高一年级数学第一学期第一次月考.doc
高一上学期第一次月考数学试卷(含答案解析)

高一上学期第一次月考数学试卷(含答案解析)考试时间:120分钟;总分:150分学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若集合A ={x|x >2},B ={x|−2⩽x ⩽3},则A ∩B =( )A. (2,3)B. (2,3]C. [2,3]D. [−2,3]2. 如图所示的Venn 图中,已知A ,B 是非空集合,定义A ∗B 表示阴影部分的集合.若A ={x |0≤x <3},B ={y |y >2},则A ∗B =( )A. {x |x >3}B. {x |2≤x ≤3}C. {x |2<x <3}D. {x |x ≥3}3. 中国清朝数学家李善兰在859年翻译《代数学》中首次将“function ”译做“函数”,沿用至今.为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数.”这个解释说明了函数的内涵:只要有一个法则,使得取值范围中的每一个值x ,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象、表格还是其它形式.已知函数f(x)由如表给出,则f(f(−2)+1)的值为( )A. 1B. 2C. 3D. 44. 命题“∀x >1,x −1>lnx ”的否定为( )A. ∀x ≤1,x −1≤lnxB. ∀x >1,x −1≤lnxC. ∃x ≤1,x −1≤lnxD. ∃x >1,x −1≤lnx5. 设M =2a(a −2)+7,N =(a −2)(a −3),则M 与N 的大小关系是( )A. M >NB. M =NC. M <ND. 无法确定6. f(2x −1)的定义域为[0,1),则f(1−3x)的定义域为( )A. (−2,4]B. (−2,12]C. (0,23]D. (0,16] 7. 已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的条件.( )A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要 8. 已知集合A ={x|3−x x ≥2)},则∁R A =( ) A. {x|x >1}B. {x|x ≤0或x >1}C. {x|0<x <1}D. {x|x <0或x >1}二、多选题(本大题共4小题,共20.0分。
最新版高一数学上学期第一次月考试题及答案(新人教A版 第115套)

抚州一中高一上学期第一次月考数学试卷一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知A={}R x x x ∈≤,32|,a=14,b=22,则 ( )A .a ∈A ,且b ∉AB .a ∉A ,且b ∈AC .a ∈A ,且b ∈AD .a ∉A ,且b ∉A2.已知A={}Z x x x x ∈≤--,0103|2,B={}Z x x x x ∈>--,062|2,则A ∩B 的非空真子集的个数为 ( ) A .16 B .14 C .15 D .323.已知A={}2,2-,B={}1|=ax x ,且A ∪B=A ,则a 的取值集合为 ( )A .⎭⎬⎫⎩⎨⎧21B .⎭⎬⎫⎩⎨⎧-21 C .⎭⎬⎫⎩⎨⎧-21,21 D .⎭⎬⎫⎩⎨⎧-0,21,21 4.下列各组函数中表示同一函数的是 ( )A .()()0,1x x g x f == B .()()39,32--=+=x x x g x x fC .()()||,2x x g x x f ==D .()()2,x x g x x f ==5.已知全集{}2,1,0,1-=U ,集合{}2,1-=A ,{}2,0=B ,则=A B C U )(( ) A.{}0B. {}1-C. {}12-,D.∅ 6..函数|2|2x y x x=+的图象是( )A B C D 7.下列函数中,在区间)2,0(上为增函数的是( )A.x y -=3B.12-=x y C.xy 1=D.2)1(-=x y8.若()2)1(22+-+=x a x x f 在[-1,2]上是单调函数,则a 的范围为 ( ) A .1≤a B .2≥a C .21≥-≤a a 或 D .21>-<a a 或9.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S1、S2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相吻合是 ( )10.A={}01)2(|2=+++x m x x ,若φ=⋂+R A ,则m 的范围为 ( )A .0≥mB .04<<-mC .4-≥mD .4->m 二、填空题(本大题共5小题,每小题5分,共25分)11.已知元素(,)x y 在映射f 下的象是(2,2)x y x y +-,则(3,1)在f 下的原象..是 。
高一上学期第一次月考数学试卷(含答案解析)

高一上学期第一次月考数学试卷(含答案解析)第I 卷(选择题)一、单选题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若集合{0,1}A =,{|0}B x x =,则下列结论正确的是( ) A. {0}B ∈B. A B ⋂=∅C. A B ⊆D. A B R ⋃=2. 已知集合,{2,1,0,1,2,4}B =--,则A B ⋂=( ) A. {1,0,1,2}-B. {2,0,4}-C. {0,1,2}D. {0,1}3. 已知命题p :x R ∃∈,2 1.x x +则命题p 的否定是( ) A. x R ∃∈,21x x >+ B. x R ∃∈,21x x + C. x R ∀∈,21x x +D. x R ∀∈,21x x >+4. 已知a R ∈,则“2a >”是“4a >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件5. “A B ⊆“是“A B B ⋂=“的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件D. 既不充分也不必要条件6. 如果0a <,0b >,那么下列不等式中正确的是( )A.11a b< B. <C. 22a b <D. ||||a b >7. 已知集合M 满足{1,2}{1,2,3}M ⋃=,则集合M 的个数是( ) A. 1B. 2C. 3D. 48. 对于任意实数x ,不等式2(2)2(2)40m x m x ---+>恒成立,则m 的取值范围是( ) A. {|22}m m -<< B. {|22}m m -< C. {|2m m <-或2}m >D. {|2m m <-或2}m9. 已知a ,b R ∈,且0ab ≠,则在下列四个不等式中,不恒成立的是( )A.222a b ab +B.2b a a b+ C. 2()2a b ab +D. 222()22a b a b ++10. 设S 为实数集R 上的非空子集.若对任意x ,y S ∈,都有x y +,x y -,xy S ∈,则称S 为封闭集.下面是关于封闭集的4个判断:(1)自然数集N 为封闭集; (2)整数集Z 为封闭集;(3)若S 为封闭集,则一定有0S ∈; (4)封闭集一定是无限集.则其中正确的判断是( )A. (2)(3)B. (2)(4)C. (3)(4)D. (1)(2)第II 卷(非选择题)二、填空题(本大题共5小题,共25.0分)11. 已知函数21()ln log f x a x b x =+,若(2017)1f =,则1()2017f =______ . 12. 若0x >,则12x x+的最小值为______,此时x 的取值为______. 13. 一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是__________.14. 设2{|340}A x x x =+-=,{|10}.B x ax =-=若B A ⊆,则a 的值为______.15. 某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润(y 万元)与机器运转时间(x 年数,*)x N ∈的关系为21825.y x x =-+-则当每台机器运转______ 年时,年平均利润最大,最大值是______ 万元.三、解答题(本大题共6小题,共85.0分。
高一数学上学期第一次月考试卷含解析试题

智才艺州攀枝花市创界学校实验二零二零—二零二壹第一学期第一次月考试题高一数学第一卷〔客观题〕一、选择题〔本大题一一共10小题,每一小题4分,一共40分,在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕,那么S T为〔〕A. B. C. D.【答案】D【解析】【分析】集合是一次不等式的解集,分别求出再求交集即可【详解】,,那么应选【点睛】此题主要考察了一次不等式的解集以及集合的交集运算,属于根底题。
表示同一函数的是〔〕A. B.C. D.【答案】D【解析】【分析】逐个分析各个选项里面的2个函数的定义域,值域和对应关系,是否完全一样,只有完全一样才能表示同一函数。
【详解】,,两个函数的定义域不同,不是同一函数,,,两个函数的定义域不同,不是同一函数,,,两个函数的定义域不同,对应关系也不同,不是同一函数,,,即,是同一函数应选【点睛】此题主要考察的知识点是两个函数是同一函数必须满足的条件,即:定义域,值域和对应法那么都一样,属于根底题。
3.如下列图,不可能表示函数的是〔〕A. B.C. D.【解析】【分析】由函数的定义即可判断出答案【详解】根据函数的定义,对于定义域内的任意一个值都有唯一的值与其对应,从图像上看,作一条直线它与函数的图象最多有一个交点,因此不满足此条件,故的图像不表示函数。
应选【点睛】此题主要考察了函数的概念及其构成要素,纯熟掌握函数定义中自变量任取一个值,都有唯一的值与其对应,属于根底题。
的定义域是〔〕A. B. C. D.【答案】C【解析】【分析】由限制条件求出函数定义域【详解】根据题意可得:,,即定义域为即应选【点睛】此题主要考察了函数的定义域及其求法,找出题目中的限制条件是关键,属于根底题。
且,那么实数的取值范围是〔〕A. B. C. D.【解析】【分析】根据条件求出,再求即可得到答案【详解】,,那么应选【点睛】此题主要考察了集合的交集,并集以及补集的混合运算,此题比较简单。
高一年级第一学期数学第一次月考试卷(必修一

高一年级数学第一学期月考一试卷(时间:120分钟 满分150分)一、单选题(本题共8小题,每题5分,计40分)1. 设全集U =R ,M ={x|x <−2或x >2},N ={x|1≤x ≤3}.如图所示,则阴影部分所表示的集合为( ) A. {x|−2≤x <1} B. {x|−2≤x ≤3} C. {x|x ≤2或x >3} D. {x|−2≤x ≤2}2. 已知p:x <−1,则p 的一个充分不必要条件为( )A. x <−1B. x <2C. −8<x <2D. −10<x <−33. 若a <1,则a +1a−1有( )A. 最小值为3B. 最大值为3C. 最小值为−1D. 最大值为−14. 已知x >0,y >0,且4x +9y −xy =0,求x +y 的最小值为.( )A. 25B. 18C. 13D. 125. 若a >0,b >0,则“a +b ≤4”是“ab ≤4”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6. 若关于x 的不等式()02122<++-a x a x 恰有两个整数解,则a 的取值范围是( )A. {a|32<a ≤2} B. {a|−1<a ≤−12}C. {a|−1<a ≤−12或32≤a <2} D. {a|−1≤a <−12或32<a ≤2} 7. 已知函数y =f(−2x +1)的定义域是[−1,2],则y =f(x)的定义域是( )A. [−12,1]B. [−3,3]C. [−1,5]D. 以上都不对8. 若不等式x 2−tx +1<0对一切x ∈(1,2)恒成立,则t 的取值范围为( )A. t <2B. t >52C. t ≥1D. t ⩾52二、多选题(本题共4小题,全部选对得5分,少选得3分,多选或选错不得分,满分20分)9. 设全集U ={0,1,2,3,4},集合A ={0,1,4},B ={0,1,3},则( )A. A⋂B ={0,1}B. ∁U B ={4}C. A ∪B ={0,1,3,4}D.集合A 的真子集个数为810. 设{}{}01|,0149|2=-==+-=ax x B x x x A ,若B B A = ,则实数a 的值可以为( ) A. 2B. 12C. 17D. 011. 下列函数中,最小值为2的有( )A. y =x +4x −2 B. y =|x +1x | C. y =x 2+4√x 2+3D. y =√x +4√x −212. 下列四组函数中,不表示同一函数的一组是( )A. f(x)=x −1(x ∈R),g(x)=x −1(x ∈N)B. f(x)=|x|,g(x)=√x 2C. f(x)=√x +1⋅√x −1,g(x)=x +1D. f(x)=x 2−1x−1,g(x)=x +1三、填空题(每题5分,计20分)13.若x >4,则y =x 2−4x+9x−4的最小值为_________.14.已知−1≤x +y ≤4,且2≤x −y ≤3,则z =2x −3y 的取值范围是______. 15.已知集合A ={x|ax 2+2x +a =0,a ∈R},若集合A 有且仅有2个子集,则a 的取值集合为____________16.函数21y x x =-+-的值域是___________.四、解答题:本大题共6道小题,满分70分(第17题10分,其余题目12分).17.已知函数f (x )=8x−1+√x +3.(1)求函数f(x)的定义域并求f(−2),f(6);(2)已知f(2a+1)=4a+1,求a的值.18.已知函数f(x)=√−x2+x+12的定义域为A,集合B={x|2m−1≤x≤m+1}.(1)当m=−2时,求(∁R A)∩B;(2)若A∩B=B,求实数m的取值范围.19.已知p:∃x∈R,使mx2−4x+2=0为假命题.(1)求实数m的取值集合B;(2)设A={x|3a<x<a+2}为非空集合,若x∈A是x∈B的充分不必要条件,求实数a的取值范围.20.(1)设a>b>0,比较a 2−b2a2+b2与a−ba+b的大小;(2)已知a,b,c为不全相等的正实数,求证:a+b+c>√ab+√bc+√ca.21.某汽车厂上年度生产汽车的投入成本为10万元/辆,出厂价为12万元/辆,年销售量为10000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.75x,同时预计年销售量增加的比例为0.6x,已知年利润=(出厂价−投入成本)×年销售量.(1)写出本年度预计的年利润y与投入成本增加的比例x的关系式;(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比例x应在什么范围内22.已知函数22()1xf xx=+,(1)求(2)f与1()2f,(3)f与1()3f;(2)猜想()f x与1()fx有什么关系?并证明你的猜想;(3)求111(1)(2)(3)(2019)()()()232019f f f f f f f+++⋅⋅⋅++++⋅⋅⋅+的值.答案1.A2.D3.D4.A5.A6.D7.B8.D9.AC 10.BCD 11.BD 12.ACD 13.10 14. [3,8] 15.{}1,0,1- 16.[1,)-+∞ 17.解:(1)由{x −1≠0 x +3≥0解得{x ≠1x ≥−3,∴函数f (x )的定义域为{x |x ≥−3且x ≠1} -------------------2’ ∴f(−2)=8−2−1+√−2+3=−53,f(6)=86−1+√6+3=235.-------------------3’、4’(2)∵f (2a +1)=4a +1,∴4a +√2a +4=4a +1,-------------------6 ∴√2a +4=1, ---------------------------------------------------------8 ∴a =−32. ---------------------------------------------------------1018.(1) 由题知:A ={x|−3⩽x ⩽4},B ={x|−5⩽x ⩽−1}-------------------2(∁R A )∩B ={x|−5⩽x <−3}; --------------------------------------4 (2)由A ∩B =B 得B ⊆A --------------------------------------5 当B =⌀时,2m −1>m +1,即m >2,满足B ⊆A , -------------------7当B ≠⌀时,若满足B ⊆A ,则有{2m −1⩽m +12m −1⩾−3m +1⩽4 解得:−1⩽m ⩽2--------------10综上所述,m 的取值范围为{m|m ⩾−1}. --------------------------------------12 19.解:(1)p 等价于mx 2−4x +2=0无实根,-------------------2 当m =0时,x 0=12,有实根不合题意; -------------------4当m ≠0时,由已知得△=16−4×2m <0,∴m >2,则B ={m|m >2}.---------------6 (2)∵A ={x|3a <x <a +2}为非空集合,故a +2>3a ,即a <1,-------------------8若x ∈A 是x ∈B 的充分不必要条件,则A ⫋B 成立,∴3a ≥2,即a ⩾23,∴23≤a <1.----------------10 故a 的取值范围为{a|23≤a <1}. -------------------1219.解:(1)因为a >b >0,所以a 2−b 2a 2+b 2>0,a−ba+b >0-------------------2 a 2−b 2a 2+b 2a−b a+b=(a+b)2a 2+b 2=a 2+b 2+2ab a 2+b 2=1+2aba 2+b 2>1. -------------------4故a 2−b 2a 1+b 2>a−ba+b .- -------------------------------------6(2)只证2a +2b +2c >2√ab +2√bc +2√ca 即可.-------------------2左边=2a +2b +2c =(a +b)+(a +c)+(b +c)≥2√ab +2√bc +2√ca ,-------------------4 当且仅当a =b =c 时取等号,又a ,b ,c 不全相等,故等号取不到,故原结论成立.-----------6 21.解:(1)由题意得y =[12×(1+0.75x)−10×(1+x)]×10000×(1+0.6x)(0<x <1), 整理得y =−6000x 2+2000x +20000(0<x <1).-------------------5(2) 要保证本年度的年利润比上年度有所增加,必须有{y −(12−10)×10000>0,0<x <1,--------8即{−6000x 2+2000x >0,0<x <1,解得0<x <1,---------------------------------------------------------10 所以投入成本增加的比例x 的取值范围是{x ∣0<x <13}. --------------------------------------1222.(1)因为22()1x f x x =+,所以()442415f ==+,111412514f ⎛⎫== ⎪⎝⎭+,()9939110f ==+,1119131019f ⎛⎫== ⎪⎝⎭+; --------------------------------------4 (2)由(1)可发现()11f x f x ⎛⎫+= ⎪⎝⎭. --------------------------------------6 证明如下:2222222222221111()11111111x x x x x f x f x x x x x x x x ⎛⎫+=+=+=+= ⎪+++++⎝⎭+;-------------------8(3)1(2)()12f f +=,1(3)()13f f +=,⋯,1(2019)()12019f f +=,又()22111112f ==+,------------10 所以()()()()1111232019232019f f f f f f f ⎛⎫⎛⎫⎛⎫++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()1111232019232019f f f f f f f ⎛⎫⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+++++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦1120181201822=+⨯=---------------12。
高一数学必修一第一次月考及答案(完整资料).doc

【最新整理,下载后即可编辑】兴义九中2011-2012学年度第一学期高一第一次月考考生注意:1.本卷分试卷部分和答题卷部分,考试结束只交答题卷; 2.所有答案必须写在答题卷指定位置上,写在其他地方一律无效。
一、选择题(每小题5分,共计50分)1. 下列命题正确的是( )A .很小的实数可以构成集合。
B .集合{}1|2-=x y y 与集合(){}1|,2-=x y y x 是同一个集合。
C .自然数集N 中最小的数是1。
D .空集是任何集合的子集。
2.函数2()=f x 的定义域是( )A.1[,1]3- B.1(,1)3- C. 11(,)33- D.1(,)3-∞-3. 已知{}{}22|1,|1==-==-M x y x N y y x , N M ⋂等于( )A. NB.MC.RD.∅4. 下列给出函数()f x 与()g x 的各组中,是同一个关于x 的函数的是 ( )A .2()1,()1x f x x g x x=-=-B .()21,()21f x x g x x =-=+C .2(),()f x x g x == D .0()1,()f x g x x ==5. 已知函数()533f x ax bx cx =-+-,()37f -=,则()3f 的值为 ( )A. 13B.13-C.7D.7-6. 若函数2(21)1=+-+y x a x 在区间(-∞,2]上是减函数,则实数a 的取值范围是( )A .[-23,+∞)B .(-∞,-23] C .[23,+∞) D .(-∞,23] 7. 在函数22, 1, 122, 2x x y x x x x +≤-⎧⎪=-<<⎨⎪≥⎩中,若()1f x =,则x的值是( )A .1B .312或 C .1± D8.已知函数()=f x 的定义域是一切实数,则m 的取值范围是 ( )A.0<m ≤4B.0≤m ≤1C.m ≥4D.0≤m ≤49.函数y=xx ++-1912是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶数 10.下列四个命题(1)f(x)=x x -+-12有意义;(2)函数是其定义域到值域的映射; (3)函数y=2x(x N ∈)的图象是一直线; (4)函数y=⎪⎩⎪⎨⎧<-≥0,0,22x x x x 的图象是抛物线,其中正确的命题个数是( )A .1B .2C .3D .411. 已知函数)(x f 是R 上的增函数,(0,2)-A ,(3,2)B 是其图象上的两点,B B AA U UU CB A 那么2|)1(|<+x f 的解集是 ( ) A .(1,4) B .(-1,2)C .),4[)1,(+∞-∞D .),2[)1,(+∞--∞12. 若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()2x f x g x -=,则有( )A .(2)(3)(0)f f g <<B .(0)(3)(2)g f f <<C .(2)(0)(3)f g f <<D .(0)(2)(3)g f f <<二、填空题(每小题4分,共计20分) 13. 用集合表示图中阴影部分:14. 若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ⊆,则实数a 的值为_________________15. 已知y=f(x)是定义在R 上的奇函数,当0x ≥时,()2f x x -2x =, 则()x f 在0<x 时的解析式是 _______________16.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k的取值范围是 .三、解答题:解答题应写出文字说明.证明过程或演算步骤.(合计70分) 17、(满分10分)设A={x ∈Z| }66≤≤-x ,{}{}1,2,3,3,4,5,6B C ==,求: (1)()A B C ⋃⋂; (2)()A A C B C ⋂⋃18.已知f(x)=x 2-ax +b(a 、b∈R ),A ={x∈R |f(x)-x =0},B ={x∈R |f(x)-ax =0},若A ={1,-3},试用列举法表示集合B.19. (本题满分12分)已知函数2()=++f x x ax b ,且对任意的实数x 都有(1)(1)+=-f x f x 成立.(1)求实数 a 的值; (2)利用单调性的定义证明函数()f x 在区间[1,)+∞上是增函数.20、(满分12分)已知奇函数222(0)()0(0)(0)x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩(1)求实数m 的值,并在给出的直角坐标系中画出()y f x =的图象;(2)若函数f (x )在区间[-1,|a |-2]上单调递增,试确定a 的取值范围.21.(本题满分12分) 是否存在实数a使2=-+的定义域为f x x ax a()2-?若存在,求出a的值;若不存在,说明理由。
高一数学上学期第一次月考试题含解析

智才艺州攀枝花市创界学校内蒙古锡林郭勒盟第HY 学二零二零—二零二壹高一数学上学期第一次月考试题〔含解析〕一、单项选择题〔本大题一一共12小题,每一小题5分,一共60分〕 1.集合2{|}A x x x ==,{1,,2}B m =,假设A B ⊆,那么实数m 的值是〔〕A.2B.0C.0或者2D.1【答案】B 【解析】 【分析】 求得集合{0,1}A =,根据A B ⊆,即可求解,得到答案.【详解】由题意,集合2{|}{0,1}A x x x ===,因为A B ⊆,所以0m =,应选B.【点睛】此题主要考察了集合交集运算,其中解答中熟记集合的包含关系的运算是解答的关键,着重考察了运算与求解才能,属于根底题.2.在区间(0,+∞)上不是增函数的函数是〔〕 A.21y x =+B.231y x =+C.2y x=D.221y x x =++【答案】C 【解析】 【详解】A 选项在R 上是增函数;B选项在(],0-∞是减函数,在[)0,+∞是增函数;C选项在(),0,(0,)-∞+∞是减函数;D选项221721248y x x x ⎛⎫=++=++ ⎪⎝⎭在1,4⎛⎤-∞- ⎥⎝⎦是减函数,在1,4⎡⎫-+∞⎪⎢⎣⎭是增函数;应选C. 【点睛】对于二次函数断定单调区间通常要先化成2()(0)y a x m n a =-+≠形式再断定.当0a >时,单调递减区间是(],m -∞,单调递减区间是[),m +∞;0a <时,单调递减区间是[),m +∞,单调递减区间是(],m -∞.3.以下哪一组函数相等〔〕A.()f x x =与()2x g x x=B.()2f x x =与()4g x =C.()f x x =与()2g x =D.()2f x x =与()g x =【答案】D 【解析】 【分析】根据相等函数的要求依次判断两个函数的定义域和解析式是否一样,从而可求得结果. 【详解】A 选项:()f x 定义域为R ;()g x 定义域为:{}0x x ≠∴两函数不相等B 选项:()f x 定义域为R ;()g x 定义域为:{}0x x ≥∴两函数不相等C 选项:()f x 定义域为R ;()g x 定义域为:{}0x x ≥∴两函数不相等D 选项:()f x 与()g x 定义域均为R ,且()()2g x x f x ===∴两函数相等此题正确选项:D【点睛】此题考察相等函数的判断,关键是明确两函数相等要求定义域和解析式都一样,属于根底题. 4.集合{}2|3280Mx x x =--≤,{}2|60N x xx =-->,那么M N ⋂为〔〕A.{|42x x -≤<-或者37}x <≤B.{|42x x -<≤-或者37}x ≤<C.{|2x x ≤-或者3}x >D.{|2x x <-或者3}x ≥【答案】A 【解析】 【分析】利用一元二次不等式的解法化简集合{}2|3280M x x x =--≤,{}2|60N x xx =-->,根据集合交集的定义求解即可. 【详解】∵由{}2|3280Mx x x =--≤,所以{}|47M x x =-≤≤, 因为{}2|60N x x x =-->,所以{|2N x x =<-或者3}x >,∴{}|47{|2MN x x x x ⋂=-≤≤⋂<-或者3}x >{|42x x =-≤<-或者37}x <≤.应选A .点睛:研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,此题本质求满足属于集合M 且属于集合N 的元素的集合.5.2,0()(1),0x x f x f x x >⎧=⎨+≤⎩,那么44()()33f f +-的值等于〔〕A.2-B.4C.2D.4-【答案】B 【解析】【详解】2,0()(1),0x x f x f x x >⎧=⎨+≤⎩,448()2333f ∴=⨯=,44112()(1)()(1)()33333f f f f f ∴-=-+=-=-+=24233=⨯=,4484()()43333f f ∴+-=+=,应选B.考点:分段函数.6.()f x =A.3(,]2-∞ B.3[,)2+∞ C.(,1]-∞ D.[2,)+∞【答案】D 【解析】 【分析】先求解定义域,然后结合二次函数的对称轴判断增区间. 【详解】因为2320x x -+≥,所以(][),12,x ∈-∞+∞;又因为232y x x =-+的对称轴为:32x =,且322<,所以增区间为[)2,+∞, 应选:D.【点睛】此题考察复合函数的单调性,难度一般.对于复合函数的单调性问题,在利用“同増异减〞的方法判断的同时也要注意到定义域问题. 7.以下对应关系是A 到B 的函数的是()A.A=R,B={x|x>0}.f:x y=|x|→B.2,,:A Z B N f x y x +==→=C.A=Z,B=Z,f:x y →=D.[]{}1,1,0,:0A B f x y =-=→=【答案】D 【解析】 【分析】根据函数的定义,即可得出结论.【详解】对于A 选项:A =R ,B ={x |x >0},按对应关系f :x →y =|x |,A 中的元素0在B 中无像,∴f :x →y =|x |不是从A 到B 的函数;对于B 选项:A =Z ,B N +=,f :x →y =x 2,A 中的元素0在B 中无像,∴f :x →y =|x |不是从A 到B 的函数;对于C 选项:A =Z ,B =Z ,f :x →y =f :x →y =A 到B 的函数;对于D 选项:A =[﹣1,1],B ={0},f :x →y =0,A 中的任意元素在B 中有唯一元素对应,∴f :x →y =0是从A 到B 的函数. 应选D.【点睛】此题考察函数的定义,考察学生分析解决问题的才能,正确理解函数的定义是关键.8.函数()212f x x =+,那么f 〔x 〕的值域是 A.1{|}2y y ≤ B.1{|}2y y ≥C.1{|0}2y y <≤D.{|0}y y >【答案】C 【解析】 【分析】根据不等式的性质,求得函数的值域.【详解】由于220,22xx ≥+≥,故211022x <≤+,故函数的值域为1|02y y ⎧⎫<≤⎨⎬⎩⎭,应选C. 【点睛】本小题主要考察函数值域的求法,考察不等式的性质,属于根底题. 9.函数(1)f x +的定义域为[2,3]-,那么(21)f x -的定义域为〔〕A.[]-1,4B.5[0,]2C.[5,5]-D.[3,7]-【答案】B 【解析】 【分析】 由函数(1)f x +的定义域为[2,3]-,得到1[1,4]x +∈-,令1214x -≤-≤,即可求解函数(21)f x -的定义域,得到答案.【详解】由题意,函数(1)f x +的定义域为[2,3]-,即[2,3]x ∈-,那么1[1,4]x +∈-,令1214x -≤-≤,解得502x ≤≤,即函数(21)f x -的定义域为5[0,]2,应选B.【点睛】此题主要考察了抽象函数的定义域的计算,其中解答中熟记抽象函数的定义域的求解方法是解答的关键,着重考察了推理与运算才能,属于根底题. 10.不等式20ax x c -+>的解集为{}21,x x -<<那么函数2y ax x c =++的图像大致为〔〕A. B.C. D.【答案】C 【解析】 【分析】利用根与系数的关系x 1+x 2=−b a ,x 1•x 2=c a结合二次函数的图象可得结果【详解】由题知-2和1是ax 2-x+c=0的两根, 由根与系数的关系知-2+1=1a ,,−2×1=c a,∴a=-1,c=2, ∴2y ax x c =++=-x 2+x+2=-〔x-12〕2+94,应选C【点睛】此题考察了一元二次不等式的解法和二次函数的图象,以及一元二次方程根与系数的关系.一元二次不等式,一元二次方程,与一元二次函数的问题之间可互相转化,也表达了数形结合的思想方法. 11.函数2228(0)y x ax a a =-->,记0y ≤的解集为A ,假设()1,1A -⊆,那么a 的取值范围〔〕A.1,2⎡⎫+∞⎪⎢⎣⎭ B.1,4⎡⎫+∞⎪⎢⎣⎭C.11,42⎛⎫⎪⎝⎭D.11,42⎡⎤⎢⎥⎣⎦【答案】A 【解析】 【分析】因为2228(2)(4)--=+-x ax a x a x a ,且24a a -<,所以解集[]2,4A a a =-;然后根据()1,1A -⊆,得不等式组2141a a -≤-⎧⎨≥⎩,可得a 的取值范围。
高一数学第一次月考(完整资料).doc

【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】高一数学第一次月考《必修一》第一章教学质量检测卷 一、选择题(本大题共12小题,每小题5分,共60分。
) 1、已知集合A=}24|{<<-x x ,B=}12|{<<-x x ,则( ) A .A>B B .A ⊆BC .A BD .A ⊇B2、已知集合{}{}5,1,A x R x B x R x =∈≤=∈>那么A B 等于 ( )A.{1,2,3,4,5} B.{2,3,4,5}C.{2,3,4} D.{}15x R x ∈<≤ 3、设全集{}1,2,3,4,5,6,7,8U =,集合{1,2,3,5}A =,{2,4,6}B =,则图中的阴影部分表示的集合为( )A .{}2B .{}4,6C .{}1,3,5D .{}4,6,7,8 4、下列四组函数中表示同一函数的是( ) A.x x f =)(,2())g x x = B.()221)(,)(+==x x g x x fC.2()f x x =()g x x =D.()0f x =,()11g x x x =-- 5、函数2()21f x x ,(0,3)x ∈。
()7,f a 若则a 的值是 ( ) A 、1 B 、1- C 、2 D 、2±6、2,0()[(1)]1 0x x f x f f x ()设,则 ,()+≥⎧=-=⎨<⎩( ) A 、3 B 、1 C. 0 D.-17、已知M ={x 2,2x+1,-x+1},N ={x 2-1,3,x+1},且M∩N={0,3},则x 的值为 ( ) A .-1B .1C .-2D .28、下列四个图像中,不可能是函数图像的是 ( )9、设f(x)是R 上的偶函数,且在[0,+∞)上单调递增,则f(-2),f(3),f(-π)的大小顺序是:( )A 、 f(-π)>f(3)>f(-2)B 、f(-π) >f(-2)>f(3)C 、 f(-2)>f(3)> f(-π)D 、 f(3)>f(-2)> f(-π)10. 函数32)(2--=ax x x f 在区间(–∞,2)上为减函数,则有()A 、]1,(-∞∈a ;B 、),2[+∞∈a ; C 、]2,1[∈a ; D 、),2[]1,(+∞⋃-∞∈a11. 若奇函数)(x f 在(4,1]--上是减函数,则A .)2()1()5.1(f f f <-<-B .)2()5.1()1(f f f <-<-C .)5.1()1()2(-<-<f f fD .)1()5.1()2(-<-<f f f姓名 班级 考号【最新整理,下载后即可编辑】12、在集合{a ,b ,c ,d}上定义两种运算⊕和⊗如下:那么b ⊗ ()a c ⊕=( )A .aB .bC .cD .d二、填空题(本大题共4小题,每空4分,共20分) 13、函数2()2f x x x =-+在[-2,2]上的值域是_________ ,单调递减区间是__________. 14、函数()f x 是定义在R 上的偶函数,当0>x 时,2()f x x x =--,则当0<x 时,()f x 等于 . 15、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 是 .16、下列命题:①集合{},,,a b c d 的子集个数有16个;②定义在R 上的奇函数()f x 必满足(0)0f =;③()()2()21221f x x x =+--既不是奇函数又不是偶函数;④偶函数的图像一定与y 轴相交;⑤1()f x x=在()(),00,-∞+∞上是减函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一年级数学第一学期第一次月考高一数学试题考试时间:120分钟 试卷满分:150分友情提醒:将所有答案填在答题纸中。
一、填空题:(本大题共14小题,每小题5分,共70分;要求答案为最简结果。
)1.若{1,2,3,4},{1,2},{2,3}U M N ===,则)(N M C U Y = ▲ .2. 已知集合}{21<<-=x x A ,集合}{13≤<-=x x B ,则B A I= ▲ .3.若函数 1 (0)()(2) (0)x x f x f x x +≥⎧=⎨+<⎩,则(2)f -=____▲______4.方程组⎩⎨⎧=-=+0231332y x y x 的解集可表示为 ▲5.不等式a x x <-++12的解集是空集,则a 的取值范围是 ▲ 6.已知)1(+x f 的定义域为[0,2],则)3()(+=x f x g 的定义域为 ▲ 7.集合A 、B 各有两个元素,A ⋂B 中有一个元素,若集合C 同时满足(1)C ⊆A ⋃B ,(2)C ⊇(A ⋂B ),则满足条件的C 的个数为 ▲8.设⎪⎪⎩⎪⎪⎨⎧<≥-=)0(1)0(121)(x xx x x f ,若a a f >)(,则实数a 的取值范围是 ▲9.已知2()1f x ax bx =++是偶函数,定义域为[]a a 2,1-,则b a +的值为 ▲10. 函数4)2(2)2()(2--+-=x a x a x f 的定义域为R,值域为(]0,∞-,则满足条件的实数a 组成的集合是 ▲ 11.定义两种运算:a b ⊕=a b ⊗2()(2)2xf x x ⊕=⊗-的奇偶性为 ▲12. 函数y=x x 22-的单调递增区间是 ▲ .13.试构造一个函数(),f x x D ∈,使得对一切x D ∈有|()||()|f x f x -=恒成立,但是()f x 既不是奇函数又不是偶函数,则()f x 可以是 ▲ .14.某同学在研究函数 xxx f +=1)((x R ∈) 时,分别给出下面几个结论: ①等式()()0f x f x -+=在x R ∈时恒成立; ②函数)(x f 的值域为 (-1,1); ③若21x x ≠,则一定有)()(21x f x f ≠;④方程x x f =)(在R 上有三个根. 其中正确结论的序号有 ▲ .(请将你认为正确的结论的序号都填上) 二、解答题:(本大题共6小题,第15、16题每小题12分,第17~20题每小题14分,共80分;解答时需写出计算过程或证明步骤。
) 15.判断下列函数的奇偶性:(1)11)(--+=x x x f (2)xxx x f -+-=11)1()(16.已知函数)(x f 是定义在R 上的奇函数,当0≥x 时, )(x f =)1(x x +,求函数)(x f 的 解析式17.请作出函数|56|2-+-=x x y 的图象,结合图象指出函数的单调区间,并求出函数在[]4,2-上函数的最值。
18.已知集合A=⎭⎬⎫⎩⎨⎧≥+-1312|x x x ,B={}0)2)((|≤-+a x a x x 。
(1)求集合A ;(2)若A ⋂B=Φ,求实数a 的取值范围xy19.已知函数32)(-+-=x a x x x f(1)当a=4,52≤≤x 时,问x 分别取何值时,函数)(x f y =取得最大值和最小值,并求相应的最大值和最小值;(2)求a 的取值范围,使得函数)(x f y =在R 上恒为增函数。
20.已知二次函数f(x)=ax 2+bx(a,b 为常数,且a ≠0)满足条件:f(x -1)=f(3-x)且方程f(x)=2x 有等根。
(1)求f(x)的解析式;(2)是否存在实数m,n (m<n ),使f(x)的定义域和值域分别为[m,n]和[4m,4n],如果存在,求出m,n 的值;如果不存在,说明理由。
江苏省启东中学2008~2009学年度第一学期第一次月考高一数学试题答题纸注意:请在各题规定的黑色矩形区域内答题,超出该区域的答案无效!高一数学试题参考答案1.{}42. {}11|≤<-x x3.14.{})3,2(5.3≤a6.[-2,0]7. 48.a<-19.3110.{}2- 11.奇函数 12.[2,+∞) 13.2 ||1() ||1x x f x x x ⎧≤=⎨>⎩等 14.①②③15.(1)奇;(2)非奇非偶 16. ⎝⎛<-≥+=)0)(1()0)(1()(x x x x x x x f17.单调增区间[1,3]和[)+∞,5;单调减区间 (]1,∞-和[3,5]当x=1时,min )(x f =0;当x=-2时,max )(x f =21。
18.(1)A=(∞-,-3)⋃[)+∞,4;(2)⎪⎭⎫⎢⎣⎡-2,23 19.解:(1) a=4时,324)(-+-=x x x x f 。
①42<≤x 时,32)4()(-+-=x x x x f =-(x-3)2+6, 当x=2时,min )(x f =5;当x=3时,max )(x f =6。
②54≤≤x 时,32)4()(-+-=x x x x f =-(x-1)2-4, 当x=4时,min )(x f =5;当x=5时,max )(x f =12综合①、②得,当x=2或4时,min )(x f =5;当x=5时,max )(x f =12。
(2)∵⎪⎩⎪⎨⎧<-++-≥--+=a x x a x a x x a x x f ,3)2(,3)2()(22=⎪⎪⎩⎪⎪⎨⎧<-+++--≥-----ax a a x a x a a x ,34)2()22(,34)2()22(2222∴使得函数)(x f y =在R 上恒为增函数有⎪⎪⎩⎪⎪⎨⎧≥+≤-a a a a 2222∴22≤≤-a20.解:(1)∵方程ax 2+bx -2x=0有等根,∴△=(b -2)2=0,得b=2。
由f(x -1)=f(3-x)知此函数图像的对称轴方程为x=-ab2=1, 得a=-1,故f(x)=-x 2+2x.(2)∵f(x)=-(x -1)2+1≤1,∴4n ≤1,即n ≤41. 而抛物线y=-x 2+2x 的对称轴为x=1,∴当n ≤41时,f(x)在[m,n]上为增函数。
若满足题设条件的m,n 存在,则⎩⎨⎧==nn f mm f 4)(4)(即⎪⎩⎪⎨⎧=+-=+-nn n m m m 424222⇒⎩⎨⎧-==-==2020n n m m 或或又m<n ≤41. ∴m=-2,n=0,这时,定义域为[-2,0],值域为[-8,0]。
由以上知满足条件的m,n 存在,m=-2,n=0.要求:将下面的内容当作“知识点”一样背下来。
1、做材料题的主要方法:1)由粗读到细读材料,要有耐心地慢读材料;2)根据对应的题的答题要求,找出关键词句,然后用笔圈上符号。
3)巧妙借用材料中的原句答题:即用好题中的“已知条件”;4)到选择题中看看有没有和本题有联系的现成的知识答案。
5)答题时,先思考此题用哪个知识点。
6)答题要分出1、2、3的序号。
确定序号的多少,请参照该题的分值来判定。
7)对于太难的材料题,也不能留成白卷。
方法是:将材料题的内容复述一遍。
2、答“启示”“认识”类的题,做到:1)至少答两点;2)必须用历史术语词句。
少用“认真学习,报效国家”类的套用句子,禁用口头语类句子。
3)把“已知条件”用完。
3、做选择题的难题的方法:1)对于文句长的选择题,要细读,并划出关键的词句。
2)用排除法选出候选答案,再根据题意,选出“最恰当”的选项为此题的答案。
1、一个正常的考试心态。
正所谓“考考考,老师的法宝,分分分,学生的命根”,很多学生都把分数看得相当重要,怕考砸了没办法跟父母交代,怕让父母失望。
所以很多学生都有考试焦虑症,考试的心态很大程度上能影响孩子的正常发挥,适当的紧张感能让学生注意力更集中,但过度的紧张感能阻碍学生思维,所以,首先得有个正常的考试心态,实在太紧张,不妨多深呼吸,或者试试“意识视野”,当人凝视一件物品时,原本视野中的其他杂物将会完全消失,便有助于集中意识和稳定情绪。
所以,当认为自己太过紧张无法集中精神在考卷上的时候,不如试试上述两种方法。
2、拿到试卷后,千万不要急着做题,把题目通读一遍,防止漏题的同时更要了解试卷的整体结构,看整份考卷的题数比例,我们对于已经掌握的范围会比较有信心,这也是先看题目的意义所在。
一些比较简单的题目只需要依一般的逻辑常识或者口算便可直接得出答案,从而可以节省许多作答时间。
3、学会标注记号。
现在很多考试都附有答题卡,学生可在做题时,把已经解决的题目、不会的题目、需要再思考的题目分别以不同的小记号用铅笔轻轻的做出记号,这样做的目的,是为了方便在做完自己有把握的题目的时候,能准确的找出自己接下来要思考的题目,既能节省时间,也能最大把握的争取多得分。