无机化学-11配位化合物
无机化学中的配位化合物
无机化学中的配位化合物无机配位化合物是指由中心金属离子或原子与周围配体形成的稳定化合物,其中配体可以是有机分子、无机物以及某些复杂的大分子。
这些化合物在化学、材料和生物领域具有广泛的应用。
本文将对无机化学中的配位化合物进行详细介绍。
一、配位键的形成在配位化合物中,中心金属离子通过与配体的配位键结合在一起。
配位键可以是共价键,也可以是离子键。
在共价配位键中,金属离子与配体共享电子对,形成共有的化学键。
而离子配位键中,金属离子通过吸引配体上的电子形成离子键。
二、常见的配体在配位化合物中,各种不同的配体可以与中心金属离子形成配位键。
常见的配体包括一价的阴离子(如Cl-、Br-、I-)、二价的阴离子(如O2-、OH-)以及有机分子(如NH3、CO、CN-等)。
这些配体的不同基团和电性决定了它们与金属离子之间的相互作用方式和配位键的强度。
三、配位化合物的结构配位化合物的结构可以是简单的一对一结构,也可以是复杂的多中心配位结构。
在一对一结构中,一个中心金属离子配位于一个配体上。
而在多中心配位结构中,一个或多个中心金属离子与多个配体形成配合物。
四、配位化合物的性质配位化合物的性质受到配体和中心金属离子的影响。
配合物的颜色、溶解度、稳定性以及一些化学反应都与配体和金属离子的性质密切相关。
例如,某些过渡金属离子与氮、氧等电负性较高的配体形成的配合物具有较强的酸性;而某些具有大的络合度的配合物则具有较好的溶解性和稳定性。
五、应用无机配位化合物在化学、材料和生物领域具有广泛的应用。
在催化剂中,配合物的金属离子可以提供活性位点,从而促进化学反应的进行。
在生物医学中,金属配合物可以用作药物,通过与特定的生物分子相互作用来治疗疾病。
此外,配位化合物也广泛应用于材料科学领域,用于制备光电材料、磁性材料、液晶材料等。
六、进展与展望近年来,随着科学技术的不断发展,无机化学中的配位化合物在结构设计、属性调控以及应用领域方面取得了许多重要的进展。
配位化合物知识介绍
结果: [Ni(CN)4]2-形成之前和之后, 中心原子的d电子排布发生了
变化,原来由单电子占据、后来腾空了的(n-1)d轨道参与了杂化, 这样一类络合物叫内轨型配合物(Inner orbital complexes), 它们是 指配位体孤对电子填充在(n-1)d轨道和一部分n层轨道上的一类 络合物 。
三氯化五氨•一水合钴(III)
Cu(NH3)4 SO4 硫酸四氨合铜(Ⅱ)
K3 Fe(NCS)6 六异硫氰根合铁(Ⅲ)酸钾
H2 PtCl6 六氯合铂(Ⅳ)酸 Cu(NH3)4 (OH)2 氢氧化四氨合铜(II)
K PtCl5 (NH3) 五氯•氨合铂(Ⅳ)酸钾 先阴离子后中性分子
Zn(OH)(H2O)3 NO3 硝酸一羟基•三水合锌(II)
1.2 配合物的命名
(一) 内外界之间 阴离子前,阳离子后;
(二) 配合单元
配体数目(汉字) + 配体名 + 合 + 中心离子名(氧化态,
(多种配体,以 • 分隔)
用罗马数字)
例:[Cu (NH3)4]SO4 硫酸四氨合铜(II)
[CrCl2 (H2O)4 ]Cl 氯化二氯•四水合铬(III)
配位化合物[CoCl2(H2O)4]Cl的配位体分别是_______;配位原子 分别是______;配位数是_____;命名为_____________。
(三)配体顺序
1.先无机,后有机 : [PtCl3 (C2H4 )] 三氯•乙烯合铂(II) 阴离子
2. 无机配体: 先阴离子,后中性分子,最后阳离子:
K[PtCl3(NH3)] 三氯•氨合铂(II)酸钾
3.同类配体: 按配位原子元素符号的英文字母顺序:
[Co
无机化学 第十一章 配合物
有环状结构,被称为螯合物或内配合物。
2+同一配体的两个或两个以上的配位原子间有一个原子,这样才能形成比较配位化合物金属有机配合物SO4科学家鲍林CN -为强配体,使Co 3个d 电子重排中心采取d 2sp 3 杂化,配离子Co(CN)为正八面体构型。
3d4s4p d 2sp 3杂化过渡金属Ni 的d轨道与CO的π*能量相近,对称性一致,可以成键。
按重叠后的(C2H4) ]·H2Oσ配键d-pπ配键在八面体场中,六个配体沿x,y,z轴的个方向分布,以形成八面体场。
正八面体场中配体与d z2 轨道的相对位置,轨道的波瓣与六个配体正相对,d x 2-y 2d z 2球形场正八面体场中配体与d xy 轨道的相对位置,,轨道的波瓣不与配体相对,能量升高的少,低于球形场。
d xy d xz d yz 球形场坐标原点为正六面体的中心,三轴分别沿与三边平行的方向伸展。
4 个配体的位置如图所示,形成四面体场。
正四面体场中配体与d x 2-y 2 轨道的相对位置正四面体场中配体与d xy 轨道的相对位置d d d 球形场(d )球形场(d )坐标原点位于正方形中心,坐标轴沿正方形对角线方向伸展。
4个配位原子位于正方形的顶点,形成正方形电场。
yx-++--y 2d x 2-y 2轨道的波瓣与配体一一相对,受电场作用最大,能量最高。
d xy 轨道处于y 平面内,受电场作用较大,能量居第二位。
++--d xy yx轨道的环形波瓣在x O y 平面内,列第三位。
d z 2yx能量最低的是轨道和轨道d xz d yz ++--z d yzyz++--d xzxz2.影响分裂能大小的因素弱场强场 小大-----光谱化学序列弱场强场 小大X -,OH -等弱场配体△小,常有△< P ,取高自旋光谱化学序列中NO 2-,CN -,CO 等强场配体△大,常导致△> P ,取低自旋方式,强场低自旋。
高自旋排布(dε)4 (dγ)2 低自旋排布(dε)6 (dγ)05个d轨道的能量为零点。
无机化学 第十一章配合物结构
配合物是具有空的价层轨道的原子或离子(统称中 心原子)和一组能够给予孤对电子或π电子的分子或离 子(统称配体)以配位键结合而形成的具有一定稳定性和 空间结构的化合物。 配合物不一定是离子,也可以是中性分子。 配体中只有一个配位原子叫单齿配体,有多个配 位原子的叫多齿配体(又分双齿、三齿、四齿等等)。由 多齿配体形成的配合物又被形象地叫做螯合物。
顺反异构:平面四边形和八面体的配合物中配位体不
止一种时,相同配体处于对位(180°)则为“反式”, 相同配体处于邻位(90°)则为“顺式”。(p339) 组成为[MX2Y2]、[MX2YZ]的平面四边形和组成为 [MX4Y2]、[MX4YZ]、[M(XX)2YZ]、[M(XX)2Y2]、 [MABCDX2] 的八面体配合物有顺反异构体。
配合物的异构现象
11.2.1 构造异构
构造异构(structural isomerism)是由原子间连 接方式不同引起的异构现象。
1)溶剂异构 溶剂分子在配合物内外界分布不同而引起的异构现 象叫溶剂异构。溶剂为水,则叫水合异构。 例如: [Cr(H2O)6]Cl3、 [Cr(H2O)5Cl]Cl2· 2O 和 H [Cr(H2O)4 Cl2]Cl· 2O 2H
..
N
.. ..
N N
..
2
NOH
+ Ni2+
NOH ..
H3C 镍试剂 (双齿配体) 氮是配位原子(电子对给予体)
镍离子与镍试剂形成的配合物
Ni(CN)42-、CuCl42-也是平面四边形的配离子。
镍和铜也形成四面体形的配合物,例如它们的
四氨合物、NiCl42-这时配原子的电子对进入中心原
子的一个s轨道和3个p轨道,形成sp3杂化轨道。锌的
第11章 配位化学基础
N P
O S
F Cl
Ne Ar Kr Xe Rn
Sr Y 配位原子 Ba Lu
Tc Re Bh
Fr Ra Lr Rf Db Sg 配体中与中心金属直接 结合的原子。
Cu Zn Ga Ge As Se Br •Ni 排列在中心金属周围 Ag Cd In Sn Sb Te I •Pd分子或者阴离子 Pt Au Hg Tl Pb Bi Po At • 分为单齿配体与多齿配体
2018/5/31
21
配合物的分类
特殊配合物
1)夹心配合物:
金属原子 M 被夹在两个平行的碳环之间,形成夹心配合物。
2)羰基配合物
以 CO 为配体的配合物称为羰基配合物。
3)原子簇状化合物
有两个或两个以上金属原子以金属 –金属键( M–M)直接结合而 形成的化合物。
4)多核配合物
含两个或两个以上中心金属离子的配合物。
单齿 配体
特点 多齿 配体 举例
有两个或两个以上的配位原子同时与中心金属
结合。可分为二齿、三齿、多齿配体等。
O :O
N N
O H 2C :N CH2 CH 2 N: CH2 C O O: H 2C CH2 C O:
C C O
:O
邻二氮菲 (phen)
乙二胺四乙酸根 (EDTA4-)
配位数
配合物的组成
2018/5/31
11
[Fe(SCN)(H2O)5]2+, [Co(SCN)4(H2O)2]2-, [Cu(NH3)4(H2O)2]2+, [CuBr4]22018/5/31
12
2018/5/31
2020高中化学配位化学的基本概念
了解
无机化学 第11章
4、配离子的电荷: 中心体和配位体总电荷数的代数和。
Al(OH)4-,SiF62-,PF6CdCl64- 、 ZnCl42-、HgCl42PtCl64-和 PtCl42[Cu(NH3)4]2+和 [Cu(NH3)2]+
Fe(3) Fe(4)
N(32)
N(26)
N(31) Ni(3)
O(31) N(25)
O(22)
N(45) O(11) O(42)
Ni(1)
N(11)
N(46)
N(12)
Fe(2) O(21)
N(22) N(16)
Ni(2)
O(12)
N(21) N(15)
Fe(1)
H2N
S
NN
H
H NN
S H2N
(2)配位体的命名 Ⅰ、有多种配位体时,不同配位体间用“·”隔开 。 Ⅱ、配位体的命名顺序
无机化学 第11章
原则: ①先离子→后分子,先无机配体→后有机配体。 如: K[PtCl3NH3] 三氯·氨合铂(II)酸钾
[PtCl4(en)] 四氯·一乙二胺合铂(Ⅳ)
②同类型:按配位原子元素符号英文字母顺序 如:[Co(NH3)5H2O]Cl3 三氯化五氨·一水合钴(III)
无机化学 第11章
配合物 [Ag(NH3)2]Cl
配 配位数 体
NH3
2
配体数 中心体 氧化数
2
+1
配位 原子
N
[Cu(NH3)4]SO4 NH3
4
[Fe(CO)5]
CO 5
[CoCl3(NH3)3] NH3
无机化学第11章 配位化合物
发生重排;若实验测得 ≠ 0,推出 n ≠ 0,说明3d 6 电子
不重排。
27
杂化类型小结:
1. 外轨型配合物:中心离子提供最外 层的ns、np、nd轨道杂化成键。
【特点】内层电子排布不发生变化,未成 对的d电子尽可能分占轨道而自旋平行, 故高自旋,顺磁性,且未成对电子越多, 磁矩越大,又由于中心离子以能量较高的 最外层轨道杂化成键,故配合物稳定性小。
4
11-1
配位化合物的基本概念 配位化合物
11-1-1
1. 配位化合物定义 由中心原子(或离子)和几个配体分子(或离子) 以配位键相结合而形成的复杂分子或离子,通常称为配位
单元,含有配位单元的化合物称为配位化合物。
配位阳离子: [Co ( NH3 )6 ]3+ 和 [Cu ( NH3 )4 ]2+ 配位阴离子: [Cr(CN)6]3- 和 [Co(SCN)4]2- 中性配合物分子:Ni(CO)4 和Cu(NH2CH2COO)2
[Co(NO2) (NH3)5]Cl2 和 [Co(ONO) (NH3)5]Cl2。
15
2. 立体异构
(1)顺反异构 : [Co(en) 2Cl2]+ 顺式(紫色)和反式(绿色)
顺:cisN N N N Cl Cl
Cl N N N N Cl
反:trans-
(2)旋光异构:四面体配合物中Mabcd有旋光异构体。
第 11 章 配位化合物
11-1
11-2
配位化合物的基本概念
配位化合物的价键理论
11-3
11-4
配位化合物的晶体场理论
配位化合物的稳定性
3
配位化合物的发展史
19世纪末期,德国化学家发现一系列令人难以回答
无机化学习题11
十一章 配位化合物首 页 难题解析 学生自测题 学生自测答案 章后习题答案难题解析 [TOP]例11-1(1)根据价键理论,画出[Cd(NH3)4]2+(μ=0μB)和[Co(NH3)6]2+(μ=3.87μB)的中心原子与配体成键时的电子排布,并判断空间构型。
(2)已知[Co(NH3)6]3+的分裂能Δo 为273.9kJ·mol -1,Co3+的电子成对能P 为251.2kJ·mol -1;[Fe(H2O)6]2+分裂能Δo 为124.4kJ·mol -,Fe2+的电子成对能P 为179.40kJ·mol -1。
根据晶体场理论,判断中心原子的d 电子组态和配离子自旋状态。
并计算晶体场稳定化能。
析(1)利用磁矩确定未成对电子数,然后确定内轨或外轨及杂化类型。
(2)比较分裂能与电子成对能,确定高自、自旋化合物,计算晶体场稳定化能。
解(1)[Cd(NH3)4]2+中Cd2+的电子组态为4d10,μ=0μB ,无未成对电子,采取sp3杂化轨道成键,配体NH3中N 的孤电子对填入sp3杂化轨道,配离子空间构型为正四面体。
4d sp3杂化[Cd(NH3)4]2+[Kr] ☜ ☜ ☜ ☜ ☜ ☜ ☜ ☜ ☜ 外轨配离子 电子由NH3中N 提供[Co(NH3)6]2+中Co2+的电子组态为3d7,μ=3.87μB ,利用B )1(μμ-=n n ,未成对电子数n=3,故以sp3d2杂化轨道成键,NH3中N 的孤电子对填入sp3d2杂化轨道,属外轨配合物,正八面体构型。
3d sp3d2杂化 4d[Co(NH3)6]2+ [Ar]☜ ☜ ✁ ✁ ✁ ☜ ☜ ☜ ☜ ☜ ☜电子由NH3中N 提供 外轨配离子 (2)[Co(NH3)6]3+中Co3+的电子组态为3d6,Δo >P ,属低自旋配合物。
电子排布为06d d γε,晶体场稳定化能为CFSE = xE (εd ) + yE (d γ) + (n2-n1) P =6×(-0.4Δo )+ 0×0.6Δo )+ (3-1)P=-155.1 kJ·mol -1[Fe(H2O)6]2+中Fe2+的电子组态为3d6,电子排布为24d d γε,Δo <P ,属高自旋配合物。
宋天佑版无机化学 第11章配位化学基础
-
F
-
F
-
F
-
F
-
3.内轨型与外轨型配合物
内轨型配合物
中心离子或原子以部分次外层轨道(n-1)d 参与组成杂化轨道,接受配体的孤电子对形成 内轨型配合物。如: d2sp3、dsp2、dsp3等。 特点:由于配体影响,形成体的电子重新 分布,未成对电子数减少。
成对能P:在形成内轨型配合物时,要违反 洪特规则,使原来的成单电子强行在同一d轨道 中配对,在同一轨道中电子配对时所需要的能 量叫做成对能(用P表示)。
11.1.3 配合物的命名
基本遵循一般无机化合物的命名原 则 1.整体命名:先阴离子,后阳离子 配离子为阳离子 外界是简单阴离子(OH-、Cl-), “某化某” [Ag(NH3)2]OH [Pt(NH3)6]Cl4 外界是复杂阴离子,“某酸某”
配离子为阴离子 外界为氢离子 “某酸” H2[PtCl6]
F HCI Br I
配体类型 单齿配体:一个配体中只含一个配位原子 NH3、OH-、X-、CN-、CO、SCN-等 多齿配体:一个配体中含2个或2个以上配位原子 草酸根(C2O42-) -OOC-COO- 双齿 乙二胺(en) NH2-CH2-CH2-NH2 双齿 乙二胺四乙酸根(EDTA或Y) 六齿 P862-863 部分配体名称: 硝基:NO2;亚硝酸根:ONO-;硫氰酸根:SCN-;异 硫氰酸根:NCS-;羰基:CO;羟基:-OH
MA2B2C2—正八面体的异构体。
平面偏振光
当平面偏振光通过某种介质时,有的介质对偏 振光没有作用,即透过介质的偏振光的偏振面 保持不变。而有的介质却能使偏振光的偏振面 发生旋转。这种能旋转偏振光的偏振面的性质 叫做旋光性。具有旋光性的物质叫做旋光性物 质或光活性物质。
高中化学竞赛课程 无机化学第十一章 配位化合物和配位平衡
Chapter 11 Coordination Compounds and Coordication Equilibrium
一、 配合物的基本概念
实验: 1. CuSO4(aq)
+ BaCl2 + NaOH
BaSO4 Cu(OH)2
有SO42有Cu2+
2. CuSO4(aq) + NH3.H2O 深蓝色aq + 乙醇 深兰色晶体
[Co(en)3][Cr(ox)3]和[Cr(en)3][Co(ox)3] [PtII(NH3)4][PtIVCl6]和[PtIV(NH3)4Cl2][PtIICl4]
配位体的种类、数目可以任意组合,中心离子、氧化态可以 相同,也可以不同。
d. 键合异构 组合相同,但配位原子不同的配体,如-NO2-和-ONO[CoNO2(NH3)5]Cl2 (黄褐色) [CoONO(NH3)5]Cl2 (红褐色)
[Co(en)3]2+ > [Co(NH3)6]2+
2. 化学式的书写原则
(1) 配合物中,阳离子在前,阴离子在后。 (2) 配离子中,按如下顺序:
形成体
阴离子配体
中性配体
例如: [Co(NO2)(NH3)5]SO4
3. 配位化合物的命名原则
遵循无机化合物的命名原则,不同点是配离子部分。
NaCl [Co(NH3)6]Cl3
d1~d3构型: 无高低自旋之分,无论强场还是弱场, 均形成内轨型配合物.
d8~d10构型: 无高低自旋之分,无论强场还是弱场, 均形成外轨型配合物.
稳定性:内轨型配合物 > 外轨型配合物
例: [Fe(CN)6]3-中CN-很难被置换,而[FeF6]3-中F-很容易被置换。
无机化学 配位化合物
配合物命名实例
二氯· 二氨合铂(Ⅱ)
1. [Pt(NH3)2Cl2] 2. [Cr(H2O)2(Py)2Cl2]Cl 氯化二氯· 二水· 二吡啶合铬(Ⅲ)
3. [Co(NH3)3(H2O)Cl2]OH
氢氧化二氯· 三氨· 水合钴(Ⅲ) 4. K3[Co(ONO)3Cl3] 三氯· 三(亚硝酸根)合钴(Ⅲ)酸钾 5. [Co(NO2)(NH3)5]Cl2 氯化硝基· 五氨合钴(Ⅲ) 6. [Fe(CO)5]
一 些 常见 配 体 单齿配体
:F– :Cl– :Br– :I– H2O: :NH3 :CN– :OH– :NO 氟, 氯, 溴, 碘, 水, 氨, 氰, 羟, 亚硝酰 :CO :ONO– :NO2– :SCN– :NCS– 羰基,亚硝酸根,硝基,硫氰酸根,异硫氰酸根
双齿配体
乙二胺(en) 氨基乙酸根 草酸根 H2N – CH2 – CH2 – NH2 H2N – CH2 – COO– – OOC – COO–
例如[Ag(NH3)2]+ 配离子
)采取sp杂化形成两 个 新 的 能 量 相 同 的 空 的 sp 杂 化 轨 道 , 两 个 NH3 中的 N 上的孤对电子,进入 Ag+ 的空的 sp 杂化轨道中,形成[Ag(NH3)2]+ 配离子。
4d 5s 5p
+ 10 0 0 47Ag ([Kr]4d 5s 5p
课 堂 练 习 [Co(NO2)(NH3)5]Cl2 氯化硝基· 五氨合钴(Ⅲ) [Co(en)3]Cl3 三氯化三(乙二胺)合钴(Ⅲ) [Cu(NH3)4](OH)2 氢氧化四氨合铜(Ⅱ) [Pt (Py)]4[Pt Cl4] 四氯合铂(Ⅱ)酸四吡啶合铂(Ⅱ) [Cr(H2O)5Cl]Cl2·H2O 水合二氯化一氯· 五水· 合铬(Ⅲ)
11配位化合物
▲ 若为多种无机配体时,先阴离子后中 性分子.
▲ 若为同类配体时,按配位原子元素符号的英文字母顺序排列,如先
NH3 后 H2O
11
配合物 命 名 举 例
Cu(NH 3 ) 4 SO 4
硫酸四氨合铜(Ⅱ)
K 3 Fe(NCS) 6
六异硫氰根合铁(Ⅲ)酸钾
H 2 PtCl 6
六氯合铂(Ⅳ)酸
Cu(NH 3 ) 4 (OH) 2
11.1 相关的定义和命名 The relating definitions and nomenclature
11.2 化学键理论
Chemical bond theory
11.3 异构现象与立体化学 Isomerism and stereochemistry
11.4 配合物的稳定性
Stability of the complex
(1) 价键理论的要点
● 形成体(M)有空轨道,配位体(L)有孤对电子,形成配位键 ML
● 形成体(中心离子)采用杂化轨道成键
● 杂化方式与空间构型有关
二配位的配合物
[Ag(NH 3 ) 2 ]
4d
Ag
直线形
μ 0
5s
5p
[Ag(NH 3 ) 2 ]
4d
sp 5p
[
]
NH3 NH3
17
1s Be 2
5
←
← ←
← ← ←
(1) 内界与外界
Ag(NH 3 )2 Cl
中配 外 心位 界 离体 子
Ni(CO) 4 CoCl3 (NH3 )3
中配 心位 原体 子
中 心配 离位 子体
配离子
形成体 — 中心离子或原子(central ion or central atom)
厦门大学无机化学第11章配位化合物
第十一章配位化合物11.1 基本概念 (1)11.2 化学键理论 (6)11.3 晶体场理论 (11)11.4 螯合物 (18)11.5 配位平衡 (19)11.1 基本概念11.1.1 配位化合物的基本概念前言配位化合物是一类由中心金属原子(离子)和配位体组成的化合物。
第一个配合物是1704年普鲁士人在染料作坊中为寻找蓝色染料,而将兽皮、兽血同碳酸钠在铁锅中强烈煮沸而得到的,即KFe[Fe(CN)6]。
配合物的形成对元素和配位体都产生很大的影响,以及配合物的独特性质,使人们对配位化学的研究更深入、广泛,它不仅是现代无机化学学科的中心课题,而且对分析化学、生物化学、催化动力学、电化学、量子化学等方面的研究都有重要的意义。
1.配位化合物的定义配合物是由中心原子(或离子)和配位体(阴离子或分子)以配位键的形式结合而成的复杂离子或分子,通常称这种复杂离子或分子为配位单元。
凡是含有配位单元的化合物都称配合物。
如:[Co(NH3)6]3+、[HgI4]2-、Ni(CO)4等复杂离子或分子,其中都含配位键,所以它们都是配位单元。
由它们组成的相应化合物则为配合物。
如:[Co(NH3)6]Cl3、k2[HgI4]、Ni(CO)411.1.2 组成2.配位化合物的组成图11-01表11-01 常见的配体表11.1.3 命名3.配位化合物的命名对于整个配合物的命名,与一般无机化合物的命名原则相同,如配合物外界酸根为简单离子,命名为某化某;如配合物外界酸根为复杂阴离子,命名为某酸某;如配合物外界为OH-,则命名为氢氧化某。
但配合物因为存在较为复杂的内界,其命名要比一般无机化合物复杂。
内界的命名顺序为:例如:11.1.4 配合物的类型4.配位化合物的类型(1).简单配位化合物简单配位化合物是指由单基配位体与中心离子配位而成的配合物。
这类配合物通常配位体较多,在溶液中逐级离解成一系列配位数不同的配离子。
例如:这种现象叫逐级离解现象。
无机化学-11配位化合物
2.配位数为4的配合物 [BeX4]2-的空间构型 为四面体, μ=0 。
41/90
[Ni(CN)4]2-的空间 构型为平面正方形, μ=0。
42/90
[NiCl4]2-的空间构型 为四面体, μ=2.83(B.M.)。
43/90
3.配位数为6的配合物
[Fe(CN)6]3-的空间构 型为八面体, μ=2.4(B.M.)。
H2[SiF6]
六氟合硅(Ⅳ)酸(俗名氟硅酸)
H2[PtCl6]
六氯合铂(Ⅳ)酸(俗名氯铂酸)
[Fe(CO)5]
五羰基合铁
[Pt(NH3)2Cl2]
二氯·二氨合铂(Ⅱ)
[Co(NH3)3(NO2)3] 三硝基·三氨合钴(Ⅲ)
24/90
配位化合物的基本概念
配位化合物的类型
简单配位化合物 由一个中心原子和若干个单齿配体所形成的配 合物称为简单配位化合物。
内轨型配合物
44/90
[FeF6]3-的空间构型 为八面体, μ=5.90(B.M.)。
外轨型配合物
45/90
配离子的几何异构 (a) cis-[PtCl2(NH3)2] 顺式,棕黄色,极性分子 (b) trans-[PtCl2(NH3)2] 反式,淡黄色,非极性分子
顺式Pt(Ⅱ)配合物显示治癌活性。
配合物的空间构型不同,d轨道分裂方式不同; 晶体场类型相同,配体L不同,分裂程度不同。
48/90
中心原子d轨道的能级分裂 1. 八面体场中的能级分裂 过渡金属离子d轨道( dx2-y2,dz2,dxy,dyz,
17/90
配离子的电荷 等于中心原子和配位体两者电荷的代数和。 例如:[Cu(NH3)4]2+、[Fe(CN)6]3- 、Ni(CO)4 三 种配离子电荷分别为+2、-3 、0。
无机化学第十一章
四、配位化合物的分类
配合物通常可分为简单配合物、螫合物和多核 配合物三种类型。 (1)简单配合物: 在简单配合物的分子或离子 中只有一个中心原子,每个配体中只有一个配位原 子与中心原子结合。 (2)螯合物: 螫合物的分子或离子中,配体为 多齿配体,中心原子与多齿配体形成环状结构。 (3)多核配合物: 多核配合物的分子或离子中 含有两个或两个以上的中心原子,一个配位原子同 时与两个中心原子结合。
(四)配位数
配位个体中直接与中心原子结合的配位原子的 数目称为中心原子的配位数。 影响中心原子配位数的主要因素有: (1)中心原子的价层电子组态:第二周期元素 的价层最多容纳 4 对电子,其配位数最大为 4 ;第 三周期及以后周期的元素,其配位数常为 4 和 6。 (2)空间效应:中心原子的体积越大,配体的 体积越小时,中心原子结合的配体越多,配位数也 越大。 (3)静电作用:中心原子的电荷数越多,对配 体的吸引力越强,配位数就越大;配体所带负电荷 越多,配体之间的排斥越大,则配位数变小。
2 E (d ) 3E (d ) 0 E (d ) E (d ) Es,o
由以上两式可解得:
E (d ) 0.6 Es,o E (d ) 0.4 Es,o
2.d 轨道在四面体负电场中的分裂
在配位数为 4 的四面体配位个体中,四个配体 位于正四面体的四个顶点上,与立方体的八个顶点 每隔一个顶点有一个配体的情况相同。
配位化合物是由给出孤对电子或多个不定域 电子的一定数目的离子或分子和具有接受孤对电 子或多个不定域电子的空位的原子或离子按一定 的组成和空间构型所形成的化合物。 通常把一定数目配体与中心原子所形成的复 杂分子或离子称为配位个体,含有配位个体的化 合物称为配合物。
《无机化学》第3版 宋天佑 第11章 配位化学基础
黄褐色的硝基配位化合物 [ Co(NO2)(NH3)5 ] Cl2 红褐色的亚硝酸根配位化合物 [ Co(ONO)(NH3)5 ] Cl2
互为键合异构
(4) 配体异构
如果两个配位体互为异构体, 那么由它们分别形成的相应的配位 化合物互为配体异构。
1,2 — 二氨基丙烷
NH2CH2CHNH2CH3 和 1,3 — 二氨基丙烷
几种不同的配体之间加 “ • ” 隔开。
[ Co(NH3)5 H2O ] Cl3 三氯化五氨•水合钴(III)
Cu2 [ SiF6 ] 六氟合硅(IV)酸亚铜
中心后面加( ),内写罗 马数字表示中心的化合价。
3. 配体的先后顺序
在配位单元中,可能涉及多种 配体,所以要明确规定命名时配体 的次序。
[ Co(NH3)5 H2O ] Cl3 三氯化五氨•水合钴(III)
④ 配位原子相同,配体 中原子个数少的在前。
[ Pt(py)(NH3)(NO2)(NH2OH)] Cl 氯化硝基•氨•羟氨• 吡啶合铂(II)
⑤ 配体中原子个数相同, 则按和配位原子直接相连的配体 中的其他原子的元素符号的英文 字母表次序。
互为配位异构。
(3) 键合异构
配体中有两个配位原子,但 这两个原子并不同时配位,这样 的配体称两可配体。
两可配体可产生键合异构。
例如若 NO2- 以 N 为配位原子 时,则形成硝基配位化合物。
其中的配体硝基表示为 -NO2
例如若 NO2- 以 O 为配位原子 时,则形成亚硝酸根配位化合物。
其中的配体亚硝酸根表示为 - ONO
含有多个配位原子的配体称 多基配体(或多齿配体),
例如乙二胺四乙酸(EDTA)。
它的两个 N,4 个 -OH 中的 O 均 可以配位。
2020高中化学配位化合物的价键理论
Fe3+ 3d5 3d
4s 4p
4d
sp3d2杂 化
sp3d2 3d
无机化学 第11章
2、中心离子用外层(n-1)d,ns,np杂化轨道与电负性较 小的配位原子,如CN-、-NO2-等形成内轨型配合物。例 如[Fe(CN)6]3-配离子,Fe采用d2sp3内轨型杂化轨道,配 合物的键能大,稳定,在水中不易离解。
无机化学 第11章
第二节 配位化合物的化学键理论
一、价键理论
无机化学 第11章
中心离子与配位体之间的化学键是配位键,是由中心离 子M提供空的杂化了的价电子轨道,接受配位体L提供 的孤电子对,形成σ配键M←L;配位键的本质是共价性 的;为了提高成键能力,中心离子的空轨道在成键过程 中进行各种类型的杂化,杂化轨道的类型决定着配合物 的空间构型。根据参与杂化的轨道能级不同,配合物分 为外轨型和内轨型两种。
无机化学 第11章
4、 配合物中的d-pπ配键(反馈键)
过渡金属与羰基、氰、链烯烃、环烯烃等含有π电子配体 形成的配合物都含有d-p π配键(反馈键)。
(1) 羰基配合物 单核配合物:Ni(CO)4、Fe(CO)5 等; 双核配合物:Fe2(CO)9、Co2(CO)8 等;
无机化学 第11章
无机化学 第11章
形成内轨型条件是M与L之间成键放出的总能量在克服 成对能(P)后仍比形成外轨型的总键能大。
无机化学 第11章
例11-3 讨论Co(CN)63- 的杂化与成键情况 解 Co3+ 3d6 , CN- 为强配体,使Co3+ 的6个d 电子 重排,空出的2个3d轨道参与杂化,中心采取d2sp3杂化, 配离子 Co(CN)63- 为 正八面体构型。
重排
无机化学 第11章
无机化学中的配位化合物的配位数和配位环境
无机化学中的配位化合物的配位数和配位环境无机化学是研究无机物质及其性质、结构、合成和应用的学科。
其中,配位化合物是无机化学中的重要研究对象之一。
配位化合物是由一个或多个配体与一个中心金属离子形成的化合物。
在配位化合物中,配体以配位键的形式与中心金属离子相连,形成配位环境。
配位数和配位环境是决定配位化合物性质的重要因素。
配位数是指一个中心金属离子周围配位键的数量。
一般来说,配位数可以从1到12不等。
其中,配位数为1的配位化合物称为一配位化合物,如氯化银(AgCl);配位数为2的配位化合物称为二配位化合物,如二氯化铜(CuCl2);配位数为3的配位化合物称为三配位化合物,如三氯化铁(FeCl3);配位数为4的配位化合物称为四配位化合物,如四氯化钛(TiCl4);配位数为5的配位化合物称为五配位化合物,如五氯化钒(VCl5);配位数为6的配位化合物称为六配位化合物,如六氯合铜(CuCl6);配位数为7的配位化合物称为七配位化合物,如七氯化锆(ZrCl7);配位数为8的配位化合物称为八配位化合物,如八氯化铁(FeCl8);配位数为9的配位化合物称为九配位化合物,如九氯化铑(RhCl9);配位数为10的配位化合物称为十配位化合物,如十氯化铪(HfCl10);配位数为11的配位化合物称为十一配位化合物,如十一氯化钼(MoCl11);配位数为12的配位化合物称为十二配位化合物,如十二氯化铅(PbCl12)。
配位环境是指配体与中心金属离子之间的空间排布。
根据配位环境的不同,配位化合物可以分为线性、平面、四面体、八面体等不同的形态。
线性配位环境是指配体以直线排列与中心金属离子相连,形成线性形态。
平面配位环境是指配体以平面排列与中心金属离子相连,形成平面形态。
四面体配位环境是指配体以四面体的形态与中心金属离子相连。
八面体配位环境是指配体以八面体的形态与中心金属离子相连。
不同的配位环境会影响到配位化合物的稳定性和反应性。
十一章配位法(四川农业大学无机化学)
一、条件稳定常数和副反应系数
1、主反应及副反应(温度、离子强度、其它离子或分子等)
M
+
Y
=
MY
主反应
L
OH-
H+ N
OH- H+
副反应
ML MOH
HY
NY
MOHY MHY
ML2 M(OH)2 H2Y
…
…
…
MLn M(OH)n H6Y
副反应产物
上一页
6
下一页
M、Y、MY的各种副反应进行的程度,可由副反应系数来 衡量。例如:滴定剂Y发生副反应,则其副反应系数aY是
多基配位体:一个配位体分子中含有两个或两个以上配位原
子并能同时和一个中心离子相结合的配位体。
上一页
1
下一页
螯合物:凡由多基配体以两个或两个以上的配位原子同时和一
个中心离子配位所形成的具有环状结构的配合物。 一、配位滴定的要求
1、形成的配合物应有足够大的稳定常数,这样在计量点前后 才有较大的pM突跃,终点误差较小。
=1+ [H +] + ka6
[H + ]2 Ka5 ka6
+
+
[H + ]6
Ka1 Ka2 Ka3 Ka4 Ka5 Ka6
上一页
10
下一页
H + H5Y = H6Y
Kf6 =
[H 6Y ] H H 5Y
=1 K a1
……
K f1
=
[HY ]
H Y
[Y ] aY ( H ) = [Y ]
[Y] = [Y ] +[HY ] +[H2Y ] +[H3Y ] +[H4Y ] +[H5Y ] +[H6Y ]
《无机化学》电子教案:配位化合物.doc
《元素化学》讲义要点第4章配位化合物教学要求1.掌握配位化合物的基本概念,组成,命名,分类。
2.掌握配位化合物价键理论的基本内容。
3.掌握配位平衡,配合物的稳定常数和不稳定常数的概念和意义。
4.掌握配合物的有关计算:能应用配合物的稳定常数计算配离子的稳定性。
5.了解影响配位平衡的因素及与其它平衡的关系。
教学重点:1.配合物的异构现象;2.价键理论和晶体场理论;3.配位化合物的稳定性。
教学难点:1.晶体场理论;2.配位平衡的有关计算。
主要内容:§5.1配位化合物的命名与分类§ 5.2配合物的空间构型§5.3 配合物的化学键理论§5.4配合物的稳定性及有关计算教学时数8学时(含辅导)教学内容§5.1配合物的命名与分类“科学的发生和发展一开始就是由生产所决定的”。
配合物这门科学的诞生和发展,也是人类通长期过生产活动,逐渐地了解到某些自然现象和规律,加以总结发展的结果。
历史上有记载的最早发现的第一个配合物就是我们很熟悉的亚铁氟化铁Fe4[Fe(CN)6]3(普鲁士蓝)。
它是在1704年普鲁士人狄斯巴赫在染料作坊中为寻找蓝色染料,而将兽皮、兽血同碳酸纳在铁锅中强烈地煮沸而得到的。
后经研究确定其化学式为Fe4[Fe(CN)6]3o近代的配合物化学所以能迅速地发展也正是生产实际需要的推动结果。
如原子能、半导体、火箭等尖端工业生产中金属的分离楼术、新材料的制取和分析;50年代开展的配位催比,以及60年代蓬勃发展的生物无机化学等都对配位化学的发展起了促进作用。
目前配合物化学已成为无机化学中艮活跃的一个领域。
今后配合物发展的特点是更加定向综合,它将广泛地渗透到有机化学、生物化学、分析化学以及物理化学、量子化学等领域中去。
如生物固氮的研究就是突出的一例。
§5.1.1配合物的基本概念1配合物的定义当将过量的氨水加入硫酸铜溶液中,溶液逐渐变为深蓝色,用酒精处理后,还可以得到深蓝色的晶体,经分析证明为[C U(NH3)4]SO4.C U SO4+4NH3=[C U(NH3)4]SO4在纯的C U(NH3)4]SO4溶液中,除了水合硫酸根离子和深监色的C U(NH3)4]2+离了外,几乎检查不出Cu丹离子和NH3分子的存在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7/90
配离子 Ag(NH3)2+ I3Cu(H2O)42+ FeSCN2+
配合物 [Ag(NH3)2]Cl K[I3] [Cu(H2O)4]SO4 [FeSCN]Cl2
8/90
中心原子 配合物内界中,位于其结构的几何中心的离子 或原子。通常具有(n-1)d ns np nd等空的价电 子层轨道。
17/90
配离子的电荷 等于中心原子和配位体两者电荷的代数和。
例如:[Cu(NH3)4]2+、[Fe(CN)6]3- 、Ni(CO)4 三 种配离子电荷分别为+2、-3 、0。
18/90
配位化合物的基本概念
配位化合物的命名
配体的名称 阴离子配体:一般叫原有名称(例外:OH-羟、 HS-巯、CN-氰、NH2-氨基、NO2-硝基); 中性分子配体:一般保留原有名称(例外: NO亚硝酰、CO羰基)。
主价和副价的本质? 离子键 1916年,Kossel(W.科塞尔)提出了离子键。(使阴阳 离子结合成化合物的静电作用) 共价键 1916年,Lewis提出共价键。
配位共价键(配位键) 共享的电子对由配体单方提供的共价键。 配合物的内界 配合物中由配位键结合的部分。 配合物的外界 通过离子键与内界结合的部分。
[Pt(NH3)2(NO2)(NH2)]
氨基· 硝基· 二氨合铂(Ⅱ)
21/90
配合物的命名 遵循无机化合物的命名规则:某化某、某酸某、 某合某等。
[Cu(NH3)4]SO4 硫酸四氨合铜(Ⅱ)
22/90
[Ag(NH3)2]Cl [Co(NH3)5(H2O)]Cl3
氯化二氨合银(Ⅰ) 三氯化五氨· 水合钴(Ⅲ)
①阳离子:Ag+、Pt2+、Fe2+、Al3+、Si4+等; ②阴离子:I-→[I(I2)]-、S2-→[S(S8)]2-等; ③中性原子:Fe、Ni等。
9/90
配体与配位原子 1. 配体 配合物内界之中,位于中心原子周围,并沿一 定的方向与之直接形成配位键的离子或分子。
①阴离子配体:SCN-、NCS-、CN-、OH-、NO2-、 S2O32-、C2O42-、X-、NH2-、Y4-等; ②中性分子配体:NH3、H2O、CO、en等。
19/90
内界的命名 配离子中配位体的名称放在中心原子之前,用 “合”相连。 配位体的数目用一、二、三……表示,不同配 体间用“· ‖隔开。 中心原子的化合价用罗马数字Ⅰ、Ⅱ、Ⅲ…… 标在元素符号后面的括号中。
[Cu(NH3)4]2+ 四氨合铜(Ⅱ)离子
20/90
配体的命名顺序
36/90
[Fe(CN)6]4- μ= 0 B.M. 因为 μ= 0 B.M. ,可以推断 Fe 是 d2sp3 杂化,此时 3d轨道上的6个电子在三个轨道上成对排列,空出 2个d轨道用来形成杂化轨道。 [FeF6]3- μ= 5.9 B.M. 因为μ= 5.9 B.M.,可以推断有5个单电子,那么这 5个单电子应该以自旋方向相同的方式排在 5个d轨 道上,则没有 d 轨道参与杂化,所以 Fe 是 sp3d2 杂 化。
[Co(NH3)5(ONO)]SO4 硫酸亚硝酸根· 五氨合钴(Ⅲ)
K2[HgI4]
Na3[Ag(S2O3)2]
四碘合汞(Ⅱ)酸钾
二硫代硫酸根合银(Ⅰ) 酸钠
23/90
NH4[Cr(NH3)2(NCS)4]四异硫氰酸根· 二氨合铬(Ⅲ)酸铵
H2[SiF6] H2[PtCl6] [Fe(CO)5] 六氟合硅(Ⅳ)酸(俗名氟硅酸) 六氯合铂(Ⅳ)酸(俗名氯铂酸) 五羰基合铁
25/90
螯合物 由一个中心原子和多齿配体结合而成的具有环 状结构的配合物。
[Co(NH3)6]2+
[Co(en)3]2+
26/90
+
-
OOC NCH2CH2N OOC
COO
-
-
COO -
M-EDTA螯合物
27/90
多核配合物 含有二个或二个以上中心原子的配合物称为多 核配合物。
H O (H3N)4Co Co(NH3)4
常见配位数为2,4,6。
16/90
3,影响配位数的因素:
中心原子的正电荷越多,配位数越大,如 H2[PtCl6]、[Pt(NH3)2Cl2]等; 中心原子的半径越大,配位数越大,如 [BF4]- 、 [AlF6]3-等 ; 配体的负电荷越多,配位数越小,如 [Ni(NH3)6]2+ 、 [Ni(CN)4]2-等; 配 体 的 半 径 越 大 , 配 位 数 越 小 , 如 [AlF6]3- , [AlCl4]-等; 配体的浓度越大,配位数越大; 体系的温度越高,配位数越小。
先无机配体,再有机配体; 有多个无机或有机配体时,每种配体按照先离子后分子 的顺序命名; 同类配体,按配位原子元素符号的字母顺序先后命名; 同类配体的配位原子也相同时,先简单后复杂; 同类配体的配位原子相同,配体所含原子个数也相同时, 按与配位原子相连的原子的元素符号的字母顺序命名。
N
N
乙二胺(en)
联吡啶(bpy)
R' C O
R" C
N
N
C R
_
O
1,10-二氮菲(邻菲咯啉)
双酮
14/90
c,π键配体 和中心原子形成配位键的孤对电子不是来自某个 原子,而是来自两个原子形成的π键。 如:乙烯(CH2=CH2), 丁二烯(H2C=CH-CH=CH2), CO等。
15/90
配位数 1,只有单基配体时配位数等于配体的总数,如 [Cu(NH3)4]2+的配位数为4。 2,含有多基配体时配位数等于中心原子与配体 之间形成的配位键总数,如[Co(en)3]3+的配位 数为6(=2×3)。
4+
O H
28/90
配位化合物的化学键理论
配合物的价键理论
价键理论的要点 中心原子与配体之间的化学键是配位键。 中心原子提供空轨道,配体提供孤对电子。 中心原子的空轨道在成键过程中进行了杂化, 杂化轨道的类型决定配合物的空间构型。
29/90
[AlF6]3 Al是中心原子,F是配位原子,形成Al←F配位 键; Al提供1个3s,3个3p,2个3d空轨道,6个F-提 供6对电子; Al提供的6个空轨道杂化(sp3d2)得到6个等 同的轨道,接受F-的孤对电子; 配离子为正八面体构型。
37/90
配离子的空间结构
配位数 2 3 4
直线形
Ag(NH3 ) 2
平面三角形
HgI3
四面体
NiCl2 4
平面四方形
Ni(CN)2 4
38/90
配位数
5
6
四方锥
2 SbCl 5
三角双锥
Fe(CO)5
八面体
Fe(CN)3 6
39/90
1.配位数为2的配合物
[Ag(NH3)2]+的空间构 型为直线形,μ=0。
12/90
b,多基配体( ―多齿配体”) 含有两个或两个以上配位原子的配体。 如:乙二胺(en) ,NH2-CH2-CH2-H2N 乙二胺四乙酸根(EDTA)等。
-OOC-H C 2
CH2-COON-CH2-CH2-N CH2-COO-
-OOC-H C 2
13/90
CH2 H 2N
CH2 NH2
配位化合物的基本概念
配位化合物的组成
[Cu(NH3)4]SO4
Cu NH3 N 4 SO4 – 中心原子 – 配位体 – 配位原子 – 配位数 –
内界
外界离子
6/90
像 [Cu(NH3)4]2+这种由中心原子(或离子)和提供 孤对电子的配位体以配位键的形式相结合而形成的 复杂离子称为配离子。配离子在水溶液中不能完全 离解成简单离子。 含有配离子的化合物称为配位化合物,简称配合物。 配位化合物是由一定数目的可以给出孤对电子的离 子或分子(称为配体)和接受孤对电子的原子或离 子(统称中心原子)以配位键结合形成的化合物。
[Pt(NH3)2Cl2]
[Co(NH3)3(NO2)3]
二氯· 二氨合铂(Ⅱ)
三硝基· 三氨合钴(Ⅲ)
24/90
配位化合物的基本概念
配位化合物的类型
简单配位化合物 由一个中心原子和若干个单齿配体所形成的配 合物称为简单配位化合物。 若 配 体 只 有 一 种 , 称 为 单一配 体 配 合 物 , 如 [Cu(NH3)4]SO4,[Ag(NHCr(NCS)4(NH3)2]-,[CoCl3(NH3)3]等。
30/90
外轨型和内轨型配合物 1. 外轨型配合物 中心原子提供的杂化轨道全部来自最外电子层, 如sp,sp3,sp3d2杂化时。
31/90
[FeF6]3-
sp3d2杂化
正八面体
32/90
2. 内轨型配合物 中心原子提供的杂化轨道有一部分来自次外电 子层,如dsp2,d2sp3杂化时。
33/90
[Fe(CN)6]3-
d2sp3杂化
正八面体
34/90
3. 影响配离子内、外轨型的因素 中心原子内层 d 轨道已经全满,只能形成外轨 型; 中心原子本身具有空的内层 d 轨道,一般倾向 于形成内轨型配离子; 若中心原子内层 d 轨道未完全填满,则既可形 成外轨型配离子,又可形成内轨型配离子,这 时配体成为主要因素:“强场低自旋,弱场高 自旋”。
内轨型配合物
44/90
[FeF6]3-的空间构型 为八面体, μ=5.90(B.M.)。
外轨型配合物
45/90
配离子的几何异构
(a) cis-[PtCl2(NH3)2] 顺式,棕黄色,极性分子 (b) trans-[PtCl2(NH3)2] 反式,淡黄色,非极性分子