数学人教版九年级上册以二次函数为背景的特殊三角形的存在性问题

合集下载

二次函数与三角形的存在性问题

二次函数与三角形的存在性问题

中考压轴题特训:二次函数与等腰、直角三角形的存在性问题一、预备知识(1)坐标系中或抛物线上有两个点为A (x 1,y ),B (x 2,y )线段对称轴是直线 :2x 21x x +=(2) 两点之间距离公式:已知两点()()2211y ,x Q ,y ,x P ,则由勾股定理可得:221221)()(y y x x PQ -+-= 练一练:已知A (0,5)和B (-2,3),则AB = 。

中点公式:已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为⎪⎭⎫ ⎝⎛++222121y y ,x x 。

练一练:已知A (0,5)和B (-2,3),则线段AB 的中点坐标是(3)平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1 L2:y=k2x+b2(1)当k1=k2,b1≠b2 ,L1∥L2(2)当k1≠k2, ,L1与L2相交(3)K1×k2= -1时, L1与L2垂直二、常见考察形式(1)已知A (1,0),B (0,2),请在下面的平面直角坐标系坐标轴上找一点C ,使△ABC 是等腰三角形;总结: 两圆一线(2)已知A (-2,0),B (1,3),请在平面直角坐标系中坐标轴上找一点C ,使△ABC 是直角三角形; 总结: 两线一圆(3)、方法总结:1、平面直角坐标系中已知一条线段,构造等腰三角形,用的是“两圆一线”:分别以线段的两个端点为圆心,线段长度为半径作圆,再作线段的垂直平分线;2、平面直角坐标系中已知一条线段,构造直角三角形,用的是“两线一圆”:分别过已知线段的两个端点作已知线段的垂线,再以已知线段为直径作圆;3、二次函数中三角形的存在性问题解题思路:(1)先分类,罗列线段的长度;(2)再画图;(3)后计算三、精讲精练1.由动点产生的等腰三角形问题(扬州)如图,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.备用图2.由动点产生的直角三角形问题(攀枝花)如图,抛物线y=ax2+bx+c经过点A(-3,0),B(1.0),C(0,-3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.备用图3.由动点产生的等腰直角三角形例.(东营)在平面直角坐标系中,现将一块等腰直角三角板放在第一象限,斜靠在两坐标轴上,且点A(0,2),点C(1,0),如图所示,抛物线y=ax2-ax-2经过点B.(1)求抛物线的解析式;(2)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.四、实战演1..(2012临沂)26如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A.O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.2.(2016临沂中考)26.(本题满分13分)如图,在平面直角坐标系中,直线y=—2x+10与x轴、y轴相交于A、B两点.点C的坐标是(8,4),连接AC、BC.(1)求过O、A、C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC 以每秒1个单位长度的速度向点C运动.规定其中一个点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A、B、M为顶点的三角形是等腰三角形?若存在,求出点M 的坐标;若不存在,请说明理由。

(完整版)二次函数与三角形的存在性问题的解法

(完整版)二次函数与三角形的存在性问题的解法

二次函数与三角形的存在性问题一、预备知识1、坐标系中或抛物线上有两个点为P (x1,y ),Q (x2,y )(1)线段对称轴是直线2x 21x x +=(2)AB 两点之间距离公式:221221)()(y y x x PQ -+-=中点公式:已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为⎪⎭⎫ ⎝⎛++222121y y ,x x 。

2、两直线的解析式为11b x k y +=与 22b x k y +=如果这两天两直线互相垂直,则有121-=⋅k k3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1 L2:y=k2x+b2(1)当k1=k2,b1≠b2 ,L1∥L2(2)当k1≠k2, ,L1与L2相交(3)K1×k2= -1时, L1与L2垂直二、三角形的存在性问题探究:三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形(一)三角形的性质和判定:1、等腰三角形性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。

判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。

2、直角三角形性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。

判定:有一个角是直角的三角形是直角三角形。

3、等腰直角三角形性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。

判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形4、等边三角形性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。

判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是60°的等腰三角形是等边三角形。

总结:(1)已知A 、B 两点,通过“两圆一线”可以找到所有满足条件的等腰三角形,要求的点(不与A 、B 点重合)即在两圆上以及两圆的公共弦上(2)已知A 、B 两点,通过“两线一圆”可以找到所有满足条件的直角三角形,要求的点(不与A 、B 点重合)即在圆上以及在两条与直径AB 垂直的直线上。

二次函数与等边三角形的存在性问题

二次函数与等边三角形的存在性问题

二次函数与等边三角形的存在性问题引言本文旨在研究二次函数与等边三角形的存在性问题。

通过了解二次函数和等边三角形的定义和性质,我们将探讨它们之间是否存在关联,并通过简单的策略来解决这个问题。

二次函数的定义和性质二次函数是一种具有形式为$f(x) = ax^2 + bx + c$ 的函数,其中 $a$、$b$ 和 $c$ 是实数,且 $a \neq 0$。

二次函数的图像通常是一个抛物线,可向上开口(当 $a > 0$)或向下开口(当 $a < 0$)。

二次函数的图像关于其顶点对称。

等边三角形的定义和性质等边三角形是一种具有三条边长度相等的三角形。

等边三角形的内角均为 $60^\circ$。

等边三角形也可以看作是一个正三角形。

二次函数与等边三角形的关联分析我们将研究二次函数与等边三角形的存在性问题,即我们要找到一个二次函数,使得它的图像与一个等边三角形的图像重合。

根据二次函数的性质,我们知道它的图像总是是一个抛物线,而等边三角形的图像是正三角形。

由此可见,单纯的二次函数是不可能与等边三角形相重合的。

然而,我们可以采用一些简单的策略来实现这一目标。

例如,我们可以将二次函数进行线性变换,使得抛物线的形状与正三角形更加接近。

通过适当的调整函数的参数,我们能够使得抛物线的顶点位置和曲线开口方向与等边三角形完全相匹配。

这样,我们就能够找到一个满足题设的二次函数,使其图像与等边三角形的图像重合。

结论通过简单策略的运用,我们可以找到一个二次函数,使其图像与等边三角形的图像重合。

这个问题的关键在于适当调整二次函数的参数,以使其图像的形状与等边三角形完全相匹配。

通过这种方法,我们可以解决二次函数与等边三角形的存在性问题。

参考文献:。

二次函数中三角形存在问题(一)

二次函数中三角形存在问题(一)

二次函数中三角形存在性问题(一)1.等腰三角形2.直角三角形例一:条件的所有点P的坐标。

(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标。

6.二次函数)0(2≠++=a c bx ax y 的图象的一部分如图所示.已知它的顶点M 在第二象限,且经过点A (1,0)和点B (0,1).(1)试求a ,b 所满足的关系式;(2)若点C (-3,0),试确定二次函数表达式。

(3)是否存在实数a ,使得△ABC 为直角三角形?若存在,请求出a 的值;若不存在,请说明理由.课后作业1.如图,抛物线n x x y ++-=52经过点A (1,0),与y 轴交于点B(1)求抛物线的解析式;(2)P 是y 轴正半轴上一点,且△PAB 是以AB 为腰的等腰三角形,试求点P 的坐标.2.如图,在平面直角坐标中抛物线322+--=x x y 与x 轴的正半轴交于点A ,顶点为B ,点C 为AB 的中点,点D 在X 轴的负半轴上,且tanCDA=21。

(1)求C 、D 两点坐标;3.在平面直角坐标系中,△ABC是直角三角形,且∠BAC=90°,∠ACB=30°,点A的坐标为(0,3),B,C在x轴上,C在B的右侧。

(1)求点B和点C的坐标;(2)求经过A、B、C三点的抛物线的表达式;(3)设点M是(2)中抛物线的顶点,P、Q是抛物线上的两点,要使△MPQ为等边三角形,求点P、Q的坐标.4.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点M在第一象限,抛物线与x轴相交于A、B两点(点A在点(1)求点M的坐标;(2)求抛物线y=ax2+bx+c的解析式;(3)在抛物线的对称轴上是否存在点P,使得△PAC为直角三角形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.。

初三数学中考复习:二次函数中特殊三角形的存在问题(含答案)

初三数学中考复习:二次函数中特殊三角形的存在问题(含答案)

特殊三角形存在性问题一、等腰三角形存在性问题【例4】如图,抛物线y=-x2+mx+n与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(-1,0),C(0,3).(1)求抛物线的解析式.解:把A(-1,0),C(0,3)代入y=-x2+mx+n,得解得∴抛物线的解析式为y=-x2+2x+3.(2)判断△ACD的形状,并说明理由.先确定点D的坐标,求出△ACD的各边长,然后判断△ACD的形状.解:△ACD是等腰三角形.由(1)知,抛物线的对称轴为x=1,∴D(1,0).∵A(-1,0),C(0,3),∴AD=2,AC==,CD==.∴AC=CD.∴△ACD是等腰三角形.(3)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,求出P点的坐标;如果不存在,请说明理由.先找出所有符合条件的点,然后再求线段长确定P点坐标.解:由(2)知CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=DP2=DP3=CD.过点C作CM垂直对称轴于M,∴MP1=MD=3.∴DP1=6.∴符合条件的点P的坐标为(1,6),(1,),(1,-).(4)点P是线段BC上的一动点,是否存在这样的点P,使△PCD是等腰三角形?如果存在,求出P点的坐标,如果不存在,请说明理由.先求出BC的解析式,分三种情况讨论计算出m.解:∵B(3,0),C(0,3),∴直线BC的解析式为y=-x+3.设点P(m,-m+3)(m>0).∵C(0,3),D(1,0),∴CP2=2m2,DP2=(m-1)2+(-m+3)2,CD2=10.∵△PCD是等腰三角形:①当CP=DP时,则CP2=DP2.∴2m2=(m-1)2+(-m+3)2.∴m=.∴P.1②当CP=CD时,则CP2=CD2.∴2m2=10.∴m=或m=-(舍去).(,3-).∴P2③当DP=CD时,则DP 2=CD 2.∴(m-1)2+(-m+3)2=10.∴m=4或m=0(舍去).∴P(4,-1).3综上所述,符合条件的点P的坐标为,(,3-)或(4,-1).(5)设抛物线的顶点为E,在其对称轴的右侧的抛物线上是否存在点P,使得△PEC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.分“以CE为底”和“以CE为腰”两种情况讨论.利用腰长相等列关系式,再结合抛物线解析式,求出点P的坐标.解:由(1)知,E点坐标为(1,4),对称轴为直线x=1.①若以CE为底边,则PE=PC.设点P的坐标为(x,y),则(x-1)2+(y-4)2=x2+(3-y)2,即y=4-x.又∵点P(x,y)在抛物线上,∴4-x=-x2+2x+3.解得x=.∵<1,应舍去.∴x=,y=4-x=.即点P的坐标为.②若以CE为一腰,因为点P在对称轴右侧的抛物线上,由抛物线的对称性可知,点P与点C关于直线x=1对称,此时P点坐标为(2,3).综上所述,符合条件的点P坐标为或(2,3).关于等腰三角形找点(作点)和求点的方法①等腰三角形找点(作点)方法:以已知边为边长,作等腰三角形,运用“两圆一问题找点已知点A,B和直线l,在l上求点P,使△P AB为等腰三角形分别以点A,B为圆心,以线段AB长为半径作圆,再作线段AB的垂直平分线,两圆和垂直平分线与l的交点即为所有要求的P点②等腰三角形求点方法:以已知边为边长,在抛物线或坐标轴或对称轴上找点,与已知点构成等腰三角形,先设所求点的坐标,然后求出三点间的线段长度,分不同顶点进行讨论.二、直角三角形的存在性问题【例5】如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;解:把A(-1,0),B(3,0)代入y=ax2+2x+c,得解得∴抛物线的解析式为y=-x2+2x+3.设AC的解析式为y=kx+3.把A(-1,0)代入解析式,得k=3.∴直线AC的解析式为y=3x+3.(2)动点E在y轴上移动,当△EAC是以AC边为直角边的直角三角形时,求点E的坐标.解:设E的坐标为(0,t).AC2=OA2+OC2=12+32=10,EA2=OA2+OE2=12+t2,CE2=(3-t)2.在Rt△EAC中,AC2+EA2=CE2,∴10+(12+t2)=(3-t)2,解得t=-.∴点E的坐标为.(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.分直角顶点在点A处和点C处两种情况讨论.解:存在.①直角顶点在点C处.如图,过点C作CQ⊥AC交x轴于点Q,△ACQ为直角三角形.又∵CO⊥AQ,∴△COA∽△QOC.∴=.∵A(-1,0),C(0,3),∴OA=1,OC=3.∴=.∴OQ=9.∴Q(9,0).由C(0,3),Q(9,0)可求出直线CQ的解析式为y=-x+3.联立方程解得x1=0(舍去),x2=.当x=时,y=.∴P1.②直角顶点在点A处.如图,过点A作AP2∥CQ交抛物线于点P2.设直线AP2的解析式为y=-x+b,把A(-1,0)代入解析式,得-×(-1)+b=0,∴b=-.∴直线AP2的解析式为y=-x-. 联立方程解得x1=-1(舍去),x2=,当x=时,y=-.∴P2.综上所述,符合条件的点P的坐标为或.(4)在抛物线的对称轴上是否存在一点P,使得以B,C,P为顶点的三角形为直角三角形?若存在,试求出点P的坐标;若不存在,请说明理由.分直角顶点在点B处、点C处和点P处三种情况讨论.解:设点P(1,m),B(3,0),C(0,3).∴BC2=18,PB2=(1-3)2+m2=m2+4,PC2=12+(m-3)2=m2-6m+10.①当以点C为直角顶点时,BC2+PC2=PB2,即18+ (m2-6m+10)=m2+4,解得m=4.②当以点B为直角顶点时,BC2+PB2=PC2,即18+ (m2+4)=m2-6m+10,解得m=-2.③当以点P为直角顶点时,PB2+PC2=BC2,即m2+4+ (m2-6m+10) =18,解得m1=,m2=.综上,存在点P,使得以点B,C,P为顶点的三角形为直角三角形,点P的坐标为(1,4),(1,-2),,.(5)作直线MN平行于x轴,分别交线段AC,BC于点M,N.问在x轴上是否存在点P,使得△PMN是等腰直角三角形?如果存在,求出所有满足条件的P点的坐标;如果不存在,请说明理由.分三种情况进行讨论:①∠PMN=90°,PM=MN;②∠PNM=90°,PN=MN;③∠MPN=90°,PM=PN.解:存在.设M,N的纵坐标为m,由B(3,0),C(0,3)可求出直线BC的解析式为y=-x+3.∴M,N(3-m,m)①当∠PMN=90°,PM=MN时,如图1所示,∵MN=,PM=m,∴=m,解得m=,则P的横坐标为-.∴P.②当∠PNM=90°,PN=MN时,同理可得P.③当∠MPN=90°,PM=PN时,作MN的中点Q,连接PQ,则PQ=m.又∵PM=PN,∴PQ⊥MN.则MN=2PQ,即=2m,解得m=,点P的横坐标为==.∴P.综上,存在点P使得△PMN是等腰直角三角形,点P的坐标为,或.关于直角三角形找点和求点的方法①找点:以已知边为边长,作直角三角形,运用两线一圆法,在图上找出存在点的个数.所谓的“两线”就是指以已知边为直角边,过已知边的两个端点分别作垂线与抛物线或坐标轴或对称轴的交点,就是所求的点;“一圆”就是以已知边为直径,以已知边的中点作圆,与抛物线或坐标轴或对称轴的交点即为所求的点.②求点:以两定点为直角顶点时,两直线互相垂直,则k1·k2=-1;以已知线段为斜边时,利用K型图,构造双垂直模型,最后利用三角形相似求解,或者三条边分别用代数式表示之后,利用勾股定理求解.。

初三数学人教版秋季班(教师版)第5讲 二次函数存在性问题--基础版

初三数学人教版秋季班(教师版)第5讲 二次函数存在性问题--基础版

第5讲 二次函数存在性问题知识点1二次函数中直角三角形存在性问题 二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)的三种表达形式分别为:一般式:y=ax 2+bx+c ,通常要知道图像上的三个点的坐标才能得出此解析式;顶点式:y=a (x -h )2+k ,通常要知道顶点坐标或对称轴才能求出此解析式;交点式:y=a (x -x 1)(x -x 2),通常要知道图像与x 轴的两个交点坐标x 1,x 2才能求出此解析式;对于y=ax 2+bx+c 而言,其顶点坐标为(-2b a ,244ac b a ).对于y=a (x -h )2+k 而言其顶点坐标为(h ,k ), 由于二次函数的图像为抛物线,因此关键要抓住抛物线的三要素:开口方向,对称轴,顶点.【典例】1.如图,已知抛物线y=x 2+bx+c 与x 轴交于A ,B 两点(点A 在点B 的左侧)与y 轴交于点C (0,﹣3),对称轴是直线x=1,直线BC 与抛物线的对称轴交于点D ,点E 为y 轴上一动点,CE 的垂直平分线交抛物线于P ,Q 两点(点P 在第三象限)(1)求抛物线的函数表达式和直线BC 的函数表达式;(2)当△CDE 是直角三角形,且∠CDE=90° 时,求出点P 的坐标;(3)当△PBC 的面积为时,求点E 的坐标.【解析】解:(1)∵抛物线的对称轴为直线x=1,∴﹣﹣=1,∴b=﹣2∵抛物线与y轴交于点C(0,﹣3),∴c=﹣3,∴抛物线的函数表达式为:y=x2﹣2x﹣3;∵抛物线与x轴交于A、B两点,当y=0时,x2﹣2x﹣3=0.∴x1=﹣1,x2=3.∵A点在B点左侧,∴A(﹣1,0),B(3,0)设过点B(3,0)、C(0,﹣3)的直线的函数表达式为y=kx+m,则,∴∴直线BC的函数表达式为y=x﹣3;(2)∵Rt△CDE 中∠CDE=90°,直线BC的解析式为y=x﹣3,∴∠OCB=45°,∵点D在对称轴x=1与直线y=x﹣3交点上,∴D坐标为(1,﹣2 )Rt△CDE为等腰直角三角形易得E的坐标(0,﹣1),∵点P在CE垂直平分线上,∴点P纵坐标为﹣2,∵点P在y=x2﹣2x﹣3上,∴x2﹣2x﹣3=﹣2,解得:x=1±,∵P在第三象限,∴P的坐标为(1﹣,﹣2);(3)过P作PK∥x轴,交直线BC于点K,设P(m,n),则n=m2﹣2m﹣3∵直线BC的解析式为y=x﹣3,∴K的坐标为(n+3,n),∴PK=n+3﹣m=m2﹣3m,∵S △PBC =S △PKC +S △PKB =,∴×3KP= ∴m 2﹣3m=,解得:m=﹣或,∵P 在第三象限,∴P 的坐标为(﹣,﹣)∵点P 在CE 垂直平分线上,∴E 的坐标为(0,﹣)【方法总结】探究直角三角形的存在性问题时,具体方法如下:(1)先假设结论成立,根据直角顶点的不确定性,分情况讨论;(2)找点:当所给定长没有说明是直角三角形的斜边还是直角边时,需分情况讨论,具体方法如下: ①当定长为直角三角形的直角边时,分别以定长的某一端点作定长的垂线,与数轴或抛物线有交点时,此交点即为符合条件的点;②当定长为直角三角形的斜边时,以此定长为直径作圆,圆弧与所求点满足条件的数轴或抛物线有交点时,此交点即为符合条件的点;(3)计算:把图形中的点坐标用含有自变量的代数式表示出来,从而表示出三角形的各个边(表示线段时,注意代数式的符号)。

二次函数特殊三角形存在性问题(等腰三角形、直角三角形)

二次函数特殊三角形存在性问题(等腰三角形、直角三角形)

特殊图形存在性问题一、等腰三角形1、情景:平面内有点A、B,要找到点P使得△ABP为等腰三角形。

2、思想:分类讨论(1)A为顶点:AB=AP(以A为圆心、AB长为半径画圆)(2)B为顶点:AB=BP(以B为圆心、AB长为半径画圆)(3)P为顶点:PA=PB(AB中垂线)【注】:1.利用两圆一线,找到符合要求的点,如P在抛物线对称轴上,在x轴上等;然后将问题转化为,求线段等长。

2.求线段等长:两点间距离(最笨的方法);向坐标轴做垂线,构造一线三等角例1.如图,抛物线y=−x2+2x+3y=−x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为______.练习1.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B 两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,−3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)在直线BC找一点Q,使得△QOC为等腰三角形,写出Q点坐标.练习2、已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.练习3.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.练习4.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c(a≠0)与x轴交A(−1,0),B(−3,0)两点,与y轴交于点C(0,−3),其顶点为D.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x−h)2+k的形式;(2)动点M从点D出发,沿抛物线对称轴方向向上以每秒1个单位的速度运动,运动时间为t,连接OM,BM,当t为何值时,△OMB为等腰三角形?练习5.如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C.已知实数m、n (m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E 两点(点D在y轴右侧),连接OD、BD.①当△OPC为等腰三角形时,求点P的坐标;②求△BOD 面积的最大值,并写出此时点D的坐标.25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过原点O,与x轴交于点A(5,0),第一象限的点C(m,4)在抛物线上,y轴上有一点B(0,10).(Ⅰ)求抛物线的解析式及它的对称轴;(Ⅱ)点P(0,n)在线段OB上,点Q在线段BC上,若OP=2BQ,且P A=QA.求n 的值;(Ⅲ)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.19-红桥一模25.(10分)如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0).(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.(17河北一模)25(10分)如图,己知抛物线y=x2+bx+c图象经过点A(﹣1,0),B(0,﹣3),抛物线与x轴的另一个交点为C.(1)求这个抛物线的解析式:(2)若抛物线的对称轴上有一动点D,且△BCD为等腰三角形(CB≠CD),试求点D的坐标;二、直角三角形1.情景:平面内有点A、B,要找到点P使得△ABP为直角三角形2.思想:分类讨论(1)A为顶点:∠A(过A做垂线)(2)B为顶点:∠B(过B做垂线)(3)P为顶点:∠C(AB为直径的圆)【注】1.等腰直角三角形,只需在两直线上上下找与AB等长以及过O做AB垂线与圆交点即可例1.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过矩形OABC的顶点A,B与x 轴交于点E,F且B,E两点的坐标分别为B(2,32)E(−1,0)(1)求二次函数的解析式;(2)在抛物线上是否存在点Q,使△QBF为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.练习1.如图,抛物线y=x2+bx+3顶点为P,且分别与x轴、y轴交于A、B两点,点A在点P的右侧,tan∠ABO=13(1)求抛物线的对称轴和PP的坐标.(2)在抛物线的对称轴上是否存在这样的点D,使△ABD为直角三角形?如果存在,求点D 的坐标;如果不存在,请说明理由.例2.如图,抛物线y=−x2+bx+c与x轴相交于AB两点,与y 轴相交与点C,且点B与点CC 的坐标分别为(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式(2)在MB上是否存在点P,过点P作PD⊥x轴于点D,OD=m,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由练习2.如图,在平面直角坐标系中,直线y=−13x+2交x轴点P,交y轴于点A.抛物线y=x2+bx+c的图象过点E(−1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.练习3.如图,抛物线y=x2+bx+c与直线y=x﹣3交于A、B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线的解析式;(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.(18东丽-一模)25.如图,在平面直角坐标系中,点A、B的坐标分别为(1,1)、(1,2),过点A、B分别作y轴的垂线,垂足为D、C,得到正方形ABCD,抛物线y=x2+bx+c经过A、C两点,点P为第一象限内抛物线上一点(不与点A重合),过点P分别作x轴y轴的垂线,垂足为E、F,设点P的横坐标为m,矩形PFOE与正方形ABCD重叠部分图形的周长为l.(1)直接写出抛物线所对应的函数表达式.(2)当矩形PFOE的面积被抛物线的对称轴平分时,求m的值.(3)当m<2时,求L与m之间的函数关系式.(4)设线段BD与矩形PFOE的边交于点Q,当△FDQ为等腰直角三角形时,直接写出m的取值范围.三、平行四边形存在性问题类型一:1.情景:一直平面内三点A、B、C,求一点P使四边形ABCP为平行四边形2.思想:分类讨论(1)以AC为对角线:ABCP1(2)以AB为对角线:ACBP3(3)以BC为对角线:ACP2B【注】找到P点后,用平行四边形的判定定理,求等长线段,或利用等角度、平行线求坐标即可。

数学人教版九年级上册专题 二次函数存在性问题 --等腰三角形

数学人教版九年级上册专题  二次函数存在性问题 --等腰三角形

《二次函数存在性问题-等腰三角形》教学设计一、教学内容:《二次函数存在性问题-等腰三角形》是人教版九年级上册教科书第22.3课《实际问题与二次函数》的拓展,属于函数与几何综合题,本课安排在该教材中二次函数综合第3节课时。

《二次函数存在性问题-等腰三角形》是“动态几何中的二次函数问题”,以图形的运动变化为背景,其背景图形是等腰三角形,其运动方式是单个动点。

解决其问题的核心是:探索变量之间的对应关系(变化规律),掌握等腰三角形两腰相等的线段长度在二次函数图形变化中的计算方法是解决动态问题的杀手锏。

二、学生分析:一方面,纵观广东省近八年中考数学压轴题都是“动态几何中的函数问题”,中考第二轮复习时基本都是采用专题方式推进,初中数学专题复习课往往是针对某一类重点题型、重要知识板块或者某一种比较突出的思想方法等组织展开专题复习、专题研究. 培养学生思维的灵活性和发散性,进而提高学生综合运用知识的能力.另一方面,解决这类问题需要灵活运用数学思想方法,培养学生数形结合思想、分类讨论思想、转化思想。

存在性问题是指判断满足某种条件的事物是否存在的问题.这类问题的知识覆盖面广,综合性强,题意构思巧妙,解题方法灵活,对学生分析问题和解决问题的能力要求都比较高。

三、教学思想:二次函数的存在性问题—等腰三角形属于中考压轴题中的经典题型,作为专题课非常有探讨价值.结合现阶段学生的实际情况,基于对该内容题型特点的分析,并立足于学生的整体水平提升,我将设计教学思想运用为:数形结合思想、数学建模思想、分类讨论思想、转化思想、函数与等腰三角形思想。

四、教学目标:1.知识与技能:通过对二次函数存在性问题的分析,让学生感受二次函数作为刻画现实世界有效模型的意义,拓宽学生的思维和视野;提高学生综合运用知识的能力.考核学生中考优秀数学素养的必备环节。

2.数学思考:学生能对图形情境中的数学信息作出合理的分析,能用二次函数、等腰三角形来描述和刻画现实事物间的函数关系与几何图形的动态问题.3.解决问题:体验数学与日常生活密切相关,让学生认识到许多问题可以用数学方法解决,体验实际问题“数学化”的过程.4.情感与态度:通过观察、归纳、猜想、验证等教学活动,给学生创造成功机会,使他们爱学、乐学、学会,同时培养学生勇于探索,积极合作精神以及公平竞争的意识.五、教学重点和难点1、教学重点:二次函数存在性问题与等腰三角形的综合运用、。

第7讲-二次函数与特殊三角形存在性问题(等腰-直角-等腰直角

第7讲-二次函数与特殊三角形存在性问题(等腰-直角-等腰直角

BD2=(3﹣0)2+(0+3m)2=9m2+9,
当△BDM为Rt△时有:DM2+BD2=MB2或DM2+MB2=BD2.
①DM2+BD2=MB2时有:m2+1+9m2+9=16m2+4,
解得m=﹣1(∵m<0,∴m=1舍去);
②DM2+MB2=BD2时有:m2+1+16m2+4=9m2+9,
解得m=﹣
经典例题
【解答】解:(1)过点B作BD⊥x轴,垂足为D, ∵∠BCD+∠ACO=90°,∠AC0+∠OAC=90°, ∴∠BCD=∠CAO, 又∵∠BDC=∠COA=90°,CB=AC, ∴△BDC≌△COA, ∴BD=OC=1,CD=OA=2, ∴点B的坐标为(3,1); (2)∵抛物线y=ax2﹣ax﹣2过点B(3,1),
作等腰三角形底边的高,用勾 度,由①AB=AP,②AB=BP,③BP=
股定理或相似建立等量关系 AP列方程求解,若方程无解,则点P不存 在;若方程有解,则满足条件的点P存在
问题
找点
直 已知点A、B和过点A、B作AB的垂线,
三 △PAB为直角三角形 再以线段AB为直径作圆,
中考一轮复习课件
二次函数与特殊三角形存在性问题
(等腰,直角,等腰直角)
问题
找点
等腰三角

已知点A、B和直线l,分别以点A、B为圆心,以线段AB长为半径
在l上求点P,使
作圆,再作AB的中垂线,两圆和中垂线与
△PAB为等腰三角形 l的交点即为所有P点
“万能法”
求点坐标
其他方法
先假设点P存在,分别表示出点A、B、P 的坐标,再表示出线段AB、BP、AP的长

以二次函数与直角三角形问题为背景的解答题(Word+答案)

以二次函数与直角三角形问题为背景的解答题(Word+答案)

以二次函数与直角三角形问题为背景的解答题【总体点评】二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次函数大题,很多学生在有限的时间内都不能很好完成。

由于在高中和大学中很多数学知识都与函数知识或函数的思想有关,学生在初中阶段函数知识和函数思维方法学得好否,直接关系到未来数学的学习。

直角三角形的有关知识和二次函数都是初中代数中的重点内容,这两块内容的综合是初中数学最突出的综合内容,因此这类问题就成为中考命题中比较受关注的热点问题.【解题思路】近几年的中考中,二次函数图形中存在性问题始终是热点和难点。

考题内容涉及到分类讨论、数形结合、化归等数学思想,对学生思维能力、模型思想等数学素养要求很高,所以学生的失分现象比较普遍和突出。

解这类问题有什么规律可循?所应用的知识点:1.抛物线与直线交点坐标;2.抛物线与直线的解析式;3.勾股定理;4.三角形的相似的性质和判定;5.两直线垂直的条件;运用的数学思想:1.函数与方程;2.数形结合;3.分类讨论;4.等价转化;解决二次函数中直角三角形存在性问题采用方法:1. 找点:在已知两定点,确定第三点构成直角三角形时,要么以两定点为直角顶点,要么以动点为直角顶点.以定点为直角顶点时,构造两条直线与已知直线垂直;以动点为直角顶点时,以已知线段为直径构造圆找点;2. 以两定点为直角顶点时,两直线互相垂直,则k 1*k 2=-1,以已知线段为斜边时,利用K 型图,构造双垂直模型,最后利用相似求解,或者三条边分别表示之后,利用勾股定理求解.【典型例题】【例1】(2019·邢台市第八中学中考模拟)如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标. 【例2】(2020·山东初三期末)已知,抛物线y =﹣x 2+bx +c 经过点A (﹣1,0)和C (0,3). (1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P ,使PA +PC 的值最小?如果存在,请求出点P 的坐标,如果不存在,请说明理由;(3)设点M 在抛物线的对称轴上,当△MAC 是直角三角形时,求点M 的坐标.【例3】(2019·山东中考模拟)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB ,tan∠ABC=2,点B 的坐标为(1,0).抛物线y=﹣x 2+bx+c 经过A 、B 两点. (1)求抛物线的解析式;(2)点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D ,交线段AB 于点E ,使PE=12DE .①求点P 的坐标;②在直线PD 上是否存在点M ,使△ABM 为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.【方法归纳】解决二次函数中直角三角形存在性问题采用方法:1. 找点:在已知两定点,确定第三点构成直角三角形时,要么以两定点为直角顶点,要么以动点为直角顶点.以定点为直角顶点时,构造两条直线与已知直线垂直;以动点为直角顶点时,以已知线段为直径构造圆找点;2. 以两定点为直角顶点时,两直线互相垂直,则k1*k2=-1,以已知线段为斜边时,利用K 型图,构造双垂直模型,最后利用相似求解,或者三条边分别表示之后,利用勾股定理求解.【针对练习】1.(2019·四川中考真题)如图,在平面直角坐标系中,抛物线2y ax bx c =++(a≠0)与y 轴交与点C (0,3),与x 轴交于A 、B 两点,点B 坐标为(4,0),抛物线的对称轴方程为x=1. (1)求抛物线的解析式;(2)点M 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点N 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN 的面积为S ,点M 运动时间为t ,试求S 与t 的函数关系,并求S 的最大值;(3)在点M 运动过程中,是否存在某一时刻t ,使△MBN 为直角三角形?若存在,求出t 值;若不存在,请说明理由.2.(2019·四川中考真题)如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P 使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.3.(2018·吉林中考真题)如图,在平面直角坐标系中,抛物线y=ax 2+2ax ﹣3a (a <0)与x 轴相交于A ,B 两点,与y 轴相交于点C ,顶点为D ,直线DC 与x 轴相交于点E . (1)当a=﹣1时,求抛物线顶点D 的坐标,OE 等于多少; (2)OE 的长是否与a 值有关,说明你的理由; (3)设∠DEO=β,45°≤β≤60°,求a 的取值范围;(4)以DE 为斜边,在直线DE 的左下方作等腰直角三角形PDE .设P (m ,n ),直接写出n 关于m 的函数解析式及自变量m 的取值范围.4.(2019·湖南中考真题)如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点. (1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M ,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.5.(2019·湖南中考真题)如图,在直角坐标系中有Rt AOB ∆,O 为坐标原点,1,tan 3OB ABO =∠=,将此三角形绕原点O 顺时针旋转90︒,得到/P v s =,二次函数2y x bx c =-++的图象刚好经过,,A B C 三点.(1)求二次函数的解析式及顶点P 的坐标;(2)过定点Q 的直线:3l y kx k =-+与二次函数图象相交于,M N 两点. ①若2PMN S ∆=,求k 的值;②证明:无论k 为何值,PMN ∆恒为直角三角形;③当直线l 绕着定点Q 旋转时,PMN ∆外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式.6.(2019·山东中考真题)如图1,抛物线经过平行四边形的顶点、、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动点,设点的横坐标为.(1)求抛物线的解析式; (2)当何值时,的面积最大?并求最大值的立方根;(3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理由.7.(2018·辽宁中考真题)如图,在平面角坐标系中,抛物线C 1:y=ax 2+bx ﹣1经过点A (﹣2,1)和点B (﹣1,﹣1),抛物线C 2:y=2x 2+x+1,动直线x=t 与抛物线C 1交于点N ,与抛物线C 2交于点M . (1)求抛物线C 1的表达式;(2)直接用含t 的代数式表示线段MN 的长;(3)当△AMN 是以MN 为直角边的等腰直角三角形时,求t 的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q 的坐标.8.(2018·广西中考真题)如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.9.(2018·四川中考真题)如图,已知二次函数y=ax2+bx+3 的图象与x轴分别交于A(1,0),B(3,0)两点,与y轴交于点C(1)求此二次函数解析式;(2)点D为抛物线的顶点,试判断△BCD的形状,并说明理由;(3)将直线BC向上平移t(t>0)个单位,平移后的直线与抛物线交于M,N两点(点M在y轴的右侧),当△AMN为直角三角形时,求t的值.10.(2018·黑龙江中考真题)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y 轴交于点C(0,4).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF 的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.11.(2018·湖南中考真题)如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).(1)求函数y=ax2+bx+c的解析式;(2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;(3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边的Rt△AMN,使△AMN的面积为△ABC面积的13?若存在,求tan∠MAN的值;若不存在,请说明理由.12.(2016·甘肃中考真题)如图,在平面直角坐标系xOy中,直线y=kx+b与x轴交于点A,与y轴交于点B.已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.(1)求此抛物线的解析式和直线AB的解析式;(2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F 从A点出发,沿着AB方向以√2个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?(3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.13.(2017·广西中考真题)如图,抛物线与轴交于两点,与轴的正半轴交于点,其顶点为.(1)写出两点的坐标(用含的式子表示);(2)设,求的值;(3)当是直角三角形时,求对应抛物线的解析式.14.(2020·广州大学附属中学初三月考)在平面直角坐标系中,抛物线223y x x =--+与x 轴交于A ,B两点(A 在B 的左侧),与y 轴交于点C ,顶点为D . (1)请直接写出点A ,C ,D 的坐标;(2)如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3)如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形?若存在,求出点P 的坐标,若不存在,请说明理由.15.(2020·安徽初三期末)如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P ,使△POB 与△POC 全等?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若点Q 是y 轴上一点,且△ABQ 为直角三角形,求点Q 的坐标.16.(2020·四川绵阳实中、绵阳七中初三月考)如图,顶点为(3,3)P 的二次函数图象与x 轴交于点(6,0)A ,点B 在该图象上,OB 交其对称轴l 于点M ,点M 、N 关于点P 对称,连接BN 、ON . (1)求该二次函数的关系式.(2)若点B 在对称轴l 右侧的二次函数图象上运动,请解答下列问题: ①连接OP ,当12OP MN =时,请判断NOB ∆的形状,并求出此时点B 的坐标. ②求证:BNM ONM ∠=∠.17.(2020·广东初三期末)如图,已知直线AB 经过点(0,4),与抛物线y=14x 2交于A ,B 两点,其中点A 的横坐标是2-.(1)求这条直线的函数关系式及点B 的坐标.(2)在x 轴上是否存在点C ,使得△ABC 是直角三角形?若存在,求出点C 的坐标,若不存在请说明理由. (3)过线段AB 上一点P ,作PM ∥x 轴,交抛物线于点M ,点M 在第一象限,点N (0,1),当点M 的横坐标为何值时,MN+3MP 的长度最大?最大值是多少?以二次函数与直角三角形问题为背景的解答题【总体点评】二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次函数大题,很多学生在有限的时间内都不能很好完成。

二次函数中的特殊三角形存在性问题课件

二次函数中的特殊三角形存在性问题课件

(5)若点H在抛物线的对称轴上,是否存在点H 使得△BCH是直角三角形?若存在,求出点H的 坐标;若不存在,请说明理由;
(6)设点P是第一象限内抛物线上的动点,点Q 是线段BC上一点,是否存在点P使△PCQ是等腰 直角三角形?若存在,求出点Q的坐标;若不存 在,请说明理由.
方法总结: 1、 2、
ቤተ መጻሕፍቲ ባይዱ
(2)连接AC,CF,判断△CAF的形状,并说明 理由;
(3)连接AC,在x轴上是否存在点G使得△ACG 是以AC为底边的等腰三角形?若存在,求出点G 的坐标;若不存在,请说明理由;;
(4)若点p在抛物线上,点Q在抛物线的对称轴 上,是否存在点p使得△PDQ是等边三角形?若 存在,求出点P的坐标;若不存在,请说明理由;
三、课堂小结
二次函数中有关 特殊三角形 存在性问题
1. 复习二次函数相关知识点; 1. 复习特殊三角形的性质。
例. 如图,在平面直角坐标系xOy中,抛物线与x 轴交于点A(-1,0),B(3,0),与y轴交于点 C,直线BC的解析式为y=kx+3,抛物线的顶点为 D,对称轴与直线BC交于点E,与x轴交于点F. (1)求抛物线解析式;

二次函数与直角三角形的存在性问题

二次函数与直角三角形的存在性问题

课题:二次函数中直角三角形的存在性问题教学目标:知识与技能1、 知道并会推导三垂直性质,能正确找出对应边,能准确写出三垂直中的对应边成比例.2、 准确掌握平面直角坐标系中三垂直性质使用条件和操作程序.过程与方法通过对平面直角坐标系中不同位置的直角三角形活动探究出构造三垂直性质应如何添加辅助线,并会利用三垂直性质解决二次函数中直角三角形的存在性问题.情感态度与价值观通过对解析几何产生的背景介绍及三垂直性质在二次函数中直角三角形存在性问题的应用感受数形结合思想的重要性及意义;通过对不确定直角顶点的直角三角形存在性问题的解决,感受分类思想在学习中的必要性.教学重点:探究如何构造三垂直模型,并会利用三垂直性质解决直角三角形的存在性问题.教学难点:探究使用三垂直性质的操作程序.教学过程:一、 情景设计讲述解析几何产生的背景,说明数形结合思想的重要性, 引出课题。

二、 预习思考),(1b x ),(2b x ),(1y a ),(2ya1、如图1,水平线上各点的___坐标相同,水平线上的两点间的距离等于_______________________________。

2、如图2,竖直线上各点的___坐标相同,竖直线上的两点间的距离等于_______________________________。

3、 如何设函数图像上的动点坐标?如何设二次函数对称轴上的动点坐标?教学要点1、 分组提问,调动学生积极性.2、 引导学生由图找答案,并用自己的语言叙述结论.3、 对学生的结论补充强调.三、 探索问题问题1:(1) 图3是什么模型?(2) 该模型的已知条件是什么?结论是什么?你可以证明你的结论吗?(3) 图3、图4的已知条件和结论的区别与联系是什么?教学要点1、问题1的设置是对本节课的应用知识点重点巩固,可齐声回答.2、教师分析:三垂直模型还可看作,已知一直角三角形,过其直角顶点在直角三角形的外部做一条直线,并过直角三角形的另外两个顶点引上述直线的垂线段.问题2:(1) 如果需要求一条线段的长,你希望在坐标系中是什么样的线段?(2) 如果平面直角坐标系中随意放置了一个直角三角形,过其直角顶点在其外部做一条什么方向的直线,能保证构成的三垂直模型中相似的两个直角三角形的四条直角边不是水平方向就是竖直方向?(3) 总结在平面直角坐标系中构造三垂直模型的操作步骤. 教学要点1、针对(1),能预料到学生的答案是竖直方向或水平方向,如果不是这个答案,再继续询问他们的结论的理由.2、对于(2),教师引导学生在平面直角坐标系中画出任意三角形,并让学生观察、尝试符合要求的直线.3、教师引导学生总结平面直角坐标系中构造三垂直模型操作步骤.4、教师课件展示详细操作步骤.(1)平面直角坐标系中构造三垂直模型的操作步骤.(2)过另外两个顶点向水平线或竖直线作垂线段(3)根据条件求出各点坐标及四条直角边长度(4)根据对应边相等或成比例,列出四条直角边之间的数量关系,进而求出未知数,求出动点坐标问题3:例、(2015本溪)如图,抛物线 ( ≠0)经过点A (2,0),点B (3,3)(1)求抛物线的解析式并直接写出它的对称轴;(2)点P 是抛物线对称轴上一点,当△ABP 是直角三角形时,请求出所有符合条件的点P 坐标.教学要点1、学生回答解决第(1)问的方法,学生完成(1)解答过程,教师巡视指导并讲评2、教师引导:(1)构造三垂直模型需要有一个直角,谁是Rt △ABP 的直角呢?(生:不知道)bx ax y +=2a(2)怎么办?(生:分类讨论)(3)分几类?是哪几类?(生:3类,分别是当∠ABP=90°,当∠APB=90°,∠BAP=90°)3、师生共同探究当∠ABP=90°时的情况解:如图,当∠ABP=90°时,过点P作PM⊥BC交BC的延长线于点M,设点P(1,a),则M(3,a),C(3,0)∴PM=3-1=2,MB=a-3,BC=3,AC=3-2=1∵∠MPB+∠MBP=90°,∠MBP+∠ABC=90°,∴∠MPB=∠ABC,又∵∠PMB=∠ACB=90°∴△PM B∽△BCA∴PM/MB=BC/AC,2/(a-3)=3/1解得:a=11/3∴点P(1,11/3)4、剩下两种情况,让学生小组讨论,并找两位学生上台分别讲解,主讲学生可以自己需要选择要不要带小帮手,之后师生共同点评总结.四、课堂小结通过本节课的学习,你有什么收获?五、课后作业除了利用三垂直性质解决二次函数中直角三角形的存在性问题,你还有其它的方法吗?并试用你想到的方法解决今天的例题.教学反思:本节课是二次函数中直角三角形的存在性问题,此类问题通常在河南中招卷中作为压轴题出现,一般是23题的第(2)问或第(3)问,其知识覆盖面较广,综合性较强,是数形结合思想及分类思想的典型题。

数学人教版九年级上册直角三角形在二次函数中的存在性问题

数学人教版九年级上册直角三角形在二次函数中的存在性问题

复习课《二次函数与几何图形存在性问题——直角三角形的存在性问题》教学设计普定县第二中学孙家坤:精例如图,已知抛物线y=1/2x2+bx+c经过点B(4,0)和点C(0,-2),与x轴的另一个交点为点A,其对称轴l与x轴交于点E,过点C且平行x轴的直线交抛物线于点D,连接AD。

(1)求该抛物线的解析式;【思路点拨】解:略(2)判断△ABD的形状;【思路点拨】判断三角形形状,一般为特殊三角形,若两边相等,则为等腰三角形;若三边相等,则为等边三角形;若两条边的平方和等于第三边的平方,则为直角三角形。

解:略(3)P为线段AD上一点,连接PE,若△APE是直角三角形,求点P的坐标;【思路点拨】观察思考,带着问题进入学习。

解:略(4)抛物线的对称轴上是否存在一点P,使△APD是直角三角形,若存在,求出P点坐标;若不存在,请说明理由.【思路点拨】学生书写求解过程。

分别利用勾股定理,列出方程求解.若有解,则存在;若无解,则不存在.解:略:总(满分对于抛物线与直角三角形的综合问题,解题时,一般需做好以下几点:1.利用坐标系中两点距离公式,得到所求三角形三边平方的代数式;2.确定三角形中的锐角,若存在锐角,则只需使得另外两个角中任意一个角为直角,并利用勾股定理列方程求解;若无法确定哪个角是锐角,则需要讨论三个角;3.根据勾股定理得到方程,并解方程即可,若方总结归纳,得出解决这类问题的方法。

:针对1.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.第1题图解:(1)依题意得⎩⎪⎨⎪⎧-b2a=-1a+b+c=0c=3,解得⎩⎨⎧a=-1b=-2c=3,∴抛物线解析式为y=-x2-2x+3,∵对称轴为x=-1,抛物线经过A(1,0),∴B(-3,0),把B(-3,0),C(0,3)分别代入y=mx+n得,⎩⎨⎧-3m+n=0n=3,解得⎩⎨⎧m=1n=3,∴直线BC的解析式为y=x+3;学分题意,探思路,并成答程。

人教版九年级上册二次函数存在性问题专题精讲(有答案)

人教版九年级上册二次函数存在性问题专题精讲(有答案)

授课类型C (二次函数存在性问题)授课日期及时段教学内容专题精讲一:等腰三角形存在性问题例1:如图,已知抛物线21382y x x =+-的图象与x 轴交于A ,B 两点(点A 在点B 的右侧),与y 轴交于点C .(1)求直线BC 的解析式;(2)点F 是直线BC 下方抛物线上的一点,当△BCF 的面积最大时,在抛物线的对称轴上找一点P ,使得△BFP 的周长最小,请求出点F 的坐标和点P 的坐标;(3)在(2)的条件下,是否存在这样的点Q (0,m ),使得△BFQ 为等腰三角形?如果有,请直接写出点Q 的坐标;如果没有,请说明理由.练习1:如图,直线33+=x y 交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交x 轴于另一点C (3,0). ⑴ 求抛物线的解析式;⑵ 在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.(2)存在。

二:直角三角形存在性问题例2、如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.(1)写出C,D两点的坐标(用含a的式子表示);(2)设S△BCD:S△ABD=k,求k的值;(3)当△BCD是直角三角形时,求对应抛物线的解析式练习2:如图,在矩形OABC纸片中,OA=7,OC=5,D为BC边上动点,将△OCD沿OD折叠,当点C的对应点落在直线l:y=﹣x+7上时,记为点E,F,当点C的对应点落在边OA上时,记为点G.(1)求点E,F的坐标;(2)求经过E,F,G三点的抛物线的解析式;(3)当点C的对应点落在直线l上时,求CD的长;(4)在(2)中的抛物线上是否存在点P,使以E,F,P为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.∴经过E,F,G三点的抛物线的解析式为y=−x+6x−5.三:平行四边行存在性问题一:平行四边形问题例3:如图,抛物线32-+=bx ax y 经过点A (2,﹣3),与x 轴负半轴交于点B ,与y 轴交于点C ,且OC=3OB . (1)求抛物线的解析式;(2)点D 在y 轴上,且∠BDO=∠BAC ,求点D 的坐标;(3)点M 在抛物线上,点N 在抛物线的对称轴上,是否存在以点A ,B ,M ,N 为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M 的坐标;若不存在,请说明理由(1)223y x x =--练习3:如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在边OA上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系。

二次函数存在性问题--特殊三角形存在性

二次函数存在性问题--特殊三角形存在性

二次函数存在性问题 专题---------特殊三角形的存在性问题一、直角三角形存在性1、如图16,在平面直角坐标系中,直线y =x 轴交于点A ,与y 轴交于点C ,抛物线2(0)y ax c a =+≠经过A B C ,,三点.(1)求过A B C ,,三点抛物线的解析式并求出顶点F 的 坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在, 请说明理由;(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点 的坐标;若不存在,请说明理由.2、如图,已知抛物线)0(2≠++=a c bx ax y 的顶点坐标为Q ()1,2-,且与y 轴交于点C ()3,0, 与x 轴交于A 、B 两点(点A 在点B 的右侧),点P 是该抛物线上一动点,从点C 沿抛物线向 点A 运动(点P 与A 不重合),过点P 作PD ∥y 轴,交AC 于点D .(1)求该抛物线的函数关系 式;(2)当△ADP 是直角三角形时,求点P 的坐标;(3)在问题(2)的结论下,若点E 在x 轴上, 点F 在抛物线上,问是否存在以A 、P 、E 、F 为顶点的平行四边形?若存在,求点F 的坐标; 若不存在,请说明理由.x3、已知:如图一次函数y=12x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=12x2+bx+c的图象与一次函数y=12x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0)(1)求二次函数的解析式;(2)求四边形BDEC的面积S;(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.4、如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线2y x bx c=++经过A,B两点,抛物线的顶点为D.(1)求b,c的值;(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;(3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形? 若存在,求出所有点P的坐标;若不存在,说明理由.第16题图26题备用图26题图二、等腰三角形存在性1、如图11所示,在梯形ABCD 中,已知AB ∥CD , AD ⊥DB ,AD =DC =CB ,AB =4.以AB 所在直线为x 轴,过D 且垂直于AB 的直线为y 轴建立平面直角坐标系.(1)求∠DAB 的度数及A 、D 、C 三点的坐标;(2)求过A 、D 、C 三点的抛物线的解析式及其对称轴L .(3)若P 是抛物线的对称轴L 上的点,那么使∆PDB 为等腰三角形的点P 有几个?(不必求点P 的坐标,只需说明理由)2、如图, 已知抛物线c bx x y ++=221与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1).(1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标;(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,若不存在,说明理由.3、如图,直线33+=x y 交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交x 轴于另一点C (3,0). ⑴ 求抛物线的解析式;⑵ 在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.4、)如图,已知直线y=x 与抛物线交于A 、B 两点. (1)求交点A 、B 的坐标;(2)记一次函数y=x 的函数值为y 1,二次函数的函数值为y 2.若y 1>y 2,求x 的取值范围; (3)在该抛物线上存在几个点,使得每个点与AB 构成的三角形为等腰三角形?并求出不少于3个满足条件的点P 的坐标.5、如图,四边形ABCD是等腰梯形,下底AB在x轴上,点D在y轴上,直线AC与y轴交于点E(0,1),点C的坐标为(2,3).(1)求A、D两点的坐标;(2)求经过A、D、C三点的抛物线的函数关系式;(3)在y轴上是否在点P,使△ACP是等腰三角形?若存在,请求出满足条件的所有点P的坐标;若不存在,请说明理由.6、如图,在平面直角坐标系中,点A、B在x轴上,点C、D在y轴上,且OB=OC=3,OA=OD=1,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点,直线AD与抛物线交于另一点M.(1)求这条抛物线的解析式;(2)P为抛物线上一动点,E为直线AD上一动点,是否存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.(3)请直接写出将该抛物线沿射线AD方向平移个单位后得到的抛物线的解析式.。

2025年中考数学一轮复习课件 二次函数中特殊三角形存在性问题

2025年中考数学一轮复习课件 二次函数中特殊三角形存在性问题

91−8
− 91−8
∴ N (-2,
)或(-2,
).
3
3
19
综上所述,点 N 的坐标为(-2,

3
19
1
或(-2,-
)或(-2, )
3
6
91−8
− 91−8
或(-2,
)或(-2,
).
3
3
2. 如图,抛物线 y = ax2+ bx 过点 A
(4,0), B (1,3)两点,点 C , B
关于抛物线的对称轴对称,过点 B 作直

解:(1)令 y =0,则 x + x -2=0,


解得 x1=1, x2=-3,
∴ A (-3,0), B (1,0),
∴ AB =4.令 x =0,则 y =-2,
∴ C (0,-2),∴ OC =2,


∴ S△ ABC = AB ·OC = ×4×2=4.


(2)如图,将抛物线沿射线 CA 方向平
∴∠ CMB +∠ NMH
=∠ NMH +∠ MNH =90°,
∴∠ CMB =∠ MNH ,
∴△CBM ≌△ MHN (AAS),
(答案图1)
∴ BC = MH =2, BM = HN =3-2=1,
∴ M (1,2).
∵易知 C (3,3),
∴ CM = (1 − 3)2 +(2 − 3)2 = 5 ,
2
2
综上所述,当△CMN 是以点 M 为直角顶
点的等腰直角三角形时,△CMN 的面积
5
29
为 或 .
2
2
(答案图2)
3. (2024·南岸区)如图,已知抛物线 y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级下学期 复习课
以二次函数为背景的特殊三角形的存在性问题 ——曾都区实验中学 刘佳
典型例题
-3
1
-3
-3
Hale Waihona Puke 1 Q -3(3)设抛物线的顶点为D,在y轴上是否 存在点M,使得△ADM是直角三角形?若 存在,请求出点M的坐标;若不存在,请 说明理由.
-3
1
-3
典型例题
练习题
1.如图,在平面直角坐标系中,已知点A的坐标是(4,0),并 且OA=OC=4OB,动点P在过A,B,C三点的抛物线上. (1)求抛物线的解析式; (2)是否存在点P,使得△ACP是以AC为直角边的直角三角形? 若存在,求出所有符合条件的点P的坐标;若不存在,说明理 由。
P1
4
-1
4
P2
练习题
思考题
相关文档
最新文档