高一年级数学第一学期第一次月考.doc
高一上学期第一次月考数学试卷(含答案解析)
高一上学期第一次月考数学试卷(含答案解析)考试时间:120分钟;总分:150分学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若集合A ={x|x >2},B ={x|−2⩽x ⩽3},则A ∩B =( )A. (2,3)B. (2,3]C. [2,3]D. [−2,3]2. 如图所示的Venn 图中,已知A ,B 是非空集合,定义A ∗B 表示阴影部分的集合.若A ={x |0≤x <3},B ={y |y >2},则A ∗B =( )A. {x |x >3}B. {x |2≤x ≤3}C. {x |2<x <3}D. {x |x ≥3}3. 中国清朝数学家李善兰在859年翻译《代数学》中首次将“function ”译做“函数”,沿用至今.为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数.”这个解释说明了函数的内涵:只要有一个法则,使得取值范围中的每一个值x ,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象、表格还是其它形式.已知函数f(x)由如表给出,则f(f(−2)+1)的值为( )A. 1B. 2C. 3D. 44. 命题“∀x >1,x −1>lnx ”的否定为( )A. ∀x ≤1,x −1≤lnxB. ∀x >1,x −1≤lnxC. ∃x ≤1,x −1≤lnxD. ∃x >1,x −1≤lnx5. 设M =2a(a −2)+7,N =(a −2)(a −3),则M 与N 的大小关系是( )A. M >NB. M =NC. M <ND. 无法确定6. f(2x −1)的定义域为[0,1),则f(1−3x)的定义域为( )A. (−2,4]B. (−2,12]C. (0,23]D. (0,16] 7. 已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的条件.( )A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要 8. 已知集合A ={x|3−x x ≥2)},则∁R A =( ) A. {x|x >1}B. {x|x ≤0或x >1}C. {x|0<x <1}D. {x|x <0或x >1}二、多选题(本大题共4小题,共20.0分。
最新版高一数学上学期第一次月考试题及答案(新人教A版 第115套)
抚州一中高一上学期第一次月考数学试卷一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知A={}R x x x ∈≤,32|,a=14,b=22,则 ( )A .a ∈A ,且b ∉AB .a ∉A ,且b ∈AC .a ∈A ,且b ∈AD .a ∉A ,且b ∉A2.已知A={}Z x x x x ∈≤--,0103|2,B={}Z x x x x ∈>--,062|2,则A ∩B 的非空真子集的个数为 ( ) A .16 B .14 C .15 D .323.已知A={}2,2-,B={}1|=ax x ,且A ∪B=A ,则a 的取值集合为 ( )A .⎭⎬⎫⎩⎨⎧21B .⎭⎬⎫⎩⎨⎧-21 C .⎭⎬⎫⎩⎨⎧-21,21 D .⎭⎬⎫⎩⎨⎧-0,21,21 4.下列各组函数中表示同一函数的是 ( )A .()()0,1x x g x f == B .()()39,32--=+=x x x g x x fC .()()||,2x x g x x f ==D .()()2,x x g x x f ==5.已知全集{}2,1,0,1-=U ,集合{}2,1-=A ,{}2,0=B ,则=A B C U )(( ) A.{}0B. {}1-C. {}12-,D.∅ 6..函数|2|2x y x x=+的图象是( )A B C D 7.下列函数中,在区间)2,0(上为增函数的是( )A.x y -=3B.12-=x y C.xy 1=D.2)1(-=x y8.若()2)1(22+-+=x a x x f 在[-1,2]上是单调函数,则a 的范围为 ( ) A .1≤a B .2≥a C .21≥-≤a a 或 D .21>-<a a 或9.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S1、S2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相吻合是 ( )10.A={}01)2(|2=+++x m x x ,若φ=⋂+R A ,则m 的范围为 ( )A .0≥mB .04<<-mC .4-≥mD .4->m 二、填空题(本大题共5小题,每小题5分,共25分)11.已知元素(,)x y 在映射f 下的象是(2,2)x y x y +-,则(3,1)在f 下的原象..是 。
高一上学期第一次月考数学试卷(含答案解析)
高一上学期第一次月考数学试卷(含答案解析)第I 卷(选择题)一、单选题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若集合{0,1}A =,{|0}B x x =,则下列结论正确的是( ) A. {0}B ∈B. A B ⋂=∅C. A B ⊆D. A B R ⋃=2. 已知集合,{2,1,0,1,2,4}B =--,则A B ⋂=( ) A. {1,0,1,2}-B. {2,0,4}-C. {0,1,2}D. {0,1}3. 已知命题p :x R ∃∈,2 1.x x +则命题p 的否定是( ) A. x R ∃∈,21x x >+ B. x R ∃∈,21x x + C. x R ∀∈,21x x +D. x R ∀∈,21x x >+4. 已知a R ∈,则“2a >”是“4a >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件5. “A B ⊆“是“A B B ⋂=“的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件D. 既不充分也不必要条件6. 如果0a <,0b >,那么下列不等式中正确的是( )A.11a b< B. <C. 22a b <D. ||||a b >7. 已知集合M 满足{1,2}{1,2,3}M ⋃=,则集合M 的个数是( ) A. 1B. 2C. 3D. 48. 对于任意实数x ,不等式2(2)2(2)40m x m x ---+>恒成立,则m 的取值范围是( ) A. {|22}m m -<< B. {|22}m m -< C. {|2m m <-或2}m >D. {|2m m <-或2}m9. 已知a ,b R ∈,且0ab ≠,则在下列四个不等式中,不恒成立的是( )A.222a b ab +B.2b a a b+ C. 2()2a b ab +D. 222()22a b a b ++10. 设S 为实数集R 上的非空子集.若对任意x ,y S ∈,都有x y +,x y -,xy S ∈,则称S 为封闭集.下面是关于封闭集的4个判断:(1)自然数集N 为封闭集; (2)整数集Z 为封闭集;(3)若S 为封闭集,则一定有0S ∈; (4)封闭集一定是无限集.则其中正确的判断是( )A. (2)(3)B. (2)(4)C. (3)(4)D. (1)(2)第II 卷(非选择题)二、填空题(本大题共5小题,共25.0分)11. 已知函数21()ln log f x a x b x =+,若(2017)1f =,则1()2017f =______ . 12. 若0x >,则12x x+的最小值为______,此时x 的取值为______. 13. 一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是__________.14. 设2{|340}A x x x =+-=,{|10}.B x ax =-=若B A ⊆,则a 的值为______.15. 某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润(y 万元)与机器运转时间(x 年数,*)x N ∈的关系为21825.y x x =-+-则当每台机器运转______ 年时,年平均利润最大,最大值是______ 万元.三、解答题(本大题共6小题,共85.0分。
高一数学上学期第一次月考试卷含解析试题
智才艺州攀枝花市创界学校实验二零二零—二零二壹第一学期第一次月考试题高一数学第一卷〔客观题〕一、选择题〔本大题一一共10小题,每一小题4分,一共40分,在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕,那么S T为〔〕A. B. C. D.【答案】D【解析】【分析】集合是一次不等式的解集,分别求出再求交集即可【详解】,,那么应选【点睛】此题主要考察了一次不等式的解集以及集合的交集运算,属于根底题。
表示同一函数的是〔〕A. B.C. D.【答案】D【解析】【分析】逐个分析各个选项里面的2个函数的定义域,值域和对应关系,是否完全一样,只有完全一样才能表示同一函数。
【详解】,,两个函数的定义域不同,不是同一函数,,,两个函数的定义域不同,不是同一函数,,,两个函数的定义域不同,对应关系也不同,不是同一函数,,,即,是同一函数应选【点睛】此题主要考察的知识点是两个函数是同一函数必须满足的条件,即:定义域,值域和对应法那么都一样,属于根底题。
3.如下列图,不可能表示函数的是〔〕A. B.C. D.【解析】【分析】由函数的定义即可判断出答案【详解】根据函数的定义,对于定义域内的任意一个值都有唯一的值与其对应,从图像上看,作一条直线它与函数的图象最多有一个交点,因此不满足此条件,故的图像不表示函数。
应选【点睛】此题主要考察了函数的概念及其构成要素,纯熟掌握函数定义中自变量任取一个值,都有唯一的值与其对应,属于根底题。
的定义域是〔〕A. B. C. D.【答案】C【解析】【分析】由限制条件求出函数定义域【详解】根据题意可得:,,即定义域为即应选【点睛】此题主要考察了函数的定义域及其求法,找出题目中的限制条件是关键,属于根底题。
且,那么实数的取值范围是〔〕A. B. C. D.【解析】【分析】根据条件求出,再求即可得到答案【详解】,,那么应选【点睛】此题主要考察了集合的交集,并集以及补集的混合运算,此题比较简单。
高一年级第一学期数学第一次月考试卷(必修一
高一年级数学第一学期月考一试卷(时间:120分钟 满分150分)一、单选题(本题共8小题,每题5分,计40分)1. 设全集U =R ,M ={x|x <−2或x >2},N ={x|1≤x ≤3}.如图所示,则阴影部分所表示的集合为( ) A. {x|−2≤x <1} B. {x|−2≤x ≤3} C. {x|x ≤2或x >3} D. {x|−2≤x ≤2}2. 已知p:x <−1,则p 的一个充分不必要条件为( )A. x <−1B. x <2C. −8<x <2D. −10<x <−33. 若a <1,则a +1a−1有( )A. 最小值为3B. 最大值为3C. 最小值为−1D. 最大值为−14. 已知x >0,y >0,且4x +9y −xy =0,求x +y 的最小值为.( )A. 25B. 18C. 13D. 125. 若a >0,b >0,则“a +b ≤4”是“ab ≤4”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6. 若关于x 的不等式()02122<++-a x a x 恰有两个整数解,则a 的取值范围是( )A. {a|32<a ≤2} B. {a|−1<a ≤−12}C. {a|−1<a ≤−12或32≤a <2} D. {a|−1≤a <−12或32<a ≤2} 7. 已知函数y =f(−2x +1)的定义域是[−1,2],则y =f(x)的定义域是( )A. [−12,1]B. [−3,3]C. [−1,5]D. 以上都不对8. 若不等式x 2−tx +1<0对一切x ∈(1,2)恒成立,则t 的取值范围为( )A. t <2B. t >52C. t ≥1D. t ⩾52二、多选题(本题共4小题,全部选对得5分,少选得3分,多选或选错不得分,满分20分)9. 设全集U ={0,1,2,3,4},集合A ={0,1,4},B ={0,1,3},则( )A. A⋂B ={0,1}B. ∁U B ={4}C. A ∪B ={0,1,3,4}D.集合A 的真子集个数为810. 设{}{}01|,0149|2=-==+-=ax x B x x x A ,若B B A = ,则实数a 的值可以为( ) A. 2B. 12C. 17D. 011. 下列函数中,最小值为2的有( )A. y =x +4x −2 B. y =|x +1x | C. y =x 2+4√x 2+3D. y =√x +4√x −212. 下列四组函数中,不表示同一函数的一组是( )A. f(x)=x −1(x ∈R),g(x)=x −1(x ∈N)B. f(x)=|x|,g(x)=√x 2C. f(x)=√x +1⋅√x −1,g(x)=x +1D. f(x)=x 2−1x−1,g(x)=x +1三、填空题(每题5分,计20分)13.若x >4,则y =x 2−4x+9x−4的最小值为_________.14.已知−1≤x +y ≤4,且2≤x −y ≤3,则z =2x −3y 的取值范围是______. 15.已知集合A ={x|ax 2+2x +a =0,a ∈R},若集合A 有且仅有2个子集,则a 的取值集合为____________16.函数21y x x =-+-的值域是___________.四、解答题:本大题共6道小题,满分70分(第17题10分,其余题目12分).17.已知函数f (x )=8x−1+√x +3.(1)求函数f(x)的定义域并求f(−2),f(6);(2)已知f(2a+1)=4a+1,求a的值.18.已知函数f(x)=√−x2+x+12的定义域为A,集合B={x|2m−1≤x≤m+1}.(1)当m=−2时,求(∁R A)∩B;(2)若A∩B=B,求实数m的取值范围.19.已知p:∃x∈R,使mx2−4x+2=0为假命题.(1)求实数m的取值集合B;(2)设A={x|3a<x<a+2}为非空集合,若x∈A是x∈B的充分不必要条件,求实数a的取值范围.20.(1)设a>b>0,比较a 2−b2a2+b2与a−ba+b的大小;(2)已知a,b,c为不全相等的正实数,求证:a+b+c>√ab+√bc+√ca.21.某汽车厂上年度生产汽车的投入成本为10万元/辆,出厂价为12万元/辆,年销售量为10000辆.本年度为适应市场需求,计划提高产品质量,适度增加投入成本.若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.75x,同时预计年销售量增加的比例为0.6x,已知年利润=(出厂价−投入成本)×年销售量.(1)写出本年度预计的年利润y与投入成本增加的比例x的关系式;(2)为使本年度的年利润比上年度有所增加,则投入成本增加的比例x应在什么范围内22.已知函数22()1xf xx=+,(1)求(2)f与1()2f,(3)f与1()3f;(2)猜想()f x与1()fx有什么关系?并证明你的猜想;(3)求111(1)(2)(3)(2019)()()()232019f f f f f f f+++⋅⋅⋅++++⋅⋅⋅+的值.答案1.A2.D3.D4.A5.A6.D7.B8.D9.AC 10.BCD 11.BD 12.ACD 13.10 14. [3,8] 15.{}1,0,1- 16.[1,)-+∞ 17.解:(1)由{x −1≠0 x +3≥0解得{x ≠1x ≥−3,∴函数f (x )的定义域为{x |x ≥−3且x ≠1} -------------------2’ ∴f(−2)=8−2−1+√−2+3=−53,f(6)=86−1+√6+3=235.-------------------3’、4’(2)∵f (2a +1)=4a +1,∴4a +√2a +4=4a +1,-------------------6 ∴√2a +4=1, ---------------------------------------------------------8 ∴a =−32. ---------------------------------------------------------1018.(1) 由题知:A ={x|−3⩽x ⩽4},B ={x|−5⩽x ⩽−1}-------------------2(∁R A )∩B ={x|−5⩽x <−3}; --------------------------------------4 (2)由A ∩B =B 得B ⊆A --------------------------------------5 当B =⌀时,2m −1>m +1,即m >2,满足B ⊆A , -------------------7当B ≠⌀时,若满足B ⊆A ,则有{2m −1⩽m +12m −1⩾−3m +1⩽4 解得:−1⩽m ⩽2--------------10综上所述,m 的取值范围为{m|m ⩾−1}. --------------------------------------12 19.解:(1)p 等价于mx 2−4x +2=0无实根,-------------------2 当m =0时,x 0=12,有实根不合题意; -------------------4当m ≠0时,由已知得△=16−4×2m <0,∴m >2,则B ={m|m >2}.---------------6 (2)∵A ={x|3a <x <a +2}为非空集合,故a +2>3a ,即a <1,-------------------8若x ∈A 是x ∈B 的充分不必要条件,则A ⫋B 成立,∴3a ≥2,即a ⩾23,∴23≤a <1.----------------10 故a 的取值范围为{a|23≤a <1}. -------------------1219.解:(1)因为a >b >0,所以a 2−b 2a 2+b 2>0,a−ba+b >0-------------------2 a 2−b 2a 2+b 2a−b a+b=(a+b)2a 2+b 2=a 2+b 2+2ab a 2+b 2=1+2aba 2+b 2>1. -------------------4故a 2−b 2a 1+b 2>a−ba+b .- -------------------------------------6(2)只证2a +2b +2c >2√ab +2√bc +2√ca 即可.-------------------2左边=2a +2b +2c =(a +b)+(a +c)+(b +c)≥2√ab +2√bc +2√ca ,-------------------4 当且仅当a =b =c 时取等号,又a ,b ,c 不全相等,故等号取不到,故原结论成立.-----------6 21.解:(1)由题意得y =[12×(1+0.75x)−10×(1+x)]×10000×(1+0.6x)(0<x <1), 整理得y =−6000x 2+2000x +20000(0<x <1).-------------------5(2) 要保证本年度的年利润比上年度有所增加,必须有{y −(12−10)×10000>0,0<x <1,--------8即{−6000x 2+2000x >0,0<x <1,解得0<x <1,---------------------------------------------------------10 所以投入成本增加的比例x 的取值范围是{x ∣0<x <13}. --------------------------------------1222.(1)因为22()1x f x x =+,所以()442415f ==+,111412514f ⎛⎫== ⎪⎝⎭+,()9939110f ==+,1119131019f ⎛⎫== ⎪⎝⎭+; --------------------------------------4 (2)由(1)可发现()11f x f x ⎛⎫+= ⎪⎝⎭. --------------------------------------6 证明如下:2222222222221111()11111111x x x x x f x f x x x x x x x x ⎛⎫+=+=+=+= ⎪+++++⎝⎭+;-------------------8(3)1(2)()12f f +=,1(3)()13f f +=,⋯,1(2019)()12019f f +=,又()22111112f ==+,------------10 所以()()()()1111232019232019f f f f f f f ⎛⎫⎛⎫⎛⎫++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()1111232019232019f f f f f f f ⎛⎫⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+++++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦1120181201822=+⨯=---------------12。
高一数学必修一第一次月考及答案(完整资料).doc
【最新整理,下载后即可编辑】兴义九中2011-2012学年度第一学期高一第一次月考考生注意:1.本卷分试卷部分和答题卷部分,考试结束只交答题卷; 2.所有答案必须写在答题卷指定位置上,写在其他地方一律无效。
一、选择题(每小题5分,共计50分)1. 下列命题正确的是( )A .很小的实数可以构成集合。
B .集合{}1|2-=x y y 与集合(){}1|,2-=x y y x 是同一个集合。
C .自然数集N 中最小的数是1。
D .空集是任何集合的子集。
2.函数2()=f x 的定义域是( )A.1[,1]3- B.1(,1)3- C. 11(,)33- D.1(,)3-∞-3. 已知{}{}22|1,|1==-==-M x y x N y y x , N M ⋂等于( )A. NB.MC.RD.∅4. 下列给出函数()f x 与()g x 的各组中,是同一个关于x 的函数的是 ( )A .2()1,()1x f x x g x x=-=-B .()21,()21f x x g x x =-=+C .2(),()f x x g x == D .0()1,()f x g x x ==5. 已知函数()533f x ax bx cx =-+-,()37f -=,则()3f 的值为 ( )A. 13B.13-C.7D.7-6. 若函数2(21)1=+-+y x a x 在区间(-∞,2]上是减函数,则实数a 的取值范围是( )A .[-23,+∞)B .(-∞,-23] C .[23,+∞) D .(-∞,23] 7. 在函数22, 1, 122, 2x x y x x x x +≤-⎧⎪=-<<⎨⎪≥⎩中,若()1f x =,则x的值是( )A .1B .312或 C .1± D8.已知函数()=f x 的定义域是一切实数,则m 的取值范围是 ( )A.0<m ≤4B.0≤m ≤1C.m ≥4D.0≤m ≤49.函数y=xx ++-1912是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶数 10.下列四个命题(1)f(x)=x x -+-12有意义;(2)函数是其定义域到值域的映射; (3)函数y=2x(x N ∈)的图象是一直线; (4)函数y=⎪⎩⎪⎨⎧<-≥0,0,22x x x x 的图象是抛物线,其中正确的命题个数是( )A .1B .2C .3D .411. 已知函数)(x f 是R 上的增函数,(0,2)-A ,(3,2)B 是其图象上的两点,B B AA U UU CB A 那么2|)1(|<+x f 的解集是 ( ) A .(1,4) B .(-1,2)C .),4[)1,(+∞-∞D .),2[)1,(+∞--∞12. 若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()2x f x g x -=,则有( )A .(2)(3)(0)f f g <<B .(0)(3)(2)g f f <<C .(2)(0)(3)f g f <<D .(0)(2)(3)g f f <<二、填空题(每小题4分,共计20分) 13. 用集合表示图中阴影部分:14. 若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ⊆,则实数a 的值为_________________15. 已知y=f(x)是定义在R 上的奇函数,当0x ≥时,()2f x x -2x =, 则()x f 在0<x 时的解析式是 _______________16.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k的取值范围是 .三、解答题:解答题应写出文字说明.证明过程或演算步骤.(合计70分) 17、(满分10分)设A={x ∈Z| }66≤≤-x ,{}{}1,2,3,3,4,5,6B C ==,求: (1)()A B C ⋃⋂; (2)()A A C B C ⋂⋃18.已知f(x)=x 2-ax +b(a 、b∈R ),A ={x∈R |f(x)-x =0},B ={x∈R |f(x)-ax =0},若A ={1,-3},试用列举法表示集合B.19. (本题满分12分)已知函数2()=++f x x ax b ,且对任意的实数x 都有(1)(1)+=-f x f x 成立.(1)求实数 a 的值; (2)利用单调性的定义证明函数()f x 在区间[1,)+∞上是增函数.20、(满分12分)已知奇函数222(0)()0(0)(0)x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩(1)求实数m 的值,并在给出的直角坐标系中画出()y f x =的图象;(2)若函数f (x )在区间[-1,|a |-2]上单调递增,试确定a 的取值范围.21.(本题满分12分) 是否存在实数a使2=-+的定义域为f x x ax a()2-?若存在,求出a的值;若不存在,说明理由。
高一数学上学期第一次月考试题含解析
智才艺州攀枝花市创界学校内蒙古锡林郭勒盟第HY 学二零二零—二零二壹高一数学上学期第一次月考试题〔含解析〕一、单项选择题〔本大题一一共12小题,每一小题5分,一共60分〕 1.集合2{|}A x x x ==,{1,,2}B m =,假设A B ⊆,那么实数m 的值是〔〕A.2B.0C.0或者2D.1【答案】B 【解析】 【分析】 求得集合{0,1}A =,根据A B ⊆,即可求解,得到答案.【详解】由题意,集合2{|}{0,1}A x x x ===,因为A B ⊆,所以0m =,应选B.【点睛】此题主要考察了集合交集运算,其中解答中熟记集合的包含关系的运算是解答的关键,着重考察了运算与求解才能,属于根底题.2.在区间(0,+∞)上不是增函数的函数是〔〕 A.21y x =+B.231y x =+C.2y x=D.221y x x =++【答案】C 【解析】 【详解】A 选项在R 上是增函数;B选项在(],0-∞是减函数,在[)0,+∞是增函数;C选项在(),0,(0,)-∞+∞是减函数;D选项221721248y x x x ⎛⎫=++=++ ⎪⎝⎭在1,4⎛⎤-∞- ⎥⎝⎦是减函数,在1,4⎡⎫-+∞⎪⎢⎣⎭是增函数;应选C. 【点睛】对于二次函数断定单调区间通常要先化成2()(0)y a x m n a =-+≠形式再断定.当0a >时,单调递减区间是(],m -∞,单调递减区间是[),m +∞;0a <时,单调递减区间是[),m +∞,单调递减区间是(],m -∞.3.以下哪一组函数相等〔〕A.()f x x =与()2x g x x=B.()2f x x =与()4g x =C.()f x x =与()2g x =D.()2f x x =与()g x =【答案】D 【解析】 【分析】根据相等函数的要求依次判断两个函数的定义域和解析式是否一样,从而可求得结果. 【详解】A 选项:()f x 定义域为R ;()g x 定义域为:{}0x x ≠∴两函数不相等B 选项:()f x 定义域为R ;()g x 定义域为:{}0x x ≥∴两函数不相等C 选项:()f x 定义域为R ;()g x 定义域为:{}0x x ≥∴两函数不相等D 选项:()f x 与()g x 定义域均为R ,且()()2g x x f x ===∴两函数相等此题正确选项:D【点睛】此题考察相等函数的判断,关键是明确两函数相等要求定义域和解析式都一样,属于根底题. 4.集合{}2|3280Mx x x =--≤,{}2|60N x xx =-->,那么M N ⋂为〔〕A.{|42x x -≤<-或者37}x <≤B.{|42x x -<≤-或者37}x ≤<C.{|2x x ≤-或者3}x >D.{|2x x <-或者3}x ≥【答案】A 【解析】 【分析】利用一元二次不等式的解法化简集合{}2|3280M x x x =--≤,{}2|60N x xx =-->,根据集合交集的定义求解即可. 【详解】∵由{}2|3280Mx x x =--≤,所以{}|47M x x =-≤≤, 因为{}2|60N x x x =-->,所以{|2N x x =<-或者3}x >,∴{}|47{|2MN x x x x ⋂=-≤≤⋂<-或者3}x >{|42x x =-≤<-或者37}x <≤.应选A .点睛:研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,此题本质求满足属于集合M 且属于集合N 的元素的集合.5.2,0()(1),0x x f x f x x >⎧=⎨+≤⎩,那么44()()33f f +-的值等于〔〕A.2-B.4C.2D.4-【答案】B 【解析】【详解】2,0()(1),0x x f x f x x >⎧=⎨+≤⎩,448()2333f ∴=⨯=,44112()(1)()(1)()33333f f f f f ∴-=-+=-=-+=24233=⨯=,4484()()43333f f ∴+-=+=,应选B.考点:分段函数.6.()f x =A.3(,]2-∞ B.3[,)2+∞ C.(,1]-∞ D.[2,)+∞【答案】D 【解析】 【分析】先求解定义域,然后结合二次函数的对称轴判断增区间. 【详解】因为2320x x -+≥,所以(][),12,x ∈-∞+∞;又因为232y x x =-+的对称轴为:32x =,且322<,所以增区间为[)2,+∞, 应选:D.【点睛】此题考察复合函数的单调性,难度一般.对于复合函数的单调性问题,在利用“同増异减〞的方法判断的同时也要注意到定义域问题. 7.以下对应关系是A 到B 的函数的是()A.A=R,B={x|x>0}.f:x y=|x|→B.2,,:A Z B N f x y x +==→=C.A=Z,B=Z,f:x y →=D.[]{}1,1,0,:0A B f x y =-=→=【答案】D 【解析】 【分析】根据函数的定义,即可得出结论.【详解】对于A 选项:A =R ,B ={x |x >0},按对应关系f :x →y =|x |,A 中的元素0在B 中无像,∴f :x →y =|x |不是从A 到B 的函数;对于B 选项:A =Z ,B N +=,f :x →y =x 2,A 中的元素0在B 中无像,∴f :x →y =|x |不是从A 到B 的函数;对于C 选项:A =Z ,B =Z ,f :x →y =f :x →y =A 到B 的函数;对于D 选项:A =[﹣1,1],B ={0},f :x →y =0,A 中的任意元素在B 中有唯一元素对应,∴f :x →y =0是从A 到B 的函数. 应选D.【点睛】此题考察函数的定义,考察学生分析解决问题的才能,正确理解函数的定义是关键.8.函数()212f x x =+,那么f 〔x 〕的值域是 A.1{|}2y y ≤ B.1{|}2y y ≥C.1{|0}2y y <≤D.{|0}y y >【答案】C 【解析】 【分析】根据不等式的性质,求得函数的值域.【详解】由于220,22xx ≥+≥,故211022x <≤+,故函数的值域为1|02y y ⎧⎫<≤⎨⎬⎩⎭,应选C. 【点睛】本小题主要考察函数值域的求法,考察不等式的性质,属于根底题. 9.函数(1)f x +的定义域为[2,3]-,那么(21)f x -的定义域为〔〕A.[]-1,4B.5[0,]2C.[5,5]-D.[3,7]-【答案】B 【解析】 【分析】 由函数(1)f x +的定义域为[2,3]-,得到1[1,4]x +∈-,令1214x -≤-≤,即可求解函数(21)f x -的定义域,得到答案.【详解】由题意,函数(1)f x +的定义域为[2,3]-,即[2,3]x ∈-,那么1[1,4]x +∈-,令1214x -≤-≤,解得502x ≤≤,即函数(21)f x -的定义域为5[0,]2,应选B.【点睛】此题主要考察了抽象函数的定义域的计算,其中解答中熟记抽象函数的定义域的求解方法是解答的关键,着重考察了推理与运算才能,属于根底题. 10.不等式20ax x c -+>的解集为{}21,x x -<<那么函数2y ax x c =++的图像大致为〔〕A. B.C. D.【答案】C 【解析】 【分析】利用根与系数的关系x 1+x 2=−b a ,x 1•x 2=c a结合二次函数的图象可得结果【详解】由题知-2和1是ax 2-x+c=0的两根, 由根与系数的关系知-2+1=1a ,,−2×1=c a,∴a=-1,c=2, ∴2y ax x c =++=-x 2+x+2=-〔x-12〕2+94,应选C【点睛】此题考察了一元二次不等式的解法和二次函数的图象,以及一元二次方程根与系数的关系.一元二次不等式,一元二次方程,与一元二次函数的问题之间可互相转化,也表达了数形结合的思想方法. 11.函数2228(0)y x ax a a =-->,记0y ≤的解集为A ,假设()1,1A -⊆,那么a 的取值范围〔〕A.1,2⎡⎫+∞⎪⎢⎣⎭ B.1,4⎡⎫+∞⎪⎢⎣⎭C.11,42⎛⎫⎪⎝⎭D.11,42⎡⎤⎢⎥⎣⎦【答案】A 【解析】 【分析】因为2228(2)(4)--=+-x ax a x a x a ,且24a a -<,所以解集[]2,4A a a =-;然后根据()1,1A -⊆,得不等式组2141a a -≤-⎧⎨≥⎩,可得a 的取值范围。
高一数学第一次月考(完整资料).doc
【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】高一数学第一次月考《必修一》第一章教学质量检测卷 一、选择题(本大题共12小题,每小题5分,共60分。
) 1、已知集合A=}24|{<<-x x ,B=}12|{<<-x x ,则( ) A .A>B B .A ⊆BC .A BD .A ⊇B2、已知集合{}{}5,1,A x R x B x R x =∈≤=∈>那么A B 等于 ( )A.{1,2,3,4,5} B.{2,3,4,5}C.{2,3,4} D.{}15x R x ∈<≤ 3、设全集{}1,2,3,4,5,6,7,8U =,集合{1,2,3,5}A =,{2,4,6}B =,则图中的阴影部分表示的集合为( )A .{}2B .{}4,6C .{}1,3,5D .{}4,6,7,8 4、下列四组函数中表示同一函数的是( ) A.x x f =)(,2())g x x = B.()221)(,)(+==x x g x x fC.2()f x x =()g x x =D.()0f x =,()11g x x x =-- 5、函数2()21f x x ,(0,3)x ∈。
()7,f a 若则a 的值是 ( ) A 、1 B 、1- C 、2 D 、2±6、2,0()[(1)]1 0x x f x f f x ()设,则 ,()+≥⎧=-=⎨<⎩( ) A 、3 B 、1 C. 0 D.-17、已知M ={x 2,2x+1,-x+1},N ={x 2-1,3,x+1},且M∩N={0,3},则x 的值为 ( ) A .-1B .1C .-2D .28、下列四个图像中,不可能是函数图像的是 ( )9、设f(x)是R 上的偶函数,且在[0,+∞)上单调递增,则f(-2),f(3),f(-π)的大小顺序是:( )A 、 f(-π)>f(3)>f(-2)B 、f(-π) >f(-2)>f(3)C 、 f(-2)>f(3)> f(-π)D 、 f(3)>f(-2)> f(-π)10. 函数32)(2--=ax x x f 在区间(–∞,2)上为减函数,则有()A 、]1,(-∞∈a ;B 、),2[+∞∈a ; C 、]2,1[∈a ; D 、),2[]1,(+∞⋃-∞∈a11. 若奇函数)(x f 在(4,1]--上是减函数,则A .)2()1()5.1(f f f <-<-B .)2()5.1()1(f f f <-<-C .)5.1()1()2(-<-<f f fD .)1()5.1()2(-<-<f f f姓名 班级 考号【最新整理,下载后即可编辑】12、在集合{a ,b ,c ,d}上定义两种运算⊕和⊗如下:那么b ⊗ ()a c ⊕=( )A .aB .bC .cD .d二、填空题(本大题共4小题,每空4分,共20分) 13、函数2()2f x x x =-+在[-2,2]上的值域是_________ ,单调递减区间是__________. 14、函数()f x 是定义在R 上的偶函数,当0>x 时,2()f x x x =--,则当0<x 时,()f x 等于 . 15、若}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B 是 .16、下列命题:①集合{},,,a b c d 的子集个数有16个;②定义在R 上的奇函数()f x 必满足(0)0f =;③()()2()21221f x x x =+--既不是奇函数又不是偶函数;④偶函数的图像一定与y 轴相交;⑤1()f x x=在()(),00,-∞+∞上是减函数。
高一上学期第一次月考数学试卷A3打印版
河南宏力学校高一上学期第一次月考数 学 试 题考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟. 2.请将各题答案填写在答题卡上.第Ⅰ卷(选择题 共60分)一、选择题(每小题5分,共60分)1. 设集合{}10,8,6,4,2,0=A ,{}8,4=B ,则C A B =【 】 (A ){}8,4 (B ){}6,2,0 (C ){}10,6,2,0 (D ){}10,8,6,4,2,02. 已知集合{}{}3,1,13,2,12-=--=N m m M ,若{}3=N M ,则m 的值为【 】(A )1,4- (B )1- (C )1 , 4- (D )4 3. 全集=U R ,{}03<<-=x x N ,{}1-<=x x M ,则图中阴影部分表示的集合是【 】(A ){}13-<<-x x (B ){}03<<-x x (C ){}01<≤-x x (D ){}3<x x4. 设函数()⎪⎩⎪⎨⎧<-≥=0,0,x x x x x f ,若()()21=-+f a f ,则=a 【 】(A )3- (B )3± (C )1- (D )1± 5. 下列各组函数是同一函数的是【 】①()32x x f -=与()x x x g 2-=; ②()x x f =与()2x x g =;③()0x x f =与()01xx g =; ④()122--=x x x f 与()122--=t t t g .(A )①② (B )③④ (C )①③ (D )①④ 6. 已知函数()x f 的定义域为()1,23+-a a ,且()1+x f 为奇函数,则a 的值可以是【 】 (A )2 (B )32(C )4 (D )6 7. 已知定义在R 上的增函数()x f ,满足()()0=-+x f x f ,∈321,,x x x R ,且021>+x x ,032>+x x ,013>+x x ,则()()()321x f x f x f ++的值【 】(A )一定大于0 (B )一定小于0 (C )等于0 (D )正负都有可能 8. 设0>a ,则函数()a x x y -=的图象的大致形状是【 】(A ) (B ) (C ) (D )9. 已知函数()x f y =在()2,0上是增函数,函数()2+=x f y 是偶函数,则下列结论中正确的是【 】(A )()⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛<27251f f f (B )()⎪⎭⎫ ⎝⎛<<⎪⎭⎫⎝⎛27125f f f (C )()12527f f f <⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛ (D )()⎪⎭⎫ ⎝⎛<<⎪⎭⎫⎝⎛25127f f f 10. 已知函数()⎪⎩⎪⎨⎧>≤---=1,1,52x xa x ax x x f 是R 上的增函数,则实数a 的取值范围是【 】(A )3-≤0<a (B )3-≤a ≤2- (C )a ≤2- (D )0<a11. 定义一种运算⎩⎨⎧>≤=⊗ba b ba ab a ,,,令()()t x x x x f -⊗-+=223(t 为常数),且[]3,3-∈x ,则使函数()x f 的最大值为3的t 的集合是【 】 (A ){}3,3- (B ){}5,1- (C ){}1,3- (D ){}5,3- 12. 已知函数()35335+---=x x x x f ,若()()62>-+a f a f ,则a 的取值范围是【 】(A )()1,∞- (B )()3,∞- (C )()+∞,1 (D )()+∞,3第Ⅱ卷 非选择题(共90分)二、填空题(每小题5分,共20分) 13. 函数()211-++=x x x f 的定义域是__________. 14. 已知集合(){}(){}4,,2,=-==+=y x y x N y x y x M ,那么=N M __________.15. 已知定义在R 上的函数()322--=x x x f ,设()()()⎩⎨⎧>≤=0,0,x x f x x f x g ,若函数()t x g y -=与x 轴有且只有三个交点,则实数t 的取值范围是____________. 16. 设关于x 的不等式012<--ax ax 的解集为S ,且S S ∉∈3,2,则a 的取值范围是__________.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)已知{}{}121,42-≤≤+-=≤≤=m x m x B x x A . (1)若2=m ,求 A B A ,C R B ; (2)若∅=B A ,求m 的取值范围.18.(本题满分12分) 已知函数()x mx x f +=,且()21=f . (1)判断函数()x f 的奇偶性;(2)判断函数()x f 在()+∞,1上的单调性,并用定义证明你的结论.19.(本题满分12分)已知函数()ax x x f +-=22(∈x R )有最小值. (1)求实数a 的取值范围;(2)设()x g 为定义在R 上的奇函数,且当0<x 时,()()x f x g =,求()x g 的解析式.20.(本题满分12分)已知二次函数()12++=bx ax x f (0≠a )和()bx a bx x g 212+-=. (1)若()x f 为偶函数,试判断()x g 的奇偶性;(2)若方程()x x g =有两个不相等的实数根,当0>a 时,判断()x f 在()1,1-上的单调性;(3)当a b 2=时,问是否存在x 的值,使满足1-≤a ≤1且0≠a 的任意实数a ,不等式()4<x f 恒成立?并说明理由.21.(本题满分12分)某工厂某种航空产品的年固定成本为250万元,每生产x 件,需另投入成本为()x C ,当年产量不足80件时,()x x x C 10312+=(万元);当年产量不小于80件时,()14501000051-+=xx x C (万元).每件商品售价为50万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润()x L (万元)关于年产量x (件)的函数解析式; (2)年产量为多少件时,该厂在这一商品的生产中所获利润最大?22.(本题满分12分)已知函数()cx bax x f ++=2(∈a N *,∈b R ,c <0≤1)是定义在[]1,1-上的奇函数,()x f 的最大值为21.(1)求函数()x f 的解析式;(2)若关于x 方程()0log 2=-m x f 在⎥⎦⎤⎢⎣⎡1,21上有解,求实数m 的取值范围.。
高一年级数学第一次月考试卷(word文档)
高一年级数学第一次月考试卷【一】第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2016•菏泽市高一检测)以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于导学号09024213(A)A.2πB.πC.2D.1[解析]所得旋转体是底面半径为1,高为1的圆柱,其侧面积S 侧=2πRh=2π×1×1=2π.2.设球内切于圆柱,则此圆柱的全面积与球表面积之比是导学号09024214(C)A.1︰1B.2︰1C.3︰2D.4︰3[解析]∵圆柱的底面直径与高都等于球的直径,设球的直径为2R,则圆柱全面积S1=2πR2+2πR•2R=6πR2,球表面积S2=4πR2,∴S1S2=32.3.已知一个底面是菱形、侧面是矩形的四棱柱,侧棱长为5,菱形的对角线的长分别是9和15,则这个棱柱的侧面积是导学号09024215(A)A.3034B.6034C.3034+135D.135[解析]由菱形的对角线长分别是9和15,得菱形的边长为92 2+1522=3234,则这个菱柱的侧面积为4×3234×5=3034.4.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,则V1︰V2=导学号09024216(D)A.1︰3B.1︰1C.2︰1D.3︰1[解析]V1︰V2=(Sh)︰(13Sh)=3︰1.5.(2016•寿光现代中学高一月考)若两个球的表面积之比为1︰4,则这两个球的体积之比为导学号09024217(C)A.1︰2B.1︰4C.1︰8D.1︰16[解析]设两个球的半径分别为r1、r2,∴S1=4πr21,S2=4πr22.∴S1S2=r21r22=14,∴r1r2=12.∴V1V2=43πr3143πr32=(r1r2)3=18.6.如图,△O′A′B′是水平放置的△OAB的直观图,则△OAB的面积为导学号09024218(D)A.6B.32C.62D.12[解析]△OAB是直角三角形,OA=6,OB=4,∠AOB=90°,∴S△OAB=12×6×4=12.7.(2017•北京文,6)某三棱锥的三视图如图所示,则该三棱锥的体积为导学号09024219(D)A.60B.30C.20D.10[解析]由三视图画出如图所示的三棱锥P-ACD,过点P作PB⊥平面ACD于点B,连接BA,BD,BC,根据三视图可知底面ABCD是矩形,AD=5,CD=3,PB=4,所以V三棱锥P-ACD=13×12×3×5×4=10.故选D.8.若一圆柱与圆锥的高相等,且轴截面面积也相等,那么圆柱与圆锥的体积之比为导学号09024220(D)A.1B.12C.32D.34[解析]设圆柱与圆锥的底半径分别为R,r,高都是h,由题设,2R•h=12×2r•h,∴r=2R,V柱=πR2h,V锥=13πr2h=43πR2h,∴V柱V锥=34,选D.9.半径为R的半圆卷成一个圆锥,则它的体积为导学号09024221(A)A.324πR3B.38πR3C.525πR3D.58πR3[解析]依题意,得圆锥的底面周长为πR,母线长为R,则底面半径为R2,高为32R,所以圆锥的体积为13×π×(R2)2×32R=324πR3.10.(2015•全国卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有导学号09024222(B) A.14斛B.22斛C.36斛D.66斛[解析]设圆锥底面半径为r,则14×2×3r=8,∴r=163,所以米堆的体积为14×13×3×(163)2×5=3209,故堆放的米约为3209÷1.62≈22,故选B.11.已知底面为正三角形,侧面为矩形的三棱柱有一个半径为3cm 的内切球,则此棱柱的体积是导学号09024223(B)A.93cm3B.54cm3C.27cm3D.183cm3[解析]由题意知棱柱的高为23cm,底面正三角形的内切圆的半径为3cm,∴底面正三角形的边长为6cm,正三棱柱的底面面积为93cm2,∴此三棱柱的体积V=93×23=54(cm3).12.(2016•山东,文)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为导学号09024224(C)A.13+23πB.13+23πC.13+26πD.1+26π[解析]根据三视图可知,四棱锥的底面是边长为1的正方形、高是1,半球的半径为22,所以该几何体的体积为13×1×1×1+12×43π(22)3=13+26π.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.如图是△AOB用斜二测画法画出的直观图,则△AOB的面积是__16__.导学号09024225[解析]在△AOB中,OB=4,高为8,则面积S=12×4×8=16.14.圆柱的高是8cm,表面积是130πcm2,则它的底面圆的半径等于__5__cm.导学号09024226[解析]设底面圆的半径为r,由题意得2πrh+2πr2=130π,即r2+8r-65=0,解得r=5.15.棱锥的高为16,底面积为512,平行于底面的截面面积为50,则截得的棱台的高为__11__.导学号09024227[解析]设棱台的高为x,则有(16-x16)2=50512,解之,得x=11.16.(2017•山东理,13)由一个长方体和两个14圆柱体构成的几何体的三视图如下,则该几何体的体积为__2+π2__.导学号09024228[解析]该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,∴V=2×1×1+2×14×π×12×1=2+π2.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1︰4,母线长为10cm.求圆锥的母线长.导学号09024229[解析]如图,设圆锥母线长为l,则l-10l=14,所以l=403cm.18.(本小题满分12分)如图所示,四棱锥V-ABCD的底面为边长等于2cm的正方形,顶点V与底面正方形中心的连线为棱锥的高,侧棱长VC=4cm,求这个四棱锥的体积.导学号09024230[解析]如图,连接AC、BD相交于点O,连接VO,∵AB=BC=2cm,在正方形ABCD中,求得CO=2cm,又在直角三角形VOC中,求得VO=14cm,∴VV-ABCD=13SABCD•VO=13×4×14=4143(cm3).故这个四棱锥的体积为4143cm3.19.(本小题满分12分)如下图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了,会溢出杯子吗?请用你的计算数据说明理由.导学号09024231[解析]因为V半球=12×43πR3=12×43×π×43≈134(cm3),V圆锥=13πr2h=13π×42×12≈201(cm3),134<201,所以V半球所以,冰淇淋融化了,不会溢出杯子.20.(本小题满分12分)已知某几何体的侧视图与其正视图相同,相关的尺寸如图所示,求这个几何体的体积.导学号09024232 [解析]由三视图可知,该几何体是大圆柱内挖掉了小圆柱,两个圆柱高均为1,底面是半径为2和32的同心圆,故该几何体的体积为4π×1-π(32)2×1=7π4.21.(本小题满分12分)据说伟大的阿基米德逝世后,敌军将领马塞拉斯给他建了一块墓碑,在墓碑上刻了一个如图所示的图案,图案中球的直径与圆柱底面的直径和圆柱的高相等,圆锥的顶点为圆柱上底面的圆心,圆锥的底面是圆柱的下底面.试计算出图案中圆锥、球、圆柱的体积比.导学号09024233[解析]设圆柱的底面半径为r,高为h,则V圆柱=πr2h.由题意知圆锥的底面半径为r,高为h,球的半径为r,∴V圆锥=13πr2h,∴V球=43πr3.又h=2r,∴V圆锥︰V球︰V圆柱=(13πr2h)︰(43πr3)︰(πr2h)=(23πr3)︰(43πr3)︰(2πr3)=1︰2︰3.22.(本小题满分12分)如图所示,有一块扇形铁皮OAB,∠AOB =60°,OA=72cm,要剪下来一个扇形环ABCD,作圆台形容器的侧面,并且余下的扇形OCD内剪下一块与其相切的圆形使它恰好作圆台形容器的下底面(大底面).导学号09024234试求:(1)AD的长;(2)容器的容积.[解析](1)设圆台上、下底面半径分别为r、R,AD=x,则OD=72-x,由题意得2πR=60•π180×7272-x=3R,∴R=12x=36.即AD应取36cm.(2)∵2πr=π3•OD=π3•36,∴r=6cm,圆台的高h=x2-R-r2=362-12-62=635.∴V=13πh(R2+Rr+r2)=13π•635•(122+12×6+62)=50435π(cm3).【二】第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线l1∥l2,在l1上取3个点,在l2上取2个点,由这5个点能确定平面的个数为导学号09024609(D)A.5B.4C.9D.1[解析]由经过两条平行直线有且只有一个平面可知分别在两平行直线上的5个点只能确定一个平面.2.教室内有一直尺,无论怎样放置,在地面总有这样的直线,使得它与直尺所在直线导学号09024610(B)A.平行B.垂直C.相交D.异面[解析]当直尺垂直于地面时,A不对;当直尺平行于地面时,C 不对;当直尺位于地面上时,D不对.3.已知m、n是两条不同直线,α、β是两个不同平面,则下列命题正确的是导学号09024611(D)A.若α、β垂直于同一平面,则α与β平行B.若m、n平行于同一平面,则m与n平行C.若α、β不平行,则在α内不存在与β平行的直线D.若m、n不平行,则m与n不可能垂直于同一平面[解析]A项,α、β可能相交,故错误;B项,直线m、n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m、n垂直于同一平面,则必有m∥n,所以原命题正确,故D项正确.4.(2016~2017•枣庄高一检测)△ABC所在的平面为α,直线l⊥AB,l⊥AC,直线m⊥BC,m⊥AC,则直线l,m的位置关系是导学号09024612(B)A.相交B.平行C.异面D.不确定[解析]l⊥ABl⊥ACAB∩AC=A⇒l⊥平面ABCm⊥BCm⊥ACAC∩BC=C⇒m⊥平面ABCl∥m5.已知α、β是两个平面,直线l⊄α,l⊄β,若以①l⊥α;②l∥β;③α⊥β中两个为条件,另一个为结论构成三个命题,则其中正确的命题有导学号09024613(A)A.①③⇒②;①②⇒③B.①③⇒②;②③⇒①C.①②⇒③;②③⇒①D.①③⇒②;①②⇒③;②③⇒①[解析]因为α⊥β,所以在β内找到一条直线m,使m⊥α,又因为l⊥α,所以l∥m.又因为l⊄β,所以l∥β,即①③⇒②;因为l∥β,所以过l可作一平面γ∩β=n,所以l∥n,又因为l⊥α,所以n⊥α,又因为n⊂β,所以α⊥β,即①②⇒③.6.设直线l⊂平面α,过平面α外一点A与l,α都成30°角的直线有导学号09024614(B)A.1条B.2条C.3条D.4条[解析]如图,和α成30°角的直线一定是以A为顶点的圆锥的母线所在直线,当∠ABC=∠ACB=30°且BC∥l时,直线AC,AB都满足条件,故选B.7.(2016~2017•浙江文)已知互相垂直的平面α、β交于直线l.若直线m、n满足m∥α,n⊥β,则导学号09024615(C) A.m∥lB.m∥nC.n⊥lD.m⊥n[解析]选项A,只有当m∥β或m⊂β时,m∥l;选项B,只有当m⊥β时,m∥n;选项C,由于l⊂β,∴n⊥l;选项D,只有当m∥β或m⊂β时,m⊥n,故选C.8.(2016•南安一中高一检测)如图,在正方体ABCD-A1B1C1D1中,M、N分别为棱BC和棱CC1的中点,则异面直线AC与MN所成的角为导学号09024616(C)A.30°B.45°C.60°D.90°[解析]如图,连接A1C1、BC1、A1B.∵M、N分别为棱BC和棱CC1的中点,∴MN∥BC1.又A1C1∥AC,∴∠A1C1B为异面直线AC与MN所成的角.∵△A1BC1为正三角形,∴∠A1C1B=60°.故选C.9.等腰Rt△ABC中,AB=BC=1,M为AC的中点,沿BM把它折成二面角,折后A与C的距离为1,则二面角C-BM-A的大小为导学号09024617(C)A.30°B.60°C.90°D.120°[解析]如图,由A′B=BC=1,∠A′BC=90°知A′C=2.∵M为A′C的中点,∴MC=AM=22,且CM⊥BM,AM⊥BM,∴∠CMA为二面角C-BM-A的平面角.∵AC=1,MC=MA=22,∴MC2+MA2=AC2,∴∠CMA=90°,故选C.10.点P在正方体侧面BCC1B1及其边界上运动,并且保持AP⊥BD1,则点P的轨迹为导学号09024618(A)A.线段B1CB.BB1的中点与CC1的中点连成的线段C.线段BC1D.BC的中点与B1C1的中点连成的线段[解析]∵AP⊥BD1恒成立,∴要保证AP所在的平面始终垂直于BD1.∵AC⊥BD1,AB1⊥BD1,AC∩AB1=A,∴BD1⊥面AB1C,∴P点在线段B1C上运动.11.如图,α⊥β,α∩β=l,A∈α,B∈β,A、B到l的距离分别是a和b,AB与α、β所成的角分别是θ和φ,AB在α、β内的射影长分别是m和n,若a>b,则导学号09024619(D) A.θ>φ,m>nB.θ>φ,m<nC.θ<φ,m<nD.θ<φ,m>n[解析]由勾股定理得a2+n2=b2+m2=AB2.又a>b,∴m>n.由已知得sinθ=bAB,sinφ=aAB,而a>b,∴sinθ<sinφ,又θ,φ∈(0,π2),∴θ<φ.12.如图,在三棱柱ABC-A′B′C′中,点E、F、H、K分别为AC′、CB′、A′B、B′C′的中点,G为△ABC的重心,从K、H、G、B′中取一点作为P,使得该三棱柱恰有2条棱与平面PEF平行,则点P为导学号09024620(C)A.KB.HC.GD.B′[解析]应用验证法:选G点为P时,EF∥A′B′且EF∥AB,此时恰有A′B′和AB平行于平面PEF,故选C.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.空间四边形ABCD中,平面ABD⊥平面BCD,且DA⊥平面ABC,则△ABC的形状是__直角三角形__.导学号09024621[解析]如图,过点A作AE⊥BD,E为垂足.∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,∴AE⊥平面BCD,∴AE⊥BC.又∵DA⊥平面ABC,∴DA⊥BC.又∵AE∩DA=A,∴BC⊥平面ABD,∴BC⊥AB.∴△ABC为直角三角形.14.如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是棱AA1和AB上的点,若∠B1MN是直角,则∠C1MN等于__90°__.导学号09024622[解析]因为C1B1⊥平面ABB1A1,MN⊂平面ABB1A1,所以C1B1⊥MN.又因为MN⊥MB1,MB1,C1B1⊂平面C1MB1,MB1∩C1B1=B1,所以MN⊥平面C1MB1,所以MN⊥C1M,所以∠C1MN=90°.15.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足__DM⊥PC(或BM⊥PC)__时,平面MBD⊥平面PCD(只要填写一个你认为是正确的条件即可).导学号09024623[解析]连接AC,则BD⊥AC,由PA⊥底面ABCD,可知BD⊥PA,∴BD⊥平面PAC,∴BD⊥PC.故当DM⊥PC(或BM⊥PC)时,平面MBD⊥平面PCD.16.(2017•全国卷Ⅰ文,16)已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为__36π__.导学号09024624[解析]如图,连接OA,OB.由SA=AC,SB=BC,SC为球O的直径,知OA⊥SC,OB⊥SC.由平面SCA⊥平面SCB,平面SCA∩平面SCB=SC,OA⊥SC,知OA⊥平面SCB.设球O的半径为r,则OA=OB=r,SC=2r,∴三棱锥S-ABC的体积V=13×(12SC•OB)•OA=r33,即r33=9,∴r=3,∴S球表=4πr2=36π.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)(2017•山东文,18)由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.导学号09024625(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.[解析](1)证明:取B1D1的中点O1,连接CO1,A1O1,由于ABCD-A1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1C,又O1C⊂平面B1CD1,A1O⊄平面B1CD1,所以A1O∥平面B1CD1.(2)证明:因为AC⊥BD,E,M分别为AD和OD的中点,所以EM⊥BD.又A1E⊥平面ABCD,BD⊂平面ABCD,所以A1E⊥BD,因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1.又A1E,EM⊂平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM.又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.18.(本小题满分12分)(2016~2017•宁波高二检测)如图,已知四棱锥P-ABCD,底面四边形ABCD为菱形,AB=2,BD=23,M,N分别是线段PA,PC的中点.导学号09024626(1)求证:MN∥平面ABCD;(2)求异面直线MN与BC所成角的大小.[解析](1)连接AC,交BD于点O.因为M,N分别是PA,PC的中点,所以MN∥AC.因为MN⊄平面ABCD,AC⊂平面ABCD,所以MN∥平面ABCD.(2)由(1)知MN∥AC,∴∠ACB为异面直线MN与BC所成的角.∵四边形ABCD为菱形,边长AB=2,对角线长BD=23,∴△BOC为直角三角形,且sin∠ACB=BOBC=32,∴∠ACB=60°.即异面直线MN与BC所成的角为60°.19.(本小题满分12分)(2017•北京文,18)如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.导学号09024627(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E-BCD的体积.[解析](1)证明:因为PA⊥AB,PA⊥BC,所以PA⊥平面ABC.又因为BD⊂平面ABC,所以PA⊥BD.(2)证明:因为AB=BC,D为AC的中点,所以BD⊥AC.由(1)知,PA⊥BD,所以BD⊥平面PAC,所以平面BDE⊥平面PAC.(3)解:因为PA∥平面BDE,平面PAC∩平面BDE=DE,所以PA∥DE.因为D为AC的中点,所以DE=12PA=1,BD=DC=2.由(1)知,PA⊥平面ABC,所以DE⊥平面ABC,所以三棱锥E-BCD的体积V=16BD•DC•DE=13.20.(本小题满分12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.导学号09024628(1)请按字母F、G、H标记在正方体相应地顶点处(不需要说明理由);(2)判断平面BEG与平面ACH的位置关系.并说明你的结论;(3)证明:直线DF⊥平面BEG.[解析](1)点F、G、H的位置如图所示.(2)平面BEC∥平面ACH.证明如下:因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG,又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是四边形BCEH为平行四边形,所以BE∥CH,又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH,同理,BG∥平面ACH,又BE∩BG=B,所以平面BEG∥平面ACH.(3)连接FH交EG于点O,连接BD.因为ABCD-EFGH为正方体,所以DH⊥平面EFGH,因为EG⊂平面EFGH,所以DH⊥EG,又EG⊥FH,EG∩FH=O,所以EG⊥平面BFHD,又DF⊂平面BFHD,所以DF⊥EG,同理DF⊥BG,又EG∩BG=G,所以DF⊥平面BEG.21.(本小题满分12分)(2017•天津文,17)如图,在四棱锥P-ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD =2.导学号09024629(1)求异面直线AP与BC所成角的余弦值;(2)求证:PD⊥平面PBC;(3)求直线AB与平面PBC所成角的正弦值.[解析](1)解:如图,由已知AD∥BC,故∠D AP或其补角即为异面直线AP与BC所成的角.因为AD⊥平面PDC,直线PD⊂平面PDC,所以AD⊥PD.在Rt△PDA中,由已知,得AP=AD2+PD2=5,故cos∠DAP=ADAP=55.所以,异面直线AP与BC所成角的余弦值为55.(2)证明:由(1)知AD⊥PD.又因为BC∥AD,所以PD⊥BC.又PD⊥PB,PB∩BC=B,所以PD⊥平面PBC.(3)解:过点D作DF∥AB,交BC于点F,连接PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.因为PD⊥平面PBC,所以PF为DF在平面PBC上的射影,所以∠DFP为直线DF和平面PBC所成的角.由于AD∥BC,DF∥AB,故BF=AD=1.由已知,得CF=BC-BF=2.又AD⊥DC,所以BC⊥DC.在Rt△DCF中,可得DF=CD2+CF2=25,在Rt△DPF中,可得sin∠DFP=PDDF=55.所以,直线AB与平面PBC所成角的正弦值为55.22.(本小题满分12分)(2016~2017•济宁高一检测)四棱锥P-ABCD的底面ABCD是正方形,E,F分别为AC和PB上的点,它的直观图,正视图,侧视图.如图所示.导学号09024630(1)求EF与平面ABCD所成角的大小;(2)求二面角B-PA-C的大小.[解析]根据三视图可知:PA垂直于平面ABCD,点E,F分别为AC 和PB的中点,ABCD是边长为4的正方形,且PA=4.(1)如图,取AB中点G,连接FG,GE,则FG∥PA,GE∥BC,所以FG⊥平面ABCD,∠FEG为EF与平面ABCD所成的角,在Rt△FGE中,FG=2,GE=2,所以∠FEG=45°.(2)因为PA⊥平面ABCD,所以PA⊥BA,PA⊥CA,所以∠BAC为二面角B-PA-C的平面角.又因为∠BAC=45°,所以二面角B-AP-C的平面角的大小为45°.。
最新人教版高一数学第一学期第一次月考试卷及答案
第一学期第一次月考高一数学试卷一、选择题(本大题共12小题,每小题5分) 1.下列表示图形中的阴影部分的是( )A .()()A CBC B .()()A B A C C .()()A B B CD .()A B C 2.下列判断正确的是( )A .函数22)(2--=x xx x f 是奇函数 B.函数()(1f x x =-C.函数()f x x = D .函数1)(=x f 既是奇函数又是偶函数3、44等于( )A 、168 424.设(f A .5.函数6.如果奇函数)(x f 在区间[3,7] 上是增函数且最大值为5,那么)(x f 在区间[]3,7--上是( )A C 7.已知A .ABC8.已知p >q >1,0<a <1,则下列各式中正确的是 ( )A .q p a a >B .aa q p > C .q p a a --> D .a aq p-->9.已知5)2(22+-+=x a x y 在区间(4,)+∞上是增函数,则a 的范围是( )A.2a ≤-B.2a ≥-C.6-≥aD.6-≤a10.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a fB .)23(-f <)252(2++a a fC .)23(-f ≥)252(2++a a fD .)23(-f ≤)252(2++a a f11.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则0)(>⋅x f x 的解集是( )A .{}|303x x x -<<>或B .{}|303x x x <-<<或 C .{}|33x x x <->或 D .{}|3003x x x -<<<<或 12.函数)11()(+--=x x x x f 是( )A .是奇函数又是减函数B .是奇函数但不是减函数C .是减函数但不是奇函数D .不是奇函数也不是减函数 二、填空题(本大题共4小题,每小题5分)13.若函数2()(2)(1)3f x k x k x =-+-+是偶函数,则)(x f 的递减区间是 . 14.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2-+=x x x f ,那么0x <时,()f x = .15.设奇函数)(x f 的定义域为[]5,5-,若当[0,5]x ∈时,)(x f 的图象如右图,则不等式x ·()0f x <的解集是16.下列四个命题(1)()21f x x x =-+-有意义;(2)函数是其定义域到值域的映射; (3)函数2()y x x N =∈的图象是一直线;(4)函数22,0,0x x y x x ⎧≥⎪=⎨-<⎪⎩的图象是抛物线。
高一数学学期第一次月考试卷(附答案)
高一数学学期第一次月考试卷(附答案)选择题1. 下列哪一个选项不是数学中常用的数集?A. 自然数集B. 实数集C. 正整数集D. 有理数集答案:C2. 若集合A = {1, 2, 3},集合B = {2, 3, 4},则A ∩ B = ?A. {2, 3}B. {1, 2, 3}C. {2, 3, 4}D. {4}答案:A3. 简化:$3 \times a \times 5$答案:$15a$填空题1. 若 $\frac{5}{6} x - \frac{1}{4} = \frac{3}{5} x - \frac{1}{2}$,则x = ?答案:$\frac{9}{20}$2. 若函数 $f(x) = ax^2 + bx - c$ 的图像开口朝上,且在x = 2处有最小值-3,则a = ?, b = ?, c = ?答案:a = 1, b = -8, c = -13解答题1. 解方程 $\frac{3}{5} (2x - 1) = \frac{1}{3} (4 - x)$解答:首先两边同时乘以15消去分数,得到:$9(2x - 1) = 5(4 - x)$ 进行分配和合并:$18x - 9 = 20 - 5x$移项:$23x = 29$最后得到解答:$x = \frac{29}{23}$2. 若正方形ABCD的边长为3cm,点E为AB边的中点,连线DE与BC交于点F,求线段DF的长度。
解答:由于ABCD是正方形,所以AD平行于BC。
由于E是AB边上的中点,所以AE = EB = 1.5cm。
由三角形相似性质可知,$\frac{AE}{AD} = \frac{DF}{DC}$。
将已知值代入,得到:$\frac{1.5}{3} = \frac{DF}{3}$化简得到:$DF = 1.5$cm以上为高一数学学期第一次月考试卷及答案。
高一上学期第一次月考数学试卷(附带答案)
高一上学期第一次月考数学试卷(附带答案)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.单选题。
(本题共8小题,共40分,每小题只有一个正确选项。
)1.直线√3x -y +2=0的倾斜角是( )A.150°B.120°C.60°D.30°2.过点P (﹣2,m )和Q (m ,4)的直线斜率等于1,那么m 的值等于( )A.1或3B.1C.4D.1或43.直线l 经过直线x -2y+4=0和直线x + y -2=0的交点,且与直线x+3y+5=0垂直,则直线l 的方程为( )A.3x -y+2=0B.3x+y+2=0C.x -3y+2=0D.x+3y+2=04.已知直线l 1:mx+y -1=0,l 2:(4m -3)x+my -1=0,若l 1⊥l 2,则实数m 的值为( )A.0B.12C.2D.0或125.对于圆C :x 2+y 2-4x+1=0,下列说法正确的是( )A.点4(1,﹣1)在圆C 的内部B.圆C 的圆心为(﹣2,0)C.圆C 的半径为3D.圆C 与直线y=3相切6.在平面直角坐标系xOy 中,以点(0,1)为圆心且与直线x -y -1=0相切的圆的标准方程为( )A.(x -1)2+y 2=4B.(x -1)2+y 2=1C.x 2+(y -1)2=√2D.x 2+(y -1)2=27.已知直线l 1:x+2y+t 2=0,l 2:2x+4y+2t -3=0,则当l 1与l 2间的距离最短时,求实数t 的值为( )A.1B.12C.13D.28.已知点A(2,﹣3),B(﹣3,﹣2),若直线l:mx+y -m -1=0与线段AB 相交,则实数m 的取值范围是( )A.[﹣34,4]B.[15,+∞)C.(﹣∞,﹣34]∪[4,+∞)D.[﹣4,34]二.多选题.(每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,错选的得0分。
高一上学期第一次月考数学试卷
高一数学上学期第一次月考试题第I卷(选择题)一、单选题(本大题共8小题,共40.0分)1.若A、B是全集I的真子集,则下列四个命题:①A∩B=A;,是x∈A的必要不充分条件.其中与命题A⊆B等价的有()A. 1个B. 2个C. 3个D. 4个2.命题“∃x∈R,x2+2x+2<0”的否定是()A. ∃x∈R,x2+2x+2≥0B. ∃x∈R,x2+2x+2>0C. ∀x∈R,x2+2x+2≥0D. ∀x∉R,x2+2x+2>03.已知t>0,则y=t2−4t+1t的最小值为()A. −2B. 12C. 1D. 24.设a∈R,若关于x的不等式x2−ax+1≥0在1≤x≤2上有解,则()A. a≤2B. a≥2C. a≤52D. a≥525.已知非零实数a,b满足a>b,则下列不等式一定成立的是()A. a+b>0B. a2>b2C. 1a <1bD. a2+b2>2ab6.已知集合,B={x|3<x<22},且A∩B=A,则实数a的取值范围是()A. (−∞,9]B. (−∞,9)C. [2,9]D. (2,9)7.对于实数x,“|x|<1”是“x<1”的()条件A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要8.已知实数a>0,b>0,且9a+b=ab,若不等式a+b≥−x2+2x+18−m对任意实数x恒成立,则实数m的取值范围为()A. [3,+∞)B. (−∞,3]C. (−∞,6]D. [6,+∞)二、多选题(本大题共4小题,共20.0分)9.已知a>0,b>0,则下列说法不正确的有()A. 1a−b >1aB. 若a+b≥2,则ab≥1C. 若a+b≥2,则ab≤1D. a3+b3≥a2b+ab210.下列命题为真命题的是()A.B. a2=b2是a=b的必要不充分条件C. 集合{(x,y)|y=x2}与集合{y|y=x2}表示同一集合D. 设全集为R,若A⊆B,则∁R B⊆∁R A11.设集合M={x|x=6k+1,k∈Z},N={x|x=6k+4,k∈Z},P={x|x=3k−2,k∈Z},则下列说法中正确的是()A. M=N⫋PB. (M∪N)⫋PC. M∩N=⌀D. ∁P M=N12.给定数集M,若对于任意a,b∈M,有a+b∈M,且a−b∈M,则称集合M为闭集合,则下列说法中不正确的是()A. M={−4,−2,0,2,4)为闭集合B. 正整数集是闭集合C. M={n|n=3k,k∈Z)为闭集合D. 若集合A1,A2为闭集合,则A1∪A2也为闭集合第II卷(非选择题)三、单空题(本大题共2小题,共10.0分)13.已知不等式(a−3)x2+2(a−3)x−6<0对一切x∈R恒成立,则实数a的取值范围_______.14.已知集合A={x|x2−6x+8=0},B={x|mx−4=0},且B∩A=B,则实数m所取到的值构成的集合C=,则A∪C=.四、解答题(本大题共8小题,共96.0分)15.在①A∩B=A,②A∩(∁R B)=A,③A∩B=⌀这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合A={x|a−1<x<2a+3},B={x|x2−2x−8≤0}.(1)当a=2时,求A∪B;(2)若_______________,求实数a的取值范围.注:如果选择多个条件分别解答按第一个解答计分.16.已知集合A={x|0<ax+1≤5},集合B={x|−1<x≤2}.2(1)若A⊆B,求实数a的取值范围;(2)若B⊆A,求实数a的取值范围;(3)A、B能否相等?若能,求出a的值;若不能,试说明理由.17.设全集为实数集R,A={x|−1≤x<4},B={x|−5<x<2},C={x|1−2a<x<2a}.(1)若C=⌀,求实数a的取值范围;(2)若C≠⌀,且C⊆(A∩B),求实数a的取值范围.18.设y=mx2+(1−m)x+m−2.(1)若不等式y≥−2对一切实数x恒成立,求实数m的取值范围;(2)在(1)的条件下,求m2+2m+5的最小值;m+1(3)解关于x的不等式mx2+(1−m)x+m−2<m−1(m∈R).19.已知定义在R上的函数f(x)=x2+(x−2)a−3x+2(其中a∈R).(1)若关于x的不等式f(x)<0的解集为(−2,2),求实数a的值;(2)若不等式f(x)−x+3≥0对任意x>2恒成立,求a的取值范围.20.已知集合A={x|x2+2x−3<0},集合B={x||x+a|<1}.(1)若a=3,求A∩B和A∪B;(2)设命题p:x∈A,命题q:x∈B,若p是q成立的必要不充分条件,求实数a的取值范围.21.设集合A={|xx2+2x−3<0},集合B={|x−a−1<x<−a+1}.(1)若a=3,求A∪B和A∩B;(2)设命题p:x∈A,命题q:x∈∁R B,若q是p成立的必要不充分条件,求实数a的取值范围.22.已知m>0,n>0,关于x的不等式x2−mx−20<0的解集为{x|−2<x<n}.(1)求m,n的值;(2)正实数a,b满足na+mb=2,求15a +1b的最小值.答案和解析1.【答案】B【解析】【分析】本题主要考查了集合的包含关系的判断及应用,考查集合的基本运算,考查了Venn图的应用,属于中档题.根据集合的交集、并集、补集的定义结合Venn图判断集合间的关系,从而求出结论.【解答】解:由A⊆B得Venn图,①A∩B=A⇔A⊆B; ②A∪B=A⇔B⊆A; ③A∩(∁I B)=⌀⇔A⊆B; ④A∩B=I,与A、B是全集I的真子集矛盾,不可能存在;⑤x∈B是x∈A的必要不充分条件⇔A⫋B;故和命题A⊆B等价的有①③共2个,故选:B2.【答案】C【解析】【分析】本题考查存在量词命题的否定,属于基础题.根据存在量词命题的否定为全称量词命题,即可求出结果.【解答】解:因为存在量词命题的否定为全称量词命题, 所以命题“∃x ∈ R ,x 2+2x +2<0”的否定是: ∀x ∈ R ,x 2+2x +2≥0. 故选C .3.【答案】A【解析】 【分析】本题主要考查利用基本不等式求最值,属于基础题.对原式进行化简,利用基本不等式求最值即可,注意等号取得的条件. 【解答】 解:t >0,则 y =t 2−4t+1t=t +1t−4≥2√t ·1t−4=−2,当且仅当t =1t ,即t =1时,等号成立, 则y =t 2−4t+1t的最小值为−2.故选A .4.【答案】C【解析】 【分析】本题主要考查了含参一元二次不等式中参数的取值范围,属于中档题. 根据题意得不等式对应的二次函数f (x )=x 2−ax +1的图象开口向上,分别讨论三种情况即可.【解答】解:由题意得:二次函数f (x )=x 2−ax +1的图象开口向上, 当,满足题意,当{Δ>0f(1)≥0或 f(2)≥0,解得a <−2或2<a ≤52, 当,满足题意,综上所述:a⩽52.故选C.5.【答案】D【解析】【分析】本题考查不等关系,不等式性质,是基础题.通过给变量取特殊值,举反例来说明某个命题不正确,利用不等式性质证明命题正确即可.【解答】解:对于A,令a=−1,b=−2,故A错误,对于B,a2−b2=(a+b)(a−b),符号不确定,故B错误,对于C,令a=1,b=−2,故C错误,对于D,∵a>b,a2+b2−2ab=(a−b)2>0,∴a2+b2>2ab,故D正确.故选D.6.【答案】B【解析】【分析】本题考查了描述法、交集的定义及运算,子集的定义,分类讨论的思想,考查了计算能力.根据A∩B=A可得出A⊆B,从而可讨论A是否为空集:A=⌀时,a+1>3a−5;A≠⌀时,{a+1≤3a−5 a+1>33a−5<22,解出a的范围即可.【解答】解:∵A∩B=A,∴A⊆B,且A={x|a+1≤x≤3a−5},B={x|3<x<22},∴①A=⌀时,a+1>3a−5,解得a<3,满足题意;②A≠⌀时,{a+1≤3a−5 a+1>33a−5<22,解得3≤a<9,∴综上得,实数a的取值范围是(−∞,9).故选:B.7.【答案】A【解析】【分析】本题考查充分条件、必要条件的判断,要注意准确理解概念和方法,属于基础题.双向推理,即从左右互推进行判断即可得解.【解答】解:当|x|<1时,显然有x<1成立,但是由x<1,未必有|x|<1,如x=−2<1,但|x|>1,故“|x|<1”是“x<1”的充分不必要条件;故选:A.8.【答案】A【解析】【分析】本题考查恒成立问题,考查利用基本不等式求最值,训练了分离变量法求字母的取值问题,是中档题.利用基本不等式求得a+b的最小值,把问题转化为m≥f(x)恒成立的类型,求解f(x)的最大值即可.【解答】解:∵9a+b=ab,∴1a +9b=1,且a,b为正数,∴a+b=(a+b)(1a+9b)=10+ba+9ab⩾10+2√ba⋅9ab=16;当且仅当ba =9ab,即a=4, b=12时,(a+b)min=16;若不等式a+b≥−x2+2x+18−m对任意实数x恒成立,则16≥−x2+2x+18−m对任意实数x恒成立,即m≥−x2+2x+2对任意实数x恒成立,∵−x2+2x+2=−(x−1)2+3⩽3,∴m≥3,故选:A.9.【答案】ABC【解析】【分析】本题考查了不等式性质,灵活运用不等式的性质是解决本题的关键,属于中档题.由题意和不等式的性质,逐个选项验证即可.【解答】解:对于A,若a>0,b>0,且a<b,则a−b<0,则1a−b <1a,故选项A说法不正确;对于B,若a=1.9,b=0.1,则满足a+b≥2,而ab=0.19,不满足ab≥1,故选项B 说法不正确;对于C,若a=3,b=2,满足a+b⩾2,,而ab=6不满足ab≤1,故选项C说法不正确;对于D,已知a>0,b>0,则(a3+b3)−(a2b+ab2)=a3+b3−a2b−ab2=a2(a−b)+b2(b−a)=(a−b)(a2−b2)=(a+b)(a−b)2⩾0,当a=b时,等号成立,故选项D成立.故选ABC.10.【答案】ABD【解析】【分析】本题考查了真假命题的判定,必要条件、充分条件与充要条件的判断,考查了集合的相等,子集的定义,属于中档题.根据必要条件、充分条件与充要条件的判断、集合的相等及子集的定义逐项判断即可.【解答】解:对于A,当x=0时,x2⩽1,故A是真命题;对于B,当a2=b2时,则a=±b,当a=b时,则a2=b2,则a2=b2是a=b的必要不充分条件,故B是真命题;对于C,集合{(x,y)∣y=x2}与集合{y|y=x2}不表示同一集合,前者为点集,后者为数集,故C是假命题;对于D,根据子集定义,A⊆B时,集合A中元素,全都在集合B中,不在集合B中的元素一定不会在集合A中,当x∈∁R B时,就是x在集合R内,不在集合B中,故x一定不在集合A中,不在集合A中就一定在集合A的补集内,故x∈∁R A,D正确.故选ABD.11.【答案】CD【解析】【分析】本题主要考查了集合的含义、集合的交集、并集、补集运算、集合间的关系,属于中档题.根据集合的意义及集合运算分析解答.【解答】解:集合M表示所有被6除余数为1的整数,集合N表示所有被6除余数为4的整数,所以M不等于N,又因为被6除余数分为0,1,2,3,4,5六类,A选项错误,C选项正确;因为M∪N={x|x=6k+1,k∈Z}∪{x|x=6k+4,k∈Z}={x|x=6k+1或x=6k+4,k∈Z}所以M∪N={x|x=2k·3+1或x=(2k+1)·3+1,k∈Z}={x|x=3m+1,m∈Z},因为P={x|x=3k−2,k∈Z}={x|x=3(n+1)−2,n∈Z}={x|x=3n+1,n∈Z},所以M∪N=P,所以,所以B选项错误,D选项正确,故选CD.12.【答案】ABD【解析】【分析】本题考查集合中的新定义问题,考查分析问题、解决问题的能力,属于中档题.根据闭集合的定义,对选项进行逐一判断,可得出答案.【解答】解:A.当集合M={−4,−2,0,2,4}时,2,4∈M,而2+4∉M,所以集合M不为闭集合.B.设a,b是任意的两个正整数,当a<b时,a−b<0不是正整数,所以正整数集不为闭集合.C.当M={n|n=3k,k∈Z}时,设a=3k1,b=3k2,k1,k2∈Z,则a+b=3(k1+k2)∈M,a−b=3(k1−k2)∈M,k1,k2∈Z,所以集合M是闭集合.D.设A 1={n|n=3k,k∈Z},A2={n|n=2k,k∈Z}由C可知,集合A1,A2为闭集合,2,3∈A1∪A2,而2+3∉A1∪A2,此时A1∪A2不为闭集合.所以说法中不正确的是ABD故选ABD.13.【答案】(−3,3]【解析】解:由题意,a =3时,不等式等价于−6<0,显然恒成立。
高一上学期第一次月考数学试题(含答案解析)
高一上学期第一次月考数学试题(含答案解析)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、单选题(本大题共14小题,共56.0分。
在每小题列出的选项中,选出符合题目的一项)1. 设集合A={1,2,3,4},B={−1,0,2,3},C={x∈R|−1≤x<2},则(A∪B)∩C=( )A. {−1,1}B. {0,1}C. {−1,0,1}D. {2,3,4}2. 命题“∀x∈R,x2−2x+1≥0”的否定是( )A. ∃x∈R,x2−2x+1≤0B. ∃X∈R,x2−2x+1≥0C. ∃x∈R,x2−2x+1<0D. ∀x∈R,x2−2x+1<03. 已知集合A={x|−1≤x<4,x∈Z),则集合A中元素的个数为( )A. 3B. 4C. 5D. 64. 已知集合A={x||x|≥2},B={x|x2−3x>0},则A∩B=( )A. ⌀B. {x|x>3,或x≤−2}C. {x|x>3,或x<0}D. {x|x>3,或x≤2}5. 已知p:sinα=√33,q:cos2α=13,则p是q的( )A. 充分不必要条件B. 必要不充分条件C. 充分条件D. 既不充分也不必要条件6. 若M⊆U,N⊆U,且M⊆N,则( )A. M∩N=NB. M∪N=MC. ∁U N⊆∁U MD. ∁U M⊆∁U N7. 已知集合A={x|x<1},B={x|0≤x≤2},则A∩B=( )A. {x|0≤x<1}B. {x|1<x≤2}C. {x|x<1}D. {x|x≤2}8. 设b>a>0,c∈R,则下列不等式中不一定成立的是( )A. a12<b12B. 1a −c>1b−c C. a+2b+2>abD. ac2<bc29. 满足关系{1,2}⊆A⊆{1,2,3,4,5}的集合的个数是( )A. 4B. 6C. 8D. 910. 若关于x的不等式ax2+bx−1>0的解集是{x|1<x<2},则不等式bx2+ax−1<0的解集是( )A. {x|−1<x<23} B. {x|x<−1或x>23}C. {x|−23<x<1} D. {x|x<−23或x>1}11. 已知集合A={x|x2+x−6=0},B={x|mx+1=0},且B⊆A,则实数m=( )A. {0,12,−13} B. {−12,13} C. {12,−13} D. {0,−12,13}12. 使不等式1+1x>0成立的一个充分不必要条件是( )A. x>0B. x>−1C. x<−1或x>0D. −1<x<013. 已知命题“∃x∈R,4x2+(a−2)x+14<0”是假命题,则实数a的取值范围是( )A. (−∞,0)B. [0,4]C. [4,+∞)D. (0,4)14. 已知a,b∈R,a2+b2=15−ab,则ab最大值是( )A. 15B. 12C. 5D. 3第II卷(非选择题)二、填空题(本大题共6小题,共24.0分)15. 已知a∈R,b∈R,若集合{a,ba,1}={a2,a−b,0},则“a2017+b2018”的值为______.16. 当x<−1时,f(x)=x+1x+1的最大值为______.17. 已知集合A={0,1,2},则集合A的子集共有______个.18. 已知集合A={x|−1<x<2},B={x|−1<x<m+1},若x∈A是x∈B成立的一个充分不必要条件,则实数m的取值范围是______.19. 已知{x|ax2−ax+1<0}=⌀,则实数a的取值范围为.20. 已知正数x,y满足x+y=5,则1x+1+1y+2的最小值为______.三、解答题(本大题共4小题,共40.0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一年级数学第一学期第一次月考高一数学试题考试时间:120分钟 试卷满分:150分友情提醒:将所有答案填在答题纸中。
一、填空题:(本大题共14小题,每小题5分,共70分;要求答案为最简结果。
)1.若{1,2,3,4},{1,2},{2,3}U M N ===,则)(N M C U Y = ▲ .2. 已知集合}{21<<-=x x A ,集合}{13≤<-=x x B ,则B A I= ▲ .3.若函数 1 (0)()(2) (0)x x f x f x x +≥⎧=⎨+<⎩,则(2)f -=____▲______4.方程组⎩⎨⎧=-=+0231332y x y x 的解集可表示为 ▲5.不等式a x x <-++12的解集是空集,则a 的取值范围是 ▲ 6.已知)1(+x f 的定义域为[0,2],则)3()(+=x f x g 的定义域为 ▲ 7.集合A 、B 各有两个元素,A ⋂B 中有一个元素,若集合C 同时满足(1)C ⊆A ⋃B ,(2)C ⊇(A ⋂B ),则满足条件的C 的个数为 ▲8.设⎪⎪⎩⎪⎪⎨⎧<≥-=)0(1)0(121)(x xx x x f ,若a a f >)(,则实数a 的取值范围是 ▲9.已知2()1f x ax bx =++是偶函数,定义域为[]a a 2,1-,则b a +的值为 ▲10. 函数4)2(2)2()(2--+-=x a x a x f 的定义域为R,值域为(]0,∞-,则满足条件的实数a 组成的集合是 ▲ 11.定义两种运算:a b ⊕=a b ⊗2()(2)2xf x x ⊕=⊗-的奇偶性为 ▲12. 函数y=x x 22-的单调递增区间是 ▲ .13.试构造一个函数(),f x x D ∈,使得对一切x D ∈有|()||()|f x f x -=恒成立,但是()f x 既不是奇函数又不是偶函数,则()f x 可以是 ▲ .14.某同学在研究函数 xxx f +=1)((x R ∈) 时,分别给出下面几个结论: ①等式()()0f x f x -+=在x R ∈时恒成立; ②函数)(x f 的值域为 (-1,1); ③若21x x ≠,则一定有)()(21x f x f ≠;④方程x x f =)(在R 上有三个根. 其中正确结论的序号有 ▲ .(请将你认为正确的结论的序号都填上) 二、解答题:(本大题共6小题,第15、16题每小题12分,第17~20题每小题14分,共80分;解答时需写出计算过程或证明步骤。
) 15.判断下列函数的奇偶性:(1)11)(--+=x x x f (2)xxx x f -+-=11)1()(16.已知函数)(x f 是定义在R 上的奇函数,当0≥x 时, )(x f =)1(x x +,求函数)(x f 的 解析式17.请作出函数|56|2-+-=x x y 的图象,结合图象指出函数的单调区间,并求出函数在[]4,2-上函数的最值。
18.已知集合A=⎭⎬⎫⎩⎨⎧≥+-1312|x x x ,B={}0)2)((|≤-+a x a x x 。
(1)求集合A ;(2)若A ⋂B=Φ,求实数a 的取值范围xy19.已知函数32)(-+-=x a x x x f(1)当a=4,52≤≤x 时,问x 分别取何值时,函数)(x f y =取得最大值和最小值,并求相应的最大值和最小值;(2)求a 的取值范围,使得函数)(x f y =在R 上恒为增函数。
20.已知二次函数f(x)=ax 2+bx(a,b 为常数,且a ≠0)满足条件:f(x -1)=f(3-x)且方程f(x)=2x 有等根。
(1)求f(x)的解析式;(2)是否存在实数m,n (m<n ),使f(x)的定义域和值域分别为[m,n]和[4m,4n],如果存在,求出m,n 的值;如果不存在,说明理由。
江苏省启东中学2008~2009学年度第一学期第一次月考高一数学试题答题纸注意:请在各题规定的黑色矩形区域内答题,超出该区域的答案无效!高一数学试题参考答案1.{}42. {}11|≤<-x x3.14.{})3,2(5.3≤a6.[-2,0]7. 48.a<-19.3110.{}2- 11.奇函数 12.[2,+∞) 13.2 ||1() ||1x x f x x x ⎧≤=⎨>⎩等 14.①②③15.(1)奇;(2)非奇非偶 16. ⎝⎛<-≥+=)0)(1()0)(1()(x x x x x x x f17.单调增区间[1,3]和[)+∞,5;单调减区间 (]1,∞-和[3,5]当x=1时,min )(x f =0;当x=-2时,max )(x f =21。
18.(1)A=(∞-,-3)⋃[)+∞,4;(2)⎪⎭⎫⎢⎣⎡-2,23 19.解:(1) a=4时,324)(-+-=x x x x f 。
①42<≤x 时,32)4()(-+-=x x x x f =-(x-3)2+6, 当x=2时,min )(x f =5;当x=3时,max )(x f =6。
②54≤≤x 时,32)4()(-+-=x x x x f =-(x-1)2-4, 当x=4时,min )(x f =5;当x=5时,max )(x f =12综合①、②得,当x=2或4时,min )(x f =5;当x=5时,max )(x f =12。
(2)∵⎪⎩⎪⎨⎧<-++-≥--+=a x x a x a x x a x x f ,3)2(,3)2()(22=⎪⎪⎩⎪⎪⎨⎧<-+++--≥-----ax a a x a x a a x ,34)2()22(,34)2()22(2222∴使得函数)(x f y =在R 上恒为增函数有⎪⎪⎩⎪⎪⎨⎧≥+≤-a a a a 2222∴22≤≤-a20.解:(1)∵方程ax 2+bx -2x=0有等根,∴△=(b -2)2=0,得b=2。
由f(x -1)=f(3-x)知此函数图像的对称轴方程为x=-ab2=1, 得a=-1,故f(x)=-x 2+2x.(2)∵f(x)=-(x -1)2+1≤1,∴4n ≤1,即n ≤41. 而抛物线y=-x 2+2x 的对称轴为x=1,∴当n ≤41时,f(x)在[m,n]上为增函数。
若满足题设条件的m,n 存在,则⎩⎨⎧==nn f mm f 4)(4)(即⎪⎩⎪⎨⎧=+-=+-nn n m m m 424222⇒⎩⎨⎧-==-==2020n n m m 或或又m<n ≤41. ∴m=-2,n=0,这时,定义域为[-2,0],值域为[-8,0]。
由以上知满足条件的m,n 存在,m=-2,n=0.要求:将下面的内容当作“知识点”一样背下来。
1、做材料题的主要方法:1)由粗读到细读材料,要有耐心地慢读材料;2)根据对应的题的答题要求,找出关键词句,然后用笔圈上符号。
3)巧妙借用材料中的原句答题:即用好题中的“已知条件”;4)到选择题中看看有没有和本题有联系的现成的知识答案。
5)答题时,先思考此题用哪个知识点。
6)答题要分出1、2、3的序号。
确定序号的多少,请参照该题的分值来判定。
7)对于太难的材料题,也不能留成白卷。
方法是:将材料题的内容复述一遍。
2、答“启示”“认识”类的题,做到:1)至少答两点;2)必须用历史术语词句。
少用“认真学习,报效国家”类的套用句子,禁用口头语类句子。
3)把“已知条件”用完。
3、做选择题的难题的方法:1)对于文句长的选择题,要细读,并划出关键的词句。
2)用排除法选出候选答案,再根据题意,选出“最恰当”的选项为此题的答案。
1、一个正常的考试心态。
正所谓“考考考,老师的法宝,分分分,学生的命根”,很多学生都把分数看得相当重要,怕考砸了没办法跟父母交代,怕让父母失望。
所以很多学生都有考试焦虑症,考试的心态很大程度上能影响孩子的正常发挥,适当的紧张感能让学生注意力更集中,但过度的紧张感能阻碍学生思维,所以,首先得有个正常的考试心态,实在太紧张,不妨多深呼吸,或者试试“意识视野”,当人凝视一件物品时,原本视野中的其他杂物将会完全消失,便有助于集中意识和稳定情绪。
所以,当认为自己太过紧张无法集中精神在考卷上的时候,不如试试上述两种方法。
2、拿到试卷后,千万不要急着做题,把题目通读一遍,防止漏题的同时更要了解试卷的整体结构,看整份考卷的题数比例,我们对于已经掌握的范围会比较有信心,这也是先看题目的意义所在。
一些比较简单的题目只需要依一般的逻辑常识或者口算便可直接得出答案,从而可以节省许多作答时间。
3、学会标注记号。
现在很多考试都附有答题卡,学生可在做题时,把已经解决的题目、不会的题目、需要再思考的题目分别以不同的小记号用铅笔轻轻的做出记号,这样做的目的,是为了方便在做完自己有把握的题目的时候,能准确的找出自己接下来要思考的题目,既能节省时间,也能最大把握的争取多得分。