推荐学习年高考数学一轮复习专题解三角形及其应用举例讲

合集下载

2023届高三数学一轮复习专题 解三角形 讲义 (解析版)

2023届高三数学一轮复习专题  解三角形  讲义 (解析版)

单元(或主题)教学设计模板以下内容、形式均只供参考,参评者可自行设计。

教学过程既可以采用表格式描述,也可以采取叙事的方式。

如教学设计已经过实施,则应尽量采用写实的方式将教学过程的真实情景以及某些值得注意和思考的现象和事件描述清楚;如教学设计尚未经过实施,则应着重将教学中的关键环节以及教学过程中可能出现的问题及处理办法描述清楚。

表格中所列项目及格式仅供参考,应根据实际教学情况进行调整。

问题,体验数学在解决实际问题中的作用,提升学生数学抽象、数学建模、直观想象、数学运算的数学核心素养。

重点:掌握正弦定理、余弦定理及面积公式,并能正确应用定理解三角形难点:能应用正弦定理、余弦定理等知识和方法解决一些测量与几何计算有关的实际问题。

3.单元(或主题)整体教学思路(教学结构图)第一课时,正弦定理及可以解决的问题第二课时,余弦定理及可以解决的问题第三课时,三角形内角和定理、正弦定理、余弦定理的选择第1课时教学设计课题正弦定理课型新授课□章/单元复习课□专题复习课√习题/试卷讲评课□学科实践活动课□其他□1.教学内容分析本课时是解三角形复习课的起始课,由实际问题出发引起学生对定理及变形的回忆,提升学生数学建模、直观想象的核心素养;由几个典型的例题,归纳出正弦定理可以解决的类型,再由定理本身出发再次分析定理可以解决的类型,提升学生逻辑推理、数学运算的核心素养,提高学生对数学符号解读的能力。

再析定理,进而推出“三角形面积公式”,提升学生逻辑推理的核心素养。

3、你还有哪些收获?活动意图说明对于本节课的重点内容强化提问,既检测又强化重点。

“你还有哪些收获”,希望学生能够答出:三角形面积公式、SSA 的情况可能出现两解、取舍的方法、方程和数形结合的思想方法等。

环节六:课堂检测教的活动61、 在中,已知 45,30,10A C c cm ︒︒===,求a 边. 2、 在△ABC 中,π32,6,2===B b c ,求∠A 。

高考数学(解三角形)第一轮复习

高考数学(解三角形)第一轮复习

高考数学(解三角形)第一轮复习资料1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2b R B =,sin 2cC R=;③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B .3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B ,2222cos c a b ab C =+-.5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac+-B =,222cos 2a b c C ab +-=.6、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =; ②若222a b c +>,则90C <;③若222a b c +<,则90C >.第一节 正弦定理与余弦定理1.(2008·陕西理,3)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则 a 等于 ( ) A.6 B.2 C.3 D.2答案 D2.(2008·福建理,10)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( ) A.6πB.3π C.6π或65π D.3π或32π答案 D3.下列判断中正确的是 ( )A .△ABC 中,a =7,b =14,A =30°,有两解B .△ABC 中,a =30,b =25,A =150°,有一解C .△ABC 中,a =6,b =9,A =45°,有两解D .△ABC 中,b =9,c =10,B =60°,无解 答案 B4. 在△ABC 中,若2cos B sin A =sin C ,则△ABC 一定是( )A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形 答案 B5. 在△ABC 中,A =120°,AB =5,BC =7,则CBsin sin 的值为( )A.58 B.85C.35D.53答案 D6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则∠C 的度数是 ( ) A.60° B.45°或135° C.120°D.30°答案 B7.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,b =7,c =3,则B = . 答案65π 8. 在△ABC 中,A =60°,AB =5,BC =7,则△ABC 的面积为 . 答案 3109. (2008·浙江理,13)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若(3b -c )cos A =a cos C ,则cos A = . 答案33 10. 在△ABC 中,已知a =3,b =2,B =45°,求A 、C 和c . 解 ∵B =45°<90°且a sin B <b <a ,∴△ABC 有两解. 由正弦定理得sin A =b B a sin =245sin 3︒=23, 则A 为60°或120°.①当A =60°时,C =180°-(A +B )=75°, c =B C b sin sin =︒︒45sin 75sin 2=︒︒+︒45sin )3045sin(2=226+.②当A =120°时,C =180°-(A +B )=15°, c =B C b sin sin =︒︒45sin 15sin 2=︒︒-︒45sin )3045sin(2=226-.故在△ABC 中,A =60°,C =75°,c =226+或A =120°,C =15°,c =226-.11. 在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且C B cos cos =-ca b+2.(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.解 (1)由余弦定理知:cos B =ac b c a 2222-+,cos C =ab c b a 2222-+.将上式代入C Bcos cos =-c a b +2得:ac b c a 2222-+·2222c b a ab -+=-ca b +2整理得:a 2+c 2-b 2=-ac ∴cos B =acb c a 2222-+=ac ac 2- =-21∵B 为三角形的内角,∴B =32π. (2)将b =13,a +c =4,B =32π代入b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B ∴b 2=16-2ac ⎪⎭⎫⎝⎛-211,∴ac =3.∴S △ABC =21ac sin B =433. 12. 在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2+b 2)sin (A -B )=(a 2-b 2)sin (A +B ),判断三角形的形状.解 方法一 已知等式可化为a 2[sin (A -B )-sin (A +B )]=b 2[-sin (A +B )-sin(A -B )]∴2a 2cos A sin B =2b 2cos B sin A由正弦定理可知上式可化为:sin 2A cos A sin B =sin 2B cos B sin A∴sin A sin B (sin A cos A -sin B cos B )=0∴sin2A =sin2B ,由0<2A ,2B <2π 得2A =2B 或2A =π-2B ,即A =B 或A =2π-B ,∴△ABC 为等腰或直角三角形. 方法二 同方法一可得2a 2cos A sin B =2b 2sin A cos B由正、余弦定理,可得a 2b bc a c b 2222-+= b 2a acb c a 2222-+ ∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2)即(a 2-b 2)(a 2+b 2-c 2)=0∴a =b 或a 2+b 2=c 2∴△ABC 为等腰或直角三角形.13. 已知△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,求tan C 的值.解 依题意得ab sin C =a 2+b 2-c 2+2ab ,由余弦定理知,a 2+b 2-c 2=2ab cos C . 所以,ab sin C =2ab (1+cos C ),即sin C =2+2cos C ,所以2sin2C cos 2C =4cos 22C 化简得:tan 2C =2.从而tan C =2tan 12tan22C C-=-34. 14. 已知△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等差数列,且2cos2B -8cos B +5=0,求角B 的大小并判断△ABC 的形状.解 方法一 ∵2cos2B -8cos B +5=0,∴2(2cos 2B -1)-8cos B +5=0.∴4cos 2B -8cos B +3=0, 即(2cos B -1)(2cos B -3)=0. 解得cos B =21或cos B =23(舍去).∴cos B =21.∵0<B <π,∴B =3π. ∵a ,b ,c 成等差数列,∴a +c =2b .∴cos B =acbc a 2222-+=acc a c a 2)2(222+-+=21,化简得a 2+c 2-2ac =0,解得a =c .又∵B =3π,∴△ABC 是等边三角形. 方法二 ∵2cos2B -8cos B +5=0,∴2(2cos 2B -1)-8cos B +5=0.∴4cos 2B -8cos B +3=0,即(2cos B -1)(2cos B -3)=0.解得cos B =21或cos B =23(舍去).∴cos B =21,∵0<B <π,∴B =3π, ∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B =2sin 3π=3. ∴sin A +sin ⎪⎭⎫⎝⎛-A 32π=3,∴sin A +sin A cos 32π-cos A sin 32π=3. 化简得23sin A +23cos A =3,∴sin ⎪⎭⎫⎝⎛+6πA =1. ∴A +6π=2π,∴A =3π,∴C =3π,∴△ABC 为等边三角形. 15. (2008·广东五校联考)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a +b =5,c =7,且4sin22B A +-cos2C =27. (1)求角C 的大小;(2)求△ABC 的面积. 解 (1)∵A +B +C =180°,由4sin 22B A +-cos2C =27,得4cos 22C-cos2C =27,∴4·2cos 1C +-(2cos 2C -1)=27,整理,得4cos 2C -4cos C +1=0,解得cos C =21, ∵0°<C <180°,∴C =60°.(2)由余弦定理得c 2=a 2+b 2-2ab cos C ,即7=a 2+b 2-ab ,∴7=(a +b )2-3ab , 由条件a +b =5,得7=25-3ab ,ab =6,∴S △ABC =21ab sin C =21×6×23=233. 第二节 正弦定理、余弦定理的应用1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则βα、的关系为( ) A.α>βB.α=βC.α+β=90°D.α+β=180°答案 B2.已知A 、B 两地的距离为10 km,B 、C 两地的距离为20 km,现测得∠ABC =120°,则A 、C 两地的距离为 ( ) A.10 km B.3 km C.510 km D.107 km答案 D3. 为测量某塔AB 的高度,在一幢与塔AB 相距20 m 的楼顶处测得塔顶A 的仰角为30°,测得塔基B 的俯角为45°,那么塔AB 的高度是 ( )A.)331(20+m B.)231(20+ m C.)31(20+ m D.30 m答案 A4.如图,位于港口O 正东20海里B 处的渔船回港时出现故障.位于港口南偏西30°,距港口10海里C 处的拖轮接到海事部门营救信息后以30海里/小时的速度沿直线CB 去营救渔船,则拖轮到达B 处需要________小时.解析:由余弦定理得BC =202+102-2×10×20cos120°=107,从而需73小时到达B 处.答案:735.(2010年南京市高中联考)如图,海岸线上有相距5海里的两座灯塔A ,B ,灯塔B 位于灯塔A 的正南方向.海上停泊着两艘轮船,甲船位于灯塔A 的北偏西75°,与A 相距32海里的D 处;乙船位于灯塔B 的北偏西60°方向,与B 相距5海里的C 处.则两艘轮船之间的距离为________海里.解析:连结AC .则AC =5,在△ACD 中,AD =32,AC =5,∠DAC =45°,由余弦定理得CD =13.答案:136.(2010年宁波十校联考)一船向正北方向匀速行驶,看见正西方向两座相距10海里的灯塔恰好与该船在同一直线上,继续航行半小时后,看见其中一座灯塔在南偏西60°方向上,另一灯塔在南偏西75°方向上,则该船的速度是________海里/小时.解析:假设该船从A 处航行到了D 处,两座灯塔分别在B 、C 位置,如图,设AD 长为x ,则AB =x tan60°,AC =x tan75°,所以BC =x tan75°-x tan60°=10,解得x =5,所以该船的速度v =50.5=10(海里/小时).答案:107.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2分钟,从D 沿着DC 走到C 用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径为________米.解析:连结OC ,在三角形OCD 中,OD =100,CD =150,∠CDO =60°,由余弦定理可得OC 2=1002+1502-2×100×150×12=17500,∴OC =507.答案:5078.(原创题)在Rt △ABC 中,斜边AB =2,内切圆的半径为r ,则r 的最大值为________.解析:∵r =a +b -c 2=a +b 2-1,∵4=a 2+b 2≥(a +b )22,∴(a +b )2≤8,∴a +b ≤22,∴r ≤2-1.答案:2-19.(2009年高考辽宁卷)如图,A 、B 、C 、D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶,测量船于水面A 处测得B 点和D 点的仰角分别为75°、30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.试探究图中B 、D 间距离与另外哪两点间距离相等,然后求B 、D 的距离(计算结果精确到0.01 km ,2≈1.414,6≈2.449).解:在△ACD 中,∠DAC =30°, ∠ADC =60°-∠DAC =30°,所以CD =AC =0.1.又∠BCD =180°-60°-60°=60°, 故CB 是△CAD 底边AD 的中垂线,所以BD =BA .在△ABC 中,AB sin ∠BCA =AC sin ∠ABC,所以AB =AC sin60°sin15°=32+620. 同理,BD =32+620≈0.33(km),故B 、D 的距离约为0.33 km.。

三角函数的综合应用+课件-2025届高三数学一轮复习

三角函数的综合应用+课件-2025届高三数学一轮复习

(2)由题意,得 f(A)=2sin 2A-π3- 3=0,即 sin 2A-π3= 23,
∵A∈0,π2, 则 2A-π3∈-π3,23π, ∴2A-π3=π3,∴A=π3.
在△ABC 中, 由 a2=b2+c2-2bc cos A=42+32-2×4×3×12=13, 可得 a= 13, 又∵12bc sin A=12AD×a,即12×4×3× 23=21AD× 13, ∴AD=61339,故 BC 边上的高 AD 的长为61339.
(2)根据正弦定理得sina A=sinc C=sinb
B=
4 =8 3
3
3,
2
所以
a=8
3
3 sin
A,c=8
3
3 sin
C.
所以
a+c=8
3
3 (sin
A+sin
C).
因为 A+B+C=π,B=π3,所以 A+C=23π,
所以 a+c=8
3
3 sin
A+sin
23π-A=8
3
33 2sin
A+
23cos
A
=8sin A+π6.
因为 0<A<23π,
所以 A+π6∈π6,56π,所以 sin A+π6∈12,1,则 a+c∈(4,8].
所以 a+c 的取值范围是(4,8].
【反思感悟】已知三角形一边及其对角,求取值范围的问题 的解法
(1)(不妨设已知 a 与 sin A 的值)根据 2R=sina A求出三角形外接
∴a2+c2 b2=sin2Asi+n2Csin2B=cos22sCin+2Ccos2C =(1-2sin2Cs)in2+2C(1-sin2C)=2+4sins4iCn2-C 5sin2C

第4章 第7节 解三角形应用举例-2022届高三数学一轮复习讲义(新高考)

第4章 第7节 解三角形应用举例-2022届高三数学一轮复习讲义(新高考)

第七节解三角形应用举例一、教材概念·结论·性质重现1.仰角和俯角意义图示在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角.2.方位角意义图示从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α.3.方向角意义图示相对于某一正方向的水平角(1)北偏东α,即由指北方向顺时针旋转α到达目标方向;(2)北偏西α,即由指北方向逆时针旋转α到达目标方向;(3)南偏西等其他方向角类似.4.坡角与坡度意义图示(1)坡角:坡面与水平面所成的二面角的度数(如图,角θ为坡角);(2)坡度:坡面的铅直高度与水平长度之比(如图,i为坡度).坡度又称为坡比.解三角形应用问题的步骤1.判断下列说法的正误,对的打“√”,错的打“×”.(1)若从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α=β.(√) (2)俯角是铅垂线与视线所成的角,其范围为⎣⎢⎡⎦⎥⎤0,π2.(×) (3)若点P 在点Q 的北偏东44°,则点Q 在点P 的东偏北46°. (×) (4)方位角大小的范围是[0,π),方向角大小的范围是⎣⎢⎡⎭⎪⎫0,π2.(×)2.如图,两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°D 解析:由条件及图可知,∠A =∠CBA =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 的南偏西80°. 3.如图,为测量一棵树OP 的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得树尖的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则树的高度为________m.30+303解析:在△PAB中,∠PAB=30°,∠APB=15°,AB=60 m,sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°·sin 30°=22×32-22×12=6-2 4.由正弦定理得PBsin 30°=ABsin 15°,所以PB=12×606-24=30(6+2),所以树的高度OP=PB sin 45°=30(6+2)×22=(30+303)(m).4.如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B的距离,测量者可以在河岸边选定两点C,D.若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离为________ km.64解析:因为∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,所以∠DAC=60°,所以AC=CD=32km.在△BCD中,∠DBC=180°-∠CDB-∠ACD-∠ACB=45°,由正弦定理,得BC=CDsin∠DBC·sin∠BDC=32sin 45°·sin 30°=64(km).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC cos 45°=34+38-2×32×64×22=38.所以AB=64km.所以A,B两点间的距离为64km.5.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为________.40 m解析:设电视塔的高度为x m,则BC=x,BD=3x.在△BCD中,由余弦定理得3x2=x2+402-2×40x×cos 120°,即x2-20x-800=0,解得x=40或x=-20(舍去).故电视塔的高度为40 m.考点1解三角形的实际应用——应用性考向1测量距离问题如图,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC 和一条索道AC,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登.已知∠ABC=120°,∠ADC=150°,BD=1 km,AC=3 km.假设小王和小李徒步攀登的速度为每小时1 250m,请问:两位登山爱好者能否在2个小时内徒步登上山峰.(即从B点出发到达C点)解:在△ABD中,由题意知,∠ADB=∠BAD=30°,所以AB=BD=1.因为∠ABD=120°,由正弦定理ABsin∠ADB=ADsin∠ABD,解得AD=3(km).在△ACD中,由AC2=AD2+CD2-2AD·CD·cos 150°,得9=3+CD2+23×32×CD.即CD2+3CD-6=0,解得CD=33-32(km),BC=BD+CD=33-12(km).两个小时小王和小李可徒步攀登1 250×2=2 500(m),即2.5km , 而33-12<36-12=52=2.5,所以两位登山爱好者可以在两个小时内徒步登上山峰.1.若将本例条件“BD =1 km ,AC =3 km ”变为“BD =200 m ,CD =300 m ”,其他条件不变,求这条索道AC 的长.解:在△ABD 中,BD =200,∠ABD =120°. 因为∠ADB =30°,所以∠DAB =30°. 由正弦定理,得BD sin ∠DAB =ADsin ∠ABD , 所以200sin 30°=ADsin 120°. 所以AD =200×sin 120°sin 30°=200 3 (m). 在△ABC 中,DC =300 m ,∠ADC =150°,所以AC 2=AD 2+DC 2-2AD ×DC ×cos ∠ADC =(2003)2+3002-2×2003×300×cos 150°=390 000,所以AC =10039 m.故这条索道AC 长为10039 m.2.若将本例条件“∠ABC =120°,∠ADC =150°,BD =1 km ,AC =3 km ”变为“∠ADC =135°,∠CAD =15°,AD =100 m ,作CO ⊥AB ,垂足为O ,延长AD 交CO 于点E ,且CE =50 m ,如图”,求角θ的余弦值.解:在△ACD 中,∠ADC =135°, ∠CAD =15°,所以∠ACD =30°. 由正弦定理可得AC =100×sin 135°sin 30°=100 2.在△ACE 中,由正弦定理可得sin ∠CEA =AC ·sin ∠CAE CE=3-1,所以cos θ=cos ⎝ ⎛⎭⎪⎫∠CEA -π2=sin ∠CEA =3-1.距离问题的解题思路这类实际应用题,实质就是解三角形问题,一般都离不开正弦定理和余弦定理,在解题中,首先要正确地画出符合题意的示意图,然后将问题转化为三角形问题去求解.提醒:①基线的选取要恰当准确;②选取的三角形及正弦、余弦定理要恰当. 考向2 测量高度问题如图,小明同学在山顶A 处观测到一辆汽车在一条水平的公路上沿直线匀速行驶,小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°,且∠BAC =135°.若山高AD =100 m ,汽车从B 点到C 点历时14 s ,则这辆汽车的速度约为________m/s(精确到0.1).参考数据:2≈1.414,5≈2.236.22.6 解析:因为小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°, 所以∠BAD =60°,∠CAD =45°. 设这辆汽车的速度为v m/s ,则BC =14v . 在Rt △ABD 中,AB =AD cos ∠BAD =100cos 60°=200. 在Rt △ACD 中,AC =AD cos ∠CAD =100cos 45°=100 2. 在△ABC 中,由余弦定理,得BC 2=AC 2+AB 2-2AC ·AB ·cos ∠BAC , 所以(14v )2=(1002)2+2002-2×1002×200×cos 135°,所以v =50107≈22.6,所以这辆汽车的速度约为22.6 m/s.解决高度问题的注意事项(1)在解决有关高度问题时,理解仰角、俯角是关键.(2)高度问题一般是把它转化成解三角形问题,要注意三角形中的边角关系的应用.若是空间的问题要注意空间图形向平面图形的转化.1.圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标杆(称为“表” )和一把呈南北方向水平固定摆放的与标杆垂直的长尺(称为“圭” ).当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据北京的地理位置设计的圭表的示意图,已知北京冬至正午太阳高度角(即∠ABC)为26.5°,夏至正午太阳高度角(即∠ADC)为73.5°,圭面上冬至线与夏至线之间的距离(即BD的长)为a,则表高(即AC的长)为()A.a sin 53°2sin 47°B.2sin 47°a sin 53°C.a tan 26.5°tan 73.5°tan 47°D.a sin 26.5°sin 73.5°sin 47°D解析:由题意得,∠BAD=73.5°-26.5°=47°.在△ABD中,由正弦定理可得,BDsin∠BAD=ADsin∠ABD,即asin 47°=ADsin 26.5°,则AD=a sin 26.5°sin 47°.在△ACD中,ACAD=sin∠ADC=sin 73.5°,所以AC=a sin 26.5°·sin 73.5°sin 47°.故选D.2.如图是改革开放四十周年大型展览的展馆——国家博物馆.现欲测量博物馆正门柱楼顶部一点P 离地面的高度OP (点O 在柱楼底部).在地面上的A ,B 两点测得点P 的仰角分别为30°,45°,且∠ABO =60°,AB =50米,则OP 为( )A .15米B .25米C .35米D .45米B 解析:如图所示:由于∠OAP =30°,∠PBO =45°,∠ABO =60°,AB =50米,OP ⊥AO ,OP ⊥OB .设OP =x ,则OA =3x ,OB =x ,在△OAB 中,由余弦定理得OA 2=OB 2+AB 2-2OB ·AB ·cos ∠ABO , 即(3x )2=502+x 2-2×50x ×12,所以x 2+25x -1 250=0,解得x =25或x =-50(舍).3.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得CD =80米,∠ADB =135°,∠BDC =∠DCA =15°,∠ACB =120°,则A ,B 两点间的距离为________米.805 解析:如图,在△ACD 中,∠DCA =15°,∠ADC =150°,所以∠DAC =15°.由正弦定理,得AC=80sin 150°sin 15°=406-24=40(6+2)(米).在△BCD中,∠BDC=15°,∠BCD=135°,所以∠CBD=30°.由正弦定理,得CDsin∠CBD=BCsin∠BDC,所以BC=CD·sin∠BDCsin∠CBD=80×sin 15°sin 30°=40(6-2)(米).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC·cos∠ACB=1 600(8+43)+1 600(8-43)+2×1 600(6+2)×(6-2)×12=1 600×16+1 600×4=1 600×20,解得AB=805(米),则A,B两点间的距离为805米.考点2正余弦定理在平面几何中的应用(2020·青岛模拟)如图,在平面四边形ABCD中,AB⊥AD,AB=1,AD =3,BC= 2.(1)若CD=1+3,求四边形ABCD的面积;(2)若sin∠BCD=325,∠ADC∈⎝⎛⎭⎪⎫0,π2,求sin∠ADC.解:(1)如图,连接BD,在Rt△ABD中,由勾股定理可得,BD2=AB2+AD2=4,所以BD=2.在△BCD 中,由余弦定理可得,cos C =BC 2+CD 2-BD 22BC ·CD =2+(1+3)2-222×2×(1+3)=22. 因为C 为三角形的内角,故C =π4, 所以S △ABD =12AB ·AD =12×1×3=32, S △BCD =12BC ·CD sin C =12×2×(1+3)×22=1+32, 故四边形ABCD 的面积S =1+232.(2)在△BCD 中,由正弦定理可得BC sin ∠BDC =BDsin ∠BCD , 所以sin ∠BDC =BC ·sin ∠BCD BD=35. 因为∠ADC ∈⎝ ⎛⎭⎪⎫0,π2,所以∠BDC ∈⎝ ⎛⎭⎪⎫0,π2, 所以cos ∠BDC =45,在Rt △ABD 中,tan ∠ADB =AB AD =33, 故∠ADB =π6,所以sin ∠ADC =sin ⎝ ⎛⎭⎪⎫∠BDC +π6=35×32+45×12=4+3310.正余弦定理解平面几何问题的注意点(1)图形中几何性质的挖掘往往是解题的切入点,或是问题求解的转折点. (2)根据条件或图形,找出已知,未知及求解中需要的三角形,用好三角恒等变换公式,运用正弦定理,余弦定理解题.(3)养成应用方程思想解题的意识.1.如图,为了测量A ,C 两点间的距离,选取同一平面上B ,D 两点,测出四边形ABCD 各边的长度(单位:km),AB =5,BC =8,CD =3,AD =5,且∠B 与∠D 互补,则AC 的长为( )A .7 kmB .8 kmC .9 kmD .6 kmA 解析:在△ACD 中,由余弦定理得cos D =AD 2+CD 2-AC 22AD ·CD =34-AC 230. 在△ABC 中,由余弦定理得cos B =AB 2+BC 2-AC 22AB ·BC=89-AC 280. 因为∠B +∠D =180°,所以cos B +cos D =0,即34-AC 230+89-AC 280=0,解得AC 2=49.所以AC =7.2.(2020·山师附中高三模拟)如图,在平面四边形ABCD 中,已知AB =26,AD =3,∠ADB =2∠ABD ,∠BCD =π3.(1)求BD ;(2)求△BCD 周长的最大值.解:在△ABD 中,设BD =x ,∠ABD =α,则∠ADB =2α, 因为AB sin 2α=AD sin α, 所以cos α=63.由余弦定理得cos α=x 2+24-946x =63. 整理得x 2-8x +15=0,解得x =5或x =3. 当x =3时,得∠ADB =2α=π2, 与AD 2+BD 2≠AB 2矛盾,故舍去, 所以BD =5.(2)在△BCD 中,设∠CBD =β, 所以BD sin π3=BC sin ⎝ ⎛⎭⎪⎫2π3-β=CD sin β,所以BC =1033sin ⎝ ⎛⎭⎪⎫2π3-β,CD =1033sin β,所以BC +CD =1033·⎝ ⎛⎭⎪⎫32sin β+32cos β=10sin ⎝ ⎛⎭⎪⎫β+π6≤10. 所以△BCD 周长的最大值为15.考点3 解三角形与三角函数的综合问题(2020·合肥模拟)已知函数f (x )=cos 2x +3sin(π-x )sin ⎝ ⎛⎭⎪⎫x -π2-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)锐角△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,已知f (A )=-1,a =2,求△ABC 的面积的最大值.解:(1)f (x )=1+cos 2x 2-3sin x cos x -12=12cos 2x -32sin 2x =-sin ⎝ ⎛⎭⎪⎫2x -π6. 令2k π-π2≤2x -π6≤2k π+π2, 得k π-π6≤x ≤k π+π3(k ∈Z ),所以函数f (x )在[0,π]上的单调递减区间为⎣⎢⎡⎦⎥⎤0,π3和⎣⎢⎡⎦⎥⎤5π6,π. (2)因为△ABC 为锐角三角形,所以0<A <π2,所以-π6<2A -π6<5π6. 又f (A )=-sin ⎝ ⎛⎭⎪⎫2A -π6=-1, 所以2A -π6=π2,即A =π3.因为a 2=b 2+c 2-2bc cos A =b 2+c 2-bc ≥2bc -bc =bc ,当且仅当b =c =2时,等号成立.又a =2,所以bc ≤4, 所以S △ABC =12bc sin A ≤ 3. 即△ABC 的面积的最大值为 3.解三角形与三角函数综合问题的一般步骤已知函数f (x )=32sin 2x -cos 2x -12(x ∈R ),设△ABC 的内角A ,B ,C 的对应边分别为a ,b ,c ,且c =3,f (C )=0.(1)求角C ;(2)若向量m =(1,sin A )与向量n =(2,sin B )共线,求△ABC 的周长. 解:(1)f (x )=32sin 2x -cos 2x -12=32sin 2x -12cos 2x -1=sin ⎝ ⎛⎭⎪⎫2x -π6-1. 因为f (C )=sin ⎝ ⎛⎭⎪⎫2C -π6-1=0且C 为三角形内角,所以C =π3. (2)若向量m =(1,sin A )与向量n =(2,sin B )共线, 则sin B -2sin A =0. 由正弦定理得b =2a ,由余弦定理得cos π3=a2+4a2-3 2·a·2a=12,解得a=1,b=2,故△ABC的周长为3+ 3.。

(新课改省份专用)高考数学一轮复习(第2课时)系统题型——解三角形及应用举例讲义

(新课改省份专用)高考数学一轮复习(第2课时)系统题型——解三角形及应用举例讲义

1.(2018·天津期末)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知sin C =sin 2B ,且b =2,c =3,则a 等于( )A.12 B.3 C .2D .2 3解析:选C 由sin C =sin 2B =2sin B cos B 及正、余弦定理得c =2b ·a 2+c 2-b 22ac ,代入数据得(2a +1)(a-2)=0,解得a =2,或a =-12(舍去),故选C.2.(2018·天津实验中学期中)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则角C =( )A.π3B.2π3C.3π4D.5π6解析:选B ∵3sin A =5sin B ,∴由正弦定理可得3a =5b ,即a =53b .∵b +c =2a ,∴c =73b ,∴cos C =a 2+b 2-c 22ab =259b 2+b 2-499b 22×53b 2=-159103=-12.∵C ∈(0,π),∴C =2π3.故选B.3.(2018·北京高考)在△ABC 中,a =7,b =8,cos B =-17.(1)求∠A ;(2)求AC 边上的高.解:(1)在△ABC 中,因为cos B =-17,所以sin B =1-cos 2B =437.由正弦定理得sin A =a sin B b =32.由题设知π2<∠B <π,所以0<∠A <π2.所以∠A =π3.(2)在△ABC 中,因为sin C =sin(A +B )=sin A cos B +cos A sin B =32×⎝⎛⎭⎫-17+12×437=3314, 所以AC 边上的高为a sin C =7×3314=332.[方法技巧]用正、余弦定理求解三角形基本量的方法1.(2019·湖南师大附中月考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若b cos C c cos B =1+cos 2C1+cos 2B,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形解析:选D 由已知1+cos 2C 1+cos 2B =2cos 2C 2cos 2B =cos 2C cos 2B =b cos C c cos B ,∴cos C cos B =b c 或cos C cos B =0,即C =90°或cos Ccos B =b c .由正弦定理,得b c =sin B sin C ,∴cos C cos B =sin B sin C ,即sin C cos C =sin B cos B ,即sin 2C =sin 2B ,∵B ,C 均为△ABC 的内角,∴2C =2B 或2C +2B =180°,∴B =C 或B +C =90°,∴△ABC 为等腰三角形或直角三角形.故选D.2.(2018·重庆六校联考)在△ABC 中,cos 2B 2=a +c2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形解析:选A 已知等式变形得cos B +1=a c +1,即cos B =ac .由余弦定理得cos B =a 2+c 2-b 22ac ,代入得a 2+c 2-b 22ac =ac,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形. 3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =a c ,(b +c +a )(b +c -a )=3bc ,则△ABC的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形解析:选C ∵sin A sin B =a c ,∴a b =ac ,∴b =c .又(b +c +a )(b +c -a )=3bc ,∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12.∵A ∈(0,π),∴A =π3,∴△ABC 是等边三角形.[方法技巧]判定三角形形状的2种常用途径[典例] (2017·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin A +3cos A =0,a =27,b =2.(1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积. [解] (1)由已知可得tan A =-3,所以A =2π3.在△ABC 中,由余弦定理得28=4+c 2-4c cos 2π3,即c 2+2c -24=0.解得c =4(负值舍去). (2)法一:由题可得∠BAD =π6,由余弦定理可得cos C =27,∴CD =7,∴AD =3,∴S △ABD =12×4×3×sin ∠DAB = 3.法二:由题设可得∠CAD =π2, 所以∠BAD =∠BAC -∠CAD =π6.故△ABD 的面积与△ACD 的面积的比值为12AB ·AD ·sin π612AC ·AD =1.又△ABC 的面积为12×4×2×sin 2π3=23,所以△ABD 的面积为 3.[方法技巧] 求解与三角形面积有关的问题的步骤[针对训练]1.(2019·德化一中、永安一中、漳平一中三校联考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a +b +c sin A +sin B +sin C=233,A =π3,b =1,则△ABC 的面积为( )A.32B.34C.12D.14解析:选B 由正弦定理可得a sin A =b sin B =a +b +c sin A +sin B +sin C =233,又A =π3,b =1,则a =1,B=π3,所以△ABC 是边长为1的正三角形,所以△ABC 的面积为12×12×32=34. 2.(2019·长沙、南昌高三第一次联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且b sin B =a sin A +(c -a )·sin C .(1)求B ;(2)若3sin C =2sin A ,且△ABC 的面积为63,求b .解:(1)由b sin B =a sin A +(c -a )sin C 及正弦定理,得b 2=a 2+(c -a )c ,即a 2+c 2-b 2=ac . 由余弦定理,得cos B =a 2+c 2-b 22ac =ac 2ac =12.因为B ∈(0,π),所以B =π3.(2)由(1)得B =π3,所以△ABC 的面积为12ac sin B =34ac =63,得ac =24.由3sin C =2sin A 及正弦定理,得3c =2a , 所以a =6,c =4.由余弦定理,得b 2=a 2+c 2-2ac cos B =36+16-24=28, 所以b =27.几何性质,也要灵活选择正弦定理、余弦定理、三角恒等变换公式.[典例] (2019·福州期末)已知菱形ABCD 的边长为2,∠DAB =60°.E 是边BC 上一点,线段DE 交AC 于点F .(1)若△CDE 的面积为32,求DE 的长; (2)若7CF =4DF ,求sin ∠DFC .[解] (1)依题意,得∠BCD =∠DAB =60°. 因为△CDE 的面积S =12CD ·CE ·sin ∠BCD =32,所以12×2CE ·32=32,解得CE =1.在△CDE 中,由余弦定理得DE =CD 2+CE 2-2CD ·CE cos ∠BCD =22+12-2×2×1×12= 3.(2)法一:依题意,得∠ACD =30°,∠BDC =60°, 设∠CDE =θ,则0°<θ<60°. 在△CDF 中,由正弦定理得CF sin θ=DFsin ∠ACD, 因为7CF =4DF ,所以sin θ=CF 2DF =27,所以cos θ=37, 所以sin ∠DFC =sin(30°+θ)=12×37+32×27=32114.法二:依题意,得∠ACD =30°,∠BDC =60°,设∠CDE =θ,则0°<θ<60°, 设CF =4x ,因为7CF =4DF ,则DF =7x ,在△CDF 中,由余弦定理,得DF 2=CD 2+CF 2-2CD ·CF cos ∠ACD , 即7x 2=4+16x 2-83x , 解得x =239,或x =233.又因为CF ≤12AC =3,所以x ≤34,所以x =239,所以DF =2219,在△CDF 中,由正弦定理得CD sin ∠DFC =DFsin ∠ACD,所以sin ∠DFC =2sin 30°2219=32114.[方法技巧]平面几何中解三角形问题的求解思路(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解; (2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.[提醒] 做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.[针对训练]1.(2019·皖西教学联盟期末)如图,在平面四边形ABCD 中,AB =1,BC =3,AC ⊥CD ,CD =3AC ,当∠ABC 变化时,对角线BD 的最大值为________.解析:设∠ABC =α,∠ACB =β,在△ ABC 中,由余弦定理得AC 2=4-23cos α. 由正弦定理得AB sin β=AC sin α,故sin β=sin α4-23cos α.又CD =3AC ,所以在△BCD 中,由余弦定理得BD 2=3+3(4-23cos α)-23×3×4-23cos α×cos ⎝⎛⎭⎫β+π2,即BD 2=15-63cos α+6sin α=15+12sin ⎝⎛⎭⎫α-π3.当α=5π6时,BD 取得最大值3 3.答案:3 32.(2019·晋城一模)如图,在锐角三角形ABC 中,sin ∠BAC =2425,sin ∠ABC =45,BC =6,点D 在边BC 上,且BD =2DC ,点E 在边AC 上,且BE ⊥AC ,BE 交AD 于点F .(1)求AC 的长;(2)求cos ∠DAC 及AF 的长.解:(1)在锐角三角形ABC 中,sin ∠BAC =2425,sin ∠ABC =45,BC =6,由正弦定理可得ACsin ∠ABC =BCsin ∠BAC ,所以AC =BC sin ∠ABC sin ∠BAC=6×452425=5.(2)由sin ∠BAC =2425,sin ∠ABC =45,可得cos ∠BAC =725,cos ∠ABC =35,所以cos C =-cos(∠BAC +∠ABC )=-cos ∠BAC cos ∠ABC +sin ∠BAC sin ∠ABC =-725×35+2425×45=35.因为BE ⊥AC ,所以CE =BC cos C =6×35=185,AE =AC -CE =75.在△ACD 中,AC =5,CD =13BC =2,cos C =35,由余弦定理可得AD =AC 2+DC 2-2AC ·DC cos C =25+4-12=17, 所以cos ∠DAC =AD 2+AC 2-CD 22AD ·AC =17+25-41017=191785.由BE ⊥AC ,得AF cos ∠DAC =AE , 所以AF =75191785=71719.[典例] 如图,某游轮在A 处看灯塔B 在A 的北偏东75°方向上,距离为126海里,灯塔C 在A 的北偏西30°方向上,距离为83海里,游轮由A 处向正北方向航行到D 处时再看灯塔B ,B 在南偏东60°方向上,则C 与D 的距离为( )A .20海里B .8 3 海里C .23 2 海里D .24海里[解析] 在△ABD 中,因为灯塔B 在A 的北偏东75°方向上,距离为126海里,货轮由A 处向正北方向航行到D 处时,再看灯塔B ,B 在南偏东60°方向上,所以B =180°-75°-60°=45°,由正弦定理AD sin B =ABsin ∠ADB, 可得AD =AB sin Bsin ∠ADB=126×2232=24海里.在△ACD 中,AD =24海里,AC =8 3 海里,∠CAD =30°,由余弦定理得CD 2=AD 2+AC 2-2AD ·AC cos 30°=242+(83)2-2×24×83×32=192. 所以CD =8 3 海里.故选B. [答案] B [方法技巧]处理距离问题的策略(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理. [针对训练]1.如图,一位同学从P 1处观测塔顶B 及旗杆顶A ,得仰角分别为α和90°-α.后退l (单位:m)至点P 2处再观测塔顶B ,仰角变为原来的一半,设塔CB 和旗杆BA 都垂直于地面,且C ,P 1,P 2三点在同一条水平线上,则塔CB 的高为________m ;旗杆BA 的高为________m .(用含有l 和α的式子表示)解析:设BC =x m ,在Rt △BCP 1中,∠BP 1C =α,在Rt △P 2BC 中,∠P 2=α2,∵∠BP 1C =∠P 1BP 2+∠P 2,∴∠P 1BP 2=α2,即△P 1BP 2为等腰三角形,P 1B =P 1P 2=l , ∴BC =x =l sin α.在Rt △ACP 1中,AC CP 1=ACl cos α=tan(90°-α),∴AC =l cos 2αsin α,则AB =AC -BC =l cos 2αsin α-l sin α=l cos 2α-sin 2αsin α=l cos 2αsin α. 答案:l sin α l cos 2αsin α2.如图所示,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西30°相距10海里C 处的乙船,乙船立即朝北偏东θ+30°角的方向沿直线前往B 处营救,则sin θ的值为________.解析:如图,连接BC ,在△ABC 中,AC =10,AB =20,∠BAC =120°,由余弦定理,得BC 2=AC 2+AB 2-2AB ·AC ·cos 120°=700,∴BC =107, 再由正弦定理,得BC sin ∠BAC =AB sin θ,∴sin θ=217.答案:217。

第5章+第6讲+余弦定理、正弦定理应用举例2024高考数学一轮复习+PPT(新教材)

第5章+第6讲+余弦定理、正弦定理应用举例2024高考数学一轮复习+PPT(新教材)

(1)北偏东 α,即由 03 __指__北__方__向__顺__时__针__旋__转___α__到达目标方向(如图③); (2)北偏西 α,即由 04 ___指__北__方__向__逆__时__针__旋__转___α___到达目标方向; (3)南偏西等其他方向角类似.
4.坡角与坡度 (1)坡角:05 ___坡__面__与__水__平__面_____所成的二面角(如图④,角 θ 为坡角). (2)坡度:06 ___坡__面__的__铅__直__高__度__与__水__平__长__度___之比(如图④,i 为坡度).坡 度又称为坡比.
(1)求观光车路线AB的长; (2)乙出发多少分钟后,乙在观光车上与甲的距离最短?
解 (1)在△ABC 中,因为 cosA=2245,cosC=35,
所以 sinA=275,sinC=45,
从而 sinB=sin[π-(A+C)]=sin(A+C)
=sinAcosC+cosAsinC=111275,
1.(2021·上海高三模拟)如图,某景区欲在两山顶 A,C 之间建缆车, 需要测量两山顶间的距离.已知山高 AB=1 km,CD=3 km,在水平面上 E 处测得山顶 A 的仰角为 30°,山顶 C 的仰角为 60°,∠BED=120°,则两 山顶 A,C 之间的距离为( )
A.2 2 km B. 10 km C. 13 km D.3 3 km
答案
解析 由题意知,AB=1 km,CD=3 km,∠AEB=30°,∠CED= 60°,∠BED=120°.所以 BE=taAn3B0°= 13= 3(km),DE=taCn6D0°= 33=
3 3(km).在△BED 中,由余弦定理得,BD2=BE2+DE2-2BE×Decos ∠BED=3+3-2× 3× 3×-12=9,所以 AC= BD2+CD-AB2= 9+3-12= 13(km),即两山顶 A,C 之间的距离为 13 km.故选 C.

高考数学一轮复习第三章三角函数解三角形3.5.2两角和差及倍角公式的应用理

高考数学一轮复习第三章三角函数解三角形3.5.2两角和差及倍角公式的应用理
cos(
x) x)
sin
2(
4
x)
4
1 1 sin 2 2 x来自22 2cos( x )
4 sin( x )
sin
2( 4
x)
4
1 cos22x 2 sin( 2x )
1 2
cos
2x.
2
答案: 1 c o s 2 x 2
4.(2016·武汉模拟)若 1tan 20 1 5 , 则 1tan2
1tan
co s 2
=
.
【解析】因为1 ta =n 2015, 1 tan
所以 c o s 1 2 ta n 2 1 c o s s in 2 2 1 c o s 2 2 s in s c in o s 2
( c o s s in ) 2 c o s s in 1 ta n 2 0 1 5 . ( c o s s in ) ( c o s s in )c o s s in 1 ta n
【规范解答】(1)方法一:(从“角”入手,倍角→单角)
原式=sin2α·sin2β+cos2α·cos2β- ·(21 cos2α-
1)·(2cos2β-1)
2
=sin2α·sin2β+cos2α·cos2β- (4cos2α·cos2β
1
-2cos2α-2cos2β+1)
2
=sin2α·sin2β-cos2α·cos2β+cos2α+cos2β- 1 2
sin[()]sin sin sin
【规律方法】 1.三角恒等变换的化简、求值问题的求解策略 (1)对于和、差式子,见到平方要降幂、消项、逆用公 式等. (2)对于分式,通分后分子分母化简时尽量出现约分的 式子,或逆用公式.

高考数学一轮复习专题五三角函数与解三角形4解三角形及其综合应用综合篇课件新人教A版

高考数学一轮复习专题五三角函数与解三角形4解三角形及其综合应用综合篇课件新人教A版
由A,B∈(0,π)得0<2A<2π,0<2B<2π,得2A=2B或2A+2B=π,即A=B或A+B= .
2
∴△ABC为等腰三角形或直角三角形,故选D. 解法二:(同解法一)可得2a2cos Asin B=2b2cos Bsin A.
由正弦、余弦定理,可得a2·b2 c2 a2 ·b=b2·a2 c2 b2 ·a.∴a2(b2+c2-a2)=b2(a
(1)A+B+C=π; (2)在△ABC中,大角对大边,大边对大角,如:a>b⇔A>B⇔sin A>sin B; (3)任意两边之和大于第三边,任意两边之差小于第三边;
(4)在锐角三角形ABC中,sin A>cos B⇔A+B> ;
2
(5)在斜△ABC中,tan A+tan B+tan C=tan A·tan B·tan C; (6)有关三角形内角的常用三角恒等式:sin(A+B)=sin C;cos(A+B)=-cos C;
由①②解得c=4或c=-6(不合题意,舍去).∴c=4.故选C.
答案 C
例 (2018北京朝阳二模,2)在△ABC中,AB=1,AC= 2,∠C= ,则∠B=
6
()
A. B. 或 C. 3 D. 或 3
4
42
4
44
解析
由正弦定理得 AB
sin C
= AC
sin B
,即
1 sin
= 2,
sin B
B,C的对边,如果(a2+b2)sin(A-B)=(a2-b2)sin(A+B),则△ABC的形状为 ( )
A.等腰三角形 B.直角三角形

高考数学一轮复习 第四章 三角函数、解三角形4.6正、余弦定理及其应用举例教学案 理 新人教A

高考数学一轮复习 第四章 三角函数、解三角形4.6正、余弦定理及其应用举例教学案 理 新人教A

4.6 正、余弦定理及其应用举例考纲要求1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题..2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.1.正弦定理和余弦定理定理正弦定理余弦定理内容__________=2R.(R为△ABC外接圆半径)a2=__________;b2=__________;c2=__________变形形式①a=____,b=______,c=____;②sin A=____,sin B=__________,sin C=__________;③a∶b∶c=__________;④a+b+csin A+sin B+sin C=asin A.cos A=__________;cos B=__________;cos C=__________.解决的问题①已知两角和任一边,求另一角和其他两条边.②已知两边和其中一边的对角,求另一边和其他两个角.①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两个角.2.仰角和俯角在视线和水平线所成的角中,视线在水平线__________的角叫仰角,在水平线______的角叫俯角(如图①).3.方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).4.方向角相对于某一方向的水平角(如图③).图③(1)北偏东α°:指北方向向东旋转α°到达目标方向.(2)东北方向:指北偏东45°或东偏北45°.(3)其他方向角类似.5.坡角和坡比坡角:坡面与水平面的夹角(如图④,角θ为坡角).图④坡比:坡面的铅直高度与水平长度之比(如图④,i为坡比).1.(广东高考)在△ABC中,若∠A=60°,∠B=45°,BC=32,则AC=( ).A.4 3 B.2 3 C. 3 D.322.在△ABC中,cos2B2=a+c2c(a,b,c分别为角A,B,C的对边),则△ABC的形状为( ).A.等边三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形3.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是( ).A.5海里/时B.5 3 海里/时C.10海里/时D.10 3 海里/时4.如图,为了测量隧道AB的长度,给定下列四组数据,无法求出AB长度的是( ).A.α,a,b B.α,β,aC.a,b,γD.α,β,γ5.△ABC中,若a=32,cos C=13,S△ABC=43,则b=__________.一、利用正弦、余弦定理解三角形【例1-1】 (辽宁高考)在△ABC中,角A,B,C的对边分别为a,b,c.角A,B,C成等差数列.(1)求cos B的值;(2)边a,b,c成等比数列,求sin A sin C的值.【例1-2】△ABC中,A,B,C所对的边分别为a,b,c,tan C=sin A+sin Bcos A+cos B,sin(B-A)=cos C.(1)求A,C;(2)若S△ABC=3+3,求a,c.方法提炼应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,也可用余弦定理,应注意用哪一个定理更方便、简捷就用哪一个定理.A为锐角A为钝角或直角图形关系式a<b sin A a=b sin A b sin A<a<b a≥b a>b a≤b解的个数 无解 一解 两解 一解 一解 无解请做演练巩固提升1 二、三角形形状的判定【例2-1】 △ABC 满足sin B =cos A sin C ,则△ABC 的形状是( ). A .直角三角形 B .等腰三角形C .等腰直角三角形D .等腰三角形或直角三角形【例2-2】 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状. 方法提炼判断三角形的形状的基本思想是:利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.结论一般为特殊的三角形.如等边三角形、等腰三角形、直角三角形、等腰直角三角形等.另外,在变形过程中要注意A ,B ,C 的范围对三角函数值的影响.提醒:1.在△ABC 中有如下结论sin A >sin B a >b .2.当b 2+c 2-a 2>0时,角A 为锐角,若可判定其他两角也为锐角,则三角形为锐角三角形;当b 2+c 2-a 2=0时,角A 为直角,三角形为直角三角形;3.当b 2+c 2-a 2<0时,角A 为钝角,三角形为钝角三角形. 请做演练巩固提升2三、与三角形面积有关的问题【例3】 在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积. 方法提炼1.正弦定理和余弦定理并不是孤立的,解题时要根据具体题目合理选用,有时还需要交替使用;在解决三角形问题中,面积公式S =12ab sin C =12bc sin A =12ac sin B 最常用,因为公式中既有边也有角,容易和正弦定理、余弦定理联系起来.2.解三角形过程中,要注意三角恒等变换公式的应用. 请做演练巩固提升5四、应用举例、生活中的解三角形问题【例4-1】 某人在塔的正东沿着南偏西60° 的方向前进40米后,望见塔在东北方向,若沿途测得塔的最大仰角为30°,求塔高.【例4-2】 如图,为了解某海域海底构造,在海平面内一条直线上的A ,B ,C 三点进行测量.已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.方法提炼1.测量距离问题,需注意以下几点:(1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型; (2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解; (3)应用题要注意作答.2.测量高度时,需注意:(1) 要准确理解仰、俯角的概念;(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形内应用正、余弦定理; (3)注意铅垂线垂直于地面构成的直角三角形.3.测量角度时,要准确理解方位角、方向角的概念,准确画出示意图是关键. 请做演练巩固提升6忽视三角形中的边角条件而致误【典例】 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a =3,b =2,1+2cos(B +C )=0,求边BC 上的高.错解:由1+2cos(B +C )=0,知cos A =12,∴A =π3.根据正弦定理a sin A =b sin B 得:sin B =b sin A a =22,∴B =π4或3π4.以下解答过程略.错因:忽视三角形中“大边对大角”的定理,产生了增根. 正解:∵在△ABC 中,cos(B +C )=-cos A ,又∵1+2cos(B +C )=0,∴1-2cos A =0,∴A =π3.在△ABC 中,根据正弦定理a sin A =bsin B,得sin B =b sin A a =22. ∴B =π4或3π4.∵a >b ,∴B =π4.∴C =π-(A +B )=512π.∴sin C =sin(B +A )=sin B cos A +cos B sin A =22×12+22×32=6+24. ∴BC 边上的高为b sin C =2×6+24=3+12. 答题指导:1.考查解三角形的题在高考中一般难度不大,但稍不注意,会出现“会而不对,对而不全”的情况,其主要原因就是忽视三角形中的边角条件.2.解三角函数的求值问题时,估算是一个重要步骤,估算时应考虑三角形中的边角条件. 1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A =b sin B ,则sin A cos A +cos 2B =( ).A .-12B .12C .-1D .12.在△ABC 中,(a +b +c )(a +b -c )=3ab ,且a cos B =b cos A ,则△ABC 的形状为__________. 3.(福建高考)在△ABC 中,已知∠BAC =60°,∠ABC =45°,BC =3,则AC =__________.4.(陕西高考)在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若a =2,B =π6,c =23,则b =______.5.(山东高考)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知sin B(tan A+tan C)=tan A tanC.(1)求证:a,b,c成等比数列;(2)若a=1,c=2,求△ABC的面积S.6.某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/时的航行速度匀速行驶,经过t小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值.参考答案基础梳理自测知识梳理1.asin A=bsin B=csin Cb2+c2-2bc·cos A c2+a2-2ca·cos B a2+b2-2ab·cos C①2R sin A2R sin B2R sin C②a2R b2Rc2R③sin A∶sin B∶sin Cb2+c2-a22bcc2+a2-b22caa2+b2-c22ab2.上方下方基础自测1.B 解析:由正弦定理得BCsin A=ACsin B,即32sin 60°=ACsin 45°,解得AC=2 3.2.B 解析:∵cos2B2=a+c2c,∴2cos2B2-1=a+cc-1,∴cos B=ac,∴a2+c2-b22ac=ac,∴c2=a2+b2.3.C 解析:如图,A,B为灯塔,船从O航行到O′,OO′BO=tan 30°,OO′AO=tan 15°,∴BO=3OO′,AO=(2+3)OO′.∵AO-BO=AB=10,∴OO′·[(2+3)-3]=10,∴OO′=5,∴船的速度为512=10海里/时.4.D 解析:利用余弦定理,可由a,b,γ或α,a,b求出AB;利用正弦定理,可由a,α,β求出AB,当只知α,β,γ时,无法计算AB.5.2 3 解析:由cos C=13,得sin C=223,∴S△ABC=12ab sin C=12×32×b×223=43.∴b=2 3.考点探究突破【例1-1】解:(1)由已知2B=A+C,A+B+C=180°,解得B=60°,所以cos B=12.(2)方法一:由已知b2=ac,及cos B=12,根据正弦定理得sin2B=sin A sin C,所以sin A sin C=1-cos2B=34.方法二:由已知b2=ac,及cos B=12,根据余弦定理得cos B=a2+c2-ac2ac,解得a=c,所以B=A=C=60°,故sin A sin C=34.【例1-2】解:(1)因为tan C=sin A+sin Bcos A+cos B,即sin Ccos C=sin A+sin Bcos A+cos B,所以sin C cos A+sin C cos B=cos C sin A+cos C sin B,即sin C cos A-cos C sin A=cos C sin B-sin C cos B,得sin(C-A)=sin(B-C).所以C-A=B-C,或C-A=π-(B-C)(不成立),即2C=A+B,得C=π3,所以B+A=2π3.又因为sin(B-A)=cos C=12,则B-A=π6或B-A=5π6(舍去),得A=π4,B=5π12.(2)S△ABC=12ac sin B=6+28ac=3+3,又asin A=csin C,即a22=c32,得a=22,c=2 3.【例2-1】 A 解析:∵sin B=cos A·sin C,∴b=b2+c2-a22bc·c.∴b2+a2=c2.∴△ABC为直角三角形,选A.【例2-2】解:(1)由已知,根据正弦定理得2a2=(2b+c)b+(2c+b)c,即a2=b2+c2+bc.①由余弦定理得a2=b2+c2-2bc cos A,故cos A=-12,A=120°.(2)由①得,sin2A=sin2B+sin2C+sin B sin C.又sin B+sin C=1,故sin B=sin C=12.因为0°<B<90°,0°<C<90°,故B=C.所以△ABC是等腰钝角三角形.【例3】解:(1)由余弦定理及已知条件,得a2+b2-ab=4,又因为△ABC的面积等于3,所以12ab sin C=3,得ab=4.联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)由题意得sin(B +A )+sin(B -A)=4sin A co s A ,即sin B cos A =2sin A cos A .当cos A =0时,A =π2,B =π6,a =433,b =233.所以△ABC 的面积 S =12ab sin C =12×433×233×32=233; 当cos A ≠0时,得sin B =2sin A , 由正弦定理得b =2a ,联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a .解得⎩⎪⎨⎪⎧a =233,b =433.所以△ABC 的面积S =12ab sin C =12×233×433×32=233.综上知,△ABC 的面积为233.【例4-1】 解:依题意画出图,某人在C 处,AB 为塔高,他沿CD 前进,CD =40米,此时∠DBF =45°,从C 到D 沿途测塔的仰角,只有B 到测试点的距离最短,即BE ⊥CD 时,仰角才最大,这是因为tan∠AEB =ABBE,AB 为定值,BE 最小时,仰角最大.在△BCD 中,CD =40,∠BCD =30°,∠DBC =135°. 由正弦定理,得CDsin∠DBC =BDsin∠BCD,∴BD =40sin 30°sin 135°=20 2.在Rt△BED 中,∠BDE =180°-135°-30°=15°,BE =BD sin 15°=202×6-24=10(3-1).在Rt△ABE 中,∠AEB =30°,∴AB =BE tan 30°=103(3-3)(米).∴所求的塔高为103(3-3)米.【例4-2】 解:作DM ∥AC 交BE 于N ,交CF 于M .DF =MF 2+DM 2=302+1702=10298, DE =DN 2+EN 2=502+1202=130,EF =(BE -FC )2+BC 2=902+1202=150. 在△DEF 中,由余弦定理,cos∠DEF =DE 2+EF 2-DF 22DE ×EF=1302+1502-102×2982×130×150=1665.演练巩固提升1.D 解析:根据正弦定理a sin A =bsin B=2R 得,a =2R sin A ,b =2R sin B ,∴a cos A =b sin B 可化为sin A cos A =sin 2B .∴sin A cos A +cos 2B =sin 2B +cos 2B =1.2.等边三角形 解析:∵(a +b +c )(a +b -c )=3ab ,∴(a +b )2-c 2=3ab . ∴a 2+b 2-c 2=ab .∴cos C =a 2+b 2-c 22ab =12.∴C =π3.∵a cos B =b cos A ,∴sin A cos B =sin B cos A . ∴sin(A -B )=0. ∴A =B .故△ABC 为等边三角形. 3. 2 解析:如图:由正弦定理得ACsin B =BCsin A ,即ACsin 45°=3sin 60°,即AC 22=332,故AC = 2.4.2 解析:∵b 2=a 2+c 2-2ac cos B =4+12-2×2×23×32=4, ∴b =2.5.(1)证明:在△ABC 中,由于sin B (tan A +tan C )=tan A tan C ,所以sinB ⎝⎛⎭⎪⎫sin A cos A +sin C cos C =sin A cos A ·sin C cos C,因此sin B (sin A cos C +cos A sin C )=sin A sin C , 所以sin B sin(A +C )=sin A sin C , 又A +B +C =π,所以sin(A +C )=sin B ,因此sin 2B =sin A sinC .由正弦定理得b 2=ac , 即a ,b ,c 成等比数列. (2)解:因为a =1,c =2,所以b =2,由余弦定理得cos B =a 2+c 2-b 22ac =12+22-(2)22×1×2=34,因为0<B <π,所以sin B =1-cos 2B =74,故△ABC 的面积S =12ac sin B =12×1×2×74=74.6.解:(1)解法一:设相遇时小艇的航行距离为s 海里,则s =900t 2+400-2·30t ·20·cos (90°-30°)=900t 2-600t +400=900⎝ ⎛⎭⎪⎫t -132+300.故当t =13时,s min =103,v =10313=30 3.即小艇以303海里/时的速度航行,相遇时小艇的航行距离最小.解法二:若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向,如图,设小艇与轮船在C 处相遇.在Rt△OAC 中,OC =20cos 30°=103,AC =20sin 30°=10. 又AC =30t ,OC =vt ,此时,轮船航行时间t =1030=13,v =10313=30 3.即小艇以303海里/时的速度航行,相遇时小艇的航行距离最小.(2)如图,设小艇与轮船在B 处相遇,由题意,可得(vt )2=202+(30t )2-2·20·30t ·cos(90°-30°).化简,得v 2=400t 2-600t +900=400⎝ ⎛⎭⎪⎫1t -342+675. 由于0<t ≤12,即1t ≥2,所以当1t=2时,v 取得最小值1013,即小艇航行速度的最小值为1013海里/时.。

备战2024年高考数学考试易错题专题06 解三角形及应用(3大易错点分析)(解析版)

备战2024年高考数学考试易错题专题06 解三角形及应用(3大易错点分析)(解析版)

专题06解三角形及应用易错点一:易忽视三角形解的个数(解三角形多解情况)1.方法技巧:解三角形多解情况在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式sin a b Asin b A a ba b a b a b解的个数一解两解一解一解无解2.在解三角形题目中,若已知条件同时含有边和角,但不能直接使用正弦定理或余弦定理得到答案,要选择“边化角”或“角化边”,变换原则常用:(1)若式子含有sin x 的齐次式,优先考虑正弦定理,“角化边”;(2)若式子含有,,a b c 的齐次式,优先考虑正弦定理,“边化角”;(3)若式子含有cos x 的齐次式,优先考虑余弦定理,“角化边”;(4)代数变形或者三角恒等变换前置;(5)含有面积公式的问题,要考虑结合余弦定理使用;(6)同时出现两个自由角(或三个自由角)时,要用到A B C .技巧:正弦定理和余弦定理是解三角形的两个重要工具,它沟通了三角形中的边角之间的内在联系,正弦定理能够解决两类问题问题1:已知两角及其一边,求其它的边和角。

这时有且只有一解。

问题2:已知两边和其中一边的对角,求其它的边和角,这是由于正弦函数在在区间 0, 内不严格格单调,此时三角形解的情况可能是无解、一解、两解,可通过几何法来作出判断三角形解的个数。

题设三角形中,已知一个角A 和两个边b a ,,判断三角形个数,遵循以下步骤第一步:先画一个角并标上字母A 第二步:标斜边(非对角边)b 第三步:画角的高,然后观察(A b a sin ,)易错提醒:利用正弦定理解三角形时,若已知三角形的两边及其一边的对角解三角形时,易忽视三角形解的个数.故选:ABD变式2.在ABC 中,内角,A A .若A B ,则cos A B .若2BC BA AB ,则角1.在ABC 中,已知3cos 5A ,sinB a ,若cosC 有唯一值,则实数a 的取值范围为()由BD DC ,可得OD OBOC 由2cos OB AB O OC AB B P 可得cos AB DP OP OD AB B sin2A =sin2B 《正弦定理》①正弦定理:R CcB b A a 2sin sin sin ②变形:acA C c b CB b a B A sin sin ,sin sin ,sin sin ③变形:C B A c b a sin :sin :sin :: ④变形:CcB b A aC B A c b a sin sin sin sin sin sin⑤变形:B c C b A c C a A b B a sin sin ,sin sin ,sin sin 《余弦定理》①余弦定理:Cab c b a B ac b c a A bc a c b cos 2,cos 2,cos 2222222222②变形:abc b a C ac b c a B bc a c b A 2cos ,2cos ,2cos 222222222核心问题:什么情况下角化边什么情况下边化角?⑴当每一项都有边且次数一样时,采用边化角⑵当每一项都有角《sin 》且次数一样时,采用角化边⑶当每一项都是边时,直接采用边处理问题⑷当每一项都有角《sin 》及边且次数一样时,采用角化边或变化角均可三角形面积公式①A bc S B ac S C ab S ABC ABC ABC sin 21,sin 21,sin 21 ② rl c b a r S ABC2121 其中l r ,分别为ABC 内切圆半径及ABC 的周长推导:将ABC 分为三个分别以ABC 的边长为底,内切圆与边相交的半径为高的三角形,利用等面积法即可得到上述公式③RabcC B A R S ABC 4sin sin sin 22(R 为ABC 外接圆的半径)推导:将A R a sin 2 代入ACB a S ABCsin sin sin 212可得C B A R S ABC sin sin sin 22 将C R c B R b A R a sin 2sin 2,sin 2 ,代入CB A R S ABC sin sin sin 22 可得RabcS ABC 4④CBA c SBC A b S A C B a S ABC ABC ABC sin sin sin 21,sin sin sin 21,sin sin sin 21222 ⑤海伦公式 c p b p a p p S ABC (其中 c b a p 21)推导:根据余弦定理的推论ab c b a C 2cos 222222222121cos 121sin 21ab c b a ab C ab C ab S ABCc b a b a c a c b c b a c b a ab 4124122222令 c b a p 21,整理得c p b p a p p S ABC 正规方法:面积公式+基本不等式① C c ab ab c C ab b a C ab c b a C ab S cos 122cos 2cos 2sin 212222222② B b ac ac b B ac c a B ac b c a B ac S cos 122cos 2cos 2sin 212222222③ A a bc bc a A bc c b Abc a c b A bc S cos 122cos 2cos 2sin 212222222易错提醒:当解题过程中出现类似于sin2A =sin2B 这样的情况要注意结合三角形内角范围进行讨论,另外当题设中出现锐角三角形时一定要注意条件之间的相互“限制”1.在ABC 中,sin sin 2,2B A c a ,则()A .B 为直角B .B 为钝角C .C 为直角D .C 为钝角易错点三:实际问题中题意不明致误(利用解三角形知识解决实际问题)解三角形的实际应用问题的类型及解题策略1、求距离、高度问题(1)选定或确定要创建的三角形,要先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的量.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.2、求角度问题(1)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步,画图时,要明确仰角、俯角、方位角以及方向角的含义,并能准确找到这些角.(2)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的综合应用.易错提醒:实际问题应用中有关名词、术语也是容易忽视和混淆的。

数学一轮复习第三章三角函数解三角形第7讲解三角形应用举例学案含解析

数学一轮复习第三章三角函数解三角形第7讲解三角形应用举例学案含解析

第7讲解三角形应用举例[考纲解读]1。

能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.(重点)2.利用正、余弦定理解决实际问题,主要考查根据实际问题建立三角函数模型,将实际问题转化为数学问题.(难点)[考向预测]从近三年高考情况来看,本讲是高考中的一个考查内容.预计2021年会强化对应用问题的考查.以与三角形有关的应用问题为主要命题方向,结合正、余弦定理求解平面几何中的基本量,实际背景中求距离、高度、角度等均可作为命题角度.试题可以为客观题也可以是解答题,难度以中档为主。

1.仰角和俯角在视线和水平线所成的角中,视线在水平线错误!上方的角叫仰角,在水平线错误!下方的角叫俯角(如图①).2.方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).3.方向角相对于某一正方向的水平角.(1)北偏东α,即由指北方向顺时针旋转α到达目标方向(如图③).(2)北偏西α,即由指北方向逆时针旋转α到达目标方向.(3)南偏西等其他方向角类似.4.坡角与坡度(1)坡角:坡面与水平面所成的二面角的度数(如图④,角θ为坡角).(2)坡度:坡面的铅直高度与水平长度之比(如图④,i为坡度).坡度又称为坡比.1.概念辨析(1)东北方向就是北偏东45°的方向.()(2)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为α+β=180°.()(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.()(4)方位角大小的范围是[0,2π),方向角大小的范围一般是错误!。

()答案(1)√(2)×(3)√(4)√2.小题热身(1)在某测量中,设A在B的南偏东34°27′,则B在A的() A.北偏西34°27′ B.北偏东55°33′C.北偏西55°33′ D.南偏西34°27′答案A解析由方向角的概念知,B在A的北偏西34°27′。

新高考数学一轮复习考点知识归类讲义 第29讲 解三角形应用举例及综合问题

新高考数学一轮复习考点知识归类讲义 第29讲 解三角形应用举例及综合问题

新高考数学一轮复习考点知识归类讲义第29讲解三角形应用举例及综合问题1.仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图1).2.方位角从正北方向起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B点的方位角为α(如图2).3.方向角正北或正南方向线与目标方向线所成的锐角,如南偏东30°,北偏西45°等.4.坡度:坡面与水平面所成的二面角的正切值.➢考点1 解三角形应用举例[名师点睛]1.距离问题的类型及解法(1)类型:两点间既不可达也不可视,两点间可视但不可达,两点都不可达.(2)解法:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.2.高度问题的类型及解法(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角.(2)准确理解题意,分清已知条件与所求,画出示意图.(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.3.角度问题的类型及解法(1)测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦定理解三角形,最后将解得的结果转化为实际问题的解.(2)方向角是相对于某点而言的,因此在确定方向角时,必须先弄清楚是哪一个点的方向角.[典例]1.(2022·湖北·华中师大一附中模拟预测)为了测量一个不规则公园,C D 两点之间的距离,如图,在东西方向上选取相距1km 的,A B 两点,点B 在点A 的正东方向上,且,,,A B C D 四点在同一水平面上.从点A 处观测得点C 在它的东北方向上,点D 在它的西北方向上;从点B 处观测得点C 在它的北偏东15︒方向上,点D 在它的北偏西75方向上,则,C D 之间的距离为______km.【答案】2 【分析】由题意确定相应的各角的度数,在ABC 中,由正弦定理求得BC ,同理再求出DB ,解DBC △,求得答案.【详解】由题意可知,904545,9045135,9015105CAB DAB CBA ∠=-=∠=+=∠=+=,157590,15CDB DBA ∠=+=∠= ,故在ABC 中,1804510530ACB ∠=--=,故sin sin BD AB DAB ADB =∠∠ ,1sin 452sin 30BC ⨯==在ABD △中,1801513530ADB ∠=--=, 故sin sin BC AB CAB ACB =∠∠ ,1sin1352sin 30BD ⨯==, 所以在DBC △中,90CBD ∠=,则22222CD BC DB =+=+= ,故答案为:22. (2021·全国甲卷)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8 848.86(单位:m).三角高程测量法是珠峰高程测量方法之一,如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影A ′,B ′,C ′满足∠A ′C ′B ′=45°,∠A ′B ′C ′=60°.由C 点测得B 点的仰角为15°,BB ′与CC ′的差为100;由B 点测得A 点的仰角为45°,则A ,C 两点到水平面A ′B ′C ′的高度差AA ′-CC ′约为(3≈1.732)( )A.346B.373C.446D.473答案 B解析如图所示,根据题意过C 作CE ∥C ′B ′,交BB ′于E ,过B 作BD ∥A ′B ′,交AA ′于D ,则BE =100,C ′B ′=CE =100tan 15°.在△A ′C ′B ′中,∠C ′A ′B ′=180°-∠A ′C ′B ′-∠A ′B ′C ′=75°,则BD =A ′B ′=C ′B ′·sin 45°sin 75°,又在B 点处测得A 点的仰角为45°,所以AD =BD =C ′B ′·sin 45°sin 75°, 所以高度差AA ′-CC ′=AD +BE=C ′B ′·sin 45°sin 75°+100=100tan 15°·sin 45°sin 75°+100=100sin 45°sin 15°+100=100×2222×⎝ ⎛⎭⎪⎫32-12+100=100(3+1)+100≈373.3.(2022·全国·高三专题练习)公路北侧有一幢楼,高为60米,公路与楼脚底面在同一平面上.一人在公路上向东行走,在点A 处测得楼顶的仰角为45°,行走80米到点B 处,测得仰角为30°,再行走80米到点C 处,测得仰角为θ.则tan θ=______________.【答案】37777【解析】首先得到60,603OA OB ==,然后由余弦定理得:2222cos OA AB OB AB OB ABO =+-⋅∠,2222cos OC BC OB BC OB OBC =+-⋅∠,然后求出OC 即可【详解】如图,O 为楼脚,OP 为楼高,则60OP =,易得:60,603OA OB ==由余弦定理得:2222cos OA AB OB AB OB ABO =+-⋅∠,2222cos OC BC OB BC OB OBC =+-⋅∠,两式相加得:()22222230800OA OC AB OB OC +=+⇒=,则77OC =故377tan 2077θ=377[举一反三] 1.(2022·山东师范大学附中模拟预测)魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作,其中第一题是测量海岛的高.一个数学学习兴趣小组研究发现,书中提供的测量方法甚是巧妙,可以回避现代测量器械的应用.现该兴趣小组沿用古法测量一山体高度,如图点E 、H 、G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,记为h ,EG 为测量标杆问的距离,记为d ,GC 、EH 分别记为,a b ,则该山体的高AB =( )A .hd h a b +-B .hd h a b--C .hd d a b +-D .hd d a b -- 【答案】A【分析】根据所给数据,利用解直角三角形先求出BM ,即可得解.【详解】连接FD ,并延长交AB 于M 点,如图, 因为在Rt BMD △中tan h BDM b ∠=,所以||||||tan BM BM b MD BDM h ==∠;又因为在Rt BMF △中tan h BFM a∠=, 所以||||||tan BM BM a MF BFM h ==∠,所以||||||||BM a BM b MF MD d h h-=-=, 所以||hd BM a b =-,即||hd AB BM h h a b =+=+-, 故选:A .2.(2022·江苏南通·高三期末)某校数学建模社团学生为了测量该校操场旗杆的高AB ,先在旗杆底端的正西方点C 处测得杆顶的仰角为45°,然后从点C 处沿南偏东30°方向前进20m 到达点D 处,在D 处测得杆顶的仰角为30°,则旗杆的高为( )A .20mB .10mC .103mD .1033m 【答案】B 【分析】根据条件确定相关各角的度数,表示出AB ,,AD AC 等边的长度,然后在ACD △中用余弦定理即可解得答案.【详解】如图示,AB 表示旗杆,由题意可知:45,0,630ACB ACD ADB ∠=∠=∠=︒︒︒,所以设AB x = ,则3,AD x AC x ==,在ACD △ 中,2222cos AD AC CD AC CD ACD =+-⨯⨯⨯∠ ,即2221(3)()(20)2202x x x =+-⨯⨯⨯ ,解得10x = ,(20x =-舍去),故选:B.3.(2022·辽宁·沈阳二中模拟预测)沈阳二中北校区坐落于风景优美的辉山景区,景区内的一泓碧水蜿蜒形成了一个“秀”字,故称“秀湖”.湖畔有秀湖阁()A 和临秀亭()B 两个标志性景点,如图.若为测量隔湖相望的A 、B 两地之间的距离,某同学任意选定了与A 、B 不共线的C 处,构成ABC ,以下是测量数据的不同方案: ①测量A ∠、AC 、BC ;②测量A ∠、B 、BC ;③测量C ∠、AC 、BC ;④测量A ∠、C ∠、B .其中一定能唯一确定A 、B 两地之间的距离的所有方案的序号是_____________.【答案】②③【分析】利用正弦定理可判断①②,利用余弦定理可判断③,根据已知条件可判断④不满足条件.【详解】对于①,由正弦定理可得sin sin AC BC B A =,则sin sin AC A B BC =, 若AC BC >且A ∠为锐角,则sin sin sin AC A B A AB=>,此时B 有两解, 则C ∠也有两解,此时AB 也有两解;对于②,若已知A ∠、B ,则C ∠确定,由正弦定理sin sin BC AB A C=可知AB 唯一确定; 对于③,若已知C ∠、AC 、BC ,由余弦定理可得222cos AB AC BC AC BC C =+-⋅ 则AB 唯一确定;对于④,若已知A ∠、C ∠、B ,则AB 不确定.故答案为:②③.4.(2022·辽宁·大连市一0三中学模拟预测)如图所示,遥感卫星发现海面上有三个小岛,小岛 B 位于小岛A 北偏东75距离60海里处,小岛B 北偏东15距离330海里处有一个小岛 C .(1)求小岛A 到小岛C 的距离;(2)如果有游客想直接从小岛A 出发到小岛 C ,求游船航行的方向.解:(1)在ABC 中,6030330,==AB BC1807515120ABC ∠=-+=,根据余弦定理得:.2222cos AC AB BC AB BC ABC =+-⋅⋅∠2260(30330)260(30330)cos1205400=+-⨯⨯⋅=306=AC 所以小岛A 到小岛 C 的最短距离是306.(2)根据正弦定理得:sin sin AC AB ABC ACB =∠∠ 30660120sin ACB=∠ 解得2sin ACB ∠=在ABC ∆中,,<BC ACACB ∴∠为锐角45ACB ∴∠=1801204515CAB ∴∠=--=. 由751560-=得游船应该沿北偏东60的方向航行答:小岛A 到小岛 C 的最短距离是306;游船应该沿北偏东60的方向航行. 5.(2022·广东·高三开学考试)如图,测量河对岸的塔高AB 时,可以选取与塔底B 在同一水平面内的两个测量基点C 与D .现测得30BCD ∠=︒,135BDC ∠=︒,50CD =米,在点C 测得塔顶A 的仰角为45°,求塔高AB .【解】在BCD △中,1801803013515CBD BCD BDC ∠=︒-∠-∠=︒-︒-︒=︒,∵()sin sin15sin 4530CBD ∠=︒=︒-︒sin 45cos30cos45sin30=︒︒-︒︒62-=由正弦定理sin sin BC CD BDC CBD =∠∠得()sin 5031sin 62CD BDC BC CBD ⋅∠===∠-.在Rt ABC △中45ACB ∠=︒.∴)5031AB BC ==.所以塔高AB 为)5031米.➢考点2 求解平面几何问题[名师点睛]平面几何中解三角形问题的求解思路(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.1.(2021·新高考八省联考)在四边形ABCD 中,AB ∥CD ,AD =BD =CD =1.(1)若AB =32,求BC ; (2)若AB =2BC ,求cos ∠BDC . 解(1)如图所示,在△ABD 中,由余弦定理可知,cos ∠ABD =AB 2+BD 2-AD 22AB ·BD =⎝ ⎛⎭⎪⎫322+12-122×32×1=34.∵AB ∥CD ,∴∠BDC =∠ABD ,即cos ∠BDC =cos ∠ABD =34. 在△BCD 中,由余弦定理可得,BC 2=BD 2+CD 2-2BD ·CD cos ∠BDC =12+12-2×1×1×34,∴BC =22. (2)设BC =x ,则AB =2BC =2x .由余弦定理可知, cos ∠ABD =AB 2+BD 2-AD 22AB ·BD =(2x )2+12-122×2x ×1=x ,①cos ∠BDC =CD 2+BD 2-BC 22CD ·BD =12+12-x 22×1×1=2-x 22.②∵AB ∥CD ,∴∠BDC =∠ABD ,即cos ∠BDC =cos ∠ABD .联立①②,可得2-x 22=x ,整理得x 2+2x -2=0,解得x 1=3-1,x 2=-3-1(舍去).将x 1=3-1代入②,解得cos ∠BDC =3-1.2.(2022·湖北·襄阳四中模拟预测)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,角A 的平分线AD 交BC 边于点D . (1)证明:AB DBAC DC=,2AD AB AC DB DC =⋅-⋅;(2)若1AD =,23A π=,求DB DC ⋅的最小值. 解:(1)在ABD △和BCD △中,可得BAD CAD ∠=∠,ADB ADC π∠+∠=, 所以sin sin BAD CAD ∠=∠,sin sin ADB ADC ∠=∠, 由正弦定理,得sin sin AB BDADB BAD =∠∠,sin sin AC DC ADC CAD=∠∠,两式相除得AB DB AC DC =,可得ABBD BC AB AC=+,AC DC BC AB AC =+, 又由cos cos ABD ABC ∠=∠,根据余弦定理得22222222AB BD AD AB BC AC AB BD AB BC+-+-=⋅⋅ 所以()()22222222BD DC BDAD AB BD AB BC AC AB AC BD BC BD BC BC BC=+-+-=+-- 代入可得222AC AB AD AB AC BD DC AB AC AB AC=+-⋅++ABAC AB AC BD DC AB AC BD DC AB AC AB AC ⎛⎫=⋅+-⋅=⋅-⋅ ⎪++⎝⎭.(2)由1AD =,23A π=及ABD ACD ABC S S S +=△△△,可得b c bc += 根据基本不等式得2bc b c bc=+≥,解得4bc ≥,当且仅当2b c ==时等号成立,又由1AD =,2AD AB AC DB DC =⋅-⋅,可得13DB DC bc ⋅=-≥, 所以DB DC ⋅的最小值是3. [举一反三]1.(2022·山东·济南市历城第二中学模拟预测)如图,已知在ABC 中,M 为BC 上一点,2AB AC BC =≤,π0,2B ⎛⎫∈ ⎪⎝⎭且15sin 8B =.(1)若AM BM =,求ACAM的值; (2)若AM 为BAC ∠的平分线,且1AC =,求ACM △的面积.解:(1)因为15sin B =π0,2B ⎛⎫∈ ⎪⎝⎭,所以27cos 1sin 8B B -=,因为2AB AC =,所以由正弦定理知sin 2sin C ABB AC==,即sin 2sin C B =,因为AM BM =,所以2AMC B ∠=∠,sin sin 22sin cos AMC B B B ∠==,在AMC 中,sin 2sin cos 7cos sin 2sin 8AC AMC B B B AM C B ∠====. (2)由题意知22AB AC ==,设BC x =,由余弦定理得222217cos 48x B x +-==,解得2BC =或32BC =.因为2AC BC ≤,所以2BC =,因为AM 为BAC ∠的平分线,BAM CAM ∠=∠所以11sin 2211sin 22ABM ACMAB AM BAM BM hS SAC AM CAM CM h⋅∠⨯==⋅∠⨯(h 为底边BC 的高)所以2BM AB CMAC ==,故1233CM BC ==,而由(1)知sin 2sin C B ==112sin 1223ACM S AC CM C =⋅⋅=⨯⨯=△. 2.(2022·福建省福州第一中学三模)已知ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,sinsin2A Bb c B +=. (1)求角C ;(2)若AB 边上的高线长为ABC 面积的最小值. 解:(1)由已知A B C π++=,所以sin sin cos 222A B C Cb b b π+-==, 所以cossin 2C b c B =,由正弦定理得sin cos sin sin 2CB C B =, 因为B 、()0,C π∈,则sin 0B >,022C π<<,cos 02C>,所以,cos sin 2C C =,则cos 2sin cos 222C C C =,所以1sin 22C =,所以26C π=,则3C π=.(2)由11sin 22ABCSc ab C =⋅=,得4ab c =, 由余弦定理222222cos 2c a b ab C a b ab ab ab ab =+-=+-≥-=, 即24c c ≥,因为0c >,则4c ≥,当且仅当4a b c ===取等号,此时ABC 面积的最小值为3.(2022·山东师范大学附中模拟预测)在①2sin cos sin b C B c B =+,②cos cos 2B bC a c=-两个条件中任选一个,补充在下面的问题中,并解答该问题.在ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,且________. (1)求角B ;(2)若a c +=D 是AC 的中点,求线段BD 的取值范围.解:(1)选①,由2sin cos sin b C B c B =+及正弦定理可得2sin sin cos sin sin B C C B C B =+,所以,sin sin cos C B C B =,因为B 、()0,C π∈,所以,sin 0C >,则sin 0B B =>,所以,tan B =3B π∴=;选②,由cos cos 2B bC a c=-及正弦定理可得()sin cos 2sin sin cos B C A C B =-, 所以,()2sin cos sin cos cos sin sin sin A B B C B C B C A =+=+=,A 、()0,B π∈,sin 0A ∴>,所以,1cos 2B =,则3B π=.(2)因为a c +=0a <<由已知AD DC =,即BD BA BC BD -=-,所以,2BD BA BC =+, 所以,()222242BD BA BC BA BC BA BC =+=++⋅,即())22222242cos33BD c a ac c a ac a c ac aa π=++=++=+-=-22993,344a a ⎛⎡⎫=+=+∈ ⎪⎢ ⎣⎭⎝⎭,所以,34BD ≤<➢考点3 三角函数与解三角形的交汇问题(2022·浙江省新昌中学模拟预测)已知函数21()cos sin 2f x x x x ωωω=-+,其中0>ω,若实数12,x x 满足()()122f x f x -=时,12x x -的最小值为2π. (1)求ω的值及()f x 的对称中心;(2)在ABC 中,a ,b ,c 分别是角A ,B ,C的对边,若()1,f A a =-=ABC 周长的取值范围. 解:(1)211cos 21()cos sin 2222x f x x x x x ωωωωω-=-+=-+12cos 2sin 226x x x πωωω⎛⎫=+=+ ⎪⎝⎭, 显然()f x 的最大值为1,最小值为1-,则()()122f x f x -=时,12x x -的最小值等于2T,则22T π=,则22ππω=,1ω=;令2,6x k k ππ+=∈Z ,解得,122k x k ππ=-+∈Z ,则()f x 的对称中心为,0,122k k ππ⎛⎫-+∈ ⎪⎝⎭Z ; (2)()sin(2)16f A A π=+=-,22,62A k k πππ+=-+∈Z ,又()0,A π∈,则23A π=, 由正弦定理得2sin sin sina b cA B C====,则2sin ,2sin b B c C ==, 则周长为2sin 2sin 2sin 2sin 3a b c B C B B π⎛⎫++=+=+- ⎪⎝⎭3sin 3cos 32sin()3B B B π=++=++,又03B π<<,则2333B πππ<+<,则32sin()23B π<+≤,故周长的取值范围为(23,23⎤+⎦.[举一反三]1.(2022·浙江湖州·模拟预测)已知函数()sin(),0,0,02f x A x x R A πωϕωϕ⎛⎫=+∈>><< ⎪⎝⎭的部分图像如图所示.(1)求()f x 的解析式;(2)在锐角ABC 中,若边1BC =,且3212Af π⎛⎫-= ⎪⎝⎭,求ABC 周长的最大值.解:(1)由图得2A =,32ππ3π43124T ⎛⎫=--= ⎪⎝⎭,又2πT ω=,所以2ω=, 将点π,012⎛⎫- ⎪⎝⎭代入()2sin(2)f x x ϕ=+,得πsin 06ϕ⎛⎫-+= ⎪⎝⎭,即π,6k k Z ϕπ=+∈, 考虑到π02ϕ<<,故π6ϕ=,即()f x 的解析式为π()2sin 26f x x ⎛⎫=+ ⎪⎝⎭(2)由π3212A f ⎛⎫-= ⎪⎝⎭3sin A =及π0,2A ⎛⎫∈ ⎪⎝⎭,故π3A =,因为ABC 为锐角三角形,且π3A =,故ππ,62B ⎛⎫∈ ⎪⎝⎭由正弦定理,得sin sin sin a b c A B C ===所以2π1sin )1sin sin3a b c B C B B ⎤⎛⎫++=+=+- ⎪⎥⎝⎭⎦1π12sin cos 12sin 26B B B ⎛⎫⎛⎫=+⋅=++ ⎪ ⎪⎝⎭⎝⎭又ππ2π,633B ⎛⎫+∈ ⎪⎝⎭,故π2sin 6B ⎛⎫+∈ ⎪⎝⎭, 故ABC 周长的最大值为3.2.(2022·山东淄博·三模)已知函数21()cos cos (0)2f x x x x ωωωω=-+>,其图像上相(1)求函数()f x 的解析式;(2)记ABC 的内角,,A B C 的对边分别为,,a b c ,4a =,12bc =,()1f A =.若角A 的平分线AD交BC 于D ,求AD 的长.解:(1)因为()211cos cos 2cos 222f x x x x x x ωωωωω=-+=-πsin 26x ω⎛⎫=- ⎪⎝⎭,设函数()f x 的周期为T ,由题意222444πT ⎛⎫+=⎪+ ⎝⎭,即2224ππω⎛⎫= ⎪⎝⎭,解得1ω=,所以()πsin 26f x x ⎛⎫=- ⎪⎝⎭.(2)由()1f A =得:sin 216A π⎛⎫-= ⎪⎝⎭,即22,Z 62A k k πππ-=+∈,解得,Z 3A k k ππ=+∈,因为[0,]A π∈,所以π3A =, 因为A 的平分线AD 交BC 于D ,所以ABCABDACDSSS=+,即111sinsin sin 232626bc c AD b AD πππ=⋅⋅+⋅⋅,可得AD = 由余弦定理得:,()22222cos 3a b c bc A b c bc =+-=+-,而12bc =,得()252b c +=,因此AD ==。

通用版2022届高考数学一轮总复习第三章三角函数与解三角形第8讲解三角形应用举例课件

通用版2022届高考数学一轮总复习第三章三角函数与解三角形第8讲解三角形应用举例课件

2.海洋蓝洞是罕见的自然地理现象,被誉为“地球给人类 保留宇宙秘密的最后遗产”,我国拥有世界上已知最深的海洋 蓝洞.若要测量如图 3-8-6 所示的海洋蓝洞的口径(即 A,B 两点 间的距离),现取两点 C,D,测得 CD=80,∠ADB=135°, ∠BDC=∠DCA=15°,∠ACB=120°,则图中海洋蓝洞的口 径为________.
距离为( )
200 6 A. 3 m 答案:A
图 3-8-2 100 6
B.100 6 m C. 3 m D.200 2 m
3.(必修 5P19 第 4 题改编)江岸边有一炮台高 30 m,江中有 两条船,由炮台顶部测得俯角分别为 45°和 30°,且两条船与 炮台底部连线成 30°角,则两条船相距( )
图 3-8-9
解析:根据题意得,在△ABC 中,已知∠CAB=45°,∠ABC
=90°,BC=100 m,易得 AC=100 2 m;在△AMC 中,已知
∠MAC=75°,∠MCA=60°,AC=100 2 m,易得∠AMC=
45°. 由 正 弦 定 理 得 , sin
AC ∠AMC

sin
AM ∠MCA
答案:100 6
(2)(2014 年全国Ⅰ)如图 3-8-9,为测量山高 MN,选择点 A 和另一座山的山顶 C 为测量观测点.从点 A 测得点 M 的仰角为 ∠MAN=60°,点C的仰角为∠CAB=45°,以及∠MAC=75°; 从点 C 测得∠MCA=60°.已知山高 BC=100 m,则山高 MN= ________m.
(1)
(2)
图 3-8-1
(2)方向角: 相对于某正方向的水平角,如南偏东 30°,北偏西 45°等. (3)方位角: 指从正北方向顺时针转到目标方向线的水平角,如 B 点的 方位角为α[如图 3-8-1(2)]. (4)坡角: 坡面与水平面所成的二面角的度数.

2025高考数学一轮复习-22.2-解三角形及其应用举例-专项训练【含解析】

2025高考数学一轮复习-22.2-解三角形及其应用举例-专项训练【含解析】

22.2-解三角形及其应用举例-专项训练【原卷版】1.某观察站C与两灯塔A,B的距离分别为3km和5km,测得灯塔A在观察站C北偏西50°,灯塔B在观察站C北偏东70°,则两灯塔A,B间的距离为() A.7B.8C.34-153D.34+1532.在△ABC中,若a cos A=b cos B,则△ABC的形状一定是()A.等腰直角三角形B.直角三角形C.等腰三角形D.等腰或直角三角形3.(2024·武钢期中)在锐角△ABC中,若C=2B,则cb的范围为()A.(2,3)B.(3,2)C.(0,2)D.(2,2)4.某渔轮在航行中不幸遇险,发出呼叫信号,我海军舰艇在A处获悉后,立即测出该渔轮在方位角为45°,距离为10海里的C处,并测得渔轮正沿方位角为105°的方向,以9海里/小时的速度向小岛靠拢,我海军舰艇立即以21海里/小时的速度前去营救,则舰艇靠近渔轮所需的时间为()A.12小时B.23小时C.34小时D.1小时5.如图所示,在四边形ABCD中,AC=AD=CD=7,∠ABC=120°,sin∠BAC=5314且BD为∠ABC的平分线,则BD=()A.6B.9C.72D.86.(多选)某货轮在A处看灯塔B在货轮北偏东75°,距离126n mile;在A处看灯塔C在货轮北偏西30°,距离83n mile.货轮由A处向正北航行到D处时,再看灯塔B在南偏东60°,则下列说法正确的是()A.A处与D处之间的距离是24n mileB.灯塔C与D处之间的距离是16n mileC.灯塔C在D处的西偏南60°D .D 在灯塔B 的北偏西30°7.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,则B 城市处于危险区的时间为________小时.8.海洋蓝洞是地球罕见的自然地理现象,被誉为“地球给人类保留宇宙秘密的最后遗产”,我国拥有世界上已知最深的海洋蓝洞.若要测量如图所示的海洋蓝洞的口径(即A ,B 两点间的距离),现取两点C ,D ,测得CD =80,∠ADB =135°,∠BDC =∠DCA =15°,∠ACB =120°,则图中海洋蓝洞的口径为________.9.如图,为方便市民游览市民中心附近的“网红桥”,现准备在河岸一侧建造一个观景台P ,已知射线AB ,AC 为两边夹角为120°的公路(长度均超过3千米),在两条公路AB ,AC 上分别设立游客上下点M ,N ,从观景台P 到M ,N 建造两条观光线路PM ,PN ,测得AM =3千米,AN =3千米.(1)求线段MN 的长度;(2)若∠MPN =60°,求两条观光线路PM 与PN 之和的最大值.10.如图,某侦察飞机沿水平直线AC 匀速飞行,在A 处观测地面目标P ,测得俯角∠BAP =30°,飞行3分钟后到达B 处,此时观测地面目标P ,测得俯角∠ABP =60°,又飞行一段时间后到达C 处,此时观测地面目标P ,测得俯角∠BCP 的余弦值为41919,则该侦察飞机由B 至C 的飞行时间为()A .2分钟B .2.25分钟C .2.5分钟D .2.75分钟11.(多选)如图,设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =32b ,且∠CAB =π3.点D 是△ABC 外一点,DC =1,DA =3,下列说法中,正确的命题是()A .△ABC 的内角B =π3B .△ABC 的内角C =π3C .四边形ABCD 的面积最大值为532+3D .四边形ABCD 的面积无最大值.12.在解三角形的问题中,其中一个比较困难的问题是如何由三角形的三边a ,b ,c 直接求出三角形的面积.据说这个问题最早是由古希腊数学家阿基米德解决的,他得到了海伦公式,即S =p (p -a )(p -b )(p -c ),其中p =12(a +b +c ).我国南宋著名数学家秦九韶(约1202~1261)在《数书九章》里面给出了一个等价解法,这个解法写成公式就是S =14(c 2a 2-□2),这个公式中的□=________.13.第十届中国花卉博览会于2021年5月21日至7月2日在上海崇明区举办,以“蝶恋花”为设计理念的世纪馆,拥有全国跨度最大的自由曲面混凝土壳体,屋顶跨度280米,屋面板厚度只有250毫米.图①为建成后的世纪馆;图②是建设中的世纪馆;图③是场馆的简化图.如图③是由两个相同的半圆及中间的阴影区域构成的一个轴对称图形,AA ′∥PP ′∥OO ′∥BB ′,其中AA ′=280米,圆心距OO ′=160米,半圆的半径R =75米,椭圆中心P 与圆心O 的距离PO =40米,C ,C ′为直线PP ′与半圆的交点,∠COB =60°.(1)设α=∠A ′AB ,计算sin α的值;(2)计算∠COP 的大小(精确到1°).附:sin 36.87°≈0.6,sin 47.44°≈123-916.14.《益古演段》是我国古代数学家李冶(1192~1279)的一部数学著作.内容主要是已知平面图形的信息,求圆的半径、正方形的边长和周长等.其中有这样一个问题:如图,已知∠A =60°,点B ,C 分别在∠A 的两个边上移动,且保持B ,C 两点间的距离为23,则点B ,C 在移动过程中,线段BC 的中点D 到点A 的最大距离为________.15.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m /min .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再从B 匀速步行到C .假设缆车匀速直线运行的速度为130m/min ,山路AC 长为1260m ,经测量,cos A =1213,cos C =35.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在什么范围内?22.2-解三角形及其应用举例-专项训练【解析版】1.某观察站C 与两灯塔A ,B 的距离分别为3km 和5km ,测得灯塔A 在观察站C 北偏西50°,灯塔B 在观察站C 北偏东70°,则两灯塔A ,B 间的距离为()A .7B .8C .34-153D .34+153解析:A 根据题意,画出草图如图所示,结合题干条件易知AC =3km ,BC =5km ,∠ACB =120°,利用余弦定理可得AB 2=32+52-2×3×5×cos 120°=49,∴AB =7km .故选A .2.在△ABC 中,若a cos A =b cos B ,则△ABC 的形状一定是()A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰或直角三角形解析:D 已知a cos A =b cos B ,利用正弦定理a sin A =b sin B =c sin C=2R ,解得sin A cos A =sin B cos B ,即sin 2A =sin 2B ,所以2A =2B 或2A =180°-2B ,解得A =B 或A +B =90°,所以△ABC 的形状是等腰或直角三角形.故选D .3.(2024·武钢期中)在锐角△ABC 中,若C =2B ,则c b的范围为()A .(2,3)B .(3,2)C .(0,2)D .(2,2)解析:A 由正弦定理得c b =sin C sin B =sin 2B sin B =2cos B ,∵△ABC 是锐角三角形,∴三个内角均为锐角,即有0<B <π2,0<C =2B <π2,0<π-C -B =π-3B <π2,解得π6<B <π4,余弦函数在此范围内是减函数.故22<cos B <32.∴c b ∈(2,3).故选A .4.某渔轮在航行中不幸遇险,发出呼叫信号,我海军舰艇在A 处获悉后,立即测出该渔轮在方位角为45°,距离为10海里的C 处,并测得渔轮正沿方位角为105°的方向,以9海里/小时的速度向小岛靠拢,我海军舰艇立即以21海里/小时的速度前去营救,则舰艇靠近渔轮所需的时间为()A .12小时B .23小时C.34小时D .1小时解析:B 如图,设舰艇在B 处靠近渔轮,所需的时间为t 小时,则AB =21t ,CB =9t .在△ABC 中,根据余弦定理,则有AB 2=AC 2+BC 2-2AC ·BC cos 120°,可得212t 2=102+81t 2+2·10·9t ·12.整理得360t 2-90t -100=0,解得t =23或t =-512(舍去).故舰艇需23小时靠近渔轮.故选B .5.如图所示,在四边形ABCD 中,AC =AD =CD =7,∠ABC =120°,sin ∠BAC =5314且BD 为∠ABC 的平分线,则BD =()A .6B .9C .72D .8解析:D 由正弦定理得BC sin ∠BAC =AC sin ∠ABC ⇒BC 5314=732⇒BC =5,由AC =AD =CD =7,可得∠ADC =60°,又∠ABC =120°,所以A ,B ,C ,D 四点共圆,∠DBC =∠DAC =60°,由余弦定理得cos ∠DBC =BD 2+BC 2-DC 22BD ·BC⇒BD =8.故选D .6.(多选)某货轮在A 处看灯塔B 在货轮北偏东75°,距离126n mile ;在A 处看灯塔C 在货轮北偏西30°,距离83n mile .货轮由A 处向正北航行到D 处时,再看灯塔B 在南偏东60°,则下列说法正确的是()A .A 处与D 处之间的距离是24n mileB .灯塔C 与D 处之间的距离是16n mileC .灯塔C 在D 处的西偏南60°D .D 在灯塔B 的北偏西30°解析:AC 由题意可知∠ADB =60°,∠BAD =75°,∠CAD =30°,所以B =180°-60°-75°=45°,AB =126,AC =83,在△ABD 中,由正弦定理得AD sin B =AB sin ∠ADB ,所以AD =126×2232=24(n mile),故A 正确;在△ACD 中,由余弦定理得CD =AC 2+AD 2-2AC ·AD cos ∠CAD ,即CD =(83)2+242-2×83×24×32=83(n mile),故B 错误;因为CD =AC ,所以∠CDA =∠CAD =30°,所以灯塔C 在D 处的西偏南60°,故C 正确;由∠ADB =60°,D 在灯塔B 的北偏西60°处,故D 错误.故选A 、C .7.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,则B 城市处于危险区的时间为________小时.解析:设A 地东北方向上存在点P 到B 的距离为30千米,AP =x ,在△ABP 中,PB 2=AP 2+AB 2-2AP ·AB ·cos A ,故302=x 2+402-2x ·40·cos 45°,化简得x 2-402x +700=0,设方程的两根为x 1,x 2,则x 1+x 2=402,x 1x 2=700,所以|x 1-x 2|=(x 1+x 2)2-4x 1x 2=20,即图中CD =20千米,所以B 城市处于危险区的时间为2020=1小时.答案:18.海洋蓝洞是地球罕见的自然地理现象,被誉为“地球给人类保留宇宙秘密的最后遗产”,我国拥有世界上已知最深的海洋蓝洞.若要测量如图所示的海洋蓝洞的口径(即A ,B 两点间的距离),现取两点C ,D ,测得CD =80,∠ADB =135°,∠BDC =∠DCA =15°,∠ACB =120°,则图中海洋蓝洞的口径为________.解析:由已知得,在△ACD 中,∠ACD =15°,∠ADC =∠ADB +∠BDC =150°,所以∠DAC =15°,由正弦定理得AC =80sin 150°sin 15°=406-24=40(6+2).在△BCD 中,∠BDC =15°,∠BCD =∠BCA +∠ACD =135°,所以∠DBC =30°,由正弦定理CD sin ∠CBD=BC sin ∠BDC ,得BC =CD sin ∠BDC sin ∠CBD =80×sin 15°12=160sin 15°=40(6-2).在△ABC 中,由余弦定理,得AB 2=1600×(8+43)+1600×(8-43)+2×1600×(6+2)×(6-2)×12=1600×16+1600×4=1600×20=32000,解得AB =805.故图中海洋蓝洞的口径为805.答案:8059.如图,为方便市民游览市民中心附近的“网红桥”,现准备在河岸一侧建造一个观景台P ,已知射线AB ,AC 为两边夹角为120°的公路(长度均超过3千米),在两条公路AB ,AC 上分别设立游客上下点M ,N ,从观景台P 到M ,N 建造两条观光线路PM ,PN ,测得AM =3千米,AN =3千米.(1)求线段MN 的长度;(2)若∠MPN =60°,求两条观光线路PM 与PN 之和的最大值.解:(1)在△AMN 中,由余弦定理得,MN 2=AM 2+AN 2-2AM ·AN cos 120°=3+3-2×3×3×-12=9,MN =3,所以线段MN 的长度为3千米.(2)设∠PMN =α,因为∠MPN =60°,所以∠PNM =120°-α,在△PMN 中,由正弦定理得,MN sin ∠MPN =PM sin (120°-α)=PN sin α=3sin 60°=23.所以PM =23sin(120°-α),PN =23sin α,因此PM +PN =23sin(120°-α)+23sin α=2332cos α+12sin α+23sin α=33sin α+3cos α=6sin(α+30°),因为0°<α<120°,所以30°<α+30°<150°.所以当α+30°=90°,即α=60°时,PM +PN 取到最大值6.所以两条观光线路PM 与PN 之和的最大值为6千米.10.如图,某侦察飞机沿水平直线AC 匀速飞行,在A 处观测地面目标P ,测得俯角∠BAP =30°,飞行3分钟后到达B 处,此时观测地面目标P ,测得俯角∠ABP =60°,又飞行一段时间后到达C 处,此时观测地面目标P ,测得俯角∠BCP 的余弦值为41919,则该侦察飞机由B 至C 的飞行时间为()A .2分钟B .2.25分钟C .2.5分钟D .2.75分钟解析:B 设飞机的飞行速度为v ,由题知∠BAP =30°,∠ABP=60°,所以△ABP 为直角三角形,如图,过点P 作PD ⊥AC 于点D ,则AB =3v ,AP =332v ,BP =32v ,可得DP =334v ,所以DB =34v ,设CB =x v ,由cos ∠BCP =41919,可得sin ∠BCP =3×1919,则tan ∠BCP =34,又由tan ∠BCP =334v 34v +x v =34,解得x =2.25.故选B .11.(多选)如图,设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =32b ,且∠CAB =π3.点D 是△ABC 外一点,DC =1,DA =3,下列说法中,正确的命题是()A .△ABC 的内角B =π3B .△ABC 的内角C =π3C .四边形ABCD 的面积最大值为532+3D .四边形ABCD 的面积无最大值.解析:ABC因为a sin B cos C +c sin B cos A =32b ,由正弦定理得sin A sin B cos C +sin C sin B cos A =32sin B ,B 为三角形内角,sin B ≠0,所以sin A cos C +cos A sin C =32,sin(A +C )=32,所以sin B =sin(A +C )=32,B =π3或B =2π3,又∠CAB =π3,所以B =2π3不合题意,所以B =π3,从而∠ACB =π3,A 、B 正确;在△ACD 中,AC 2=AD 2+CD 2-2AD ·CD cos D =9+1-2×3×1×cos D =10-6cos D ,所以S 四边形ABCD =12AD ·CD sin D +34AC 2=32sin D -332cos D +532=+532,D ∈(0,π),D -π3∈-π3,D -π3=π2,即D =5π6时,S 四边形ABCD =3+532为最大值,无最小值.C 正确,D 错.故选A 、B 、C .12.在解三角形的问题中,其中一个比较困难的问题是如何由三角形的三边a ,b ,c 直接求出三角形的面积.据说这个问题最早是由古希腊数学家阿基米德解决的,他得到了海伦公式,即S =p (p -a )(p -b )(p -c ),其中p =12(a +b +c ).我国南宋著名数学家秦九韶(约1202~1261)在《数书九章》里面给出了一个等价解法,这个解法写成公式就是S =14(c 2a 2-□2),这个公式中的□=________.解析:由余弦定理知c 2+a 2-b 22=ac cos B ,所以S =12ac sin B =14a 2c 2sin 2B =14(c 2a 2-c 2a 2cos 2B )=14(c 2a 2-□2),所以□=c 2+a 2-b 22.答案:c 2+a 2-b 2213.第十届中国花卉博览会于2021年5月21日至7月2日在上海崇明区举办,以“蝶恋花”为设计理念的世纪馆,拥有全国跨度最大的自由曲面混凝土壳体,屋顶跨度280米,屋面板厚度只有250毫米.图①为建成后的世纪馆;图②是建设中的世纪馆;图③是场馆的简化图.如图③是由两个相同的半圆及中间的阴影区域构成的一个轴对称图形,AA ′∥PP ′∥OO ′∥BB ′,其中AA ′=280米,圆心距OO ′=160米,半圆的半径R =75米,椭圆中心P 与圆心O 的距离PO =40米,C ,C ′为直线PP ′与半圆的交点,∠COB =60°.(1)设α=∠A ′AB ,计算sin α的值;(2)计算∠COP 的大小(精确到1°).附:sin 36.87°≈0.6,sin 47.44°≈123-916.解:(1)易知OO ′为等腰梯形ABB ′A ′的中位线,所以cos α=280-160275=45,因为α为锐角,所以sin α=35.(2)因为AA ′∥OO ′,所以∠O ′OB =∠A ′AB =α,则∠PCO =∠COO ′=60°-α,所以在△CPO 中,OC sin ∠CPO =OP sin (60°-α),即sin ∠CPO =OC ·sin (60°-α)OP=75(sin 60°cos α-cos 60°sin α)40,则sin ∠CPO =123-916,又∠CPO 为钝角,所以∠CPO ≈132.56°.由(1)知,sin α=35,所以α≈36.87°,所以∠COO ′≈60°-36.87°=23.13°,所以∠OCP =∠COO ′=23.13°,所以∠COP =180°-∠CPO -∠OCP =180°-132.56°-23.13°≈24°.14.《益古演段》是我国古代数学家李冶(1192~1279)的一部数学著作.内容主要是已知平面图形的信息,求圆的半径、正方形的边长和周长等.其中有这样一个问题:如图,已知∠A =60°,点B ,C 分别在∠A 的两个边上移动,且保持B ,C 两点间的距离为23,则点B ,C 在移动过程中,线段BC 的中点D 到点A 的最大距离为________.解析:如图,延长AD 到点P ,使AD =DP ,连接PB ,PC ,∵D 是线段BC 的中点,∴四边形ABPC 是平行四边形,∴∠ACP =120°,在△ABC 中,BC 2=12=AB 2+AC 2-2×AB ×AC ×cos 60°,∴BC 2=12=AB 2+AC 2-AB ×AC ≥AB ×AC ,当且仅当AB =AC =23时等号成立,故AB ×AC ≤12.在△ACP 中,AP 2=AC 2+CP 2-2×AC ×CP ×cos 120°=AC 2+CP 2+AC ×CP ,∵AB =CP ,∴AP 2=12+2AC ×AB ≤36,∴2AD ≤6,∴AD ≤3.故线段BC 的中点D 到点A 的最大距离为3.答案:315.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m /min .在甲出发2min 后,乙从A 乘缆车到B ,在B 处停留1min 后,再从B 匀速步行到C .假设缆车匀速直线运行的速度为130m/min ,山路AC 长为1260m ,经测量,cos A =1213,cos C =35.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在什么范围内?解:(1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45,从而sin B =sin [π-(A +C )]=sin(A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365.由正弦定理得AB =AC sin B ×sin C =12606365×45=1040(m),所以索道AB 的长为1040m .(2)假设乙出发t min 后,甲、乙两游客的距离为d m ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50)=7400+6251369.因为0≤t ≤1040130,即0≤t ≤8,所以当t =3537时,甲、乙两游客距离最短.即乙出发3537min 后,乙在缆车上与甲的距离最短.(3)由正弦定理BC sin A =AC sin B ,得BC =AC sin B ×sin A =12606365×513=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710m 才能到达C 处.设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得125043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3min ,乙步行的速度应控制在125043,62514(单位:m/min)范围内.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

推荐学习年高考数学一轮复习-专题.-解三角形及其应用举例(讲)————————————————————————————————作者: ————————————————————————————————日期:ﻩ第07节解三角形及其应用举例【考纲解读】考点考纲内容5年统计分析预测正弦定理和余弦定理掌握正弦定理、余弦定理及其应用2014浙江文18;理10,18;2015浙江文16;理16;2016浙江文16;理16;2017浙江14;2018浙江卷13..1.测量距离问题;2.测量高度问题;3.测量角度问题.4.主要是利用定理等知识和方法解决一些与测量和几何计算有关的问题,关键是弄懂有关术语,认真理解题意. 从浙江卷来看,三角形中的应用问题,主要是结合直角三角形,考查边角的计算,也有与导数结合考查的情况.5.备考重点:(1)掌握正弦定理、余弦定理;(2)掌握几种常见题型的解法.(3)理解三角形中的有关术语.【知识清单】1. 测量距离问题实际问题中的有关概念(1)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).(2)方位角:从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图2).(3)方向角:相对于某一正方向的水平角(如图3)①北偏东α°即由指北方向顺时针旋转α°到达目标方向.②北偏西α°即由指北方向逆时针旋转α°到达目标方向.③南偏西等其他方向角类似.(4)坡度:①定义:坡面与水平面所成的二面角的度数(如图4,角θ为坡角). ②坡比:坡面的铅直高度与水平长度之比(如图4,i为坡比). 2. 测量高度问题余弦定理:2222cos a b c ab C +-= , 2222cos b c a ac A +-= , 2222cos c a b ac B +-=.变形公式cos A =b 2+c2-a 22b c,cos B =错误!,os C =错误!3. 测量角度问题应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,也可用余弦定理,应注意用哪一个定理更方便、简捷就用哪一个定理.【重点难点突破】考点1 测量距离问题【1-1】【2018届广东省珠海市珠海二中、斗门一中高三上期中联考】如图,从气球A 上测得正前方的河流的两岸B , C 的俯角分别为60o , 30,此时气球的高是60m ,则河流的宽度BC 等于 ( )A. 303 B. ()3031- C. 403 D. ()4031-【答案】C【解析】因为从气球A 上测得正前方的河流的两岸B , C 的俯角分别为60o , 30,,30,30,30,60C BAC DAB AD m ∠=∠=∠==, 60403cos30BC AB ∴===,故选C .【1-2】如图所示,要测量一水塘两侧A ,B 两点间的距离,其方法先选定适当的位置C ,用经纬仪测出角α,再分别测出AC ,BC 的长b ,a ,则可求出A ,B 两点间的距离.即AB =\r (a2+b 2-2ab c os α).若测得CA =400 m,CB =600 m ,∠ACB =60°,试计算AB 的长.【答案】2007【1-3】如图,A ,B 两点在河的同侧,且A,B 两点均不可到达,测出AB 的距离,测量者可以在河岸边选定两点C ,D ,测得CD =a ,同时在C ,D两点分别测得∠BC A=α,∠A CD=β,∠C DB=γ,∠BDA =δ.在△ADC 和△BDC中,由正弦定理分别计算出AC 和BC ,再在△ABC 中,应用余弦定理计算出AB .若测得CD =错误! km,∠ADB =∠C DB =30°,∠A CD =60°,∠ACB =45°,求A ,B 两点间的距离.【答案】6 4【解析】∵∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,∴∠DAC=60°,∴AC=DC=错误!.在△BCD中,∠DBC=45°,由正弦定理,得BC=错误!·sin∠BDC=错误!·sin 30°=错误!. 在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BC cos 45°=\f(3,4)+\f(3,8)-2×错误!×错误!×错误!=错误!.∴AB=错误!(km).∴A,B两点间的距离为错误!km.【领悟技法】研究测量距离问题,解决此问题的方法是:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.归纳起来常见的命题角度有:1两点都不可到达;2两点不相通的距离;3两点间可视但有一点不可到达.【触类旁通】【变式一】【2018届江西省南昌市第一轮训练六】一艘海警船从港口A出发,以每小时40海里的速度沿南偏东40︒方向直线航行,30分钟后到达B处,这时候接到从C处发出的一求救信号,已知C在B的北偏东65︒,港口A的东偏南20︒处,那么B, C两点的距离是( )A.102海里 B. 103海里C.20海里 D.152海里【答案】A【解析】如图由已知可得,∠BAC=30°,∠ABC=105°,AB=20,从而∠ACB=45°.在△ABC 中,由正弦定理可得BC=0sin45AB×sin30°=102.故答案为:A.【变式二】如图所示,设A 、B 两点在河的两岸,一测量者在A所在的河岸边选定一点C ,测出AC 的距离为50m ,∠A CB=45°,∠CAB =105°后,就可以计算A 、B 两点的距离为 ( )A.502m B.503m C.252m ﻩ D .错误!m【答案】 A【解析】由题意知∠AB C=30°,由正弦定理错误!=错误!,∴AB =错误!=错误!=50\r(2)(m). 考点2 测量高度问题【2-1】【2018届山东、湖北部分重点中学高考冲刺(二)】我国古代著名的数学家刘徽著有《海岛算经》.内有一篇:“今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直.从前表却行百二十三步,人目著地取望岛峰,与表末参合.从后表却行百二十七步,人目著地取望岛峰,亦与表末参合.问岛高及去表各几何?”请你计算出海岛高度为__________步.(参考译文:假设测量海岛,立两根标杆,高均为5步,前后相距1000步,令前后两根标杆和岛在同一直线上,从前标杆退行123 步, 人的视线从地面(人的高度忽略不计)过标杆顶恰好观测到岛峰,从后标杆退行127步, 人的视线从地面过标杆顶恰好观测到岛峰,问岛高多少? 岛与前标杆相距多远?)(丈、步为古时计量单位,当时是“三丈=5步”) 【答案】1255步【2-2】如图,在坡度一定的山坡A 处测得山顶上一建筑物CD (CD 所在的直线与地平面垂直)对于山坡的斜度为α,从A 处向山顶前进l 米到达B 后,又测得CD 对于山坡的斜度为β,山坡对于地平面的坡角为θ.(1)求BC 的长;(2)若l=24,α=15°,β=45°,θ=30°,求建筑物CD 的高度. 【答案】(1)sin sin()l BC αβα=-;(2)2483CD =-.【解析】 (1)在ABC ∆中,ACB βα∠=-,根据正弦定理得sin sin BC ABBAC ACB=∠∠, 所以sin sin()l BC αβα=-.(2)由(1)知sin 24sin1512(62)sin()sin 30l BC αβα⋅===--米.在BCD ∆中,2263BDC πππ∠=+=,3sin 2BDC ∠=,根据正弦定理得sin sin BC CDBDC CBD=∠∠,所以2483CD =-米. 【领悟技法】已知三边(a b c 如、、),由余弦定理求A B 、,再由180A B C ++=求角C ,在有解时只有一解. 已知两边和夹角(a b C 如、、),余弦定理求出对对边. 【触类旁通】【变式一】如图所示,在山顶铁塔上B 处测得地面上一点A 的俯角为α,在塔底C处测得A 处的俯角为β.已知铁塔BC 部分的高为h ,求出山高CD .【答案】cos sin sin()h αβαβ-【变式二】如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得,,BCD BDC CD s αβ∠=∠==,并在点C 测得塔顶A 的仰角为θ,求塔高AB .【答案】•s tan sin sin θβαβ(+)【解析】在BCD ∆中,CBD παβ∠=--,由正弦定理得BC CDsin BDC sin CBD∠∠=,所以••CD sin BDC s sin BC sin CBD sin βαβ∠=∠=(+).在Rt ABC ∆中,•tan s tan sin AB BC ACB sin θβαβ=∠=(+).考点3 测量角度问题【3-1】【2017广东佛山二模】某沿海四个城市A 、B 、C 、D 的位置如图所示,其中60ABC ∠=︒,135BCD ∠=︒, 80nmile AB =, 40303nmile BC =+, 2506nmile CD =, D 位于A 的北偏东75︒方向.现在有一艘轮船从A 出发以50nmile/h 的速度向D 直线航行, 60min 后,轮船由于天气原因收到指令改向城市C 直线航行,收到指令时城市C 对于轮船的方位角是南偏西θ度,则sin θ=__________.【答案】624- 【解析】设船行驶至F ,则50AF =,连接,AC CF ,过A 作AE BC ⊥于E ,则80sin60403AE ==,cos6040BE AB ==, 22303,503CF BC BF AC AE CE =-==+=,34cos ,sin 55ace ACE ∠=∠=,所以()2cos cos 13510AC ACD ACE CD ∠=-∠==,所以90CAD ∠=,又50AF =, 503AC =,可得60AFC ∠=,所以15CFN AFN AFC MAF AFC θ=∠-∠-∠=∠-∠=,故62sin 4θ-=.【3-2】如图,扇形AOB 是一个观光区的平面示意图,其中圆心角∠AOB 为2π3,半径OA 为1 km.为了便于游客观光休闲,拟在观光区内铺设一条从入口A 到出口B 的观光道路,道路由弧AC 、线段CD 及线段DB 组成,其中D 在线段OB 上,且CD ∥AO .设∠AOC =θ.(1)用θ表示CD 的长度,并写出θ的取值范围; (2)当θ为何值时,观光道路最长?(2)设观光道路长度为L(θ), 则L (θ)=BD +CD +弧CA的长=1-错误!sin θ+co s θ+错误!s in θ+θ=cos θ-\f(1,\r(3))sinθ+θ+1,θ∈错误!,L′(θ)=-sin θ-错误!cos θ+1,由L′(θ)=0,得sin错误!=错误!,又θ∈错误!,所以θ=错误!,列表:θ错误!错误!错误!L′(θ)+0-L(θ)增函数极大值减函数所以当θ=错误!时,L(θ)达到最大值,即当θ=错误!时,观光道路最长.【3-3】在海岸A处,发现北偏东45°方向,距离A处(错误!-1)海里的B处有一艘走私船;在A处北偏西75°方向,距离A处2海里的C处的缉私船奉命以10错误!海里/小时的速度追截走私船.同时,走私船正以10海里/小时的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?最少要花多少时间?【答案】缉私船沿北偏东60°的方向能最快追上走私船,最少要花错误!小时.【解析】如图,设缉私船t小时后在D处追上走私船,则有CD=103t,BD=10t.在△ABC中,AB=\r(3)-1,AC=2,∠BAC=120°.利用余弦定理可得BC=\r(6).由正弦定理,得sin∠ABC=\f(AC,BC)sin∠BAC=\f(2,6)×\f(3),2=错误!,得∠ABC=45°,即BC与正北方向垂直.于是∠CBD=120°.在△BCD中,由正弦定理,得sin∠BCD=\f(BD sin∠CBD,CD)=错误!=错误!,得∠BCD=30°,∴∠BDC=30°.又CDsin 120°=错误!,错误!=错误!,得t=错误!.所以缉私船沿北偏东60°的方向能最快追上走私船,最少要花\f(\r(6),10)小时.【领悟技法】依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法:(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A+B+C=π这个结论.[注意] 在上述两种方法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.判断三角形的形状的基本思想是:利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系.结论一般为特殊的三角形.如等边三角形、等腰三角形、直角三角形、等腰直角三角形等.另外,在变形过程中要注意A,B,C的范围对三角函数值的影响.提醒:1.在△ABC中有如下结论sin A>sinB⇔a>b.2.当b2+c2-a2>0时,角A为锐角,若可判定其他两角也为锐角,则三角形为锐角三角形;当b2+c2-a2=0时,角A为直角,三角形为直角三角形;当b2+c2-a2<0时,角A为钝角,三角形为钝角三角形.【触类旁通】【变式一】如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船,乙船立即朝北偏东θ角的方向沿直线前往B处救援,则sin θ的值为( )A.错误!B.错误!C.错误! D.错误!【答案】D【变式二】在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以每小时10 n mile 的速度沿南偏东75°方向前进,若侦察艇以每小时14 n m il e的速度,沿北偏东45°+α方向拦截蓝方的小艇.若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.【答案】5314【解析】如图,设红方侦察艇经过x小时后在C 处追上蓝方的小艇,则AC =14x ,BC =10x,∠ABC =120°.根据余弦定理得(14x )2=122+(10x )2-240xcos 120°, 解得x=2.故A C=28,BC =20. 根据正弦定理得BCs in α=错误!,解得sin α=错误!=错误!.所以红方侦察艇所需要的时间为2小时,角α的正弦值为5314.【易错试题常警惕】易错典例:如图,甲船以每小时30错误!海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10错误!海里.问:乙船每小时航行多少海里?易错分析:不能分清已知条件和未知条件,从而不能将问题集中到一个三角形中.再利用正、余弦定理求解.解决此类问题时,要能理解题目给定的含义,转化到三角形中,利用正、余弦定理进行求解.正确解析:如图,连接A1B2由已知A2B2=10错误!,A1A2=30错误!×错误!=10错误!,∴A1A2=A2B2.又∠A1A2B2=180°-120°=60°,∴△A1A2B2是等边三角形,∴A1B2=A1A2=10错误!.由已知,A1B1=20, ∠B1A1B2=105°-60°=45°,在△A1B2B1中,由余弦定理得B1B错误!=A1B错误!+A1B错误!-2A1B1·A1B2·cos 45°=202+(10错误!)2-2×20×102×错误!=200,∴B1B2=10错误!.因此,乙船的速度为错误!×60=30错误!(海里/时).温馨提醒:利用解三角形知识解决实际问题要注意根据条件画出示意图,结合示意图构造三角形,然后转化为解三角形的问题进行求解.【学科素养提升之思想方法篇】数形结合百般好,隔裂分家万事休——数形结合思想我国著名数学家华罗庚曾说过:"数形结合百般好,隔裂分家万事休.""数"与"形"反映了事物两个方面的属性.我们认为,数形结合,主要指的是数与形之间的一一对应关系.数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过"以形助数"或"以数解形"即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.【典例】【2018届河北省衡水中学高三第十六次模拟】如图,一山顶有一信号塔CD (CD 所在的直线与地平面垂直),在山脚A 处测得塔尖C 的仰角为α,沿倾斜角为θ的山坡向上前进l 米后到达B 处,测得C 的仰角为β.(1)求BC 的长;(2)若24l =, 45α=, 75β=, 30θ=,求信号塔CD 的高度. 【答案】(1) ()()sin sin BC l αθβα-=-;(2) 2483-.(2)由(1)及条件知, ()()()sin 1262sin BC l αθβα-==--, 9015BCD β∠=︒-=︒, 45CBD βθ∠=-=︒,120BDC ∠=︒.由正弦定理得sin452483sin120CD BC ︒=⋅=-︒。

相关文档
最新文档