07第3章 直流斩波与交流电力控制电路

合集下载

电力电子技术之第3章 斩波

电力电子技术之第3章 斩波

Em I1ton
2012-2-23 电力电子技术 7
V断时,E和L 断时, 和 断时 共同向E供电。 共同向 供电。设V 供电 断的时间为t 断的时间为 off,供 电电流恒为I 电电流恒为 2 ,则 此期间电感L释放 此期间电感 释放 能量为: 能量为:
(E
2012-2-23 电力电子技术
− E m )I 2 t off
U o − EM Io = R
2012-2-23
(5-55) )
电力电子技术 4
电流断续的工作情况: 电流断续的工作情况: 较长时, 当 toff 较长时, 电感能量在t 电感能量在 off 时 间结束前释放完, 间结束前释放完, i2 = 0而 uo=Em 。 而 电流断续时, 电流断续时, Uo被抬高,一般 被抬高, 不希望出现。
uL d t = 0 (3-39) 当V处于通态期间,uL = E;而当V处于断态期间,uL = - uo。 于是: (3-40) E ⋅ ton = Uo ⋅ toff 所以输出电压为:

T
0
Uo =
2012-2-23
ton t α E = on E = E toff T − ton 1−α
电力电子技术
(3-41)
13

升降压斩波电路
改变导通比 α ,输出电压既可以 比电源电压高,也可以比电源电 压低。当0<α <1/2时为降压,当 1/2<α <1时为升压,因此将该电 路称作升降压斩波电路。也有文 献直接按英文称之为buck-boost 变换器(Buck-Boost Converter) 图3-4b中给出了电源电流i1 和负 载电流i2 的波形,设两者的平均 值分别为I1 和I2 ,当电流脉动足 够小时,有

第3章 电力变换基本电路结构-直流斩波电路-教案

第3章 电力变换基本电路结构-直流斩波电路-教案
a) 电路图
iGE
0
io
I1
0 b) 波形
3.2 升压斩波电路 升压斩波电路—Boost电路 电路
输入输出关系
在V通态的时间段ton,L上积蓄的能量为EI1ton; 在V断态的时间段toff,电感L释放能量为(U0-E)I1toff;
稳态时,根据能量守恒原理,在一个周期T中 积蓄能量 稳态时,根据能量守恒原理,在一个周期 中L积蓄能量 与释放能量相等
现代电力电子及变流技术
第三章 电力变换基本电路结构 ——直流斩波电路 ——直流斩波电路
第三章 电力变换基本电路结构
电力变换(变流)电路的分类:
DC—DC变换,称为直流斩波; AC—DC变换,称为整流; DC—AC变换,称为逆变; AC—AC变换,称为交-交变频。
注:
电力变换电路是 由最基本的直 流斩波电路— Buck和Boost电 路组合派生、 演变所形成的。
3.2 升压斩波电路 升压斩波电路—Boost电路 电路
工作原理
动态演示■
假设L和 值很大 假设 和C值很大 ——电感电流连续和负载电流平滑 电感电流连续和负载电流平滑
V处于通态时,电源E向电感L充电, 电容C向负载R供电,输出电压U0 恒 定; V处于断态时,电源E和电感L同时 向电容C充电,并向负载提供能量。
本章小结
本章的重点是 本章的重点是: 重点
降压斩波电路和升压斩波电路 理解降压斩波电路 升压斩波电路 降压斩波电路 升压斩波电路的工作原理,掌握这 两种电路的输入输出关系、电路解析方法、工作特点; 理解基本斩波电路的组合方式;理解桥式电路的特点。 基本斩波电路的组合方式;理解桥式电路的特点。 基本斩波电路的组合方式 桥式电路的特点
直流斩波电路(DC Chopper)

单片机第三章直流斩波电路n

单片机第三章直流斩波电路n

滤波原理
直流斩波电路通过滤波电路对 高频脉冲进行滤波,得到稳定 的直流输出。
控制原理
直流斩波电路通过控制器对开 关元件的控制信号进行调节, 实现对输出的精确控制。
直流斩波电路的基本结构
控制器
控制器负责生成开关元件的控制 信号,用于调节电源的输出。
开关元件
滤波电路
开关元件是直流斩波电路的核心 部分,负责快速切换电源的输出。
优点
• 高效率 • 精确控制 • 能量回收
局限
• 电磁干扰 • 纹波幅度 • 成本较高
直流斩波电路的未来发展趋势
随着电力电子技术的不断进步,直流斩波电路将进一步提高电压和电流的调 节精度,降低纹波幅度,并应用于更广泛的领域,如新能源和电动汽车。
直流斩波电路的作用
电压/电流调节
直流斩波电路能够调节直流电源的输出电压或电流,满足特定的需求。
能量回收
直流斩波电路可实现电能的回收利用,减少能源的浪费。
电机驱动
直流斩波电路可用于控制电机的速度和转向,实现高精度的电机控制。
直流斩波电路的原理
切换原理
直流斩波电路通过开关元件的 快速切换,将直流电源的输出 转换为高频脉冲。
直流斩波电路
直流斩波电路是一种用于调节直流电源输出的电路,通过切换电源的开关来 改变输出电压或电流。
直流斩波电路的定义
1 调节直流电源
直流斩波电路可通过高频开关路由,调节直流电源的输出电压或电流。
2 重要组成部分
直流斩波电路主要由控制器、开关元件和滤波电路组成。
3 作为电源变换器
直流斩波电路也可以将直流电源转换为交流电源。
滤波电路对高频脉冲进行滤波, 使输出稳定且纹波尽可能小。
直流斩波电路的应用示例

直流斩波电路工作原理

直流斩波电路工作原理

直流斩波电路工作原理
直流斩波电路是一种电子电路,用于将直流电源输出变为脉冲或交流信号。

其工作原理基于开关管的导通和断开,使得直流电源的电压在输出端产生高频脉冲。

直流斩波电路由两个主要部分组成:开关管和滤波电容。

开关管的导通和断开控制通过外部电路或脉冲生成器进行调控。

当开关管导通时,直流电源的电压就会传递到输出端,此时输出就是高电平。

相反,当开关管断开时,输出端的电压就会降为低电平。

滤波电容与开关管并联连接,作为电荷储存和释放的元件。

当开关管导通时,滤波电容开始充电,存储电荷。

当开关管断开时,滤波电容开始放电,释放电荷。

由于滤波电容具有一定的电荷和放电时间常数,输出信号会变为脉冲或周期性交流信号。

通过调控开关管的导通和断开时间,可以改变输出信号的频率和占空比。

频率可以通过改变开关管操作频率来调节,而占空比可以通过调控导通和断开时间比例来实现。

直流斩波电路的主要应用是在交流电源中产生脉冲信号,例如交流变频器、电力电子传动等领域。

它也可以用于产生交流电信号进行实验室测试和研究。

《直流斩波电路 》课件

《直流斩波电路 》课件
按斩波器结构分类
分为Buck、Boost、Buck-Boost、Cuk和Sepic等。
按输出电压极性分类
分为正极性斩波和负极性斩波。
02
直流斩波电路的工作 模式
降压斩波模式
总结词
通过降低输出电压来调整直流电源的
详细描述
在降压斩波模式中,斩波器将直流电源的输出电压降低到一个预设的值。通过周期性地打开和关闭开关,斩波器 将输入电源的连续直流电压转换为具有较低平均电压的脉冲电压。这种模式常用于需要降低电源电压的场合,例 如电池供电的应用。
详细描述
混合调制控制是将脉冲宽度调制和频率调制两种控制策略结合起来,根据需要选择不同 的调制方式进行调节。这种控制策略可以综合PWM控制和频率调制控制的优点,提高 输出电压的调节精度和动态响应速度。但同时,混合调制控制的实现也较为复杂,需要
更多的控制电路和计算资源。
04
直流斩波电路的实验 与仿真
实验平台的搭建
总结词
通过调节脉冲的宽度来控制输出电压的大小 。
详细描述
PWM控制是通过调节斩波电路中开关的开 通时间和关断时间,来改变输出电压的平均 值。当开通时间较长时,输出电压较大;当 关断时间较长时,输出电压较小。PWM控 制具有输出电压稳定、调节速度快、动态响
应好等优点。
频率调制控制
总结词
通过改变斩波电路中开关的工作频率来调节输出电压的大小。
定性和非线性问题,提高控制精度和鲁棒性。
高频化与小型化研究
要点一
高频化研究
通过改进斩波电路的结构和元件参数,提高斩波频率,减 小电路体积和重量,满足现代电子设备对高频率、小型化 的需求。
要点二
小型化研究
采用新型的电子元件和集成技术,减小斩波电路中各元件 的体积和重量,实现斩波电路的整体小型化。

电力电子技术直流斩波电路

电力电子技术直流斩波电路

a) Sepic斩波电路
输入输出关系:
b) Zeta斩波电路
Uo
ton toff
E ton T ton
E 1
E图3-6(S3e-p4ic9斩)波电路和Zeta斩波电路
电源电压与输出电压极性相同
23
3.1.4 Sepic斩波电路和 ZeVt处a斩于波通Z态电期e路间t原a,理斩电源波E经电开关路
i
i
1
2
续旳时间tx,即 ton
tx
1 me ln
1 m
I
20
O
t
onttt1来自x2t
t
off
T
c)
tx<t0ff
图3-3 用于直流电动机回馈能 量旳升压斩波电路及其波形
m
1 e b 1 e
--------电流断续旳条件
16
升降压斩波电路和Cuk斩波电路
1)升降压斩波电路 (buck -boost Chopper)
分V处于通态和处于断态 初始条件分电流连续和断续
7
一样能够从能降量传压递斩关系波出发电进路行旳推导 假定L为无穷大,负载电流Io维持不变(详见P101-102) 电源只在V处于通态时提供能量,为 EIoton 在整个周期T中,负载消耗旳能量为 RIo2T EM IoT
一周期中,忽视损耗,则电源提供旳能量与负载消耗旳能量相等。
V向电感L1贮能。
V关断后,L1-VD-C1构成振
荡回路, L1旳能量转移至C1,
能量全部转移至C1上之后,VD
b) Zeta斩波电路
关断,C1经L2向负载供电。
输入输出关系:
Uo
1
E
图3-6 Sepic斩波电路 和 Zeta斩波电路 (3-50)

电力电子技术第四版三四章课后答案

电力电子技术第四版三四章课后答案

第3章 直流斩波电路1.简述图3-1a 所示的降压斩波电路工作原理。

答:降压斩波器的原理是:在一个控制周期中,让V 导通一段时间t on ,由电源E 向L 、R 、M 供电,在此期间,u o =E 。

然后使V 关断一段时间t off ,此时电感L 通过二极管VD 向R 和M 供电,u o =0。

一个周期内的平均电压U o =E t t t ⨯+offon on。

输出电压小于电源电压,起到降压的作用。

2.在图3-1a 所示的降压斩波电路中,已知E =200V ,R =10Ω,L 值极大,E M =30V ,T =50μs,t on =20μs,计算输出电压平均值U o ,输出电流平均值I o 。

解:由于L 值极大,故负载电流连续,于是输出电压平均值为U o =E T t on =5020020⨯=80(V) 输出电流平均值为I o =R E U M o -=103080-=5(A)3.在图3-1a 所示的降压斩波电路中,E =100V , L =1mH ,R =Ω,E M =10V ,采用脉宽调制控制方式,T =20μs ,当t on =5μs 时,计算输出电压平均值U o ,输出电流平均值I o ,计算输出电流的最大和最小值瞬时值并判断负载电流是否连续。

当t on =3μs 时,重新进行上述计算。

解:由题目已知条件可得:m =E E M =10010= τ=RL =5.0001.0=当t on =5μs 时,有ρ=τT = =τont =由于11--ραρe e =1101.00025.0--e e =>m所以输出电流连续。

此时输出平均电压为U o =E T t on =205100⨯=25(V) 输出平均电流为I o =R E U M o -=5.01025-=30(A) 输出电流的最大和最小值瞬时值分别为I max =R E m e e ⎪⎪⎭⎫ ⎝⎛-----ραρ11=5.01001.01101.00025.0⎪⎪⎭⎫ ⎝⎛-----e e =(A)I min =R E m e e ⎪⎪⎭⎫ ⎝⎛---11ραρ=5.01001.01101.00025.0⎪⎪⎭⎫ ⎝⎛---e e =(A) 当t on =3μs 时,采用同样的方法可以得出: αρ=由于11--ραρe e =1101.0015.0--e e =>m 所以输出电流仍然连续。

第3章 直流斩波电路

第3章  直流斩波电路

图3-1 降压斩波电路的原理图及波形
能量关系
• 当电路工作于稳态时,负载电流在一个周期的初值和终值相等,此 时负载电压的平均值为:
U0 = ton t E = on E =α⋅ E ton +toff T
……… (3-1)
式中, 处于通态的时间; 处于断态的时间; 为开关周期; 式中,ton为V处于通态的时间;toff为V处于断态的时间;T为开关周期; α为导通占空比。 为导通占空比。 由此式知,输出到负载的电压平均值U0的最大值为E,若减小占空比α , 由此式知,输出到负载的电压平均值U 的最大值为E 随之减小。因此,该电路称为降压斩波电路。 则U0随之减小。因此,该电路称为降压斩波电路。也有很多文献中直接使 用其英文名称,称为Buck变换器。 Buck变换器 用其英文名称,称为Buck变换器。
− t − t on
= E ,设此阶段电流初值为I10 ,τ=L/R t t − − E − EM i1 ( t ) = I 10 e τ + (1 − e τ ) R
M
设此阶段电流初值为I20,解得:2 ( t ) = I 20 e i
τ
− EM 。 − (1 − e R
t − t on
τ
)
• 当电流连续时,有:I10=i2(t2),I20=i1(t1)。由此可得到:
α E − E
M I0 = • 则 R 与前面计算的结论一致。 由于负载电流平直,假设电源电流平均值为I 则有: 由于负载电流平直,假设电源电流平均值为I1 ,则有:
I1 =
ton I0 = α I0 T
其值小于等于负载电流I 其值小于等于负载电流I0 ,由上式得: 由上式得:
EI1 = α EI 0 = U 0 I 0

《直流斩波电路 》课件

《直流斩波电路 》课件

常见问题及解决方法
短路问题
解决斩波电路中常见的短电 路问题及相应的解决办法。
过压问题
探究斩波电路中过压问题的 原因以及如何应对。
效率问题
用实例说明如何提高斩波电 路的效率。
优势和不足
优势
优点包括效率高、造价便宜、尺寸小等,可用于 电源、逆变器和变频器发等众多领域。
不足
如电容器寿命较短、逆变器稳定性较差等问题, 但可通过不断改良解决。
直流斩波电路PPT课件
本课程将介绍电子领域最基础的直流斩波电路,帮助您深入理解工作原理、 设计标准和应用方向。
定义
什么是直流斩波电路?
介绍直流斩波电路初步定义和简要工作原理。
电路图和符号
展示不同类型的直流斩波电路图和电路符号,帮助学生快速理解电路结构特点及差异。
与其他电路的区别
解释直流斩波电路与其它电路的区别并分析这种电路的特点及优势。
键应用和应用要点。
3
交通行业
介绍直流斩波电路在汽车领域、轨道 交通领域和船舶领域中的应用情况。
设计要点
1 电路布局
因地制宜、合理明确的 电路布局可以帮助简化 电路结构并带来良好效 果。
2 误差控制
失误是必然的,但通过 系统和周到的误差控制 可以避免和减少错误发 生并增强工作效率。
3 技术选型
强调技术选型的重要性 以及如何根据实际需求 选择适当的元器件和工 具。
结论和总结
知识点
总结本课程学习到的知识点和重要概念,强调自我思考和进一步深化学习的重要性。
应用
归纳直流斩波电路的实际应用和最佳实践பைடு நூலகம்强调实践的重要性。
发展
提出关于直流斩波电路未来发展方向和改良建议,鼓励学习者进行创新和探索。

交流调压电路和直流斩波电路

交流调压电路和直流斩波电路

电路的基本原理和应用
交流调压电路的基本原理
通过控制交流电源的相位或幅值,实现对交流负载的电压调 节。在电力系统中,交流调压电路常用于无功补偿、调节电 压幅值等。
直流斩波电路的基本原理
通过快速地开断和闭合开关,将恒定的直流电源电压斩切成 一系列的脉冲电压,再通过滤波电路得到平均值可调的直流 电压。在电动汽车、不间断电源等领域,直流斩波电路被广 泛应用于电池管理、能量回收等。
交流调压电路的原理
通过改变交流电源的 电压幅度,实现对交 流负载电压的控制。
通过改变交流电源的 频率,实现对交流负 载功率的控制。
通过改变交流电源的 相位,实现对交流负 载电流的控制。
交流调压电路的分类
1 2
相控式交流调压电路
通过控制开关元件的通断时间,实现对交流电压 的调节。
斩控式交流调压电路
总结
04
交流调压电路和直流斩波电路的重要性
高效能源转换
交流调压电路和直流斩波电路在电力电子领域中发挥着关键作用, 能够实现高效能源转换,降低能源损失。
灵活控制
这两种电路能够实现对电压、电流和功率的快速、精确控制,满 足各种不同的应用需求。
节能环保
通过优化能源转换和控制方式,交流调压电路和直流斩波电路有 助于实现节能减排,推动绿色环保发展。
01
通过周期性地开启和关闭开关,将恒定的直流电源电压斩成一 系列的脉冲电压。
02
通过改变开关的开启和关闭时间,可以调节输出电压的平均值。
斩波电路的基本工作原理是利用快速开关元件,将输入的直流
03
电压斩成幅值可变的脉冲电压序列。
直流斩波电路的分类
降压斩波电路
用于降低电源电压,常用于电机速度控制和电池充电。

电力电子技术期末考试及标准答案

电力电子技术期末考试及标准答案

电力电子技术试题第1章电力电子器件1.电力电子器件一般工作在__开关__状态。

2.在通常情况下,电力电子器件功率损耗主要为__通态损耗__,而当器件开关频率较高时,功率损耗主要为__开关损耗__。

3.电力电子器件组成的系统,一般由__控制电路__、_驱动电路_、_主电路_三部分组成,由于电路中存在电压和电流的过冲,往往需添加_保护电路__。

4.按内部电子和空穴两种载流子参与导电的情况,电力电子器件可分为_单极型器件_、_双极型器件_、_复合型器件_三类。

5.电力二极管的工作特性可概括为_承受正向电压导通,承受反相电压截止_。

6.电力二极管的主要类型有_普通二极管_、_快恢复二极管_、_肖特基二极管_。

7.肖特基二极管的开关损耗_小于_快恢复二极管的开关损耗。

8.晶闸管的基本工作特性可概括为__正向电压门极有触发则导通、反向电压则截止__。

9.对同一晶闸管,维持电流IH与擎住电流I L在数值大小上有I L__大于__IH。

10.晶闸管断态不重复电压UDSM与转折电压Ubo数值大小上应为,UDSM_大于__Ubo。

11.逆导晶闸管是将_二极管_与晶闸管_反并联_(如何连接)在同一管芯上的功率集成器件。

12.GTO的__多元集成__结构是为了便于实现门极控制关断而设计的。

13.MOSFET的漏极伏安特性中的三个区域与GTR共发射极接法时的输出特性中的三个区域有对应关系,其中前者的截止区对应后者的_截止区_、前者的饱和区对应后者的__放大区__、前者的非饱和区对应后者的_饱和区__。

14.电力MOSFET的通态电阻具有__正__温度系数。

15.IGBT 的开启电压UGE(th)随温度升高而_略有下降__,开关速度__小于__电力MOSFET 。

16.按照驱动电路加在电力电子器件控制端和公共端之间的性质,可将电力电子器件分为_电压驱动型_和_电流驱动型_两类。

17.IGBT的通态压降在1/2或1/3额定电流以下区段具有__负___温度系数,在1/2或1/3额定电流以上区段具有__正___温度系数。

电力电子技术 第三章直流斩波

电力电子技术 第三章直流斩波

t2
I10 = T / τ − = ρ e −1 − m R e −1 R R
1
1
m = EM / E
1 − e−t / τ E EM 1− e−αρ E − I20 = = − m R 1 − e−T / τ R R 1 − e−ρ
di L 1 + Ri1 +t=ton时, EM = E dt i =I
2 20
t − E − EM 1 − e τ i1 = I10e τ + R − t
V断态时,负载电流为i2,则对应电压方程为 断态时,负载电流为 则对应电压方程为: 断态时
di L 2 + Ri 2 + E M = 0 dt
输出电压 被抬高
直 流 斩 波电 路
电力电子技术
返回
直 流 斩 波电 路
电力电子技术
τ=L/R,且 , 下面根据斩波器导通模型求解电路参数与输入输出电压电流之间的关系。 下面根据斩波器导通模型求解电路参数与输入输出电压电流之间的关系。 t=0时, 时 导通期间, 设IGBT导通期间,负载电流为 1,则对应电压方程为 导通期间 负载电流为i 则对应电压方程为: i1=I10
]
直 流 斩 波电 路
电力电子技术
同样可以从能量传递关系出发进行的推导 由于L为无穷大,故负载电流维持为Io不变 电源只在V处于通态时提供能量,为 EIoton
2 在整个周期T中,负载消耗的能量为 RI o T + EMIoT
(
)
一周期中,忽略损耗,则电源提供的能量与负载消耗的能量相等。
EIoton = RI T + EMIoT

西安交大_电力电子技术课后答案

西安交大_电力电子技术课后答案
答:三相桥式全控整流电路的整流输出电压中含有6k(k=1、2、3……)次的谐波,其中幅值最大的是6次谐波。变压器二次侧电流中含有6k1(k=1、2、3……)次的谐波,其中主要的是5、7次谐波。
16.三相桥式不可控整流电路,阻感负载,R=5Ω,L=∞,U2=220V,XB=0.3Ω,求Ud、Id、IVD、I2和的值并作出ud、iVD和i2的波形。
图1-43晶闸管导电波形
解:a)Id1= = ( ) 0.2717Im
I1= = 0.4767Im
b)Id2= = ( ) 0.5434Im
I2= = 0.6741I
c)Id3= = Im
I3= = Im
4.上题中如果不考虑安全裕量,问100A的晶闸管能送出的平均电流Id1、Id2、Id3各为多少?这时,相应的电流最大值Im1、Im2、Im3各为多少?
2.在图3-1a所示的降压斩波电路中,已知E=200V,R=10Ω,L值极大,EM=30V,T=50μs,ton=20μs,计算输出电压平均值Uo,输出电流平均值Io。
三相桥式全控整流电路,当负载为电阻负载时,要求的晶闸管移相范围是0 ~ 120,当负载为电感负载时,要求的晶闸管移相范围是0 ~ 90。
第二章17.三相全控桥,反电动势阻感负载,E=200V,R=1Ω,L=∞,U2=220V,=60,当①LB=0和②LB=1mH情况下分别求Ud、Id的值,后者还应求并分别作出ud与iT的波形。
第1章电力电子器件
1.使晶闸管导通的条件是什么?
答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。或:uAK>0且uGK>0。
2.维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断?
答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。

0电力电子技术-目录

0电力电子技术-目录

第6章 PWM控制技术
6.2 PWM逆变电路及其控制方法
6.3 PWM跟踪控制技术
6.4 PWM整流电路及其控制方法
第7章 第8章
第7章 软开关技术
电 力 电 子 技 术

7.1 软开关的基本概念
7.2 软开关电路的分类
7.3 典型的软开关电路
第8章 组合变流电路
8.1 间接交流变流电路

4.1 交流调压电路
4.4 矩阵式变频电路
第5章 第6章
第5章 逆变电路

电 力 电 子 技 术
5.1 换流方式
5.2 电压型逆变电路
5.3 电流型逆变电路 5.4 多重逆变电路和多电平逆变电路 6.1 PWM控制的基本原理
电 力 电 子 技 术
1.5 其他新型电力电子器件
1.6 电力电子器件的驱动 1.7 电力电子器件的保护 1.8 电力电子器件的串联和并联使用
第2章 整流电路

2.1 单相可控整流电路 2.2 三相可控整流电路 2.3 变压器漏感对整流电路的影响 2.4 电容滤波的不可控整流电路
第8章 组合变流电路
绪论
电 力 电 子 技 术

1. 什么是电力电子技术 2. 电力电子技术的发展史 3. 电力电子技术的应用 4. 电力电子技术的主要内容
第1章 电力电子器件

1.1 电力电子器件概述 1.2 不可控器件-电力二极管 1.3 半控型器件-晶闸管 1.4 典型全控型器件
电力电子技术
教材:《电力电子技术》(第4版)
西安交通大学 王兆安 黄 俊
主讲:物理与机电工程学院自动化系

第三章直流斩波电路与交流电力控制电路

第三章直流斩波电路与交流电力控制电路
Uo D Ui 1 D
2.电感电流断续工作模式 L D1 D 临界条件:
RT 2
2
3.2.3升降压(Buck-Boost)斩波电路
升降压型电路可以灵活地改变电压的高低,还能改变电压的极性。 用于电池供电设备中产生负电源的电路和各种开关稳压器中。
3.2.4Cuk斩波电路
3.3.3半桥型电路
(1)电流连续工作模式 变压器一次侧两端分别连接在电容C1、C2的连接点和开关S1、 S2的连接点。电容C1、C2的电压分别为Ui/2, S1和S2交替导通, 使变压器一次侧形成幅值为Ui/2的交流电压。改变开关的占空比,就 可改变二次整流电压ud的平均值,也就改变乐输出电压Uo, S1和S2 断态时承受的峰值电压均为Ui。 由于电容的隔直作用,半桥型电路对由于两个开关导通时间不对 称而造成的变压器一次电压的直流分量有自动平衡的作用,因此该电 路不容易发生变压器偏磁和直流饱和的问题。为了避免上下两个开关 在换相过程中发生短暂的同时导通而造成短路损坏开关,每个开关各 自的占空比不能超过50%,并留有裕量。 t D on 在半桥型电路中,占空比定义为: T 2
1 S i o 2
U o N 2 t on N D 2 Ui N1 t off N1 1 D
3.3.2 反激型电路
(2)电流断续工作模式:电流连续临界条件为:
L D1 D RT 2
2
L为从变压器二次侧测得的电感量
2L D 2TR
电压比为:
Uo N2 Ui N1 1 K
1.电路结构:可以看成是升压型和降压型电 路级联而成。 2.工作波形: 设两个电感电流都连续,分别计算电感L 和L1一个开关周期内的平均值为:
U L U i D U i U C1 1 D U L1 U C1 U o D U o 1 D
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

u L i L1
i −
+S u L
L1
i −+
S
u L
i L1
u
不计管压降
最为常用

支路控制三角形联结中点控制三角形联结
负载三角形联结相控。

负载星形联结中点控制。


t
三管一直导通u t
u =90°时,负载相电压波形分析。

90°≤α < 150两管导通与无管导通交替,负载电
压断续,每个波头150°-。

各晶闸管导通区间
t
三相三线星形联结纯电阻负载负载相电压波形分析
输出电压为零
u a
u a
i b
u 为正整数)在相同负载和移相触发角时,线电流中谐波含量少电


相对于电源频率倍数的谐波次数在电源基频附近,非整数倍频率的谐波含量较大。

因电源进线端共用,所以三组单相变频器的输出端,否则电源侧线与线之间将发生短路。

为此,交流电动机的三相绕组必须拆开独立供电。

主要用于中等容量的交流调速系统。

力电。

相关文档
最新文档