反比例函数综合测试题--精选
中考数学复习《反比例函数》专项测试卷(带答案)
中考数学复习《反比例函数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,2A x ,()2,1B x -和()3,4C x 都在反比例函数8y x=的图像上,则1x ,2x 和3x 的大小关系是( ) A.123x x x <<B.231x x x <<C.132x x x <<D.213x x x <<2.若点()26-,在反比例函数ky x=的图象上,则下列说法正确的是( ) A.该函数的图象经过点()34--,B.该函数的图象位于第一、三象限C.当0x >时,y 的值随x 值的增大而增大D.当1x >-时,4y >3.如图,在同一平面直角坐标系中函数y ax a =+与函数ay x=的图象可能是( ) A. B. C. D.4.如图,点A 是双曲线()160y x x =-<上的一点,点B 是双曲线()60y x x=-<上的一点,AB 所在直线垂直x 轴于点C ,点M 是y 轴上一点,连接MA 、MB ,则MAB △的面积为( )A.5B.6C.10D.165.如图,点A ,B 为反比例函数()0ky x x=>的图象上的两点,且满足45AOB ∠=︒,若点A 的坐标为()3,5,则点B 的坐标是( ).A.15215,2⎛⎫ ⎪ ⎪⎝⎭B.1010,2⎛ ⎝⎭C.()8,2D.()8,36.如图,已知点A 、B 分别在反比例函数y =1x (x >0),y =-4x(x >0)的图象上,且OA⊥OB ,则OBOA的值为( )A.4B.2C.14D.127.如图,在ABC 中2AC BC == 90ACB ∠=︒ AC x ∥轴 点D 是AB 的中点 点C 、D 在(k 0,x 0)ky x=≠>的图象上 则k 的值为( )A.1-B.2-C.1D.28.已知蓄电池的电压为定值(电压三星近总度阻) 使用蓄电池时 电流(单位:A )与电阻尺(单位:Ω)是反比例函数关系 它的图象如图所示 下列说法不正确的是( )A.函数解析式为60I R=B.蓄电池的电压是C.当6ΩR =时 8A I =D.当10A I ≤时 6R ≥Ω9.如图 在平面直角坐标系中直线24y x =-+与x 轴、y 轴分别交于A 、B 两点 以AB 为边在第一象限作正方形ABCD 点D 在双曲线()0ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后 点C 恰好落在该双曲线上 则a 的值( )A.1B.2C.3D.410.如图 直线22y x =-与x 轴 y 轴分别交于点A B 与反比例函数()0ky k x=>图像交于点C .点D 为x 轴上一点(点D 在点A 右侧) 连接BD 以BA BD 为边作ABDE E 点刚好在反比例函数图像上 设(),E m n 连接EC DC 若1()2ACED S AD AD n =+四边形 则k 的值为( )A.8B.10C.12D.1611.如图 直线y kx =与双曲线3y x -=在同一坐标系中如图所示 则不等式3x-<的解集为( )A.01x <<B.1x <-C.1x <-或01x <<D.10x -<<或1x >12.智能手机已遍及生活中的各个角落 手机拍照功能也越来越强 高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值 也可计算为像距与物距的比值) 小明用某透镜进行了模拟成像实验 得到如图所示的像距v 随物距u 变化的关系图像 下列说法不正确的是( )A.当物距为45.0cm 时 像距为13.0cmB.当像距为15.0cm 时 透镜的放大率为2C.物距越大 像距越小D.当透镜的放大率为1时 物距和像距均为20cm13.某商家设计了一个水箱水位自动报警仪 其电路图如图1所示 其中定值电阻110ΩR =2R 是一个压敏电阻 用绝缘薄膜包好后放在一个硬质凹形绝缘盒中放入水箱底部 受力面水平 承受水压的面积S 为0.012m 压敏电阻的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深 压力F 越大) 电源电压保持6V 不变 当电路中的电流为0.3A 时 报警器(电阻不计)开始报警 水的压强随深度变化的关系图象如图3所示(参考公式:UI R=1000Pa 1kPa =).则下列说法中不正确的是( )2R F pS =A.当水箱未装水()时 压强p 为0kPaB.当报警器刚好开始报警时 水箱受到的压力F 为40NC.当报警器刚好开始报警时 水箱中水的深度h 是0.8mD.若想使水深1m 时报警 应使定值电阻1R 的阻值为 二、填空题14.一个圆柱形蓄水池的底面半径为x cm 蓄水池的侧面积为40π2cm 则这个蓄水池的高h (cm )与底面半径x (cm )之间的函数关系式为_____.15.在反比例函数12my x-=的图象上的图象在二、四象限 则m 的取值范围是_______. 16.若点()11,A y -、21,4B y ⎛⎫- ⎪⎝⎭、()31,C y 都在反比例函数21x k y +=(k 为常数)的图象上 则1y 、2y 、3y 的大小关系为_____.17.如图 点(3,1)P -是反比例函数m y x =的图象上的一点 设直线y kx =与双曲my x=的两个交点分别为P 和P 当mkx x>时 写出x 的取值范围_____.18.如图 在平面直角坐标系xOy 中正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10 点D 是边AB 上靠近点A 的三等分点 将⊥OAD 沿直线OD 折叠后得到⊥OA ′D 若反比例函数y kx=(k ≠0)的图象经过A ′点 则k 的值为_____. 0m h =12Ω19.如图 在平面直角坐标系中直线12y k x =+与x 轴交于点A 与y 轴交于点B 与双曲线2(0)k y x x=>交于点C 连接OC .若52,sin 5OBC S BOC =∠=△ 则12k +的值是______.20.如图 点1A 2A 3A …在反比例函数()10y x x=>的图象上 点1B 2B 3B … n B 在y 轴上 且11212323B OA B B A B B A ∠=∠=∠=直线y x =与双曲线1y x=交于点1A 111B A OA ⊥ 2221B A B A ⊥ 3323B A B A ⊥ … 则2023B 的坐标是________.三、解答题21.如图所示 一次函数y kx b =+的图象与反比例函数my x=的图象相交于两点(1),A n (2,1)B -- 与y 轴相交于点C .(1)求反比例函数和一次函数解析式; (2)直接写出:不等式mkx b x+>解集是______; (3)依据相关数据求AOB 的面积.22.如图 菱形OABC 的边OA 在y 轴正半轴上 点B 的坐标为()48,.反比例函数11k y x=的图象经过菱形对角线AC OB ,的交点D 设直线OC 的解析式为22y k x =.(1)求反比例函数的解析式; (2)求菱形OABC 的边长;(3)请结合图象直接写出不等式120k k x x-<的解集. 23.如图▱OABC 的顶点O 与坐标原点重合 边OA 在x 轴正半轴上 60AOC ∠=︒2OC = 反比例函数()0ky x x=>的图像经过顶点C 与边AB 交于点D.(1)求反比例函数的表达式.(2)尺规作图:作OCB ∠的平分线交x 轴于点E.(保留作图痕迹 不写作法) (3)在(2)的条件下 连接DE 若DE CE ⊥ 求证:AD AE =. 24.如图 已知一次函数26y x =+与反比例函数()0ky x x=>的图象交于点()1,A m 与x 轴交于点B .(1)填空:m 的值为______ 反比例函数的解析式为______; (2)直接写出当0x >时 26kx x+<的解集; (3)点P 是线段AB 上一动点(不与A 、B 点重合) 过P 作直线PM x ∥轴交反比例函数的图象于点M 连接BM .若PMB △的面积为S 求S 的取值范围.25.如图 已知抛物线2y x bx =+与x 轴交于O (4,0)A 两点 点B 的坐标为(0,3)-. (1)求抛物线的对称轴;(2)已知点P 在抛物线的对称轴上 连接OP BP .若要使OP BP +的值最小 求出点P 的坐标;(3)将抛物线在x 轴下方的部分沿x 轴翻折 其余部分保持不变 得到一个新的图象.当直线(0)y x m m =+≠与这个新图象有两个公共点时 在反比例函数y mx=的图象中y 的值随x 怎样变化?判断并说明理由.26.如图 在平面直角坐标系中正六边形ABCDEF 的对称中心P 在反比例函数()10,0ky k x x=>>的图象上 边AB 在x 轴上 点F 在y 轴上 已知23AB =.(1)判断点E 是否在该反比例函数的图象上 请说明理由;(2)求出直线EP :()20y ax b a =+≠的解析式 并根据图象直接写出当0x >时 不等式kax b x+>的解集. 27.如图① 有一块边角料ABCDE 其中AB BC DE EA 是线段 曲线CD 可以看成反比例函数图象的一部分.测量发现:90A E ∠=∠=︒ 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4.(1)小宁把A B C D E 这5个点先描到平面直角坐标系上 记点A 的坐标为()1,0-;点B 的坐标为()1,1-.请你在图②中补全平面直角坐标系并画出图形ABCDE ; (2)求直线BC 曲线CD 的函数表达式;(3)小宁想利用这块边角料截取一个矩形MNQP 其中M N 在AE 上(点M 在点N 左侧)点P 在线段BC 上 点Q 在曲线CD 上.若矩形的面积是53则=_________.参考答案1.答案:B解析:将三点坐标分别代入函数解析式8y x=得: 182x = 解得14x =; 28-1x =解得28x =-; 384x =解得; 824-<<故选:B. 2.答案:C解析:⊥点()26-,在函数ky x=的图象上 ⊥2(6)120k =⨯-=-< ⊥函数ky x=位于第二、四象限 在每个象限内 y 的值随x 的增大增大 ⊥()341212-⨯-=≠-⊥该函数的图象不经过点()34--,把=1x -代入12y x=求得12y = ⊥当10x -<<时 12y > 综上 只有选项C 说法正确 故选:C. 3.答案:A解析:当0a >时 一次函数图像经过第一、二、三象限 反比例函数图像位于一、三象限 可知A 符合题意;32x =231x x x ∴<<当0a <时 一次函数图像经过第二、三、四象限 反比例函数图像位于二、四象限 可知B C D 不符合题意.故选:A.4.答案:A解析:如图所示 作MN BA ⊥交BA 的延长线于N则12AMB S BA MN =⋅设点A 的坐标为16a a ⎛⎫- ⎪⎝⎭, <0aAB 所在直线垂直x 轴于点CB ∴点坐标为6a a ⎛⎫- ⎪⎝⎭,16610AB a a a ⎛⎫∴=---=- ⎪⎝⎭ MN a =()11101105222ABM S AB MN a a a a ⎛⎫⎛⎫∴=⋅=⨯-⨯=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭故选:A.5.答案:A解析:将OA 绕O 点顺时针旋转90︒到OC 连接AB 、CB作AM y ⊥轴于MCN x ⊥轴于N点A 的坐标为()3,53AM ∴= 5OM =45AOB ∠=︒45BOC ∠=︒∴在AOB 和COB △中OA OC AOB COBOB OB =⎧⎪∠=∠⎨⎪=⎩(SAS)AOB COB ∴△≌△AB CB ∴=90AOM AON CON AON ∠+∠=︒=∠+∠AOM CON ∴∠=∠ 在AOM 和CON 中AOM CON AMO ONCOA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩ (AAS)AOM CON ∴△≌△3CN AM ∴== 5ON OM == (5,3)C ∴-点A 为反比例函数(0)k y x x=>图象上的点 3515k ∴=⨯= 15y x ∴=设B 点的坐标为15(,)m m AB CB =22221515(3)(5)(5)(3)m m m m ∴-+-=-++解得215m =(负数舍去)15215,B ⎛∴ ⎝⎭故选A.6.答案:B解析:作AC y ⊥轴于C BD y ⊥轴于D 如图点A 、B 分别在反比例函数1(0)y x x => 4(0)y x x=->的图象上 11122OAC S ∆∴=⨯= 1|4|22OBD ∆=⨯-=OA OB ⊥90AOB ∠=︒∴90AOC BOD ∴∠+∠=︒AOC DBO ∴∠=∠Rt AOC Rt OBD ∴∆∆∽ ∴212()2AOC OBD S OA S OB ∆∆== ∴12OA OB =. ∴2OB OA=. 故答案为B. 7.答案:B解析:设(0,)A b 根据题意(2,)C b - (2,2)B b -+点D 是AB 的中点(1,1)D b ∴-+点C 、D 在(k 0,x 0)k y x=≠>的图象上 2(1)k b b ∴=-=-+解得1b =22k b ∴=-=-故选:B.8.答案:C解析:设图象过蓄电池的电压是A 、B 选项正确 不符合题意;当=6ΩR 时 (A 6010)6I ==∴C 选项错误 符合题意;当10I =时 6R =由图象知:当10A I ≤时 6R ≥Ω∴D 选项正确 不符合题意;故选:C.9.答案:B解析:作CE y ⊥轴于点E 交双曲线于点G 作DF x ⊥轴于点F在24y x =-+中令0x = 解得4y =∴B 的坐标是(0,4)令0y = 解得2x =∴A 的坐标是(2,0)kI R =(5,12)60k ∴=60I R ∴=∴60V ∴4OB ∴= 2OA =90BAD ∠=︒90BAO DAF ∴∠+∠=︒直角ABO △中90BAO OBA ∠+∠=︒DAF OBA ∴∠=∠在OAB △和FDA △中DAF OBA BOA AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)OAB FDA ∴≌△△同理 OAB FDA BEC ≌≌△△△ 4AF OB EC ∴=== 2DF OA BE ===∴D 的坐标是(6,2) C 的坐标是(4,6)点D 在双曲线(0)k y k x=≠上 6212k ∴=⨯=∴函数的解析式是:12y x =把6y =代入12y x=得:2x = 422a ∴=-=故选B.10.答案:C解析:直线与x 轴 y 轴分别交于点A B(1,0)A ∴ (0,2)B -作EF x ⊥轴于F 如图所示:22y x =-四边形是平行四边形在和中E 点刚好在反比例函数图像上设C 的纵坐标为hABDE AE BD ∴=//DE AB DAE ADB ∴∠=∠AEF △DBO △EAF BDO AFE DOB AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)AEF DBO ∴≌△△2EF OB ∴==AF OD =1DF OA ∴==(,)E m n 2m AD ∴=+2n =2(2)k mn AD ∴==+122AD k ∴=-//DE BC AED CED S S ∴=△△()11122222ACD CED ACD AED ACED S S S S S AD h AD AD h ∴=+=+=⋅+⋅=+四边形△△△△()12ACED S AD AD n =+四边形122h AD k ∴==-C 的纵坐标为代入得解得反比例函数图像经过点C 解得 20k =(舍去) 12k∴=故选:C.11.答案:D解析:有题意可知 当3y =时 33x= 解得=1x - ∴直线y kx =与双曲线3y x=在第二象限交点的坐标为1,3)- 由中心对称可得 直线y kx =与双曲线3y x=在第四象限交点的坐标为3)- ∴观察图象可得 不等式3kx x<的解集为10x <<或1x >. 故选:D.12.答案:B解析:由函数图象可知:当物距为45.0cm 时 像距为13.0cm 故选项A 说法正确;由函数图象可知:当像距为15.0cm 时 物距为300cm . 放大率为15.00.530.0= 故选项B 说法错误;由函数图象可知:物距越大 像距越小 故选项C 说法正确;由题意可知:当透镜的放大率为1时 物距和像距均为20cm 故选项D 说法正确 故选:B.13.答案:B解析:A.由图3得:当0h =时 0p = 故此项说法正确;122-22y x =-12222x -=-14x k =11(,2)42C k k ∴-(0)k y k x=>11(2)42k k k ∴-=112k =B.当报警器刚好开始报警时 260.310R =+ 解得210R =Ω 由图2可求得:2800R F =80010F∴= 解得80F N = 故此项说法错误; C.当报警器刚好开始报警时 由上得80F N = 则有800.01p =⨯ 8P p k a ∴= 由图3求得10p h = 810h = 解得:0.8h = 故此项说法正确;D.当报警器刚好开始报警时:1260.3R R =+ 1220R R ∴+=Ω 当1h =时 10110kPa p =⨯= 100000.01100F N ∴=⨯= 28008100R ==Ω 120812R ∴=-=Ω 故此项说法正确. 故选:B.14.答案:20h x = 解析:根据题意 得240x h ππ⋅= ⊥20h x=. 故答案为:20h x=. 15.答案:12m > 解析:由题意得 反比例函数12m y x -=的图象在二、四象限内 则120m -< 解得12m >. 故答案为12m >. 16.答案:213y y y << 解析:反比例函数2(1k k y x+=为常数) 210k +> ∴该函数图象在第一、三象限 在每个象限内y 随x 的增大而减小点1(1,)A y -、1(4B 2)y 、3(1,)C y 都在反比例函数2(1k k y x +=为常数)的图象上 114-<- 点A 、B 在第三象限 点C 在第一象限213y y y ∴<<故答案为:213y y y <<.17.答案:-3<x <0或x >3 解析:⊥直线y =kx 与双曲线y =m x的两个交点分别为P 和P ′ P (-3 1) ⊥P ′的坐标为(3 -1)当mx >kx 时 x 的取值范围为-3<x <0或x >3故答案为:-3<x <0或x >3. 18.答案:48解析:如图所示:过A '作EF OC ⊥于F 交AB 于E⊥90OA D '∠=︒90OA F DA E ∴∠'+∠'=︒⊥90A F AOF O ∠'+∠'=︒D AOF AE ∴'=∠'∠D A FO AE '=∠∠'A OF DA E ∴''∠△△设A '(m n )OF m ∴= A F n '=.正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10点D 是边AB 上靠近点A 的三等分点∴ 103DE m = 10A E n '=-.310103m n m m ==-- 解得:m =6 n =8. ∴A '(6,8) ∴ 反比例函数中k =xy (0k ≠)=48 故答案为:48.19.答案:9解析:据题意可知(0,2)B 设(,)Cx y 52,sin OBC S BOC =∠=△1222x ∴⨯= 52xOC = 解得2,25x OC ==2225OC x y =+=即2425y +=得4y = 故(2,4)C 将(2,4)C 代入直线12y k x =+ 双曲线2(0)k y x x => 得到 121,8k k == 故12189k k +=+= 故答案为:9.20.答案:(0,22023解析:联立1y xy x =⎧⎪⎨=⎪⎩解得1x =由题意可知145AOB ∠=︒111B A OA ⊥11OA B ∴△为等腰直角三角形1122OB OA ∴==过2A 作22A H OB ⊥交y 轴于H 则容易得到21A H B H = 设21A H B H x == 则()2,2A x x +()21x x ∴+=解得121x = 221x =-(舍去)2121A H B H ∴== 1212222B B B H ==2222222OB ∴=+=同理可得323OB =则2n OB n =即(0,2n B n(20230,22023B ∴故答案为:(0,22023. 21.答案:(1)2y x = 1y x =+ (2)1x >或20x -<<(3)32解析:(1)反比例函数m y x =的图象过(2,1)--∴反比例函数的解析式为:2y x = 点(1),A n 在反比例函数图象上∴12n ⨯=∴2n =∴点A 的坐标为(1,2)将点A B 坐标代入一次函数y kx b =+中得221k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩∴一次函数的解析式为:1y x =+.(2)根据图象可知 不等式0m kx b x+>>的解集是:1x >或20x -<<. 故答案为:1x >或20x -<<; (3)过点A 作AG y ⊥轴于点G 过点B 作BH y ⊥轴于点H 如下图所示:一次函数1y x =+与y 轴相交于点C∴C 点坐标为(0,1)∴1OC =A 点坐标为(1,2)∴1AG =B 点坐标为(2,1)--∴2BH =∴11123222AOB AOC BOC S S S ⨯⨯=+=+=△△△. 22.答案:(1)18y x = (2)5 (3)463x <或63x << 解析:(1)⊥菱形OABC 的对角线交于点D⊥OD DB =⊥点B 的坐标为()48,⊥点D 的坐标为()24, 又⊥反比例函数11k y x=经过点D ⊥1248k =⨯= ⊥18y x =; (2)过点B 作BE y ⊥轴于点E设OA AB a == 则8AE a =- 4BE =在Rt ABE 中222BE AE AB += 即()22248x x +-= 解得:5x =⊥菱形OABC 的边长为5;(3)⊥点B 的坐标为()48, 5BC =⊥点C 的坐标为()43,代入22y k x =得:234k = 解得:234k =⊥234y x =令1y y = 则834x x = 解得:63x =±结合图象 不等式120k k x x -<的解集为463x <或463x <<.23.答案:(1))30y x =>(2)见解析(3)见解析解析:(1)过点C 作CF OA ⊥于点F 如解图所示.在Rt COF △中2OC = 60COF ∠=︒30sin 6023CF C ∴=⋅==︒1cos60212OF OC =⋅︒=⨯=.(1,3C ∴. 把(3C 代入反比例函数()0ky x x =>中得3k =∴反比例函数的表达式为)30y x =>.(2)如解图所示 所作射线CE 即为所求.(3)证明:在OABC 中//OC AB //CB OA .60AOC ∠=︒120OCB OAB ∴∠=∠=︒. CE 平分OCB ∠60OCE BCE OEC ∴∠=∠=∠=︒.DE CE ⊥90CED ∴∠=︒.180609030AED ∴∠=︒-︒-︒=︒.1801203030ADE ∴∠=︒-︒-︒=︒.AED ADE ∴∠=∠.AD AE ∴=.24.答案:(1)8 8y x= (2)01x << (3)S 的取值范围是2504S <≤ 解析:(1)⊥一次函数26y x =+的图象经过点()1,A m ⊥268m =+=⊥点()18A ,⊥反比例函数()0k y x x =>的图象经过点()18A , ⊥188k =⨯=⊥反比例函数的解析式为8y x=; 故答案为:8 8y x =;(2)观察图象得 26k x x+<的解集为1x <<; (3)设点P 的纵坐标为n ⊥点P 在线段AB 上 点M 在8y x =的图象上 ⊥0n << 点P 的横坐标为62n -⊥PM x ∥轴⊥点M 的坐标为8n n ⎛⎫ ⎪⎝⎭, ⊥862n MP n -=. ⊥()21186125322244PMBn S MP n n n n -⎛⎫=⨯⨯=⨯-⨯=--+ ⎪⎝⎭. ⊥08n << 且104-<⊥当03n <<时 S 随n 的增大而增大 当38n ≤<时 S 随n 的增大而减小. ⊥当3n =时 △的面积最大 最大值为254 ⊥S 的取值范围是2504S <≤. 25.答案:(1)抛物线的对称轴为直线2x =(2)点P 的坐标为32,2⎛⎫- ⎪⎝⎭ (3)y 的值随x 的增大而增大解析:(1)由题意得:2440b +=4b ∴=-∴函数关系式为:24y x x =-∴对称轴为:4222b x a -=-=-=; (2)由题意得:OP PB +的值最小 实际就是在同一直线一旁有两点 在直线上求点只要取O 点关于直线2x =对称的点 过AB 的直线与直线的交点就是点P设过AB 的直线为 由在上()4,0A 2x =3y kx =-()4,0B 3y kx =-得34k =334AB y x =-P 在直线2x =上332342y ∴=⨯-=-32,2P ⎛⎫∴- ⎪⎝⎭; (3)24y x x =-在x 轴下方的部分沿x 轴翻转当直线()0y x m m =+≠有两个不相同的解0∴∆> 2340m -⨯> 得94m <又0> 904m ∴<< 在反比例函数m y x=中 904m k <=< y 随x 的增大而减小. 26.答案:(1)点E 在该反比例函数的图象上 理由见解析(2)39y x =+ 323x <<解析:(1)六边形ABCDEF 为正六边形 23AB =23AB AF ∴== 60FAO =︒cos 603OA AF ∴=⋅︒= sin603AF =⋅︒=()0,3F ∴ )3,0A 连接PF PA六边形ABCDEF 为正六边形PE PF PA PB ∴=== 60EPF FPA APB ∠=∠=∠=︒EFP ∴△ FAP △ ABP △为等边三角形23AF PF ∴==()23,3P ∴ 把()23,3P 代入1k y x =得:23=解得:63k =043k ∴=-∴反比例函数表达式为163y x=. EFP △ FAP △为等边三角形∴点E 和点A 关于PF 对称)3,6E ∴ 把3x =代入163y x =得:13663y == ∴点E 在该反比例函数的图象上; (2)把()3,6E ()23,3P 代入()20y ax b a =+≠得: 6333a b a b ⎧=+⎪⎨=+⎪⎩ 解得:39a b ⎧=-⎪⎨=⎪⎩∴直线EP 的解析式为:39y x =+()3,6E ()23,3P由图可知 当323x <<时 k b x +>. 27.答案:(1)见解析(2)直线BC 的函数表达式3522y x =曲线的函数表达式4y x= (3)72 解析:(1)根据点A 的坐标为()1,0- 点B 的坐标为()1,1- 补全x 轴和y 轴 90A E ∠︒∠== 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4 ()1,4C ∴ ()4,1D根据AB BC DE EA 是线段 曲线CD 是反比例函数图象的一部分 画出图形ABCDE如图所示 (2)设线段BC 的解析式为y kx b =+ 把()1,1B - ()1,4C 代入得 14k b k b -+=⎧⎨+=⎩解得 3252k b ⎧=⎪⎪⎨⎪=⎪⎩3522y x ∴=+设曲线CD 的解析式为'k y x =把()1,4C 代入得 '41k = '4= 4y x ∴=; (3)设(),0M m 则35,22P m m ⎛⎫+ ⎪⎝⎭ 435,352222Q m m ⎛⎫ ⎪+ ⎪ ⎪+⎝⎭3522PM m ∴=+ 43522m m =-+354352222PM PQ m m m ⎛⎫ ⎪⎛⎫⋅=+- ⎪ ⎪⎝⎭ ⎪+⎝⎭23554223m m ∴--= 2915140m m ∴+-= 23m ∴= 或73m =-(舍去) 32572322PM ∴=⨯+=. 故答案为:72.。
中考数学《反比例函数》专项复习综合练习题-附含答案
中考数学《反比例函数》专项复习综合练习题-附含答案一、单选题1.已知反比例函数y=- 12x,则()A.y随x的增大而增大B.当x>-3且x≠0时,y>4C.图象位于一、三象限D.当y<-3时,0<x<42.甲、乙、丙三位同学分别正确指出了某一个函数的一个性质.甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:每第一个象限内 y值随x值的增大而减小.根据他们的描述这个函数表达式可能是()A.y=2x B.y= 2x C.y=﹣1xD.y=2x23.反比例函数y=kx(k>0)在第一象限内的图象如图,点M是图象上一点 MP垂直x轴于点P 如果△MOP 的面积为1 那么k的值是( )A.1 B.2 C.4 D.√24.如图,反比例函数y=kx(x<0)交边长为10的等边△ OAB的两边于C、D两点,OC=3BD,则k的值()A.−9√3B.9√3C.-10√3D.10√35.抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y= a+b+cx在同一坐标系内的图象大致为()A.B.C.D.√3 6.如图,点D是▱OABC内一点,AD与x轴平行,BD与y轴平行,BD=√3∠BDC=120°S△BCD=92 (x<0)的图象经过C、D两点,则k的值是()若反比例函数y=kxA.−6√3B.-6 C.−12√3D.-127.如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y=1(x<0)图象上一点,AO的延长x(x>0 k是不等于0的常数)的图象于点C,点A关于y轴的对称点为A′,点C关于x 线交函数y=k2x轴的对称点为C′,交于x轴于点B 连结AB AA′、 A′C′.若△ABC的面积等于6,则由线段AC CC′C′A′ A′A所围成的图形的面积等于()A.8 B.10 C.3√10D.4√68.如图,反比例函数y=kx与一次函数y=kx﹣k+2在同一直角坐标系中的图象相交于A B两点其中A(﹣1 3)直线y=kx﹣k+2与坐标轴分别交于C D两点下列说法:①k<0;②点B的坐标为(3 ﹣1);③当x<﹣1时kx <kx﹣k+2;④tan∠OCD=﹣1k其中正确的是()A.①③B.①②④C.①③④D.①②③④二、填空题9.已知反比例函数y=﹣2x若y≤1,则自变量x的取值范围是.10.在平面直角坐标系中若一条平行于x轴的直线l分别交双曲线y=﹣6x 和y= 2x于A B两点 P是x轴上的任意一点,则△ABP的面积等于11.如图,在平面直角坐标系中正方形ABCD的面积为20 顶点A在y轴上顶点C在x轴上顶点D在双曲线y=kx(x>0)的图象上边CD交y轴于点E 若CE=ED,则k的值为.12.如图,点 P 是反比例函数图象上的一点 过点 P 向 x 轴作垂线 垂足为 M 连结 PO 若阴影部分面积为 6 ,则这个反比例函数的关系式是 .13.如图,已知A ( 12 y 1) B (2 y 2)为反比例函数y = 1x 图象上的两点 动点P (x 0)在x 轴正半轴上运动 当线段AP 与线段BP 之差达到最大时 点P 的坐标是 .三、解答题14.如图,反比例函数y =kx (x >0)的图像分别交正方形OABC 的边AB 、BC 于点D 、E 若A 点坐标为(1,0) 若△ODE 是等边三角形 求k 的值.15.某水果生产基地在气温较低时 用装有恒温系统的大棚栽培一种新品种水果 如图是试验阶段的某天恒温系统从开启到关闭后 大棚内的温度y(℃)与时间x(ℎ)之间的函数关系 其中线段AB 、BC 表示恒温系统开启后阶段 双曲线的一部分CD 表示恒温系统关闭阶段........... 请根据图中信息解答下列问题:(1)这个恒温系统设定的恒定温度为多少℃;(2)求全天的温度y(℃)与时间x(ℎ)之间的函数表达式;(3)若大棚内的温度低于10℃时 蔬菜会受到伤害.问:这天内恒温系统最多可以关闭多少小时 才能避免水果生长受到影响?16.如图,已知点A在反比函数y=kx(k<0)的图象上点B在直线y=x−3的图象上点B的纵坐标为-1 AB⊥x轴且S△OAB=4.(1)求点A的坐标和k的值;(2)若点P在反比例函数y=kx(k<0)的图象上点Q在直线y=x−3的图象上P、Q两点关于y轴对称设点P的坐标为(m,n)求nm +mn的值.17.如图,点A在反比例函数y=kx(x>0)的图象上AB⊥x轴于点B AB的垂直平分线PD交双曲线与点P.(1)若点A的坐标为(1 8),则点P的坐标为.(2)若AP⊥BP点A的横坐标为m.①求k与m之间的关系式;②连接OA OP若△AOP的面积为6 求k的值.18.如图,一次函数y=k1x+b与反比例函数y=k2x的图象交于A(2 m) B(n ﹣2)两点.过点B作BC⊥x轴垂足为C 且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件请直接写出不等式k1x+b>k2x的解集;(3)若P(p y1) Q(﹣2 y2)是函数y=k2x 图象上的两点且y1≥y2求实数p的取值范围.答案1.D 2.B 3.B 4.A 5.D 6.C 7.B 8.C9.x ≤﹣2或x >0 10.4 11.4 12.y =−12x 13.(52, 0)14.解:由题意可得△OAD ≅△OCE 设AD =x ,则:DB =EB =1−x 因为OD 2=x 2+1 且△ODE 是等边三角形所以 x 2+1=(1−x)2+(1−x)2 x 1=2+√3 x 2=2−√3 2+√3>1舍去 所以x =2−√3则K =1∗(2−√3)=2−√315.(1)解:设线段AB 表达式为y =kx +b(k ≠0) ∵线段AB 过点(0,10) (2,14)∴{b =102k +b =14解得{b =10k =2∴线段AB 的表达式为:y =2x +10(0≤x ≤5) 当x =5时 y =2×5+10=20 ∴恒定温度为:20℃; (2)解:由(1)可知:线段AB 的表达式为:y =2x +10(0≤x ≤5) B 坐标为(5,20) ∴根据图象可知线段BC 的表达式为:y =20(5<x ≤10)设双曲线CD 解析式为:y =m x(m ≠0)∵C(10,20)∴可得:m10=20 解得:m =200∴双曲线CD 的解析式为:y =200x(10<x ≤24)∴y 关于x 的函数表达式为:y ={2x +10(0≤x ≤5)20(5<x ≤10)200x (10<x ≤24);(3)解:把y =10代入y =200x中得10=200x解得:x =20∴20−10=10(小时)∴恒温系统最多可以关闭10小时. 16.(1)解:由题意B(2,−1)∵12×2×AB =4 ∴AB =4∵AB//y 轴∴A(2,−5)∵A(2,−5)在y =kx 的图象上 ∴k =−10.(2)解:设P(m ,−10m ),则Q(−m ,−10m ) ∵点Q 在y =x −3上∴−10m=−m −3 整理得:m 2+3m −10=0 解得m =−5或2 当m =−5 n =2时 n m +m n =−2910 当m =2 n =−5时 nm +m n=−2910故n m +m n=−2910.17.(1)(2 4)(2)解:①由题意得 点A 的纵坐标为km 即AB =km ∵PD 垂直平分AB ∴PA =PB ∵AP ⊥BP∴△PAB 是等腰直角三角形 ∴∠PAB =∠PBA =45° ∵PD ⊥AB∴△DAP 和△DBP 是等腰直角三角形 ∴DA =DB =DP =k2m ∴P (m +k2m ,k 2m )将P (m +k2m ,k2m )代入y =kx 可得:(m +k2m )⋅k2m =k 整理得:k =2m 2;②过点P 作PC ⊥x 轴于点C ,则四边形PABC 是梯形∵S △AOB =S △POC =k2 ∴S △AOE =S 四边形PEBC ∴S △AOP =S 梯形PABC =6 ∴(k 2m +k m )⋅k2m2=6 整理得:k 2=16m 2∵k =2m 2 ∴k 2=8k解得:k =8或k =0(舍去) ∴k =8.18.(1)把 A(2,m) B(n ,−2) 代入 y =k 2x得: k 2=2m =−2n即m=−n则A(2,−n)过A作AE⊥x轴于E过B作BF⊥y轴于F延长AE、BF交于D ∵A(2,−n)B(n,−2)∴BD=2−n AD=−n+2BC=|−2|=2∵SΔABC=12·BC·BD∴12×2×(2−n)=5解得:n=−3即A(2,3)B(−3,−2)把A(2,3)代入y=k2x得:k2=6即反比例函数的解析式是y=6x;把A(2,3)B(−3,−2)代入y=k1x+b得:{3=2k1+b−2=−3k1+b解得:k1=1b=1即一次函数的解析式是y=x+1;(2)∵A(2,3)B(−3,−2)∴不等式k1x+b>k2x的解集是−3<x<0或x>2;(3)分为两种情况:当点P在第三象限时要使y1⩾y2实数p的取值范围是p⩽−2当点P在第一象限时要使y1⩾y2实数p的取值范围是p>0即P的取值范围是p⩽−2或p>0。
反比例函数经典试题(含答案)
反比例函数经典试题二姓名___________班级__________学号__________分数___________121.下列函数,①y =2x ,②y =x ,③y =x -1,④y =11x 是反比例函数的个数有( ) A .0个 B .1个 C .2个 D .3个 122.反比例函数y =2x的图象位于( ) A .第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限 123.已知矩形的面积为10,则它的长y 与宽x 之间的关系用图象表示大致为( )124.已知关于x 的函数y =k (x +1)和y =-kx(k ≠0)它们在同一坐标系中的大致图象是(• )125.已知点(3,1)是双曲线y =kx(k ≠0)上一点,则下列各点中在该图象上的点是( ) A .(13,-9) B .(3,1) C .(-1,3) D .(6,-12)126.某气球充满一定质量的气体后,当温度不变时,气球内的气体的气压P (kPa )是气体体积V (m 3)的反比例函数,其图象如图所示,当气球内的气压大于140kPa 时,•气球将爆炸,为了安全起见,气体体积应( ) A .不大于2435m 3 B .不小于2435m 3 C .不大于2437m 3 D .不小于2437m 3127.某闭合电路中,电源电压为定值,电流I A .与电阻R (Ω)成反比例,如右图所表示的是该电路中电流I 与电阻R 之间的函数关系的图象,则用电阻R 表示电流I •的函数解析式为( ).A .I =6R B .I =-6R C .I =3R D .I =2R 128.函数y =1x与函数y =x 的图象在同一平面直角坐标系内的交点个数是( ).A .1个B .2个C .3个D .0个 129.若函数y =(m +2)|m |-3是反比例函数,则m 的值是( ).A .2B .-2C .±2D .×2130.已知点A (-3,y 1),B (-2,y 2),C (3,y 3)都在反比例函数y =4x的图象上,则( ). A .y 1<y 2<y 3 B .y 3<y 2<y 1 C .y 3<y 1<y 2 D .y 2<y 1<y 3231.一个反比例函数y =kx(k ≠0)的图象经过点P (-2,-1),则该反比例函数的解析式是________. 132.已知关于x 的一次函数y =kx +1和反比例函数y =6x的图象都经过点(2,m ),则一次函数的解析式是________.133.一批零件300个,一个工人每小时做15个,用关系式表示人数x •与完成任务所需的时间y 之间的函数关系式为________. 134.正比例函数y =x 与反比例函数y =1x的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD •⊥x 轴于D ,如图所示,则四边形ABCD 的为_______.135.如图,P 是反比例函数图象在第二象限上的一点,且矩形PEOF 的面积为8,则反比例函数的表达式是_________.136.反比例函数y =21039n n x--的图象每一象限内,y 随x 的增大而增大,则n =_______.137.已知一次函数y =3x +m 与反比例函数y =3m x-的图象有两个交点,当m =_____时,有一个交点的纵坐标为6. 138.若一次函数y =x +b 与反比例函数y =kx图象,在第二象限内有两个交点,•则k ______0,b _______0,(用“>”、“<”、“=”填空)139.两个反比例函数y=3x,y=6x在第一象限内的图象如图所示,点P1,P2,P3……P2005,在反比例函数y=6x的图象上,它们的横坐标分别是x1,x2,x3,…x2005,纵坐标分别是1,3,•5•……,•共2005年连续奇数,过点P1,P2,P3,…,P2005分别作y轴的平行线与y=3x的图象交点依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),…,Q2005(x2005,y2005),则y2005=________.140.当>0时,两个函数值y,一个随x增大而增大,另一个随x的增大而减小的是(•).A.y=3x与y=1xB.y=-3x与y=1xC.y=-2x+6与y=1xD.y=3x-15与y=-1x141.在y=1x的图象中,阴影部分面积为1的有()142.如图,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B•两点,且与反比例函数y=mx(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,•若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.143.如图,已知点A(4,m),B(-1,n)在反比例函数y=8x的图象上,直线AB•分别与x轴,y轴相交于C、D两点,(1)求直线AB的解析式.(2)C、D两点坐标.(3)S△AOC:S△BOD是多少?144.已知y =y 1-y 2,y 1y 与x 成反比例,且当x =1时,y =-14,x =4时,y =3. 求(1)y 与x 之间的函数关系式. (2)自变量x 的取值范围. (3)当x =14时,y 的值.145.如图,一次函数y =kx +b 的图象与反比例函数y =mx的图象交于A 、B 两点. (1)利用图中的条件,求反比例函数和一次函数的解析式.(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.146.如图,双曲线y =5x在第一象限的一支上有一点C (1,5),•过点C •的直线y =kx +b (k >0)与x 轴交于点A (a ,0). (1)求点A 的横坐标a 与k 的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D 的横坐标是9时,求△COA •的面积.反比例函数经典试题二答案姓名___________班级__________学号__________分数___________反比例函数试卷 难度 3 级121.下列函数,①y =2x ,②y =x ,③y =x -1,④y =11x 是反比例函数的个数有( ) A .0个 B .1个 C .2个 D .3个 反比例函数试卷 难度 3 级 122.反比例函数y =2x的图象位于( ) A .第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限 反比例函数试卷 难度 4 级123.已知矩形的面积为10,则它的长y 与宽x 之间的关系用图象表示大致为( )A反比例函数试卷 难度 3 级 124.已知关于x 的函数y =k (x +1)和y =-kx(k ≠0)它们在同一坐标系中的大致图象是(• )A反比例函数试卷 难度 3 级125.已知点(3,1)是双曲线y =kx(k ≠0)上一点,则下列各点中在该图象上的点是( ) A .(13,-9) B .(3,1) C .(-1,3) D .(6,-12)反比例函数试卷 难度4.5级126.某气球充满一定质量的气体后,当温度不变时,气球内的气体的气压P (kPa )是气体体积V (m 3)的反比例函数,其图象如图所示,当气球内的气压大于140kPa 时,•气球将爆炸,为了安全起见,气体体积应( ) A .不大于2435m 3 B .不小于2435m 3 C .不大于2437m 3 D .不小于2437m 3反比例函数试卷 难度 3 级127.某闭合电路中,电源电压为定值,电流I A .与电阻R (Ω)成反比例,如右图所表示的是该电路中电流I 与电阻R 之间的函数关系的图象,则用电阻R 表示电流I •的函数解析式为( ).A .I =6R B .I =-6R C .I =3R D .I =2R反比例函数试卷 难度 3 级 128.函数y =1x与函数y =x 的图象在同一平面直角坐标系内的交点个数是( ). A .1个 B .2个 C .3个 D .0个 反比例函数试卷 难度 4 级 129.若函数y =(m +2)|m |-3是反比例函数,则m 的值是( ).A .2B .-2C .±2D .×2 反比例函数试卷 难度 4 级130.已知点A (-3,y 1),B (-2,y 2),C (3,y 3)都在反比例函数y =4x的图象上,则( ). A .y 1<y 2<y 3 B .y 3<y 2<y 1 C .y 3<y 1<y 2 D .y 2<y 1<y 3 反比例函数试卷 难度 3 级 131.一个反比例函数y =kx(k ≠0)的图象经过点P (-2,-1),则该反比例函数的解析式是________.11.y =2x; 反比例函数试卷 难度 4 级132.已知关于x 的一次函数y =kx +1和反比例函数y =6x的图象都经过点(2,m ),则一次函数的解析式是________. 12.y =x +1;反比例函数试卷 难度 4 级133.一批零件300个,一个工人每小时做15个,用关系式表示人数x •与完成任务所需的时间y 之间的函数关系式为________. 13.y =20x; 反比例函数试卷 难度 4 级 134.正比例函数y =x 与反比例函数y =1x的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD •⊥x 轴于D ,如图所示,则四边形ABCD 的为_______.14.2;反比例函数试卷 难度 4 级135.如图,P 是反比例函数图象在第二象限上的一点,且矩形PEOF 的面积为8,则反比例函数的表达式是_________.15.y =-8x; 反比例函数试卷 难度 4 级 136.反比例函数y =21039n n x--的图象每一象限内,y 随x 的增大而增大,则n =_______.16.n =-3;反比例函数试卷 难度4.5级137.已知一次函数y =3x +m 与反比例函数y =3m x-的图象有两个交点,当m =_____时,有一个交点的纵坐标为6. 17.m =5;反比例函数试卷 难度4.5 级138.若一次函数y =x +b 与反比例函数y =kx图象,在第二象限内有两个交点,•则k ______0,b _______0,(用“>”、“<”、“=”填空) 18.<,>;反比例函数试卷 难度 4.5级139.两个反比例函数y =3x ,y =6x 在第一象限内的图象如图所示,点P 1,P 2,P 3……P 2005,在反比例函数y =6x 的图象上,它们的横坐标分别是x 1,x 2,x 3,…x 2005,纵坐标分别是1,3,•5•……,•共2005年连续奇数,过点P 1,P 2,P 3,…,P 2005分别作y 轴的平行线与y =3x的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2005(x 2005,y 2005),则y 2005=________.19.2004.5;反比例函数试卷 难度 4 级140.当>0时,两个函数值y ,一个随x 增大而增大,另一个随x 的增大而减小的是( •).A .y =3x 与y =1xB .y =-3x 与y =1xC .y =-2x +6与y =1xD .y =3x -15与y =-1x20.A .;反比例函数试卷 难度 4 级 141.在y =1x的图象中,阴影部分面积为1的有( )21.A .;C .;D .;反比例函数试卷 难度 4 级142.如图,已知一次函数y =kx +b (k ≠0)的图象与x 轴、y 轴分别交于A 、B •两点,且与反比例函数y =mx(m ≠0)的图象在第一象限交于C 点,CD 垂直于x 轴,垂足为D ,•若OA =OB =OD =1. (1)求点A 、B 、D 的坐标;(2)求一次函数和反比例函数的解析式.22.解:(1)∵OA =OB =OD =1,∴点A 、B 、D 的坐标分别为A (-1,0),B (0,1),D (1,0). (2)∵点AB 在一次函数y =kx +b (k ≠0)的图象上, ∴01k b b -+=⎧⎨=⎩ 解得11k b =⎧⎨=⎩∴一次函数的解析式为y =x +1,∵点C 在一次函数y =x +1的图象上,•且CD ⊥x 轴, ∴C 点的坐标为(1,2),又∵点C 在反比例函数y =mx(m ≠0)的图象上, ∴m =2,•∴反比例函数的解析式为y =2x.;反比例函数试卷 难度 4 级143.如图,已知点A (4,m ),B (-1,n )在反比例函数y =8x的图象上,直线AB •分别与x 轴,y 轴相交于C 、D 两点, (1)求直线AB 的解析式.(2)C 、D 两点坐标.(3)S △AOC :S △BOD 是多少?23.(1)y =2x -6;(2)C (3,0),D (0,-6);(3)S △AOC :S △BOD =1:1.;反比例函数试卷 难度4.5级144.已知y =y 1-y 2,y 1y 与x 成反比例,且当x =1时,y =-14,x =4时,y =3. 求(1)y 与x 之间的函数关系式.(2)自变量x 的取值范围.(3)当x =14时,y 的值. 24.(1)y =-216x 提示:设y =k22k x,再代入求k 1,k 2的值. (2)自变量x 取值范围是x >0. (3)当x =14时,y =162=255.;反比例函数试卷 难度 4 级145.如图,一次函数y =kx +b 的图象与反比例函数y =mx的图象交于A 、B 两点. (1)利用图中的条件,求反比例函数和一次函数的解析式.(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.25.解:(1)由图中条件可知,双曲线经过点A (2,1)∴1=2m,∴m =2,∴反比例函数的解析式为y =2x .又点B 也在双曲线上,∴n =21-=-2,∴点B 的坐标为(-1,-2).∵直线y =kx +b 经过点A 、B . ∴122k b k b =+⎧⎨-=-+⎩ 解得11k b =⎧⎨=-⎩ ∴一次函数的解析式为y =x -1.(2)根据图象可知,一次函数的图象在反比例函数的图象的上方时,•一次函数的值大于反比例函数的值,即x >2或-1<x <0.;反比例函数试卷 难度 4.5级146.如图,双曲线y =5x在第一象限的一支上有一点C (1,5),•过点C •的直线y =kx +b (k >0)与x 轴交于点A (a ,0). (1)求点A 的横坐标a 与k 的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D 的横坐标是9时,求△COA •的面积.26.解:(1)∵点C(1,5)在直线y=-kx+b上,∴5=-k+b,又∵点A(a,0)也在直线y=-kx+b上,∴-ak+b=0,∴b=ak将b=ak代入5=-k+a中得5=-k+ak,∴a=5k+1.(2)由于D点是反比例函数的图象与直线的交点∴599yy k ak⎧=⎪⎨⎪=-+⎩∵ak=5+k,∴y=-8k+5 ③将①代入③得:59=-8k+5,∴k=59,a=10.∴A(10,0),又知(1,5),∴S△COA=12×10×5=25.;反比例函数测试题(一)答案1.B.;2.D.;3.A.;4.A.;5.B.;6.B.;7.A.;8.B.;9.A.;10.D.;11.y=2x;12.y=x+1;13.y=20x;14.2;15.y=-8x;16.n=-3;17.m=5;18.<,>;19.2004.5;20.A.;B.;;21.A.;C.;D.;22.解:(1)∵OA=OB=OD=1,∴点A、B、D的坐标分别为A(-1,0),B(0,1),D(1,0).(2)∵点AB在一次函数y=kx+b(k≠0)的图象上,∴1k bb-+=⎧⎨=⎩解得11kb=⎧⎨=⎩∴一次函数的解析式为y=x+1,∵点C在一次函数y=x+1的图象上,•且CD⊥x轴,∴C点的坐标为(1,2),又∵点C 在反比例函数y =mx(m ≠0)的图象上, ∴m =2,•∴反比例函数的解析式为y =2x.;23.(1)y =2x -6;(2)C (3,0),D (0,-6);(3)S △AOC :S △BOD =1:1.; 24.(1)y =-216x 提示:设y =k22k x,再代入求k 1,k 2的值. (2)自变量x 取值范围是x >0. (3)当x =14时,y =162=255.;25.解:(1)由图中条件可知,双曲线经过点A (2,1)∴1=2m,∴m =2,∴反比例函数的解析式为y =2x .又点B 也在双曲线上,∴n =21-=-2,∴点B 的坐标为(-1,-2).∵直线y =kx +b 经过点A 、B . ∴122k b k b =+⎧⎨-=-+⎩ 解得11k b =⎧⎨=-⎩ ∴一次函数的解析式为y =x -1.(2)根据图象可知,一次函数的图象在反比例函数的图象的上方时,•一次函数的值大于反比例函数的值,即x >2或-1<x <0.;26.解:(1)∵点C (1,5)在直线y =-kx +b 上,∴5=-k +b , 又∵点A (a ,0)也在直线y =-kx +b 上,∴-ak +b =0,∴b =ak 将b =ak 代入5=-k +a 中得5=-k +ak ,∴a =5k+1. (2)由于D 点是反比例函数的图象与直线的交点∴599y y k ak⎧=⎪⎨⎪=-+⎩ ∵ak =5+k ,∴y =-8k +5 ③ 将①代入③得:59=-8k +5,∴k =59,a =10. ∴A (10,0),又知(1,5),∴S △COA =12×10×5=25.;。
中考数学总复习《反比例函数综合》专项测试卷(附答案)
中考数学总复习《反比例函数综合》专项测试卷(附答案)(考试时间:90分钟;试卷满分:100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本题共10小题,每小题3分,共30分)。
1.若点A(1,3)是反比例函数y=(k≠0)图象上一点,则常数k的值为()A.3B.﹣3C.D.2.下列各点中,在反比例函数y=图象上的是()A.(3,1)B.(﹣3,1)C.(3,)D.(,3)3.如果点A(﹣1,y1)、B(1,y2)、C(2,y3)是反比例函数图象上的三个点,则下列结论正确的是()A.y1>y3>y2B.y3>y2>y1C.y2>y1>y3D.y3>y1>y24.如图,反比例函数与正比例函数y=ax(a≠0)相交于点和点B,则点B的坐标为()A.B.C.D.5.某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)y与该校参加竞赛人数x的情况,其中描述乙、丁两所学校情况的点恰好在同一个反比例函数的图象上,则这四所学校在这次党史知识竞赛中成绩优秀人数最多的是()A.甲B.乙C.丙D.丁6.已知反比例函数,下列说法不正确的是()A.图象经过点(﹣3,2)B.图象分别位于第二、四象限内C.在每个象限内y的值随x的值增大而增大D.x≥﹣1时,y≥67.反比例函数y=中,当x>0时,y随x的增大而增大,则m的取值范围是()A.m>B.m<2C.m<D.m>28.如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A、B两点,其中A点的横坐标为3,当y1<y2时,x的取值范围是()A.x<﹣3或x>3B.x<﹣3或0<x<3C.﹣3<x<0或0<x<3D.﹣3<x<0或x>39.在同一平面直角坐标系中,函数y=ax+b与(其中a,b是常数,ab≠0)的大致图象是()A.B.C.D.10.如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=2,则k2﹣k1的值是()A.1B.2C.4D.8二、填空题(本题共6题,每小题2分,共12分)。
中考数学《反比例函数》专项复习综合练习题-附带答案
中考数学《反比例函数》专项复习综合练习题-附带答案一、单选题1.已知函数y=kx的图象经过点(2,3 ),下列说法正确的是()A.y随x的增大而增大B.函数的图象只在第一象限C.当x<0时必y<0D.点(-2 -3)不在此函数的图象上2.点A(x1, y1) B(x2, y2) C(x3, y3)在反比例函数y=πx的图象上,若x1<x2<0<x3,则y1 y2 y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y2>y1>y3D.y3>y1>y23.研究发现近视镜的度数y(度)与镜片焦距x(米)成反比例函数关系小明佩戴的400度近视镜片的焦距为0.25米经过一段时间的矫正治疗加之注意用眼健康现在镜片焦距为0.5米,则小明的近视镜度数可以调整为()A.200度B.250度C.300度D.500度4.如图,点M为反比例函数y=1x上的一点过点M作x轴 y轴的垂线分别交直线y=-x+b于C D 两点若直线y=-x+b分别与x轴 y轴相交于点A、B,则AD·BC的值是()A.3 B.2 √2C.2 D.√55.如图,在菱形OABC中,点A的坐标为(10,0),对角线OB、AC相交于点D,OB⋅AC=160 .双曲线y=kx(x>0)经过点D,交BC的延长线于点E,则过点E的双曲线表达式为()A.y=20x B.y=24xC.y=28xD.y=32x6.如图,已知一次函数y 1=kx+b 的图象与反比例函数y 2= 4x 的图象交于(2 m )和(n ﹣1)两点 观察图象 下列判断正确的是( )A .当x >2时 y 1<y 2B .当x <2时 y 1<y 2C .当x >n 时 y 1<y 2D .当x <n 时 y 1<y 27.如图,在函数y 1=k1x (x <0)和y 2=k2x (x >0)的图象上 分别有A 、B 两点 若AB ∥x 轴 交y 轴于点C 且OA ⊥OB S △AOC =32 S △BOC =272,则线段AB 的长度是( )A .8B .9C .10D .118.如图,直线y= √3 x ﹣6分别交x 轴 y 轴于A B M 是反比例函数y= kx (x >0)的图象上位于直线上方的一点 MC ∥x 轴交AB 于C MD ⊥MC 交AB 于D AC •BD=4 √3 ,则k 的值为( )A .﹣3B .﹣4C .﹣5D .﹣6二、填空题9.当n= 时 函数y=2x n ﹣1是反比例函数.(k<0)的图象上,则y1,y2,y3的从小10.若点A(−3,y1),B(−1,y2),C(2,y3)都在反比例函数y=kx到大的关系是.有一个关于x的函数不论x取何值 y的解析式总是取y1、y2、y3中11.已知函数y1=x y2=x2和y3=1x的值的较小的一个,则y的最大值等于12.如图,已知函数y=−3与y=ax2+bx+c(a>0 b>0)的图象相交于点P 且点P的纵坐标为1,则关于x=0的解是x的方程ax2+bx+3x(k>0)与长方形OABC在第一象限相交于D、E两点 OA=2 OC=4 连结OD、13.如图,反比例函数y=kxOE、DE.记△OAD、△OCE的面积分别为S1、S2.填空:①点B坐标为;②S1S2(填“>”、“<”、“=”);三、解答题14.如图,根据小孔成像的科学原理当像距(小孔到像的距离)和物高(蜡烛火焰高度)不变时火焰的像高y(单位:cm)是物距(小孔到蜡烛的距离)x(单位:cm)的反比例函数当x=6时y=2.(1)求y 关于x 的函数解析式.(2)若火焰的像高为3cm 求小孔到蜡烛的距离.15.某学校的自动饮水机 开机加热时水温每分钟上升20℃ 水温到100℃时停止加热.此后水温开始下降.水温y(℃)与开机通电时间x(min)成反比例关系.若水温在20℃时接通电源.一段时间内 水温y 与通电时间x 之间的函数关系如图所示.(1)水温从20℃加热到100℃ 需要 min ;(2)求水温下降过程中 y 与x 的函数关系式 并写出自变量取值范围; (3)如果上午8点接通电源 那么8:20之前 不低于80℃的时间有多少? 16.如图,在平面直角坐标系xOy 中 一次函数y1=ax+b (a b 为常数 且a ≠0)与反比例函数y2 = mx (m为常数 且m ≠0)的图象交于点A (-2 1)、B (1 n ).(1)求反比例函数和一次函数的解析式; (2)连结OA 、OB 求△AOB 的面积;(3)直接写出当y 1<y 2<0时 自变量x 的取值范围.17.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面 面条的总长度y (m )是面条的粗细(横截面积)S (mm 2)的反比例函数 其图象如图所示.(1)写出y与S的函数关系式:.(2)当面条粗 1.6mm 2时面条总长度是 m.18.如图,在平面直角坐标系xOy中已知四边形DOBC是矩形且D(0 4) B(6 0).若反比例函数y=k1(x>0)的图象经过线段OC的中点A 交DC于点E 交BC于点F.设直线EF的表达式为y=k2x+b.x(1)求反比例函数和直线EF的表达式;(2)求△OEF的面积;(3)请结合图象直接写出不等式k2x+b-k1>0的解集.x参考答案1.C2.D3.A4.C5.D6.D7.C8.A9.010.y3<y1<y211.112.x=﹣3 y=113.(4 2);=14.(1)解:由题意设:y=kx把x=6y=2代入得k=6×2=12∴y关于x的函数解析式为:y=12x;(2)解:把y=3代入y=12x得x=4∴小孔到蜡烛的距离为4cm.15.(1)4(2)解:如图设函数解析式为y=kx代入点(4,100)可得∴y=400 x当y=20时x=40020=20∴水温下降过程中y与x的函数关系式是y=400x(4⩽x⩽20)(3)解:由计算可知水温从20∘C开始加热到100∘C再冷却到20∘C 需4+20=24分钟水温从20∘C加热到80∘C所需要时间为:80−2020=3(分钟)令y =80,则x =40080=5∴水温不低于80∘C 的时间为5−3=2(分钟) 答:不低于80∘C 的时间有2分钟. 16.(1)解:∵A (-2 1)∴将A 坐标代入反比例函数解析式y 2= mx 中 得m=-2 ∴反比例函数解析式为y=- 2x ; 将B 坐标代入y=- 2x 得n=-2 ∴B 坐标(1 -2)将A 与B 坐标代入一次函数解析式中 得 {−2a +b =1a +b =−2解得a=-1 b=-1∴一次函数解析式为y 1=-x-1 (2)解:设直线AB 与y 轴交于点C 令x=0 得y=-1 ∴点C 坐标(0 -1)∴S △AOB =S △AOC +S △COB = 12 ×1×2+ 12 ×1×1= 32 ;(3)解:由图象可得 当y 1<y 2<0时 自变量x 的取值范围x >1.17.(1)y= 128S(2)8018.(1)∵四边形DOBC 是矩形 且D (0 4) B (6 0) ∴C 点坐标为(6 4) ∵点A 为线段OC 的中点 ∴A 点坐标为(3 2) ∴k 1=3×2=6∴反比例函数解析式为y= 6x ;把x=6代入y= 6x 得y=1,则F 点的坐标为(6 1) 把y=4代入y= 6x 得x= 32 ,则E 点坐标为( 32 4) 把F 、E 的坐标代入y=k 2x+b 得 {6k 2+b =132k 2+b =4 解得 {k 2=−23b =5∴直线EF 的解析式为y=- 23 x+5;(2)△OEF 的面积=S 矩形BCDO -S △ODE -S △OBF -S △CEF= 4×6−12×4×32−12×6×1−12×(6−32)×(4−1) = 454 .(3)结合函数图象 写出直线在反比例函数图象上方所对应的自变量的范围 即可得到不等式k 2x +b -k 1x >0的解因为E 点坐标为( 324) F 点的坐标为(6 1),则k 2x +b - k1x>0解是: 32<x<6。
反比例函数练习题及答案6套
反比例函数练习(1)一、判断题 1.当x 与y 乘积一定时,y 就是x 的反比例函数,x 也是y 的反比例函数( ) 2.如果一个函数不是正比例函数,就是反比例函数 ( )3.y 与2x 成反比例时y 与x 并不成反比例( ) 二.填空题4.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是h =__________,这时h 是a 的__________;5.如果y 与x 成反比例,z 与y 成正比例,则z 与x 成____ ___; 6.如果函数222-+=k kkx y 是反比例函数,那么k =________,此函数的解析式是____ ____;7. 有一面积为60的梯形,其上底长是下底长的31,若下底长为x ,高为y ,则y与x 的函数关系是______________ 三、选择题: 8.如果函数12-=m x y 为反比例函数,则m 的值是 ( )A1- B 0 C 21D 19.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。
在课堂上,李老师请学生画出自行车行进路程s 千米与行进时间t 的函数图像的示意图,同学们画出的示意图如下,你认为正确的是( )10、下列函数中,y 是x 反比例函数的是( )(A ) 12+=x y (B )22x y = (C )x y 51=(D )x y =2四.辨析题(1)兄弟二人分吃一碗饺子,每人吃饺子的个数如下表:①写出兄吃饺子数y 与弟吃饺子数x 之间的函数关系式(不要求写xy 的取值范围).②虽然当弟吃的饺子个数增多时,兄吃的饺子数(y )在减少,但y 与x 是成反例吗?(2)水池中有水若干吨,若单开一个出水口,水流速v 与全池水放光所用时t 如下表:①写出放光池中水用时t(小时)与放水速度v(吨/小时)之间的函数关系.②这是一个反比例函数吗? ③与(1)的结论相比,可见并非反比例函数有可能“函数值随自变量增大而减小”,反之,所有的反比例函数都是“函数值随自变量的增大而减小吗?这个问题,你可以提前探索、尝试,也可以预习下一课时”反比例函数的图象和性质,也可以等到下一节课我们共同解决.五.已知□ABCD 中,AB = 4,AD = 2,E 是AB 边上的一动点,设AE=x ,DE 延长线交CB 的延长线于F ,设CF =y ,求y 与x 之间的函数关系。
反比例函数》测试题(含答案)
反比例函数》测试题(含答案)1、选择题(每小题5分,共50分)1、若点(x1.-1)、(x2.-2)、(x3.1)都在反比例函数y= k/x 上,则它们之间的大小关系是()A.x1<x3<x2B.x2<x1<x3C.x1<x2<x3D.x2<x3<x12、若反比例函数y=k/x的图象经过点(m,3m),其中m≠0,则此反比例函数的图象在()A.第一、二象限;B.第一、三象限;C.第二、四象限;D.第三、四象限3、在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y=3/x上的一个动点,当点B的横坐标逐渐增大时,△OAB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小4、函数y=-kx与函数y=k/x的图象的交点个数是()A。
0B。
1C。
2D.不确定5、函数y=6-x与函数y=k/x的图象交于A、B两点,设点A的坐标为(x1,y1),则边长分别为x1、y1的矩形面积和周长分别为()A。
4,12B。
4,6C。
8,12D。
8,66、已知y1+y2=y,其中y1与x成反比例,且比例系数为k1,而y2与x2成正比例,且比例系数为k2,若x=-1时,y=0,则k1,k2的关系是( )A.k1+k2=0B.k1k2=1C.k1-k2=0D.k1k2=-17、正比例函数y=2kx与反比例函数y=k/(x-1)在同一坐标系中的图象不可能是()18、如图,直线y=mx与双曲线y=k/(x-1)交与A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=2,则k的值是()A、2B、m-2C、mD、49、如图,点A在双曲线y=6/x上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为( )A.47B.5C.27D.2210、如图,反比例函数y= k/x的图象经过点(1,2),则k=()。
二、填空题(每小题5分,共20分)11、若y=k/x是反比例函数,且x1y1=x2y2,则k=______。
反比例函数综合测试题.docx
反比例函数综合测试题一、选择题 ( 每小题 3 分,共 24 分 )1. 已知点 M (- 2 , 3 ) 在反比例函数的图象上,下列各点也在该函数图象上的是 ( ).AA. (3 , - 2)B. (- 2 , - 3)C. (2 , 3)D. (3,2)2. 反比例函数 yk( k 0) 的图象经过点 (- 4, 5) ,则该反比例函数的图象位于 ( ).BxA. 第一、三象限B. 第二、四象限C. 第二、三象限D. 第一、二象限3. 在同一平面直角坐标系中,函数与的图象的交点个数为 ( ). DA. 3 个B. 2 个C. 1 个D. 0 个4. 如图 1,点 A 是 y 轴正半轴上的一个定点,点 B 是反比例函数 y = 2 x( x > 0) 图象上的一个动点,当点 B 的纵坐标逐渐减小时,△ OAB 的面积将 ( ). AA .逐渐增大B.逐渐减小C .不变D.先增大后减小yAB12yxOx12图 1图 25. (2009 年恩施市 ) 如图 2,一张正方形的纸片, 剪去两个一样的小矩形得到一个 “ E ”图案,设小矩形的长和宽分别为 x ,y ,剪去部分的面积为20,若 2 ≤ x ≤ 10 ,则 y 与 x 的函数图象是 ( ). Ayyy y1010 552O10 x O222 10 x O210 x O 2 10 xABCD6. 已知点 A ( x 1,y 1) ,B ( x 2,y 2) 是反比例函数 ( k > 0) 的图象上的两点, 若 x 1 < 0 < x 2,则 ( ).A A. y 1 < 0 < y2B. y< 0 < y1 C. y 1 < y < 0D. y < y < 022217. 如图 3,反比例函数 y3 y = x + 2 的图象交于 A ,B 两点,那么△的图象与一次函数x的面积是 ().CAOByA. 2B. 3C. 4D. 6 CA BO 1x图 48. 如图 4,等腰直角三角形 ABC 位于第一象限, AB = AC = 2 ,直角顶点 A 在直线 y = x 上,其中点 A 的横坐标为 1,且两条直角边,分别平行于 x 轴、 y 轴,若反比例函数kABACyx的图象与△有交点,则 k 的取值范围是 ( ). CABC< k < 2≤ k ≤ 3≤ k ≤ 4≤ k < 4二、填空题 ( 每小题 4 分,共 24 分 )9. 已知反比例函数 yk的图象经过点 (2,3) ,则此函数的关系式是. y6xx10. 在对物体做功一定的情况下,力(N) 与此物体在F/ N力的方向上移动的距离 s (m) 成反比例函数关系,其图象如图 5 所示,点(5 , 1) 在图象上,则当力达到10 NP时,物体在力的方向上移动的距离是 m. 0. 5 Os / m图 511. 反比例函数 yk(k0) 的图象与经过原点的直线xl 相交于 A , B 两点,若点 A 坐标为 (-2 , 1) ,则点 B 的坐标为. (2,-1).12. 一次函数 y = x + 1 与反比例函数yk(1, m的图象都经过点,则使这两个函数值都x)小于 0 时 x 的取值范围是 ___________.x < - 113. (2009 年兰州市 ) 如图 6,若正方形 OABC 的顶点 B 和正方形 ADEF 的顶点 E 都在函数 反比例函数 y1( x > 0) 的图象上,则点E 的坐标是 _________. (5 1 , 5 1 )xy22P 1P 2P3P54POA A A A Ax12345图 6图 714. (2009 年莆田市 ) 如图 7,在x 轴的正半轴上依次截取1=1 2=2 3=34= 4 5,OAA A A A A A A A过点 A 1,A 2,A 3,A 4 ,A 5,分别作 x 轴的垂线与反比例函数 y2 x 0 的图象相交于点1P ,xP 2,P 3, P 4, P 5,得直角三角形 OP 1A 1,A 1P 2A 2, A 1P 2A 2,A 2P 3A 3, A 3P 4A 4,A 4P 5A 5,并设其面积分别为 S 1, S 2, S 3, S 4,S 5,则 S 5 的值为.三、解答题 ( 共 30 分)15.(6分)已知点P(2,2)在反比例函数yk ( k≠0)的图象上.x(1)当x = - 3时,求y的值;(2)当 1 <x < 3时,求y的取值范围.16.(8分 ) 已知图8 中的曲线是反比例函数y m5( m为常数 ) 图象的一支 .若该函数的图x象与正比例函数y = 2x的图象在第一象内限的交于点,过点A作x轴的垂线,垂足为点,A B当△的面积为 4 时,求点A 的坐标及反比例函数的解析式 .OAB17.(8分 ) 如图 9,点P的坐标为3,过点P作x轴的平行线交y轴于点,交反比例函2,A2数 y kAN交反比例函数ykM,连接( x > 0) 于点点N,作PM⊥( x > 0) 的图象于点x xAM.若 PN= 4,求:y (1)k的值 .M(2)△APM的面积 .AN PO x图 918.(8分)为预防“手足口病” ,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比例;燃烧后,y 与 x 成反比例(如图10 所示 ).现测得药物10 min 燃烧完,此时教室内每立方米空气含药量为8 mg.根据以上信息,解答下列问题:( 1)求药物燃烧时 y 与 x 的函数关系式; ( 2)求药物燃烧后 y 与 x 的函数关系式;( 3)当每立方米空气中含药量低于 mg 时,对人体无毒害作用 . 那么从消毒开始,经多长时间学生才可以返回教室?四、探究题 ( 共 22 分)19.(10 分 ) 我们学习了利用函数图象求方程的近似解,例如,把方程 2x – 1 = 3 -x 的解看成函数 y = 2 x - 1的图象与函数 y = 3 -x 的图象交点的横坐标 .如图 11,已画出反比例函数 y1 在第一象限内的图象,请你按照上述方法,利用此图象x求方程 x 2 – x – 1 = 0的正数解 ( 要求画出相应函数的图象,求出的解精确到).20.(12 分 ) 一次函数 y = ax + b 的图象分别与x 轴、 y 轴交于点 M , N ,与反比例函数 y kx的图象相交于点, .过点 A 分别作 ⊥ 轴, ⊥ y 轴,垂足分别为点 , ;过点 B 分A BAC xAEC E别作 ⊥ 轴, ⊥ 轴,垂足分别为点, ,与相交于点,连接.BF x BD yF D ACBC K CD(1)如图 12,若点 A , B 在反比例函数 yk的图象的同一分支上,试证明:x① S 四边形AEDK S 四边形CFBK ;② AN BM .k(2)若点 A , B 分别在反比例函数y 的图象的不同分支上,如图 13,则 AN 与 BM 还 x相等吗?试证明你的结论.反比例函数综合测试题参考答案一、选择题1. A.2. B.3. D.4. A.5. A.6. A.7. C.8. C.二、填空题9.y6 10. 0. 5.11. (2 , -1)..x12.x < - 1.13. (5 1 , 5 1 ). 14. 1.225三、解答题15. ( 1) y4;( 2) y 的取值范围为4 y 4 .3316. ∵第一象限内的点 A 在正比例函数 y = 2 x 的图象上,∴设点A 的坐标为 ( , 2 )( > 0) ,则点 B的坐标为 ( ,0).m m mm∵S △ OAB = 4 ,∴ 1m ? 2m = 4.2解得 m 1 = 2 ,m 2 = - 2(不符合题意,舍去 ). ∴点 A 的坐标为 (2 , 4).又∵点 A 在反比例函数y m5m5x的图象上,∴ 42,即 m –5 = 8.∴反比例函数的解析式为8 y.x17. ( 1)∵点P的坐标为3,∴ AP= 23 2,, OA=.22∵PN= 4,∴ AN= 6.33k中,得 k = 9.∴点 N的坐标为6,. 把点N6,代入y22x(2)由( 1)知k = 9,∴ y 9当 x = 29 .时, y. x293∴S△AP M 12 3 3.∴MP 3 .22218. ( 1)设药物燃烧阶段函数关系式为y =k1x( k1≠ 0).根据题意,得8 = 10 k1,k1 =4. ∴此阶段函数关系式为(0≤ x < 10). 5(2)设药物燃烧结束后函数关系式为.根据题意,得,.∴此阶段函数关系式为( x≥ 10).(3)当y <时,.∵,∴,.∴从消毒开始经过50 min 学生才返可回教室.四、探究题19.方程 x2– x –1 = 0的正数解约为.提示:∵ x ≠0,将 x2– 1 = 0 两边同除以x,得x111x 1.– x0.即x x把 x2– x –1 = 0的正根视为由函数y1与函数 y =x - 1的图象在第一象限交点的x横坐标.20. ( 1)①Q AC⊥x轴,AE⊥y轴,四边形 AEOC 为矩形.Q BF ⊥ x 轴, BD ⊥ y 轴,四边形 BDOF 为矩形.Q AC ⊥ x 轴, BD ⊥ y 轴,四边形 AEDK, DOCK, CFBK 均为矩形.Q OC x1, AC y1, x1 gy1 k ,S矩形 AEOC OC gAC x1 gy1kQ OF x2, FB y2, x22gyk,S矩形BDOF OF gFB x22gyk.S矩形AEOC S矩形BD OF.Q S S S,矩形C FBK矩形BD OF矩形DOCK,矩形矩形.AED K C FBK矩形AEDK矩形AEOC矩形DOCKS S S S S②由(1)知,S矩形AEDK S矩形CF BK .AK gDK BK gCK .AK BKCK.DKQ AKB CK D 90°,△ AKB ∽△ CKD .CDKABK . AB∥ CD .Q AC ∥ y 轴,四边形ACDN是平行四边形.AN CD .同理可得 BM CD .AN BM .(2)AN与BM仍然相等.Q S矩形AEDK S矩形 AEOCS矩形 ODK C,S矩形 BKCFS矩形BDOFS矩形ODK C,又Q S矩形AE OC S矩形BDOF k ,S矩形AEDKS矩形BKCF.AK gDK BK gCK .CK DKAK .BKQ K K ,△CDK ∽△ ABK .CDK ABK . AB ∥ CD .Q AC ∥ y 轴,四边形 ANDC 是平行四边形.AN CD .同理 BM CD . AN BM【教学标题】反比例函数【教学目标】1、提高学生对反比例函数的学习兴趣2、使学生掌握反比例函数基础知识3、让学生熟练地运用反比例知识【重点难点】图像及性质【教学内容】反比例函数一、基础知识1. 定义:一般地,形如 y k( k 为常数, k o )的函数称为反比例函数。
初三数学中考专题复习 反比例函数 综合练习题 含答案
反比例函数综合练习题1.下列函数关系中,不是反比例函数的是( ) A .xy =-5 B .y =-73x C .y =2x y D .=x42.下列各点中,在反比例函数y =8x 的图象上的是( )A .(-1,8)B .(-2,4)C .(1,7)D .(2,4)3.若反比例函数y =2k -1x 的图象经过第二、四象限,则k 的取值范围是( )A .k>12B .k<12C .k =12D .不存在4. 为了更好的保护水资源,造福人类,某工厂计划建一个容积V(m 3)一定的污水处理池,池的底面积S(m 2)与其深度h(m)满足关系式:V =Sh(V≠0),则S 关于h 的函数图象大致是( )5.在反比例函数y =4x的图象上,阴影部分的面积不等于4的是( )6.若在同一坐标系中,直线y =k 1x 与双曲线y =k 2x 有两个交点,则有( )A .k 1+k 2>0B .k 1+k 2<0C .k 1k 2>0D .k 1k 2<07.如图,点A 和点B 都在反比例函数y =4x的图象上,且线段AB 过原点,过点A 作x 轴的垂线段,垂足为点C ,P 是线段OB 上的动点,连接CP.设△ACP 的面积为S ,则下列说法正确的是( )A .S >2B .S >4C .2<S <4D .2≤S ≤48.如图,A ,B 两点在反比例函数y =k 1x 的图象上,C ,D 两点在反比例函数y =k 2x 的图象上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC =2,BD =3,EF =103,则k 2-k 1=( )A .4 B.143 C.163D .69. 若点A(-5,y 1),B(-3,y 2),C(2,y 3)在反比例函数y =3x 的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1<y 3<y 2B .y 1<y 2<y 3C .y 3<y 2<y 1D .y 2<y 1<y 310. 已知矩形的面积为8,则它的长y 与宽x 之间的函数关系用图象大致可以表示为( )11. 已知反比例函数y =2x ,则自变量x 的取值范围是________.12. 已知y =(m +3)x |m|-4是反比例函数,则m =________.13.已知P 1(x 1,y 1),P 2(x 2,y 2)是同一个反比例函数图象上的两点,若x 2=x 1+2,且1y 2=1y 1+12,则这个反比例函数的表达式为________.14.如图,已知点P(6,3),过点P 作PM⊥x 轴于点M ,PN ⊥y 轴于点N ,反比例函数y =kx 的图象交PM 于点A ,交PN 于点B.若四边形OAPB 的面积为12,则k=________.15.已知直线y =-3x 与双曲线y =m -5x 交于点P (-1,n).(1)求m 的值;(2)若点A (x 1,y 1),B(x 2,y 2)在双曲线y =m -5x 上,且x 1<x 2<0,试比较y 1,y 2的大小.16.如图,一次函数y 1=x +1的图象与反比例函数y 2=kx (k 为常数,且k≠0)的图象都经过点A(m ,2).(1)求点A 的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y 1与y 2的大小.17.制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(min ).当该材料加热时,温度y 与时间x 成一次函数关系;当停止加热进行操作时,温度y 与时间x 成反比例关系(如图).若该材料在操作加热前的温度为15 ℃,加热5分钟后温度达到60 ℃. (1)分别求出将材料加热和停止加热进行操作时,y 与x 间的函数关系式; (2)根据工艺要求,当材料的温度低于15℃时,停止操作,那么从开始加热到停止操作,共经历了多少时间?18.如图,四边形ABCD为正方形,点A,B的坐标分别为(0,2),(0,-3),反比例函数y=错误!的图象经过点C,一次函数y=ax+b的图象经过点A,C.(1)求反比例函数和一次函数的表达式;(2)若点P是反比例函数图象上的一点,△AOP的面积恰好等于正方形ABCD的面积,求P点的坐标.参考答案:1---10 DDBCB CDADB 11. x ≠0 12. 313. y =4x14. 615.(1)∵点P(-1,n)在直线y =-3x 上,∴n =3,∴点P 的坐标为(-1,3).∵点P(-1,3)在双曲线y =m -5x上,∴m =2.(2)由(1)得,双曲线的表达式为y =-3x.在第二象限内,y 随x 的增大而增大,∴当x 1<x 2<0时,y 1<y 2.16.(1)∵一次函数y 1=x +1的图象经过点A(m ,2),∴2=m +1.解得m =1.∴点A 的坐标为A(1,2).∵反比例函数y 2=k x 的图象经过点A(1,2),∴2=k′1.解得k′=2,∴反比例函数的表达式为y 2=2x.(2)由图象,得当0<x <1时,y 1<y 2;当x =1时,y 1=y 2;当x >1时,y 1>y 2.17.(1)当0≤x<5时,为一次函数,设一次函数关系式为y =kx +b ,由于一次函数图象过点(0,15),(5,60),所以⎩⎨⎧15=b ,60=5k +b ,解得⎩⎨⎧k =9,b =15.所以y =9x +15.当x≥5时,为反比例函数,设函数关系式为y =k′x,由于图象过点(5,60),所以k′=300.综上可知,y 与x 间的函数关系式为y =⎩⎨⎧9x +15(0≤x<5),300x (x≥5).(2)当y =15时,x =30015=20,所以从开始加热到停止操作,共经历了20分钟.18.(1)由题意知,C 点坐标为(5,-3),把C(5,-3)代入y =k x 中,-3=k5,∴k =-15.∴反比例函数的表达式为y =-15x.把A(0,2),C(5,-3)两点坐标分别代入y =ax +b 中,得⎩⎨⎧b =2,5a +b =-3.解得⎩⎨⎧a =-1,b =2.∴一次函数的表达式为y =-x +2. (2)设P 点坐标为(x ,y).∵S △OAP =S 正方形ABCD ,S △OAP =12×OA·|x|,S 正方形ABCD =52=25,∴12×OA·|x|=25,12×2|x|=25,x 1=25,x 2=-25将其分别代入y =-15x 中,得y 1=-35,y 2=35.∴P 点坐标为⎝⎛⎭⎪⎫25,-35或⎝ ⎛⎭⎪⎫-25,35.。
(完整版)反比例函数练习题及答案
反比例函数综合一.选择题(共23小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x 轴,且AC=BC,则AB等于()A.B.2C.4 D.3第1题第2题第3题第5题2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A.B.6 C.3 D.123.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为()A.1 B.﹣1 C.2 D.﹣24.在同一平面直角坐标系中,函数y=kx(k>0)与y=(k>0)的图象可能是()A.B.C.D.5.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有()A.4个B.3个C.2个D.1个6.已知反比例函数y=(k≠0)过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为()A.﹣1<a B.﹣1<a<0 C.a<1 D.0<a<17.如图,双曲线y=与直线y=kx+b交于点M,N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x不等式<kx+b的解为()A.x<﹣3 B.﹣3<x<0 C.﹣3<x<1 D.﹣3<x<0 或x>1第7题第9题第11题第12题8.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长=3.则k的值为()线交x轴于点C,若S△AOCA.2 B.1.5 C.4 D.610.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y211.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是()A.﹣12 B.﹣8 C.﹣6 D.﹣412.如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC 的面积是8,则这个反比例函数的解析式是()A.y=B.y=C.y=D.y=13.如图,在平面直角坐标系中,函数y=的图象与函数y=x的图象相交于A,B两点,点C是函数y=的图象右支上一点,连结AC,BC,若∠C=90°,则点C的坐标为()A.(2,4)B.(3,6)C.(4,2)D.(,)第13题第14题第15题第16题14.如图,直线y=x﹣3与x轴交于点A,与双曲线y=(k≠0)在第一象限内交于点B,过点A 作AC⊥x轴,交该双曲线于点C,若AB=AC,则k的值是()A.B.C.D.15.如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为()A.B.﹣C.D.﹣16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是()A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)17.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为()A.1 B.2 C.4 D.不能确定第17题第18题18.如图,已知点A(0,4),B (1,4),点B在双曲线y=(k>0)上,在AB的延长线上取一点C,过C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是()A.4≤CE<4B.4≤CE<2C.2<CE<4 D.4<CE<219.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为()A.5 B.6 C.4D.5第19题第20题第21题第23题20.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小21.如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是()A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BOD D.当x>0时,y1、y2都随x的增大而增大22.函数y=k(x﹣1)与y=﹣在同一直角坐标系内的图象大致是()A.B.C.D.23.如图,点A,C都在函数y=(x>0)的图象上,点B,D都在x轴上,且使得△OAB,△BCD 都是等边三角形,则点C的坐标是()A.(+1,﹣)B.(+1,﹣1)C.(+1,﹣)D.(+1,﹣)二.填空题(共9小题)24.如图,点M是函数图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA•MB=.第24题第25题第30题第31题25.如图将直线向左平移m个单位,与双曲线交于点A,与x轴交于点B,则OB2﹣OA2+AB2=.26.如果反比例函数y=(m﹣3)的图象在第二、四象限,那么m=.27.已知双曲线y=(k≠0)上有一点P,PA⊥x轴于A,点O为坐标原点,且S△PAO=12,则此反比例函数的解析式为.28.反比例函数的图象同时过A(﹣2,a)、B(﹣3,b)、C(1,c)三点,则a、b、c 的大小关系是.29.函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是,它的图象分布在象限,在每一个象限内,y随x的增大而.30.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形=14,则k=.ABDC31.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k=.32.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为.三.解答题(共8小题)33.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.34.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.35.如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出x为何值时,一次函数值大于反比例函数?(3)求△AOB的面积.36.如图,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点.(1)求一次函数的解析式及△AOB的面积;(2)根据图象直接写出不等式的解集;(3)若点P是坐标轴上的一点,且满足△PAB面积等于△AOB的面积的2倍,直接写出点P的坐标.37.如图,若直线y=kx+b(k≠0)与x轴交于点,与双曲线在第二象限交于点B,且OA=OB,△OAB的面积为(1)求直线AB的解析式及双曲线的解析式;(2)求tan∠ABO的值.38.已知反比例函数y=和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式?(2)已知A在第一象限,是两个函数的交点,求A点坐标?(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?39.如图,双曲线y=在第一象限的一支上有一点C(1,5),过点C的直线y=﹣kx+b(k>0)与x 轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA的面积.40.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OM、ON,求三角形OMN的面积.(3)连接OM,在x轴的正半轴上是否存在点Q,使△MOQ是等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标,若不存在,说明理由.参考答案一.选择题(共23小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x 轴,且AC=BC,则AB等于(B)A.B.2C.4 D.3设C(a,),则B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于(B)A.B.6 C.3 D.12解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.双曲线C3,的解析式为y=﹣过点P作PB⊥y轴于点B∵PA=PB∴B为OA中点.∴S△PAB=S△POB=3∴△POA的面积是6由反比例函数比例系数k的性质,S△POB3.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为(D)A.1 B.﹣1 C.2 D.﹣24.在同一平面直角坐标系中,函数y=kx(k>0)与y=(k>0)的图象可能是(C)A.B.C.D.5.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有(C)A.4个B.3个C.2个D.1个第5题第7题第9题6.已知反比例函数y=(k≠0)过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为(B)A.﹣1<a B.﹣1<a<0 C.a<1 D.0<a<17.如图,双曲线y=与直线y=kx+b交于点M,N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x不等式<kx+b的解为(D)A.x<﹣3 B.﹣3<x<0 C.﹣3<x<1 D.﹣3<x<0 或x>18.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长线交x轴于点C,若S△AOC=3.则k的值为(B)A.2 B.1.5 C.4 D.6解:如图,分别过点A、B作AF⊥y轴于点F,AD⊥x轴于点D,BG⊥y轴于点G,BE⊥x轴于点E,∵k>0,点A是反比例函数图象上的点,∴S△AOD =S△AOF=|k|,∵A、B两点的横坐标分别是a、3a,∴AD=3BE,∴点B是AC的三等分点,∴DE=2a,CE=a,∴S△AOC =S梯形ACOF﹣S△AOF=(OE+CE+AF)×OF﹣|k|=×5a×﹣|k|=3,解得k=1.5.10.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y211.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是(C)A.﹣12 B.﹣8 C.﹣6 D.﹣4第11题第12题解:过A作y轴的垂线,过B作x轴的垂线,交于点C,连接OC,设A(k,1),B(2,k),则AC=2﹣k,BC=1﹣k,∵S△ABO=8,∴S△ABC﹣S△ACO﹣S△BOC=8,即(2﹣k)(1﹣k)﹣(2﹣k)×1﹣(1﹣k)×2=8,解得k=±6,∵k<0,∴k=﹣6,12.如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC 的面积是8,则这个反比例函数的解析式是(C)A.y=B.y=C.y=D.y=13.如图,在平面直角坐标系中,函数y=的图象与函数y=x的图象相交于A,B两点,点C是函数y=的图象右支上一点,连结AC,BC,若∠C=90°,则点C的坐标为(A)A.(2,4)B.(3,6)C.(4,2)D.(,)解:函数y=的图象与函数y=x的图象相交于A,B两点,解方程组,可得,,∴B(4,2),A(﹣4,﹣2),∴OB=AO=2,又∵∠ACB=90°,∴OC=AB=2,设C(a,),则OC==2,解得a=2,或a=4(舍去),∴C(2,4),14.如图,直线y=x﹣3与x轴交于点A,与双曲线y=(k≠0)在第一象限内交于点B,过点A 作AC⊥x轴,交该双曲线于点C,若AB=AC,则k的值是(D)A.B.C.D.解:如图,过B作BD⊥OA于D,则∠ADB=∠AOE=90°,由直线y=x﹣3,可得A(4,0),E(0,﹣3),∴AO=4,OE=3,AE=5,设点C的坐标为(4,),则AC=AB=,由△AOE∽△ADB,可得==,即==,∴AD=,BD=,∴B(4+,),∵双曲线y=(k≠0)经过点B,∴(4+)×k=k,解得k=,15.如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为(D)A.B.﹣C.D.﹣解:∵AB与x轴平行,∴AB⊥y轴,即∠AHO=∠OHB=90°,∵∠AOB=90°,∴∠AOH+∠BOH=∠AOH+∠OAH=90°,∴∠OAH=∠BOH,∴△AOH∽△OBH,∴=,即=,又∵k1<0,∴=﹣,16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是(C)A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)解:如图,∵点A的坐标为(0,﹣1),AB∥x轴,反比例函数y=(k≠0)经过▱ABCD的顶点B,∴点B的坐标为(﹣k,﹣1),即AB=﹣k,又∵点E(0,2),∴AE=2+1=3,又∵平行四边形ABCD的面积是18,∴AB×AE=18,∴﹣k×3=18,∴k=﹣6,∴y=﹣,∵CD经过点(0,2),∴令y=2,可得x=﹣3,∴点D的坐标为(﹣3,2),17.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为(A)A.1 B.2 C.4 D.不能确定第17题第18题18.如图,已知点A(0,4),B (1,4),点B在双曲线y=(k>0)上,在AB的延长线上取一点C,过C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是(A)A.4≤CE<4B.4≤CE<2C.2<CE<4 D.4<CE<2解:如图1,过D作DF⊥OA于F,∵点A(0,4),B (1,4),∴AB⊥y轴,AB=1,OA=4,∵CD=DE,∴AF=OF=2,∵点B在双曲线y=(k>0)上,∴k=1×4=4,∴反比例函数的解析式为:y=,∵过点C的直线交双曲线于点D,∴D点的纵坐标为2,把y=2代入y=得,x=2,∴D(2,2),当O与E重合时,如图2,∵DF=2,∴AC=4,∵OA=4,∴CE=4,当CE⊥x轴时,CE=OA=4,∴4≤CE<4,19.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为(D)A.5 B.6 C.4D.5第19题第20题第21题解:如图,过A作AD⊥y轴于D,将AB绕着点B顺时针旋转90°,得到A'B,过A'作A'H⊥y轴于H,由AB=BA',∠ADB=∠BHA'=90°,∠BAD=∠A'BH,可得△ABD≌△BA'H,∴BH=AD=2,又∵OB=2,∴点H与点O重合,点A'在x轴上,∴A'(1,0),又∵等腰Rt△ABA'中,∠BAA'=45°,而∠BAC=45°,∴点A'在AC上,由A(2,3),A'(1,0),可得直线AC的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),由点A(2,3)和点B(0,2),可得直线AB 的解析式为y=x+2,解方程组,可得或,∴M(﹣6,﹣1),∴CM==5,20.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会(C)A.逐渐增大B.不变C.逐渐减小D.先增大后减小21.如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是(C)A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BOD D.当x>0时,y1、y2都随x的增大而增大解:A、,∵把①代入②得:x+1=,解得:x2+x﹣2=0,(x+2)(x﹣1)=0,x1=﹣2,x2=1,代入①得:y1=﹣1,y2=2,∴B(﹣2,﹣1),A(1,2),∴A、B不关于原点对称,故本选项错误;B、当﹣2<x<0或x>1时,y1>y2,故本选项错误;C、∵S△AOC=×1×2=1,S△BOD=×|﹣2|×|﹣1|=1,∴S△BOD=S△AOC,故本选项正确;D、当x>0时,y1随x的增大而增大,y2随x的增大而减小,故本选项错误;22.函数y=k(x﹣1)与y=﹣在同一直角坐标系内的图象大致是(A)A.B.C.D.23.如图,点A,C都在函数y=(x>0)的图象上,点B,D都在x轴上,且使得△OAB,△BCD都是等边三角形,则点C的坐标是(A)A.(+1,﹣)B.(+1,﹣1)C.(+1,﹣)D.(+1,﹣)第23题第24题解:如图,作AE⊥OB于E,CF⊥BD于F,∵△OAB,△BCD均为正三角形,A在反比例函数y=,∴A的横坐标是1,纵坐标是,∴OE=EB=1,OA=2OE=2,AE=,设BF=m,则C(2+m,m),代入y=,得:m2+2m﹣1=0,解得:m=﹣1±,∵m>0,∴m=﹣1+,∴点C的坐标为:(1+,).二.填空题(共9小题)24.如图,点M是函数图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA•MB=.解:延长AM,交直线y=x于点D,设M(x,x+)则△AOD是等腰直角三角形,即∠ADO=45°,∴OA=AD=x+,AM=x,∴MD=AD﹣AM=,∵MB⊥l,∴MB=BD,∴△BDM是等腰直角三角形,∴MB2+BD2=MD2,∴MB=MD,∴MB=×=,∴MA•MB=x•=.25.如图将直线向左平移m个单位,与双曲线交于点A,与x轴交于点B,则OB2﹣OA2+AB2=.解:由题意知:平移后的直线解析式为:y=(x+m);设A(x,y),易知:B(﹣m,0),则有:OB2﹣OA2+AB2=m2﹣(x2+y2)+[(m+x)2+y2],联立y=(x+m),整理得:原式=﹣2x2﹣2mx;由于直线y=(x+m)与交于点A,联立两个函数解析式得:(x+m)=﹣,即x2+mx+2=0,得﹣x2﹣mx=2;故所求代数式=﹣2x2﹣2mx=4.故答案为:4.26.如果反比例函数y=(m﹣3)的图象在第二、四象限,那么m=1.【解答】解:根据题意m2﹣6m+4=﹣1,解得m=1或5,又m﹣3<0,m<3,所以m=1.故答案为:1.27.已知双曲线y=(k≠0)上有一点P,PA⊥x轴于A,点O为坐标原点,且S△PAO=12,则此反比例函数的解析式为y=﹣或y=.【解答】解:设点P的坐标为(x,y).∵P(x,y)在反比例函数y=kx(k≠0)的图象,∴k=xy,=12,∵S△PAO∴|xy|=12,∴|xy|=24,∴xy=±24,∴k=±24,∴y=﹣或y=.故答案为:y=﹣或y=.28.反比例函数的图象同时过A(﹣2,a)、B(﹣3,b)、C(1,c)三点,则a、b、c的大小关系是a>b>c.【解答】解:∵k<0,∴此函数的图象在二、四象限,∵﹣2<0,﹣3<0,1>0,∴A、B两点在第二象限,C点在第三象限,∴a>0,b>0,c<0,∵﹣2>﹣3,∴a>b>0,∴a>b>c.故答案为a>b>c.29.函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是2,它的图象分布在第一、三象限,在每一个象限内,y随x的增大而减小.【解答】解:由题意得:m2﹣3m+1=﹣1,且m2﹣m≠0,解得:m=2,∵m2﹣m=4﹣2=2>0,∴图象分布在第一、三象限,在每一个象限内,y随x的增大而减小,故答案为:2;第一、三;减小.30.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形=14,则k=16.ABDC【解答】解:如图,分别延长CA,DB交于点E,根据AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,知△CED为直角三角形,且点A与点B的纵横坐标正好相反,设点A的坐标为(x A,y A),则点B的坐标为(y A,x A),点E的坐标为(y A,y A),四边形ACDB的面积为△CED的面积减去△AEB的面积.CE=ED=y A,AE=BE=y﹣y A,∴S ACDB=S△CED﹣S△AEB=[y A•y A﹣(y A﹣y A)(y A﹣y A)]=y A2=14,∵y A>0,∴y A=8,点A的坐标为(2,8),∴k=2×8=16.故答案为:16.31.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k=6.【解答】解:如图,延长AB交x轴于点C,设点C的横坐标为a,则点B的纵坐标为,点A的纵坐标为a,所以,AB=a﹣,∵AB平行于y轴,∴AC⊥OC,在Rt△BOC中,OB2=OC2+BC2=a2+()2,∵OB2﹣AB2=12,∴a2+()2﹣(a﹣)2=12,整理得,2k=12,解得k=6.故答案为:6.32.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为2.【解答】解:根据反比例函数的对称性可知:OB=OD,AB=CD,∵四边形ABCD的面积等于S△ADB +S△BDC,∵A(1,1),B(1,0),C(﹣1,﹣1),D(﹣1,0)∴S△ADB=(DO+OB)×AB=×2×1=1,S△BDC=(DO+OB)×DC=×2×1=1,∴四边形ABCD的面积=2.故答案为:2.三.解答题(共8小题)33.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.【解答】解:(1)∵点E、F均是反比例函数y=上的点,四边形AOBC是矩形,∴AE⊥y轴,BC⊥x轴,∴S△AOE =S△BOF=;(2)∵C坐标为(4,3),∴设E(,3),F(4,),如图1,将△CEF沿EF对折后,C点恰好落在OB边上的G点,作EH⊥OB,垂足为H,∵∠EGH+∠HEG=90°∠EGH+∠FGB=90°,∴∠HEG=∠FGB,又∵∠EHG=∠GBF=90°,∴△EGH∽△GFB,∴=,∴GB==,在Rt△GBF中,GF2=GB2+BF2,即(3﹣)2=()2+()2,解得k=,∴反比例函数的解析式为:y=;(3)存在.当OP是平行四边形的边时,如图2所示:平行四边形OPMN,可以看成线段PN沿PO的方向平移至OM处所得.设N(a,),∵P(2,﹣3)的对应点O(0,0),∴M(a﹣2,+3),代入反比例解析式得:(a﹣2)(+3)=,整理得4a2﹣8a﹣7=0,解得a=,当a=时,==,﹣2=,+3=,∴N(,),M(,)(舍去)或N(,),M(,).当OP为对角线时,如图3所示:设M(a,),N(b,),∵P(2,﹣3),∴,解得,,∴M(,),N(,)(舍去)或M(,),N(,),综上所述:M(,)N(,);或M(,),N(,).34.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.【解答】解:(1)∵顶点B的坐标为(4,2),M、N分别是AB、BC的中点,∴M点的坐标为(2,2),把M(2,2)代入反比例函数y=(m≠0)得,m=2×2=4,∴反比例函数的解析式为y=;∵M、N分别为矩形OABC的边AB、BC的中点,且M(2,2),B点坐标为(4,2),∴N点坐标为(4,1),∵4×1=4,∴点N在函数y=的图象上;(2)4≤m≤8.35.如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出x为何值时,一次函数值大于反比例函数?(3)求△AOB的面积.【解答】解:(1)联立两函数解析式得:,解得:或,即A(﹣2,4),B(4,﹣2);(2)根据图象得:当x<﹣2或0<x<4时,一次函数值大于反比例函数值.(3)令y=﹣x+2中x=0,得到y=2,即D(0,2),∴OD=2,∴S△AOB =S△AOC+S△BOC=×2×2+×2×4=6.36.如图,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点.(1)求一次函数的解析式及△AOB的面积;(2)根据图象直接写出不等式的解集;(3)若点P是坐标轴上的一点,且满足△PAB面积等于△AOB的面积的2倍,直接写出点P的坐标.【解答】解:(1)∵反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点,将A与B坐标代入反比例解析式得:m=1,n=﹣1,∴A(1,3)、B(﹣3,﹣1),代入一次函数解析式得:,解得:k=1,b=2,∴一次函数的解析式为y=x+2,∵直线y=x+2与x轴、y轴的交点坐标为(﹣2,0)、(0,2),∴S△AOB=×2×(1+3)=4;(2)∵A(1,3),B(﹣3,﹣1),观察图象可知,当x<﹣3或0<x<1时,一次函数的图象在反比例函数图象的下方,∴不等式的解集是x<﹣3或0<x<1.(3)∵S△AOB=4,∴S△PAB =2S△AOB=8,设P1(p,0),即OP1=|p+2|,S△ABP1=S△AP1C+S△P1BC=|p+2|×3+|p+2|×1=8,解得:p=﹣6或p=2,则P1(﹣6,0)、P2(2,0),同理可得P3(0,6)、P4(0,﹣2).37.如图,若直线y=kx+b(k≠0)与x轴交于点,与双曲线在第二象限交于点B,且OA=OB,△OAB的面积为(1)求直线AB的解析式及双曲线的解析式;(2)求tan∠ABO的值.【解答】解:(1)∵直线y=kx+b(k≠0)与x轴交于点A,∴OA=,又∵OA=OB,∴OB=,过点B作BM⊥x轴于点M,∵△OAB的面积为,即OA•BM=,∴BM=2,在Rt△OBM中可求OM=1.5,∴B(﹣1.5,2),再根据待定系数法可得:,解得:k=﹣,b=,∴直线AB的解析式为:y=﹣x+;再将点B代入函数y=得:m=﹣3,∴双曲线的解析式为:y=﹣;(2)∵OA=OB,∴∠ABO=∠BAM,在Rt△ABM中,BM=2,∴MO=,AM=+=4,∴tan∠ABO=tan∠BAM==.38.已知反比例函数y=和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式?(2)已知A在第一象限,是两个函数的交点,求A点坐标?(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?【解答】解:(1)∵一次函数y=2x﹣1的图象经过(a,b),(a+k,b+k+2)两点,代入得:,解得:k=2,代入反比例函数的解析式得:y==,∴反比例函数的解析式是y=.(2)解方程组得:,,∴两函数的交点坐标是(﹣,﹣2),(1,1),∵交点A在第一象限,∴A(1,1).(3)在x轴上存在点P,使△AOP为等腰三角形,理由是:分为三种情况:①以O为圆心,以OA为半径作圆,交x轴于两点C、D,此时OA=0C=0D,∴当P于C或D重合时,△AOP是等腰三角形,此时P的坐标是(,0),(﹣,0);②以A为圆心,以OA为半径作圆,交x轴于点E,此时OA=AE,∴当P于E重合时,△AOP是等腰三角形,此时P的坐标是(2,0);③作OA的垂直平分线交x轴于F,此时AF=OF,∴当P于F重合时,△AOP是等腰三角形,此时P的坐标是(1,0);∴存在4个点P,使△AOP是等腰三角形.39.如图,双曲线y=在第一象限的一支上有一点C(1,5),过点C的直线y=﹣kx+b(k>0)与x 轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA的面积.【解答】解:(1)把C(1,5)代入直线y=﹣kx+b(k>0)得:﹣k+b=5,则b=5+k;把(a,0)代入直线y=﹣kx+b(k>0)得:﹣ak+b=0,把b=5+k代入﹣ak+b=0,得:﹣ak+5+k=0,解得:a=;(2)把x=9代入y=得:y=,则D的坐标是(9,),设直线AC的解析式是y=﹣kx+b,把C、D两点代入,得,解得:,则AC的解析式是:y=﹣x+.令y=0,解得:x=10.则OA=10,则△COA的面积=×10×5=25.40.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OM、ON,求三角形OMN的面积.(3)连接OM,在x轴的正半轴上是否存在点Q,使△MOQ是等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标,若不存在,说明理由.【解答】解:(1)把N(﹣1,﹣4)代入y=得:k=4,∴y=,把M(2,m)代入得:m=2,∴M(2,2),把N(﹣1,﹣4),M(2,2)代入y=ax+b得:,解得:a=2,b=﹣2,∴y=2x﹣2,答:反比例函数的解析式是y=,一次函数的解析式是y=2x﹣2.(2)设MN交x轴于C,y=2x﹣2,当y=0时,x=1,∴C(1,0),OC=1,∴△MON的面积是S=S△MOC +S△NOC=×1×2+×1×|﹣4|=3,答:三角形MON的面积是3.(3)当OM=OQ时,Q的坐标是(2,0);当OM=MQ时,Q的坐标是(4,0);当OQ=QM时,Q的坐标是(2,0);答:在x轴的正半轴上存在点Q,使△MOQ是等腰三角形,所有符合条件的点Q的坐标是(2,0)或(4,0)或(2,0).第31页(共31页)。
反比例函数的典型综合练习题
反比例函数综合练习题一.选择题(共18小题)1.如图,▱ABCD 的顶点A ,B 的坐标分别是A (﹣1,0),B (0,﹣2),顶点C ,D 在双曲线上,边AD 交y 轴于点E ,且四边形BCDE 的面积是△ABE 面积的5倍,则k 的值等于( )A 12B 10C 8D 62.(如图,在△OAB 中,C 是AB 的中点,反比例函数y= (k >0)在第一象限的图象经过A 、C两点,若△OAB 面积为6,则k 的值为( )A 2B 4C 8D 163.如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y=﹣x+6于A 、B 两点,若反比例函数y=(x >0)的图象与△ABC 有公共点,则k 的取值范围是( )标轴,点C 在反比例函数的图象上.若点A 的坐标为(﹣2,﹣2),则k的值为().如图,A 是反比例函数y =k x 图像上一点,C 是线段OA 上一点,且OC :OA =1:3CD ⊥x 轴,垂足为点D ,延长DC 交反比例函数图像于点B ,S △ABC =8,则k 的___________.x O y 中,已知直线l :1--=x t ,双曲线xy 1=。
在l 上取点A 1,过点A 1作x 轴的垂线交双曲线于点B 1,过点B 1作y 轴的垂线交l 于点A 2,请继续操作并探究:过点A 2作x 轴的垂线交双曲线于点B 2,过点B 2作y 轴的垂线交l 于点A 3,…,这样依次得到l 上的点A 1,A 2,A 3,…,A n ,…。
记点A n 的横坐标为n a ,若21=a ,a 2015= ▲ .7.如图所示,点P (3a ,a )是反比例函数y=(k >0)与⊙O 的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为( )y= y= y= y=8.如图:等腰直角三角形ABC 位于第一象限,AB=AC=2,直角顶点A 在直线y=x 上,其中A 点的横坐标为1,且两条直角边AB 、AC 分别平行于x 轴、y 轴,若双曲线y=(k≠0)与△ABC 有交点,则k 的取值范围是( ) 9.如图,平面直角坐标系中,OB 在x 轴上,∠ABO=90°,点A 的坐标为(1,2),将△AOB 绕点A 逆时针旋转90°,点O 的对应点C 恰好落在双曲线y=(x >0)上,则k 的值为( )10.如图△OAP,△ABQ均是等腰直角三角形,点P,Q在函数y=(x>0)的图象上,直角顶点A,B均在x轴上,则点B的坐标为(),11.反比例函数y=在第一象限的图象如图所示,则k的值可能是()二.填空题(共7小题)12如图,双曲线y=(k>0)与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x轴和y轴作垂线.已知点P坐标为(1,3),则图中阴影部分的面积为_________.13.(2012•武汉)如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴与点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为_________.14.已知y=(m+1)是反比例函数,则m=.15.反比例函数y=(a﹣3)的函数值为4时,自变量x的值是_________.16.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形ABDC=14,则k=_________.17.两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是_________.三.解答题(共5小题)18如图1,已知直线y=2x分别与双曲线y=8/x、y=k/x(x>0)交于P、Q两点,且OP=2OQ.(1)求k的值.(2)如图2,若点A是双曲线y=8/x上的动点,AB∥x轴,AC∥y轴,分别交双曲线y=k/x(x>0)于点B、C,连接BC.请你探索在点A运动过程中,△ABC的面积是否变化?若不变,请求出△ABC的面积;若改变,请说明理由;(3)如图3,若点D是直线y=2x上的一点,请你进一步探索在点A运动过程中,以点A、B、C、D为顶点的四边形能否为平行四边形?若能,求出此时点A的坐标;若不能,请说明理由.19如图1,在平面直角坐标系中,四边形AOBC 是矩形,点C 的坐标为(4,3),反比例函数y=(k >0)的图象与矩形AOBC 的边AC 、BC 分别相交于点E 、F ,将△CEF 沿EF 对折后,C 点恰好落在OB 上.(1)求证:△AOE 与△BOF 的面积相等;(2)求反比例函数的解析式;(3)如图2,P 点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M 、N (M 在N 的左侧),使得以O 、P 、M 、N 为顶点的四边形是平行四边形?若存在,求出点M 、N 的坐标;若不存在,请说明理由.20.(本题满分12分)如图,过原点的直线x k y 1=和x k y 2=与反比例函数xy 1=的图象分别交于两点A ,C 和B ,D ,连结AB ,BC ,CD ,DA . (1)四边形ABCD 一定是 四边形;(直接填写结果)(2)四边形ABCD 可能是矩形吗?若可能,试求此时k 1和k 2之间的关系式;若不可能,说明理由;(3)设P (1x ,1y ),Q (2x ,2y )(x 2 > x 1 > 0)是函数xy 1=图象上的任意两点, 221y y a +=,212x x b +=,试判断a ,b 的大小关系,并说明理由.21 已知双曲线y=与直线y=相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线y=上的动点.过N(0,﹣n)作NC∥x轴交双曲线y=于点E,交BD于点C.点B 作BD∥y轴交x轴于点D.过(1)若点D坐标是(﹣8,0),求A、B两点坐标及k的值;(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式;(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p﹣q的值反比例函数的典型综合练习题参考答案与试题解析一.选择题(共18小题)1.如图,▱ABCD的顶点A,B的坐标分别是A(﹣1,0),B(0,﹣2),顶点C,D在双曲线上,边AD交y轴于点E,且四边形BCDE的面积是△ABE面积的5倍,则k的值等于()y=上,则(两点坐标代入得∴×BE×AO=2×4×1=102.(2012•泸州)如图,在△OAB中,C是AB的中点,反比例函数y=(k>0)在第一象限的图象经过A、C两点,若△OAB面积为6,则k的值为()3.(2012•黄石)如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是(),((y==()的坐标代入得:b=x+x=,4.(2012•福州)如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=﹣x+6于A、B两点,若反比例函数y=(x >0)的图象与△ABC有公共点,则k的取值范围是()5.(2012•德州)如图,两个反比例函数和的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形PAB的面积为(),y=)上,∴,﹣)的纵坐标是﹣上,∴代入得:=,解得:)PA=|﹣(﹣)|=的面积是:PA×PB=××3a=.故选6.(2011•兰州)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(﹣2,﹣2),则k的值为()在反比例函数,k=,∴=两点的坐标,然后根据三角形相似列出方程=7.(2011•湖州)如图,已知A、B是反比例函数(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为()B C.8.(2011•河北)根据图1所示的程序,得到了y与x的函数图象,如图2.若点M是y轴正半轴上任意一点,过点M作PQ∥x轴交图象于点P,Q,连接OP,OQ.则以下结论:①x<0时,②△OPQ的面积为定值.③x>0时,y随x的增大而增大.④MQ=2PM.⑤∠POQ可以等于90°.其中正确结论是()﹣,设,∴①错误;﹣y=的面积是(﹣b+.则(﹣,)++4a=9.(2010•孝感)双曲线y=与y=在第一象限内的图象如图所示,作一条平行于y轴的直线分别交双曲线于A,B两点,连接OA,OB,则△AOB的面积为()的图象上,∴△y=的图象上,∴△×2=1S=10.(2010•深圳)如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()y=y=y=y=解:由于函数图象关于原点对称,所以阴影部分面积为圆面积,OP===40πy=,得:y=11.(2010•攀枝花)如图:等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在直线y=x上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若双曲线y=(k≠0)与△ABC有交点,则k的取值范围是()y=y=y=12.(2010•长春)如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(1,2),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在双曲线y=(x>0)上,则k的值为()13.(2010•鞍山)如图△OAP,△ABQ均是等腰直角三角形,点P,Q在函数y=(x>0)的图象上,直角顶点A,B均在x轴上,则点B的坐标为(),b=﹣﹣+1的坐标为(14.(2009•宁波)反比例函数y=在第一象限的图象如图所示,则k的值可能是()y=,<15.(2009•眉山)如图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为()B.的方程组a+b=2.故选16.(2009•鄂州)如图,直y=mx与双曲线y=交于点A,B.过点A作AM⊥x轴,垂足为点M,连接BM.若S△ABM=1,则k的值是()的面积相等,且为|xy|17.(2008•临沂)如图,直线y=kx(k>0)与双曲线y=交于A,B两点,若A,B两点的坐标分别为A(x1,y1),B(x2,y2),则x1y2+x2y1的值为()y=两交点y=化为18.(2007•黔东南州)已知正比例函数y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象有一个交点的坐标为(﹣2,﹣1),则它的另一个交点的坐标是()二.填空题(共7小题)19.(2012•深圳)如图,双曲线y=(k>0)与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x轴和y轴作垂线.已知点P坐标为(1,3),则图中阴影部分的面积为4.y=(y=(20.(2012•武汉)如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴与点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.×b=a×b+4+×2a×b ab=BD=OD=,∴×b=a×b+4+×2a×b,,∴k=ab=.故答案为.21.已知y=(m+1)是反比例函数,则m=1.y=(是反比例函数,∴本题考查了反比例函数的定义,重点是将一般式22.反比例函数y=(a﹣3)的函数值为4时,自变量x的值是﹣1.为反比例函数可知,解得本题考查了反比例函数的定义,重点是将一般式23.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形ABDC=14,则k=16.AC=BD=OC﹣=y y=24.两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是①②④.两点都在的图象上,×BD×OD=x=,×OC×AC=x,故①正确;点在•==,×BD×OD=,×OC×AC=x=的图象上,∴﹣﹣•﹣=25.如图,双曲线与直线y=mx相交于A、B两点,M为此双曲线在第一象限内的任一点(M在A点左侧),设直线AM、BM分别与y轴相交于P、Q两点,且,,则p﹣q的值为2.,根据平行线分线段成比例定理得出==,求出p=1+q=﹣解:∵双曲线,∴=p==1+=1+,∵=,∴,即=q==)﹣(﹣三.解答题(共5小题)26.(2010•荆州)已知:关于x的一元二次方程x2+(2k﹣1)x+k2=0的两根x1,x2满足x12﹣x22=0,双曲线(x>0)经过Rt△OAB斜边OB的中点D,与直角边AB交于C(如图),求S△OBC.=|k|.,解得,解得:y=,∴双曲线的解析式为:.,则.∴,∴,∴27.(2011•常州)在平面直角坐标系XOY中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.若k>2,且△OEF的面积为△PEF的面积的2倍,求E点的坐标;(3)是否存在点E及y轴上的点M,使得以点M、E、F为顶点的三角形与△PEF全等?若存在,求E点坐标;若不存在,请说明理由.得,==(﹣k•k﹣(k)﹣k ,∴k k,∴=﹣=,,﹣((,此时,=,FM=PE=﹣,∴=(k=或点坐标为(,,28.如图,在平面直角坐标系内,一次函数y=kx+m(k,m是常数,k≠0)的图象与反比例函数y=(n是常数,n≠0,x>0)的图象相交于A(1,4)、B(a,b)两点,其中a>1.过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,连接AD、DC、CB.(1)求n的值;(2)若△ABD的面积为6,求一次函数y=kx+m的关系式.y=,得ab=2a(分)解得29.如图(1)已知,矩形ABDC的边AC=3,对角线长为5,将矩形ABDC置于直角坐系内,点D与原点O重合.且反比例函数y=的图象的一个分支位于第一象限.(1)求点A的坐标;(2)若矩形ABDC从图(1)的位置开始沿x轴的正方向移动,每秒移动1个单位,1秒后点A刚好落在反比例函数y=的图象的图象上,求k的值;(3)矩形ABCD继续向x轴的正方向移动,AB、AC与反比例函数图象分别交于P、Q如图(2),设移动的总时间为t(1<t<5),分别写出△BPD的面积S1、△DCQ的面积S2与t的函数关系式;(4)在(3)的情况下,当t为何值时,S2=S1?OC===4y=得:3==BP×BD=t+,y=,∴,=×DC×CQ=×4×=﹣t+,S,∴=(﹣t+S30.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.上的点,四边形;(),∴=GB=﹣()k=y=;)+3+3,整理得a=时,=+3=(((()),∴,解得,,,(,(,(,,,(,,,(。
中考数学探究性试题精选之反比例函数综合题(含15大题)
中考数学探究性试题精选之反比例函数综合题(含15大题)1.如图1,在平面直角坐标系中,将锐角∠MON 的顶点与原点O 重合,角的一边OM 与x 轴正半轴重合,角的另一边ON 交函数y =kx (k >0,x >0)的图象(记为曲线l )于点A ,在射线ON 的右侧构造矩形ABCD ,对角线AC 和BD 交于点E ,满足AB ∥x 轴,AC =2AO ,作射线OB .(1)若点D (1,√2−1),点E (2+√2,√2),求k 的值; (2)求证:点D 在直线OB 上;(3)如图2,当∠MON =45°时,射线OB 交曲线l 于点F ,以点O 为圆心,12OB 为半径画弧交x 轴于点H ,求证:FH ⊥x 轴.2.如图1,一次函数y =k 1x +b 与反比例函数y =k2x 在第一象限交于M (1,4)、N (4,m )两点,点P 是x 轴负半轴上一动点,连接PM ,PN . (1)求反比例函数及一次函数的表达式; (2)若△PMN 的面积为9,求点P 的坐标;(3)如图2,在(2)的条件下,若点E 为直线PM 上一点,点F 为y 轴上一点,是否存在这样的点E 和点F ,使得以点E 、F 、M 、N 为顶点的四边形是平行四边形?若存在,直接写出点E 的坐标;若不存在,请说明理由.3.如图,直线y=mx+n交x轴于点A,交反比例函数y=kx的图象于C(2,4),D(4,a)两点.(1)求反比例函数的解析式和a的值;(2)根据图象直接写出不等式mx+n>kx的解集;(3)点M为y轴上任意一点,点N为平面内任意一点,若以C,D,M,N为顶点的四边形是菱形,直接写出点N的坐标.4.如图,在平面直角坐标系中,点A在第一象限内,点B(4,0)在x轴上,连接OA、AB,OA=AB,cos∠AOB=√55,反比例函数y=kx(k≠0)的图象经过A点.(1)求k的值;(2)如图,以OA为直角边作等腰直角△AOC,过点C作CD⊥x轴交反比例函数的图象于点E,求E点坐标.5.小明喜欢用几何画板学习研究数学问题.某周末他用几何画板绘制了两个反比例函数y=k1x和y=k2x在第一象限内的图象,分别记为l1和l2,设点E在l1上,EC⊥x轴于点C,交l2于点A,ED⊥y轴于点D,交l2于点B,延长OB交l1于点F,FG⊥y轴于点G.(1)小明利用几何画板的面积测量命令分别测量了四边形EAOB和四边形DBFG的面积,分别记为S1,S2.请推测S1和S2的数量关系并证明;(2)小明连接AB,CD后发现好像是平行关系.请判断AB和CD是否平行并说明理由;(3)若S1=2,DB:BE=1:2,直接写出这两个反比例函数的表达式.6.【定义】在平面内,把一个图形上任意一点与另一个图形上任意一点之间的距离的最小值,称为这两个图形之间的距离,即A,B分别是图形M和图形N上任意一点,当AB的长最小时,称这个最小值为图形M与图形N之间的距离.例如,如图1,AB⊥l1,线段AB的长度称为点A与直线l1之间的距离,当l2∥l1时,线段AB的长度也是l1与l2之间的距离.【应用】(1)如图2,在等腰Rt△BAC中,∠A=90°,AB=AC,点D为AB边上一点,过点D 作DE∥BC交AC于点E.若AB=6,AD=4,则DE与BC之间的距离是;(2)如图3,已知直线l3:y=﹣x+4与双曲线C1:y=kx(x>0)交于A(1,m)与B两点,点A与点B之间的距离是,点O与双曲线C1之间的距离是;【拓展】(3)按规定,住宅小区的外延到高速路的距离不超过80m时,需要在高速路旁修建与高速路相同走向的隔音屏障(如图4).有一条“东南﹣西北”走向的笔直高速路,路旁某住宅小区建筑外延呈双曲线的形状,它们之间的距离小于80m.现以高速路上某一合适位置为坐标原点,建立如图5所示的直角坐标系,此时高速路所在直线l4的函数表达式为y=﹣x,小区外延所在双曲线C2的函数表达式为y=2400x(x>0),那么需要在高速路旁修建隔音屏障的长度是多少?7.一次函数y=12x+2与x轴交于C点,与y轴交于B点,点A(2,a)在直线BC上,过点A做反比例函数y=k x.(1)求出a,k的值;(2)M为线段BC上的点,将点M向右平移4个单位,再向上平移2个单位得到点N,点N恰巧在反比例函数y=kx上,求出点M坐标;(3)在x轴上是否存在点D,使得∠BOA=∠OAD,若存在请直接写出点D坐标,若不存在请说明理由.8.如图,在平面直角坐标系xOy中,四边形ABOC为矩形,点A坐标为(6,3),反比例函数y=3x的图象分别与AB,AC交于点D,E,点F为线段DA上的动点,反比例函数y=kx(k≠0)的图象经过点F,交AC于点G,连接FG.(1)求直线DE的函数表达式;(2)将△AFG沿FG所在直线翻折得到△HFG,当点H恰好落在直线DE上时,求k的值;(3)当点F为线段AD中点时,将△AFG绕点F旋转得到△MFN,其中A,G的对应点分别为M,N,当MN∥DE时,求点N的坐标.9.如图1,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B在反比例函数y=kx(k>0)的第一象限内的图象上,OA=4,OC=3,动点P在y轴的右侧,且满足S△PCO=3 8S矩形OABC.(1)若点P在这个反比例函数的图象上,求点P的坐标;(2)连接PO、PC,求PO+PC的最小值;(3)若点Q是平面内一点,使得以B、C、P、Q为顶点的四边形是菱形,请你直接写出满足条件的所有点Q的坐标.10.如图,直线AB:y=﹣x+n与坐标轴交于A,B两点,点C为点O关于AB的对称点,连接AC,BC,双曲线y=mx(x>0)的图象经过AC的中点D,S△OAD=2.(1)求双曲线的解析式及n 的值;(2)P (x ,y )为双曲线上任意一点,过P 作y 轴的垂线交直线AB 于点E ,连接PC .求证:PE =PC ;(3)在(2)的条件下,若PC 的延长线交双曲线于另一点Q ,分别过P ,Q 两点作直线AB 的垂线,垂足分别为M ,N ,试判断PQ PM+QN是否为定值,若是,请求出该定值,若不是请说明理由.11.已知一次函数y =−12x +b 的图象与反比例函数y =6x(x >0)的图象交于A 、B 两点,与x 轴、y 轴分别交于C 、D 两点. (1)若A 点的横坐标为32,求b 的值;(2)如图,若AB =2AC ,求A 、B 两点的坐标;(3)在(2)的条件下,将一直角三角板的直角顶点P 放在反比例函数图象的AB 段上滑动,直角边始终与坐标轴平行,且与线段AB 分别交于Q 、R 两点,设点P 的横坐标为x 0,QR 的长为L .问:是否存在点P ,使L 的长为√52,存在请求出符合条件的P 的坐标,不存在请说明理由.12.如图,反比例函数y=kx的图象与正比例函数y=mx的图象交于A,C两点,其中点A的坐标为(2,2√3).(1)求反比例函数及正比例函数的解析式;(2)点E是反比例函数第三象限图象上一点,且EC⊥AC,过点C的直线l1与线段AE 相交,点A,点E到直线l1的距离分别为d1,d2,试求d1+d2的最大值;(3)点B(2,0),在x轴上取一点P(t,0)(t>2),过点P作直线OA的垂线l2,以直线l2为对称轴,线段OB经轴对称变换后得到O′B′,当O′B′与双曲线有交点时,求t的取值范围.13.如图,直线y=32x与双曲线y=k x(k≠0)交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点G是y轴上的动点,连接GB,GC,求GB+GC的最小值;(3)P是坐标轴上的点,Q是平面内一点,是否存在点P,Q,使得四边形ABPQ是矩形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.14.如图,在平面直角坐标系xOy中,一次函数y=﹣x+7的图象与反比例函数y=kx(x>0)的图象相交于A(1,6),B两点,P(0,﹣1)是y轴上的一个定点.(1)求反比例函数的表达式及点B的坐标;(2)H是线段AB上的一点,当△P AB的面积被线段PH分成面积比为2:3的两部分时,求点H的坐标;(3)在(2)的条件下,请在x轴上找点M,平面内找点N,使得四边形PHMN为矩形,求M,N两点的坐标.(直接写出答案)15.如图1,木匠陈师傅现有一块五边形ABFED木板,它是矩形ABCD木板用去△CEF后的余料,AD=4,AB=5,DE=1,F是BC边上一点.陈师傅打算利用该余料截取一块矩形材料,其中一条边在AD上.[初步探究](1)当BF=2时.①若截取的矩形有一边是DE,则截取的矩形面积的最大值是;②若截取的矩形有一边是BF,则截取的矩形面积的最大值是;[问题解决](2)如图2,陈师傅还有另一块余料,∠BAF=∠AFE=90°,AB=EF=1,CD=3,AF=8,CD∥AF,且CD和AF之间的距离为4,若以AF所在直线为x轴,AF中点为原点构建直角坐标系,则曲线DE是反比例函数y=kx图象的一部分,陈师傅想利用该余料截取一块矩形MNGH材料,其中一条边在AF上,所截矩形MNGH材料面积是736.求GN的长.。
(完整版)反比例函数练习题及答案
反比例函数综合一.选择题(共23小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x 轴,且AC=BC,则AB等于()A.B.2C.4 D.3第1题第2题第3题第5题2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A.B.6 C.3 D.123.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为()A.1 B.﹣1 C.2 D.﹣24.在同一平面直角坐标系中,函数y=kx(k>0)与y=(k>0)的图象可能是()A.B.C.D.5.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有()A.4个B.3个C.2个D.1个6.已知反比例函数y=(k≠0)过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为()A.﹣1<a B.﹣1<a<0 C.a<1 D.0<a<17.如图,双曲线y=与直线y=kx+b交于点M,N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x不等式<kx+b的解为()A.x<﹣3 B.﹣3<x<0 C.﹣3<x<1 D.﹣3<x<0 或x>1第7题第9题第11题第12题8.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长=3.则k的值为()线交x轴于点C,若S△AOCA.2 B.1.5 C.4 D.610.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y211.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是()A.﹣12 B.﹣8 C.﹣6 D.﹣412.如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC 的面积是8,则这个反比例函数的解析式是()A.y=B.y=C.y=D.y=13.如图,在平面直角坐标系中,函数y=的图象与函数y=x的图象相交于A,B两点,点C是函数y=的图象右支上一点,连结AC,BC,若∠C=90°,则点C的坐标为()A.(2,4)B.(3,6)C.(4,2)D.(,)第13题第14题第15题第16题14.如图,直线y=x﹣3与x轴交于点A,与双曲线y=(k≠0)在第一象限内交于点B,过点A 作AC⊥x轴,交该双曲线于点C,若AB=AC,则k的值是()A.B.C.D.15.如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为()A.B.﹣C.D.﹣16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是()A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)17.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为()A.1 B.2 C.4 D.不能确定第17题第18题18.如图,已知点A(0,4),B (1,4),点B在双曲线y=(k>0)上,在AB的延长线上取一点C,过C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是()A.4≤CE<4B.4≤CE<2C.2<CE<4 D.4<CE<219.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为()A.5 B.6 C.4D.5第19题第20题第21题第23题20.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小21.如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是()A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BOD D.当x>0时,y1、y2都随x的增大而增大22.函数y=k(x﹣1)与y=﹣在同一直角坐标系内的图象大致是()A.B.C.D.23.如图,点A,C都在函数y=(x>0)的图象上,点B,D都在x轴上,且使得△OAB,△BCD 都是等边三角形,则点C的坐标是()A.(+1,﹣)B.(+1,﹣1)C.(+1,﹣)D.(+1,﹣)二.填空题(共9小题)24.如图,点M是函数图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA•MB=.第24题第25题第30题第31题25.如图将直线向左平移m个单位,与双曲线交于点A,与x轴交于点B,则OB2﹣OA2+AB2=.26.如果反比例函数y=(m﹣3)的图象在第二、四象限,那么m=.27.已知双曲线y=(k≠0)上有一点P,PA⊥x轴于A,点O为坐标原点,且S△PAO=12,则此反比例函数的解析式为.28.反比例函数的图象同时过A(﹣2,a)、B(﹣3,b)、C(1,c)三点,则a、b、c 的大小关系是.29.函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是,它的图象分布在象限,在每一个象限内,y随x的增大而.30.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形=14,则k=.ABDC31.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k=.32.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为.三.解答题(共8小题)33.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.34.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.35.如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出x为何值时,一次函数值大于反比例函数?(3)求△AOB的面积.36.如图,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点.(1)求一次函数的解析式及△AOB的面积;(2)根据图象直接写出不等式的解集;(3)若点P是坐标轴上的一点,且满足△PAB面积等于△AOB的面积的2倍,直接写出点P的坐标.37.如图,若直线y=kx+b(k≠0)与x轴交于点,与双曲线在第二象限交于点B,且OA=OB,△OAB的面积为(1)求直线AB的解析式及双曲线的解析式;(2)求tan∠ABO的值.38.已知反比例函数y=和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式?(2)已知A在第一象限,是两个函数的交点,求A点坐标?(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?39.如图,双曲线y=在第一象限的一支上有一点C(1,5),过点C的直线y=﹣kx+b(k>0)与x 轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA的面积.40.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OM、ON,求三角形OMN的面积.(3)连接OM,在x轴的正半轴上是否存在点Q,使△MOQ是等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标,若不存在,说明理由.参考答案一.选择题(共23小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x 轴,且AC=BC,则AB等于(B)A.B.2C.4 D.3设C(a,),则B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于(B)A.B.6 C.3 D.12解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.双曲线C3,的解析式为y=﹣过点P作PB⊥y轴于点B∵PA=PB∴B为OA中点.∴S△PAB=S△POB=3∴△POA的面积是6由反比例函数比例系数k的性质,S△POB3.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为(D)A.1 B.﹣1 C.2 D.﹣24.在同一平面直角坐标系中,函数y=kx(k>0)与y=(k>0)的图象可能是(C)A.B.C.D.5.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有(C)A.4个B.3个C.2个D.1个第5题第7题第9题6.已知反比例函数y=(k≠0)过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为(B)A.﹣1<a B.﹣1<a<0 C.a<1 D.0<a<17.如图,双曲线y=与直线y=kx+b交于点M,N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x不等式<kx+b的解为(D)A.x<﹣3 B.﹣3<x<0 C.﹣3<x<1 D.﹣3<x<0 或x>18.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长线交x轴于点C,若S△AOC=3.则k的值为(B)A.2 B.1.5 C.4 D.6解:如图,分别过点A、B作AF⊥y轴于点F,AD⊥x轴于点D,BG⊥y轴于点G,BE⊥x轴于点E,∵k>0,点A是反比例函数图象上的点,∴S△AOD =S△AOF=|k|,∵A、B两点的横坐标分别是a、3a,∴AD=3BE,∴点B是AC的三等分点,∴DE=2a,CE=a,∴S△AOC =S梯形ACOF﹣S△AOF=(OE+CE+AF)×OF﹣|k|=×5a×﹣|k|=3,解得k=1.5.10.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y211.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是(C)A.﹣12 B.﹣8 C.﹣6 D.﹣4第11题第12题解:过A作y轴的垂线,过B作x轴的垂线,交于点C,连接OC,设A(k,1),B(2,k),则AC=2﹣k,BC=1﹣k,∵S△ABO=8,∴S△ABC﹣S△ACO﹣S△BOC=8,即(2﹣k)(1﹣k)﹣(2﹣k)×1﹣(1﹣k)×2=8,解得k=±6,∵k<0,∴k=﹣6,12.如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC 的面积是8,则这个反比例函数的解析式是(C)A.y=B.y=C.y=D.y=13.如图,在平面直角坐标系中,函数y=的图象与函数y=x的图象相交于A,B两点,点C是函数y=的图象右支上一点,连结AC,BC,若∠C=90°,则点C的坐标为(A)A.(2,4)B.(3,6)C.(4,2)D.(,)解:函数y=的图象与函数y=x的图象相交于A,B两点,解方程组,可得,,∴B(4,2),A(﹣4,﹣2),∴OB=AO=2,又∵∠ACB=90°,∴OC=AB=2,设C(a,),则OC==2,解得a=2,或a=4(舍去),∴C(2,4),14.如图,直线y=x﹣3与x轴交于点A,与双曲线y=(k≠0)在第一象限内交于点B,过点A 作AC⊥x轴,交该双曲线于点C,若AB=AC,则k的值是(D)A.B.C.D.解:如图,过B作BD⊥OA于D,则∠ADB=∠AOE=90°,由直线y=x﹣3,可得A(4,0),E(0,﹣3),∴AO=4,OE=3,AE=5,设点C的坐标为(4,),则AC=AB=,由△AOE∽△ADB,可得==,即==,∴AD=,BD=,∴B(4+,),∵双曲线y=(k≠0)经过点B,∴(4+)×k=k,解得k=,15.如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为(D)A.B.﹣C.D.﹣解:∵AB与x轴平行,∴AB⊥y轴,即∠AHO=∠OHB=90°,∵∠AOB=90°,∴∠AOH+∠BOH=∠AOH+∠OAH=90°,∴∠OAH=∠BOH,∴△AOH∽△OBH,∴=,即=,又∵k1<0,∴=﹣,16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是(C)A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)解:如图,∵点A的坐标为(0,﹣1),AB∥x轴,反比例函数y=(k≠0)经过▱ABCD的顶点B,∴点B的坐标为(﹣k,﹣1),即AB=﹣k,又∵点E(0,2),∴AE=2+1=3,又∵平行四边形ABCD的面积是18,∴AB×AE=18,∴﹣k×3=18,∴k=﹣6,∴y=﹣,∵CD经过点(0,2),∴令y=2,可得x=﹣3,∴点D的坐标为(﹣3,2),17.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为(A)A.1 B.2 C.4 D.不能确定第17题第18题18.如图,已知点A(0,4),B (1,4),点B在双曲线y=(k>0)上,在AB的延长线上取一点C,过C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是(A)A.4≤CE<4B.4≤CE<2C.2<CE<4 D.4<CE<2解:如图1,过D作DF⊥OA于F,∵点A(0,4),B (1,4),∴AB⊥y轴,AB=1,OA=4,∵CD=DE,∴AF=OF=2,∵点B在双曲线y=(k>0)上,∴k=1×4=4,∴反比例函数的解析式为:y=,∵过点C的直线交双曲线于点D,∴D点的纵坐标为2,把y=2代入y=得,x=2,∴D(2,2),当O与E重合时,如图2,∵DF=2,∴AC=4,∵OA=4,∴CE=4,当CE⊥x轴时,CE=OA=4,∴4≤CE<4,19.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为(D)A.5 B.6 C.4D.5第19题第20题第21题解:如图,过A作AD⊥y轴于D,将AB绕着点B顺时针旋转90°,得到A'B,过A'作A'H⊥y轴于H,由AB=BA',∠ADB=∠BHA'=90°,∠BAD=∠A'BH,可得△ABD≌△BA'H,∴BH=AD=2,又∵OB=2,∴点H与点O重合,点A'在x轴上,∴A'(1,0),又∵等腰Rt△ABA'中,∠BAA'=45°,而∠BAC=45°,∴点A'在AC上,由A(2,3),A'(1,0),可得直线AC的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),由点A(2,3)和点B(0,2),可得直线AB 的解析式为y=x+2,解方程组,可得或,∴M(﹣6,﹣1),∴CM==5,20.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会(C)A.逐渐增大B.不变C.逐渐减小D.先增大后减小21.如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是(C)A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BOD D.当x>0时,y1、y2都随x的增大而增大解:A、,∵把①代入②得:x+1=,解得:x2+x﹣2=0,(x+2)(x﹣1)=0,x1=﹣2,x2=1,代入①得:y1=﹣1,y2=2,∴B(﹣2,﹣1),A(1,2),∴A、B不关于原点对称,故本选项错误;B、当﹣2<x<0或x>1时,y1>y2,故本选项错误;C、∵S△AOC=×1×2=1,S△BOD=×|﹣2|×|﹣1|=1,∴S△BOD=S△AOC,故本选项正确;D、当x>0时,y1随x的增大而增大,y2随x的增大而减小,故本选项错误;22.函数y=k(x﹣1)与y=﹣在同一直角坐标系内的图象大致是(A)A.B.C.D.23.如图,点A,C都在函数y=(x>0)的图象上,点B,D都在x轴上,且使得△OAB,△BCD都是等边三角形,则点C的坐标是(A)A.(+1,﹣)B.(+1,﹣1)C.(+1,﹣)D.(+1,﹣)第23题第24题解:如图,作AE⊥OB于E,CF⊥BD于F,∵△OAB,△BCD均为正三角形,A在反比例函数y=,∴A的横坐标是1,纵坐标是,∴OE=EB=1,OA=2OE=2,AE=,设BF=m,则C(2+m,m),代入y=,得:m2+2m﹣1=0,解得:m=﹣1±,∵m>0,∴m=﹣1+,∴点C的坐标为:(1+,).二.填空题(共9小题)24.如图,点M是函数图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA•MB=.解:延长AM,交直线y=x于点D,设M(x,x+)则△AOD是等腰直角三角形,即∠ADO=45°,∴OA=AD=x+,AM=x,∴MD=AD﹣AM=,∵MB⊥l,∴MB=BD,∴△BDM是等腰直角三角形,∴MB2+BD2=MD2,∴MB=MD,∴MB=×=,∴MA•MB=x•=.25.如图将直线向左平移m个单位,与双曲线交于点A,与x轴交于点B,则OB2﹣OA2+AB2=.解:由题意知:平移后的直线解析式为:y=(x+m);设A(x,y),易知:B(﹣m,0),则有:OB2﹣OA2+AB2=m2﹣(x2+y2)+[(m+x)2+y2],联立y=(x+m),整理得:原式=﹣2x2﹣2mx;由于直线y=(x+m)与交于点A,联立两个函数解析式得:(x+m)=﹣,即x2+mx+2=0,得﹣x2﹣mx=2;故所求代数式=﹣2x2﹣2mx=4.故答案为:4.26.如果反比例函数y=(m﹣3)的图象在第二、四象限,那么m=1.【解答】解:根据题意m2﹣6m+4=﹣1,解得m=1或5,又m﹣3<0,m<3,所以m=1.故答案为:1.27.已知双曲线y=(k≠0)上有一点P,PA⊥x轴于A,点O为坐标原点,且S△PAO=12,则此反比例函数的解析式为y=﹣或y=.【解答】解:设点P的坐标为(x,y).∵P(x,y)在反比例函数y=kx(k≠0)的图象,∴k=xy,=12,∵S△PAO∴|xy|=12,∴|xy|=24,∴xy=±24,∴k=±24,∴y=﹣或y=.故答案为:y=﹣或y=.28.反比例函数的图象同时过A(﹣2,a)、B(﹣3,b)、C(1,c)三点,则a、b、c的大小关系是a>b>c.【解答】解:∵k<0,∴此函数的图象在二、四象限,∵﹣2<0,﹣3<0,1>0,∴A、B两点在第二象限,C点在第三象限,∴a>0,b>0,c<0,∵﹣2>﹣3,∴a>b>0,∴a>b>c.故答案为a>b>c.29.函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是2,它的图象分布在第一、三象限,在每一个象限内,y随x的增大而减小.【解答】解:由题意得:m2﹣3m+1=﹣1,且m2﹣m≠0,解得:m=2,∵m2﹣m=4﹣2=2>0,∴图象分布在第一、三象限,在每一个象限内,y随x的增大而减小,故答案为:2;第一、三;减小.30.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形=14,则k=16.ABDC【解答】解:如图,分别延长CA,DB交于点E,根据AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,知△CED为直角三角形,且点A与点B的纵横坐标正好相反,设点A的坐标为(x A,y A),则点B的坐标为(y A,x A),点E的坐标为(y A,y A),四边形ACDB的面积为△CED的面积减去△AEB的面积.CE=ED=y A,AE=BE=y﹣y A,∴S ACDB=S△CED﹣S△AEB=[y A•y A﹣(y A﹣y A)(y A﹣y A)]=y A2=14,∵y A>0,∴y A=8,点A的坐标为(2,8),∴k=2×8=16.故答案为:16.31.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k=6.【解答】解:如图,延长AB交x轴于点C,设点C的横坐标为a,则点B的纵坐标为,点A的纵坐标为a,所以,AB=a﹣,∵AB平行于y轴,∴AC⊥OC,在Rt△BOC中,OB2=OC2+BC2=a2+()2,∵OB2﹣AB2=12,∴a2+()2﹣(a﹣)2=12,整理得,2k=12,解得k=6.故答案为:6.32.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为2.【解答】解:根据反比例函数的对称性可知:OB=OD,AB=CD,∵四边形ABCD的面积等于S△ADB +S△BDC,∵A(1,1),B(1,0),C(﹣1,﹣1),D(﹣1,0)∴S△ADB=(DO+OB)×AB=×2×1=1,S△BDC=(DO+OB)×DC=×2×1=1,∴四边形ABCD的面积=2.故答案为:2.三.解答题(共8小题)33.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.【解答】解:(1)∵点E、F均是反比例函数y=上的点,四边形AOBC是矩形,∴AE⊥y轴,BC⊥x轴,∴S△AOE =S△BOF=;(2)∵C坐标为(4,3),∴设E(,3),F(4,),如图1,将△CEF沿EF对折后,C点恰好落在OB边上的G点,作EH⊥OB,垂足为H,∵∠EGH+∠HEG=90°∠EGH+∠FGB=90°,∴∠HEG=∠FGB,又∵∠EHG=∠GBF=90°,∴△EGH∽△GFB,∴=,∴GB==,在Rt△GBF中,GF2=GB2+BF2,即(3﹣)2=()2+()2,解得k=,∴反比例函数的解析式为:y=;(3)存在.当OP是平行四边形的边时,如图2所示:平行四边形OPMN,可以看成线段PN沿PO的方向平移至OM处所得.设N(a,),∵P(2,﹣3)的对应点O(0,0),∴M(a﹣2,+3),代入反比例解析式得:(a﹣2)(+3)=,整理得4a2﹣8a﹣7=0,解得a=,当a=时,==,﹣2=,+3=,∴N(,),M(,)(舍去)或N(,),M(,).当OP为对角线时,如图3所示:设M(a,),N(b,),∵P(2,﹣3),∴,解得,,∴M(,),N(,)(舍去)或M(,),N(,),综上所述:M(,)N(,);或M(,),N(,).34.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.【解答】解:(1)∵顶点B的坐标为(4,2),M、N分别是AB、BC的中点,∴M点的坐标为(2,2),把M(2,2)代入反比例函数y=(m≠0)得,m=2×2=4,∴反比例函数的解析式为y=;∵M、N分别为矩形OABC的边AB、BC的中点,且M(2,2),B点坐标为(4,2),∴N点坐标为(4,1),∵4×1=4,∴点N在函数y=的图象上;(2)4≤m≤8.35.如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出x为何值时,一次函数值大于反比例函数?(3)求△AOB的面积.【解答】解:(1)联立两函数解析式得:,解得:或,即A(﹣2,4),B(4,﹣2);(2)根据图象得:当x<﹣2或0<x<4时,一次函数值大于反比例函数值.(3)令y=﹣x+2中x=0,得到y=2,即D(0,2),∴OD=2,∴S△AOB =S△AOC+S△BOC=×2×2+×2×4=6.36.如图,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点.(1)求一次函数的解析式及△AOB的面积;(2)根据图象直接写出不等式的解集;(3)若点P是坐标轴上的一点,且满足△PAB面积等于△AOB的面积的2倍,直接写出点P的坐标.【解答】解:(1)∵反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点,将A与B坐标代入反比例解析式得:m=1,n=﹣1,∴A(1,3)、B(﹣3,﹣1),代入一次函数解析式得:,解得:k=1,b=2,∴一次函数的解析式为y=x+2,∵直线y=x+2与x轴、y轴的交点坐标为(﹣2,0)、(0,2),∴S△AOB=×2×(1+3)=4;(2)∵A(1,3),B(﹣3,﹣1),观察图象可知,当x<﹣3或0<x<1时,一次函数的图象在反比例函数图象的下方,∴不等式的解集是x<﹣3或0<x<1.(3)∵S△AOB=4,∴S△PAB =2S△AOB=8,设P1(p,0),即OP1=|p+2|,S△ABP1=S△AP1C+S△P1BC=|p+2|×3+|p+2|×1=8,解得:p=﹣6或p=2,则P1(﹣6,0)、P2(2,0),同理可得P3(0,6)、P4(0,﹣2).37.如图,若直线y=kx+b(k≠0)与x轴交于点,与双曲线在第二象限交于点B,且OA=OB,△OAB的面积为(1)求直线AB的解析式及双曲线的解析式;(2)求tan∠ABO的值.【解答】解:(1)∵直线y=kx+b(k≠0)与x轴交于点A,∴OA=,又∵OA=OB,∴OB=,过点B作BM⊥x轴于点M,∵△OAB的面积为,即OA•BM=,∴BM=2,在Rt△OBM中可求OM=1.5,∴B(﹣1.5,2),再根据待定系数法可得:,解得:k=﹣,b=,∴直线AB的解析式为:y=﹣x+;再将点B代入函数y=得:m=﹣3,∴双曲线的解析式为:y=﹣;(2)∵OA=OB,∴∠ABO=∠BAM,在Rt△ABM中,BM=2,∴MO=,AM=+=4,∴tan∠ABO=tan∠BAM==.38.已知反比例函数y=和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式?(2)已知A在第一象限,是两个函数的交点,求A点坐标?(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?【解答】解:(1)∵一次函数y=2x﹣1的图象经过(a,b),(a+k,b+k+2)两点,代入得:,解得:k=2,代入反比例函数的解析式得:y==,∴反比例函数的解析式是y=.(2)解方程组得:,,∴两函数的交点坐标是(﹣,﹣2),(1,1),∵交点A在第一象限,∴A(1,1).(3)在x轴上存在点P,使△AOP为等腰三角形,理由是:分为三种情况:①以O为圆心,以OA为半径作圆,交x轴于两点C、D,此时OA=0C=0D,∴当P于C或D重合时,△AOP是等腰三角形,此时P的坐标是(,0),(﹣,0);②以A为圆心,以OA为半径作圆,交x轴于点E,此时OA=AE,∴当P于E重合时,△AOP是等腰三角形,此时P的坐标是(2,0);③作OA的垂直平分线交x轴于F,此时AF=OF,∴当P于F重合时,△AOP是等腰三角形,此时P的坐标是(1,0);∴存在4个点P,使△AOP是等腰三角形.39.如图,双曲线y=在第一象限的一支上有一点C(1,5),过点C的直线y=﹣kx+b(k>0)与x 轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA的面积.【解答】解:(1)把C(1,5)代入直线y=﹣kx+b(k>0)得:﹣k+b=5,则b=5+k;把(a,0)代入直线y=﹣kx+b(k>0)得:﹣ak+b=0,把b=5+k代入﹣ak+b=0,得:﹣ak+5+k=0,解得:a=;(2)把x=9代入y=得:y=,则D的坐标是(9,),设直线AC的解析式是y=﹣kx+b,把C、D两点代入,得,解得:,则AC的解析式是:y=﹣x+.令y=0,解得:x=10.则OA=10,则△COA的面积=×10×5=25.40.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OM、ON,求三角形OMN的面积.(3)连接OM,在x轴的正半轴上是否存在点Q,使△MOQ是等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标,若不存在,说明理由.【解答】解:(1)把N(﹣1,﹣4)代入y=得:k=4,∴y=,把M(2,m)代入得:m=2,∴M(2,2),把N(﹣1,﹣4),M(2,2)代入y=ax+b得:,解得:a=2,b=﹣2,∴y=2x﹣2,答:反比例函数的解析式是y=,一次函数的解析式是y=2x﹣2.(2)设MN交x轴于C,y=2x﹣2,当y=0时,x=1,∴C(1,0),OC=1,∴△MON的面积是S=S△MOC +S△NOC=×1×2+×1×|﹣4|=3,答:三角形MON的面积是3.(3)当OM=OQ时,Q的坐标是(2,0);当OM=MQ时,Q的坐标是(4,0);当OQ=QM时,Q的坐标是(2,0);答:在x轴的正半轴上存在点Q,使△MOQ是等腰三角形,所有符合条件的点Q的坐标是(2,0)或(4,0)或(2,0).第31页(共31页)。
(完整word版)反比例函数测试题(含答案)
反比例函数测试题(含答案)(时间90分钟满分100分)班级学号姓名得分一、选择题(每小题3分,共24分)1.如果x、y之间的关系是10(0)ax y a-+=≠,那么y是x的( )A.正比例函数B.反比例函数C.一次函数D.二次函数2.函数y=-错误!的图象与x轴的交点的个数是()A.零个B.一个C.两个D.不能确定3.反比例函数y=-错误!的图象在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限4.已知关于x的函数y=k(x+1)和y=-kx(k≠0)它们在同一坐标系中的大致图象是(• )5.已知反比例函数y=xk的图象经过点(m,3m),则此反比例函数的图象在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa )是气体体积V(m3 )的反比例函数,其图象如图所示.当气球内的气压大于120 kPa时,气球发将爆炸.为了安全起见,气球的体积应()A.不小于54m3B.小于54m3 C.不小于45m3 D.小于45m37.如果点P为反比例函数xy4=的图象上一点,PQ⊥x轴,垂足为Q,那么△1.660O V (m3)P (kPa)(1.6,60)第6题POQ 的面积为 ( )A .2B . 4C .6D . 8 8.已知:反比例函数xmy 21-=的图象上两点A (x 1,y 1),B (x 2, y 2)当x 1<0<x 2时,y 1<y 2,则m 的取值范围( ) A .m <0 B .m >0 C .m <21D .m >21二、填空题(每小题2分,共20分)9.有m 台完全相同的机器一起工作,需m 小时完成一项工作,当由x 台机器(x 为不大于m 的正整数)完成同一项工作时,所需的时间y 与机器台数x 的函数关系式是____。
10.已知y 与x 成反比例,且当x 32=-时,y =5,则y 与x 的函数关系式为__________。
(完整版)反比例函数综合测试题(含答案)
反比例函数综合测试题一、选择题(每小题3分,共24分)1.已知点M (- 2,3 )在反比例函数xky=的图象上,下列各点也在该函数图象上的是( ).AA. (3,- 2)B. (- 2,- 3)C. (2,3)D. (3,2)2. 反比例函数(0)ky kx=≠的图象经过点(- 4,5),则该反比例函数的图象位于( ).BA. 第一、三象限B. 第二、四象限C. 第二、三象限D. 第一、二象限3. 在同一平面直角坐标系中,函数xy2-=与xy2=的图象的交点个数为( ). DA. 3个B. 2个C. 1个D. 0个4. 如图1,点A是y轴正半轴上的一个定点,点B是反比例函数y = 2 x(x> 0)图象上的一个动点,当点B的纵坐标逐渐减小时,△OAB的面积将( ). AA.逐渐增大B.逐渐减小C.不变D.先增大后减小5. (2009年恩施市)如图2,一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,设小矩形的长和宽分别为x,y,剪去部分的面积为20,若2 ≤x≤ 10,则y与x的函数图象是( ). A6. 已知点A(x1,y1),B(x2,y2)是反比例函数xky=(k > 0)的图象上的两点,若x1 < 0 < x2,则( ).AA. y1 < 0 < y2B. y2 < 0 < y1C. y1 < y2 < 0D. y2 < y1 < 07. 如图3,反比例函数3yx=的图象与一次函数y = x + 2的图象交于A,B两点,那么△AOB 的面积是( ).CA. 2B. 3C. 4D. 68. 如图4,等腰直角三角形ABC位于第一象限,AB= AC = 2,直角顶点A在直线y = x上,1212图2图4A B C Dy xOP 1P 2P 3P 4 P 5A 1 A 2 A 3 A 4 A 5 图7其中点A 的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴、y 轴,若反比例函数k y x=的图象与△ABC 有交点,则k 的取值范围是( ). C A.1 < k < 2B.1 ≤ k ≤ 3C.1 ≤ k ≤ 4D.1≤ k < 4二、填空题(每小题4分,共24分) 9. 已知反比例函数k y x =的图象经过点(23),,则此函数的关系式是 .6y x= 10. 在对物体做功一定的情况下,力F (N)与此物体在 力的方向上移动的距离s (m)成反比例函数关系,其图 象如图5所示,点P (5,1)在图象上,则当力达到10 N 时,物体在力的方向上移动的距离是 m. 0. 511. 反比例函数xky =)0(<k 的图象与经过原点的直线l 相交于A ,B 两点,若点A 坐标为(-2,1),则点B 的坐标为 . (2,-1).12.一次函数y = x + 1与反比例函数ky x=的图象都经过点(1,m ),则使这两个函数值都小于0时x 的取值范围是___________. x < - 113. (2009年兰州市)如图6,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数 反比例函数1y x=(x > 0)的图象上,则点E 的坐标是_________. (215+,215-)14. (2009年莆田市)如图7,在x 轴的正半轴上依次截取OA 1 = A 1A 2 = A 2A 3 = A 3A 4 = A 4A 5,过点A 1,A 2,A 3,A 4,A 5,分别作x 轴的垂线与反比例函数()20y x x=≠的图象相交于点P 1,P 2,P 3,P 4,P 5,得直角三角形OP 1A 1,A 1P 2A 2,A 1P 2A 2,A 2P 3A 3,A 3P 4A 4,A 4P 5A 5,并设其面积分别为S 1,S 2,S 3,S 4,S 5,则S 5的值为 . 三、解答题(共30分)15.(6分) 已知点P (2,2)在反比例函数xky =(k ≠ 0)的图象上. (1)当x = - 3时,求y 的值; (2)当1 < x < 3时,求y 的取值范围.F / N图5s / mO图616.(8分)已知图8中的曲线是反比例函数5myx-=(m为常数)图象的一支. 若该函数的图象与正比例函数y = 2x的图象在第一象内限的交于点A,过点A作x轴的垂线,垂足为点B,当△OAB的面积为4时,求点A的坐标及反比例函数的解析式.17.(8分)如图9,点P的坐标为322⎛⎫⎪⎝⎭,,过点P作x轴的平行线交y轴于点A,交反比例函数kyx=(x > 0)于点点N,作PM ⊥AN交反比例函数kyx=(x > 0)的图象于点M,连接AM.若PN = 4,求:(1)k的值.(2)△APM的面积.18.(8分)为预防“手足口病”,某校对教室进行“药熏消毒”. 已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比例;燃烧后,y与x成反比例(如图10所示). 现测得药物10 min燃烧完,此时教室内每立方米空气含药量为8 mg. 根据以上信息,解答下列问题:(1)求药物燃烧时y与x的函数关系式;(2)求药物燃烧后y与x的函数关系式;(3)当每立方米空气中含药量低于1.6 mg时,对人体无毒害作用. 那么从消毒开始,经多长时间学生才可以返回教室?四、探究题(共22分)19.(10分) 我们学习了利用函数图象求方程的近似解,例如,把方程2x – 1 = 3 - x 的解看成函数y = 2 x - 1的图象与函数y = 3 - x 的图象交点的横坐标. 如图11,已画出反比例函数1y x=在第一象限内的图象,请你按照上述方法,利用此图象求方程x 2 – x – 1 = 0的正数解(要求画出相应函数的图象,求出的解精确到0.1).20.(12分)一次函数y = ax + b 的图象分别与x 轴、y 轴交于点M ,N ,与反比例函数k y x=的图象相交于点A ,B .过点A 分别作AC ⊥x 轴,AE ⊥y 轴,垂足分别为点C ,E ;过点B 分别作BF ⊥x 轴,BD ⊥y 轴,垂足分别为点F ,D ,AC 与BC 相交于点K ,连接CD . (1)如图12,若点A ,B 在反比例函数ky x=的图象的同一分支上,试证明: ①A E D K C F B K S S =四边形四边形;②A N B M =. (2)若点AB ,分别在反比例函数ky x=的图象的不同分支上,如图13,则AN 与BM 还相等吗?试证明你的结论.反比例函数综合测试题参考答案一、选择题 1. A. 2. B. 3. D.4. A.5. A.6. A.7. C.8. C.二、填空题 9. 6y x=. 10. 0. 5. 11. (2,-1).12. x < - 1. 13. (215+,215-). 14.15. 三、解答题 15.(1)34-=y ;(2)y 的取值范围为434<<y . 16.∵第一象限内的点A 在正比例函数y = 2x 的图象上,∴设点A 的坐标为(m ,2m )(m > 0),则点B 的坐标为(m ,0). ∵S △OAB = 4,∴12m • 2m = 4. 解得m 1 = 2,m 2 = - 2(不符合题意,舍去).∴点A 的坐标为(2,4).又∵点A 在反比例函数5m y x -=的图象上,∴542m -=,即m – 5 = 8. ∴反比例函数的解析式为8y x=.17.(1)∵点P 的坐标为322⎛⎫ ⎪⎝⎭,,∴AP = 2,OA =32. ∵PN = 4,∴AN = 6. ∴点N 的坐标为362⎛⎫ ⎪⎝⎭,. 把点362N ⎛⎫ ⎪⎝⎭,代入ky x=中,得k = 9. (2)由(1)知k = 9,∴9y x =. 当x = 2时,92y =. ∴93322M P =-=. ∴12332A P MS =⨯⨯=△. 18.(1)设药物燃烧阶段函数关系式为y = k 1x (k 1 ≠ 0).根据题意,得8 = 10k 1,k 1 = 45. ∴此阶段函数关系式为45y x =(0 ≤ x < 10).(2)设药物燃烧结束后函数关系式为22(0)ky k x=≠.根据题意,得2810k=,280k =. ∴此阶段函数关系式为80y x=(x ≥ 10).(3)当y < 1.6时,801.6x<. ∵0x >,∴1.680x >,50x >. ∴从消毒开始经过50 min 学生才返可回教室. 四、探究题19. 方程x 2 – x – 1 = 0的正数解约为1.6.提示:∵x ≠ 0,将x 2 – x – 1 = 0两边同除以x ,得110x x --=.即11x x=-. 把x 2 – x – 1 = 0的正根视为由函数1y x=与函数y = x - 1的图象在第一象限交点的横坐标. 20.(1)①A C x ⊥轴,A E y ⊥轴,∴四边形AE O C 为矩形. BF x ⊥轴,B D y ⊥轴,∴四边形BD O F 为矩形.A C x ⊥轴,B D y ⊥轴,∴四边形A E D K D OC K C F B K ,,均为矩形.1111O C x A C y x y k ===,,,∴11A E O CS O C A C x y k ===矩形2222O F x F B y x yk ===,,,∴22B D O F S O F F B x y k ===矩形.∴A E O C B D O F S S =矩形矩形.A E D K A E O C D O C K S S S =-矩形矩形矩形,C FB K B D O F D OC K S S S =-矩形矩形矩形,∴A ED K C F B K S S =矩形矩形. ②由(1)知,AE D K CF B KS S =矩形矩形.∴A K D K B K C K =.∴AK BKCK DK=. 90A K B C K D ∠=∠=°,∴A K B C K D △∽△.∴C D K A B K ∠=∠.∴A B C D∥.A C y ∥轴,∴四边形AC D N 是平行四边形.∴A N C D =.同理可得B M C D =.A N B M∴=. (2)AN 与BM 仍然相等.A E D K A E O C O D K C S S S =+矩形矩形矩形,B KC F BD O F O D K CS S S =+矩形矩形矩形, 又A E O CB D O F S S k ==矩形矩形,∴A E D K B KC FS S =矩形矩形. ∴A K D K B K C K=.∴CK DKAK BK=. K K ∠=∠,∴C D K A B K △∽△.∴C D K A B K ∠=∠.∴A B C D∥.A C y ∥轴,∴四边形AN D C 是平行四边形.∴A N C D =.同理B M C D =.∴A N B M =【教学标题】反比例函数 【教学目标】1、 提高学生对反比例函数的学习兴趣2、 使学生掌握反比例函数基础知识3、让学生熟练地运用反比例知识【重点难点】图像及性质 【教学内容】反比例函数一、基础知识1. 定义:一般地,形如xk y =(k 为常数,o k ≠)的函数称为反比例函数。
(完整版)反比例函数专题训练(含答案)-,推荐文档
4
参考答案
动脑动手
1.k1=3,k2=2,所求函数为 y 3 2x 2 . x
2. y 12 (3≤x≤5). x
3. y 20 (x 1,2,3,4,5) . x
4.(1)求 A,B 两点坐标问题转化为解方程组
y 8 , x y x 2.
(2)S△AOB=S△AOC+S△BOC,因 A,B 两点坐标已求出,面积可求.
即 12 12 3 . a2 a
强是 200Pa,翻过来放,对桌面的压强是多少?
28.设函数 y (m 2)m2 5m5 ,当 m 取何值时,它是反比例函数?它的图象位于哪些
象限内? (1)在每一个象限内,当 x 的值增大时,对应的 y 值是随着增大,还是随着减小? (2)画出函数图象.
(3)利用图象求当-3≤x≤ 1 时,函数值 y 的变化范围. 2
y=y1-y2,
∴
y
k1 x
k2 x2
.
x 1
把
y
5;
x
y
1, 1.
分别代入得
5 1
k1
k1 k
2,
k
2
,
解得
k1=3;k2=2.
∴y 与 x 的函数解析式为 y 3 2x 2 . x
26.解:将 V=5 时,ρ=1.98 代入 m 得 V
m=1.98×5=9.9.
∴ρ 与 V 的函数关系式为 ρ 9.9 . V
C. y x 1 2
D. y x 2 1 2
13.函数 y m 的图象过(2,-2),那么函数的图象在( ) x
A.第一、三象限
B.第一、四象限
C.第二、三象限
(完整版)反比例函数试题及答案(最新整理)
反比例函数一、选择题1.(2016·黑龙江大庆)已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是( )A.x1•x2<0 B.x1•x3<0 C.x2•x3<0 D.x1+x2<0【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数y=和x1<x2<x3,y2<y1<y3,可得点A,B在第三象限,点C在第一象限,得出x1<x2<0<x3,再选择即可.【解答】解:∵反比例函数y=中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3,y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2<0,故选A.【点评】本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.2.(2016·湖北十堰)如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C 是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=上(k>0,x>0),则k的值为( )A.25B.18C.9D.9【考点】反比例函数图象上点的坐标特征;平行线的性质;等边三角形的性质.【分析】过点A作AE⊥OB于点E,根据正三角形的性质以及三角形的边长可找出点A、B、E 的坐标,再由CD⊥OB,AE⊥OB可找出CD∥AE,即得出,令该比例=n,根据比例关系找出点D、C的坐标,利用反比例函数图象上点的坐标特征即可得出关于k、n的二元一次方程组,解方程组即可得出结论.【解答】解:过点A作AE⊥OB于点E,如图所示.∵△OAB为边长为10的正三角形,∴点A的坐标为(10,0)、点B的坐标为(5,5),点E的坐标为(,).∵CD⊥OB,AE⊥OB,∴CD∥AE,∴.设=n(0<n<1),∴点D的坐标为(,),点C的坐标为(5+5n,5﹣5n).∵点C、D均在反比例函数y=图象上,∴,解得:.故选C.【点评】本题考查了反比例函数图象上点的坐标特征、平行线的性质以及等边三角形的性质,解题的关键是找出点D、C的坐标.本题属于中档题,稍显繁琐,解决该题型题目时,巧妙的借助了比例来表示点的坐标,根据反比例函数图象上点的坐标特征找出方程组是关键.3. (2016·新疆)已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx﹣k的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】反比例函数图象上点的坐标特征;一次函数图象与系数的关系.【分析】首先根据x1<x2<0时,y1>y2,确定反比例函数y=(k≠0)中k的符号,然后再确定一次函数y=kx﹣k的图象所在象限.【解答】解:∵当x1<x2<0时,y1>y2,∴k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象经过第一、三、四象限,∴不经过第二象限,故选:B.【点评】此题主要考查了反比例函数图象上点的坐标特征以及一次函数图象与系数的关系,解决此题的关键是确定k的符号.4. (2016·云南)位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=( )A.4 B.2 C.1 D.﹣2【考点】反比例函数系数k的几何意义.【分析】此题应先由三角形的面积公式,再求解k即可.【解答】解:因为位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O 是坐标原点.若EO=EF,△EOF的面积等于2,所以,解得:xy=2,所以:k=2,故选:B【点评】主要考查了反比例函数系数k的几何意义问题,关键是由三角形的面积公式,再求解k.5. (2016·四川达州·3分)下列说法中不正确的是( )A.函数y=2x的图象经过原点B.函数y=的图象位于第一、三象限C .函数y=3x ﹣1的图象不经过第二象限D .函数y=﹣的值随x 的值的增大而增大【考点】正比例函数的性质;一次函数的性质;反比例函数的性质.【分析】分别利用正比例函数以及反比例函数的定义分析得出答案.【解答】解:A 、函数y=2x 的图象经过原点,正确,不合题意;B 、函数y=的图象位于第一、三象限,正确,不合题意;C 、函数y=3x ﹣1的图象不经过第二象限,正确,不合题意;D 、函数y=﹣的值,在每个象限内,y 随x 的值的增大而增大,故错误,符合题意.故选:D .6. (2016·四川乐山·3动时,点C 图象上运动,若tan ()A 2()C 6答案:D解析:连结CO 所以,CO ⊥AB ,因为tan 作AE ⊥x 轴,CD ⊥x 轴于则有△OCD ∽△OEA 设C (m ,n ),则有A 所以,k n m =解①②得:k =87. (2016·四川凉山州·4分)二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是( )A.B.C.D.【考点】反比例函数的图象;一次函数的图象;二次函数的图象.【分析】根据二次函数的图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【解答】解:观察二次函数图象可知:开口向上,a>0;对称轴大于0,﹣>0,b<0;二次函数图象与y轴交点在y轴的正半轴,c >0.∵反比例函数中k=﹣a<0,∴反比例函数图象在第二、四象限内;∵一次函数y=bx﹣c中,b<0,﹣c<0,∴一次函数图象经过第二、三、四象限.故选C.8. (2016,湖北宜昌,15,3分)函数y=的图象可能是( )A.B.C.D.【考点】反比例函数的图象.【分析】函数y=是反比例y=的图象向左移动一个单位,根据反比例函数的图象特点判断即可.【解答】解:函数y=是反比例y=的图象向左移动一个单位,即函数y=是图象是反比例y=的图象双曲线向左移动一个单位.故选C【点评】此题是反比例函数的图象,主要考查了反比例函数的图象是双曲线,掌握函数图象的平移是解本题的关键.9. (2016吉林长春,8,3分)如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积( )A.减小B.增大C.先减小后增大D.先增大后减小【考点】反比例函数系数k的几何意义.【分析】首先利用m和n表示出AC和AQ的长,则四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断.【解答】解:AC=m﹣1,CQ=n,则S四边形ACQE=AC•CQ=(m﹣1)n=mn﹣n.∵P (1,4)、Q (m ,n )在函数y=(x >0)的图象上,∴mn=k=4(常数).∴S 四边形ACQE =AC •CQ=4﹣n ,∵当m >1时,n 随m 的增大而减小,∴S 四边形ACQE =4﹣n 随m 的增大而增大.故选B .【点评】本题考查了二次函数的性质以及矩形的面积的计算,利用n 表示出四边形ACQE 的面积是关键.10. (2016兰州,2,4分)反比例函数的图像在()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数综合测试题 精选
一、选择题:
1. 已知反比例函数x
k
y =
的图象经过点)2,1(,则函数kx y -=可确定为( ) A. x y 2-=
B. x y 2
1
-= C. x y 21= D. x y 2=
2. 反比例函数的图象经过点)2,3(,那么下列各点在此函数图象上的是( )
A. )23,2(-
B. )32,
9(
C. )32,3(-
D. )2
3
,6( 3. 如右图,某个反比例函数的图象经过点P ,则它的解析式为( )
A. )0(1>=x x y
B. )0(1
>-=x x
y C. )0(1<=x x y D. )0(1<-=x x
y
4. 已知反比例函数x
y 1
-=的图象上有两点),(11y x A 、),(22y x B 21x x <,那么下列结论正确
的是( )
A. 21y y <
B. 21y y >
C. 21y y =
D.1y 与2y 之间的大小关系不能确定 5、已知反比例函数x
k
y =
的图象如下图,则函数2-=kx y 的图象是下图中的( )
6、已知关于x 的函数
)
1(-=x k y 和x
k
y -=(k ≠0),它们在同一坐标系内的图象大致是( )
7、如图,点A 是反比例函数`
4
x y =
图象上一点,AB ⊥y 轴于点B ,则△AOB 的面积是( ) A. 1
B. 2
C. 3
D. 4
1
-1 O x
y
O
x
y
x
O -2 y
x
O 2
y
A
B
x
2
y
C x
-2 y
D
y
O x
y
A
O x
y
B
O x
y
C
O x
y
D
8.某闭合电路中,电源的电压为定值,电流I (A )与电阻R (Ω)成反比例. 右图表示的是该电路中电流I 与电阻R 之间的图象,则用电阻R 表示电流I 的函数解析式为( )
A. R I 2=
B. R I 3
=
C. R I 6=
D. R
I 6-=
二、填空题:
9.点)6,1(在双曲线x
k
y =上,则k =______________.
10.近视眼镜的度数y (度)与镜片焦距x (米)成反比例. 已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式是_____________.
11.已知反比例函数x
y 6
-=的图象经过点),2(a P ,则a =__________.
三、解答题:
12.已知一次函数k kx y +=的图象与反比例函数x
y 8
-=的图象在第一象限交于点),4(n B ,求
k ,n 的值.
13.已知反比例函数x
k
y =的图象与一次函数m kx y +=的图象相交于点)1,2(.
(1)分别求这两个函数的解析式.
(2)试判断点)5,1(--P 关于x 轴的对称点'P 是否在一次函数m kx y +=的图象上. 14.反比例函数x
k
y =
的图象经过点)3,2(A . (1)求这个函数的解析式;
(2)请判断点)6,1(B 是否在这个反比例函数的图象上,并说明理由.
15.如图(10),已知一次函数y k x b =+的图象与反比例函数y x
=-
8
的图象交于A 、B 两点,
O R (Ω)
I (A) (3,2)
3 2
且点A 的横坐标和点B 的纵坐标都是-2, 求:(1)一次函数的解析式 (2)∆A O B
的面积
16.如右图,△OPQ 是边长为2的等边三角形,若反比例函数的图象过点P ,求它的解析式
17.反比例函数x
y 8
-=与一次函数2+-=x y 的图象交于A 、B 两点.
(1)求A 、B 两点的坐标; (2)求△AOB 的面积.
18.已知反比例函数)0(≠=k x
k
y 和一次函数6--=x y .
(1)若一函数和反比例函数的图象交于点),3(m -,求m 和k 的值.
(2)当k 满足什么条件时,这两个函数的图象有两个不同的交点?
(3)当2-=k 时,设(2)中的两个函数图象的交点分别为A 、B ,试判断A 、B 两点分别
在第几象限?∠AOB 是锐角还是钝角(只要求直接写出结论)?
O P Q x
y
20. 如图已知一次函数y k x b k =+≠()0的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y m
x
m =
≠()0的图象在第一象限交于点C ,CD 垂直于x 轴,垂足为D ,O A O B O D ===1 ①求点A 、B 、D 的坐标;
②求这一次函数和反比例函数的解析式; ③求S S BODC ADC :∆。