郑州市第七中学数学一元二次方程单元试卷(word版含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

郑州市第七中学数学一元二次方程单元试卷(word 版含答案)

一、初三数学 一元二次方程易错题压轴题(难)

1.已知:在平面直角坐标系xoy 中,直线k y x b =+分别交x 、y 轴于点A 、B 两

点,OA=5,∠OAB=60°.

(1)如图1,求直线AB 的解析式;

(2)如图2,点P 为直线AB 上一点,连接OP ,点D 在OA 延长线上,分别过点P 、D 作OA 、OP 的平行线,两平行线交于点C ,连接AC,设AD=m,△ABC 的面积为S,求S 与m 的函数关系式; (3)如图3,在(2)的条件下,在PA 上取点E ,使PE=AD, 连接EC,DE,若∠ECD=60°,四边形ADCE 的周长等于22,求S 的值.

【答案】(1)直线解析式为353y x =-+(2)S=53253

22

m +

;(3)203S =. 【解析】 【分析】

(1)先求出点B 坐标,设AB 解析式为y kx b =+,把点A(5,0),B(0,3分别代入,利用待定系数法进行求解即可;

(2)由题意可得四边形ODCP 是平行四边形,∠OAB=∠APC=60°,则有PC=OD=5+m ,∠PCH=30°,过点C 作CH ⊥AB ,在Rt △PCH 中 利用勾股定理可求得CH=)3

52

m +,再由S=

1

2

AB •CH 代入相关数据进行整理即可得; (3) 先求得∠PEC=∠ADC ,设∠OPA=α,则∠OPC= ∠ADC= ∠PEC=60°+α,在BA 延长线上

截取AK=AD ,连接OK ,DK ,DE ,证明△ADK 是等边三角形,继而证明△PEC ≌△DKO ,通过推导可得到OP=OK=CE=CD ,再证明△CDE 是等边三角形,可得CE=CD=DE ,连接OE ,证明△OPE ≌△EDA ,继而可得△OAE 是等边三角形,得到OA=AE=5 ,根据四边形ADCE 的周长等于22,可得ED=

172m -,过点E 作EN ⊥OD 于点N ,则DN=5

2

m +,由勾股定理得222EN DN DE +=, 可得关于m 的方程,解方程求得m 的值后即可求得答案.

【详解】

(1)在Rt △ABO 中OA=5,∠OAB=60°, ∴∠OBA=30°,AB=10 , 由勾股定理可得OB=53,

∴B(0,53),

设AB解析式为y kx b

=+,把点A(5,0),B(0,53)分别代入,得

05

53

k b

b

=+

⎧⎪

=

⎪⎩

,∴

3

53

k

b

⎧=-

=

⎪⎩

∴直线解析式为353

y x

=-+;

(2)∵CP//OD,OP//CD,

∴四边形ODCP是平行四边形,∠OAB=∠APC=60°,

∴PC=OD=5+m,∠PCH=30°,

过点C作CH⊥AB,在Rt△PCH中 PH=

5

2

m

+

,由勾股定理得CH=()

3

5m

+,∴S=

1

2

AB•CH=

1353253

10(5)

2

m m

⨯⨯+=+;

(3) ∵∠ECD=∠OAB=60°,

∴∠EAD+∠ECD=180°,∠CEA+∠ADC=180°,

∴∠PEC=∠ADC,

设∠OPA=α,则∠OPC= ∠ADC= ∠PEC=60°+α,

在BA延长线上截取AK=AD,连接OK,DK,DE,

∵∠DAK=60°,

∴△ADK是等边三角形,

∴AD=DK=PE,∠ODK=∠APC,

∵PC=OD,

∴△PEC≌△DKO,

∴OK=CE,∠OKD=∠PEC=∠OPC=60°+α,∠AKD= ∠APC=60°,

∴∠OPK= ∠OKB,

∴OP=OK=CE=CD,

又∵∠ECD=60°,

∴△CDE是等边三角形,

∴CE=CD=DE ,

连接OE ,∵ ∠ADE=∠APO ,DE=CD=OP , ∴△OPE ≌△EDA , ∴AE=OE , ∠OAE=60°, ∴△OAE 是等边三角形, ∴OA=AE=5 ,

∵四边形ADCE 的周长等于22, ∴AD+2DE=17, ∴ED=

172

m

-, 过点E 作EN ⊥OD 于点N ,则DN=

5

2

m +, 由勾股定理得222EN DN DE +=, 即222

53517(

)()()22

m m -++=, 解得13m =,221m =-(舍去), ∴S=

153253

+

=203.

【点睛】

本题考查的四边形综合题,涉及了待定系数法,平行四边形的判定与性质,勾股定理,全等三角形的判定与性质,等边三角形的判定与性质,解一元二次方程等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.

2.已知关于x 的方程x 2﹣(2k +1)x +k 2+1=0. (1)若方程有两个不相等的实数根,求k 的取值范围;

(2)若方程的两根恰好是一个矩形两邻边的长,且k =2,求该矩形的对角线L 的长. 【答案】(1)k >

3

4

;(215

相关文档
最新文档