数据结构课程设计报告一元多项式的计算

合集下载

数据结构课程设计-一元多项式的加法、减法、乘法的实现

数据结构课程设计-一元多项式的加法、减法、乘法的实现

一、设计题目一元多项式的加法、减法、乘法的实现。

二、主要内容设有一元多项式A m(x)和B n(x).A m(x)=A0+A1x1+A2x2+A3x3+… +A m x mB n(x)=B0+B1x1+B2x2+B3x3+… +B n x n请实现求M(x)= A m(x)+B n(x)、M(x)= A m(x)-B n(x)和M(x)= A m(x)×B n(x)。

要求:1) 首先判定多项式是否稀疏2) 采用动态存储结构实现;3) 结果M(x)中无重复阶项和无零系数项;4) 要求输出结果的升幂和降幂两种排列情况三、具体要求及应提交的材料1.每个同学以自己的学号和姓名建一个文件夹,如:“312009*********张三”。

里面应包括:学生按照课程设计的具体要求所开发的所有源程序(应该放到一个文件夹中)、任务书和课程设计说明书的电子文档。

2.打印的课程设计说明书(注意:在封面后夹入打印的“任务书”以后再装订)。

四、主要技术路线提示为把多个小功能结合成一个完整的小软件,需使用“菜单设计”技术(可以是控制台方式下的命令行形式,若能做成图形方式则更好)。

五、进度安排共计两周时间,建议进度安排如下:选题,应该在上机实验之前完成需求分析、概要设计可分配4学时完成详细设计可分配4学时调试和分析可分配10学时。

2学时的机动,可用于答辩及按教师要求修改课程设计说明书。

注:只用课内上机时间一般不能完成设计任务,所以需要学生自行安排时间做补充。

六、推荐参考资料(不少于3篇)[1]苏仕华等编著,数据结构课程设计,机械工业出版社,2007[2]严蔚敏等编著,数据结构(C语言版),清华大学出版社,2003[3]严蔚敏等编著,数据结构题集(C语言版),清华大学出版社,2003指导教师签名日期年月日系主任审核日期年月日摘要分析了matlab,mathmatic,maple等数学软件对一元多项式的计算过程,步骤后。

由于这些软件比较大功能齐全,但是实用性不强。

数据结构课程设计报告一元多项式的计算

数据结构课程设计报告一元多项式的计算

一元多项式的计算一、 需求分析建立一元多项式并按照指数降序排列输出多项式,将一元多项式输入并存储在内存中,能够完成两个多项式的加减运算并输出结果二、 概要设计存储结构:一元多项式的表示在计算机内可以用链表来表示,为了节省存储空间,只存储多项式中系数非零的项。

链表中的每一个结点存放多项式的一个系数非零项,它包含三个域,分别存放该项的系数、指数以及指向下一个多项式项结点的指针。

创建一元多项式链表,对一元多项式的运算中会出现的各种可能情况进行分析,实现一元多项式的相加、相减操作。

基本算法: 1、输入输出(1)功能:将要进行运算的多项式输入输出。

(2)数据流入:要输入的多项式的系数与指数。

(3)数据流出:合并同类项后的多项式。

(4)程序流程图:多项式输入流程图如图1所示。

(5)测试要点:输入的多项式是否正确,若输入错误则重新输入开始 申请结点空间输入多项式各项的系数 x, 指数 y输出已输入的多项式合并同类项结束否是是否输入正确图表 12、多项式的加法(1)功能:将两多项式相加。

(2)数据流入:输入函数。

(3)数据流出:多项式相加后的结果。

(4)程序流程图:多项式的加法流程图如图2所示。

(5)测试要点:两多项式是否为空,为空则提示重新输入,否则,进行运算。

图表 2开始 定义存储结果的空链 r是否输出存储多项式的和的链r结束 是 否同指数项系数相加后存入r 直接把p 中各项存入r直接把q 中各项存入r存储多项式2的空链Q 是否为空存储多项式1的空链P 是否为空合并同类项3、多项式的减法(1)功能:将两多项式相减。

(2)数据流入:调用输入函数。

(3)数据流出:多项式相减后的结果。

(4)程序流程图:多项式的减法流程图如图3所示。

(5)测试要点:两多项式是否为空,为空则提示重新输入,否则,进行运算。

开始定义存储结果的空链是否合并同类项结束是 否同指数项系数相加后存入r把p 中各项系数改变符号后存入直接把q 中各项存入r存储多项式2的空链Q 是否为空 存储多项式1的空链P 是否为空输出存储多项式图表 3三、详细设计#include<stdio.h>#include<malloc.h>#include<stdlib.h>typedef struct Polynomial{float coef;int expn;struct Polynomial *next;}*Polyn,Polynomial;/**************合并同类项********************/ void Insert(Polyn p,Polyn h){if(p->coef==0) //系数为0的话释放结点free(p);else //如果系数不为0{Polyn q1,q2;q1=h;q2=h->next;while(q2&&p->expn<q2->expn)//查找插入位置{q1=q2;q2=q2->next;}if(q2&&p->expn==q2->expn)//将指数相同相合并{q2->coef+=p->coef;free(p);if(!q2->coef) //系数为0的话释放结点{q1->next=q2->next;free(q2);}}else{ //指数为新时将结点插入p->next=q2;q1->next=p;}}}/*****************合并同类项,并按升幂排序*****************/ Polyn HeBing(Polyn &L){Polyn p1,p2,p3,p4,p5,p6;float t1;int t2;p1=L->next;while(p1!=NULL) //非递减顺序排列{p2=p1->next;while(p2!=NULL){if(p1->expn>p2->expn){t1=p1->coef;t2=p1->expn;p1->coef=p2->coef;p1->expn=p2->expn;p2->coef=t1;p2->expn=t2;}p2=p2->next;}p1=p1->next;}p3=L->next;while(p3!=NULL) //合并同类项{p4=p3->next;while(p4!=NULL){if(p3->expn==p4->expn){p3->coef=p3->coef+p4->coef;p3->next=p4->next;free(p4);p4=p3->next;}elsep4=p4->next;}p3=p3->next;}p5=L;while(p5->next!=NULL) //删除零项{p6=p5->next;if(p6->coef==0){p5->next=p6->next;free(p6);}p5=p5->next;}return L;}/*****************建立一个多项式****************/ Polyn CreatPolyn(Polyn &p){Polyn h,s;p=(Polyn)malloc(sizeof(struct Polynomial));if(!p)exit(1);p->coef=0;p->expn=-1;p->next=NULL;h=p;scanf("%f%d",&p->coef,&p->expn);while(p->coef!=0||p->expn!=0)//输入数据{s=(Polyn)malloc(sizeof(struct Polynomial));if(!s)exit(1);s->coef=p->coef;s->expn=p->expn;h->next=s;h=s;scanf("%f%d",&p->coef,&p->expn);}h->next=NULL;HeBing(p);return p;}/******************多项式的销毁***************/ void DestroyPolyn(Polyn p){Polyn q1,q2;q1=p->next;q2=q1->next;while(q1->next){free(q1);q1=q2;q2=q2->next;}}/*************输出多项式**************/void PrintPolyn(Polyn P){Polyn q=P->next;int flag=1;if(!q){putchar('0');printf("\n");return;} //若多项式为空,输出0while (q){if(q->coef>0&&flag!=1) putchar('+'); //系数大于0且不是第一项if(q->coef!=1&&q->coef!=-1)//系数非1或-1的普通情况{printf("%g",q->coef);if(q->expn==1) putchar('X');else if(q->expn) printf("X^%d",q->expn);}else{if(q->coef==1){if(!q->expn) putchar('1');elseif(q->expn==1) putchar('X');else printf("X^%d",q->expn);}if(q->coef==-1){if(!q->expn) printf("-1");elseif(q->expn==1) printf("-X");else printf("-X^%d",q->expn);}}q=q->next;flag++;}printf("\n");}/************辅助乘法和加法运算*************/int compare(Polyn a,Polyn b){if(a&&b){if(!b||a->expn>b->expn)return 1;elseif(!a||a->expn<b->expn)return -1;elsereturn 0;}elseif(!a&&b)return -1;//a多项式已空,但b多项式非空elsereturn 1;//b多项式已空,但a多项式非空}/*************多项式的加法*********************/ Polyn AddPolyn(Polyn pa,Polyn pb){Polyn qa=pa->next;Polyn qb=pb->next;Polyn headc,hc,qc;hc=(Polyn)malloc(sizeof(struct Polynomial));hc->next=NULL;headc=hc;while(qa||qb){qc=(Polyn)malloc(sizeof(struct Polynomial));switch(compare(qa,qb)){case 1:{qc->coef=qa->coef;qc->expn=qa->expn;qa=qa->next;break;}case 0:{qc->coef=qa->coef+qb->coef;qc->expn=qa->expn;qa=qa->next;qb=qb->next;break;}case -1:{qc->coef=qb->coef;qc->expn=qb->expn;qb=qb->next;break;}}if(qc->coef!=0){qc->next=hc->next;hc->next=qc;hc=qc;}else free(qc);//当相加系数为0时,释放该结点}HeBing(headc);return headc;}/************多项式的减法*****************/Polyn SubstractPolyn(Polyn pa,Polyn pb){Polyn h=pb;Polyn p=pb->next;Polyn pd;while(p) //将pb的系数取反{p->coef*=-1;p=p->next;}pd=AddPolyn(pa,h);for(p=h->next;p;p=p->next) //恢复pb的系数p->coef*=-1;HeBing(pd);return pd;}/*****************多项式的乘法*********************/Polyn MultiplyPolyn(Polyn pa,Polyn pb){Polyn hf,pf;Polyn qa=pa->next;Polyn qb=pb->next;hf=(Polyn)malloc(sizeof(struct Polynomial));hf->next=NULL;for(;qa;qa=qa->next){for(qb=pb->next;qb;qb=qb->next){pf=(Polyn)malloc(sizeof(struct Polynomial));pf->coef=qa->coef*qb->coef;pf->expn=qa->expn+qb->expn;Insert(pf,hf);//调用Insert函数以合并指数相同的项}}HeBing(hf);return hf;}/*******************主函数*******************/void main(){Polyn p1, p2, p3, p4, p5;CreatPolyn(p1);CreatPolyn(p2);PrintPolyn(p1);PrintPolyn(p2);p3=AddPolyn(p1, p2);PrintPolyn(p3);p4=SubstractPolyn(p1, p2);PrintPolyn(p4);p5=MultiplyPolyn(p1, p2);PrintPolyn(p5);DestroyPolyn(p1);DestroyPolyn(p2);DestroyPolyn(p3);DestroyPolyn(p4);DestroyPolyn(p5);}四、调试结果1.测试的数据及结果2.算法的时间复杂度及改进算法的时间复杂度:一元多项式的加法运算的时间复杂度为O(m+n),减法运算的时间复杂度为O(m-n),其中m,n分别表示二个一元多项式的项数。

一元多项式计算(数据结构课程设计)

一元多项式计算(数据结构课程设计)

一元多项式计算(数据结构课程设计)一、系统设计1、算法思想根据一元多项式相加的运算规则:对于两个一元多项式中所有指数相同的项,对应指数相加(减),若其和(差)不为零,则构成“和(差)多项式”中的一项;对于两个一元多项式中所有指数不相同的项,则分别写到“和(差)多项式”中去。

因为多项式指数最高项以及项数是不确定的,因此采用线性链表的存储结构便于实现一元多项式的运算。

为了节省空间,我采用两个链表分别存放多项式a 和多项式b,对于最后计算所得的多项式则利用多项式a进行存储。

主要用到了单链表的插入和删除操作。

(1)一元多项式加法运算它从两个多项式的头部开始,两个多项式的某一项都不为空时,如果指数相等的话,系数就应该相加;相加的和不为零的话,用头插法建立一个新的节点。

P 的指数小于q的指数的话就应该复制q的节点到多项式中。

P的指数大于q的指数的话,就应该复制p节点到多项式中。

当第二个多项式空,第一个多项式不为空时,将第一个多项式用新节点产生。

当第一个多项式空,第二个多项式不为空时,将第二个多项式用新节点产生。

(2)一元多项式的减法运算它从两个多项式的头部开始,两个多项式的某一项都不为空时,如果指数相等的话,系数就相减;相加的和不为零的话,用头插法建立一个新的节点。

p的指数小于q的指数的话,就应该复制q的节点到多项式中。

P的指数大于q的指数的话就应该复制p的节点到多项式中,并且建立的节点的系数为原来的相反数;当第二个多项式空,第一个多项式不为空时,将第一个多项式用新节点产生。

当第一个多项式空,第二个多项式不为空时,将第二个多项式用新节点产生,并且建立的节点的系数为原来的相反数。

2、概要设计(1)主函数流程图:(注:a代表第一个一元二次方程,b代表第二个一元二次方程)(2)一元多项式计算算法用类C语言表示:Typedef struct00{ //项的表示,多项式的项作为LinkList的数据元素Float coef;//细数Int expn;//指数}term,ElemType;//两个类型名:term用于本ADT,ElemType为LinkList的数据对象名Typedef LinkList polynomial://用带表头的节点的有序链表表示多项式//基本操作的函数原型说明Void CreatePolyn(polynomail&P);//输入n的系数和指数,建立表示一元多项式的有序链表P 销毁一元多项式P Void DestroyPolyn(polynomailP);销毁一元多项式PvoidPrintPoly(polynomail P);//打印输入一元多项式PIntPolynLength(polynnomail P);//返回一元多项式P中的项数void CreatPolyn(polynomail&Pa.polunomail&Pb);//完成多项式相加运算,即:Pa=Pa+Pb,并贤惠一元多项式Pb voidSubtractPolyn(polunomail&Papolunomail&Pb);//完成多项式相减运算,即:Pa=Pa-Pb,并销毁一元多项式Pb//基本操作的算法描述Int cmp(tem a,temp b);//依a的指数值<(或=)(或>b的住数值,分别返回-1、0和+1Void CreatePolyn(polynomail&P,int m){//输入m项的系数和指数,建立表示一元多项式的有序链表PInitList(P);h=GetHead(P);E.coef=0.0; e.expn=-1;S erCurElem(h,e);//设置头结点的数据元素For (i=1;i<=m;++i){ //依次输入m个非零项Scanf(e.coef,e.epn);If(!LocateElem(P,e,q,(*cmp)())){//当前链表中不存在该指数项If(MakeNode(s,e))InsFirst(q,s);//生成节点并插入链表}}}//CreatPolun二、详细设计1、算法实现(1)输入一元多项式函数:void shuchu(pnode *head){pnode *p;int one_time=1;p=head;while(p!=NULL) /*如果不为空*/{if(one_time==1){if(p->zhishu==0) /*如果指数为0的话,直接输出系数*/printf("%5.2f",p->xishu); /*如果系数是正的话前面就要加+号*/else if(p->xishu==1||p->xishu==-1)printf("X^%d",p->zhishu); /*如果系数是1的话就直接输出+x*//*如果系数是-1的话就直接输出-x号*/else if(p->xishu>0) /*如果系数是大于0的话就输出+系数x^指数的形式*/ printf("%5.2fX^%d",p->xishu,p->zhishu);else if(p->xishu<0) /*如果系数是小于0的话就输出系数x^指数的形式*/ printf("%5.2fX^%d",p->xishu,p->zhishu);one_time=0;}else{if(p->zhishu==0) /*如果指数为0的话,直接输出系数*/{if(p->xishu>0)printf("+%5.2f",p->xishu); /*如果系数是正的话前面就要加+号*/}else if(p->xishu==1) /*如果系数是1的话就直接输出+x号*/printf("+X^%d",p->zhishu);else if(p->xishu==-1) /*如果系数是-1的话就直接输出-x号*/printf("X^%d",p->zhishu);else if(p->xishu>0) /*如果系数是大于0的话就输出+系数x^指数的形式*/ printf("+%5.2fX^%d",p->xishu,p->zhishu);else if(p->xishu<0) /*如果系数是小于0的话就输出系数x^指数的形式*/printf("%5.2fX^%d",p->xishu,p->zhishu);}p=p->next; /*指向下一个指针*/}printf("\n");}(2)加法函数/*两个多项式的加法运算*/pnode * add(pnode *heada,pnode *headb){pnode *headc,*p,*q,*s,*r; /*headc为头指针,r,s为临时指针,p指向第1个多项式并向右移动,q指向第2个多项式并向右移动*/float x; /*x为系数的求和*/p=heada; /*指向第一个多项式的头*/q=headb; /*指向第二个多项式的头*/headc=(pnode *)malloc(sizeof(pnode)); /*开辟空间*/r=headc;while(p!=NULL&&q!=NULL) /*2个多项式的某一项都不为空时*/{if(p->zhishu==q->zhishu) /*指数相等的话*/{x=p->xishu+q->xishu; /*系数就应该相加*/if(x!=0) /*相加的和不为0的话*/{s=(pnode *)malloc(sizeof(pnode)); /*用头插法建立一个新的节点*/s->xishu=x;s->zhishu=p->zhishu;r->next=s;r=s;}q=q->next;p=p->next; /*2个多项式都向右移*/}else if(p->zhishu<q->zhishu) /*p的系数小于q的系数的话,就应该复制q节点到多项式中*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=q->xishu;s->zhishu=q->zhishu;r->next=s;r=s;q=q->next; /*q向右移动*/}else/*p的系数大于q的系数的话,就应该复制p节点到多项式中*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next; /*p向右移动*/}}/*当第2个多项式空,第1个数不为空时,将第一个数剩下的全用新节点产生*/ while(p!=NULL){s=(pnode *)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next;}/*当第1个多项式空,第1个数不为空时,将第2个数剩下的全用新节点产生*/ while(q!=NULL){s=(pnode *)malloc(sizeof(pnode));s->xishu=q->xishu;s->zhishu=q->zhishu;r->next=s;r=s;q=q->next;}r->next=NULL; /*最后指向空*/headc=headc->next; /*第一个头没有用到*/return headc; /*返回头接点*/}(3)减法函数/*两个多项式的加法运算*/pnode * add(pnode *heada,pnode *headb){pnode *headc,*p,*q,*s,*r; /*headc为头指针,r,s为临时指针,p指向第1个多项式并向右移动,q指向第2个多项式并向右移动*/float x; /*x为系数的求和*/p=heada; /*指向第一个多项式的头*/q=headb; /*指向第二个多项式的头*/headc=(pnode *)malloc(sizeof(pnode)); /*开辟空间*/r=headc;while(p!=NULL&&q!=NULL) /*2个多项式的某一项都不为空时*/{if(p->zhishu==q->zhishu) /*指数相等的话*/{x=p->xishu+q->xishu; /*系数就应该相加*/if(x!=0) /*相加的和不为0的话*/{s=(pnode *)malloc(sizeof(pnode)); /*用头插法建立一个新的节点*/s->xishu=x;s->zhishu=p->zhishu;r->next=s;r=s;}q=q->next;p=p->next; /*2个多项式都向右移*/}else if(p->zhishu<q->zhishu) /*p的系数小于q的系数的话,就应该复制q节点到多项式中*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=q->xishu;s->zhishu=q->zhishu;r->next=s;r=s;q=q->next; /*q向右移动*/}else/*p的系数大于q的系数的话,就应该复制p节点到多项式中*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next; /*p向右移动*/}}/*当第2个多项式空,第1个数不为空时,将第一个数剩下的全用新节点产生*/ while(p!=NULL){s=(pnode *)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next;}/*当第1个多项式空,第1个数不为空时,将第2个数剩下的全用新节点产生*/ while(q!=NULL){s=(pnode *)malloc(sizeof(pnode));s->xishu=q->xishu;s->zhishu=q->zhishu;r->next=s;r=s;q=q->next;}r->next=NULL; /*最后指向空*/headc=headc->next; /*第一个头没有用到*/return headc; /*返回头接点*/}2、程序代码/*一元多项式计算*//*程序功能:能够按照指数降序排列建立并输出多项式;能够完成两个多项式的相加、相减,并将结果输出;*//*提示:输入完一元多项式之后,输入“0 0”结束本一元多项式的输入*//*注意:系数只精确到百分位,最大系数只能为999.99,指数为整数.如果需要输入更大的系数,可以对程序中5.2%f进行相应的修改*/#include<stdio.h>#include<malloc.h>#include<stdlib.h>#include<conio.h>/*建立结构体*/typedef struct pnode{float xishu; /*系数*/int zhishu; /*指数*/struct pnode *next; /*下一个指针*/}pnode;/*用头插法生成一个多项式,系数和指数输入0时退出输入*/pnode * creat()int m;float n;pnode *head,*rear,*s; /*head为头指针,rear和s为临时指针*/ head=(pnode *)malloc(sizeof(pnode));rear=head; /*指向头*/scanf("%f",&n); /*系数*/scanf("%d",&m); /*输入指数*/while(n!=0) /*输入0退出*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=n;s->zhishu=m;s->next=NULL;rear->next=s; /*头插法*/rear=s;scanf("%f",&n); /*输入系数*/scanf("%d",&m); /*输入指数*/}head=head->next; /*第一个头没有用到*/return head;}/*调整多项式*/void tiaozhen(pnode *head){pnode *p,*q,*t;float temp;p=head;while(p!=NULL){q=p;t=q->next;while(t!=NULL){if(t->zhishu>q->zhishu)q=t;t=t->next;}temp=p->xishu;p->xishu=q->xishu;q->xishu=temp;temp=p->zhishu;p->zhishu=q->zhishu;q->zhishu=temp;p=p->next;}/*显示一个多项式*/void shuchu(pnode *head){pnode *p;int one_time=1;p=head;while(p!=NULL) /*如果不为空*/{if(one_time==1){if(p->zhishu==0) /*如果指数为0的话,直接输出系数*/printf("%5.2f",p->xishu); /*如果系数是正的话前面就要加+号*/else if(p->xishu==1||p->xishu==-1)printf("X^%d",p->zhishu); /*如果系数是1的话就直接输出+x*//*如果系数是-1的话就直接输出-x号*/else if(p->xishu>0) /*如果系数是大于0的话就输出+系数x^指数的形式*/ printf("%5.2fX^%d",p->xishu,p->zhishu);else if(p->xishu<0) /*如果系数是小于0的话就输出系数x^指数的形式*/ printf("%5.2fX^%d",p->xishu,p->zhishu);one_time=0;}else{if(p->zhishu==0) /*如果指数为0的话,直接输出系数*/{if(p->xishu>0)printf("+%5.2f",p->xishu); /*如果系数是正的话前面就要加+号*/}else if(p->xishu==1) /*如果系数是1的话就直接输出+x号*/printf("+X^%d",p->zhishu);else if(p->xishu==-1) /*如果系数是-1的话就直接输出-x号*/printf("X^%d",p->zhishu);else if(p->xishu>0) /*如果系数是大于0的话就输出+系数x^指数的形式*/ printf("+%5.2fX^%d",p->xishu,p->zhishu);else if(p->xishu<0) /*如果系数是小于0的话就输出系数x^指数的形式*/ printf("%5.2fX^%d",p->xishu,p->zhishu);}p=p->next; /*指向下一个指针*/}printf("\n");/*两个多项式的加法运算*/pnode * add(pnode *heada,pnode *headb){pnode *headc,*p,*q,*s,*r; /*headc为头指针,r,s为临时指针,p指向第1个多项式并向右移动,q指向第2个多项式并向右移动*/float x; /*x为系数的求和*/p=heada; /*指向第一个多项式的头*/q=headb; /*指向第二个多项式的头*/headc=(pnode *)malloc(sizeof(pnode)); /*开辟空间*/r=headc;while(p!=NULL&&q!=NULL) /*2个多项式的某一项都不为空时*/{if(p->zhishu==q->zhishu) /*指数相等的话*/{x=p->xishu+q->xishu; /*系数就应该相加*/if(x!=0) /*相加的和不为0的话*/{s=(pnode *)malloc(sizeof(pnode)); /*用头插法建立一个新的节点*/s->xishu=x;s->zhishu=p->zhishu;r->next=s;r=s;}q=q->next;p=p->next; /*2个多项式都向右移*/}else if(p->zhishu<q->zhishu) /*p的系数小于q的系数的话,就应该复制q节点到多项式中*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=q->xishu;s->zhishu=q->zhishu;r->next=s;r=s;q=q->next; /*q向右移动*/}else/*p的系数大于q的系数的话,就应该复制p节点到多项式中*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next; /*p向右移动*/}}/*当第2个多项式空,第1个数不为空时,将第一个数剩下的全用新节点产生*/ while(p!=NULL){s=(pnode *)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next;}/*当第1个多项式空,第1个数不为空时,将第2个数剩下的全用新节点产生*/ while(q!=NULL){s=(pnode *)malloc(sizeof(pnode));s->xishu=q->xishu;s->zhishu=q->zhishu;r->next=s;r=s;q=q->next;}r->next=NULL; /*最后指向空*/headc=headc->next; /*第一个头没有用到*/return headc; /*返回头接点*/}/*两个多项式的减法运算*/pnode * sub(pnode *heada,pnode *headb){pnode *headc,*p,*q,*s,*r;float x; /*x为系数相减*/p=heada; /*指向第一个多项式的头*/q=headb; /*指向第二个多项式的头*/headc=(pnode *)malloc(sizeof(pnode)); /*开辟空间*/r=headc;while(p!=NULL&&q!=NULL) /*两个多项式的某一项都不为空时*/{if(p->zhishu==q->zhishu) /*指数相等的话*/{x=p->xishu-q->xishu; /*系数相减*/if(x!=0) /*相减的差不为0的话*/{s=(pnode *)malloc(sizeof(pnode)); /*用头插法建立一个新的节点*/s->xishu=x;s->zhishu=p->zhishu;r->next=s;r=s;}q=q->next;p=p->next; /*2个多项式都向右移*/}else if(p->zhishu<q->zhishu) /*p的系数小于q的系数的话*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=-q->xishu; /*建立的节点的系数为原来的相反数*/s->zhishu=q->zhishu;r->next=s;r=s;q=q->next;}else{s=(pnode *)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next; /*p向右移动*/}}while(p!=NULL) /*当第2个多项式空,第1个数不为空时,将第一个数剩下的全用新节点产生*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=p->xishu;s->zhishu=p->zhishu;r->next=s;r=s;p=p->next;}while(q!=NULL) /*当第1个多项式空,第1个数不为空时,将第2个数剩下的全用新节点产生*/{s=(pnode *)malloc(sizeof(pnode));s->xishu=-q->xishu; /*建立的节点的系数为原来的相反数*/ s->zhishu=q->zhishu;r->next=s;r=s;q=q->next;}r->next=NULL; /*最后指向空*/headc=headc->next; /*第一个头没有用到*/return headc; /*返回头接点*/}void add_main(){pnode * a,*b,*c;printf("\n输入第一个一元多项式:\n系数指数\n");a=creat();tiaozhen(a);printf("\n输入第二个一元多项式:\n系数指数\n");b=creat();tiaozhen(b);c=add(a,b);printf("第一个一元多项式如下:");shuchu(a);printf("第二个一元多项式如下:");shuchu(b);printf("两式相加如下:");shuchu(c);}void sub_main(){pnode * a,*b,*c;printf("\n输入第一个一元多项式:\n系数指数\n");a=creat();tiaozhen(a);printf("\n输入第二个一元多项式:\n系数指数\n");b=creat();tiaozhen(b);c=sub(a,b);printf("第一个一元多项式如下:");shuchu(a);printf("第二个一元多项式如下:");shuchu(b);printf("两式相减如下:");shuchu(c);}void open(){printf("\n****************************************************\n");printf(" 功能项: * 1 两个一元多项式相加;2 两个一元多项式相减;0 退出*\n");printf("****************************************************\n\n请选择操作: ");}void main(){int choose;open();while(choose!=0){scanf("%d",&choose);getchar();switch(choose){case 0:return;case 1:printf("\n 两个一元多项式相加\n");add_main();choose=-1;open();break;case 2:printf("\n 两个一元多项式相减\n");sub_main();choose=-1;open();break;default:printf("没有该选项!请重新选择操作!\n\n");open();}}}三、测试方案及结果1、测试方案在Visual C++ 6.0环境中调试运行。

数据结构一元多项式的运算

数据结构一元多项式的运算

目录一、问题分析.................................... 错误!未定义书签。

问题描述 ........................................................................ 错误!未定义书签。

问题的数学模型............................................................. 错误!未定义书签。

构造数据结构................................................................. 错误!未定义书签。

二、系统分析 ...................................................................... 错误!未定义书签。

可行性研究..................................................................... 错误!未定义书签。

系统结构与主要功能模块 ............................................. 错误!未定义书签。

三、系统设计 ...................................................................... 错误!未定义书签。

系统设计目的与要求 ....................................................... 错误!未定义书签。

系统设计内容................................................................... 错误!未定义书签。

功能算法描述与数据结构说明........................................ 错误!未定义书签。

数据结构课程设计—一元多项式加法、减法、乘法运算的实现

数据结构课程设计—一元多项式加法、减法、乘法运算的实现

1.一元多项式加法、减法、乘法运算的实现设计内容及要求1)设计内容(1)使用顺序存储结构实现多项式加、减、乘运算。

例如:10321058)(2456+-+-+=x x x x x x f ,x x x x x x g +--+=23451020107)( 求和结果:102220128)()(2356++-+=+x x x x x g x f(2)使用链式存储结构实现多项式加、减、乘运算,10305100)(1050100+-+=x x x x f ,x x x x x x g 320405150)(10205090+++-= 求和结果:1031040150100)()(102090100++-++=+x x x x x x g x f2)设计要求(1)用C 语言编程实现上述实验内容中的结构定义和算法。

(2)要有main()函数,并且在main()函数中使用检测数据调用上述算法。

(3)用switch 语句设计如下选择式菜单。

***************数据结构综合性实验**************** *******一、多项式的加法、减法、乘法运算********** ******* 1.多项式创建 ********** ******* 2.多项式相加 ********** ******* 3.多项式相减 ***************** 4.多项式相乘 ***************** 5.清空多项式 ***************** 0.退出系统 ***************** 请选择(0—5) ************************************************************请选择(0-5):数据结构设计根据下面给出的存储结构定义:#define MAXSIZE 20 xpn!={i++;}if(i>p->last){return 0;}else{return 1;}}int Insert_ElementByOrder(polynomial*p,term x) {int j;if(PloynStatus(p)==-1)return 0;if(p->last==MAXSIZE-1){cout<<"The polym is full!"<<endl;return 0;}j=p->last;while(p->terms[j].expn< && j>=0){p->terms[j+1]=p->terms[j];j--;}p->terms[j+1]=x;p->last++;return 1;}int CreatePolyn(polynomial*P,int m){float coef;int expn;term x;if(PloynStatus(P)==-1)return 0;if(m>MAXSIZE){printf("顺序表溢出\n");return 0;else{printf("请依次输入%d对系数和指数...\n",m);for(int i=0;i<m;i++){scanf("%f%d",&coef,&expn);=coef;=expn;if(!Location_Element(P,x)){Insert_ElementByOrder(P,x);}}}return 1;}char compare(term term1,term term2){if>{return'>';}else if<{return'<';}else{return'=';}}polynomial*addPloyn(polynomial*p1,polynomial*p2){int i,j,k;i=0;j=0;k=0;if((PloynStatus(p1)==-1)||(PloynStatus(p2)==-1)) {return NULL;}polynomial*p3=Init_Polynomial();while(i<=p1->last && j<=p2->last)switch(compare(p1->terms[i],p2->terms[j])){case'>':p3->terms[k++]=p1->terms[i++];p3->last++;break;case'<':p3->terms[k++]=p2->terms[j++];p3->last++;break;case'=':if(p1->terms[i].coef+p2->terms[j].coef!=0){p3->terms[k].coef=p1->terms[i].coef+p2->terms[j].coef;p3->terms[k].expn=p1->terms[i].expn;k++;p3->last++;}i++;j++;}}while(i<=p1->last){p3->terms[k++]=p1->terms[i++];p3->last++;}return p3;}polynomial*subStractPloyn(polynomial*p1,polynomial*p2){int i;i=0;if((PloynStatus(p1)!=1)||(PloynStatus(p2)!=1)){return NULL;}polynomial*p3=Init_Polynomial();p3->last=p2->last;for(i=0;i<=p2->last;i++){p3->terms[i].coef=-p2->terms[i].coef;p3->terms[i].expn=p2->terms[i].expn;p3=addPloyn(p1,p3);return p3;}polynomial*mulitPloyn(polynomial*p1,polynomial*p2){int i;int j;int k;i=0;if((PloynStatus(p1)!=1)||(PloynStatus(p2)!=1)){return NULL;}polynomial*p3=Init_Polynomial();polynomial**p=new polynomial*[p2->last+1];for(i=0;i<=p2->last;i++){for(k=0;k<=p2->last;k++){p[k]=Init_Polynomial();p[k]->last=p1->last;for(j=0;j<=p1->last;j++){p[k]->terms[j].coef=p1->terms[j].coef*p2->terms[k].coef;p[k]->terms[j].expn=p1->terms[j].expn+p2->terms[k].expn;}p3=addPloyn(p3,p[k]);}}return p3;}void printPloyn(polynomial*p){int i;for(i=0;i<=p->last;i++){if(p->terms[i].coef>0 && i>0)cout<<"+"<<p->terms[i].coef;elsecout<<p->terms[i].coef;cout<<"x^"<<p->terms[i].expn;}cout<<endl;}void menu(){cout<<"\t\t*******数据结构综合性实验*********"<<endl;cout<<"\t\t***一、多项式的加、减、乘法运算***"<<endl;cout<<"\t\t******* 1.多项式创建 *********"<<endl;cout<<"\t\t******* 2.多项式相加 *********"<<endl;cout<<"\t\t******* 3.多项式相减 *********"<<endl;cout<<"\t\t******* 4.多项式相乘 *********"<<endl;cout<<"\t\t******* 5.清空多项式 *********"<<endl;cout<<"\t\t******* 0.退出系统 *********"<<endl;cout<<"\t\t****** 请选择(0-5) ********"<<endl;cout<<"\t\t***********************************"<<endl; }void main(){int sel;polynomial*p1=NULL;polynomial*p2=NULL;polynomial*p3=NULL;while(1){menu();cout<<"\t\t*请选择(0-5):";cin>>sel;switch(sel){case 1:p1=Init_Polynomial();p2=Init_Polynomial();int m;printf("请输入第一个多项式的项数:\n");scanf("%d",&m);CreatePolyn(p1,m);printf("第一个多项式的表达式为p1=");printPloyn(p1);printf("请输入第二个多项式的项数:\n");scanf("%d",&m);CreatePolyn(p2,m);printf("第二个多项式的表达式为p2=");printPloyn(p2);break;case 2:printf("p1+p2=");if((p3=subStractPloyn(p1,p2))!=NULL)printPloyn(p3);break;case 3:printf("\np1-p2=");if((p3=subStractPloyn(p1,p2))!=NULL)printPloyn(p3);break;case 4:printf("\np1*p2=");if((p3=mulitPloyn(p1,p2))!=NULL)printPloyn(p3);case 5:Reset_Polynomial(p1);Reset_Polynomial(p2);Reset_Polynomial(p3);break;case 0:return;}}return;}程序执行结果2.迷宫问题实现设计内容及要求1)设计内容以一个m*n的长方阵表示迷宫,0和1分别表示迷宫中的通路和障碍。

一元多项式的计算课程设计报告

一元多项式的计算课程设计报告

合肥学院计算机科学与技术系课程设计报告2008~2009学年第二学期课程程序设计语言Ⅱ课程设计课程设计名称多项式的计算学生姓名王建敏学号0804013029专业班级计算机科学与技术(3)班指导教师张贯虹汪彩梅2009年6月一、课程设计题目:多项式(单项链表的应用)二、分析与设计1.程序的基本功能(1)建立多项式(2)输出多项式(3)删除多项式以释放空间(4)删除多项式中的某一项(5)将多项式合并同类项(6)拷贝多项式(7)将多项式按指数升序排列(8)判断两多项式是否相等(9)两个多项式相加,建立并输出和多项式(10)两个多项式相减,建立并输出差多项式(11)两个多项式相乘,建立并输出积多项式(12)两个多项式相除,建立并输出商多项式2.算法设计本程序主要应用了链表,结构体和类模板。

用结构体来定义多项式的结点(即每一项),它包含三个域,分别存放该项的系数、指数以及指向下一项结点的指针;用链表来存储多项式,为了节省空间,只存储多项式中系数非0 的项,用多项式链表类来实现设定的程序的基本功能。

涉及的主要算法有:(1)使用尾插法创建多项式,即从一个空表开始,重复读入数据,生成新结点,将读入数据存放在新结点的数据域中,然后将新结点插入到当前链表的表尾上,直到读入结束标志(某一项的系数为零)为止。

(2)输出一个非空的多项式链表,不要输出最后一项,即输入系数为零的结束项,用if……else语句判断。

(3)删除整个多项式是一项一项的删,使用链表删除其结点的方法,使用free()函数释放存储空间。

在删除非空的多项式的某一项时,定义k来找到要删除的那一项的位置,再使用delete 将其删除。

(4)在对多项式合并同类项时,主要有两点,一是看两项指数是否相等,若相等则合并成一项,二是看两项系数和是否为零,若为零则去掉这两项。

在对多项式排序时,先合并同类项,再按指数值从小到大排序。

(5)在拷贝多项式时使用重载函数,将系数和指数都拷贝给新的多项式。

数据结构课程设计--一元多项式计算问题(C语言)

数据结构课程设计--一元多项式计算问题(C语言)

长沙学院课程设计说明书题目一元多项式计算问题系(部)计算机科学与技术系专业(班级)12软件4班姓名谢仲蛟学号2012022411指导教师邱建雄起止日期2013.12.9~2013.12.20课程设计任务书课程名称:数据结构与算法设计题目:一元多项式计算问题已知技术参数和设计要求:问题描述:设计一个稀疏多项式简单计算器基本要求:(1)输入并分别建立多项式A和B(2)输入输出多项式,输出形式为整数序列:n,c1,e1,c2,e2……,其中n是多项式的项数,ci和ei 是第i项的系数和指数,序列按指数降序排列(3)完成两个多项式的相加、相减,并将结果输出;测试数据:(1) A+B A= 3x14-8x8+6x2+2 B=2x10+4x8+-6x2(2) A-B A=11x14+3x10+2x8+10x6+5 B=2x14+3x8+5x6+7(3) A+B A=x3+x1 B=-x3-x1(4) A+B A=0 B=x7+x5+x3+x1(5) A-B A=100x100+50x50+20x20+x B=10x100+10x50+10x20+x选作内容:(1).多项式在x=1时的运算结果(2)求多项式A和B的乘积设计工作量:40课时工作计划:指导教师签名:日期:教研室主任签名:日期:系主任签名:日期:长沙学院课程设计鉴定表摘要本次课程设计是在《数据结构》基础上设计以C语言来实现的,它的目的是帮助同学更深入的了解《数据结构》这门课程并熟练运用C语言,使同学达到熟练掌握的程度。

课程设计一个稀疏多项式简单计算器。

其基本要求有六:其一,输入建立两个多项式;其二,输出多项式,输出形式为整数序列:n,c1,e1,c2,e2……,其中n是多项式的项数,ci和ei是第i项的系数和指数,序列按指数的降序序列排列;其三,多项式排序,多项式按指数的降序序列排列;其四,多项式相加,指数相同系数相加,指数不同则把此项加进去;其五,多项式相减,指数相同系数相加,指数不同则把此项取反再加进去;其六,返回多项式的项数。

数据结构一元多项式的运算

数据结构一元多项式的运算

数据结构一元多项式的运算正文:1. 引言本文档旨在介绍数据结构中一元多项式的运算方法。

一元多项式是指在一个变量上的多项式,其中每一项由一个系数和一个指数组成。

我们将会讨论一元多项式的表示、存储和基本运算,包括多项式的加法、减法、乘法和求导等操作。

2. 一元多项式的表示和存储2.1 一元多项式的定义一元多项式是指在一个变量x上的多项式,每一项由一个系数和一个指数组成,例如:2x^3 - 5x^2 + 3x + 1.其中,2、-5、3和1分别是系数,3、2、1和0分别是指数。

2.2 一元多项式的表示方法一元多项式可以使用数组、链表或其他数据结构来表示。

在本文中,我们选择使用数组来表示一元多项式。

数组的索引代表指数,数组的元素代表系数。

例如,多项式 2x^3 - 5x^2 + 3x + 1 可以表示为 [1, 3, -5, 2]。

2.3 一元多项式的存储结构为了表示一元多项式,我们可以使用一个数组来存储多项式的系数。

数组的长度应该比多项式的最高指数大1.数组的索引代表指数,数组的元素代表系数。

例如,数组 [1, 3, -5, 2] 表示的多项式 2x^3 - 5x^2 + 3x + 1 中,索引0对应指数为3的项,索引1对应指数为2的项,以此类推。

3. 一元多项式的基本运算3.1 一元多项式的加法一元多项式的加法是指将两个多项式相加,并合并同类项。

具体操作如下:- 将两个多项式的系数相加,并将结果存储在一个新的多项式中。

- 遍历新的多项式,将相邻的相同指数的项合并。

3.2 一元多项式的减法一元多项式的减法是指将一个多项式减去另一个多项式,并合并同类项。

具体操作如下:- 将两个多项式的系数相减,并将结果存储在一个新的多项式中。

- 遍历新的多项式,将相邻的相同指数的项合并。

3.3 一元多项式的乘法一元多项式的乘法是指将两个多项式相乘,并合并同类项。

具体操作如下:- 遍历一个多项式的每一项,与另一个多项式的每一项相乘。

数据结构课程设计(一元多项式)

数据结构课程设计(一元多项式)
cout<<" ~~~~~~~~~~~~~~~~0.退出~~~~~~~~~~~~~~~\n";
cout<<" ********1.两个一元多项式相加*********\n";
cout<<" ********2.两个一元多项式相乘*********\n";
cout<<" ********3.两个一元多项式相减*********\n";
cout<<p->coef;//其余情况都得打印
if(p->expn!=0) printf("x^%d",p->expn);//如果指数为"0"不打印指数项
else if((p->coef==1)||(p->coef==-1))
cout<<"1";
if(p->next==NULL)
flag=1;//如果现在的链节没有下一个就结束
(6)NODE *multi(NODE *pa,NODE *pb),函数功能是实现多项式的相乘。创建新链表,生成新结点,第一个式子中的每一项都与第二个式子中每一项系数相乘指数相加,直到两个式子中的结点都运算完毕,返回新链表;
(7)void output(NODE *f),函数功能是输出多项式。把运算完毕的新的多项式按结点依次输出,其中,若结点系数为正数则用+连接前后两个结点,若为负数则用-连接,系数为0则不输出指数;
{
if(q->next==NULL)
{
q->next=pb;
flag=1;
}
else
{

数据结构 一元多项式的计算

数据结构  一元多项式的计算

项目一一元多项式的计算问题1.1设计题目与要求1.1.1设计题目1)一元多项式计算任务:能够按照指数降序排列建立并输出多项式;能够完成两个多项式的相加、相减,并将结果输入;基本要求:在上交资料中请写明:存储结构、多项式相加的基本过程的算法(可以使用程序流程图)、源程序、测试数据和结果、算法的时间复杂度、另外可以提出算法的改进方法;本程序关键点是如何将输入的两个多项式相加、相减操作。

①如何将输入的一元多项式按指数的降序排列②如何确定要输入的多项式的项数;③如何将输入的两个一元多项式显示出来。

④如何将输入的两个一元多项式进行相加操作。

⑤如何将输入的两个一元多项式进行相减操作。

本程序是通过链表实现一元多项式的相加减操作。

1.1.2、任务定义此程序需要完成如下的要求:将多项式按照指数降序排列建立并输出,将两个一元多项式进行相加、相减操作,并将结果输入。

a:输入多项式的项数并建立多项式;b:输出多项式,输出形式分别为浮点和整数序列,序列按指数升序排列;c:多项式a和b相加,建立多项式a+b;d:多项式a和b相减,建立多项式a-b。

e:多项式的输出。

1.2 数据结构的选择和概要设计:1.2.1数据结构的选用A:基于链表中的节点可以动态生成的特点,以及链表可以灵活的添加或删除节点的数据结构,为了实现任意多项式的加法,减法,因此选择单链表的结构体,它有一个系数,指数,下一个指针3个元属;例如,图1中的两个线性链表分别表示一元多项式和一元多项式。

从图中可见,每个结点表示多项式中的一项。

图1 多项式表的单链存储结构B:本设计使用了以下数据结构:typedef struct node{int xs; /*系数*/int zs; /*指数*/struct node * next; /*next指针*/}Dnode,* Dnodelist;C:设计本程序需用到八个模块,用到以下八个子函数如下:1.Dnodelist Creat_node(void) /*链表初始化*/2.int Insert_node(Dnodelist D,int xs,int zs) /*插入函数*/3.Dnodelist Creat_Dmeth(int length) /*创建多项式*/4.Dnodelist Addresult(Dnodelist D1,Dnodelist D2) /*多项式相加*/5.Dnodelist Subresult(Dnodelist D1,Dnodelist D2) /*多项式相减*/6.Dnodelist select(Dnodelist D1,Dnodelist D2) /*选择函数*/7void Show(Dnodelist D) /*显示(输出)函数*/8void main()主程序模块调用链一元多项式的各种基本操作模块。

数据结构课程设计——一元多项式计算

数据结构课程设计——一元多项式计算

数据结构课程设计——一元多项式计算一、课程设计题目及要求二、设计思路和方法三、程序流程图四、程序代码及注释五、测试结果及分析六、结论七、参考文献本次课程设计的题目为“一元多项式计算”,要求设计一个程序,能够实现一元多项式的加、减、乘、求导和求值等操作。

在设计思路和方法上,我们采用了链表的数据结构来存储多项式,同时设计了相应的函数来实现各种操作。

程序的流程图如下所示:插入流程图)程序的代码及注释如下所示:插入代码及注释)在测试结果及分析方面,我们对程序进行了多组测试,并对其进行了详细的分析和比较。

结果表明,我们的程序能够正确地实现各种操作,并且具有较高的效率和稳定性。

综上所述,本次课程设计的目标已经得到了圆满地实现,我们对于所取得的成果感到非常满意。

同时,我们也希望能够通过这次课程设计,加深对于数据结构及其应用的理解和掌握,为今后的研究和工作打下坚实的基础。

设计目标:本课程设计旨在结合理论与实际应用,提高学生组织数据及编写大型程序的能力。

通过掌握数据组织、算法设计和算法性能分析的方法,培养学生良好的程序设计能力。

具体实现是利用单链表表示一元多项式,实现多项式的输入、建立、输出、相加、相减和相乘。

总体设计:2.1 数据结构描述与定义:一元多项式定义系数和指数结构如下:coef,expn和next。

定义多项式的结构为线性链表的存储结构,每个结点包含三个元素:系数coef,指数expn和指向下一个结点的指针*next。

多个单项式通过指针连接起来,形成一个多项式。

2.2 模块设计:从实现多项式运算过程的角度来分析,至少需要以下子功能模块:多项式创建、销毁、输出、相加、相减和相乘。

定义并调用的函数有:Insert、CreatePolyn、DestroyPolyn、PrintPolyn、AddPolyn、SubtractPolyn、XXX和main函数。

注:该文章中没有明显的格式错误和需要删除的段落,因此没有进行小幅度改写。

数据结构课程设计-一元多项式的四则运算

数据结构课程设计-一元多项式的四则运算

一元多项式的四则运算学生姓名:指导老师:摘要本课程设计主要解决一元多项式的运算问题,通过链表的使用,实现对一元多项式的构建、录入、存储、打印、以及之间的运算。

在本课程设计中,程序设计语言为C++语言,程序运行平台为Windows/98/2000/XP,程序采用了链表存储方法以及结构化和模块化的设计方法,通过调试运行,可以进行多项式的加、减、乘运算,勉强实现了设计目标,并且经过适当完善后,将可应用到实际中解决某些问题。

关键词程序设计; C++ ;一元多项式;运算1 引言一般来说,我们只知道数学上的一元多项式的运算,这一般都是用笔来进行运算的,然而此课程设计将一元多项式的运算用电脑来进行,只需要将多项式输入,然后就可以出结果,速度快,省去了认为计算的环节,在现实中带来不少方便。

1.1 课题背景一元多项式的运算,虽然无法直接在除数学外的其他领域作出贡献,但是在数学上,它可以为人们解决一些自己动笔动手很难解决的问题,比如说那些很长很长的多项式,用笔算可能要算半天,但是用该程序,只需短短的几秒钟,所以它给人们带来了不少方便,同时相信它也能间接地为其他领域做出贡献。

1.2 课程设计目的个人觉得,该数据结构课程设计一方面可以让自己更加熟悉那些些常用的数据结构,掌握数据结构内在的逻辑关系,以及它们在计算机中的存储表示,和对它们实行的各种运算;另一方面,可以让自己对于整体和局部,以及结构化和模块化编程有一个更深层次的了解。

作为网络工程的学生,虽然之前有过一次C语言课程设计,但是深知自己编程能力尚为欠缺,所以这一次数据结构课程设计是对我的编程能力和组织能力的又一次考验。

1.3课程设计内容本课程设计是用链表实现一元多项式的存储及运算,其中包括多项式系数及指数的录入(即一元多项式的录入),以及储存、一元多项式的显示、一元多项式之间的加、减、乘法运算。

2 设计思路与方案2.1设计思路该系统使用C++语言进行开发和实现,程序中的各个功能分别由不同的的函数实现,然后在main函数中调用实现。

一元多项式的计算数据结构专业课程设计

一元多项式的计算数据结构专业课程设计

一元多项式的计算数据结构专业课程设计一元多项式的计算—加,减摘要(题目)一元多项式计算任务:能够按照指数降序排列建立并输出多项式;能够完成两个多项式的相加、相减,并将结果输入;目录一:引言:通过C语言使用链式存储结构实现一元多项式加法、减法和乘法的运算。

按指数降序排列。

二:需求分析建立一元多项式并按照指数降序排列输出多项式,将一元多项式输入并存储在内存中,能够完成两个多项式的加减运算并输出结果三:概要设计存储结构:一元多项式的表示在计算机内可以用链表来表示,为了节省存储空间,只存储多项式中系数非零的项。

链表中的每一个结点存放多项式的一个系数非零项,它包含三个域,分别存放该项的系数、指数以及指向下一个多项式项结点的指针。

创建一元多项式链表,对一元多项式的运算中会出现的各种可能情况进行分析,实现一元多项式的相加、相减操作。

1.单连表的抽象数据类型定义:ADT List{ 数据对象:D={ai|ai∈ElemSet,i=1,2,…,n,n≥0} 数据关系:R1={<ai-1,ai>| ai-1, ai∈D,i=2,…,n}基本操作:InitList(&L)//操作结果:构造一个空的线性表CreatPolyn(&L)//操作结果:构造一个以单连表存储的多项试DispPolyn(L)//操作结果:显示多项试Polyn(&pa,&pb)//操作结果:显示两个多项试相加,相减的结果} ADT List2.本程序包含模块: typedef struct LNode //定义单链表{}LNode,*LinkList;void InitList(LinkList &L) //定义一个空表{ }void CreatPolyn(LinkList &L) //用单链表定义一个多项式{ }void DispPolyn(LinkList L) //显示输入的多项式{ }void Polyn(LinkList &pa,LinkList &pb){}void main(){//定义一个单连表;cout<<endl<<" *****************欢迎来到一元多项式计算程序 *************** "<<endl;LNode *L1,*L2;Polyn(L1,L2); }加,减操作模块——实现加减操作各模块之间的调用关系如下:主程序模块加法操作模块 减法操作模块基本算法:1、输入输出(1)功能:将要进行运算的多项式输入输出。

大数据结构实验报告材料一元多项式

大数据结构实验报告材料一元多项式

一元多项式一、需求分析实现实系数一元多项式的创建,打印以及两个一元多项式的加、减、乘运算。

(1)程序所能达到的功能:a. 实现一元多项式的输入;b. 实现一元多项式的输出;c. 计算两个一元多项式的和并输出结果;d. 计算两个一元多项式的差并输出结果;e. 计算两个一元多项式的积并输出结果。

(2)输入的形式和输入值的范围:输入要求:分行输入,每行输入一项,先输入多项式的指数,再输入多项式的系数,以0 0为结束标志,结束一个多项式的输入。

输入形式:2 3-1 23 01 20 0输入值的范围:系数为int型,指数为float型。

(3)输出的形式:要求:第一行输出多项式1;第二行输出多项式2;第三行输出多项式1与多项式2相加的结果多项式;第四行输出多项式1与多项式2相减的结果多项式;第五行输出多项式1与多项式2相乘的结果多项式注:多项式的每一项形如:2.0x^3,注意指数应保留一位小数;多项式按照升幂次序排列;系数为1的非零次项应略去系数,系数为0的项不能出现在结果中;指数为0的项应只输出系数;多项式的第一项系数符号为正时,不要输出“+”,其他项要输出“+”,“-”符号。

-3.0x^-1-6.0x-2.0x^2-9.0x^3-4.0x^4-6.0x^6二、概要设计(1):程序实现a. 功能:将要进行运算的二项式输入输出;b. 数据流入:要输入的二项式的系数与指数;c. 数据流出:合并同类项后的二项式;d. 程序流程图:二项式输入流程图;e. 测试要点:输入的二项式是否正确,若输入错误则重新输入。

(2):数据类型ADT Polynomial{数据对象:D={ai| ai ∈TermSet,i=1,2,…,m,m≥0TermSet 中的每个元素包含一个表示系数的实数和表示指数的整数}数据关系:R1={< ai-1,ai >| ai-1 , ai ∈D,且ai-1 中的指数值<ai 中的指数值,i=2,…,n}基本操作:sort(Polyn & h); //对多项式进行排序print(Polyn h); //输出多项式delZeroCoef(Polyn & h); //判断系数为零的情况merge(Polyn & h); //合并指数相同的项createList(); //创建多项式addPoly(Polyn h1,Polyn h2); //多项式相加subPoly(Polyn h1,Polyn h2); //多项式相减multPoly(Polyn h1,Polyn h2); //多项式相乘} ADT Polynomial三、详细设计(1):存储结构一元多项式的表示在计算机内可以用链表来表示,为了节省存储空间,只存储多项式中系数非零的项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元多项式的计算一、 需求分析建立一元多项式并按照指数降序排列输出多项式,将一元多项式输入并存储在内存中,能够完成两个多项式的加减运算并输出结果二、 概要设计存储结构:一元多项式的表示在计算机内可以用链表来表示,为了节省存储空间,只存储多项式中系数非零的项。

链表中的每一个结点存放多项式的一个系数非零项,它包含三个域,分别存放该项的系数、指数以及指向下一个多项式项结点的指针。

创建一元多项式链表,对一元多项式的运算中会出现的各种可能情况进行分析,实现一元多项式的相加、相减操作。

基本算法: 1、输入输出(1)功能:将要进行运算的多项式输入输出。

(2)数据流入:要输入的多项式的系数与指数。

(3)数据流出:合并同类项后的多项式。

(4)程序流程图:多项式输入流程图如图1所示。

(5)测试要点:输入的多项式是否正确,若输入错误则重新输入开始 申请结点空间 输入多项式的项数输入多项式各项的系数 x, 指数 y输出已输入的多项式合并同类项结束否是是否输入正确图表 12、多项式的加法(1)功能:将两多项式相加。

(2)数据流入:输入函数。

(3)数据流出:多项式相加后的结果。

(4)程序流程图:多项式的加法流程图如图2所示。

(5)测试要点:两多项式是否为空,为空则提示重新输入,否则,进行运算。

图表 2开始 定义存储结果的空链 r 是否输出存储多项式的和的链r结束 是 否同指数项系数相加后存入r 直接把p 中各项存入r直接把q 中各项存入r存储多项式2的空链Q 是否为空 存储多项式1的空链P 是否为空合并同类项3、多项式的减法(1)功能:将两多项式相减。

(2)数据流入:调用输入函数。

(3)数据流出:多项式相减后的结果。

(4)程序流程图:多项式的减法流程图如图3所示。

(5)测试要点:两多项式是否为空,为空则提示重新输入,否则,进行运算。

开始定义存储结果的空链 r是否输出存储多项式的和的链r结束是 否同指数项系数相加后存入r把p 中各项系数改变符号后存入直接把q 中各项存入r存储多项式2的空链Q 是否为空 存储多项式1的空链P 是否为空 合并同类项图表 3三、详细设计#include<stdio.h>#include<malloc.h>typedef struct Polynomial{float coef;int expn;struct Polynomial *next;}*Polyn,Polynomial; //Polyn为结点指针类型void Insert(Polyn p,Polyn h){if(p->coef==0) free(p); //系数为0的话释放结点else{Polyn q1,q2;q1=h;q2=h->next;while(q2&&p->expn<q2->expn){ //查找插入位置q1=q2;q2=q2->next;}if(q2&&p->expn==q2->expn){ //将指数相同相合并q2->coef+=p->coef;free(p);if(!q2->coef){ //系数为0的话释放结点q1->next=q2->next;free(q2);}}else{ //指数为新时将结点插入p->next=q2;q1->next=p;}}}//InsertPolyn CreatePolyn(Polyn head,int m){//建立一个头指针为head、项数为m的一元多项式int i;Polyn p;p=head=(Polyn)malloc(sizeof(struct Polynomial));head->next=NULL;for(i=0;i<m;i++){p=(Polyn)malloc(sizeof(struct Polynomial));//建立新结点以接收数据printf("请输入第%d项的系数与指数:",i+1);scanf("%f %d",&p->coef,&p->expn);Insert(p,head); //调用Insert函数插入结点}return head;}//CreatePolynvoid DestroyPolyn(Polyn p){//销毁多项式pPolyn q1,q2;q1=p->next;q2=q1->next;while(q1->next){free(q1);q1=q2;//指针后移q2=q2->next;}}void PrintPolyn(Polyn P){Polyn q=P->next;int flag=1;//项数计数器if(!q) { //若多项式为空,输出0putchar('0');printf("\n");return;}while (q){if(q->coef>0&&flag!=1) putchar('+'); //系数大于0且不是第一项 if(q->coef!=1&&q->coef!=-1){//系数非1或-1的普通情况printf("%g",q->coef);if(q->expn==1) putchar('X');else if(q->expn) printf("X^%d",q->expn);}else{if(q->coef==1){if(!q->expn) putchar('1');else if(q->expn==1) putchar('X');else printf("X^%d",q->expn);}if(q->coef==-1){if(!q->expn) printf("-1");else if(q->expn==1) printf("-X");else printf("-X^%d",q->expn);}}q=q->next;flag++;}//whileprintf("\n");}//PrintPolynint compare(Polyn a,Polyn b){if(a&&b){if(!b||a->expn>b->expn) return 1;else if(!a||a->expn<b->expn) return -1;else return 0;}else if(!a&&b) return -1;//a多项式已空,但b多项式非空else return 1;//b多项式已空,但a多项式非空}//comparePolyn AddPolyn(Polyn pa,Polyn pb){//求解并建立多项式a+b,返回其头指针 Polyn qa=pa->next;Polyn qb=pb->next;Polyn headc,hc,qc;hc=(Polyn)malloc(sizeof(struct Polynomial));//建立头结点hc->next=NULL;headc=hc;while(qa||qb){qc=(Polyn)malloc(sizeof(struct Polynomial));switch(compare(qa,qb)){case 1:{qc->coef=qa->coef;qc->expn=qa->expn;qa=qa->next;break;}case 0:{qc->coef=qa->coef+qb->coef;qc->expn=qa->expn;qa=qa->next;qb=qb->next;}case -1:{qc->coef=qb->coef;qc->expn=qb->expn;qb=qb->next;break;}}//switchif(qc->coef!=0){qc->next=hc->next;hc->next=qc;hc=qc;}else free(qc);//当相加系数为0时,释放该结点}//whilereturn headc;}//AddPolynPolyn SubtractPolyn(Polyn pa,Polyn pb){//求解并建立多项式a+b,返回其头指针 Polyn h=pb;Polyn p=pb->next;Polyn pd;while(p){ //将pb的系数取反p->coef*=-1;p=p->next;}pd=AddPolyn(pa,h);for(p=h->next;p;p=p->next) //恢复pb的系数p->coef*=-1;}//SubtractPolynint main(){int m,n,flag=0;float x;Polyn pa=0,pb=0,pc,pd,pe,pf;//定义各式的头指针,pa与pb在使用前付初值NULL printf("请输入a的项数:");scanf("%d",&m);pa=CreatePolyn(pa,m);//建立多项式aprintf("请输入b的项数:");scanf("%d",&n);pb=CreatePolyn(pb,n);//建立多项式a//输出菜单printf("**********************************************\n");printf("操作提示:\n\t1.输出多项式a和b\n\t2.建立多项式a+b\n\t3.建立多项式a-b\n");printf("\t4.退出\n**********************************************\n");for(;;flag=0){printf("执行操作:");scanf("%d",&flag);if(flag==1){printf("多项式a:");PrintPolyn(pa);printf("多项式b:");PrintPolyn(pb);continue;}if(flag==2){pc=AddPolyn(pa,pb);printf("多项式a+b:");PrintPolyn(pc);DestroyPolyn(pc);continue;}if(flag==3){pd=SubtractPolyn(pa,pb);printf("多项式a-b:");PrintPolyn(pd);DestroyPolyn(pd);continue;}if(flag==4) break;if(flag<1||flag>4) printf("Error!!!\n");continue;}//forDestroyPolyn(pa);DestroyPolyn(pb);return 0;}四、调试结果1.测试的数据及结果2.算法的时间复杂度及改进算法的时间复杂度:一元多项式的加法运算的时间复杂度为O(m+n),减法运算的时间复杂度为O(m-n),其中m,n分别表示二个一元多项式的项数。

相关文档
最新文档