Ultra high energy photon showers in magnetic fieldangular distribution of produced particle
新方法可使高太阳能电池自清洁且高效率
入 电路从而产生 电流 。G P F 的优势在 于,其非常 廉 价 ,不 需 要 昂 贵 的 添 加 剂 或 复 杂 的 加 _ , 并 1 且 还 能 被 封 装 成 独 立 的 、 不 需 要 外 光 源 的燃 料 电池 。科 学 家 相 信 , 此 能源 装 置 缩 小 后 可 用 来 驱动微小的纳米设备 。 ( 周洪英 )
科 彼 1 思 吾
度 反 应 离 子蚀 刻 方 法 , 在 硅
瑞典提取小母绿色粘|物 7 I c 造太l f电; li 也 BE
表面 制造 金字塔 形 的纳米 结构 。然 后 ,将 硅 品 片 作 为 模 板 来 创 建 弹 性 印 记 ,将 原 始 的 纳 米 结 构 复制到 宽范 围 的聚 合物 上 。不 同于光滑 的硅 表面 会反 映散 乱的光 线 ,纳米 结构硅 和聚 合物 表 面 儿 乎 完 仝 无 反 射 。他 们 使 从 空 气 到 基 材 的 折 射 指 数 可 以平 滑 地 过 渡 , 从 而 降 低 了在 宽 的 波 长 范 围 内 的反 射 率 。 这 种非反 射面 是提 高太 阳能 电池 效率所 需 要 的。如果聚 合物 纳米 结构 涂 以低表 而能薄 膜 涂 层 ,可使 太 阳能 电池获得 又一 重要 改进 ,实 现 自清 洁 。 该 方 法 可 被 放 大 , 并 可 在 工 业 上 被 应 用 于 简单 的、低成本的制造大面积 的纳米 结构 。
S 》上。 )
l4 2 1 年 第7 第5 6 ( 第3 - 9 ) 2 O 0 卷 —期 总 8 3期
人 员研发 出 一 种柔 软灵活 、能控制 光线 的超 常 材 料 ,这种 材料 更 易用于 制造 一种 隐身羊 毛衫 或其他 类 型的 隐身衣 ,让 人们 离真 正意义 上的 可见光 下 隐身衣 又近 了 步 。有 关研 究结 果发 表 于近 期的 《 新物理学刊》上 。 要使 隐身衣 在可 见光 下起作 用 ,其组成 而
前驱体转化法制备超高温陶瓷粉体研究进展
第42卷第8期2023年8月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.42㊀No.8August,2023前驱体转化法制备超高温陶瓷粉体研究进展孙楚函,王洪磊,周新贵(国防科技大学空天科学学院,新型陶瓷纤维及其复合材料重点实验室,长沙㊀410073)摘要:超高温陶瓷(UHTC)在航空航天的热防护领域具有重要作用,高质量的UHTC 粉体是制备高性能UHTC 的重要原料㊂在制备UHTC 粉体的工艺中,前驱体转化法制备的粉体纯度高㊁粒径小㊁各组分分布均匀,具有广阔的应用前景㊂本文根据前驱体合成机理将UHTC 前驱体转化法分为金属醇盐配合物合成法㊁基于格氏反应合成法以及引入支链合成法,综述了近年来通过三种方法制备UHTC 粉体的研究进展,分析总结了三种方法的优缺点,指出了UHTC 前驱体转化法目前存在的问题以及未来发展方向㊂关键词:前驱体转化法;超高温陶瓷粉体;反应机理;碳热还原;陶瓷产率;微观结构中图分类号:TH145㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2023)08-2865-16Research Progress on Ultra-High Temperature Ceramics Powder Prepared by Precursor-Derived MethodSUN Chuhan ,WANG Honglei ,ZHOU Xingui(Science and Technology on Advanced Ceramic Fibers and Composites Laboratory,College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China)Abstract :Ultra-high temperature ceramics (UHTC)plays an important role in the field of thermal protection in aerospace.High quality UHTC powder is important raw material for the preparation of high performance UHTC.In the process of preparing UHTC powder,the powder prepared by precursor-derived method has high purity,small particle size and uniform distribution of component,so it has broad application prospects.According to the synthesis mechanism of precursor,the precursor-derived methods of UHTC were divided into metal alkoxides complex synthesis method,synthesis based on Grignard reaction method and synthesis by introducing branch chains method.The research progress of preparation of UHTCby three methods in recent years was reviewed.The advantages and disadvantages of three methods were analyzed and summarized.The existing problems and future development direction of the UHTC powder prepared by precursor-derived method were pointed out.Key words :precursor-derived method;ultra-high temperature ceramics powder;reaction mechanism;carbothermic reduction;ceramic yield;microstructure 收稿日期:2023-04-12;修订日期:2023-05-30作者简介:孙楚函(2001 ),男,硕士研究生㊂主要从事超高温陶瓷的研究㊂E-mail:151****6953@通信作者:王洪磊,博士,副教授㊂E-mail:honglei.wang@0㊀引㊀言近年来,航空航天技术快速发展,先进飞行器正朝着高机动㊁轻质化㊁低成本和可重复使用等方向发展[1],其发动机热端㊁鼻锥和机翼前缘等部件往往要承受2000ħ甚至3000ħ以上的高温,同时还将处于高温氧化㊁热疲劳和高应力等恶劣服役条件下[2-5],传统的难熔合金材料难以满足使用要求,而超高温陶瓷(ultra-high temperature ceramics,UHTC)因其优良的性能已成为该领域的研究重点[6-8]㊂超高温陶瓷一般是指熔点超过3000ħ,且在高温㊁高载荷等极端环境下仍能保持物理及化学性能稳定的过渡金属化合物,主要包括第IVB 族和第VB 族的钛(Ti)㊁锆(Zr)㊁铪(Hf)和钽(Ta)的硼化物㊁氮化物和碳化物[9-10]㊂表1列出了常见UHTC 的物理及力学性能[10-29](HCP 为密排六方结构,FCC 为面心立方结构)㊂2866㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷表1㊀常见超高温陶瓷的物理及力学性能Table1㊀Physical and mechanical properties of common ultra-high temperature ceramicsMaterial Crystalstructure Meltingpoint/ħDensity/(g㊃cm-3)CTE/(10-6㊃K-1)Thermalconductivity/(W㊃m-1㊃K-1)Elasticmodulus/GPaHardness/GPa ReferenceTaB2HCP304012.58.54155126[12-15] TiB2HCP3225 4.58.66556025[11-13,16] ZrB2HCP3245 6.1 6.26048923[12-13,17-18] HfB2HCP338011.2 6.610448028[12-13,17-18] TiC FCC3100 4.97.41740026[13,16,19-20] ZrC FCC3530 6.6 6.72036933[17,19-23] TaC FCC388014.5 6.32250322[17,24-25] HfC FCC389012.7 6.62245229[17,19-23] TaN FCC308713.4 3.2849010[10,26-27] TiN FCC2950 5.49.32946021[10,13,19,26,28] ZrN FCC29507.37.22039016[10,13,19,26,28-29] HfN FCC338513.9 6.92138516[10,13,19,26,28]㊀㊀Note:CTE,coefficient of thermal expansion.高质量UHTC粉体是制备高性能UHTC的关键,UHTC粉体的传统合成工艺是利用相应的金属氧化物粉体经碳热还原反应实现的㊂但原料颗粒的尺寸较大㊁反应物无法充分接触以及可能存在杂质等因素,导致反应温度较高㊁产物晶粒尺寸过大㊁纯度不高等问题,使其应用存在较大的局限性㊂近年来被广泛研究的前驱体转化法是通过化学手段在溶液体系中合成一类包括合成陶瓷时所需元素的金属有机聚合物,再将前驱体在一定温度范围进行交联㊁热解,最终得到陶瓷粉体产物的方法㊂前驱体转化法可对前驱体分子结构进行设计,且在制备过程中具有很好的加工性,可应用于制备陶瓷粉体㊁纤维㊁涂层和复合材料等[30]㊂由于原料组分可以在分子层面均匀混合,缩短元素间的扩散距离,进而降低热解温度,这避免了晶粒粗大的问题,且使产物的相组成分布均匀㊂前驱体转化为陶瓷粉体主要包含两个过程:1)在100~400ħ低温条件下的交联过程中,前驱体分子将交联形成不熔的网状结构;2)在600~1400ħ高温条件下的热解过程中,在600~1000ħ时交联的前驱体发生有机-无机转变,生成非晶陶瓷,继续升高热解温度则会发生相分离与结晶化过程,最终得到多晶陶瓷㊂含氧前驱体会额外发生碳热还原反应,将氧化物陶瓷转化为碳化物陶瓷[31]㊂目前合成UHTC前驱体的工艺按照反应机理可大致分为三类:一是采用金属醇盐配合物经水解缩合形成聚合物前驱体;二是以格氏反应为核心合成单体,再经缩合反应得到聚合物前驱体;三是将有机金属化合物单体作为支链引入聚合物,从而得到目标前驱体㊂1㊀金属醇盐配合物前驱体制备UHTC粉体在制备金属醇盐配合物前驱体的过程中,主要采用过渡金属氯化物作为金属源,通过与醇的取代反应得到金属醇盐㊂由于金属醇盐水解剧烈,利用乙酰丙酮等配体与金属醇盐反应形成配合物以实现可控水解缩合,得到聚合物前驱体㊂同时为保证后续碳热还原反应充分,往往还需向前驱体溶液中加入碳源㊂该方法既可以利用单种金属醇盐配合物制备单相高纯UHTC粉体,也可以通过引入多种金属醇盐配合物制备UHTC 固溶体粉体,或引入含Si聚合物制备复相UHTC粉体㊂1.1㊀金属醇盐配合物前驱体制备单相UHTC粉体TaC具有高熔点㊁高硬度和高强度等诸多优点,是超高温碳化物陶瓷的研究热点之一㊂Jiang等[32]以TaCl5为钽源,酚醛树脂为碳源,乙醇和乙酰丙酮为溶剂,混合得到TaC的前驱体溶液㊂随后在80ħ下固化, 200ħ下保温2h除去溶剂,在1000ħ时开始发生碳热还原反应,1200ħ时反应完全,得到的TaC陶瓷粉体元素分布均匀,平均晶粒尺寸为40nm,但陶瓷产率为57%(质量分数),仍有提升空间㊂图1为前驱体合成和热解过程中可能发生的反应(Hacac为乙酰丙酮;acac为失去一个H原子的乙酰丙酮根)㊂第8期孙楚函等:前驱体转化法制备超高温陶瓷粉体研究进展2867㊀图1㊀TaC 前驱体制备可能发生的反应机理[32]Fig.1㊀Possible reaction mechanism for preparation of TaC precursor [32]常规的前驱体碳热还原法包括前驱体合成㊁固化㊁惰性气氛热解以及最终的碳热还原处理等多个步骤,存在反应时间长㊁生产效率低的问题㊂为优化生产工艺,Cheng 等[33]通过高温喷雾热解(high temperature spray pyrolysis,HTSP)工艺,低成本㊁单步合成了纳米TaC 粉体㊂TaC 前驱体溶液由TaCl 5和酚醛树脂溶解在乙醇和1-戊醇中得到,然后通过喷雾器将其破碎成细小的液滴,液滴处在Ar 气氛的高温管式炉中,再经过溶剂一次性去除㊁热解和1650ħ的快速原位碳热还原,在几分钟内即可制得纳米TaC 粉体㊂但由于采用的是医用雾化器,难以产生足够细小的液滴,且部分产物附着在管式炉内壁上,所以生成的TaC 颗粒存在团聚现象,产率较低,工艺流程需要继续改进㊂图2为高温喷雾热解示意图(CTR 为碳热还原反应)㊂图2㊀高温喷雾热解示意图[33]Fig.2㊀Schematic diagram of high temperature spray pyrolysis [33]单相UHTC 的高温抗氧化能力较弱,尤其是过渡金属碳化物表面被氧化后,无法生成致密氧化膜来阻止内部被进一步氧化㊂例如,当HfC 暴露在空气中时,400ħ以上就开始氧化[34],TaC 在850ħ时即会被完全氧化[35]㊂在实际应用过程中,使用单相UHTC 的情况较少㊂1.2㊀金属醇盐配合物前驱体制备UHTC 固溶体粉体为改善TaC 和HfC 的抗氧化性能,Zhang 等[36]系统地研究了Ta-Hf-C 三元陶瓷在1400~1600ħ等温条件下各种成分的氧化机理,研究表明氧化过程取决于成分㊂与单相TaC 和HfC 陶瓷相比,1TaC-1HfC 和1TaC-3HfC 的抗氧化性显著提高,这是因为氧化生成的三维共晶Hf 6Ta 2O 17-Ta 2O 5结构和致密纯Hf 6Ta 2O 17层都能够抑制O 2扩散,改善抗氧化性㊂因此,与单相UHTC 相比,使用钽醇盐配合物与铪醇盐配合物混合得到前驱体所制备的UHTC 固溶体具有更好的抗高温氧化能力[37]㊂在碳热还原过程中,多相氧化物由于各相反应活化能不同,往往会发生某相优先析出㊁碳化物之间固溶不充分和碳源过剩等问题㊂为解决以上问题,蒋进明[38]以Ta㊁Hf㊁Zr 的氯化物为金属源,乙酰丙酮多齿配体为螯合剂,酚醛树脂为碳源,经200ħ溶剂热处理12h,合成出具有多层核壳结构的前驱体㊂前驱体中心区富含Ta㊁次外层富含Hf(Zr),外壳由树脂包覆㊂该结构的前驱体在热解过程中可以实现外层碳原子向内核逐层扩散,使元素分布均匀,得到粒径为200~300nm 的Ta-Hf(Zr)-C 三元陶瓷纳米粉体㊂图3为Ta-Hf(Zr)-C 碳热还原转化机理示意图㊂2868㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷图3㊀Ta-Hf(Zr)-C 碳热还原转化机理示意图[38]Fig.3㊀Schematic diagram for carbothermal reduction synthesis of Ta-Hf(Zr)-C [38]TaC 和HfC 晶体结构相同(均为NaCl 结构)且晶格常数相近(分别为0.445和0.464nm),可以形成不同比例的固溶体,其中Ta 4HfC 5具有目前已知物质中的最高熔点4215ħ[39],是一种极具发展前景的耐超高温陶瓷㊂Cheng 等[40]等以酚醛树脂作为碳源,与摩尔比为4ʒ1的TaCl 5和HfCl 4溶解在乙醇和乙酰丙酮的混合溶剂中,经过磁力搅拌得到Ta 4HfC 5前驱体溶液,随后在Ar 气氛中200ħ油浴交联固化2h,再通过真空蒸馏除去剩余溶剂,接下来在Ar 气氛中进行热解,Ta 2O 5的碳热还原在1000ħ左右开始,1200~1400ħ时,Hf 6Ta 2O 17的碳热还原以及TaC 和HfC 之间的固溶反应同时发生,最后HfC 和TaC 在1800ħ下固溶充分反应,得到粒度为200~300nm㊁元素分布均匀的Ta 4HfC 5粉体㊂高温下生成的熔融Hf 6Ta 2O 17层可作为氧扩散屏障,使得陶瓷具有优秀的高温抗烧蚀性能㊂但1800ħ的固溶温度过高,不利于得到晶粒细小的高质量粉体㊂图4㊀Ta 4HfC 5粉体TEM 照片[42]Fig.4㊀TEM image of Ta 4HfC 5powder [42]改进前驱体合成工艺可以降低HfC 和TaC 发生固溶反应的温度㊂Lu 等[41]利用摩尔比4ʒ1的TaCl 5和HfCl 4与三乙胺㊁甲基叔丁基醚和乙酰丙酮反应后缩聚,得到聚钽铪氧烷(polytantahafnoxane,PTHO),再将其与含烯丙基的树脂混合即得到Ta 4HfC 5前驱体,固化后在1600ħ下热解制备得到了Ta 4HfC 5粉体㊂孙娅楠等[42]则将含烯丙基的树脂替换为酚醛树脂,与PTHO 混合后得到了Ta 4HfC 5前驱体,将前驱体在250ħ下保温2h 以固化,随后在Ar 气氛中1350~1450ħ热解1.5~3.0h,得到粒径为100~200nm㊁晶粒尺寸为25~50nm 的Ta 4HfC 5粉体㊂图4为Ta 4HfC 5粉体的TEM 照片㊂综合以上研究发现,固溶反应发生的温度普遍高于碳热还原反应㊂与Cheng 等[40]和Lu 等[41]相比,孙娅楠等[42]将固溶反应完成温度从1800ħ降至1450ħ,且所得陶瓷粉体粒径更小㊂通过金属醇盐配合物前驱体制备的超高温陶瓷粉体多为碳化物,也可以通过向前驱体溶液中加入硼酸以制备硼化物复相陶瓷粉体㊂IVB 族硼化物陶瓷ZrB 2和HfB 2在高于1200ħ的氧化环境中,表面的B 2O 3保护层将蒸发,因此主要依赖于ZrO 2或HfO 2层作为抗氧化屏障[43-44]㊂在向ZrB 2和HfB 2中添加高价阳离子Ta 5+后,氧化生成的Ta 2O 5可以填充氧晶格空位以减缓O 2传输速率,并与ZrO 2或HfO 2形成中间相,从而增强相稳定性[45]㊂Xie 等[46]采用乙酰丙酮与Zr(OPr)4通过回流生成Zr(OPr)4-x (acac)x ,得到ZrO 2前驱体㊂类似地,使用Ta(OC 2H 5)4作为Ta 源合成Ta 2O 5前驱体,然后在溶液中分别加入酚醛树脂和硼酸,将溶液浓缩㊁干燥获得前驱体粉末后,在800~1800ħ的Ar 气氛中热解,热解过程中金属氧化物优先进行碳热还原生成金属碳化物,在硼源过量的情况下会继续反应生成金属二硼化物㊂图5为ZrB 2-TaB 2在1300ħ热第8期孙楚函等:前驱体转化法制备超高温陶瓷粉体研究进展2869㊀图5㊀ZrB 2-TaB 2在1300ħ热处理2h 的SEM 照片[46]Fig.5㊀SEM image of ZrB 2-TaB 2after heat treated at 1300ħfor 2h [46]处理2h 的SEM 照片㊂ZrB 2和TaB 2之间的固溶反应从1400ħ开始,1800ħ时TaB 2相完全消失㊂与由ZrB 2和TaB 2两相混合的陶瓷粉体相比,固溶体陶瓷粉体在性能上具有哪些差异值得继续研究㊂1.3㊀金属醇盐配合物前驱体制备复相UHTC 粉体另一种提高UHTC 抗氧化性能的方法则是引入SiC,高温下SiC 氧化生成的玻璃相SiO 2可提高多孔结构的金属氧化物致密度,具有良好的抗高温氧化和抗烧蚀性[47]㊂同时两种成分在结晶过程中的相互抑制效应可以起到细化晶粒的作用㊂聚碳硅烷(polycarbosilane,PCS)是一种以Si 和C 交替排列作为聚合物骨架的有机硅化合物,常被用来作为制备SiC 的前驱体[48]㊂Lu 等[49]以三乙胺为共沉淀剂,用TaCl 5㊁正丁醇和乙酰丙酮反应制备得到Ta 2O 5前驱体溶液,将其与PCS 混合后蒸馏得到TaC-SiC 前驱体溶液,前驱体充分交联固化后,在1600ħ的Ar 气氛中热解2h,得到了平均晶粒尺寸50nm 的TaC-SiC 陶瓷粉体㊂图6为1800ħ热解的TaC-SiC 陶瓷粉体的HR-TEM 照片(标尺101/nm 为10个1/nm,下文图17㊁18中标尺含义类似)㊂由图6可知,TaC 和SiC 晶粒以接近球形的形态均匀分散,同时还有少量无定形碳嵌在晶界位置㊂该前驱体合成方法同样适用于IVB 族UHTC,可推广用于制备ZrC-SiC 和HfC-SiC㊂图6㊀1800ħ热解的TaC-SiC 陶瓷粉体的HR-TEM 照片[49]Fig.6㊀HR-TEM images of TaC-SiC ceramics powder pyrolyzed at 1800ħ[49]PCS 的交联主要依靠硅氢化反应,通过向前驱体中加入如二乙烯基苯(divinylbenzene,DVB)等含不饱和C C 键的物质可以进一步提升前驱体的交联程度㊂Cai 等[50]利用该原理,以HfCl 4与异丙醇和乙酰丙酮反应得到铪醇盐配合物,再通过水解得到HfO 2前驱体(polyhafnoxane,PHO),随后将PHO 与PCS 和DVB 混合,控制n (Hf)/n (Si)摩尔比为1ʒ1,交联后在1600ħ下碳热还原得到了元素分布均匀㊁结晶质量高㊁粒径分布窄的HfC-SiC 复相陶瓷粉末㊂图7为HfC-SiC 复相陶瓷的TEM 照片,可以观察到分别属于HfC 和SiC 的晶格条纹㊂由于PHO 的弱极性,其与PCS 和DVB 具有良好的相容性,可以大范围改变n (Hf)/n (Si)摩尔比来调控陶瓷粉体成分㊂合成前驱体的单体中交联位点越多,前驱体越易形成高度交联的三维网状结构㊂每个四乙氧基硅烷(tetraethoxysilane,TEOS)分子中含有四个Si O C 键可供交联,是另一种理想的制备含Si 前驱体的原料㊂Patra 等[51]采用TEOS 与HfCl 4㊁乙酰丙酮㊁对苯二酚反应合成HfC-SiC 前驱体㊂经过回流和固化后,在1500ħ的Ar 气氛中发生碳热还原反应,生成HfC-SiC 陶瓷粉体㊂图8为1500ħ热解的HfC-SiC 前驱体亮场TEM 照片和平均粒径㊂由图8可知,碳热还原所生成的球形HfC 和SiC 颗粒平均尺寸为25~50nm㊂由于对苯二酚和四乙氧基硅烷具有较高的C㊁Si 含量,因此前驱体在热解过程中质量损失较少,1600ħ时陶瓷产率高达65%,具有很好的应用前景㊂PCS 作为SiC 前驱体的缺陷在于其常温下为固态,需要利用二甲苯等有机溶剂将其配制成溶液使用,增2870㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷加了前驱体合成的复杂程度㊂Wang 等[52]采用常温下为液态的低分子量SiC 前驱体(LPVCS)与HfCl 4㊁乙酰丙酮和1,4-丁二醇反应合成了HfC-SiC 前驱体(PHCS)㊂HfO 2和SiO 2的碳热还原主要发生在1400~1600ħ,生成的HfC-SiC 复相陶瓷粉体的SEM 照片和EDS 分析如图9所示㊂与PCS 相比,LPVCS 结构中引入的V4分子具有 CH CH 2基团,可在较低温度下实现自交联,有利于陶瓷产率的提升[53]㊂同时LPVCS 中较高的碳含量可以补偿PHCO 热解产物中碳含量的不足,制备出不含HfO 2和微量游离碳的高性能HfC-SiC 陶瓷㊂图7㊀1600ħ热解的HfC-SiC 粉末TEM 照片[50]Fig.7㊀TEM images of HfC-SiC powder pyrolyzed at 1600ħ[50]图8㊀1500ħ热解的HfC-SiC 前驱体亮场TEM 照片和平均粒径[51]Fig.8㊀Bright-field TEM image and average particle size of HfC-SiC precursor pyrolyzed at 1500ħ[51]第8期孙楚函等:前驱体转化法制备超高温陶瓷粉体研究进展2871㊀图9㊀HfC-SiC 粉末的SEM 照片和EDS 分析[52]Fig.9㊀SEM images and EDS analysis of HfC-SiC powder [52]㊀㊀综上可见,合成金属醇盐配合物前驱体所需的原料结构简单,反应时间较短㊂但由于前驱体中存在氧元素,有可能会导致生成的UHTC 粉体中有氧残留,使陶瓷高温抗氧化性能和机械性能下降㊂另外为防止金属醇盐水解,该反应需全程在惰性气氛中进行,对设备要求较高㊂2㊀基于格氏反应的前驱体制备UHTC 粉体基于格氏反应的前驱体制备工艺主要采用茂金属化合物和含不饱和键的格氏试剂合成单体,再通过与非金属源分子的聚合反应得到前驱体㊂金属醇盐配合物前驱体的各目标元素由不同种聚合物提供,多数通过机械搅拌的方法实现分子间的混合㊂不同的是,基于格氏反应的前驱体中金属源与非金属源在同种聚合物分子中,实现了分子内的混合㊂所合成的聚合物分子包括线型聚合物与网状聚合物㊂2.1㊀线型聚合物前驱体制备UHTC 粉体合成线型聚合物前驱体的原料通常依靠分子两端的基团发生缩聚反应,交联程度相较于网状聚合物更低,可以通过在主链上插入交联位点来减少热解过程中的质量损失㊂Cheng 等[54]在四氢呋喃(tetrahydrofuran,THF)溶剂中利用反-1,4-二溴-2-丁烯与镁反应制备格氏试剂,再与Cp 2HfCl 2和氯甲基三甲基硅烷通过缩聚合成了主链包含Hf C㊁Si C 和 CH CH 基团的线性PHCS 前驱体聚合物,图10为前驱体合成过程中可能发生的化学反应㊂前驱体在经过1600ħ热解后得到了元素分布均匀的HfC-SiC 纳米复合陶瓷粉体㊂前驱体主链中的不饱和 CH 2CH CHCH 2 基团提供了潜在的交联位点或反应位点,可用于后续固化或改性㊂图10㊀PHCS 前驱体合成过程中可能发生的反应[54]Fig.10㊀Reactions that may occur during synthesis of PHCS precursors [54]基于格氏反应的MC-SiC(M =Zr,Hf)前驱体分子结构中往往含有M C Si 键,普遍认为该键是由格氏反应所致㊂Gao 等[55]提出了一种新的前驱体合成机制,该机制基于㊃MgCl 辅助下的活性物质Cp 2Zr(II)的自由基聚合,合成过程如图11所示,首先将二氯二茂锆Cp 2ZrCl 2与Mg 和四氢呋喃在60ħ下搅拌混合2872㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷4h 后冷却,得到活性物质双环戊二烯基锆Cp 2Zr (II),再将Cp 2Zr (II)分别与CH 3Si (CH CH 2)Cl 2和(CH 3)2Si(CH 2Cl)2在110ħ下反应16h,经过冷却过滤并真空浓缩得到了含有[ Zr C Si ]n 主链结构的单源聚合物前驱体聚锆碳硅烷(PZCS-1,PZCS-2)㊂随后将前驱体在N 2气氛中进行热解,SiO 2和ZrO 2相在1000ħ时析出,随着温度继续升高转化为SiC 和ZrC 相,且均匀分布在自由碳基体中,形成ZrC /SiC /C 复合陶瓷㊂由于该前驱体为线型聚合物且不含可作为交联位点的不饱和基团,热解过程中质量损失较为严重,900ħ时陶瓷产率仅有43.9%㊂图11㊀PZCS-2前驱体合成过程[55]Fig.11㊀Synthesis process of the PZCS-2precursor [55]2.2㊀网状聚合物前驱体制备UHTC 粉体与线型聚合物前驱体相比,合成网状聚合物前驱体的原料多含有三个以上的交联位点,前驱体交联程度高,质量损失较少,有利于陶瓷产率的提高㊂Wang 等[56]通过格氏反应将Cp 2ZrCl 2和CH 2 CHMgCl 制成Cp 2Zr(CH CH 2)2,然后将其与B 源H 3B㊃SMe 2混合,利用氢化反应得到网状结构的大分子前驱体聚锆碳硼烷(polyzirconcarborane,PZCB),合成机理如图12所示㊂随后将前驱体放置于Ar 气氛的石墨管式炉中进行热解,1600ħ时碳热还原完全,得到充分结晶且分布均匀的ZrC-ZrB 2陶瓷粉体,继续加热至2200ħ,产物失重仅为2.5%,说明该复相陶瓷粉体具有良好的耐热性㊂在该合成过程中,利用了硼烷分子具有三个反应位点的特征,以其作为骨架合成了网状大分子,使得前驱体充分交联㊂SiBNC 非晶陶瓷在2000ħ仍具有很好的高温稳定性,而引入过渡金属元素可以进一步抑制其在高温下的结晶与氧化[57]㊂龙鑫[58]将锆源(Cp 2ZrCl 2)与格氏试剂(CH 2 CHCH 2MgCl)反应制备得到双官能度的活性单体(PZC),然后引入低分子量聚硼硅氮烷(LPBSZ),PZC 中的C C 键与LPBSZ 中的Si H 发生硅氢化反应,ZrC /SiBNC 前驱体合成机理如图13所示(Me 3Si 为三甲基亚砜)㊂未参与反应的C C 键则为后续交联提供活性位点,最终形成网状结构的ZrC /SiBNC 前驱体㊂随后将前驱体置于Ar 气氛中经过1200ħ热解生成ZrC /SiBNC 陶瓷粉体,其中ZrC 纳米颗粒均匀分散在无定形SiBNC 基体中㊂ZrC 相提高了SiBNC 的第8期孙楚函等:前驱体转化法制备超高温陶瓷粉体研究进展2873㊀热稳定性,经过1800ħ以上高温处理后,ZrC /SiBNC 仍能够保持均匀细小的纳米晶结构,同时SiBNC 也改善了ZrC 的耐高温氧化性能㊂但该前驱体的不足之处在于碳含量过高导致陶瓷粉体产物中含有过量的碳,影响UHTC 的高温抗氧化性能㊂图12㊀PZCB 前驱体合成机理[56]Fig.12㊀Synthesis mechanism of PZCB precursor[56]图13㊀ZrC /SiBNC 前驱体合成机理[58]Fig.13㊀Synthesis mechanism of ZrC /SiBNC precursor [58]基于格氏反应的前驱体制备工艺实现了各目标元素在聚合物分子内的混合,比金属醇盐配合物前驱体混合更加充分,能更好地避免陶瓷产物中元素偏析现象的发生㊂同时原料中不含氧元素,热解过程中不会发生碳热还原反应,能降低热解温度㊂但该工艺的原料结构较为复杂,反应时间较长,为避免合成过程中引入空气中的氧等杂质,反应必须在保护气氛中进行,对设备要求较高㊂3㊀引入支链的前驱体制备UHTC 粉体在制备引入支链的前驱体过程中,需以一种聚合物分子作为主链,再将其他含目标元素的小分子通过反应作为支链连接到主链上㊂常见的作为主链的大分子有聚碳硅烷和聚硅氮烷等,其分子结构中包含大量可与含目标元素的小分子发生交联反应的基团,同时自身足够大的分子量可避免在热处理过程中分解挥发㊂3.1㊀以聚碳硅烷作主链制备UHTC 粉体聚碳硅烷的主链由Si 和C 交替组成,Si 和C 上连接有H 或 CH 2 CH CH 2等基团作为交联位点[48],通过向主链上引入UHTC 组分,热解后可原位生成含SiC 的UHTC 粉体㊂Amorós 等[59]系统性地研究2874㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷图14㊀1350ħ热解的SiC-TiC-C 陶瓷粉体的SEM 照片[59]Fig.14㊀SEM image of SiC-TiC-C ceramics powder pyrolyzed at 1350ħ[59]了采用聚二甲基硅烷(polydimethylsiloxane,PDMS)和PCS 与Cp 2MCl(M =Ti,Zr,Hf)反应制备SiC-MC-C 陶瓷粉体的机理和工艺流程㊂与PDMS 相比,PCS 中的Si H 键促进了前驱体的交联,提高了陶瓷产率,金属配合物则通过取代反应连接在前驱体的网状结构中㊂经过900ħ热解后,前驱体转变为非晶态陶瓷,结晶化在1350ħ下基本完成,生成由β-SiC㊁MC 以及自由碳组成的复相陶瓷粉体,但仍有部分非晶态物质存在㊂图14是1350ħ热解所得的SiC-TiC-C 陶瓷粉体的SEM 照片㊂该研究采用同种前驱体转化工艺成功制备出了含IVB 族三种元素碳化物的复相UHTC 粉体,但对热解过程的探究不够深入,1350ħ时结晶尚未完成㊂通过对PCS 进行改性,可以进一步提高前驱体交联程度㊂Yu 等[60]以含烯丙基的聚碳硅烷AHPCS(商品名SMP10)为SiC 源,与TaCl 5的CHCl 3溶液混合后,在真空中加热至160ħ脱除溶剂得到前驱体,前驱体合成过程如图15所示,随后将前驱体在Ar 气氛下的管式炉中进行热解,得到SiC-TaC-C 陶瓷粉体㊂研究发现,随着热解温度升高,前驱体由于发生脱氢耦合反应而失重,在900ħ时聚合物完全转化为非晶陶瓷粉末,1200ħ时TaC 相开始析出,并被非晶态碳薄壳所包裹,形成核壳结构的TaC@C 纳米颗粒,而β-SiC 相则在1400ħ下结晶㊂所得的β-SiC 和TaC 的晶粒尺寸均小于30nm㊂前驱体热解后的游离碳需要通过生成TaC 来消耗,由于没有额外添加碳源,所以需要准确掌握TaCl 5和AHPCS 的比例以保证陶瓷产物中有少量包裹在TaC 晶粒表面的游离碳㊂图15㊀SiC-TaC-C 前驱体合成过程[60]Fig.15㊀Synthesis of SiC-TaC-C precursor [60]在利用引入支链的前驱体制备含N 原子的超高温陶瓷粉体时,Wen 等[61]以AHPCS 为SiC 源,四(二甲氨基)铪(TDMAH)为Hf 源和N 源合成SiHfCN 陶瓷前驱体㊂AHPCS 中的Si H 键可与TDMAH 中的N CH 3键反应生成Si N Hf 键,使Hf 连接到大分子上㊂Si H 键还会与AHPCS 侧链上的烯丙基发生硅氢化反应以增加前驱体交联程度,可能发生的化学反应如图16所示㊂热解后所得UHTC 组分为HfC 0.87N 0.13,其被碳层包裹镶嵌在SiC 基体中,两相的晶粒尺寸均小于100nm㊂2~4nm 厚的碳层可作为扩散屏障,有效。
阳光储存罐等
阳光储存罐等
作者:
来源:《学苑创造·C版》2020年第05期
这款阳光储存罐Sun Jar,来自英国著名设计品牌Suck UK。
Sun Jar可以将白天收集的阳光转化为电能进行储存,到了夜晚再释放电能发光,这样的设计既环保又浪漫。
美國一家设计公司开发了一款名为CleanseBot的消毒机器人。
该机器人利用紫外线清除细菌和尘螨。
它的体积小巧,可以消毒房间里的每个角落。
在外出居住旅馆的时候,拥有这款便携消毒机器人就太棒了!
中国产品设计师邱思敏设计了一款名为Swirl的概念涡轮旋转水龙头。
当你打开开关的时候,出水涡轮开始旋转,可以创造出三种不同形状的漩涡状水流。
线条优美的水流不仅给人很好的视觉体验,还能大大提高节水效率。
日本设计师Mac Funamizu设计了一款概念电池,用直观的视觉效果“胖与瘦”显示电池的电量变化。
当电池处于满电状态时,它跟普通电池无异。
但随着电量的减少,电池会慢慢变“瘦”,从而提醒你该更换新电池了。
设计师Lee Yin-Kai和Wang Szu-Hsin通过融合夹子与大头钉的功能,使这款新式大头钉更易于使用,它可以在不损害纸张的情况下轻松固定纸张。
水陆两栖的露营车长啥样呢?这款露营车由英国人发明,既可以在陆地上使用,也可以漂浮在水面上。
该露营车看着小,但是内部可以同时容纳六个人,还配备了沙发、水槽、卫生间、音响系统等。
纳米防晒霜英语作文两百字
纳米防晒霜英语作文两百字Nanotech Sunscreen: A Revolutionary Approach to Sun Protection.In the realm of sun protection, the advent of nanotechnology has heralded a groundbreaking advancement: nanoformulated sunscreens. These innovative products leverage the unique properties of nanoparticles to offer unparalleled efficacy and benefits that surpass conventional chemical and mineral sunscreens.Nanoformulated sunscreens utilize nanoparticles, particles with sizes ranging from 1 to 100 nanometers, as their active ingredients. These nanoparticles are typically composed of inorganic materials such as zinc oxide or titanium dioxide, which inherently possess UV-absorbing properties. By reducing the particle size to the nanoscale, these sunscreens achieve remarkable sun protection while addressing the drawbacks of traditional formulations.Enhanced Sun Protection:The diminutive size of nanoparticles enables them to interact with UV radiation more effectively than larger particles. This increased surface area enhances their UV-absorbing capacity, resulting in superior sun protection. Nanoscale particles can effectively scatter, absorb, and reflect both UVA and UVB rays, providing broad-spectrum protection against the full range of harmful solar radiation.Improved Transparency:Conventional sunscreens often leave an unsightly white cast on the skin, particularly when applied in sufficient quantities to achieve adequate protection. This unappealing effect arises from the larger particle size of these formulations, which can scatter visible light. In contrast, nanoscale particles are too small to interact significantly with visible light, rendering them virtually transparent. Nanoformulated sunscreens can therefore provide high levels of sun protection without compromising aesthetics.Reduced Chemical Penetration:Chemical sunscreens rely on organic compounds that penetrate the skin to absorb UV radiation. However, some of these chemicals have raised concerns about potentialtoxicity and skin irritation. Nanoparticles, on the other hand, are designed to remain on the skin's surface, forming a physical barrier that deflects UV rays. This minimized chemical penetration reduces the risk of adverse reactions and ensures the safety of nanoformulated sunscreens.Broader Applications:Nanoformulated sunscreens offer unique advantages for a wider range of applications. They can be incorporated into clothing, cosmetics, and other products that are not traditionally associated with sun protection. This versatility extends their utility to situations where traditional sunscreen use is impractical or ineffective.In conclusion, nanoformulated sunscreens represent asignificant advancement in sun protection technology. Their enhanced efficacy, improved transparency, reduced chemical penetration, and broader applications make them a highly effective and convenient solution for protecting skin from the harmful effects of solar radiation. As research continues, the potential of nanotechnology in the realm of sunscreens is bound to expand even further, providing even greater protection and benefits for years to come.。
美国研发适用于大容量高功率锂离子电池的新型纳米材料
子 ,比 现 有 锂 离 子 电 池 实 现 更 高 的 效 率 ,同 时 不 会 对 电池 产 生 持 续 性 损 害 ,在 高 速 充 放 电 的 情 况
下 也 能 实 现 电极 稳 定 运行 。该 自然 应 力 递 变 有 利 于 材 料 界 面 避 免 出 现 应 力 骤 变 ,从 而 提 高 电 极 结 构 的完 整 度 。
了能 量 密 度 不 相 上 下 之 外 ,其 电极 充 放 电速 度 比 前 者 快 4 ~ O倍 ,其 卓 越 的 性 能 有 助 于 设 计 和 制 06
造 出 大 容 量 高 功 率 锂 离 子充 电 电池 。 研 究 人 员 表 示 ,全 电动 汽 车 的 电池 需 同 时 具
能 电池 组 件 的使 用 寿 命 并 降 低 成 本 。
美 国普 渡 大 学 研 究 人 员研 发 出一 种 新 型 太 阳 能 电 池 ,该 电 池 可 利 用 碳 纳 米 管 和 D A 技 术 模 N 拟 植 物 光 合 系 统 ,实 现 自我 修 复 , 旨在 延 长 太 阳
受 目前 锂 离 子 电池 无 法 实 现 的 超 高 速 充 放 电 。 研 究 证 明 ,与传 统 电 池 阳极 相 比 ,该 电 池 除
业化牛产 。
摘 译 自 互 联 网
研 究 人 员 发 现 ,当 电 流 密 度 增 至 5 . A/ 1 g 2
电 动 汽 车 采 用 高 功 率 密 度 的 超 级 电 容 器 实 现 启
采 用 具 有 特 殊 电学 性 能 的单 壁 碳 纳 米 管 作 为 光 电
池 的 “ 子 导线 ” moe ua i s 。 分 ( lc lrwr ) e
SPIE-法国
Media PartnerPhotonics Europe 2008 · /pe · info@ · TEL: +44 29 2089 4747 12 Photonics Europe 2008 · /pe · info@ · TEL: +44 29 2089 4747SPIE Europe thanks the following sponsorsfor their generous supportAttendee Pens Stand #511www.micos.wsCoffee Breaks Stand #420www.klastech.deConference Bags Stand #Exhibitor Lounge Stand #Lanyards Stand #Pastries Stand #511www.micos.wsVertical Banner Stand #231www.hamamatsu.frExhibitor list as of 3 March 2008.AMA Association for Sensor Technology. . . . #209A.T. Wall Company. . . . . . . . . . . . . . . . . . . . . #224AFOP - French Optics and PhotonicsManufacturers Association . . . . . . . . . . . . #124AHF analysentechnik AG . . . . . . . . . . . . . . . . #316Alcatel Thales III V Lab. . . . . . . . . . . . . . . . . . #329AT -Fachverlag GmbH. . . . . . . . . . . . . . . . . . . #534Avantes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #232Becker & Hickl GmbH . . . . . . . . . . . . . . . . . . #405Bookham . . . . . . . . . . . . . . . . . . . . . . . . . . . . #317Breault Research Organization. . . . . . . . . . . . #117Brush Ceramic Products . . . . . . . . . . . . . . . . #104Carl Hanser Verlag . . . . . . . . . . . . . . . . . . . . . #530Cedrat Technologies. . . . . . . . . . . . . . . . . . . . #118CEIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #323CILAS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #416Conerefringent Optics SL. . . . . . . . . . . . . . . . #508Crystal Fibre. . . . . . . . . . . . . . . . . . . . . . . . . . #306CST - Computer Simulation Technology . . . . #226CVI Melles Griot Ltd. . . . . . . . . . . . . . . . . . . . #507Draka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #230EDP Sciences. . . . . . . . . . . . . . . . . . . . . . . . . #532EKSPLA Co.. . . . . . . . . . . . . . . . . . . . . . . . . . #330Electro Optics Magazine . . . . . . . . . . . . . . . . #430Consortium. . . . . . . . . . . . . . . . . . . . . . . . . . . #331ePIXnet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #431Epner Technology, Inc.. . . . . . . . . . . . . . . . . . #423EQ Photonics GmbH . . . . . . . . . . . . . . . . . . . #223ET Enterprises Ltd . . . . . . . . . . . . . . . . . . . . . #328European Optical Society. . . . . . . . . . . . . . . . #536EuroPhotonics . . . . . . . . . . . . . . . . . . . . . . . . #100Fibercore Ltd.. . . . . . . . . . . . . . . . . . . . . . . . . #515Fibercryst . . . . . . . . . . . . . . . . . . . . . . . . . . . . #426FiberTech Optica Inc.. . . . . . . . . . . . . . . . . . . #415Fischer Connectors . . . . . . . . . . . . . . . . . . . . #122Flexible Optical BV. . . . . . . . . . . . . . . . . . . . . #514FRAMOS GmbH. . . . . . . . . . . . . . . . . . . . . . . #106Frank Optic Products GmbH . . . . . . . . . . . . . #105Fraunhofer Heinrich Hertz Institut . . . . . . . . . #321Fujian CASTECH Crystals, Inc. . . . . . . . . . . . #501Gorman-Rupp Industries . . . . . . . . . . . . . . . . #413GWU-Lasertechnik GmbH . . . . . . . . . . . . . . . #501Hamamatsu . . . . . . . . . . . . . . . . . . . . . . . . . . #231HC Photonics Corp . . . . . . . . . . . . . . . . . . . . #501Heptagon . . . . . . . . . . . . . . . . . . . . . . . . . . . . #521HOLOEYE Photonics AG . . . . . . . . . . . . . . . . #309HORIBA Jobin Yvon SAS. . . . . . . . . . . . . . . . #327id Quantique SA. . . . . . . . . . . . . . . . . . . . . . . #405Impex HighTech GmbH . . . . . . . . . . . . . . . . . #411Innolume GmbH. . . . . . . . . . . . . . . . . . . . . . . #115Institut d’Optique Graduate School . . . . . . . . #437International Society for Stereology. . . . . . . . #529iXFiber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #126KERDRY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . #120Kimoga Material Technology Co., Ltd.. . . . . . #520KLASTECH. . . . . . . . . . . . . . . . . . . . . . . . . . . #420Laser Components GmbH. . . . . . . . . . . . . . . #220Laser Focus World . . . . . . . . . . . . . . . . . . . . . #414Laser Zentrum Hannover e.V . (LZH). . . . . . . . #505LEONI Fiber Optics GmbH. . . . . . . . . . . . . . . #406Leukos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #123LINOS Photonics France . . . . . . . . . . . . . . . . #307Lovalite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #121Lumera Laser GmbH . . . . . . . . . . . . . . . . . . . #310Lumerical Solutions, Inc. . . . . . . . . . . . . . . . . #121M.C.S.E.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . #128Mad City Labs, Inc. . . . . . . . . . . . . . . . . . . . . #214Materials Today . . . . . . . . . . . . . . . . . . . . . . . #435Menlo Systems GmbH. . . . . . . . . . . . . . . . . . #517Exhibitor ListPhotonics Europe 2008 · /pe · info@ · TEL: +44 29 2089 47473T Advertiser Index Alcatel Thales III-V Lab. . . . . . . . . . . . . . . . . . . . . . . . . . . p. 11CVI Melles Griot Ltd. . . . . . . . . . . . . . . . . . . . . . . . . . . Cover 4ET Enterprises Ltd.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 23EPIC—European Photonics Industry Consortium . . . . . . p. 13KLASTECH—Karpushko Laser Technologies . . . . . . . . . p. 19LINOS Photonics France . . . . . . . . . . . . . . . . . . . . . . . . . p. 17Photoniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 5RSoft Design Group. . . . . . . . . . . . . . . . . . . . . . . . . . . Cover 2Space Light srl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 21Exhibition Floor PlanMesse Stuttgart . . . . . . . . . . . . . . . . . . . . . . . #524MICOS GmbH . . . . . . . . . . . . . . . . . . . . . . . . #511Nature Publishing Group . . . . . . . . . . . . . . . . #208NEMO (Network of Excellence onMicro-Optics). . . . . . . . . . . . . . . . . . . . . . . #217New Focus, Inc. . . . . . . . . . . . . . . . . . . . . . . . #317Newport Spectra-Physics . . . . . . . . . . . . . . . #205NEYCO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #212NIL Technology. . . . . . . . . . . . . . . . . . . . . . . . #125NP Photonics . . . . . . . . . . . . . . . . . . . . . . . . . #501Nufern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #428NuSil Technology . . . . . . . . . . . . . . . . . . . . . . #525Ocean Optics . . . . . . . . . . . . . . . . . . . . . . . . #110OLLA Project . . . . . . . . . . . . . . . . . . . . . . . . . #429Omega Optical, Inc.. . . . . . . . . . . . . . . . . . . . #107OpTIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #333Optics & Laser Europe . . . . . . . . . . . . . . . . . . #312Optics Pages . . . . . . . . . . . . . . . . . . . . . . . . . #527OptiGrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . #510Optima Research . . . . . . . . . . . . . . . . . . . . . . #131OptoIndex. . . . . . . . . . . . . . . . . . . . . . . . . . . . #531Opton Laser International. . . . . . . . . . . . . . . . #130Optronis GmbH . . . . . . . . . . . . . . . . . . . . . . . #216OXXIUS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #304Phoenix BV. . . . . . . . . . . . . . . . . . . . . . . . . . . #315Photon Design . . . . . . . . . . . . . . . . . . . . . . . . #204Photonex 2008. . . . . . . . . . . . . . . . . . . . . . . . #527Photonic Cleaning Technologies . . . . . . . . . . #421Photonics 4 Life - Network of Excellence . . . #427Photonics Spectra - Laurin Publishing. . . . . . #100Photonik Zentrum Hessen in Wetzlar AG. . . . #222Physik Instrumente (PI) GmbH & Co.. . . . . . . #308Point Source. . . . . . . . . . . . . . . . . . . . . . . . . . #113Quantel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #305Raicol Crystals Ltd. . . . . . . . . . . . . . . . . . . . . #206Rhenaphotonics Alsace . . . . . #533, 535, 537, 539Royal Society of Chemistry . . . . . . . . . . . . . . #541RSoft Design Group. . . . . . . . . . . . . . . . . . . . #320RSP Technology BV . . . . . . . . . . . . . . . . . . . . #424Santec Europe Ltd.. . . . . . . . . . . . . . . . . . . . . #409Scientec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #412SEDI Fibres Optiques. . . . . . . . . . . . . . . . . . . #313SEMELAB PLC. . . . . . . . . . . . . . . . . . . . . . . . #109Sill Optics GmbH & Co., KG. . . . . . . . . . . . . . #221SIOF-Italian Society of Optics and Photonics #516Space Light srl . . . . . . . . . . . . . . . . . . . . . . . . #518Spectroscopy Magazine. . . . . . . . . . . . . . . . . #433SphereOptics GmbH . . . . . . . . . . . . . . . . . . . #504Spiricon GmbH. . . . . . . . . . . . . . . . . . . . . . . . #419Springer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #211Stanford Computer Optics GmbH . . . . . . . . #114bTaylor & Francis - Contemporary Physics . . . #528Taylor & Francis - Fiber and Integrated Optics #528Taylor & Francis - Informa UK Ltd.. . . . . . . . . #528Taylor & Francis - International Journal ofOptomechatronics. . . . . . . . . . . . . . . . . . . #528Taylor & Francis - Journal of Modern Optics . #528THALES Laser . . . . . . . . . . . . . . . . . . . . . . . . #506The Institution of Engineering andTechnology (IET) . . . . . . . . . . . . . . . . . . . . #425Thorlabs GmbH . . . . . . . . . . . . . . . . . . . . . . . #517TSP Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . #417UCM AG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . #116Unice E-O Services Inc.. . . . . . . . . . . . . . . . . #422Universal Photonics, Inc. . . . . . . . . . . . . . . . . #207VTT Technical Research Centre of Finland. . . #129Wiley-VCH GmbH & Co. KGaA . . . . . . . . . . . #523Xiton Photonics GmbH. . . . . . . . . . . . . . . . . . #501XLITH GmbH . . . . . . . . . . . . . . . . . . . . . . . . . #432Yole Développement . . . . . . . . . . . . . . . . . . . #225ZODIAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . #322Photonics Europe 2008 · /pe · info@ · TEL: +44 29 2089 4747 5The French magazine specializing in Optics-Photonics Photoniques :the magazine of theFrench Optical CommunityPhotoniques,magazine of the French OpticalSociety,establishes links and partnerships betweenall the entities working in Optics-Photonics :at national level with AFOP (French ManufacturersAssociation in Optics and Photonics)and in eachregion of France.Photoniques :The source of information for all the professionals in thefield of Optics-Photonics in France.In each issue :industry news,technical articles written by specialists,new products…A useful and efficient circulation :7500copiesAfter 7years of existence,cooperation and networking withthe specialists of the optic world in France,Photoniques hasbuilt a large qualified database of potential users :researchers,technicians,engineers and managers,fromindustry such as communications,industrial vision,lasers,test and measurements,imaging/displays…Are you interested in the French optics and photonics markets?Photoniques is your partner!How to keep you informed about Optics-Photonics in France?Become a Photoniques reader!123For additionnal information,contact:Olga Sortais :+33134042144o.sortais@ to request an issue of Photoniques and a media kit6 Photonics Europe 2008 · /pe · info@ · TEL: +44 29 2089 4747As a new addition to Photonics Europe, the Industry PerspectivesProgramme will provide a series of executive briefi ngs coveringkey technologies and sectors.Come hear key members of Europe’s photonics industrydiscuss their successes, future plans and the way in which theyintend to maximize their market penetration and growth. Hearreviews of the European Innovation landscape highlightinggeographical areas of strengths in areas such as business R&D,knowledge transfer and demonstrate the outcomes from recentsuccessful European-funded industry programmes.Industry Perspectives Programme Included with Conference registration.Individual Sessions can be purchased at the Cashier. Individual sessions, €100. The sessions will deliver a strategic perspective into each application area, allowing you to uncover and confirm the future prospects for your business. Benchmark your aspirations for your business and technology against some of Europe’s leading companies and engage with them as a potential supplier or partner. You will hear presentations from Philips, Audi, PCO, Coherent Scotland, GlaxoSmithKline, Carl Zeiss, Yole Development, Koheras and Fraunhofer on their successes and strategic priorities. Tuesday 8 April Morning SessionPhotovoltaics10.15 to 10.45 hrs.Photovoltaics - Market and Technology TrendsGaëtan Rull, Market Analyst for New Energy Technologies,Yole Développement 10.45 to 11.15 hrs.High Throughput Manufacturing for BulkHeterojunction PVsMarkus Scharber, Head of Materials Group, Konarka 11.15 to 11.45 hrs.Managing JGrowth in the Production of Thin Films(To be confi rmed.)Dr. Immo Kotschau, Director of Research and Development,Centrotherm GmbH 11.45 to 12.30 hrs.End to End Mass Production of Silicon Thin FilmModulesDetlev Koch, Head of BU Solar Thin Films & Senior Vice President,O C Oerlikon Balzers AG Break – 12.30 to 14.00 hrs.Afternoon SessionMEMS/MOEMS14.00 to 14.30 hrs.Market Trends and Technical Advances in M(O)EMSDr. Eric Mounier, Manager for MEMS & Optoelectronics andMicronews Chief Editor, Yole Développement14.30 to 15.00 hrs.Inorganic/Organic Hybrid Polymers (ORMOCER) forOptical InterconnectsDr. Michael Popall, Head of Microsystems and Portable PowerSupply, Fraunhofer ISC15.00 to 15.30 hrs.Future MOEMS and Photonic MicrosystemsDr. Thomas Hessler, Director Axetris, Leister Process Technologies15.30 to 16.15 hrs.Innovations in MOEMS product developmentProf. Hubert Karl, Director, Fraunhofer IPMSWednesday 9 AprilMorning Session Multimedia, Displays and Lighting 10.15 to 10.45 hrs.Plasmonics for Photonics: Challenges and Opportunities Ross Stanley, Section Head: MOEMS & Nanophotonics, CSEM 10.45 to 11.15 hrs.Photonic Microsystems for Displays Edward Buckley, VP Business Development, Light Blue Optics Ltd.11.15 to 11.45 hrs.Matrix-Beam – the antiglaring LED-high beam Benjamin Hummel, Research for Concept Lighting T echnologies, Audi 11.45 to 12.30 hrs.High Brightness OLEDs for Next Generation LightingPeter Visser, Project Manager, OLLA Project, The Netherlands Break –12.30 to 14.00 hrs.Photonics Europe 2008 · /pe · info@ · TEL: +44 29 2089 4747 7Thursday 10 AprilMorning SessionImaging10.15 to 10.45 hrs.High Resolution Imaging detectors for invisiblelight –Development and IndustrialisationHans Hentzell, CEO, Acreo10.45 to 11.15 hrs.(Presentation to be confi rmed.)11.15 to 11.45 hrs.Raman Spectroscopy, Raman Imaging and FutureTrendsSopie Morel, Sales Manager, Molecular & Microanalysis Division,HORIBA Jobin Yvon 11.45 to 12.30 hrs.World Markets for Lasers and Their Application Steve Anderson, Associate Publisher/Editor-in-Chief,Laser Focus World Break – 12.30 to 14.00 hrs. Afternoon SessionBiomedical and Healthcare Photonics 14.00 to 14.30 hrs.Photonic Systems for Biotechnology Research Karin Schuetze, Director of R&D, Carl Zeiss Microimaging 14.30 to 15.00 hrs.Photonics 4 Life Prof. Jeürgen Popp, Director, IPHT Germany 15.00 to 15.30 ser System Development for Biophotonics Chris Dorman, Managing Director, Coherent Scotland15.30 to 16.15 hrs.Supercontinuum Light - a paradigm shift in lasersources for biophotonicsJakob Dahlgren Skov, CEO, Koheras Husain Imam, Business Development Manager, Koheras Industrial Perspectives ProgrammeWednesday 9 April Afternoon Session OPERA 2015: European Photonics - Corporate and Research Landscape 13.30 to 13.45 hrs.Optics and Photonics in the 7th Framework ProgrammeGustav Kalbe, Head of Sector - Photonics, Information Society andMedia, Directorate General, European Commission 13.45 to 14.00 hrs.OPERA 2015: Aims, Results and link to Photonics 21Markus Wilkens, VDI 14.00 to 14.20 hrs.European Photonics Industry Landscape Bart Snijders, TNO 14.20 to 14.40 hrs.European Photonics Research Landscape Marie-Joëlle Antoine, Optics Valley 14.40 to 15.00 hrs.Resources for Photonics Development Peter Van Daele, IMEC Break – 15.00 to 15.15 hrs. 15.15 to 15.35 hrs.Towards the Future on Optics and Photonics ResearchDr. Eugene Arthurs, SPIE Europe (UK)15.35 to 16.15 hrs.Strategic Opportunities for R&D in EuropeMike Wale, Bookham, UK16.15 to 16.45 hrs.A Sustainable Business Model for Optics andPhotonicsDavid Pointer, Managing Director, Point Source (Pending)16.45 to 17.15 hrs.Final Open DiscussionChaired by: Gustav Kalbe, Head of Sector - Photonics, InformationSociety and Media, Directorate General, European Commission8Photonics Europe 2008 · /pe · info@ · TEL: +44 29 2089 4747Photonics Innovation Village Tuesday to Thursday during Exhibition HoursThe Photonics Innovation Village will showcase the latest projects and breakthroughs from optics-photonics researchers at universities, research centres and start-up companies. This is a great opportunity to see how EU R&D and project funds are being used by some of the great young innovators in Europe.A window on creative products developed by universities and research centres. Under the patronage of the European Commission, fi fteen entrants from across Europe complete to win categories ranging from Best Marketability to Best Design, Best Technology, and Best Overall Product.Low power remote sensing system Y. A. Polkanov, Russia (Individual work)New approach is based on use of a low-power radiation source with specifi ed gating, when time of source radiation interruption is equal to a pulse duration of ordinary lidar. We propose to reconstruct the average values of these characteristics over the parts commensurable with the sounding path length. As scanning systems is offered with speed of circular scanning is determined by time of small linear moving of a laser beam. It allows to predict a reduction of the meteorological situation stability from an anticipatory change of the revealed structure character of optical heterogeneities of a atmosphere ground layer atmosphere.Point of care sensor for non-invasive multi-parameter diagnostics of blood biochemistry Belarusian State University, Belarus; Ruhr-Universität-Bochum, Germany; Second Clinical Hospital, Belarus Compact fi bre optical and thermal sensor for noninvasive measurement of blood biochemistry including glucose, hemoglobin and its derivatives concentrations is developed as a prototype of the point-of-care diagnosticdevices for cardiologic, tumour and diabetic patients. Integrated platform for data acquisition, data processing and communication to remote networks has been developed on the pocket PC.Polarization-holographic gratings and devices on their basisLaboratory of Holographic Recording & Processing of Information, Institute of Cybernetics, GeorgiaWe have developed the technology of obtaining of polarization-holographic gratings that have anisotropic profi le continuously changing within each spatial period and also the technology of obtaining of polarization-holographic elements on the basis of such gratings. Special highly effective polarization-sensitive materials developed by us are used for obtaining such gratings and elements. We can present samples of gratings and elements and give a demonstration of their work.Ultra-miniature omni-view camera moduleImage Sensing group of the Photonics Division of CSEM (Centre Suisse d’Electronique et de Microtechnique), SwitzerlandA live demonstration with a working prototype of a highly integrated ultra-miniature camera module with omni-directional view dedicated to autonomous micro fl ying devices is presented.Femtosecond-pulse fi bre laser for microsurgery and marking applicationsMultitel, BelgiumMultitel presents a new prototype of an all-fi bred femtosecond amplifi ed laser. The device has been specifi cally developed for micromachining and microsurgery applications and operates at 1.55µm, which corresponds to a high absorption peak of water (molecule contained in large quantity in living tissue and cells). Since no free-space optics is used for pulse compression or amplifi cation the prototype is compact and very stable. Moreover, the seed laser source has a high repetition rate therefore enabling multiphoton absorption applications and use in multi-pulse and burst modes.Flexible artifi cial optical robotic skinsDepartment of Applied Physics and Photonics (VUB-TONA) and Robotics & Multibody Mechanics Research Group (VUB-R&MM) of the Vrije Universiteit Brussel, Belgium; Thin Film Components Group (UG-TFCG) and Polymer Chemistry & Biomaterials Research Group (UG-PBM) of the Universiteit Gent, BelgiumWe will present a paradigm shifting application for optical fi bre sensors in the domain of robotics. We propose fi bre B ragg gratings (FB Gs) written in highly-birefringent microstructured optical fi bres integrated in a fl exible skin-like foil to provide a touch capability to a social pet-type robot for hospitalized children named “Probo”. The touch information is complementary to vision analysis and audio analysis and will be used to detect where Probo is being touched and to differentiate between different types of affective touches such as tickling, poking, slapping, petting, etc.Co-Sponsored by: Location: Galleri de Marbre Under the patronage of the European Commission, Photonics Unit Join us for the Photonics Innovation Village Awards 2008 which will take place on Wednesday, 9th April 2008, from 17.00 hrs. in the Galerie de Marbre.3D tomographic microscopeLauer Technologies, FranceThe 3D tomographic microscope generates 3D high-resolution images of non-marked samples. The demonstration will show 3D manipulation of images obtained with this microscope.Polar nephelometerInstitute of Atmospheric Optics of Tomsk, RussiaMaterial comprising a matrix, apatite and at least one europium composite compound with particle medium sizes more 4-5 micron. The composition for the production of the material comprises (wt. %) apatite 0.01-10.0; composite compound. 0.01-10.0, and the balance is a matrix-forming agent, such as a polymer, a fibre, a glass-forming composition, or lacquer/adhesive-forming substance.High speed Stokes portable polarimeterMIPS Laboratory of the Haute Alsace University, FranceThe implementation of an imaging polarimeter able to capture dynamic scenes is presented. Our prototype is designed to work at visible wavelengths and to operate at high-speed (a 360 Hz framerate was obtained), contrary to commercial or laboratory liquid crystal polarimeters previously reported. It has been used in the laboratory as well as in a natural environment with natural light. The device consists of commercial components whose cost is moderate. The polarizing element is based on a ferroelectric liquid crystal modulator which acts as a half-wave plate at its design wavelength.Diffractive/refractive endoscopic UV-imaging system Institut für Technische Optik (ITO) of the University of Stuttgart, GermanyWe present a new optical system with an outstanding high performance despite of demanding boundary conditions of endoscopic imaging to enable minimal invasive laser-based measurement techniques. For this purpose the system provides a high lens speed of about 10 times the value of a conventional UV-endoscope, a multiple broad band chromatic correction and small-diameter but wide-angle access optics. This was realized with a new design concept including unconventional, i.e. diffractive components. An application are UV-LIF-measurements on close-to-production engines to speed up the optimization of the combustion and produce aggregates with less fuel consumption and exhaust gases like CO2.Light-converting materials and composition: polyethylene fi lm for greenhouses, masterbatch, textile, sunscreen and aerosolUsefulsun Oy, Finland; Institute Theoretical and Experimental Biophysics Russian Academy of Sciences, RussiaThe composition for the production of the material comprises (wt. % ) composite compound (inorganic photoluminophore particles with sizes 10-800nm) -0.01-10.0; coordination compound of metal E (the product of transformation of europium, samarium, terbium or gadolinium ) - 0,0-10,0 and the balance is a matrix-forming agent, such as, a polymer, a fi ber, a glass-forming composition or gel, aerosol, lacquer/adhesive-forming substance. The present invention relates to composite materials, in particular to light-converting materials used in agriculture, medicine, biotechnology and light industry.HIPOLAS - a compact and robust laser sourceCTR AG (Carinthian Tech Research AG), AustriaThe prototype covers a robust, compact and powerful laser ignition source for reciprocating gas and petrol engines that could be mounted directly on the cylinder.We have developed a diode pumped solid-state laser with a monolithic Neodymium YAG resonator core. A ring of 12 high power laser diodes pumps the resonator. Due to the adjustment-free design, the laser is intrinsically robust to environmental vibrations and temperature conditions. With overall dimensions of Æ 50 x 70 mm the laser head is small enough to be fi tted at the standard spark plug location on the cylinder head. The dimensions can be reduced for future prototypes. OLLA OLED lighting tile demonstratorOLLA project-consortiumOLED technology is not only a display technology but also suited for lighting purposes. The OLLA project has the goal to demonstrate viability of OLED technology for general lighting applications. The demonstrator tile shown here combines the current results of the project : a large sized (15x15cm2) white OLED stack with high effi cacy (up to 50 lm/W), combined with long lifetime (>10.000 hours).During Photonics Europe, we will show several OLEDs tiles in different colors. The demonstrators are made by the OLLA project-consortium members. The large OLED demonstrator tile was fabricated on the inline tool at Fraunhofer IPMS in Dresden.Analyze-IQNanoscale Biophotonics Laboratory, School of Chemistry,and Machine Learning / Data Mining Group, Department ofInformation Technology, National University of Ireland, Galway, IrelandAnalyze-IQ is the next generation spectral analysis software tool for optical and molecular spectroscopies such as Raman, Mid-IR, NIR, and Fluorescence. The Analyze-IQ software is based on patented machine-learning algorithms and a model based approach in which the software learns to recognise the relevant information in complex mixtures from sample spectra. It then uses these models to rapidly and accurately identify or quantify unknown materials such as narcotics and explosives, in complex mixtures commonly found in law-enforcement and industrial applications.Micro-optical detection unit for lab-on-a-chipDepartment of Applied Physics and Photonics (VUB-TONA) of the Vrije Universiteit Brussel, BelgiumWe present a detection unit for fl uorescence and UV-VIS absorbance analysis in capillaries, which can be used for chromatography. By usinga micro-fabrication technology (Deep Proton Writing) the optics aredirectly aligned onto the micro-fl uidic channel. This integration enables the development of portable and ultimately disposable lab-on-a-chip systems for point-of-care diagnosis. We will explain the working principle of our detection system in a proof-of-concept demonstration set-up while focusing on some specifi c applications of micro-fl uidics in low-cost lab-on-a-chip systems.Photonics Innovation Village。
太赫兹 硅 超表面
太赫兹硅超表面英文回答:Terahertz metasurfaces have emerged as promising platforms for manipulating and controlling electromagnetic waves due to their subwavelength feature sizes and unique optical properties. Silicon, with its high refractive index and low optical loss, is a widely used material for fabricating terahertz metasurfaces. By carefully designing the shape, size, and arrangement of silicon structures, it is possible to achieve tailored optical responses, such as focusing, beam steering, and polarization conversion, at terahertz frequencies.One of the key advantages of silicon terahertz metasurfaces is their compatibility with standard silicon fabrication processes, which enables large-scale and cost-effective manufacturing. Additionally, the high refractive index of silicon allows for the realization of subwavelength structures with strong electromagneticresonances, leading to enhanced optical performance.Various types of silicon terahertz metasurfaces have been demonstrated, including periodic, aperiodic, andchiral structures. Periodic metasurfaces are composed of regularly arranged silicon elements, while aperiodic metasurfaces feature irregular or random arrangements. Chiral metasurfaces exhibit handedness-dependent optical responses, which can be utilized for polarization control and circular dichroism.The applications of silicon terahertz metasurfaces are diverse, ranging from imaging and sensing to communication and spectroscopy. For instance, metasurface lenses can be designed to focus terahertz waves, enabling high-resolution imaging and non-destructive testing. Metasurface absorbers can be employed for selective absorption and detection of terahertz radiation, with potential applications in chemical sensing and environmental monitoring. Moreover, metasurface antennas can be used for beam steering and polarization control, which are crucial for terahertz wireless communication systems.中文回答:太赫兹硅超表面由于其亚波长特征尺寸和独特的光学特性,已成为操纵和控制电磁波的有前途的平台。
酷夏来袭,高科技产品帮你防暑降温
酷夏来袭,高科技产品帮你防暑降温作者:朝暮来源:《科学之友》2021年第07期这款冷感毛巾采用三层独特构造、三维立体编织工艺,由高科技纤维面料制作而成,具有吸汗排汗、水分循环、调节蒸发三大功能。
面料的高密度网状结构能将水分子深度吸收到纤维内核,然后将其压缩到面料的纤维空隙中。
当产品受到外力(例如甩动)时,会因水汽大量蒸发而达到冷却效果。
用户只需将毛巾充分打湿拧干,然后在空中甩动几下,便可实现降温,体验到凉爽感。
此外,毛巾面料中不包含化学制品、胶剂、晶体等对皮肤有刺激的材质,可以在有效降低皮肤表面温度的同时,起到防菌防臭、阻隔紫外线的作用。
美国一家公司发明的Veskimo降温背心采用水冷设计,类似于穿着厚厚航天服的宇航员用来防止过热的装备。
这款产品主要面向摩托车驾驶者和需要在高温下工作的人。
此款背心有两个版本,比较笨重的经典版本配有由电池供电的12伏特水泵和一个外置水箱。
水箱中的冷水由水泵推送到背心的水管里不断流通,以便将身体的核心温度维持在较低的水平,一次最多可维持6个小时。
便携版本与经典版本原理相同,只不过水箱被设计成背包形式,有效保冷时间相对较短。
头顶烈日出门不光难受,还会要命。
医学专家指出,人在超过35 ℃的户外湿热环境中毫无防护地停留6小时以上,可能会有生命危险。
在烈日照射下,遮阳伞具有一定的隔热效果,但时间久了也无济于事。
国外一家公司推出一款名为“飓风伞”的产品,它不仅能有效抵挡危害人体的紫外线,更特别的地方在于雨伞内部安装有可折叠的电动风扇,只要按下把手底部的按钮,风扇就可以送来凉爽的微风,帮助人体降温。
谁说空调就一定是挂在墙上或者笨笨地呆在墙角?冬天的时候可以随时抱着热水袋,夏天的时候也可以随身带着空调。
这款便携式空调外形小巧,形似音箱,整体是由含有矿物纤维的纳米材料制成,自带一个710毫升的水箱,不需要使用化学物质(如氟),只需清水,它便能够开始工作。
在空调中注入清水后,由于水的蒸發和纳米材料的挥发作用,水分散发的湿气可以在小范围环境内达到自然降温的效果。
211038144_多芬推“纳米”沐浴露,一款干洗洗发水走红好莱坞
China Cosmetics Review一款干洗洗发水走红好莱坞文|孙笑笑好莱坞明星热捧的护发品牌OLAPLEX推出了No.4D CleanVolume Detox Dry Shampoo,这是该品牌第一款干洗洗发水。
这款干洗洗发水含有红毛丹籽提取物,是一种可持续的抗氧化剂来源,可以排毒、舒缓头皮,并中和引起异味的污染物和杂质。
它里面含有的大米超细微淀粉能在头皮出油的情况下,快速吸油并且不留白色粉尘,还能当做定型喷雾使用。
据了解OLAPLEX有一项独家粘合技术,可以重新连接受损的头发,使头发更健康强韧。
这款干洗洗发水因为质感轻薄,不会在头皮有成分堆积,所以清洁后会让头发整体看起来轻盈、干爽。
同时,OLAPLEX一直以来都坚持纯素理念,其产品不含硫酸盐、对羟基苯甲酸酯、邻苯二甲酸盐、磷酸盐等问题成分。
121China Cosmetics ReviewNew Product Observation理肤泉祛浮肿眼精华La Roche-Posay 推出全新Hyalu B5眼部精华液,专为去除浮肿和冷却眼部肌肤而设计。
这也是理肤泉第一款保湿眼精华,可用于日常保湿和重塑眼周肌肤状态。
此次理肤泉针对压力源对眼部周围皮肤的影响进行研究,以以及利用透明质酸改善眼周表皮,其中添加的咖啡因成分有助于促进血液循环并减少黑眼圈,官方介绍该产品如果配合金属眼周仪器搭配按摩使用效果更佳。
理肤泉品牌的核心是独特的富含硒的温泉水,也是全线以其舒缓和抗氧化特性而闻名,包括此次开发同样是根据严格的安全和配方章程以最佳浓度配是创始人Nga Nguyen 在新冠疫情流行期间创立他希望人们可以通过使用这一系列护理和消毒产品从而无所顾忌地出行。
全球新品观察以彩妆出圈的韩国品牌,推出首款香水产品——“氛围感官”系列香水,这也是3CE 在中国彩妆市场站稳一席之地之后的全新布局,虽然此前没有香氛品类的经验,但是借助欧莱雅集团的优势,特请法国调香师专门定制。
高导热环氧复合材料干式电抗器热点温升的仿真研究
高导热环氧复合材料干式电抗器热点温升的仿真研究曲展玉1,钟昱尧1,宋岩泽1,2,谢子豪1,孟雨琦1,谢庆1,2(1.华北电力大学电力工程系,河北保定071003;2.华北电力大学新能源电力系统国家重点实验室,北京102206)摘要:干式电抗器的稳定运行影响新型电力系统的输电可靠性。
干式空心电抗器包封材料整体由浸有环氧树脂的玻璃纤维丝经高温固化而成。
本文采用多物理场耦合有限元方法,考虑干式空心电抗器的包封材料热导率对其热点温升的影响,建立了环氧复合材料的COMSOL微观仿真模型和外电路约束下的干式空心电抗器电-磁、流-热耦合计算模型。
将电磁场下的损耗作为热源计算温度场与流场分布,研究在25℃环境温度下常规/高导热环氧复合材料对干式空心电抗器热点温升的影响规律。
结果表明:高导热环氧树脂对复合材料热导率的提升效果显著;包封材料本体及周围空气温度场区域中热点温升最大值为103.75℃,出现在内部第4层包封材料的上端处;不同热导率的复合材料对降低干式电抗器的热点温升有明显差异,其中干式电抗器在高导热环氧树脂复合材料下的热点温度降低了7.55℃。
关键词:干式空心电抗器;热导率;热点温升;多物理场耦合中图分类号:TM215;TM472 DOI:10.16790/ki.1009-9239.im.2024.04.015Simulation study on hot spot temperature rise of dry reactor with high thermal conductive epoxy composite as encapsulating materialQU Zhanyu1, ZHONG Yuyao1, SONG Yanze1,2, XIE Zihao1, MENG Yuqi1, XIE Qing1,2(1. Department of Electrical Engineering, North China Electric Power University, Baoding 071003, China;2. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,North China Electric Power University, Beijing 102206, China)Abstract: The stable operation of dry-type reactors affects the transmission reliability of new power system. The encapsulating material of dry-type reactor is made of glass fiber filament impregnated epoxy resin cured at high temperature. In this paper, a multiphysics coupled finite element method was used to consider the influence of thermal conductivity of the encapsulating material for dry-type reactor on its hot spot temperature rise, and a COMSOL microscopic simulation model of epoxy composites and an electro-magnetic and flow-thermal coupling calculation model of dry-type reactor under the constraints of external circuits were established. The temperature field and flow field distribution were calculated by using the loss under electromagnetic field as the heat source, and the influence of conventional/high thermal conductive epoxy composites on the hot spot temperature rise of the dry-type reactor at 25℃ of ambient temperature was studied. The results show that the high thermal conductive epoxy resin has a significant improving effect on the thermal conductivity of composites. The maximum hot spot temperature rise in the temperature field area of the encapsulating material body and the surrounding air is 103.75℃, which appears at the upper end of the fourth layer of encapsulating material. The epoxy resin composite with different thermal conductivity has obvious difference on decreasing the hot spot temperature of dry-type reactor, and the hot spot temperature of the dry-type reactor with high thermal conductive epoxy resin composite is reduced by 7.55℃.Key words: dry hollow reactor; thermal conductivity; hot spot temperature rise; multiphysical field coupling0 引言干式电抗器凭借线性度好、饱和性高、损耗小、运行维护方便等优点已成为在“双碳”战略下构建新型电力系统的重要发展方向[1]。
光伏发电英文文献Ultra-High Efficiency Photovoltaic
Ultra-High Efficiency Photovoltaic Cells for Large Scale Solar Power GenerationYoshiaki NakanoAbstract The primary targets of our project are to dras-tically improve the photovoltaic conversion efficiency and to develop new energy storage and delivery technologies. Our approach to obtain an efficiency over40%starts from the improvement of III–V multi-junction solar cells by introducing a novel material for each cell realizing an ideal combination of bandgaps and lattice-matching.Further improvement incorporates quantum structures such as stacked quantum wells and quantum dots,which allow higher degree of freedom in the design of the bandgap and the lattice strain.Highly controlled arrangement of either quantum dots or quantum wells permits the coupling of the wavefunctions,and thus forms intermediate bands in the bandgap of a host material,which allows multiple photon absorption theoretically leading to a conversion efficiency exceeding50%.In addition to such improvements, microfabrication technology for the integrated high-effi-ciency cells and the development of novel material systems that realizes high efficiency and low cost at the same time are investigated.Keywords Multi-junctionÁQuantum wellÁConcentratorÁPhotovoltaicINTRODUCTIONLarge-scale photovoltaic(PV)power generation systems, that achieve an ultra-high efficiency of40%or higher under high concentration,are in the spotlight as a new technology to ease drastically the energy problems.Mul-tiple junction(or tandem)solar cells that use epitaxial crystals of III–V compound semiconductors take on the active role for photoelectric energy conversion in such PV power generation systems.Because these solar cells operate under a sunlight concentration of5009to10009, the cost of cells that use the epitaxial crystal does not pose much of a problem.In concentrator PV,the increased cost for a cell is compensated by less costly focusing optics. The photons shining down on earth from the sun have a wide range of energy distribution,from the visible region to the infrared region,as shown in Fig.1.Multi-junction solar cells,which are laminated with multilayers of p–n junctions configured by using materials with different band gaps,show promise in absorbing as much of these photons as possible,and converting the photon energy into elec-tricity with minimum loss to obtain high voltage.Among the various types of multi-junction solar cells,indium gallium phosphide(InGaP)/gallium arsenide(GaAs)/ger-manium(Ge)triple-junction cells that make full use of the relationship between band gaps and diverse lattice con-stants offered by compound semiconductors have the advantage of high conversion efficiency because of their high-quality single crystal with a uniform-size crystal lat-tice.So far,a conversion efficiency exceeding41%under conditions where sunlight is concentrated to an intensity of approximately5009has been reported.The tunnel junction with a function equivalent to elec-trodes is inserted between different materials.The positive holes accumulated in the p layer and the electrons in the adjacent n layer will be recombined and eliminated in the tunnel junction.Therefore,three p–n junctions consisting of InGaP,GaAs,and Ge will become connected in series. The upper limit of the electric current is set by the mini-mum value of photonflux absorbed by a single cell.On the other hand,the sum of voltages of three cells make up the voltage.As shown in Fig.1,photons that can be captured in the GaAs middle cell have a smallflux because of the band gap of each material.As a result,the electric currentoutputAMBIO2012,41(Supplement2):125–131 DOI10.1007/s13280-012-0267-4from the GaAs cell theoretically becomes smaller than that of the others and determines the electric current output of the entire tandem cell.To develop a higher efficiency tandem cell,it is necessary to use a material with a band gap narrower than that of GaAs for the middle cell.In order to obtain maximum conversion efficiency for triple-junction solar cells,it is essential to narrow down the middle cell band gap to 1.2eV and increase the short-circuit current density by 2mA/cm 2compared with that of the GaAs middle cell.When the material is replaced with a narrower band gap,the output voltage will drop.However,the effect of improving the electric current balance out-performs this drop in output voltage and boosts the effi-ciency of the entire multi-junction cell.When a crystal with such a narrow band gap is grown on a Ge base material,lattice relaxation will occur in the middle of epitaxial crystal growth because the lattice constants of narrower band-gap materials are larger than that of Ge (as shown in Fig.2).As a result,the carrier transport properties will degrade due to dislocation.Researchers from the international research center Solar Quest,the University of Tokyo,aim to move beyond such material-related restrictions,and obtain materials and structures that have effective narrow band gaps while maintaining lattice matching with Ge or GaAs.To achieve this goal,we have taken three approaches as indicated in Fig.3.These approaches are explained in detail below.DILUTE NITROGEN-ADDED BULK CRYSTAL Indium gallium nitride arsenide (InGaNAs)is a bulk material consists of InGaAs,which contains several percent of nitrogen.InGaNAs has a high potential for achieving a narrow band gap while maintaining lattice matching with Ge or GaAs.However,InGaNAs has a fatal problem,that is,a drop in carrier mobility due to inhomogeneousdistribution of nitrogen (N).To achieve homogeneous solid solution of N in crystal,we have applied atomic hydrogen irradiation in the film formation process and addition of a very small amount of antimony (Sb)(Fig.3).The atomic hydrogen irradiation technology and the nitrogen radical irradiation technology for incorporating N efficiently into the crystal can be achieved only through molecular beam epitaxy (MBE),which is used to fabricate films under high vacuum conditions.(Nitrogen radical irradiation is a technology that irradiates the surface of a growing crystal with nitrogen atoms that are resolved by passing nitrogen through a plasma device attached to the MBE system.)Therefore,high-quality InGaNAs has been obtained only by MBE until now.Furthermore,as a small amount of Sb is also incorporated in a crystal,it is nec-essary to control the composition of five elements in the crystal with a high degree of accuracy to achieve lattice matching with Ge or GaAs.We have overcome this difficulty by optimizing the crystal growth conditions with high precision and devel-oped a cell that has an InGaNAs absorption layer formed on a GaAs substrate.The short-circuit current has increased by 9.6mA/cm 2for this cell,compared with a GaAs single-junction cell,by narrowing the band gap down to 1.0eV.This technology can be implemented not only for triple-junction cells,but also for higher efficiency lattice-matched quadruple-junction cells on a Ge substrate.In order to avoid the difficulty of adjusting the compo-sition of five elements in a crystal,we are also taking an approach of using GaNAs with a lattice smaller than that of Ge or GaAs for the absorption layer and inserting InAs with a large lattice in dot form to compensate for the crystal’s tensile strain.To make a solid solution of N uniformly in GaNAs,we use the MBE method for crystal growth and the atomic hydrogen irradiation as in the case of InGaNAs.We also believe that using 3D-shaped InAs dots can effectively compensate for the tensile strainthatFig.1Solar spectrum radiated on earth and photon flux collected by the top cell (InGaP),middle cell (GaAs),and bottom cell (Ge)(equivalent to the area of the filled portions in the figure)occurs in GaNAs.We have measured the characteristics of a single-junction cell formed on a GaAs substrate by using a GaNAs absorption layer with InAs dots inserted.Figure 4shows that we were able to succeed in enhancing the external quantum efficiency in the long-wavelength region (corresponding to the GaNAs absorp-tion)to a level equal to GaAs.This was done by extending the absorption edge to a longer wavelength of 1200nm,and increasing the thickness of the GaNAs layer by increasing the number of laminated InAs quantum dot layers.This high quantum efficiency clearly indicates that GaNAs with InAs dots inserted has the satisfactory quality for middle cell material (Oshima et al.2010).STRAIN-COMPENSATED QUANTUM WELL STRUCTUREIt is extremely difficult to develop a narrow band-gap material that can maintain lattice matching with Ge orGaAs unless dilute nitrogen-based materials mentioned earlier are used.As shown in Fig.2,the conventionally used material InGaAs has a narrower band gap and a larger lattice constant than GaAs.Therefore,it is difficult to grow InGaAs with a thickness larger than the critical film thickness on GaAs without causing lattice relaxation.However,the total film thickness of InGaAs can be increased as an InGaAs/GaAsP strain-compensated multi-layer structure by laminating InGaAs with a thickness less than the critical film thickness in combination with GaAsP that is based on GaAs as well,but has a small lattice constant,and bringing the average strain close to zero (Fig.3.).This InGaAs/GaAsP strain-compensated multilayer structure will form a quantum well-type potential as shown in Fig.5.The narrow band-gap InGaAs layer absorbs the long-wavelength photons to generate electron–hole pairs.When these electron–hole pairs go over the potential bar-rier of the GaAsP layer due to thermal excitation,the electrons and holes are separated by a built-in electricfieldFig.2Relationship between band gaps and lattice constants of III–V-based and IV-based crystalsto generate photocurrent.There is a high probability of recombination of electron–hole pairs that remain in the well.To avoid this recombination,it is necessary to take out the electron–hole pairs efficiently from the well and transfer them to n-type and p-type regions without allowing them to be recaptured into the well.Designing thequantumFig.3Materials and structures of narrow band-gap middle cells being researched by thisteamFig.4Spectral quantum efficiency of GaAs single-junction cell using GaNAs bulk crystal layer (inserted with InAs dots)as the absorption layer:Since the InAs dot layer and the GaNAs bulk layer are stacked alternately,the total thickness of GaNAs layers increases as the number of stacked InAs dot layers is increased.The solid line in the graph indicates the data of a reference cell that uses GaAs for its absorption layer (Oshima et al.2010)well structure suited for this purpose is essential for improving conversion efficiency.The high-quality crystal growth by means of the metal-organic vapor phase epitaxy (MOVPE)method with excellent ability for mass production has already been applied for InGaAs and GaAsP layers in semiconductor optical device applications.Therefore,it is technologically quite possible to incorporate the InGaAs/GaAsP quantum well structure into multi-junction solar cells that are man-ufactured at present,only if highly accurate strain com-pensation can be achieved.As the most basic approach related to quantum well structure design,we are working on fabrication of super-lattice cells with the aim of achieving higher efficiency by making the GaAsP barrier layer as thin as possible,and enabling carriers to move among wells by means of the tunnel effect.Figure 6shows the spectral quantum effi-ciency of a superlattice cell.In this example,the thickness of the GaAsP barrier layer is 5nm,which is not thin enough for proper demonstration of the tunnel effect.When the quantum efficiency in the wavelength range (860–960nm)that corresponds to absorption of the quan-tum well is compared between a cell,which has a con-ventionally used barrier layer and a thickness of 10nm or more,and a superlattice cell,which has the same total layer thickness of InGaAs,the superlattice cell demonstrates double or higher quantum efficiency.This result indicates that carrier mobility across quantum wells is promoted by even the partial use of the tunnel effect.By increasing the P composition in the GaAsP layer,the thickness of well (or the In composition)can be increased,and the barrier layer thickness can be reduced while strain compensation is maintained.A cell with higher quantum efficiency can befabricated while extending the absorption edge to the long-wavelength side (Wang et al.2010,2012).GROWTH TECHNIQUE FOR STRAIN-COMPENSATED QUANTUM WELLTo reduce the strain accumulated in the InGaAs/GaAsP multilayer structure as close to zero as possible,it is nec-essary to control the thickness and atomic content of each layer with high accuracy.The In composition and thickness of the InGaAs layer has a direct effect on the absorption edge wavelength and the GaAsP layer must be thinned to a satisfactory extent to demonstrate fully the tunnel effect of the barrier layer.Therefore,it is desirable that the average strain of the entire structure is adjusted mainly by the P composition of the GaAsP layer.Meanwhile,for MOVPE,there exists a nonlinear rela-tionship between the P composition of the crystal layer and the P ratio [P/(P ?As)]in the vapor phase precursors,which arises from different absorption and desorption phenomena on the surface.As a result,it is not easy to control the P composition of the crystal layer.To break through such a difficulty and promote efficient optimiza-tion of crystal growth conditions,we have applied a mechanism to evaluate the strain of the crystal layer during growth in real time by sequentially measuring the curvature of wafers during growth with an incident laser beam from the observation window of the reactor.As shown in Fig.7,the wafer curvature during the growth of an InGaAs/GaAsP multilayer structure indicates a periodic behavior.Based on a simple mechanical model,it has become clear that the time changes ofwaferFig.5Distribution of potential formed by the InGaAs/GaAsP strain-compensated multilayer structure:the narrow band-gap InGaAs layer is sandwiched between wide band-gap GaAsP layers and,as a result,it as quantum well-type potential distribution.In the well,electron–hole pairs are formed by absorption of long-wavelength photons and at the same time,recombination of electrons and holes takes place.The team from Solar Quest is focusing on developing a superlattice structure with the thinnest GaAsP barrier layercurvature are proportionate to the strain of the crystal layer relative to a substrate during the growing process.One vibration cycle of the curvature is same as the growth time of an InGaAs and GaAsP pair (Sugiyama et al.2011).Therefore,the observed vibration of the wafer curvature reflects the accumulation of the compression strain that occurs during InGaAs growth and the release of the strain that occurs during GaAsP growth.When the strain is completely compensated,the growth of the InGaAs/GaAsP pair will cause this strain to return to the initial value and the wafer curvature will vibrate with the horizontal line as the center.As shown in Fig.7,strain can be compensated almost completely by adjusting the layer structure.Only by conducting a limited number of test runs,the use of such real-time observation technology of the growth layer enables setting the growth conditions for fabricating the layer structure for which strain has been compensated with highaccuracy.Fig.6Spectral quantum efficiency of GaAs single-junction cell using InGaAs/GaAsP superlattice as theabsorption layer:This structure consists of 60layers of InGaAs quantum wells.The graph also shows data of a reference cell that uses GaAs for its absorption layer (Wang et al.2010,2012)Fig.7Changes in wafer curvature over time during growth of the InGaAs/GaAsP multilayer structure.This graph indicates the measurement result and the simulation result of the curvature based on the layer structure(composition ?thickness)obtained by X-ray diffraction.Since compressive strain is applied during InGaAs growth,the curvature decreases as time passes.On the other hand,since tensile strain is applied during GaAsP growth,the curvature changes in the oppositedirection (Sugiyama et al.2011)FUTURE DIRECTIONSIn order to improve the conversion efficiency by enhancing the current matching of multi-junction solar cells using III–V compound semiconductors,there is an urgent need to create semiconductor materials or structures that can maintain lattice matching with Ge or GaAs,and have a band gap of1.2eV.As for InGaNAs,which consists of InGaAs with several percent of nitrogen added,we have the prospect of extending the band edge to1.0eV while retaining sufficient carrier mobility for solar cells by means of atomic hydrogen irradiation and application of a small quantity of Sb during the growth process.In addition,as for GaNAs bulk crystal containing InAs dots,we were able to extend the band edge to1.2eV and produce a high-quality crystal with enoughfilm thickness to achieve the quantum efficiency equivalent to that of GaAs.These crystals are grown by means of MBE. Therefore,measures that can be used to apply these crys-tals for mass production,such as migration to MOVPE, will be investigated after demonstrating their high effi-ciency by embedding these crystals into multi-junction cells.As for the InGaAs/GaAsP strain-compensated quantum well that can be grown using MOVPE,we are working on the development of a thinner barrier layer while compen-sating for the strain with high accuracy by real-time observation of the wafer curvature.We have had the prospect of achieving a quantum efficiency that will sur-pass existing quantum well solar cells by promoting the carrier transfer within the multilayer quantum well struc-ture using the tunnel effect.As this technology can be transferred quite easily to the existing multi-junction solar cell fabrication process,we strongly believe that this technology can significantly contribute to the efficiency improvement of the latest multi-junction solar cells. REFERENCESOshima,R.,A.Takata,Y.Shoji,K.Akahane,and Y.Okada.2010.InAs/GaNAs strain-compensated quantum dots stacked up to50 layers for use in high-efficiency solar cell.Physica E42: 2757–2760.Sugiyama,M.,K.Sugita,Y.Wang,and Y.Nakano.2011.In situ curvature monitoring for metalorganic vapor phase epitaxy of strain-balanced stacks of InGaAs/GaAsP multiple quantum wells.Journal of Crystal Growth315:1–4.Wang,Y.,Y.Wen,K.Watanabe,M.Sugiyama,and Y.Nakano.2010.InGaAs/GaAsP strain-compensated superlattice solar cell for enhanced spectral response.In Proceedings35th IEEE photovoltaic specialists conference,3383–3385.Wang,Y.P.,S.Ma,M.Sugiyama,and Y.Nakano.2012.Management of highly-strained heterointerface in InGaAs/GaAsP strain-balanced superlattice for photovoltaic application.Journal of Crystal Growth.doi:10.1016/j.jcrysgro.2011.12.049. AUTHOR BIOGRAPHYYoshiaki Nakano(&)is Professor and Director General of Research Center for Advanced Science and Technology,the University of Tokyo.His research interests include physics and fabrication tech-nologies of semiconductor distributed feedback lasers,semiconductor optical modulators/switches,monolithically integrated photonic cir-cuits,and high-efficiency heterostructure solar cells.Address:Research Center for Advanced Science and Technology, The University of Tokyo,4-6-1Komaba,Meguro-ku,Tokyo153-8904,Japan.e-mail:nakano@rcast.u-tokyo.ac.jp。
美国成功研制自行发电的新材料衣服
下 半年 度 , 上海仪 电集 团将进 一步 加 大推进 节
能 技 改 力度 , 加强 基 础管 理 , 入 开展 全 员节能 降 深
耗 , 力确保 完成全 年 节能计 划 。 努
( 张定华 )
最近 , 美国南加州大学 的研究人 员成功研制 出一 种柔韧性很好的碳原子薄膜透 明材料 , 并用 它制作 出
把 10 0 0瓦的太 阳光 照转化 为 1 4瓦电力 ,而同样面
积 的“ 石墨烯” 有机光伏 电池 只能转化 出 1 . 电力。 4瓦 然而“ 石墨烯 ” 有机光伏 电池具 有造价 低 、 柔韧性好 的
有机光伏电池, 可把光能转化为电能。 新材料名叫“ 石
墨烯” 由一层导 电性极好的碳原子组成 , , 厚度 为几个
2) 能服务 公 司实施合 同 能源管理 项 目 , 合 节 符
税法 有 关规 定 的 ,自项 目取 得 第一 笔 生 产经 营 收 入 , 一年 至 第三 年 免征 企 业所 得 税 , 四至第 五 第 第 年减 半征收 企业所 得税 。
改委能源【 0 8 0 6 ) 2 0 】9 号 对符合信贷条件并已支付
原子。
优势。 据悉, 这种碳原子材料用途广泛, 可以用来生产
太阳能窗帘和 自行发 电的衣服 , 如果人们 穿着这种能
与太阳能硅 电池相 比,石墨烯 ” “ 有机光伏 电池 的 光电转化效率稍逊一筹。 每平 方米 的太 阳能硅 电池能
自行发 电的衣服在 阳光下慢跑 , 还能轻而易举地给手 机或视听设备充 电。 ( 李忠 东 译 ) 节能Fra bibliotek法 制
得 的营业税 金收入 暂免 征收 营业税 , 其 无偿 转让 对 给用 能 单位 的实施 合 同能源 管 理项 目形成 的 资产
旭硝子与Ubiquitous Energy共同开发透明发电窗涂层
7月 19日,康宁公司正式发布第六代大猩猩玻璃 (Coming Gorilla Glass 6)。
康宁第六代 大猩猩玻璃是在第五代 大猩猩玻璃 的基础上 ,进行 了跌落高度方面的改进 ,最重要的是 , 新一代产 品能经受住多次跌落。康宁方面表示 ,第六 代 大猩 猩 玻璃 的升级 主要 体 现在 两 大方 面 ,一 是 “耐 久 度 的提升 ”,二 是更 能 “紧跟现 代设 备设 计 的节 奏 ”。
至于在更上设计节奏方面 ,康宁大猩猩玻璃营销 与创 新 产 品分 部 副 总裁 Scott Forester表 示 :“除 解 决
一 43 — ຫໍສະໝຸດ Clearview PowerT M产 品 只需 使 用 标 准 玻 璃 涂 层 设 备 便 可 直 接 将 高 透 明 、彩 色 中性 涂 层 覆 盖 于玻 璃 表 面。标准薄膜涂层设备 的采用可让全球玻璃年产量 达到 80多亿平方米 。这种新专利技术将为光伏建筑 一 体化市场提供一个真正透 明的能源收集方案 ,使零 耗能 建筑 成 为可能 。
Suncool 60/31主要 面 向英 国本 土 市 场 ,该产 品在 拥 有 出色 采光 效果 的同 时还具 有优 异 的隔 热表 现 ,能 够 减 少 建 筑 能耗 ;Suncool Silver 50/30主 要 面 向出 口 市场 ,该产 品的高反射效果使其具有独特 的银 色外 观 ,尤其 受美 国市场欢 迎 。
美研制出新式大块共聚物太阳能电池等
光伏材料市场或将 出现强劲反弹
据L u x R e s e a r c h 市场调研 公司表示 , 全球光 伏材料市场 预计将在 2 0 1 5 年供 需 重获平衡 时出现显著复 苏状况 。 这家 市场 调研 公 司预计 , 材 料市 场 销售将 从 2 0 1 2 年的 1 7 8 4 L 美 元增 至 2 0 1 8 年的2 7 2 亿美元 。
2 0 1 3 年7 月底前启动 项 目建设 。
市 场 分析 人 士认 为 , 此 次能 源局 会议 是继 去年 9 月首 次启 动分布 式光 伏 发 电示 范 项 目申报工 作 以来 , 推进 国 内分 布式光伏 发 电建设 的又一次力 举, 2 0 1 3 年 全年 国 内新 增 光伏 发 电装 机 将 有 望 突破 1 0 GW 。 一 位券 商分 析 师指 出, “ 按 照 目前 中东部光 照条 件及 工商 业用 电水 平 , 如 果补 贴上 限额 度 定于0 . 4 5 元/kW h, 则投资 分布 式光 伏 电站 , 特别 是屋 顶 电站 的 内部 收益 率仍 比较可 观。 ” 不过 , 申请 分布 式 光伏 发 电示 范 区 项 目的 “ 高 门槛 ” , 让企 业 界人 士 颇
和组件玻璃 的防反射涂 层等材料 则具有创新机 遇并且 是产 品使用质 量的基石 。
太 阳能产业据 称正在着 重强调 较低 的单 位发 电成 本 , 而非每 瓦的生产 成本 , 从 而 可促进 组件拥 有更 长 的使 用 寿命 。 杜邦 等材料 供应商 和 下游项 目开发 商正
在 就相关 问题 制定新 的标准 。 同时 , 诸 ̄ H S o l a r B u y e r 等企业 也正帮助各 金融机 构 更好地进 行组件质量评级 。 ( 中国能源报 )
介绍太阳能屋顶热水器英语作文
介绍太阳能屋顶热水器英语作文In the age of environmental awareness and sustainable development, solar roof water heaters have emerged as a pioneering technology that not only reduces carbonemissions but also saves energy costs for households. These devices, often seamlessly integrated into the roof design, harness the power of the sun to heat water, providing a clean and renewable source of energy.The principle behind solar roof water heaters is straightforward yet ingenious. Solar collectors, typically made of metal absorber plates, are mounted on the roof. These collectors absorb the sun's radiation, converting it into heat. A fluid, usually water or a water-glycol mixture, is circulated through the collectors, absorbing the heat. The heated fluid is then transferred to a storage tank, where it heats the water, ready for use in the home.The benefits of solar roof water heaters are numerous. Firstly, they significantly reduce carbon emissions, contributing to the fight against climate change. By harnessing the sun's energy, we can avoid burning fossil fuels and the associated greenhouse gas emissions. Secondly,solar water heaters are cost-effective in the long run. While the initial investment may be higher than traditional water heaters, the savings in energy bills and maintenance costs quickly add up, making solar water heaters afinancially viable option.Moreover, solar roof water heaters are highly efficient. On sunny days, they can generate enough heat to meet allthe hot water needs of a household, even during peak hours. This means no more waiting for the water to heat up or running out of hot water mid-shower.Integration with the roof design is another plus point. Solar collectors can be custom-made to fit the roof's contours, blending seamlessly with the architecture. This not only enhances the aesthetic appeal of the home but also ensures optimal performance by maximizing the sun's exposure.Maintenance of solar roof water heaters is relatively simple. The majority of systems are designed for durability and require minimal upkeep. Regular cleaning of the solar collectors to remove dirt and debris is recommended, but apart from that, there's little else to worry about.In conclusion, solar roof water heaters are a green revolution for homes. They provide a clean, renewablesource of energy, reduce carbon emissions, and save moneyin the long run. As we move towards a more sustainable future, solar water heaters are an essential part of the solution, offering a practical and environmentally friendly alternative to traditional water heating methods.**太阳能屋顶热水器的演变:家庭绿色革命的先锋** 在环保意识日益增强和可持续发展的时代,太阳能屋顶热水器作为一种开创性技术脱颖而出,不仅减少了碳排放,还为家庭节省了能源成本。
介绍太阳能屋顶热水器英语作文
介绍太阳能屋顶热水器英语作文Solar water heaters are becoming an increasingly popular and practical solution for providing hot water in homes and businesses. These systems harness the power of the sun to heat water, reducing the need for traditional energy sources like electricity or natural gas. As concerns about climate change and the environmental impact of fossil fuels continue to grow, solar water heaters offer a clean and renewable alternative that can significantly lower energy costs and carbon emissions.At the heart of a solar water heater is a solar collector, which is typically mounted on the roof of a building. This collector is designed to absorb the sun's energy and transfer that heat to water circulating through the system. The most common type of solar collector is the flat-plate collector, which consists of a dark-colored absorber plate, insulation, and a transparent cover. As sunlight hits the absorber plate, the heat is transferred to the water flowing through tubes or pipes attached to the plate.Another type of solar collector is the evacuated tube collector, whichuses a series of glass tubes with a vacuum between the inner and outer tubes. This design helps to minimize heat loss, allowing the collector to operate more efficiently in cooler climates. Evacuated tube collectors can also be more effective in capturing the sun's energy during cloudy or overcast conditions.The heated water from the solar collector is then stored in an insulated tank, where it can be used for various domestic or commercial purposes. The size of the storage tank is typically based on the hot water needs of the building and the size of the solar collector. Larger tanks can store more hot water, but they also require more space and can be more expensive to install.One of the key advantages of solar water heaters is their ability to significantly reduce energy costs. By using the sun's free and abundant energy to heat water, homeowners and businesses can save a significant amount on their monthly utility bills. In many cases, the initial investment in a solar water heater can be recouped through these energy savings within a few years.In addition to the financial benefits, solar water heaters also offer environmental advantages. By reducing the reliance on fossil fuels for water heating, these systems can help to lower greenhouse gas emissions and contribute to a more sustainable future. Solar water heaters are also low-maintenance and have a relatively long lifespan,typically lasting 20 to 30 years with proper care and maintenance.Despite these benefits, the adoption of solar water heaters has been somewhat slow in some regions, due to a variety of factors. In some cases, the upfront cost of installation can be a barrier, especially for homeowners on a tight budget. Additionally, in areas with less consistent sunlight or cooler climates, the efficiency of solar water heaters may be reduced, making them less attractive to potential customers.To address these challenges, many governments and organizations have implemented incentives and policies to encourage the adoption of solar water heaters. These can include tax credits, rebates, or other financial incentives that help to offset the initial cost of installation. Additionally, education and awareness campaigns can help to inform the public about the benefits of solar water heaters and dispel any misconceptions about their performance or feasibility.As the world continues to grapple with the urgent need to transition to more sustainable energy sources, solar water heaters offer a promising solution that can contribute to a cleaner and more efficient future. By harnessing the power of the sun, these systems can provide a reliable and cost-effective source of hot water while reducing the environmental impact of traditional water heating methods. As the technology continues to evolve and become moreaccessible, the adoption of solar water heaters is likely to accelerate, leading to a more sustainable and energy-efficient world.。
科技感谐音英译汉美好寓意新颖新能源词汇
科技感谐音英译汉美好寓意新颖新能源词汇科技的发展不仅带来了便利和创新,还为我们的语言丰富了新的词汇。
这些新词汇不仅具有科技感,还有着美好的寓意,尤其是那些英译汉的词汇,更是给人一种新颖的感觉。
在这篇文章中,我们将介绍一些具有科技感、寓意美好的新能源词汇。
1. Solar(太阳能)太阳能是一种清洁、可再生的能源,被广泛应用于发电、供暖和照明等领域。
英文中的“Solar”一词,音译为“索拉”,给人一种科技感十足的感觉。
太阳能的应用不仅减少了对传统能源的依赖,还有助于减少环境污染,为我们创造了一个更加美好的未来。
2. Wind power(风能)风能是另一种常见的新能源,通过风力发电可以为我们提供电力。
英文中的“Wind power”一词,音译为“温德鹏”,给人一种轻盈、自由的感觉。
风能的利用不仅可以减少温室气体的排放,还可以降低能源成本,为可持续发展做出贡献。
3. Geothermal(地热能)地热能是利用地壳内部的热能来发电或供暖的一种能源形式。
英文中的“Geothermal”一词,音译为“吉瑟玛”,给人一种神秘而又稳定的感觉。
地热能的利用不受季节和天气的限制,具有持续稳定的特点,为我们提供了一种可靠的能源选择。
4. Biomass(生物质能)生物质能是利用植物、动物等有机物质来发电或供热的一种能源形式。
英文中的“Biomass”一词,音译为“拜欧玛斯”,给人一种生机勃勃的感觉。
生物质能的利用不仅可以减少有机废弃物的排放,还可以促进农业和林业的可持续发展,为我们创造了一个更加绿色的世界。
5. Hydroelectric(水力发电)水力发电是利用水流的动能来发电的一种能源形式。
英文中的“Hydroelectric”一词,音译为“海德洛电力”,给人一种强大而又稳定的感觉。
水力发电不仅可以满足大量的电力需求,还可以调节水资源的利用,为我们提供了一种可持续的能源选择。
总结:科技感谐音英译汉美好寓意新颖新能源词汇给我们带来了新的语言表达方式,不仅丰富了我们的词汇量,还让我们更加关注可持续发展和环境保护。
国外洗浴用品专利
国外洗浴用品专利
佚名
【期刊名称】《化工文摘》
【年(卷),期】2001(0)8
【摘要】美国专利6043204介绍了一种含有防晒成分的洁身液,涂在身上的防晒系数至少为15,清洗后仍保持在4以上。
理想的防晒成分由乙基己基甲氧基肉桂
酸盐以及另外一种能将290—320nm的光辐射吸收至少50%的防晒剂组成。
后
者可以从下列几种化合物中选择:二苯酮-3、水杨酸辛盐、氰双苯丙烯酸辛盐、
氧化锌及其化合物。
洗净成分由两种以上的表面活性剂组成,其中一种是阴离子表面活性剂,例如烷基硫酸盐或烷基醚硫酸盐;另一种可以是非离子、阴离子或两性。
【总页数】1页(P53)
【正文语种】中文
【中图分类】TQ658
【相关文献】
1.国外在华发明专利格局与技术结构研究——基于1993~2007年国外在华发明
专利数据的分析 [J], 陈琼娣;余翔
2.新专利法下的外观设计与实用新型专利——中国外观设计专利保护与设计产业发展高峰论坛侧记 [J], 李鹏
3.国外专利题录(近期公布的与农业、农药有关的国外专利题录) [J],
4.依据专利合作协议在国外取得发明专利权(国际发明专利申请书的编写,办理手续
和提交) [J], 李天铎
5.国外专利题录(近期公布的与农业、农药有关的国外专利题录) [J],
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a rXiv:h ep-ph/21107v17Oct22INFNCA-TH0206Ultra high energy photon showers in magnetic field:angular distribution of produced particles.Massimo Coraddu,1,2,∗Marcello Lissia,2,1,†and Giuseppe Mezzorani 1,2,‡1Dipart.di Fisica dell’Universit`a di Cagliari,S.P.Sestu Km 1,I-09042Monserrato (CA),Italy 2Ist.Naz.Fisica Nucleare (I.N.F.N.)Cagliari,S.P.Sestu Km 1,I-09042Monserrato (CA),Italy (Dated:October 7,2002)Abstract Ultra high energy (UHE)photons can initiate electromagnetic showers in magnetic field.We analyze the two processes that determine the development of the shower,e +e −pair creation and synchrotron radiation,and derive formulae for the angular distribution of the produced particles.These formulae are necessary to study the three-dimensional development of the shower.I.INTRODUCTIONMagneticfields play a foundamental rˆo le not only for the acceleration and propagation of charged cosmic rays,but also for the absorption of neutral particles,photons and neutrinos, if the magneticfield is sufficiently strong or the particles have sufficiently high energy[1]. In particular,photons can initiate an electromagnetic shower in magneticfield which is analogous to the showers produced in matter;the main features of such showers(longitudi-nal development and particles energy spectra)has been analyzed in Refs.[2,3]under the assumption that momenta be orthogonal to the magneticfield.Important examples of electromagnetic showers in strong magneticfields are theγand radio emission in pulsars[4]and blasars[5]in active galatic nuclei[6].Strong magnetic fields of the order of1012G can be found in the proximity of pulsars[7,8,9,10]:in magneticfield of this order of magnitude photons loose energy by radiating photons(photon splitting[11])or creating e+e−pairs[12,13]which feed the cascade by producing more bremsstrahlung photons.In suchfields even neutrinos radiate photons[14,15,16],create e+e−pairs[16,17,18]or even W particles[19].If the energy of the primary particle is sufficiently high,an electromagnetic shower can develop even in weakfields,such as those present in the interstellar medium or in the vicinity of stars and planets[20,21].A very important such a case is the shower produced by UHE(E>∼1018eV)photons in the magneticfield outside the earth atmosphere:thisearly shower influences the later atmospheric shower.These UHE photons are predicted by top-down theories as possible explaination of the experimental spectrum of ultra high energy cosmic rays[22,23,24,25,26]).In this paper we study the two processes that are the building block of the electromagnetic shower in magneticfield:synchrotron radiation by UHE electrons and e+e−pair production by UHE photons.In particular,we derive formulae for the angular distribution.The precise dependence of the angular distribution from thefield strength and from the energies of the particles is necessary to determine important features of the phenomena,such as the three-dimensional development and the lateral spreading.A foundamental question is whether the three-dimensional development of the shower could experimentally discriminate between UHE air showers originated from a primary pho-ton or from a primary proton(or heavier hadron)[21,27,28,29]and,therefore,discrim-inate between competing theories of the high energy tail of the cosmic ray spectrum.In fact,UHE photons start the shower well outside the atmosphere producing an additional lateral spread to the subsequent atmospheric shower relative to a shower originated by a proton.In addition a shower that begins outside the atmosphere is less affected by the Landau-Pomeranchuk-Migdal effect[30,31,32,33].Another context where it is important the precise knowledge of the angular distribution of the particles produced in the electromagnetic shower is the modeling of the pulsar emission. For instance in the polar cup model proposed by Sturrock[4,7,9]high energy electrons, due to the intense(∼1012G)magneticfields,follow thefield lines to minimize synchrotron radiation energy losses:photons are emitted in a narrow cone nearly parallel to thefield lines.The contribution of pair production to the photon interaction length depends on the magneticfield component orthogonal to the photon momentum:since momenta of the particles in the shower are nearly parallel to thefield,the precise emission angle might be critical for the shower development.In the following Section II we introduce the notation,derive formulae for the synchrotron radiation(magnetic bremsstrahlung)by UHE electrons/positrons,discuss these formulae and show some relevant plots.In Section III we make the analogous derivations and discus-sion for e+e−pair creation by UHE photon in magneticfield.The last Section IV is reserved to our conclusions.II.SYNCHROTRON RADIATIONSynchrotron radiation(or magnetic bremsstrahlung)from ultrarelativistic electrons has been studied by many authors,see for instance Refs.[13,34,35,36,37],where many results mediated over the angular distribution can be found.For our study of the angular dependence of both for the synchrotron radiation and the pair production we shall follow the approach of Berestetskii-Lifshitz-Pitaevskii-Landau(BLPL)[35].In the following discussion we shall assume that the electron momentum p is perpendicular to the magneticfield H: eventually we discuss results for the general case in the last section(conclusions).We recall some of the relevant notation.The characteristic parameter isκ=Hmc2,(1)where H is the stationary magnetic field,m and E the electron mass and energy and H c is the critical fieldH c =m 2c 3(2π)3withV fi (t )=e d 3r ψ∗f αψi A∗=e √√dt =e 2(2π)2 +∞−∞dτ i Q +(t +τ/2)Q (t −τ/2) i e −iωτ,(3)where d 3k =ω2dωd Ω=ω2dωsin ϑdϑdϕwith ϑthe angle between k and p ,and ϕthe angle between H and the projection of k on the plane orthogonal to p .In Eq.(3)the probability can be expanded in powers of τ,since the main contribution comes from small values of τ,when there is superposition between the amplitudes.In fact the values of τfor which the superposition is significant can be evaluated using semiclassical arguments.For kinematical reasons ultra-relativistic electrons radiate in a narrow cone ϑ<∼m/E :the amplitudes for the emission sum coherently along a section of the classicalelectron path where the direction changes of an angle ϑ∼m/E ,i.e.,ω0τ∼m/E ,giving a formation timeτf ∼meH =1H =¯h H =1.29·10−21(H c /H )sec −1.(4)To leading order in ω0τ∼m/E the resulting non-polarized photon emission probability is:dw (2π)2 +∞−∞dτ E 2+E ′2EE ′ (5)×exp −i E 24τ2 ,where v is the initial electron velocity.The integration in dτof Eq.(5)yieldsdw πE 2+E ′2κE ′ 2/3 Φ(X ),(6a)whereX ≡2 E2E 2cos ϑ 1E ′2π ∞0dt cos xt +t 3dt d ¯h ωd cos ϑ=2α(1−u )X − um 2 1− 1−m 2(1−u )κ 2/3(8b)= 1+2(1−cos ϑ)E 2(1−u )κ 2/3(8c)where αis the fine-structure constant.In the ultrarelativistic limit it is convenient to use 2(1−cos ϑ)∼ϑ2∼(m/E )2as angular variable.Equations(6)or,equivalently,Eqs.(8)are our main new result,together with the anal-ogous result for pair creation,Eqs.(17),result which is presented in the next Section,i.e., the angular dependence of the produced particles.The integral of Eq.(8)in d cosϑyields the differential emission probability per unitenergy:dwE 2 ∞ξΦ(x)dx+E2+E′2ξ (9a)whereξ≡ ωκ(1−u) 2/3.(9b) The result in Eqs.(9)agrees with previous calculations[13,30,35,37].Other important quantities in the study of the electromagnetic shower in magneticfield are the differential energy loss for unit time and unit of photon energy:dE¯h(mc2)2u ∞ξΦ(x)dx+1+(1−u)2ξ ,(10) whereξis given in Eq.(9b),and the total energy loss per unit time(emissivity):dE¯h (mc2)2κ2(1+κx3/2)4xΦ′(x)dx.(11)Note that,as expected from the lack of other dimensional scales in the limit of E≫m, the spectral emissivity in Eq.(10)depends only fromκand u(scaling),and the emissivity in Eq.(11)depends only from the characteristic parameterκ,apart from the overall factor (mc2)2.Before studying the angular dependence of the emitted photons let us discuss the total energy loss as a function ofκ,Eq.(11),and the energy dependence of the differential energy loss,Eq.(10).Forκ≪1the energy loss goes to zero asκ2,therefore we limit our discussion to the more physically important caseκ>∼1.The main feature of Eqs.(8)and(10)which determines both the energy and the angular dependence is the presence of the Airy functionΦ(x)that goes to zero exponentially for large values of x.Only for the purpose of this discussion we use x<∼1as a simple threshold value(note thatΦ(1)/Φ(0)=0.381,whileΦ(2)/Φ(0)=0.0984),i.e.,we assume for the purpose of this discussion that most of the photons be emitted for value of x<∼1(the discussion does not change if we use2or3intestead of1),and use the ultrarelativistic limit 2(1−cosϑ)∼ϑ2∼(m/E)2≪1.According to this criterion the differential energy loss per unit of photon energy,Eq.(10), is large whenξ<∼1,and,therefore,most of the photons are emitted with a fractional energyu that verify the conditionu<∼κum 2<∼ u 2/3−1=mκ(1−u)/u.In other words photons with large energy fraction,u∼1,can be emitted within a smaller angle than photons of low energy u≪1.Figure(2)demonstrate this effect by showing the probability of emission as function of the variablebution can also be found in [13,30,34,37,39,40,41].The calculationfollows closely the steps in the previous Section with the necessary formal differences.The characteristic parameter χis analogous to κin Eq.(1)with the substitution of the incoming-electron energy E with the incoming-photon energy ¯h ω:χ=Hmc 2:(15)we use a different notation for clarity.Now the four-momenta of the incoming photon and of the outcoming electron and positron are K =(ω,k ),P −=(E −,p −),and P +=(E +,p +).As in the previous section,we work in the limit when incoming and outgoing particles are relativistic and the field is relatively low,H ≪H c .After performing the cross-channel transformations (E,p )→(−E +,−p +),(E ′,p ′)→(E −,p −),(ω,k )→(−ω,−k ),and substituting the emitted-photon phase space with the one of the created positron (or electron),we obtain the analogous of Eq.(5)for the probability of pair production by an unpolarized high-energy photon that propagates othogonal to the magnetic field (the probability is summed over the final spins and integrated over the electron direction,if we measure the positron energy:the rˆo les of electron and positron can be exchanged).This formula can again be expanded in the formation time τf ,Eq.(4),and the result is:dwπ(E +2+E −2)E +χωE − 2/3 Φ(X )(16a)whereX ≡2 E +2E 2+ cos ϑ ω2dtdE +d cos ϑ=2α(1−v )X +v 1m 2 1− 1−m 2v (1−v )χ 2/3(17b)= 1+2(1−cos ϑ)E 2+v (1−v )χ2/3,(17c)and2(1−cosϑ)∼ϑ2∼(m/E)2the convenient angular variable in the ultrarelativistic limit.As in the case of the synchrotron radiation,we can cross-check our result by integrating Eq.(17)over the polar angle and comparing the differential emission probability per unit energy with Refs.[13,30,34,35,37,41]:dwω 2 ∞ξΦ(x)dx−E2++E2−ξ (18a)whereξ≡ 1E+E− 2/3= 1dtdv =α¯hω∞ξΦ(x)dx−v2+(1−v)2ξ (19)withξdefined in Eq.(18b),while the total pair production probability is:dw¯h (mc2)2x11/4(x3/2−4/χ)1/2Φ′(x)dx.(20)Note again that the differential emission probability depends only fromχand v and the total pair production probability only fromχ(scaling),apart the dimensional constant in front(mc2)2,as a consequence of the lack of other dimensional scales in the limit of E≫m. Note also that the pair production probability,differently from the synchrotron emission,is exponentially suppressed in the limit ofχ≪4,since the Airy function decays exponentially for large values of its argument.The physical cause of this suppression is the presence of a threshold for pair creation.In the following discussion we consider the rangeχ>∼4.As in the case of the synchrotron radiation the main feature of Eqs.(17)and(19)that determines both the energy and the angular dependence is the exponential suppression of the Airy functionΦ(x)with growing x;we use the threshold value x<∼1and work in the ultrarelativistic limitϑ∼m/E≪1.In addition the pair creation probability is symmetric in the two variable E+and E−,i.e.,is symmetric respect to the point v=1/2.In this case the chosen criterion imples that the differential energy loss per unit of elec-tron/positron energy,Eq.(19),is large whenξ<∼1,and,therefore,most of the e+e−are emitted with a fractional energy v that verify the condition− 4−12<∼ 4−1whenχ>4,i.e.,e+e−can be emitted with one of them carrying a large fraction of the photon energy only for relatively large values ofχ.Figure3summarizes this discussion by showing the probability of emission as function of the energy fraction with the area arbitrary normalized to1for different values ofχ.The smallest value ofχ=0.1(curve 1)is strongly peaked at v=1/2,while the largest value ofχ=100(curve6)has a much flatter distribution with peaks at values close to v=0and v=1,in spite of the fact that the distribution must go to zero at exactly v=0and v=1.The angular distribution is described by exactly the same constrain found for the syn-chrotron radiationX= 1+ ϑE v(1−v)χ 2/3<∼1,(22) which implies that the energy-dependent angle within which most of the pairs are emittedis:ϑE(v(1−v)χ)2/3−1=(1−v)vχ.Inother words pairs that share equally their energy v∼1/2can be emitted within a larger angle than pairs where one of the two particles carries a large part of the energy,v∼1or v∼0.Figure(4)demonstrates this effect by showing the probability of emission as function of the variable2(1−cosϑ)(E/m)2∼ϑ2;the distribution has been arbitrary normalized suchthat it is equal to1atϑE/m=10−1.Going from an asymmetric distribution of the energy, v=0.1,(curves1and3)to a symmetric one,v=0.5,(curves2and4)the angle becomes wider;the same happens whenχincreases from4(curves1and2)to100(curves3and4).IV.CONCLUSIONSIn this paper we have studied the angular dependence of photons emitted by UHE elec-trons and of the e+e−pairs emitted by UHE photons in a static magneticfield:this de-pendence is needed for detailed studies of the electromagnetic cascade in magneticfields, such as those initiated by UHE cosmic rays in the geomagneticfield,or by charged particles emitted by pulsar.The main results are shown in Eqs.(8)for the magnetic bremsstrahlung and in Eqs.(17) for the pair production.For simplicity we have sketched the derivation of these formulae in the case of propagation in the plane orthogonal to the magneticfield,but it is possible to show,as we have explicitely verified by performing the appropriate Lorentz transformations, that the same formulae are valid in the general case if H is substituted with H⊥,the component of the magneticfield perpendicular to the propagation.These results are also plotted as function of the angle for different values of the fractional energy in Figs.2and4and briefly discussed in text.The angle becomes wider for larger values of the characteristic parameter and for smaller energy fraction(synchrotron radiation) or more symmetric energy fraction(pair production).We have verified that our results,when integrated over the emission angle,reproduce the known results for the differential in the energy and total probability of emission.AcknowledgmentsThis work is partially supported by M.I.U.R.(Ministero dell’Istruzione,dell’Universit`a e della Ricerca):“Cofinanziamento”P.R.I.N.2001.[1]V.L.Ginzburg,V.A.Dogiel,V.S.Berezinsky,S.V.Bulanov and V.S.Ptuskin,“AstrophysicsOf Cosmic Rays,”Amsterdam,Netherlands:North-Holland(1990)534p.[2] A.I.Akhiezer,N.P.Merenkov and A.P.Rekalo,J.Phys.G20,1499(1994)[Phys.Atom.Nucl.58,440(1995YAFIA,58,491-500.1995)].[3]V.Anguelov and H.Vankov,J.Phys.G25,1755(1999)[arXiv:astro-ph/0001221].[4]P.A.Sturrock,Astrophys.J.164,529(1971).[5]W.Bednarek,J.G.Kirk and A.Mastichiadis,Astron.Astrophys.307,L17(1996)[arXiv:astro-ph/9601131].[6]W.Bednarek and R.J.Protheroe,Mon.Not.Roy.Astron.Soc.302,373(1999)[arXiv:astro-ph/9802288].[7]J.K.Daugherty and I.Lerche,Phys.Rev.D14,340(1976).[8]J.K.Daugherty and A.K.Harding,Astrophys.J.252,337(1982).[9]ov and D.B.Melrose,Austral.J.Phys.48,571(1995)[arXiv:astro-ph/9506021].[10]M.G.Baring and A.K.Harding,Astrophys.J.547,929(2001)[arXiv:astro-ph/0010400].[11]ov,Astrophys.J.572,L87(2002)[arXiv:astro-ph/0205018].[12]J.K.Daugherty and A.K.Harding,Astrophys.J.273,761(1983).[13]M.G.Baring,Mon.Not.Roy.Astron.Soc.235,51(1988).[14] A.A.Gvozdev,N.V.Mikheev and L.A.Vassilevskaya,Phys.Rev.D54,5674(1996)[arXiv:hep-ph/9610219].[15] A.N.Ioannisian and G.G.Raffelt,Phys.Rev.D55,7038(1997)[arXiv:hep-ph/9612285].[16] A.A.Gvozdev,A.V.Kuznetsov,N.V.Mikheev and L.A.Vassilevskaya,Phys.Atom.Nucl.61,1031(1998)[Yad.Fiz.61,1125(1998)][arXiv:hep-ph/9710219].[17] A.V.Borisov,A.I.Ternov and V.Ch.Zhukovsky,Phys.Lett.B318,489(1993).[18] A.V.Kuznetsov and N.V.Mikheev,Phys.Lett.B394,123(1997)[arXiv:hep-ph/9612312].[19] A.Erdas and M.Lissia,arXiv:hep-ph/0208111.[20] F.A.Aharonian,B.L.Kanevsky,and V.A.Sahakian,J.Phys.G17,1909(1991).[21] C.P.Vankov and P.V.Stavrev,Phys.Lett.B266,178(1991).[22]V.Berezinsky and A.Vilenkin,Phys.Rev.Lett.79,5202(1997)[arXiv:astro-ph/9704257].[23]V.Berezinsky,M.Kachelriess and A.Vilenkin,Phys.Rev.Lett.79,4302(1997)[arXiv:astro-ph/9708217].[24]V.Berezinsky,Nucl.Phys.Proc.Suppl.70,419(1999)[arXiv:hep-ph/9802351].[25]V.Berezinsky,Nucl.Phys.Proc.Suppl.81,311(2000).[26] A.V.Olinto,Nucl.Phys.Proc.Suppl.110,434(2002)[arXiv:astro-ph/0201257].[27]Mahrous A.and Inoue N.,“Cascading parameters of EHE primary photons in the Sun’s mag-neticfield,”Prepared for27th International Cosmic Ray Conference(ICRC2001),Hamburg, Germany,7-15Aug2001[28]W.Bednarek,arXiv:astro-ph/9911266.[29]W.Bednarek,“Interaction of EHE gamma-rays with the magneticfield of the sun,”Preparedfor26th International Cosmic Ray Conference(ICRC99),Salt Lake City,Utah,17-25Aug 1999[30]Kasahara K.,“The LPM and geomagnetic effects on the development of air showers in theGZK cutoffregion,”Presented at ICRR International Symposium on Extremely High Energy Cosmic Rays:Astrophysics and Future Observatories,Tanashi,Japan,25-28Sep1996[31]T.Stanev and H.P.Vankov,Phys.Rev.D55,1365(1997)[arXiv:astro-ph/9607011].[32]Shinozaki K.et al.,“Properties of EHE gamma-ray initiated showers and their search byAGASA,”Prepared for27th International Cosmic Ray Conference(ICRC2001),Hamburg, Germany,7-15Aug2001[33]W.Bednarek,arXiv:astro-ph/0109015.[34]T.Erber,Rev.Mod.Phys.38,626(1966).[35]V.B.Berestetskii,E.M.Lifshitz,L.P.Pitaevskii,and ndau,Quantum Electrody-namics,Pergamon Press,Second edition,(1982).[36]J.S.Schwinger,“Particles,Sources,And Fields.Vol.3,”REDWOOD CITY,USA:ADDISON-WESLEY(1989)318P.(ADVANCED BOOK CLASSICS SERIES).[37] A.A.Sokolov,I.M.Ternov and C.W.Kilmister,“Radiation From Relativistic Electrons,”NEW YORK,USA:AIP(1986)312P.(AIP TRANSLATION SERIES).[38]M.Abramowitz and I.A.Stegun,“Handbook of Mathematical Functions,”Dover(1964).[39]J.S.Toll,Ph.D.thesis,Princeton Univ.(1952)(Unpublished).[40]H.Robl,Acta Phys.Austriaca6,105(1952).[41]W.Y.Tsai and T.Erber,Phys.Rev.D10,492(1974).carried by the photon u=ω/E,Eqs.(10),for several values of the characteristic parameter κ=(H/H c)(E/m):curve1(2,3,4,5,6)corresponds toκ=100(10,5,2,1,0.5).All curves are normalized such that the area is1.values of the fractional energy carried by the photon u=ω/E and of the characteristic parameter κ:curve1corresponds to u=0.5andκ=0.1;curve2to u=0.5andκ=1;curve3to u=10−3 andκ=0.1;curve4to u=10−3andκ=1.The angular variable isχ=(H/H c)(ω/m):curve1(2,3,4,5,6)corresponds toχ=0.1(0.5,1,4,10,100).All curves are normalized such that the area is1.FIG.4:Angular distribution of probability of emitting a positron(electron)with fractional energy v by a UHE photon,Eqs.(17),for two values of v and of the characteristic parameterχ=1:curve 1corresponds to v=0.1andχ=4;curve2to v=0.5andχ=4;curve3to v=0.1andχ=100; curve4to v=0.5andχ=100.The angular variable is。