3x+18(x ﹣4)2+24,∴当x=4时,S最大=24.即CD长为4m时,使梯形储料场ABCD的面积最大为24m2;故选:C.【点睛】此题考查了梯形的性质、矩形的性质、含30°角的直角三角形的性质、勾股定理、二次函数的运用,利用梯形的面积建立二次函数是解题的关键.12.(2019•苏州)如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为()A.6 B.8 C.10 D.12【答案】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC AC=2,OB=OD BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,∴AO'=AC+O'C=6,∴AB'10;故选:C.【点睛】本题考查了菱形的性质、平移的性质、勾股定理;熟练掌握菱形的性质和平移的性质是解题的关键.13.(2019•无锡)下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直【答案】解:矩形和菱形的内角和都为360°,矩形的对角线互相平分且相等,菱形的对角线垂直且平分,∴矩形具有而菱形不具有的性质为对角线相等,故选:C.【点睛】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.14.(2019•镇江)如图,四边形ABCD是半圆的内接四边形,AB是直径,.若∠C=110°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°【答案】解:连接AC,∵四边形ABCD是半圆的内接四边形,∴∠DAB=180°﹣∠C=70°,∵,∴∠CAB∠DAB=35°,∵AB是直径,∴∠ACB=90°,∴∠ABC=90°﹣∠CAB=55°,故选:A.【点睛】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.15.(2019•宿迁)如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是()A.6πB.62πC.6πD.62π【答案】解:6个月牙形的面积之和=3π﹣(22π﹣62)=6π,故选:A.【点睛】本题考查了正多边形与圆,圆的面积的计算,正六边形的面积的计算,正确的识别图形是解题的关键.16.(2019•苏州)如图,AB为⊙O的切线,切点为A连接AO、BO,BO与⊙O交于点C,延长BO与⊙O 交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°【答案】解:∵AB为⊙O的切线,∴∠OAB=90°,∵∠ABO=36°,∴∠AOB=90°﹣∠ABO=54°,∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC∠AOB=27°;故选:D.【点睛】本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.17.(2019•连云港)如图,在矩形ABCD中,AD=2AB.将矩形ABCD对折,得到折痕MN;沿着CM 折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②点C、E、G不在同一条直线上;③PC MP;④BP AB;⑤点F是△CMP外接圆的圆心,其中正确的个数为()A.2个B.3个C.4个D.5个【答案】解:∵沿着CM折叠,点D的对应点为E,∴∠DMC=∠EMC,∵再沿着MP折叠,使得AM与EM重合,折痕为MP,∴∠AMP=∠EMP,∵∠AMD=180°,∴∠PME+∠CME180°=90°,∴△CMP是直角三角形;故①正确;∵沿着CM折叠,点D的对应点为E,∴∠D=∠MEC=90°,∵再沿着MP折叠,使得AM与EM重合,折痕为MP,∴∠MEG=∠A=90°,∴∠GEC=180°,∴点C、E、G在同一条直线上,故②错误;∵AD=2AB,∴设AB=x,则AD=2x,∵将矩形ABCD对折,得到折痕MN;∴DM AD x,∴CM x,∵∠PMC=90°,MN⊥PC,∴CM2=CN•CP,∴CP x,∴PN=CP﹣CN x,∴PM x,∴,∴PC MP,故③错误;∵PC x,∴PB=2x x x,∴,∴PB AB,故④,∵CD=CE,EG=AB,AB=CD,∴CE=EG,∵∠CEM=∠G=90°,∴FE∥PG,∴CF=PF,∵∠PMC=90°,∴CF=PF=MF,∴点F是△CMP外接圆的圆心,故⑤正确;故选:B.【点睛】本题考查了三角形的外接圆与外心,折叠的性质,直角三角形的性质,矩形的性质,正确的识别图形是解题的关键.18.(2019•无锡)如图,P A是⊙O的切线,切点为A,PO的延长线交⊙O于点B,若∠P=40°,则∠B 的度数为()A.20°B.25°C.40°D.50°【答案】解:连接OA,如图,∵P A是⊙O的切线,∴OA⊥AP,∴∠P AO=90°,∵∠P=40°,∴∠AOP=50°,∵OA=OB,∴∠B=∠OAB,∵∠AOP=∠B+∠OAB,∴∠B∠AOP50°=25°.故选:B.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.19.(2019•常州)判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()A.﹣2 B.C.0 D.【答案】解:当n=﹣2时,满足n<1,但n2﹣1=3>0,所以判断命题“如果n<1,那么n2﹣1<0”是假命题,举出n=﹣2.故选:A.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.。

2019年全国各地中考数学试题分类汇编(第二期) 专题35 尺规作图(含解析)

2019年全国各地中考数学试题分类汇编(第二期) 专题35 尺规作图(含解析)

尺规作图一.选择题1.(2019•贵阳•3分)如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是()A.2 B.3 C.D.【分析】利用基本作图得到CE⊥AB,再根据等腰三角形的性质得到AC=3,然后利用勾股定理计算CE的长.【解答】解:由作法得CE⊥AB,则∠AEC=90°,AC=AB=BE+AE=2+1=3,在Rt△ACE中,CE==.故选:D.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).2. (2019•河北•3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.3. (2019•河南•3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4 C.3 D.【分析】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AF =FC.再根据ASA证明△FOA≌△BOC,那么AF=BC=3,等量代换得到FC=AF=3,利用线段的和差关系求出FD=AD﹣AF=1.然后在直角△FDC中利用勾股定理求出CD 的长.【解答】解:如图,连接FC,则AF=FC.∵AD∥BC,∴∠F AO=∠BCO.在△FOA与△BOC中,,∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD﹣AF=4﹣3=1.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,∴CD=2.故选:A.【点评】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与DF是解题的关键.二.填空题1.2.3.4.三.解答题1. (2019•江苏无锡•10分)按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A为⊙O上一点,请用直尺(不带刻度)和圆规作出⊙O的内接正方形;(2)我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.请运用上述性质,只用直尺(不带刻度)作图.①如图2,在▱ABCD中,E为CD的中点,作BC的中点F.②如图3,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC的高AH.【分析】(1)连结AE并延长交圆E于点C,作AC的中垂线交圆于点B,D,四边形ABCD 即为所求.(2)①连结AC,BD交于点O,连结EB交AC于点G,连结DG并延长交CB于点F,点F即为所求;②结合网格特点和三角形高的概念作图可得.【解答】解:(1)如图1,连结AO并延长交圆O于点C,作AC的中垂线交圆于点B,D,四边形ABCD即为所求.(2)①如图2,连结AC,BD交于点O,连结EB交AC于点G,连结DG并延长交CB 于点F,F即为所求②如图3所示,AH即为所求.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握圆的有关性质和平行四边形的性质及三角形垂心的性质.2. (2019•江苏宿迁•10分)在Rt△ABC中,∠C=90°.(1)如图①,点O在斜边AB上,以点O为圆心,OB长为半径的圆交AB于点D,交BC于点E,与边AC相切于点F.求证:∠1=∠2;(2)在图②中作⊙M,使它满足以下条件:①圆心在边AB上;②经过点B;③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)【分析】(1)连接OF,可证得OF∥BC,结合平行线的性质和圆的特性可求得∠1=∠OFB =∠2,可得出结论;(2)由(1)可知切点是∠ABC的角平分线和AC的交点,圆心在BF的垂直平分线上,由此即可作出⊙M.【解答】解:(1)证明:如图①,连接OF,∵AC是⊙O的切线,∴OE⊥AC,∵∠C=90°,∴OE∥BC,∴∠1=∠OFB,∵OF=OB,∴∠OFB=∠2,∴∠1=∠2.(2)如图②所示⊙M为所求.①①作∠ABC平分线交AC于F点,②作BF的垂直平分线交AB于M,以MB为半径作圆,即⊙M为所求.证明:∵M在BF的垂直平分线上,∴MF=MB,∴∠MBF=∠MFB,又∵BF平分∠ABC,∴∠MBF=∠CBF,∴∠CBF=∠MFB,∴MF∥BC,∵∠C=90°,∴FM⊥AC,∴⊙M与边AC相切.【点评】本题主要考查圆和切线的性质和基本作图的综合应用.掌握连接圆心和切点的半径与切线垂直是解题的关键,3. (2019•江西•6分)在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留作图痕迹).(1)在图1中作弦EF,使EF//BC;(2)在图2中以BC为边作一个45°的圆周角.F(1)EF就是所求作的弦;(2)角BCQ或角CBQ就是所求作的角。

2019年中考数学几何综合型试题分类汇编及答案

2019年中考数学几何综合型试题分类汇编及答案

2019年中考数学几何综合型试题分类汇编及答案各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢1.重庆,11,4分)据报道,重庆主城区私家车拥有量近380000辆.将数380000用科学记数法表示为________ 【解析】科学记数法的正确写法是:a×。

【答案】×105【点评】通常易犯的错误是a的整数位数不对。

2.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨.把数3120000用科学记数法表示为×105 ×106 ×105 ×107【解析】3120000是一个7位整数,所以3120000用科学记数法可表示为×1000000=×106,故选B.【答案】B【点评】科学记数法是将一个数写成a×10n的形式,其中1≤|a|1时,n是正数;当原数的绝对值1时,n是正数;当原数的绝对值<1时,n是负数.学生在学习科学记数法时最不容易掌握的就是n的确定,查准是10的几次方。

还有的学生容易把“×10n”忘记而丢失,要明确记清.其方法是确定a,a是只有一位整数的数;确定n;当原数的绝对值≥10时,n 为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数.16. 2011年安徽省棉花产量约378000吨,将378000用科学计数法表示应是______________.【解析】科学记数法形式:a×10n 中n的值是易错点,由于378 000有6位,所以可以确定n=6﹣1=5,所以378 000=×105【答案】×105【点评】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.表示时关键要正确确定a 的值以及n的值.17.从权威部门获悉,中国海洋面积是万平方公里,约为陆地面积的三分之一, 万平方公里用科学计数法表示为平方公里A. B. C. D.【解析】∵万平方公里=×106平方公里,且结果保留两位有效数字∴×106平方公里≈【答案】C.【点评】此题考查对科学计数法和有效数字的理解,把一个绝对值大于10的整数记为a×10n的形式, 这种记数法叫做科学记数法.; 在一个近似数中,从左边第一个不是0的数字起,到精确到的位数止,这中间所有的数字都叫这个近似数字的有效数字。

2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积(含答案)

2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积(含答案)

2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积一、选择题1.(2019年山东省青岛市)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【考点】切线的性质、等腰直角三角形的判定和性质、弧长的计算【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.2.(2019年山东省枣庄市)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A .8﹣πB .16﹣2πC .8﹣2πD .8﹣π【考点】正方形的性质、扇形的面积【解答】解:S 阴=S △ABD ﹣S 扇形BAE =×4×4﹣=8﹣2π, 故选:C .3. (2019年云南省)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )A.48πB.45πC.36πD.32π【考点】圆锥的全面积【解答】设圆锥底面圆的半径为r ,母线长为l ,则底面圆的周长等于半圆的弧长8π,∴ ππ82=r ,∴4=r ,圆锥的全面积等于πππππ4832162=+=+=+r rl S S 底侧, 故选A4. (2019年浙江省温州市)若扇形的圆心角为90°,半径为6,则该扇形的弧长为( )A .πB .2πC .3πD .6π【考点】弧长公式计算.【解答】解:该扇形的弧长==3π. 故选:C .5. (2019年湖北省荆州市)如图,点C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在上的点D 处,且l :l =1:3(l 表示的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1:3B .1:πC .1:4D .2:9【考点】圆锥的侧面积【解答】解:连接OD 交OC 于M .由折叠的知识可得:OM=OA,∠OMA=90°,∴∠OAM=30°,∴∠AOM=60°,∵且:=1:3,∴∠AOB=80°设圆锥的底面半径为r,母线长为l,=2πr,∴r:i=2:9.故选:D.6. (2019年西藏)如图,从一张腰长为90cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A.15cm B.12cm C.10cm D.20cm【考点】圆锥的侧面积【解答】解:过O作OE⊥AB于E,∵OA=OB=90cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=45cm,∴弧CD的长==30π,设圆锥的底面圆的半径为r,则2πr=30π,解得r=15.故选:A.二、填空题1.(2019年重庆市)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)【考点】扇形面积公式、菱形的性质【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,∴AO=AB=1,由勾股定理得,OB==,∴AC=2,BD=2,∴阴影部分的面积=×2×2﹣×2=2﹣π,故答案为:2﹣π.2. (2019年山东省滨州市)若正六边形的内切圆半径为2,则其外接圆半径为.【考点】正多边形和圆、等边三角形的判定与性质、三角函数【解答】解:如图,连接OA、OB,作OG⊥AB于G;则OG=2,∵六边形ABCDEF正六边形,∴△OAB是等边三角形,∴∠OAB=60°,∴OA===,∴正六边形的内切圆半径为2,则其外接圆半径为.故答案为:.3. (2019年山东省青岛市)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.【考点】正多边形和圆、圆周角定理【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.4. (2019年广西贵港市)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为______.【考点】圆锥面积公式【解答】解:连接AB ,过O 作OM ⊥AB 于M ,∵∠AOB=120°,OA=OB ,∴∠BAO=30°,AM=, ∴OA=2,∵=2πr , ∴r=故答案是:5. (2019年广西贺州市)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是度.【考点】圆锥面积公式【解答】解:设圆锥的母线为a ,根据勾股定理得,a =4,设圆锥的侧面展开图的圆心角度数为n °,根据题意得2π•1=,解得n =90,即圆锥的侧面展开图的圆心角度数为90°.故答案为:90.6. (2019年江苏省泰州市)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm ,则该莱洛三角形的周长为 cm .【考点】扇形弧长公式【解答】∵l=180R n π=1806120⨯π=4π, ∴4π×3=12π. 故答案为:12π.7.(2019年江苏省无锡市)已知圆锥的母线成为5cm ,侧面积为15πcm 2,则这个圆锥的底面圆半径为 cm .【考点】圆锥侧面积【解答】圆锥底面圆的半径r=15π÷5π=3.8. (2019年江苏省扬州市)如图,AC 是⊙O 的内接正六边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正十边形的一边,若AB 是⊙O 的内接正n 边形的一边,则n=__15_。

2019全国中考数学真题分类汇编:直角三角形、勾股定理及参考答案

2019全国中考数学真题分类汇编:直角三角形、勾股定理及参考答案

一、选择题1.(2019·广元)如图,△ABC中,∠ABC=90°,BA=BC=2,将△ABC绕点C逆时针旋转60°得到△DEC,连接BD,则BD2的值是________【答案】843【解析】连接AD,过点D作DM⊥BC于点M,DN⊥AC于点N,易得△ACD是等边三角形,四边形BNDM是正方形,设CM=x,则DM=MB=x+2,∵BC=2,∴CD=AC=,∴在Rt△MCD中,由勾股定理可求得,x1,DM=MB1,∴在Rt△BDM中,BD2=MD2+MB2=843.2.(2019·绍兴)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为 ( )A.524 B.532C.173412D.173420【答案】A【解析】如图所示:设DM =x ,则CM =8﹣x , 根据题意得:(8﹣x +8)×3×3=3×3×5, 解得:x =4,∴DM =6,∵∠D =90°,由勾股定理得:BM ==5, 过点B 作BH⊥AH,∵∠HBA+∠ABM=∠ABM+∠ABM=90°, ∴∠HBA+=∠ABM,所以Rt△ABH∽△MBD, ∴BH BD AB BM =,即385BH =,解得BH =524,即水面高度为524. 3.(2019·益阳)已知M 、N 是线段AB 上的两点,AM=MN=2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC 、BC ,则△ABC 一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【答案】B【解析】如图所示, ∵AM=MN=2,NB =1,∴AB=AM=MN+NB =2+2+1=5,AC=AN=AM+MN=2+2=4,BC=BM=BN+MN1+2=3, ∴25522==AB ,16422==AC ,9322==BC , ∴222AB BC AC =+, ∴△ABC 是直角三角形.4.(2019·广元)如图,在正方形ABCD 的对角线AC 上取一点E.使得∠CDE =15°,连接BE 并延长BE 到F,使CF =CB,BF 与CD 相交于点H,若AB =1,有下列结论:①BE =DE;②CE+DE =EF;③S △DEC =134,④231DH HC.则其中正确的结论有( )A.①②③B.①②③ ④C.①②④D.①③④【答案】A【解析】①利用正方形的性质,易得△BEC ≌△DEC,∴BE =DE,①正确;②在EF 上取一点G,使CG =CE,∵∠CEG =∠CBE+∠BCE =60°,∴△CEG 为等边三角形,易得△DEC ≌△FGC,CE+DE =EG+GF =EF,②正确;③过点D 作DM ⊥AC 于点M,S △DEC =S △DMC -S △DME =13412,③正确;④tan ∠HBC =2-,∴HC =2-,DH =1-HC =-1,∴3+1DH HC,④错误.故选A.5. (2019·宁波)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【答案】C【解题过程】设图中三个正方形边长从小到大依次为:a,b,c,则S阴影=c 2-a 2-b 2+b(a+b -c),由勾股定理可知,c 2=a 2-b 2,∴S 阴影=c 2-a 2-b 2+S 重叠=S 重叠,即S 阴影=S 重叠,故选C.6.(2019·重庆B 卷)如图,在△ABC 中,∠ABC =45°,AB =3,AD ⊥BC 于点D ,BE ⊥AC 与点E ,AE =1.连接DE ,将△AED 沿直线AE 翻折至△ABC 所在的平面,得△AEF ,连接DF .过点D 作DG ⊥DE 交BE 于点G.则四边形DFEG 的周长为( ) B. C. D.【答案】D【解析】∵∠ABC =45°,AD ⊥BC , ∴△ABC 是等腰直角三角形, ∴AD=BD.∵BE ⊥AC ,AD ⊥BD , ∴∠DAC =∠DBH ,4212题图F∴△D BH ≌△DAC (ASA ). ∵DG ⊥DE , ∴∠BDG =∠ADE ,∴△DBG ≌△DAE (ASA ), ∴BG=AE ,DG=DE ,∴△DGE 是等腰直角三角形, ∴∠DEC =45°.在Rt △ABE 中,BE , ∴GE =,∴DE =.∵D ,F 关于AE 对称, ∴∠FEC =∠DEC =45°,∴EF=DE=DG =,DF=GE =,∴四边形DFEG 的周长为2(+2-)=.故选D . 二、填空题221221222221127.(2019·苏州)“七巧板”是我们祖先的一项卓越创造.可以拼出许多有趣的图形,被誉为“东方魔板”图①是由边长为10cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形该“七巧板”中7块图形之一的正方形边长为 cm(结果保留根号).(图①)(图②)(第15题)【解析】本题考查了正方形性质、等腰直角三角形性质的综合,由题意可知,等腰×10=5cm,设正方形阴影部分三角形①与等腰三角形②全等,且它们的斜边长都为12x=sin45°,解得x.的边长为x cm,则5第15题答图8.(2019·威海)如图,在四边形ABCD中,AB∥CD,连接AC,BD.若∠ACB=90°,AC=BC,AB=BD,则∠ADC=°【答案】105°【解析】过点D作DE⊥AB于点E,过点C作CF⊥AB垂足为F,由∠ACB=90°,AC=BC,得△ABC是等腰直角三角形,由三线合一得CF为中线,从而推出2CF=AB,由AB∥CD得DE=CF,由AB=BD得BD=2DE,在Rt△DEB中利用三角函数可得∠ABD =30°,再由AB=BD得∠BAD=∠ADB=75°,最后由AB∥CD得∠BAD+∠ADC=180°求出∠ADC=105°.9.(2019·苏州)如图,一块舍有45°角的直角三角板,外框的一条直角边长为8 cm,cm,则图中阴影部分的面积三角板的外框线和与其平行的内框线之间的距离均为为 cm:(结果保留根号).(第18题)【答案】第18题答图解析:,所以△ABC与△DEF 有公共内心O ,连接AD 、BE 、FC 并延长相交于点O ,过O 作OG ⊥AB 于G ,交DE 于H .则GH =,S △ABC =12OG ×(AB +AC +BC )=12AB ×AC ,∴OG =8AB AC AB AC BC ⨯==-+-OH =8-∵DE ∥AB ,∴△ODE ∽△OAB ,∴OH DEOGAB=8DE=,解得DE =6-S阴影= S △ABC -S △DEF =(2211861022⨯--=+10.(2019·江西)在平面直角坐标系中,A ,B ,C 三点的坐标分别为(4,0)、(4,4),(0,4),点P 在x 轴上,点D 在直线AB 上,若DA =1,CP ⊥DP 于点P ,则点P 的坐标为 .【答案】(42322216+++,0)或(42322216+-+,0)【解析】设点P 的坐标为(x ,0),(1)当点D 在线段AB 上时,如图所示:∵DA=1,∴点D 的坐标为(224-,22). ∴222)224()]224(4[-+--=CD 22)22(2416)22(+-+=2417-=, 222)22()]224([+--=x PD 222)22()224()224(2+-+--=x x 2417)28(2-+--=x x , 2224)4(+-=x PC 3282+-=x x .∵CP ⊥DP 于点P ,∴222CD PD PC =+,∴2417)28(2-+--x x 3282+-+x x 2417-=, 即032)216(22=+--x x ,∵△=3224)]216([2⨯⨯---=2322-<0, ∴原方程无解,即符合要求的点P 不存在. (2)当点D 在线段BA 的延长线上,如图所示:∵DA=1,∴点D 的坐标为(224+,22-). ∴222)]22(4[)]224(4[--++-=CD 22)224()22(++-=2417+=, 222)22()]224([-++-=x PD 222)22()224()224(2++++-=x x 2417)28(2+++-=x x , 2224)4(+-=x PC 3282+-=x x .∵CP ⊥DP 于点P ,∴222CD PD PC =+, ∴2417)28(2+++-x x 3282+-+x x 2417+=, 即032)216(22=++-x x ,∵△=3224)]216([2⨯⨯-+-=2322+>0, ∴222322216⨯+±+=x 42322216+±+=, ∴点P 的坐标为(42322216+++,0)或(42322216+-+,0).11.(2019·枣庄)把两个同样大小含45°的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A,且另外三个锐角顶点B,C,D在同一直线上,若AB=2,则CD=________.过点A作AM⊥BD于点M,则AM=【解析】在等腰直角△ABC中,∵AB=2,∴BC=MC=112. (2019·巴中)如图,等边三角形ABC内有一点P,分别连接AP,BP,CP,若AP=6,BP=8,CP=10,则S△ABP+S△BPC=________.【答案】【解析】将△ABP绕点B顺时针旋转60°到△CBP',连接PP',所以BP=BP',∠PBP'因为PP'=8,P'C=60°,所以△BPP'是等边三角形,其边长BP为8,所以S=PA=6,PC=10,所以PP'2+P'C2=PC2,所以△PP'C是直角三角形,S△PP'C=24,所以S△=S△BPP'+S△PP'C=ABP+S△BPC.三、解答题13.(2019·巴中)如图,等腰直角三角板如图放置,直角顶点C在直线m上,分别过点A,B作AE⊥直线m于点E,BD⊥直线m与点D.(1)求证:EC=BD;(2)若设△AEC三边分别为a,b,c,利用此图证明勾股定理.证明:(1)∵△ABC是等腰直角三角形,∴∠ACB=90°,AC=BC, ∴∠ACE+∠BCD=90°,∵AE⊥EC, ∴∠EAC+∠ACE=90°,∴∠BCD=∠CAE,∵BD⊥CD, ∴∠AEC=∠CDB=90°,∴△AEC≌△CDB(AAS), ∴EC=BD.(2)∵△AEC≌△CDB,△AEC三边分别为a,b,c,,∴BD=EC=a,CD=AE=b,BC=AC=c,∴S梯形=12(AE+BD)ED=12(a+b)(a+b),S梯形=12ab+12c2+12ab,∴12(a+b)(a+b)=12ab+12c2+12ab,整理可得a2+b2=c2,故勾股定理得证.。

2019年中考真题几何最值分类汇编(PDF版含解析)

2019年中考真题几何最值分类汇编(PDF版含解析)
21
(2)设 AD 的中点为 M,连接 OM、MC,当四边形 OMCD 的面积为 时,求 OA 的长;
2
(3)当点 A 移动到某一位置时,点 C 到点 O 的距离有最大值,请直接写出最大值,并求此时 cos∠OAD 的值.
第 26 题图
第 26 题备用图
【解题过程】(1)如图 1,过点 C 作 CE⊥y 轴,垂足为 E.
(3)过点 P 作 PG∥CQ 交 AC 于点 G,则△APG 是等边三角形.∵BP⊥PQ,∴EG= 1 AG.∵PG∥CQ,∴∠ 2
PGD=∠QCD,∵∠PDG=∠QDC,PG=PA=CG=t,∴△PGD≌△QCD.∴GD= 1 GC.∴DE= 1 AC=3.
2
2
(4)连接 AM,∵△ABC 为等边三角形,点 M 是 BC 的中点,∴BM=3.由勾股定理,得 AM=3 3 . 由折叠,
∴OD= 1 AD=3.∴点 C 的坐标为(2, 3 2 3 ). 2
(2)∵M 为 AD 的中点,
∴DM=3, S△DCM
6 .又∵ S四边形OMCD

21 2
,∴
S△ODM

9 2
,∴
Sห้องสมุดไป่ตู้OAD
9.

OA=x,OD=y,则

x
2

1 2
xy
y2 9
36
,∴
x2

y2

7
2019 中考试题分类汇编
以同样的速度沿 BC 延长线方向匀速运动.当点 P 到达点 B 时,点 P、Q 同时停止运动.设运动时间为 t(s).过 点 P 作 PE⊥AC 于 E,连接 PQ 交 AC 边于 D.以 CQ、CE 为边作平行四边形 CQFE. (1)当 t 为何值时,△BPQ 为直角三角形; (2)是否存在某一时刻 t,使点 F 在∠ABC 的平分线上?若存在,求出 t 的值,若不存在,请说明理由;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年中考数学真题分类汇编—几何题汇总一、选择题1.【2019连云港市】如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是A.18m2B.m2C.2D2(第1 题)(第2题)(第3题)2.【2019宿迁】一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等于( )A.105°B.100°C.75°D.60°3.【2019宿迁】一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是( )A.20πB.15πC.12πD.9π4、【2019常州】下图是某几何体的三视图,该几何体是()A. 圆柱B. 正方体C. 圆锥D.球5、【2019常州】如图,在线段PA、PB、PC、PD中,长度最小的是( )A、线段PAB、线段PBC、线段PCD、线段PD6.【2019镇江】一个物体如图所示,它的俯视图是( )A.B.C.D.7、【2019淮安】下图是由4个相同的小正方体搭成的几何体,则该几何体的主视图是()8.【2019泰州】如图所示的网格由边长相同的小正方形组成,点A 、B 、C 、D 、E 、F 、G 在小正方形的顶点上,则△ABC 的重心是( )A .点DB .点EC .点FD .点G 9、【2019扬州】 已知n 是正整数,若一个三角形的三边长分别是n+2,n+8,3n ,则满足条件的n 的值有()A.4个 B.5个C.6个D.7个10.【2019连云港市】如图,在矩形ABCD 中,AD =AB .将矩形ABCD对折,得到折痕MN ;沿着CM 折叠,点D 的对应点为E ,ME 与BC 的交点为F ;再沿着MP 折叠,使得AM 与EM 重合,折痕为MP ,此时点B 的对应点为G .下列结论:①△CMP 是直角三角形;②点C 、E 、G 不在同一条直线上;③PC =;④BP =AB ;⑤点F 是△CMP 外接圆的圆心.其中正确的个数为ABCE DFG ····A .2个B .3个C .4个D .5个11.【2019苏州】如图,菱形的对角线,交于点,,ABCD AC BD O 416AC BD ==,将沿点到点的方向平移,得到,当点与点重合时,点与点ABO V A C A B C '''V A 'C A B '之间的距离为()A .B .C .D .68101212.【2019苏州】如图,在中,点为边上的一点,且,ABC V D BC 2AD AB ==,过点作,交于点,若,则的面积为AD AB ⊥D DE AD ⊥DE AC E 1DE =ABC V ( )A .B .C .D.48AB CDB13.【2019宿迁】如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 与原点O 重合,顶点B 落在x 轴的正半轴上,对角线AC 、BD 交于点M ,点D 、M 恰好都在反比例函数y =(x >0)的图象上,则的值为( )A .B .C .2D .14.【2019镇江】如图,菱形ABCD 的顶点B 、C 在x 轴上(B 在C 的左侧),顶点A 、D在x 轴上方,对角线BD 的长是,点E (﹣2,0)为BC 的中点,点P 在菱形ABCD 的边上运动.当点F (0,6)到EP 所在直线的距离取得最大值时,点P 恰好落在AB 的中点处,则菱形ABCD 的边长等于( )A .B .C .D .3二、填空题1.【2019连云港市】如图,在矩形ABCD 中,AB =4,AD =3,以点C 为圆心作⊙C 与直线BD 相切,点P 是OC 上一个动点,连接AP 交BD 于点T ,则的最大值AP AT是 .2.【2019苏州】“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为10cm“东方魔板”,图①是由边长的正方形薄板分成7块制作成的“七巧板”图②是用该“七cm巧板”拼成的一个“家”的图形,该“七巧板”中7块图形之一的正方形边长为_______(结果保留根号)3.【2019苏州】如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方形,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为_________45 10cm 4.【2019苏州】如图,一块含有角的直角三角板,外框的一条直角边长为,三角,则图中阴影部分的面积为_______cm(结果保留根号)5.【2019宿迁】如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为  .6.【2019泰州】如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm ,则该莱洛三角形的周长为 cm .7.【2019无锡市】如图,在△ABC 中,AB =AC =5,BC =D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则△BDE 面积的最大值为 .8.【2019盐城】如图,在△ABC 中,BC =,∠C =45°,AB =AC ,则AC的26 2长为________.9.【2019扬州】如图,将四边形ABCD绕顶点A顺时针转45°至AB’C’D’的位置,若AB=16cm,则图中的阴影部分面积为cm210、【2019扬州】如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN=11.【2019镇江】如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD是等边三角形,∠A=20°,则∠1= °.12.【2019镇江】将边长为1的正方形ABCD 绕点C 按顺时针方向旋转到FECG 的位置(如图),使得点D 落在对角线CF 上,EF 与AD 相交于点H ,则HD = .(结果保留根号)13、【2019淮安】如图,l 1∥l 2∥l 3,直线a 、b 与l 1、l 2、l 3分别相交于点A. B. C 和点D. E. F. 设AB =3,BC =6,DE =2,则EF =___.16、如图,在矩形ABCD 中,AB =3,BC =2,H 为AB 的中点,将△CBH 沿CH 折叠,使点B 落在矩形内点P 处,连接AP ,则为___.tan HAP14、【2019常州】如图,AB 是的直径,C 、D 是上的两点,O O ,Z 则=120AOC ∠=CDB ∠15、【2019常州】与边长为8的等边三角形ABC 的O 两边AB 、BC 都相切,连接OC ,则tan OCB ∠=16、【2019常州】如图,在矩形ABCD 中,AD=3AB=,点P 是AD 的中点,点E 在BC 上,CE=2BE ,点M 、N 在线段BD 上,若△PMN 是等腰三角形且底角与相等,则MN= DEC ∠三、计算题1.【2019连云港市】如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E在边BC上,DE与AC相交于点O.(1)求证:△OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.2.【2019南京市】如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证:△ADF≌△CEF.3.【2019南京市】某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?4.【2019宿迁】如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF=.(1)求证:四边形AECF是菱形;(2)求线段EF的长.5、【2019苏州】如图,中,点在边上,,将线段绕点旋转到=AC A△E BC AE ABABCAF CAF BAE∠=∠EF EF AC G的位置,使得,连接,与交于点EF BC=(1)求证:;∠=︒FGC∠ACBABC∠=︒2865(2)若,,求的度数.6.【2019泰州】如图, △ABC中,∠C=900,AC=4, BC=8,(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.7.【2019泰州】如图,四边形ABCD内接于⊙O,AC为⊙O(1)判断DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为5,AB=8,求CE的长.8.【2019泰州】如图,线段AB=8,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD ,且点C、D与点B在AP 两侧,在线段DP上取一点E,使∠EAP=∠BAP.直线CE与线段AB相交于点F(点F与点A、B不重合).(2)判断CF与AB的位置关系,并说明理由;(3)求△AEF的周长.9.【2019无锡市】如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O.(1)求证:△DBC≌△ECB;(2)求证:OB=OC.B10.【2019盐城】如图,AD是△ABC的角平分线(1)作线段AD的垂直平分线EF,分别交AB、AC于点E、F;(用直尺和圆规作图,标明字母,保留作图痕迹,不写作法.)(2)连接DE、DF,四边形AEDF是________形.(直接写出答案)11.【2019扬州】如图,在平行四边形ABCD中,AE平分∠DAB,已知CE=6, BE=8, DE=10 .(1)求证:∠BEC=90°;(2)求cos∠DAE .12、【2019淮安】已知:如图,在平行四边形ABCD中,点E、F分别是边AD、BC的中点。

求证:BE=DF13.【2019南京市】如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.14.【2019苏州】已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP =.如图①,动点M 从点A 出发,在矩形边上沿着的方向匀速运动(不包A B C →→含点C ).设动点M 的运动时间为t (s ),的面积为S (cm ²),S 与t 的函数关系如图APM ∆②所示:(1)直接写出动点M 的运动速度为 ,BC 的长度为 ;/cm s cm (2)如图③,动点M 重新从点A 出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N 从点D 出发,在矩形边上沿着的方向匀速运动,设动点N D C B →→的运动速度为.已知两动点M 、N 经过时间在线段BC 上相遇(不包含点()/v cm s ()x s C ),动点M 、N 相遇后立即停止运动,记此时的面积为.APM DPN ∆∆与()()2212,S cm S cm ①求动点N 运动速度的取值范围;()/v cm s ②试探究是否存在最大值.若存在,求出的最大值并确定运动速度时间的值;12S S ⋅12S S ⋅x 若不存在,请说明理由.t (s (15.【2019宿迁】如图①,在钝角△ABC中,∠ABC=30°,AC=4,点D为边AB中点,点E为边BC中点,将△BDE绕点B逆时针方向旋转α度(0≤α≤180).(1)如图②,当0<α<180时,连接AD、CE.求证:△BDA∽△BEC;(2)如图③,直线CE、AD交于点G.在旋转过程中,∠AGC的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;(3)将△BDE从图①位置绕点B逆时针方向旋转180°,求点G的运动路程.16.【2019无锡市】如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△PAB关于直线PA的对称△PAB′,设点P的运动时间为t(s).(1)若AB=.①如图2,当点B′落在AC上时,显然△PAB′是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线PB′与直线CD相交于点M,且当t<3时存在某一时刻有结论∠PAM=45°成立,试探究:对于t>3的任意时刻,结论∠PAM=45°是否总是成立?请说明理由.17.【2019盐城】如图①是一张矩形纸片,按以下步骤进行操作:(Ⅰ)将矩形纸片沿DF折叠,使点A落在CD边上点E处,如图②;(Ⅱ)在第一次折叠的基础上,过点C再次折叠,使得点B落在边CD上点B处,如图③,两次折痕交于点O;(Ⅲ)展开纸片,分别连接OB、OE、OC、FD,如图①.【探究】(1)证明:△OBC≌△OED:(2)若AB=8,设BC为x,OB为y,求y关于x的关系式.18、【2019扬州】如图,平面内的两条直线l1、l2,点A、B在直线l1上,点C、D在直线l2上,过A、B两点分别作直线l1的垂线,垂足分别为A1、B1,我们把线段A1B1叫做线段AB在直线l2上的正投影,其长度可记作T(AB,CD)或T(AB,l2),特别地,线段AC在直线l2上的正投影就是线段A1C.请依据上述定义解决下列问题:(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)=(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面积(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,CD).(图1)19.【2019扬州】,如图,四边形ABCD是矩形,AB=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,∠G=90°。

相关文档
最新文档