多段柔性直流输电

合集下载

柔性直流输电技术的应用探究

柔性直流输电技术的应用探究

柔性直流输电技术的应用探究柔性直流输电技术(Flexible DC Transmission, FDCT)是一种新型的输电技术,它采用直流电压进行能量传输,可以有效地解决传统交流输电技术的诸多问题,具有输电损耗小、占地面积小、环境污染小等优点。

随着科技的不断进步,柔性直流输电技术已经开始在实际工程中得到广泛应用。

本文将就柔性直流输电技术的应用进行探究,分析其在电力系统中的优势和发展前景。

一、柔性直流输电技术的原理与特点1. 原理柔性直流输电技术是一种通过控制直流电压和电流来实现能量输送和分配的技术。

其核心是采用高性能的功率电子设备对直流电压进行控制,以实现灵活的功率调节、电压调节和频率调节。

通过控制系统可以实现功率的快速响应和精确调节,使得柔性直流输电系统能够适应复杂多变的电网工况。

2. 特点(1)输电损耗小:相比于传统的交流输电技术,柔性直流输电技术在能量传输过程中损耗更小,能够有效节约能源。

(2)占地面积小:柔性直流输电技术所需的设备相对较小,可以在有限的空间内实现高效的能量传输。

(3)环境污染小:柔性直流输电技术的设备采用先进的电力电子元件,不会产生有害的电磁辐射和废气排放,对环境友好。

二、柔性直流输电技术在电力系统中的应用1. 长距离电力输送柔性直流输电技术在长距离的电力输送中具有明显的优势。

传统的交流输电技术在长距离输电过程中会出现较大的输电损耗,而柔性直流输电技术可以通过控制系统实现功率的精确调节,大大减小了输电损耗,提高了输电效率。

2. 大容量电力输送由于柔性直流输电技术具有较高的电压和电流调节能力,能够实现大容量的电力输送。

在大规模工业园区、城市用电中心等场景下,柔性直流输电技术可以有效地满足电力需求,支持电网的高容量输电。

3. 电力系统稳定性改善柔性直流输电技术在电力系统中的应用可以提高系统的稳定性。

通过柔性直流输电技术可以实现快速的电压调节和频率调节,对电网负载波动具有较强的适应能力,有助于降低电网的故障率和提高电网的可靠性。

多端柔性直流输电技术

多端柔性直流输电技术

1、简介从上个世纪五十年代至今,高压直流输电技术(High V oltageDirectCurrent,HVDC)经历了跨越式发展,己经广泛应用于风电场并网、大容量远距离输电、非同步大电网互联、孤岛和弱电网供电等领域HVDC技术从早期的汞弧阀换流技术发展到高压大功率晶闹管换流器技术,极大地促进了直流输电技术的发展。

与高压输电技术相反的是换流技术几乎仍在原地踏步,线换相换流器(Line Commuted Converter, LCC)直流输电占据主流。

由于晶闸管关断不可控,传统直流输电技术具有明显缺陷。

随着电力电子变流技术的迅猛发展,出现了以脉宽调制(Plus Width Modulation, PWM)技术为基础的变流器。

并且PWM变流器技术也日漆完善。

目前主要应用的主电路类型有电流型变流器(Current Source Converter, CSC)和电压源型变流器(V oltageSource Converter, VSC)。

并且,全控器件电压和容量的等级的不断提升,控制技术的日趋完善,带动VSC开始应用于大容量高压输配电领域,如,灵活交流输电系统(Flexible ACTransmission System, FACTS)、基于电压源变流器的高压直流输电(VSC basedHVDC,VSC-HVDC)、定制电力系统(Custom Power,CP)等典型代表。

VSC设备配合不同的控制策略可以控制系统潮流、调节网络运行参数,进而优化电力统运行状态,提高系统稳定性和运行可靠性。

VSC-HVDC技术是以电压源变流器,可控关断的IGBT和脉宽调制(PWM)为基础的新型输电技术。

VSC-HVDC不仅可以独立快速控制有功无功,还易于翻转潮流,实现了无源网络供电。

同时,随着能源紧缺和环境污染的日益严重,我国开始大力幵发和利用风能、太阳能等可再生清洁能源,优化能源结构。

但是其固有的分散性、小型化、远离负荷中心等特点直接制约了风电利用规模的不断扩大以及传统交流输电技术和CSC-HVDC 输电技术联网的经济性。

柔性直流输电基本控制原理

柔性直流输电基本控制原理
详细描述
暂态稳定性分析是评估柔性直流输电系统在故障或其他大的扰动情况下的性能的重要手段。通过模拟 系统在各种故障情况下的响应,可以了解系统的暂态行为和稳定性,为控制策略的制定提供依据。
运行稳定性分析
总结词
运行稳定性分析是研究系统在正常运行 条件下的动态性能,通过仿真和实验等 方法,分析系统的运行稳定性和控制性 能。
促进可再生能源的接入
柔性直流输电能够更好地接入可再生能源,有助于实现能源 的可持续发展。
02
柔性直流输电系统概述
柔性直流输电系统的基本结构
换流阀
换流阀是柔性直流输电系统的核心部件,负责 实现直流电的转换和传输从一端传 输到另一端。
滤波器
滤波器用于滤除谐波和噪声,保证传输电能的 纯净。
柔性直流输电基本控制原理
$number {01}
目 录
• 引言 • 柔性直流输电系统概述 • 柔性直流输电系统的控制策略 • 柔性直流输电系统的稳定性分析 • 柔性直流输电系统的保护与控制
一体化 • 柔性直流输电系统的应用与发展
趋势
01 引言
背景介绍
传统直流输电的局限性
传统直流输电在电压源换流器(VSC) 控制策略上存在局限,难以满足现代 电力系统的需求。
3
保护和控制设备之间的通信应具有高可靠性和实 时性,以确保快速响应和准确控制。
保护与控制一体化的优点与挑战
优点
保护和控制一体化可以提高系统的快速响应 能力和稳定性,减少故障对系统的影响,降 低维护成本和停机时间。
挑战
保护和控制一体化需要解决多种技术难题, 如传感器精度、数据处理速度、通信可靠性 和实时性等,同时也需要加强相关标准和规 范的建设和完善。
柔性直流输电系统的未来展望

2024年柔性直流输电市场发展现状

2024年柔性直流输电市场发展现状

2024年柔性直流输电市场发展现状引言柔性直流输电(Flexible Direct Current Transmission,简称FDCT)作为一种新型的输电技术,具有多种优势,如高效、低损耗和灵活性等。

随着电力需求的不断增长和可再生能源的迅速发展,柔性直流输电市场正逐渐展现出巨大的潜力。

本文将对柔性直流输电市场的发展现状进行分析和探讨。

主要内容1. 柔性直流输电技术简介柔性直流输电技术是一种将输电线路由传统的交流形式转变为直流形式的技术。

该技术利用高压直流输电(High Voltage Direct Current,简称HVDC)系统,通过转换站将交流电转换为直流电进行输送。

相较于传统的交流输电方式,柔性直流输电可以实现更高效率和更远距离的电能传输。

2. 柔性直流输电市场发展趋势柔性直流输电市场正逐渐蓬勃发展,并且呈现出以下几个主要的发展趋势:•可再生能源促进发展:随着可再生能源的快速发展,如风能和太阳能等,柔性直流输电正成为将这些能源从产地输送到用电地点的理想选择。

柔性直流输电系统可以实现大规模清洁能源的长距离传输。

•输电效率提高:与高压交流输电相比,柔性直流输电系统的输电效率更高。

因为直流电在输送过程中的能量损失较小,可以大幅度降低电力传输过程中的能量损耗,提高输电效率。

•电网稳定性提升:柔性直流输电系统具备快速响应和调节电网负荷等特点,可以提高电网的稳定性。

在能源供需波动较大的情况下,柔性直流输电系统可以有效地平衡能源供给和需求,提高电网的可靠性和稳定性。

3. 柔性直流输电市场的挑战柔性直流输电市场的发展也面临着一些挑战,主要包括以下几个方面:•技术难题:柔性直流输电技术相对较新,还存在一些技术难题,如电能转换效率、电气设备可靠性和环境适应能力等问题,需要进一步解决和改进。

•经济可行性:虽然柔性直流输电具有诸多优势,但是其建设和运营的成本相对较高,需要对投资回报作出准确评估,以确保项目的经济可行性。

柔性直流输电技术简述

柔性直流输电技术简述

柔性直流输电技术介绍1引言柔性直流输电技术(Voltage Sourced Converter,VSC)是一种以电压源变流器、可关断器件(如门极可关断晶闸管(GTO)、绝缘栅双极晶体管(IGBT))和脉宽调制(PWM)技术为基础的新型直流输电技术。

国外学术界将此项输电技术称为VSC-HVDC,国内学术界将此项输电技术称为柔性直流输电,制造厂商ABB 公司与西门子公司分别将该项输电技术命名为HVDC Light和HVDC Plus。

与传统基于晶闸管的电流源型直流输电技术相比,柔性直流输电技术具有可控性高、设计施工方便环保、占地小及换流站间无需通信等优点,在可再生能源并网、分布式发电并网、孤岛供电、城市电网供电等方面具有明显的优势。

随着大功率全控型电力电子器件的迅速发展,柔性直流输电技术在高压直流输电领域受到越来越广泛的关注及应用。

传统的低电平VSC具有开关频率高、输出电压谐波大、电压等级低、需要无源滤波器等缺点,而且存在串联器件的动态均压问题;多电平变流器提供了一种新的VSC实现方案。

它通过电平叠加输出高电压,逼近理想正弦波,输出电压谐波含量少,无需滤波设备。

自1997年赫尔斯扬试验工程投入运行以来,柔性直流输电技术迅速发展,目前已有13项工程投入商业运行,最高电压等级已达±200kV,最大工程容量达到400MW,最长输电距离为970km。

通过各个领域专家的不断创新和工程建设运行经验的不断积累,柔性直流输电技术作为一种先进的输电技术已具备大规模应用的条件。

图1两端VSC-HVDC系统典型结构图2008年12月,“柔性直流输电关键技术研究与示范工程”作为国家电网公司的重大科技专项正式启动。

该工程联接上海南汇风电场与书院变电站,用于上海南汇风电网并网,是中国首条柔性直流输电示范工程。

该工程由中国电力科学研究院开发,负责接入系统设计、设备供货及工程实施等工作。

2柔性直流输电技术的研究现状2.1高压大容量电压源变流器技术2.2.1模块化多电平变流器(Modular Multilevel Converter,MMC)模块化多电平变流器可以有效降低交流电压变化率,其拓扑结构如图2所示。

柔性直流输电技术应用、进步与期望

柔性直流输电技术应用、进步与期望

柔性直流输电技术应用、进步与期望一、概述随着全球能源结构的转型和电力电子技术的飞速发展,柔性直流输电技术(VSCHVDC)作为一种新型的输电方式,正逐渐受到广泛关注和应用。

柔性直流输电技术以其独特的优势,如可独立控制有功和无功功率、无需交流系统提供换相电压支撑、易于构成多端直流系统等,在新能源接入、城市电网供电、海岛供电、分布式发电并网等领域展现出广阔的应用前景。

自20世纪90年代以来,柔性直流输电技术经历了从理论研究到工程实践的发展历程。

随着电力电子器件的不断进步和控制策略的优化,柔性直流输电系统的容量和电压等级不断提升,系统效率和可靠性也得到了显著提高。

目前,柔性直流输电技术已成为解决新能源大规模并网、提高电网智能化水平、推动能源互联网发展的重要技术手段。

尽管柔性直流输电技术取得了显著的进步,但仍面临一些挑战和期望。

一方面,随着应用领域的不断拓展,对柔性直流输电系统的性能要求也越来越高,如更高的容量、更低的损耗、更快的响应速度等。

另一方面,随着可再生能源的大规模开发和利用,电网的复杂性和不确定性也在增加,这对柔性直流输电技术的稳定性和可靠性提出了更高的要求。

1. 简述柔性直流输电技术的背景和重要性随着全球能源需求的日益增长,传统直流输电技术在面对能源紧缺、环境压力以及现代科技发展的挑战时,已显得力不从心。

在这样的背景下,柔性直流输电技术应运而生,成为了一种顺应社会发展的新型输电技术。

从能源角度来看,随着城市化进程的加快和工业化水平的提高,能源需求呈现出爆炸式增长。

传统的直流输电技术,虽然在一定程度上能够满足能源传输的需求,但在面对大规模、远距离的电能输送时,其局限性逐渐显现。

同时,随着可再生能源的快速发展,如风能、太阳能等,这些能源具有分散性、远离负荷中心以及小型化的特点,传统的直流输电技术难以满足这些新能源的接入和调度需求。

柔性直流输电技术的出现,正好弥补了这一技术短板,使得大规模、远距离的电能输送以及新能源的接入和调度成为可能。

柔性直流输电工程技术研究、应用及发展

柔性直流输电工程技术研究、应用及发展

柔性直流输电工程技术研究、应用及发展一、本文概述1、简述柔性直流输电技术的背景和发展历程随着能源结构的优化和电网互联的需求增长,直流输电技术以其长距离、大容量、低损耗的优势,在电力系统中占据了举足轻重的地位。

然而,传统的直流输电技术,如基于晶闸管的直流输电(LCC-HVDC),存在换流站需消耗大量无功、无法独立控制有功和无功功率、对交流系统故障敏感等问题。

因此,柔性直流输电技术(VSC-HVDC)应运而生,它采用电压源型换流器(VSC)和脉宽调制(PWM)技术,实现了对有功和无功功率的独立控制,并具有快速响应、灵活调节、易于构成多端直流系统等优点。

柔性直流输电技术的发展历程可以追溯到20世纪90年代初,当时基于绝缘栅双极晶体管(IGBT)的VSC技术开始应用于风电场并网和孤岛供电等领域。

随着电力电子技术的快速发展,VSC的容量和电压等级不断提升,使得柔性直流输电技术在电网互联、新能源接入、城市配电网等领域得到了广泛应用。

进入21世纪后,随着全球能源互联网的提出和新能源的大规模开发,柔性直流输电技术迎来了快速发展的黄金时期。

目前,柔性直流输电技术已经成为直流输电领域的研究热点和发展方向,其在全球范围内的大规模应用也为电力系统的智能化、绿色化、高效化发展提供了有力支撑。

2、阐述柔性直流输电技术在现代电力系统中的重要性在现代电力系统中,柔性直流输电技术已经日益显示出其无法替代的重要性。

它作为一种先进的输电技术,不仅克服了传统直流输电技术的局限性,还以其独特的优势在现代电网建设中占据了举足轻重的地位。

柔性直流输电技术的灵活性和可控性使得它在大规模可再生能源接入电网中发挥了关键作用。

随着可再生能源如风能、太阳能等的大规模开发和利用,电网面临着越来越大的挑战。

这些可再生能源具有随机性、波动性和间歇性等特点,对电网的稳定性造成了威胁。

而柔性直流输电技术通过其独特的控制策略,可以实现对有功功率和无功功率的独立控制,从而有效地解决可再生能源接入电网所带来的问题,提高电网的稳定性和可靠性。

柔性直流输电技术概述

柔性直流输电技术概述

柔性直流输电技术概述1柔性直流输电技术简介柔性直流输电作为新一代直流输电技术,其在结构上与高压直流输电类似,仍是由换流站和直流输电线路(通常为直流电缆)构成。

与基于相控换相技术的电流源换流器型高压直流输电不同,柔性直流输电中的换流器为电压源换流器(VSC),其最大的特点在于采用了可关断器件(通常为IGBT)和高频调制技术。

详细地说,就是要通过调节换流器出口电压的幅值和与系统电压之间的功角差,可以独立地控制输出的有功功率和无功功率。

这样,通过对两端换流站的控制,就可以实现两个交流网络之间有功功率的相互传送,同时两端换流站还可以独立调节各自所吸收或发出的无功功率,从而对所联的交流系统给予无功支撑。

2. 技术特点柔性直流输电技术是采用可关断电压源型换流器和PWM技术进行直流输电,相当于在电网接入了一个阀门和电源,可以有效控制其通过的电能,隔离电网故障的扩散,还能根据电网需求,快速、灵活、可调地发出或者吸收一部分能量,从而优化电网潮流分布、增强电网稳定性、提升电网的智能化和可控性。

它很适合应用于可再生能源并网、分布式发电并网、孤岛供电、城市电网供电、异步交流电网互联等领域。

柔性直流输电除具有传统直流输电的技术优点外,还具备有功无功单独控制、可以黑启动对系统强度要求低、响应速度快、可控性好、运行方式灵活等特点,目前,大容量高电压柔性直流输电技术已具备工程应用条件,并且具有以下优点:(1)系统具有2个控制自由度,可同时调节有功功率和无功功率,当交流系统故障时,可提供有功功率的紧急支援,又可提供无功功率紧急支援,既能提高系统功角稳定性,还能提高系统电压稳定性;(2)系统在潮流反转时,直流电流方向反转而直流电压极性不变,这个特点有利于构成既能方便地控制潮流又有较高可靠性的并联多端直流系统,实现多端之间的潮流自由控制;(3)柔性直流输电交流侧电流可被控制,不会增加系统的短路功率;(4)对比传统直流输电方式,采用多电平技术,无需滤波装置,占地面积很小;(5)各站可通过直流线路向对端充电,并根据直流线路电压采取不同的控制策略,因此换流站间可以不需要通讯;(6)柔性直流输电具有良好的电网故障后快速恢复控制能力;(7)系统可以工作在无源逆变方式,克服了传统直流受端必须是有源网络,可以为无源系统供电。

柔性直流输电与高压直流输电的优缺点

柔性直流输电与高压直流输电的优缺点

柔性直流输电与高压直流输电的优缺点(总4页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除柔性直流输电一、常规直流输电技术1. 常规直流输电系统换流站的主要设备。

常规直流输电系统换流站的主要设备一般包括:三相桥式电路、整流变压器、交流滤波器、直流平波电抗器和控制保护以及辅助系统(水冷系统、站用电系统)等。

2. 常规直流输电技术的优点。

1)直流输送容量大,输送的电压高,最高已达到800kV,输送的电流大,最大电流已达到4 500A;所用单个晶闸管的耐受电压高,电流大。

2)光触发晶闸管直流输电,抗干扰性好。

大电网之间通过直流输电互联(背靠背方式),换流阀损耗较小,输电运行的稳定性和可靠性高。

3)常规直流输电技术可将环流器进行闭锁,以消除直流侧电流故障。

3. 常规直流电路技术的缺点。

常规直流输电由于采用大功率晶闸管,主要有如下缺点。

1)只能工作在有源逆变状态,不能接入无源系统。

2)对交流系统的强度较为敏感,一旦交流系统发生干扰,容易换相失败。

3)无功消耗大。

输出电压、输出电流谐波含量高,需要安装滤波装置来消除谐波。

二、柔性直流输电技术1. 柔性直流输电系统换流站的主要设备。

柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。

2. 柔性直流输电技术的优点。

柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。

此外,柔性输电还具有一些自身的优点。

1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。

保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。

2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。

功率变化时,滤波器不需要提供无功功率。

3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。

风电并网新技术——柔性直流输电详解

风电并网新技术——柔性直流输电详解

风电并网新技术——柔性直流输电详解“通俗地讲,在现有的电网中使用了柔性直流输电系统,相当于在电网中接入了一个阀门和电源,它不仅可以有效地掌握其上面通过的电能,隔离电网故障的集中,而且还能依据电网需求,自身快速、敏捷、可调地发出或者汲取一部分能量。

”中国电科院贺之渊博士介绍道,“这对优化电网的潮流分布,增加电网稳定性,提升电网的智能化和可控性,都具有肯定的作用。

”从技术上来说,柔性直流输电是以电压源换流器为核心的新一代直流输电技术,其采纳最先进的电压源型换流器和全控器件,是常规直流输电技术的换代升级。

相比于沟通输电和常规直流输电,在传输能量的同时,还能敏捷地调整与之相连的沟通系统电压。

具有可控性较好、运行方式敏捷、适用场合多等显著优点。

沟通并网的技术瓶颈目前,使用沟通并网是绝大多数风电场并网的选择。

但是风电场通过沟通并网目前普遍存在一些技术瓶颈:首先,使用沟通并网需要风电场和所连接的沟通系统必需严格保持频率同步,而风机对并网处沟通母线电压波动较为敏感。

现有运行阅历表明,沟通系统电压波动是风机退网的主要缘由之一。

其次,在沟通系统发生故障的状况下,风电场的稳定运行往往需要在母线出线端加装无功补偿装置,从而提高风场的故障穿越力量。

但这样一来加大了风电场投资,另外补偿装置对风机的最大风能捕获及风机掌握器本身,都有可能造成不利影响。

最终,对于海上风电场来说,假如使用沟通电缆连接,当电缆长度超过肯定数值后,需要很大的感性无功补偿装置,尤其是对于距离岸边较远的风电场来说,在线路中间进行无功补偿几乎没有可能。

而使用柔性直流输电电缆理论上没有距离限制,所以当超过肯定的等价距离后,一般大于50~100千米,使用直流并网是最合理的选择。

常规直流输电存问题常规直流需要所连沟通系统供应换相电压,比较简单发生换相失败的故障,这对于风电场来说大大降低了其平安稳定运行的力量。

常规直流在传输同样容量的功率时,比沟通和柔性直流输电方案的占地面积要大得多(两倍以上),因此不适合风电场使用。

多端柔性直流输电

多端柔性直流输电

广角镜90多端柔性直流输电电网冰灾防治柔性直流输电是高压直流输电领域的“新生代”。

目前,柔性直流的关键技术仅被少数发达国家掌握,国内的研究刚刚起步。

由于适用分散能源介入的多端柔性直流系统复杂、技术难度大,迄今世界上已投运的柔性直流工程都是两端系统,还没有多端工程的先例。

多端柔性直流输电系统模块化多电平(MMC)技术,可灵活接入多个站点的风能、太阳能、地热能、小水电等清洁能源,通过一个大容量、长距离的电力传输通道,到达多个城市的负荷中心。

这为新能源并网、大型城市供电以及孤岛供电等场合提供了一种有效的解决方案。

为突破多端柔性直流输电关键技术难题,占领世界先进输电技术制高点,国家科技部将“大型风电场柔性直流输电接入技术研究与开发”列入国家863计划重大项目课题,由南方电网公司牵头承担该课题研究,并选取广东南澳岛作为应用基地。

据介绍,这是由于南澳岛已建的多个风电场在岛上相对分散,采用多端柔性直流技术,可以很好地解决分散风电场接入问题,同时也可方便地实施多端柔性直流技术的探索和示范。

电网冰冻灾害遍及100多个国家及我国南方10多个省份。

冰灾引发跳闸、倒塔,严重时导致电网大面积瘫痪,是电网安全运行的最大灾害之一。

由于国内外缺乏系统的冰灾防治技术和高效的融除冰装备,2008年初我国电网因冰灾遭受了最严重的损害,严重影响了正常的社会秩序。

在国家科技支撑计划等支持下,国家电网公司集中大量科研人员投入到“电网大范围冰冻灾害预防与治理关键技术及成套装备”项目中,夜以继日,奋力攻关,取得集理论、技术和装备于一体的系列成果,实现重大突破和实质性创新。

一是创建了电网覆冰预报技术,揭示了电网覆冰成因,提出了电网覆冰长、中、短期预报方法,开发了世界首套电网覆冰预报预警系统,准确的预测为抗冰赢得宝贵多端柔性直流输电工程的特点就在于“柔性”和“多端”。

“柔”主要体现在系统的可控性上,该系统可以快速跟踪交直流电网各类参数的变化并根据指定的控制策略迅速做出相应的调整。

攀登世界输电技术高峰的五端柔性直流工程

攀登世界输电技术高峰的五端柔性直流工程

攀登世界输电技术高峰的五端柔性直流工程1月22日,浙江省舟山市岱山县220千伏蓬莱变—岱山多端柔性直流工程换流站输电线路进入最后的施工冲刺阶段。

浙江舟山供电公司相关负责人向记者介绍:“目前舟山多端柔性直流输电工程正加快推进,预计将于今年6月建成投产。

”届时,该工程将大大提高舟山海岛的跨海输电可靠性,方便舟山的风电等新能源接入电网,为风电等新能源直接接入电网提供先进的示范样本。

首个五端柔直工程正加快建设据介绍,浙江舟山柔性直流工程是世界首个五端柔性直流输电示范工程,将在定海、岱山、衢山、洋山、泗礁各建设一座换流站,容量分别为40万千瓦、30万千瓦、10万千瓦、10万千瓦、10万千瓦;建设直流电缆输电线路141千米,交流220千伏输电线路22.5千米,交流110千伏输电线路15.2千米。

所谓多端柔性直流输电系统,即采用柔性直流输电技术,可携带来自多个站点的风能、太阳能、地热能等清洁能源,通过一个大容量、长距离的电力传输通道,到达多个城市的负荷中心。

这为新能源并网、大型城市供电以及孤岛供电等模式提供了一种有效的解决方案。

就舟山柔性直流工程的进展,浙江舟山供电公司相关负责人向记者介绍:“工程定海站、岱山站、衢山站的换流阀、直流控制保护系统及光学式直流电流互感器已通过验收,正陆续运抵施工现场进行安装。

整个柔直工程计划于5月开始进行系统带电调试及试验,6月实现五站全面建成投产。

”届时,舟山将形成北部主要岛屿间的直流输电网络,加强下辖诸岛的电气联系,增强网架结构,为风能、太阳能等清洁能源开发打下坚实的基础。

具有海岛供电等诸多优势那么,如此高新技术,为何不落户北上广深这些大城市,而青睐电网较小、岛礁众多的舟山群岛?据了解,该技术适用于电压等级不高的地区,适合在岛礁间穿梭,且在间歇性能源吸纳上尤显功效。

浙江舟山供电公司调控中心主任戴涛也表示:“综合分析柔性直流输电技术与舟山电网实际,舟山是建设、验证多端柔性直流输电技术的理想场所,也将为柔性直流输电的大规模推广起到良好示范作用。

柔性多端直流输电系统的控制

柔性多端直流输电系统的控制

柔性多端直流输电系统的控制摘要:电力行业是保障民生基础最重要的行业,已经为我国经济发展做出了重大贡献。

输电系统作为电力行业的重要组成部分,一直是电力行业研究的重要课题。

多端柔性直流输电(VSC-MTDC)技术采用了电力电子的可控器件以及PWM调控技术,使得它比传统的输电方式更具有优势。

本文重要研究了柔性多端直流输电系统的控制问题,希望对于相关工作者起到一定的启示作用。

关键词:电力行业;输电系统;多端柔性直流输电;控制问题;启示1.背景电力行业经过几十年的发展,很多技术已经很成熟了,现在中电承接的项目遍及世界上60多个国家和地区,极大地宣传中国形象和中国实力。

另一方面随着经济的发展,各行各业对电力的需求越来越大,因此如何进行电力传输是电力行业面临的共同难题,在早些年前一直使用的交流传输技术,但是交流传输技术存在着很多问题,电力在传输的过程中,损失很严重,但是直流传输并不存在着这些问题,因此这些年直流传输技术取得了很大的发展。

同时多端柔性直流输电(VSC-MTDC)技术是在高压直流传输的技术的基础上发展起来的,采用了全控器件,同时有着方便、灵活的优势,很快在业界得到了广泛的应用,本文在此基础上重点研究了柔性多端直流电输电系统的控制策略,希望为柔性多端的技术发展贡献一份力量。

2.VSC-MTDC 控制策略概述2.1控制方法的分类在电力行业,根据VSC之间的通信方式不同,可以将VSC-MTDC 控制策略概括地分为两类:第一类基于通信类型的控制系统,第二类基于无通信类型的控制类型。

基于通信类型的控制方案一般采用的是主从控制的方式,具体的设计思路是将所有的换流站划分为主站和从站的方式,其中主站的主要作用是用来当作平衡点,在控制系统中需要维持直流电压的稳定以及系统中有功功率的平衡。

但是当系统出现故障时,主站无法正常工作时,这时候需要从机代替从机来接受通信系统发送的通信信号,来控制系统的稳定性,同时改变系统的控制方式。

多端柔性直流输电的发展现状及研究展望

多端柔性直流输电的发展现状及研究展望

多端柔性直流输电的发展现状及研究展望摘要:多端柔性直流输电(VSC-MTDC)技术是指使用到多个电压源换流器的柔性直流输电技术,其不仅具有两端系统的所有特性,同时还可用于构建多个送电端、受电端的直流输电网络。

基于此,本文分析了多端柔性直流输电的发展现状及其应用前景。

关键词:多端柔性直流输电;发展现状;应用前景VSC-MTDC是一种先进的输配电解决方案,既可实现有功、无功功率的独立和快速控制,又能向无源网络系统供电。

在潮流反转时,直流电流方向反转而直流电压极性保持不变,容易构成多端柔性直流输电系统。

因其具有良好的特性,此技术可广泛用于交流电网同步和非同步互联、风电等清洁能源的接入、向孤立无源负荷供电等场合,具有广阔的应用前景。

一、多端柔性直流输电技术多端柔性直流输电技术是指使用到多个电压源换流器的柔性直流输电技术,其不仅具有两端系统的所有特性,同时还可用于构建多个送电端、多个受电端的直流输电网络。

多端柔性直流输电技术其自身的特点适用于风电、光伏等新能源并网、构建城市直流输配网等领域,因而近年来得到了越来越广泛的研究。

另外,多端直流输电系统在换流站之间连接方式的选择上,可分为保持各换流站之间直流电压相等或保持流过各换流站的直流电流相等两种形式;按结构的不同可将多端直流输电系统分为并联结构、串联结构、混合结构三种基本的连接形式。

二、VSC-MTDC发展现状我国虽然在柔性直流输电工程技术研究与应用方面起步较晚。

但从2006年开始,国内许多研究单位及时把握住了柔性直流输电技术发展的趋势,在基础理论研究、关键技术攻关、核心设备研制、试验能力建设、工程系统集成等方面取得了许多自主创新成果,通过近年来的快速发展,我国在柔性直流输电技术研究和工程应用等方面已达到世界先进水平。

在多端柔性直流方面,我国更是取得了巨大的成就,已有两项多端柔性直流输电工程:南澳多端柔性直流输电工程和舟山多端柔性直流输电工程。

南澳多端柔性直流输电工程是由南方电网公司建设的世界上第一个多端柔性直流输电示范工程,它由三个换流站并联构成,采用的是模块化多电平(MMC)技术,直流电压等级为±160kV,传输容量200MW。

多端柔性直流输电控制系统的研究

多端柔性直流输电控制系统的研究

多端柔性直流输电控制系统的研究1. 本文概述本文《多端柔性直流输电控制系统的研究》聚焦于当今电力系统领域的一项关键技术——多端柔性直流(MultiTerminal Flexible Direct Current, MTDC)输电系统的控制策略与技术优化。

随着可再生能源的大规模开发与并网需求的增长,以及电力市场对远距离、大容量输电能力的迫切需求,多端柔性直流输电系统以其独特的优点,如独立调节各端功率、高效传输、损耗低和电网互联能力强等,日益成为现代电力系统的关键组成部分。

其复杂的拓扑结构与动态特性给控制系统的理论研究与工程实践带来了新的挑战。

本研究旨在深入探究多端柔性直流输电控制系统的各个方面,包括但不限于系统建模、稳定性分析、控制策略设计、故障检测与保护机制、以及与交流电网的交互特性。

文章首先系统梳理了现有文献中关于MTDC控制技术的研究进展,指出了当前研究的热点与存在的问题,为后续研究工作奠定了理论基础。

系统建模与动态特性分析:基于电力电子设备特性和电网运行条件,建立了精确且易于进行控制设计的多端柔性直流输电系统数学模型,揭示了其内在的动态行为及关键影响因素。

通过深入的理论分析,明确了系统稳定性的关键指标及其影响因素,为后续控制策略的设计提供了理论依据。

创新性控制策略设计:针对多端柔性直流系统的特定控制需求,提出了一种(或多种)新型控制策略,旨在实现功率的高效分配、电压稳定控制、故障快速响应以及系统整体性能优化。

策略设计充分考虑了系统的非线性特性、通信延迟、不确定性和鲁棒性要求,并通过仿真与或实验验证了其有效性和优越性。

故障检测与保护机制:研究了多端柔性直流系统在各类故障情况下的响应特征,设计了先进的故障检测算法和保护策略,确保在发生故障时能迅速识别、隔离故障环节,有效防止故障扩大,保障系统的安全稳定运行。

交直流电网交互研究:探讨了多端柔性直流输电系统与交流电网的相互作用关系,分析了其对电网频率、电压稳定性以及电力市场运营等方面的影响,提出了优化交直流协调控制方案,以提升整个电力系统的综合性能和运行效率。

适用于多端柔性直流输电系统的新型直流电压控制策略

适用于多端柔性直流输电系统的新型直流电压控制策略

适用于多端柔性直流输电系统的新型直流电压控制策略一、概述随着电力电子技术的飞速发展,多端柔性直流输电系统(MTDC)在电网中的应用日益广泛。

MTDC系统以其灵活的运行方式、快速的功率响应以及优良的电能质量,成为解决分布式能源接入、区域电网互联、孤岛供电等问题的有效手段。

随着系统规模的扩大和结构的复杂化,MTDC系统的直流电压控制问题逐渐凸显,成为制约其进一步发展的关键因素。

直流电压控制是MTDC系统稳定运行的核心,它直接影响着系统的功率平衡、电能质量以及故障处理能力。

传统的直流电压控制策略往往基于单点控制或主从控制,这种控制方式在简单系统中表现良好,但在复杂多变的MTDC系统中,其局限性逐渐显现。

研究适用于多端柔性直流输电系统的新型直流电压控制策略,对于提高系统运行的稳定性、优化电能质量以及增强故障处理能力具有重要意义。

本文提出了一种适用于多端柔性直流输电系统的新型直流电压控制策略。

该策略基于分布式协同控制思想,通过引入电压下垂控制和功率分配策略,实现了各换流站之间的协同工作,有效平衡了系统功率,维持了直流电压的稳定。

同时,该策略还考虑了系统的故障处理能力,通过快速响应和自适应调整,提高了系统在故障情况下的稳定性。

本文首先对多端柔性直流输电系统的基本原理和运行特性进行了简要介绍,然后详细阐述了新型直流电压控制策略的设计思路和实现方法。

通过仿真实验验证了该策略的有效性,并与其他控制策略进行了对比分析。

研究结果表明,该新型直流电压控制策略能够有效提高多端柔性直流输电系统的运行稳定性和电能质量,为未来的电网发展提供了新的思路和方法。

1. 多端柔性直流输电系统概述多端柔性直流输电系统(VSCMTDC)作为现代电力系统中一项革命性的技术,近年来在能源传输领域的应用日益广泛。

该系统基于电压源换流器(VSC)实现直流输电,通过脉宽调制(PWM)控制技术,实现直流电压的调制与控制,进而控制输出的电压和电流。

与传统的两端直流输电系统相比,多端柔性直流输电系统具有更高的灵活性和适应性,能够应对更为复杂的电网运行环境和多变的运行条件。

多端柔性直流输电线路单极接地故障定位方法

多端柔性直流输电线路单极接地故障定位方法
cation is completed by combining the 1D ̄CNN classification model. After the fault region was determinedꎬthe wave ̄
let packet singular entropy was used to extract the deep fault features of the double ̄terminal mode voltage in the re ̄
MMC 换流阀

2 × 1700
2 × 1700
± 500
± 500
± 500
230 / 260
最大直流功率( MW)
1500
15
100
桥臂子模块数
子模块电容值( mF)
表 2 输电线路主要参数
区段
A-D
A-B
B-C
C-D

2 × 850
额定线电压( 网侧 / 阀侧) ( kV)
直流侧额定电压( kV)
障工况下的单极接地短路ꎮ 仿真结果表明该方法在
50kHz 采样频率下ꎬ能够实现多端柔直输电系统的
故障区段识别和定位ꎬ测距精度不易受到过渡电阻
空结构的多端柔性直流输电线路时常跨越多个区
影响ꎮ
域ꎬ沿线环境气候复杂多变ꎬ导致短路故障发生频
2 多端柔性直流输电系统结构
繁ꎬ其中单极接地短路概率最大 [2] ꎮ 精准可靠的故
阻、行波色散对线路测距的干扰ꎬ有效提高输电线路故障定位精度ꎮ 以先定区段再定位的思想ꎬ提出一种采
用小波包奇异熵和一维卷积神经网络( Convolutional Neural NetworksꎬCNN) 的多端柔性直流输电线路单极接

多端柔性直流输电技术资料

多端柔性直流输电技术资料

1、简介从上个世纪五十年代至今,高压直流输电技术( High Voltage DirectCurrent,HVDC) 经历了跨越式发展,己经广泛应用于风电场并网、大容量远距离输电、非同步大电网互联、孤岛和弱电网供电等领域HVDC 技术从早期的汞弧阀换流技术发展到高压大功率晶闹管换流器技术,极大地促进了直流输电技术的发展。

与高压输电技术相反的是换流技术几乎仍在原地踏步,线换相换流器( Line Commuted Converter, LCC) 直流输电占据主流。

由于晶闸管关断不可控,传统直流输电技术具有明显缺陷。

随着电力电子变流技术的迅猛发展,出现了以脉宽调制( Plus Width Modulation, PWM) 技术为基础的变流器。

并且PWM 变流器技术也日漆完善。

目前主要应用的主电路类型有电流型变流器( Current SourceConverter, CSC)和电压源型变流器( VoltageSource Converter, VSC) 。

并且,全控器件电压和容量的等级的不断提升,控制技术的日趋完善,带动VSC 开始应用于大容量高压输配电领域,如,灵活交流输电系统 ( Flexible ACTransmission System, FACTS) 、基于电压源变流器的高压直流输电(VSC basedHVDC ,VSC-HVDC) 、定制电力系统( Custom Power,CP)等典型代表。

VSC 设备配合不同的控制策略可以控制系统潮流、调节网络运行参数,进而优化电力统运行状态,提高系统稳定性和运行可靠性。

VSC-HVDC 技术是以电压源变流器,可控关断的IGBT 和脉宽调制( PWM )为基础的新型输电技术。

VSC-HVDC 不仅可以独立快速控制有功无功,还易于翻转潮流,实现了无源网络供电。

同时,随着能源紧缺和环境污染的日益严重,我国开始大力幵发和利用风能、太阳能等可再生清洁能源,优化能源结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

sum to a large ac grid-side VSC. Because of Schwarz’s Inequality
where Si (i=l,2, ...,n) is the complex power, the MVA ofthis large converter is smaller than the sum of the MVAs of converters serving individual DFIGs. Aside from the introduction, this paper is organized into six parts. Part I1 is a short description about MTDC-DFIG system. Part I11 demonstrates how the wind energy can be optimally captured and converted by a wind turbine with a doubly fed induction generator. Part IV shows how the stator side Ps and Qs can be controlled in a decoupled way by the rotor side converter voltage. Part V introduces the control of the grid-side voltage regulator. Part VI lists some simulation results to show that acquiring optimal wind power at varying wind velocities can be carried out in a DFIG and the MTDC-DFlG system. Part VI1 gives some conclusions.
I.
INTRODUCTION
11.
DESCRIPTION MTDC-DFIG SYSTEM OF
Wind energy is presently one of the most widely used renewable energy sources. Doubly-Fed Induction Generators (DFIGs) are ideal for wind turbines because both their real and reactive powers can be controlled on the rotor side using back-to-back converter pairs at slip (reduced) MVA ratings [ 1-31. This paper shows that there can be a further reduction in component count and in MVA by organizing the converter pairs in a multi-terminal DC (MTDC) system. In the MTDC system, the many individual grid-side converters and transformers (needed for voltage matching) are merged into a single large converter and transformer. The MTDC arrangement exploits the fact that wind power is never evenly distributed across the wind farm [I]. As a matter of fact, compensating high wind velocity at one turbine location with low velocity wind at a neighboring location is already seen as a method of averaging the temporal stochastic variations. Another factor which needs emphasizing is that the real power outputted on the rotor side of a DFIG is sPairgap, where s is the slip and, , . P is the air gap power. As the wind velocity drives the rotor speed U& above and below the synchronous speed w.y., the rotor power reverses direction with the positive or negative sign of the slip. The dc bus of the MTDC system collects the rotor powers of varying magnitudes and polarities before channeling the algebraic
In conventional operation, when all the DFIGs rotate at super-synchronous speeds (negative slip), the rotor ac power of each DFIG is rectified by its VSC. The dc outputs of the VSCs are connected to the dc bus ofthe MTDC system which aggregates the slip powers of the rotors before inverting them to the ac bus through the VSC (higher rating) which operates as a DC Voltage Regulator. The role of the DC Voltage Regulator is to maintain the dc voltage at the reference setting. To achieve this it invertslrectifies all the power that is rectifiedlinverted so as to prevent the dc capacitors from
In general, a wind farm consists of tens or hundreds of wind turbine-generators but for the purpose of this study it is sufficient to represent them as three DFIGs as shown in the single line diagram of Fig.1. The stators of the three DFIGs are connected to an ac bus directly. The power from these stators are collected at the ac bus and transmitted to the utility grid. Every rotor of the DFIGs is connected to a VSC (Voltage-Source Converter). The kVA rating of each of these VSCs is only s I S I where s is the slip and I S 1 is the complex powerrating ofthe DFIG. The dc terminals ofthese VSCs are connected to a common dc bus. The VSC, laheled as DC Voltage Regulator, maintains the dc power balance in the dc bus and at the same time can provide reactive power on the ac side. A transformer matches the ac voltage levels.
Lianwei Jiao* Geza Joos Chad Abbey Fengquan Zhou Boon-Teck Ooi Electrical and Computer Engineering Department, McGill University, Montreal, Canada *Department of Electrical Engineering, Tsinghua University, Beijing, China, Iwjiao@power.ece.mcgill.ca
Abstract- Of the environmentally friendly, renewable energy sources of the future, wind turbines are, cost-wise, amongst the most competitive. Doubly-Fed Induction Generators (DFIGs) are ideal for wind turbines because both their real and reactive powers can he controlled on the rotor side using back-to-hack converters at slip (reduced) MVA ratings. This paper shows that there can be a further reduction in component count and total MVA by organizing the back-to-back converters in a multi-terminal DC (MTDC) system. In the MTDC system, the many ac grid-side VSCs (and transformers needed for voltage matching) are merged into a single or a few VSC(s). The MVA of the large VSC is smaller than the sum of the MVAs of VSCs serving individual DFlGs because the wind power is never evenly distributed across the wind farm. Simulations show that optimal capture of wind power and ac voltage regulation are achievable under MTDC control.
相关文档
最新文档