2018年高考理科数学(全国I卷)试题及答案
2018年高考理科数学(全国I卷)试题及答案
2018年普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。
)1、设z=,则∣z∣=()A.0B.12C.1D.√22、已知集合A={x|x2-x-2>0},则C R A =()A、{x|-1<x<2}B、{x|-1≤x≤2}C、{x|x<-1}∪{x|x>2}D、{x|x≤-1}∪{x|x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记Sn为等差数列{an}的前n项和,若3S3= S2+ S4,a1=2,则a5=()A、-12B、-10C、10D、125、设函数f(x)=x³+(a-1)x²+ax .若f(x)为奇函数,则曲线y= f(x)在点(0,0)处的切线方程为()建设前经济收入构成比例建设后经济收入构成比例6、在∆ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB→ =( ) A. 34 AB → - 14 AC → B. 14 AB → - 34 AC → C. 34 AB → + 14 AC → D. 14 AB → + 34 AC→7、某圆柱的高为2,底面周长为16,其三视图如右图。
圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A. 2√17B. 2√5C. 3D. 28.设抛物线C :y ²=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM → ·FN→ =( ) A.5 B.6 C.7 D.89.已知函数f (x )= g (x )=f (x )+x+a ,若g (x )存在2个零点,则a 的取值范围是( )A. [-1,0)B. [0,+∞)C. [-1,+∞)D. [1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形。
2018年高考理科数学(全国I卷)参考答案
设函数 g ( x)
1 x 2ln x ,由(1)知, g ( x) 在 (0, ) 单调递减,又 g (1) 0 ,从 x
而当 x (1, ) 时, g ( x) 0 . 所以
f ( x1 ) f ( x2 ) 1 x2 2ln x2 0 ,即 a 2. x2 x1 x2
2 18 (1)20 件产品中恰有 2 件不合格品的概率为 f ( p) C2 20 p (1 p) . 因此 2 f ( p) C p ( 1 p1 8 ) 20 [ 2 2 1 p 8 (p 1 1 7 ) 2]0 2 p 2C p(117 ). p (1 1 0 )
所以 DP 与平面 ABFD 所成角的正弦值为
3 . 4
19.解: (1)由已知得 F (1,0) , l 的方程为 x 1 . 由已知可得,点 A 的坐标为 (1, 所以 AM 的方程为 y
2 2 ). ) 或 (1, 2 2
2 2 x 2或 y x 2 . 2 2
(2)当 l 与 x 轴重合时, OMA OMB 0 . 当 l 与 x 轴垂直时,OM 为 AB 的垂直平分线,所以 OMA OMB . 当 l 与 x 轴不重合也不垂直时, 设 l 的方程为 y k ( x 1) (k 0) , B( x2 , y2 ) , A( x1 , y1 ) , 则 x1 2 , x2 2 ,直线 MA ,MB 的斜率之和为 kMA kMB 由 y1 kx1 k , y2 kx2 k 得
令 f ( p) 0 ,得 p 0.1 . 当 p (0,0.1) 时, f ( p) 0 ;当 p (0.1,1) 时, f ( p) 0 . 所以 f ( p) 的最大值点为 p0 0.1 . (2)由(1)知, p 0.1 . (ⅰ)令 Y 表示余下的 180 件产品中的不合格品件数,依题意知 Y
(完整word版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)
绝密★启用前2018年普通高等学校招生全国统一考试(全国卷I )理科数学注意事项:1 •答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2 •回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3 •考试结束后,将本试卷和答题卡一并交回。
、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1•设z 口2i,则|z|1 A • 0iB • 1C • 1D •222 •已知集合 A {x|x2x 20},则e R AA • {x| 1 x 2}B • {x| 1 w x w 2}C{x |x1} U{x|x2}D •{x|x w 1} U{x|x> 2}3•某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:連谀后经济收入构咸比制则下面结论中不正确的是A •新农村建设后,种植收入减少B •新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4•记S n 为等差数列{a n }的前n 项和.若3S 3 S 2 S 4, a i = 2,则=取值范围是 点,此点取自I ,n,川的概率分别记为 p 1, p 2, P 3,则A . 12B .5.设函数f (x)切线方程为10C . 10ax .若f(x)为奇函数,则y f (x)在点(0,0)处的A . y 2x C . y 2x6. 在△ ABC 3 uu A . AB43 uuC . 3 AB 4AD 中, 1 uuu-AC 4 1 uuu AC4 为BC 边上的中线,E 为AD 的中点,则1 uu -AB 4 1 un AB 4 D . y x uirEB3 uuu3AC43 uuu -AC 47. 某圆柱的高为 2,底面周长为16,其三视图如右图. 圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的 点N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到的路径中,最短路径的长度为A . 2.17 C . 3 &设抛物线C : y 2= 4x 的焦点为2F ,过点(-2,0)且斜率为2的直线与C 交于M , N3两点,则 uuir uuuFM ?FN9.已知函数 f(x)xe , In x, x w 0,x 0,g(x)f(x)若g(x)存在2 个零点,则a 的A . [ 1,0)10 .下图来自古希腊数学家希波克拉底所研究的几何图形 半圆的直径分别为直角三角形B . [0, [1, [1,)所围成的区域记为I,黑色部分记为n,其余部分记为川.此图由三个半圆构成,三个ABC 的斜边BC ,直角边 AB , AC . △ ABC 的三边.在整个图形中随机取一R C2A . P1 P2B . P1 P3C . P2 P3D . P1 P2 P3x11.已知双曲线C: —- y2 = 1 , O为坐标原点,F为C的右焦点,过F的直线与C的3两条渐近线的交点分别为M , N.若A OMN为直角三角形,则|MN =3 -A. B. 3 C. 2、3 D. 4212•已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为A.沁4B.2、3 3 2----- C . -------------------------3 4D.二2、填空题:本题共4小题, 每小题5分,共20分。
2018年高考全国一卷理科数学答案及解析(可编辑修改word版)
2018 年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有 12 小题,每小题 5 分,共 60 分。
1、设 z= ,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得z =( - i )+ 2i 【考点定位】复数= i ,所以|z|=12、已知集合 A={x|x 2-x-2>0},则 A =A 、{x|-1<x<2}B 、{x|-1 x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x2}【答案】B【解析】由题可得 C R A={x|x 2-x-2≤0},所以{x|-1 x2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上。
C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A【解析】由题可得新农村建设后,种植收入 37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前 n 项和,若 3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=( a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0 ; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数 f(x)=x3+(a-1)x2+ax,若 f(x)为奇函数,则曲线 y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有 f(x)+f(-x)=0 整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=A、- -B、- -C、- +D 、-【答案】A1【解析】AD 为 BC 边∴上的中线 AD= 2 1 AB +11 AC2 1 E 为 AD 的中点∴AE= AD = 21 AB + AC4 4 1 3 1EB=AB-AE= = AB -( 4 AB + AC )= 4AB - AC4 4 【考点定位】向量的加减法、线段的中点7、某圆柱的高为 2,底面周长为 16,其三视图如右图,圆柱表面上的点 M 在正视图上的对应点为 11A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到 N的路径中,最短路径的长度为A 、B 、C 、3D 、2 【答案】B1 【解析】将圆柱体的侧面从 A 点展开:注意到 B 点在 圆周处。
2018年高考全国1卷理科数学试题及答案详细解析(word版-精校版)
.
y ≤ 0,
14.记 Sn 为数列{an} 的前 n 项和. 若 Sn 2an 1 ,则 S6
.
15.从 2 位女生,4 位男生中选 3 人参加科技比赛,且至少有 1 位女生入选,则不同的
选法共有
种.(用数字填写答案)
16.已知函数 f (x) 2sin x sin 2x ,则 f (x) 的最小值是
12.已知正方体的棱长为1 ,每条棱所在直线与平面 所成的角都相等,则 截此正方
体所得截面面积的最大值为
A. 3 3 4
B. 2 3 3
C. 3 2 4
D. 3 2
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
x 2 y 2 ≤ 0,
13.若
x
,
y
满足约束条件
x
y
1≥
0,
则 z 3x 2y 的最大值为
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只
有一项是符合题目要求的。
1.设 z 1 i 2i ,则 | z | 1 i
A. 0
B. 1 2
C.1 D. 2
2.已知集合 A {x | x2 x 2 0} ,则 R A
ln x, x 0,
取值范围是
A. [1,0)
B. [0,)
C. [1, )
D.[1, )
10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个 半圆的直径分别为直角三角形 ABC 的斜边 BC,直角边 AB,AC.△ABC 的三边所围 成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点, 此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为 p1 , p2 , p3 ,则
2018高考全国1卷理科数学试卷及答案
2018高考全国1卷理科数学试卷及答案2018年普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题,本题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设 $z=\frac{1-i+2i}{1+i}$,则 $z=$A.0B.1C.1/2D.22.已知集合 $A=\{x|x-x-2>0\}$,则 $C_R A=$A。
$\{x|-1<x<2\}$B。
$\{x|-1\leq x\leq 2\}$C。
$\{x|x2\}$D。
$\{x|x\leq -1\}\cup\{x|x\geq 2\}$3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。
为更好地了解该地区农村的经济收入变化情况,统计和该地图新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记 $S_n$ 为等差数列 $\{a_n\}$ 的前 $n$ 项和,若$3S_3=S_2+S_4$,$a_1=2$,则 $a_5=$A。
$-12$B。
$-10$C。
10D。
125.设函数 $f(x)=x+(a-1)x+ax$,若 $f(-x)$ 为奇函数,则曲线 $y=f(x)$ 在点 $(3,32)$ 处的切线方程为A。
$y=-2x$B。
$y=-x$XXXD。
$y=x$6.在 $\triangle ABC$ 中,$AD$ 为 $BC$ 边上的中线,$E$ 为 $AD$ 的中点,则 $EB=\frac{1}{3}AB-\frac{1}{4}AC$A。
$\frac{3}{11}AB-\frac{8}{11}AC$B。
$\frac{4}{11}AB-\frac{7}{11}AC$C。
$\frac{7}{11}AB-\frac{4}{11}AC$D。
(完整版)2018年高考全国一卷理科数学答案及解析
2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。
1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上。
C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。
(完整)2018高考全国1卷理科数学试卷及答案,推荐文档
.
y0
14. 记 Sn 为数列 an的前 n 项和,若 Sn 2an 1,则 S6
.
15. 从 2 位女生,4 位男生中选 3 人参加科技比赛,且至少有 1 位女生入选,则不同的选法 共有
种.(用数字填写答案)
16. 已知函数 f x 2sin x sin 2x ,则 f x的最小值是
.
三、解答题:共 70 分,解答应写出文字说明、证明过程或演算步骤。第 17--21 题为必考 题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。 (一)必考题:共 60 分。
C. 3 AB 1 AC 44
B. 1 AB 3 AC 44
D. 1 AB 3 AC 44
A 7.某圆柱的高为 2,地面周长为 16,其三视图如右图,圆柱表面
B
上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左
视图上的对应点为 B ,则在此圆柱侧面上,从 M 到 N 的路径
中,最短路径的长度为
(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检 验?
21.(12 分)
已知函数 f x 1 x a ln x .
x
(1) 讨论 f x的单调性;
(2) 若
绝密★启用前
2018 年普通高等学校招生全国统一考试
(全国一卷)理科数学
1、选择题,本题共 12 小题,每小题 5 份,在每小题给出的四个选项中,只有一项是符合
题目要求的1。i 1. 设 z 2i ,则 z
1 i 1 A.0 B. C.1 D. 2 2
2. 已知集合 A x | x2 x 2 0 ,则CR A
则下面结论中不正确的是 A. 新农村建设后,种植收入减少 B. 新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
2018年高考理科数学(全国I卷)试题及详细答案
5、设函数 f ( x) =x3+( a-1 ) x2+ax . 若 f( x )为奇函数,则曲线 y= f ( x )在点( 0, 0)处的切线方 程为( ) B.y= -x C.y=2x D.y=x =( + ) D. +
A.y= -2x
6、在 ? ABC中, AD为 BC边上的中线, E 为 AD的中点,则 A. B. C.
7、某圆柱的高为 2,底面周长为 16,其三视图如右图。 圆柱表面上的点 M在正视图上的对应点为 圆柱表面上的点 N 在左视图上的对应点为 B,则在此圆柱侧面上,从 度为( A. 2 B. 2 C. 3 D. 2 8. 设抛物线 C: y2=4x 的焦点为 F, 过点( -2 , 0) 且斜率为 的直线与 C 交于 M , N 两点,则 A.5 B.6 C.7 D.8 ・ )
A,
M到 N 的路径中,最短路径的长
=( )
9. 已知函数 f ( x ) = ( ) , 0) B. [0 , +∞)
g ( x )=f ( x) +x+a,若 g( x )存在 2 个零点,则 a 的取值范围是
A. [-1
C. [-1
, +∞)
D. [1
, +∞)
10. 下图来自古希腊数学家希波克拉底所研究的几何图形。此图由三个半圆构成,三个半圆的直径分 别为直角三角形 ABC的斜边 BC ,直角边 AB , AC. △ ABC的三边所围成的区域记为Ⅰ,黑色部分记为 Ⅱ,其余部分记为Ⅲ。在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为 则( ) A. p 1=p2 B. p 1=p3 C. p 2=p3 D. p 1=p2+p3 11. 已知双曲线 C: - y 2=1, O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的两条渐近线的交 p1 , p2, p3,
2018年高考理科数学(全国I卷)参考答案
理科数学试题参考答案 第1页(共5页)绝密★启用前2018年普通高等学校招生全国统一考试理科数学试题参考答案一、选择题 1.C 2.B 3.A 4.B 5.D 6.A 7.B8.D9.C10.A11.B12.A二、填空题 13.6 14.63-15.1616.三、解答题 17.解:(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52,sin 45sin ADB=︒∠所以sin ADB ∠由题设知,90ADB ∠<︒,所以cos ADB ∠= (2)由题设及(1)知,cos sin BDC ADB ∠=∠=.在BCD △中,由余弦定理得2222cos 2582525.BC BD DC BD DC BDC=+-⋅⋅⋅∠=+-⨯⨯=所以5BC =.18.解:(1)由已知可得,BF PF ⊥,BF EF ⊥,所以BF ⊥平面PEF . 又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .理科数学试题参考答案 第2页(共5页)(2)作PH EF ⊥,垂足为H . 由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,||BF 为单位长,建立如图所示的空间直角坐标系H xyz -.由(1)可得,DE PE ⊥. 又2DP =,1DE =,所以3PE =. 又1PF =,2EF =,故PE PF ⊥.可得3PH =,32EH =.则(0,0,0)H ,3(0,0,)P , 3(1,,0)2D --,33(1,,)2DP =,3(0,0,)HP =为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则 334sin ||3||||HP DP HP DP θ⋅===. 所以DP 与平面ABFD 所成角的正弦值为3.19.解:(1)由已知得(1,0)F ,l 的方程为1x =. 由已知可得,点A 的坐标为2(1,)或2(1,)-. 所以AM 的方程为22y x =-+或22y x =-.(2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,11(,)A x y ,22(,)B x y ,则12x <,22x <,直线MA ,MB 的斜率之和为121222MA MB y yk k x x +=+--. 由11y kx k =-,22y kx k =-得12121223()4(2)(2)MA MB kx x k x x kk k x x -+++=--.理科数学试题参考答案 第3页(共5页)将(1)y k x =-代入2212x y +=得2222(21)4220k x k x k +-+-=.所以,22121222422,2121k k x x x x k k -+==++. 则3331212244128423()4021k k k k kkx x k x x k k --++-++==+.从而0MA MB k k +=,故MA ,MB 的倾斜角互补. 所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.20.解:(1)20件产品中恰有2件不合格品的概率为221820()C (1)f p p p =-. 因此2182172172020()C [2(1)18(1)]2C (1)(110)f p p p p p p p p '=---=--.令()0f p '=,得0.1p =. 当(0,0.1)p ∈时,()0f p '>;当(0.1,1)p ∈时,()0f p '<.所以()f p 的最大值点为00.1p =.(2)由(1)知,0.1p =.(ⅰ)令Y 表示余下的180件产品中的不合格品件数,依题意知(180,0.1)YB ,20225X Y =⨯+,即4025X Y =+.所以(4025)4025490EX E Y EY =+=+=.(ⅱ)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于400EX >,故应该对余下的产品作检验.21.解:(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x-+'=--+=-. (ⅰ)若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ⅱ)若2a >,令()0f x '=得,x =x =当2()a a x+∈+∞时,()0f x '<;当x ∈时,()0f x '>. 所以()f x在,)+∞单调递减,在单调递增.理科数学试题参考答案 第4页(共5页)(2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点1x ,2x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >. 由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a ax x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <.所以22212ln x x x -+<0,即1212()()2f x f x a x x -<--.22.解:(1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=. (2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线. 记y 轴右边的射线为1l ,y 轴左边的射线为2l . 由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22=,故43k =-或0k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为22=,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点.综上,所求1C 的方程为4||23y x =-+.23.解:(1)当1a=时,()|1||1|f x x x=+--,即2,1, ()2,11,2, 1.xf x x xx--⎧⎪=-<<⎨⎪⎩≤≥故不等式()1f x>的解集为1 {|}2 x x>.(2)当(0,1)x∈时|1||1|x ax x+-->成立等价于当(0,1)x∈时|1|1ax-<成立. 若0a≤,则当(0,1)x∈时|1|1ax-≥;若0a>,|1|1ax-<的解集为20xa<<,所以21a≥,故02a<≤.综上,a的取值范围为(0,2].理科数学试题参考答案第5页(共5页)。
(完整版)2018高考全国卷1理科数学试题及答案解析,推荐文档
2018 年普通高等学校招生全国统一考试 理科数学
注意事项: 1. 答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡
皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
y
0
D.
3 2
.
14. 记 Sn 为数列an的前 n 项和,若 Sn 2an 1 ,则 S6
.
15. 从 2 位女生,4 位男生中选 3 人参加科技比赛,且至少有 1 位女生入选,则不同的选法共有
种.(用数字填写答案)
16. 已知函数 f x 2sin x sin 2x ,则 f x的最小值是
A. y 2x
B. y x
C. y 2x
6. 在△ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,则 EB
3 1 AB AC
A. 4
4
1 3 AB AC
B. 4
4
3 1 AB AC
C. 4
4
D. y x
1 3 AB AC
D. 4
4
7. 某圆柱的高为 2,底面周长为 16,其三视图如图.圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱 表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到 N 的路径中,最短路径的长度
3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目
要求的。 z 1 i 2i
1. 设 1 i ,则| z |
2018年高考全国1卷理科数学试题及答案详细解析word版精校版
绝密★启用前2018年一般高等学校招生全国统一考试(全国卷Ⅰ)理科数学留意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.答复选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答复非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试完毕后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0 B .12C .1D .22.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建立,农村的经济收入增加了一倍,实现翻番. 为更好地理解该地区农村的经济收入改变状况,统计了该地区新农村建立前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建立后,种植收入削减B .新农村建立后,其他收入增加了一倍以上C .新农村建立后,养殖收入增加了一倍D .新农村建立后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱外表上的点M 在正视图上的对应点为A ,圆柱外表上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的途径中,最短途径的长度为A .217B .25C .3D .28.设抛物线24C y x :的焦点为F ,过点(2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所探讨的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色局部记为Ⅱ,其余局部记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .334B .233C .324D .32二、填空题:本题共4小题,每小题5分,共20分。
2018年高考全国1卷理科数学试题与答案详细解析(word版_精校版)
绝密★启用前2018 年普通高等学校招生全国统一考试( 全国卷Ⅰ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12 小题,每小题 5 分,共60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1 iz ,则| z|2i1 iA.0 B.12C.1 D. 22.已知集合 2A { x | x x 2 0} ,则e ARA.{x| 1 x 2} B.{ x | 1≤x≤2}C { x |x1}U{x | x 2} D.{ x | x≤1}{ x | x≥2}3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半理科数学试题第1 页(共17 页)4.记S n为等差数列{a n}的前n项和.若3S3S2S4,a1=2,则a5=A.12B.10C.10D.125.设函数32f(x)x(a1)x ax. 若f(x)为奇函数,则曲线y f(x)在点(0,0)处的切线方程为A.y2x B.y x C.y2x D.y xuur6.在△ABC中,AD 为BC 边上的中线, E 为AD 的中点,则EBA.u u u r uuru31AB AC44B.u u u r u u u r13AB AC44C.u u u r uuru31AB AC44D.u u u r uuru13AB AC447.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N 在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为A.217B.25C.3D.2248.设抛物线C:y=x的焦点为F,过点(-2,0)且斜率为uuur uuru两点,则FM?FN 23的直线与C交于M ,NA.5B.6C.7D.89.已知函数f(x)x xe,0,≤ln x,x0,g(x)f(x)x a. 若g(x)存在 2 个零点,则a的取值范围是A.[1,0)B.[0,)C.[1,)D.[1,)10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则A.p1p2B.p1p3C.p2p3D.p1p2p3理科数学试题第2页(共17页)11.已知双曲线2x21C:-y=,O 为坐标原点, F 为C 的右焦点,过 F 的直线与 C 的3两条渐近线的交点分别为M ,N. 若△OMN为直角三角形,则|MN|=A.32B.3C.23D.412.已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为A.334B.233C.324D.32二、填空题:本题共 4 小题,每小题 5 分,共20 分。
2018年全国统一高考数学试卷(理科)(新课标ⅰ)含答案
2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=+2i,则|z|=()A.0 B.C.1 D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2 C.3 D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5 B.6 C.7 D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p311.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3 C.2 D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。
)1、设z=,则∣z∣=()A.0B.12C.1D.√22、已知集合A={x|x2-x-2>0},则C R A =()A、{x|-1<x<2}B、{x|-1≤x≤2}C、{x|x<-1}∪{x|x>2}D、{x|x≤-1}∪{x|x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记Sn为等差数列{an}的前n项和,若3S3= S2+ S4,a1=2,则a5=()A、-12B、-10C、10D、125、设函数f(x)=x³+(a-1)x²+ax .若f(x)为奇函数,则曲线y= f(x)在点(0,0)处的切线方程为()建设前经济收入构成比例建设后经济收入构成比例6、在∆ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB→ =( ) A. 34 AB → - 14 AC → B. 14 AB → - 34 AC → C. 34 AB → + 14 AC → D. 14 AB → + 34 AC→7、某圆柱的高为2,底面周长为16,其三视图如右图。
圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A. 2√17B. 2√5C. 3D. 28.设抛物线C :y ²=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM → ·FN → =( ) A.5 B.6 C.7 D.89.已知函数f (x )= g (x )=f (x )+x+a ,若g (x )存在2个零点,则a 的取值范围是( )A. [-1,0)B. [0,+∞)C. [-1,+∞)D. [1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形。
此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC. △ABC 的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。
在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则( )A. p 1=p 2B. p 1=p 3C. p 2=p 3D. p 1=p 2+p 311.已知双曲线C : x 23 - y ²=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M,N. 若△OMN为直角三角形,则∣MN∣=( )A. 32B.3C.D.412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。
13.若x,y满足约束条件则z=3x+2y的最大值为 .14.记Sn 为数列{an}的前n项和. 若Sn= 2an+1,则S6= .15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)16.已知函数f(x)=2sinx+sin2x,则f(x)的最小值是 .三.解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC =,求BC.18.(12分)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把∆DFC折起,使点C 到达点P的位置,且PF⊥BF .(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.19.(12分)设椭圆C:x2+ y²=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).2(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.20、(12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件产品作检验,再根据检验结果决定是否对余下的所有产品做检验,设每件产品为不合格品的概率都为P (0<P<1),且各件产品是否为不合格品相互独立。
(1)记20件产品中恰有2件不合格品的概率为f(P),求f(P)的最大值点。
(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为P的值,已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用。
(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?21、(12分)已知函数.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1 , x2, 证明: .(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22. [选修4-4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C₁的方程为y=k∣x∣+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C₂的极坐标方程为ρ²+2ρcosθ -3=0.(1)求C₂的直角坐标方程:(2)若C₁与C₂有且仅有三个公共点,求C₁的方程.23. [选修4-5:不等式选讲](10分)已知f(x)=∣x+1∣-∣ax-1∣.(1)当a=1时,求不等式f(x)﹥1的解集;(2)若x∈(0,1)时不等式f(x)﹥x成立,求a的取值范围.绝密★启用前2018年普通高等学校招生全国统一考试理科数学试题参考答案一、选择题 1.C 2.B 3.A 4.B 5.D 6.A 7.B8.D9.C10.A11.B12.A二、填空题 13.6 14.63- 15.16 16.33-三、解答题 17.解:(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠. 由题设知,52,sin 45sin ADB=︒∠所以2sin ADB ∠=. 由题设知,90ADB ∠<︒, 所以223cos 125ADB ∠=-=. (2)由题设及(1)知,2cos sin 5BDC ADB ∠=∠=.在BCD △中,由余弦定理得2222cos 2258252225.BC BD DC BD DC BDC=+-⋅⋅⋅∠=+-⨯⨯⨯=所以5BC =.18.解:(1)由已知可得,BF PF ⊥,BF EF ⊥,所以BF ⊥平面PEF . 又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH EF ⊥,垂足为H . 由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF u u u r的方向为y 轴正方向,||BF uu u r 为单位长,建立如图所示的空间直角坐标系H xyz -. 由(1)可得,DE PE ⊥. 又2DP =,1DE =,所以PE =又1PF =,2EF =,故PE PF ⊥.可得PH =32EH =.则(0,0,0)H,P , 3(1,,0)2D --,3(1,2DP =uu u r,HP =uu u r 为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则3sin ||||||HP DP HP DP θ⋅===uu u r uu u r uu u r uu u r . 所以DP 与平面ABFD.19.解:(1)由已知得(1,0)F ,l 的方程为1x =. 由已知可得,点A的坐标为2或(1,)2. 所以AM的方程为y =y =-.(2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,11(,)A x y ,22(,)B x y,则1x <2x <直线MA ,MB 的斜率之和为121222MA MB y y k k x x +=+--. 由11y kx k =-,22y kx k =-得12121223()4(2)(2)MA MB kx x k x x kk k x x -+++=--.将(1)y k x =-代入2212x y +=得2222(21)4220k x k x k +-+-=.所以,22121222422,2121k k x x x x k k -+==++. 则3331212244128423()4021k k k k kkx x k x x k k --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补. 所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.20.解:(1)20件产品中恰有2件不合格品的概率为221820()C (1)f p p p =-. 因此 2182172172020()C [2(1)18(1)]2C (1)(110)f p p p p p p p p '=---=--.令()0f p '=,得0.1p =. 当(0,0.1)p ∈时,()0f p '>;当(0.1,1)p ∈时,()0f p '<.所以()f p 的最大值点为00.1p =.(2)由(1)知,0.1p =.(ⅰ)令Y 表示余下的180件产品中的不合格品件数,依题意知(180,0.1)Y B :,20225X Y =⨯+,即4025X Y =+.所以(4025)4025490EX E Y EY =+=+=. (ⅱ)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元. 由于400EX >,故应该对余下的产品作检验.21.解:(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x -+'=--+=-.(ⅰ)若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减. (ⅱ)若2a >,令()0f x '=得,x =或x当)x ∈+∞U 时,()0f x '<;当x ∈时,()0f x '>. 所以()f x在,)+∞单调递减,在单调递增.(2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点1x ,2x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >. 由于 12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a ax x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <. 所以22212ln x x x -+<0,即1212()()2f x f x a x x -<--.22.解:(1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=. (2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线. 记y 轴右边的射线为1l ,y 轴左边的射线为2l . 由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22=,故43k =-或0k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为2,2=,故0k =或43k =. 经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为4||23y x =-+.23.解:(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.x f x x x x --⎧⎪=-<<⎨⎪⎩≤≥ 故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立. 若0a ≤,则当(0,1)x ∈时|1|1ax -≥; 若0a >,|1|1ax -<的解集为20x a <<,所以21a≥,故02a <≤. 综上,a 的取值范围为(0,2].。