人教版七年级数学上册期中试卷

合集下载

人教版七年级数学上册期中考试卷(附带答案)

人教版七年级数学上册期中考试卷(附带答案)

人教版七年级数学上册期中考试卷(附带答案)(满分:150分时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.单选题。

(每小题4分,共10题,共40分)1.﹣2023的绝对值是()A.﹣12023B.﹣2023 C.12023D.20232.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值。

如图所示,关于它的三视图,下列说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.三种视图都相同(第2题图)(第5题图)(第7题图)3.在数﹣2,﹣3.14156,﹣13,﹣5%,﹣6.3,2023,200%,0,﹣0.01001中,负分数有()A.4个B.5个C.6个D.7个4.风云二号是我国自行研制的第一代地球静止气象卫星,它在地球赤道上空距地面约35800公里的轨道上运行.将35800用科学记数法表示应为()A.0.358X105B.35.8X103C.3.58X105D.3.58X1045.如图,小红把一密闭且透明的圆柱形水杯中装一半的水,随意转动水杯,水面的形状不可能是()A.圆形B.长方形C.三角形D.椭圆6.下面的说法中,正确的是()A.x +3是多项式B.(﹣2)3中底数是2C.3ab35的系数是3 D.单项式﹣ab2的次数是2次7.如图,是一个正方体的表面展开图,则原正方体中与"就"字相对的面上的字是()A.知B.是C.力D.量8.有理数a,b在数轴上的对应点的位置如图所示,则下列结论正确的是()A.a+b>0B.a-b>0C.ab>0D.ab<0(第8题图)(第9题图)9.将两边长分别为a和b(a>b)的正方形纸片按图1、图2两种方式置于长方形ABCD中,(图1、图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1上中阴影部分的周长为C 1,图2中阴影部分的周长为C 2,则C 1-C 2的值( )A.0B.a -bC.2a -2bD.2b -2a10.已知:m=|a+b |c +2|b+c |a +3|c+a |b ,且abc >0,a+b+c=0.则m 共有x 个不同的值,若在这些不同的m 值中,最大的值为y ,则x+y=( )A.4B.3C.2D.1第II 卷 (非选择题 共110分)二.填空题(共6小题,每小题4分,满分24分)11.中国是最早采用正负数来表示相反意义的量的国家,如果盈利50元,记作"+50元",那么亏损30元,记作 元.12.《雨不绝》是唐代诗人杜甫的作品,其中有诗句:鸣雨既过渐细微,映空摇如丝飞.译文:喧哗的雨已经过去、逐渐变得细微,映着天空摇漾的是如丝的细雨飘飞.诗中描写雨滴滴下来形成雨丝,用数学知识解释为 .13.若(m+1)2+|n -2|=0,则m n = .14.若一个棱柱有12个顶点,且所有侧棱长的和为30cm ,则每条侧棱长为 cm.15."整体思想"是中学数学解题中重要的思想方法,在多项式的求值中应用极为广泛.若3a 2-a -2=0,则﹣6a 2+2a+3值为 ﹣ .16.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成2023次变换后,骰子朝上一面的点数是 .三.解答题(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分6分)如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.18.(本小题满分6分)在数轴上表示下列各数:0,﹣4.5,312,﹣2,+7,113.并用"<"号把各数连接起来.19.(本小题满分12分)计算:(1)5+(﹣6)﹣(﹣3) (2)﹣58×(﹣4)÷(﹣52)(3)(﹣16+34-112)×(﹣24) (4)﹣14+(﹣2)3÷4×[5-(-3)3]20.(本小题满分6分)一个几何体的三种视图如图所示.(1)这个几何体的名称是 .(2)求这个几何体的体积.(结果保留π)21.(本小题满分6分)化简:(1)x2+5y-4x2-y-1 (2)7a+3(a-3b)-(b+3a)22.(本小题满分8分)山东是红富士苹果的主要产地,现有30箱红富士苹果,以每箱25kg 为标准,其中重量超过或不足的千克数分别用正数或负数来表示,记录如表所示:(1)30箱红富士苹果中,最重的一箱比最轻的一箱多kg.(2)与标准重量相比,30箱红富士苹果总计超过或不足的重量为多少?(3)若红富士苹果每千克售价6元,则这30箱红富士苹果可卖多少钱?23.(本小题满分8分)如图,某居民小区有一块长为a,宽为2b的长方形空地.为了美化环境,准备在这个长方形空地的四个顶点处修建一个半径为b的扇形花台,其余部分铺设草坪.(1)草坪(阴影部分)的周长为,面积为.(结果用含有a,b,π的式子表示)(2)如果铺设草坪的费用为每平方米50元.当a=6米,b=2米,π取3时,铺设草坪共需多少元?24.(本小题满分10分)学校餐厅中,一张桌子可坐6人,现有以下两种摆放方式:(1)当有5张桌子时,第一种方式能坐人,第二种方式能坐人.(2)当有n张桌子时,第一种方式能坐人,第二种方式能坐人.(3)新学期有200人在学校就餐,但餐厅只有60张这样的餐桌,现在请你当一回小老师,你打算选择以下哪种方式来摆放餐桌?为什么?25.(本小题满分12分)阅读材料,回答问题.材料一:因为23=2×2×2,22=2×2,所以23×22=(2×2×2)×(2×2)=25.材料二:求31+32+33+34+35+36的值.解:设S=31+32+33+34+35+36①则3S=32+33+34+35+36+37②用②-①得,3S -S=(32+33+34+35+36+37)-(31+32+33+34+35+36)=37-3所以2S=37-3,即S=37-32 所以31+32+33+34+35+36=37-32这种方法我们称为"错位相减法".(1)填空:5×58=5( ),a 2·a 5=a ( ).(2)"棋盘摆米"是一个著名的数学故事:阿基米德与国王下棋,国王输了,国王问阿基米德要什么奖赏.阿基米德对国王说:"我只要在棋盘上第一格放一粒米,第二格放二粒,第三格放四粒,第四格放八粒…按这个方法放满整个棋盘就行"国王以为要不了多少粮食,就随口答应了.①国际象棋共有64个格子,则在第64格中应放 粒米.(用幂表示)②设国王输给阿基米德的总米粒数为S ,求S.26.(本小题满分12分)如图,已知数轴点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=22.(1)写出数轴上点B 表示的数.(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x -3|的几何意义是数轴上表示有理数x 的点与表示有理数3的点之间的距离.试探究:①若|x -8|=3,则x= .②动点P 从O 点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.求当t 为多少秒时,A ,P 两点之间的距离为2?(3)动点P ,Q 分别从O ,B 两点,同时出发,点P 以每秒2个单位长度沿数轴向右匀速运动,Q 点以P 点速度的两倍,沿数轴向右匀速运动,设运动时间为t(1>0)秒.求当t 为多少秒时,P ,Q 之间的距离为4?答案解析一.单选题。

七年级数学上册期中考试卷及答案人教版

七年级数学上册期中考试卷及答案人教版

七年级数学上册期中考试卷及答案人教版人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1. 比小的数是 ( )A. B. C. D.2. 在式子 , , , , , 中 , 整式有 ( )A. 个B. 个C. 个D. 个3. 算式的值为 ( )A. B. C. D.4. 若和相减的结果是, 则的值是 ( ) A. B. C.D.5. 下列计算正确的是 ( )A.B.C.D.6. 若 , 互为相反数 , , 互为倒数 ,.则的值为 ( )A. B. C. 或 D.7. 若, 则 a-b 的值是 ( ) A. B. C.D. 8. 如图 , 在数轴上 , 点 , 所表示的数分别为,, 则 , 两点之间表示整数的点一共有 ( )A. 个B. 个C. 个D. 个9. 按如图所示程序流程计算 , 若开始输入的值.则最后输出的结果是 ( )A. B. C. D.10. 如图 , 把张形状大小完全相同的小长方形卡片不重叠地放在一个底面为长方形的盒子底部 , 盒子底面未被覆盖的部分用阴影部分表示则图中两块阴影部分的周长的和是 ( )A.B.C.D.二、填空题(每小题3分,共15分)11.的相反数是 ____ . 12. 多项式的次数是____. 13. 目前 , 第五代移动通信技术正在阔步前行 , 按照产业间关联关系测算 , 2020 年 ,间接拉动增长将超过亿元数据“亿”用科学记数法表示为_____. 14. 已知数 , 在数轴上的位置如图所示 , 则 , , ,的大小关系是____.15. 观察下列式子:, , 它们是按照一定规律排列的 , 依照此规律 , 则第个式子为 _______ .三.解答题(本大题共8个小题,满分75分)16. 计算:( 1 ); ( 2 ).17. 化简:( 1 ); ( 2 ). 18. 化简并求值:, 其中,.19. 小王在新藏公路某路段设置了一个加水站 , 他每天开着加水车沿东西方向给过路的汽车加水.如果约定向西为正.向东为负 , 加水车当天的行驶记录如下 ( 单位:千米 ) :+8 , -9 , +7 , -4 , -3 , +5 , -6 , -8 , +6 , +7 .( 1 ) 加水车最后到达地方在出发点的哪个方向 ? 距出发点多远 ?( 2 ) 若加水车行驶过程中每千米耗油量为升 , 求这天加水车共耗油多少升 ?20. 小刚同学做一道题:“已知两个多项式 , , 计算.”小刚同学误将看作, 求得结果.若多项式. ( 1 ) 请你帮助小刚同学求出的正确答案; ( 2 ) 若的值与的取值无关 , 求的值.21. 学校让综合实践活动课外学习小组参与学校校办工厂的足球生产活动 , 在工人师傅的指导和帮助下 , 综合实践活动课外学习小组一周计划生产 700 个足球 , 平均每天生产 100 个 , 由于各种原因实际每天生产产量与计划量相比有出入 , 下表是某周的生产情况 ( 超产为正、减产为负 ) :( 1 ) 根据记录可知前四天共生产个;( 2 ) 产量最多的一天比产量最少的一天多生产个;( 3 ) 该校办工厂实行每周计件奖励制 , 生产一个足球奖励给综合实践活动课外学习小组元.超额完成任务超额部分每个再奖元 , 那么该校的综合实践活动课外学习小组这一周得到的奖励总额是多少元 ?22. 某校准备到服装超市购一批演出服装 ( 男 , 女服装价格相同 ) 以供文艺汇演使用 , 一套服装定价元 , 领结 ( 花 ) 每条定价元 , 适逢新中国成立周年 , 服装超市开展促销活动 , 向客户提供两种优惠方案:①买一套服装送一条领结 ( 花 ) ;②服装和领结 ( 花 ) 都按定价的销售. 现该校要到该服装超市购买服装套 , 领结 ( 花 ) 条.( 1 ) 若该校按方案①购买.需付款 _______ 元 ( 用含的式子表示 ) ;若该校按方案②购买.需付款元 ( 用含的式子表示 ) ;( 2 ) 若, 通过计算说明此时按哪种方案付款比较合算; ( 3 ) 当时 , 你能给出一种更为省钱的购买方案吗 ? 试写出你的购买方案 , 并计算出需付款多少元.23. ( 1 ) 如图 , 点 M 在数轴上对应数为 -4 .点 N 在点 M 右边距 M 点 6 个单位长度 , 求点 N 对应的数;( 2 ) 在 ( 1 ) 的条件下.保持 N 点静止不动 , 点 M 沿数轴以每秒 1 个单位长度的速度匀速向右运动 , 经过多长时间 M , N 两点相距 4 个单位长度;( 3 ) 若已知点 M , N 在数轴上对应的数分别为 -6 、 2 .点 M 以每秒 3 个单位长度的速度沿数轴向右运动 , N 以每秒 2 个单位长度的速度同时沿数轴向右运动 , 当 M , N 两点相距个单位长度时 , 请直接写出点 M 所对应的数.初一数学21个必考知识点1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。

人教版七年级上学期期中数学试卷(含解析)

人教版七年级上学期期中数学试卷(含解析)

人教版七年级第一学期期中数学试卷及答案一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.02.下列各式中不是整式的是()A.3a B.C.D.03.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=04.|﹣3|的相反数是()A.﹣3B.3C.D.﹣5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.26.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.87.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣28.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于111.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.4912.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是.17.(3分)按下图的程序计算,若输入n=32,则输出结果是.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为人.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣2222.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.参考答案与试题解析一、选择题(每小题4分,共12小题,共48分)1.在数字:、﹣1、、0中,最小的数是()A.B.﹣1C.D.0【分析】利用“负数<0<正数,两个负数比大小,绝对值大的反而小”比较大小.【解答】解:∵负数<0<正数,两个负数比大小,绝对值大的反而小,||>|﹣1|,∴<﹣1<0<,∴最小的数是.故选:A.【点评】本题考查了有理数的大小比较,解题的关键是熟知有理数大小比较方法“两个负数比大小,绝对值大的反而小”.2.下列各式中不是整式的是()A.3a B.C.D.0【分析】根据单项式与多项式统称为整式,根据整式及相关的定义解答即可.【解答】解:A、3a是单项式,是整式,故本选项不符合题意;B、既不是单项式,又不是多项式,不是整式,故本选项符合题意;C、是单项式,是整式,故本选项不符合题意;D、0是单项式,是整式,故本选项不符合题意;故选:B.【点评】本题主要考查整式的相关的定义,解决此题的关键是熟记整式的相关定义;单项式与多项式统称为整式.3.下列方程中是一元一次方程的是()A.=2B.x+1=y+2C.x﹣1=3x D.x2﹣2=0【分析】根据一元一次方程的定义即可求出答案.只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.【解答】解:A.不是整式方程,故本选项不合题意;B.含有两个未知数,不是一元一次方程,故本选项不合题意;C.是一元一次方程,故本选项符合题意;D.未知数的最高次数2次,不是一元一次方程,故本选项不合题意;故选:C.【点评】本题考查一元一次方程,解题的关键是正确运用一元一次方程的定义,本题属于基础题型.4.|﹣3|的相反数是()A.﹣3B.3C.D.﹣【分析】根据绝对值定义得出|﹣3|=3,再根据相反数的定义:只有符号相反的两个数互为相反数作答.【解答】解:∵|﹣3|=3,∴3的相反数是﹣3.故选:A.【点评】此题主要考查了绝对值,相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0,难度适中.5.若x与3互为相反数,则x+1等于()A.﹣2B.4C.﹣4D.2【分析】根据相反数的概念:只有符号不同的两个数是互为相反数,即可得出x的值,即可得出答案.【解答】解:∵x与3互为相反数,∴x=﹣3,∴x+1=﹣3+1=﹣2.故选:A.【点评】此题主要考查了相反数,正确掌握相反数的定义是解题关键.6.若单项式a m+1b3与﹣a3b n是同类项,则m n值是()A.3B.4C.6D.8【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m、n的值,代入计算即可得出答案.【解答】解:∵单项式a m+1b3与﹣a3b n是同类项,∴m+1=3,n=3,∴m=2,n=3,∴m n=23=8.故选:D.【点评】本题考查了同类项的知识,属于基础题,掌握同类项中的两个相同是解答本题的关键.7.若a﹣b=1,则代数式2a﹣2b﹣1的值为()A.1B.﹣1C.2D.﹣2【分析】首先把2a﹣2b﹣1化成2(a﹣b)﹣1;然后把a﹣b=1代入化简后的算式计算即可.【解答】解:∵a﹣b=1,∴2a﹣2b﹣1=2(a﹣b)﹣1=2×1﹣1=2﹣1=1.故选:A.【点评】此题主要考查了代数式求值问题,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.8.某企业今年1月份产值为a万元,2月份比1月份减少了15%,3月份比2月份增加了5%,则3月份的产值为()A.(a+15%)(a﹣5%)万元B.(a﹣15%)(a+5%)万元C.a(1+15%)(1﹣5%)万元D.a(1﹣15%)(1+5%)万元【分析】根据3月份、2月份与1月份的产值的百分比的关系列式计算即可求解.【解答】解:∵今年1月份产值为a万元,2月份比1月份减少了15%,∴2月份的产值为a(1﹣15%)万元,∵3月份比2月份增加了5%,∴3月份的产值为a(1﹣15%)(1+5%)万元.故选:D.【点评】本题考查了列代数式,理解各月之间的百分比的关系是解题的关键.9.已知mx=my,字母m为任意有理数,下列等式不一定成立的是()A.mx+1=my+1B.x=y C.πmx=πmy D.mx=my【分析】根据等式的性质2进行准确运用辨别.【解答】解:根据等式的性质1,等式mx=my两边都加1可得mx+1=my+1,故选项A不符合题意;∵m可能为0,∴根据等式的性质2,等式mx=my两边都除以m可能无意义,故选项B符合题意;∵π≠0,∴根据等式的性质2,等式mx=my两边都乘以π可得πmx=πmy,故选项C不符合题意;∵,∴根据等式的性质2,等式mx=my两边都乘以可得mx=my,故选项D不符合题意;故选:B.【点评】此题考查了等式性质的应用能力,关键是能准确理解性质,并在运用等式性质2时,明确等式两边都除以的数是否为0.10.若|m﹣1|+m=1,则m一定()A.大于1B.小于1C.不小于1D.不大于1【分析】把|m﹣1|+m=1,转化为|m﹣1|=1﹣m,再根据绝对值的性质判断即可.【解答】解:∵|m﹣1|+m=1,∴|m﹣1|=1﹣m,∴m﹣1≤0,∴m≤1,故选:D.【点评】本题考查了绝对值,通过转化得到|m﹣1|=1﹣m是解题的关键.11.如图,表中给出的是2021年1月份的月历,任意选取“工”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是()A.161B.91C.78D.49【分析】设最中间的数为x,根据题意列出方程即可求出判断.【解答】解:设最中间的数为x,∴这7个数分别为x﹣8、x﹣7、x﹣6、x、x+8、x+7、x+6,∴这7个数的和为:x﹣8+x﹣7+x﹣6+x+x+8+x+7+x+6=7x,当7x=161时,此时x=23,当7x=91时,此时x=13,当7x=78时,此时x=11不是整数,当7x=49时,此时x=7,故选:C.【点评】本题考查了一元一次方程的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.12.三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n的差,只需知道一个图形的周长,这个图形是()A.整个长方形B.图①正方形C.图②正方形D.图③正方形【分析】设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,分别表示出m、n的值,就可计算出m﹣n的值为4c,从而可得只需知道正方形③的周长即可.【解答】解:设正方形①的边长为a、正方形②的边长为b、正方形③的边长为c,可得m=2[c+(a﹣c)]+2[b+(a+c﹣b)]=2a+2(a+c)=2a+2a+2c=4a+2c,n=2[(a+b﹣c)+(a+c﹣b)]=2(a+b﹣c+a+c﹣b)=2×2a=4a,∴m﹣n=4a+2c﹣4a=2c,故选:D.【点评】该题考查了数形结合解决问题的能力,关键是能根据图形正确列出算式并计算.二、填空题(每小题3分,共8小题,共24分)13.(3分)经历百年风雨,中国共产党从小到大、由弱到强,从建党时50多名党员,发展成为今天已经拥有超过95000000党员的世界第一大政党,将数字95000000用科学记数法表示为9.5×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:将95000000用科学记数法可以表示为9.5×107.故答案为:9.5×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.14.(3分)计算:25+(﹣12)﹣(﹣7)的结果为20.【分析】利用有理数的加减法法则,统一成加法,然后运算即可.【解答】解:25+(﹣12)﹣(﹣7)=25﹣12+7=20.故答案为20.【点评】本题考查有理数的加减混合运算,关键是熟练掌握相应的运算法则.15.(3分)若方程3x k﹣2=7是一元一次方程,那么k=3.【分析】利用一元一次方程的定义得到:k﹣2=1.【解答】解:根据题意,得k﹣2=1.解得k=3.故答案是:3.【点评】此题考查了一元一次方程的定义,只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.16.(3分)点A在数轴上表示数3,一只蚂蚁从点A出发向正方向爬了2个单位长度到了点B,则点B所表示的数是5.【分析】利用数轴,从点A向右数2个单位,即得点B表示的数为5.【解答】解:3+2=5,故答案为:5.【点评】本题考查数轴上的有理数,关键分清正负方向,右加左减.17.(3分)按下图的程序计算,若输入n=32,则输出结果是806.【分析】根据程序框图的要求计算即可.【解答】解:输入n=32,5n+1=5×32+1=161<500,把n=161再输入得:5n+1=5×161+1=806>500,故输出结果为806.故答案为:806.【点评】本题考查代数式求值,解题关键是读懂题意,根据程序框图的要求准确计算.18.(3分)若多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,则ab=﹣6.【分析】直接利用整式的加减运算法则化简,进而合并同类项,得出x2项和x项的系数为零,进而得出答案.【解答】解:∵多项式ax2+3x﹣1与2x2﹣bx﹣4的差不含x2项和x项,∴ax2+3x﹣1﹣(2x2﹣bx﹣4)=ax2+3x﹣1﹣2x2+bx+4=(a﹣2)x2+(b+3)x+3,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,故ab=﹣6.故答案为:﹣6.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.19.(3分)已知|a|=5,|b|=3,若|a+b|=a+b,则a+b=8或2.【分析】若|a+b|=a+b,则a+b≥0,结合a|=5,|b|=3,求出a,b的值即可求解.【解答】解:∵a|=5,|b|=3,∴a=±5,b=±3,∵|a+b|=a+b,∴a=5,b=±3,∴a+b=8或2,故答案为:8或2.【点评】此题主要考查了绝对值的性质和有理数的减法,解决问题的关键是判断出a+b≥0.20.(3分)学校组织劳动实践活动,组织一组同学把两片草地的草割完.已知两片草地一大一小,大的比小的大一倍,大家先都在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完,另一半人到小片草地割,到收工时还剩一小块,且这一小块草地恰好是一个人一天的工作量,由此可知,此次参加社会实践活动的人数为8人.【分析】由题意可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片草地的面积是小片草地的2倍,列出方程解答即可.【解答】解:由题可知每人每天除草量是一定的,设此次参加社会实践活动的人数为x人,每人每天除草量为y,则上午在大片草地除草量为0.5xy,下午在大片草地除草量为0.5×0.5xy,下午在小片草地除草量为0.5×0.5xy,一个人刚好把剩下一块的小片地除完则为y,又因为大片地的面积是小片地的2倍,列出方程,0.5xy+0.5×0.5xy=2×(0.5×0.5xy+y),0.5xy+0.25xy=0.5xy+2y,0.75xy﹣0.5xy=2y,0.25xy=2y,0.25x=2,x=8.答:此次参加社会实践活动的人数为8人.故答案为:8.【点评】此题考查了一元一次方程的应用,主要是先明白每人每天除草量是一定的,设次参加社会实践活动的人数为x人,每人每天除草量为y,根据题意找到关系即可解答.三.解答题(共8小题,共78分)21.(8分)画出数轴标出表示下列各数的点,并用“<”把下列各数连接起来.3,﹣3,|﹣2|,0,﹣22【分析】先准确地画出数轴,并在数轴上找到各数对应的点,即可解答.【解答】解:在数轴上表示各数如图所示:∴﹣22<﹣3<0<|﹣2|<3.【点评】本题考查了实数大小比较,数轴,绝对值,有理数的乘方,准确在数轴上找到各数对应的点是解题的关键.22.(8分)计算:(1)(﹣5)×(﹣7)×2;(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.【分析】(1)由有理数乘法法则计算即可;(2)先算乘方,再算乘除,最后算加减.【解答】解:(1)原式=+5×7×2=70;(2)原式=﹣1+(﹣2)×(﹣3)﹣9=﹣1+6﹣9=﹣4.【点评】本题考查有理数运算,解题的关键是掌握有理数运算的顺序及相关运算的法则.23.(10分)解方程:(1)5x﹣4=x+4;(2)﹣=1+.【分析】(1)移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【解答】解:(1)移项,可得:5x﹣x=4+4,合并同类项,可得:4x=8,系数化为1,可得:x=2.(2)去分母,可得:3x﹣(5x+11)=6+2(2x﹣4),去括号,可得:3x﹣5x﹣11=6+4x﹣8,移项,可得:3x﹣5x﹣4x=6﹣8+11,合并同类项,可得:﹣6x=9,系数化为1,可得:x=﹣1.5.【点评】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.24.(10分)(1)化简:ab+3b2﹣(2b2+ab);(2)先化简,再求代数式3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy的值,其中x=﹣2,y=﹣1.【分析】(1)把整式去括号、合并同类项,即可得出答案;(2)把整式去括号、合并同类项化简后,代入计算,即可得出答案.【解答】解:(1)ab+3b2﹣(2b2+ab)=ab+3b2﹣2b2﹣ab=b2;(2)3x2y﹣[2xy﹣(2xy﹣x2y)]﹣xy=3x2y﹣2xy+(2xy﹣x2y)﹣xy=3x2y﹣2xy+2xy﹣x2y﹣xy=2x2y﹣xy,当x=﹣2,y=﹣1时,原式=2×(﹣2)2×(﹣1)﹣(﹣2)×(﹣1)=﹣8﹣2=﹣10.【点评】本题考查了整式的加减—化简求值,把整式去括号、合并同类项正确化简是解决问题的关键.25.(10分)“抗击新冠疫情,人人有责”,学校作为人员密集的场所,要求老师和同学们进入校门后按照要求佩戴好口罩.巴川量子中学初一的鑫鑫从学校了解到,上周五这一天,七年级各班共使用口罩500只,喜欢统计的鑫鑫本周统计了七年级各班每天的口罩使用情况,制作了如下的一个统计表,以500只为标准,其中每天超过500只的记为“+”,每天不足500只的记为“﹣”,统计表格如下:周一周二周三周四周五﹣14+11﹣20+48﹣5(1)本周哪一天七年级同学使用口罩最多,数量是多少只?(2)若同学们佩戴的口罩分为两种,一种是普通医用口罩,价格为1元一只,另外一种为N95型口罩,价格为3元一只,其中本周所用的普通医用口罩的数量比N95型口罩多520只,求本周七年级所有同学们购买口罩的总金额?【分析】(1)对本周每天使用口罩数量进行比较、计算即可;(2)先求出两种口罩各用的只数,再进行求解此题结果.【解答】解:(1)由题意得﹣20<﹣14<﹣5<+11<+48,48+500=548(只),答:本周周四这天七年级同学使用口罩最多,数量是548只;(2)本周共使用口罩数量为:500×5+(﹣14+11﹣20+48﹣5)=2500+20=2520(只),设本周使用N95型口罩x只,得x+x+520=2520,解得x=1000,∴x+520=1000+520=1520(只),∴1×1520+3×1000=1520+3000=4520(元),答:本周七年级所有同学们购买口罩的总金额为4520元.【点评】此题考查了运用正负数解决实际问题的能力,关键是能准确理解该知识和题目间的数量关系,进行列式计算.26.(10分)为奖励同学们在班级文化展中的精彩演出,老师让洪洪到文体超市购买若干个文具作为奖品,其中文具袋标价每个10元,笔记本标价每本8元,签字笔标价每支6元.请认真审题,解决下面两个问题:(1)洪洪在买文具袋时与老板进行了如图的对话,请认真阅读图片,求出洪洪原计划购买文具袋的个数.(2)除了文具袋,洪洪还需要购买笔记本和签字笔,经和老板协商,笔记本和签字笔也可享受八五折优惠,最后购买笔记本和签字笔一共支付了612元,且购得的笔记本和签字笔数量恰好能让每位同学得到1个笔记本和两只签字笔,问洪洪班里共有多少名同学?【分析】(1)根据题意和题目中的数据,可知原计划购买的文具袋个数×10﹣17=(原计划购买文具袋数+1)×10×0.85,然后列出相应的方程,再求解即可;(2)根据题意和(1)中的结果,可以列出相应的方程,然后求解即可.【解答】解:(1)设洪洪原计划购买文具袋x个,由题意可得:10x﹣17=10(x+1)×0.85,解得x=17,答:洪洪原计划购买文具袋17个;(2)设洪洪班里共有a名同学,由题意可得:10×(17+1)×0.85+(8a+6a×2)×0.85=612,解得a=27,答:洪洪班里共有27名同学.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程.27.(10分)定义.对于一个四位自然数n,若其百位数字等于其个位数字与十位数字之和,其千位数字等于其十位数字与百位数字之和,则称这个四位自然数n为“加油数”,并将该“加油数”的各个数位数字之和记为F(n).例如:5413是“加油数”,因为5413的个位数字是3,十位数字是1,百位数字是4,千位数字是5,且3+1=4,1+4=5,所以543是“加油数”,则F(5413)=5+4+1+3=13;19734不是“加油数”,因为9734的个位数字是4,十位数字是3,百位数字是7,千位数字是9,而4+3=7,但3+7=10≠9,所以9734不是“加油数”.(1)判断.8624和3752是不是“加油数”并说明理由;(2)若x,y均为“加油数”,其中x的个位数字为1,y的十位数字为2,且F(x)+F(y)=30,求所有满足条件的“加油数”x.【分析】(1)根据加油数的定义即可判断;(2)设x的十位数为a,y的个位数为b,则x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,根据F(x)+F(y)=30列出等式即可解答.【解答】解:(1)8624是“加油数”,理由如下:∵8=6+2,6=2+4,∴8624是“加油数”;3752不是“加油数”,理由如下:∵3≠7+5,7=5+2,∴3752是“加油数”;(2)设x的十位数为a,y的个位数为b,∴x的百位数为a+1,千位数为2a+1,y的百位数为b+2,千位数为4+b,∴F(x)=2a+1+a+1+a+1=4a+3,F(y)=4+b+b+2+b+2=3b+8,∴F(x)+F(y)=4a+3+3b+8=30,∴4a+3b=19,∵0≤a≤9,0≤b≤9,且a,b为整数,∴a=1,b=5或a=4,b=1,∴有满足条件的“加油数”x为3211或9541.【点评】本题以新定义考查了列代数式,整式的加减,解题的关键是根据新定义列出代数式.28.(12分)数轴是一种特定的几何图形,利用数轴能形象地表示数,在数轴的问题中,我们常常用到数形结合的思想,并借助方程解决问题.如图1,在数轴上,点A表示数﹣8,点C表示的数为2,点B表示的数为6.(1)点P从点A出发,以2个单位/秒的速度向右运动,同时,点Q从点B出发,以1个单位/秒的速度向左运动,经过多久两点相遇?(2)如图2,我们将图1的数轴沿点O和点C各折一次后会得到一个新的图形,与原来相比,线段AO和CB 仍然水平,线段OC处产生了一个坡度,我们称这样的数轴为“坡数轴”,其中O为“坡数轴”原点,在“坡数轴”上,每个点对应的数就是把“坡数轴”拉直后对应的数.记“坡数轴”上A到B的距离为A和B拉直后距离:即=AO+OC+CB,其中AO、OC、CB代表线段长度.在“坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.①点P从点A出发,以2个单位/秒的速度沿着“坡数轴”向右运动,同时点Q从点B出发,以1个单位l秒的速度沿着“坡数轴”向左运动,经过多久,=2?②点P从A处沿“坡数轴”以每秒2个单位长度的速度向右移动,当移到点C时,立即掉头返回(掉头时间不计),在P出发的同时,点Q从B处沿“坡数轴”以每秒1个单位长度的速度向左移动,当P重新回到A点所有运动结束,设P点运动时间为t秒,在移动过程中,何时?直接写出t的值.【分析】(1)设运动时间为t,利用路程=速度×时间,再根据点P与点Q相遇,列关于t的一元一次方程,解方程即可;(2)①分点P在AO上,点Q在BC上和点P在OC上,点Q在AO上两种情况,结合题意列出方程即可求解;②分别求出点Q的运动时间,结合点P,点Q的不同位置,根据=2列出方程求解即可.【解答】解:(1)设运动时间为t秒,点P与点Q相遇,∵点P从点A出发,以2个单位/秒的速度向右运动,点Q从点B出发,以1个单位/秒的速度向左运动,∴2t+t=14,解得:t=,∴点P与点Q经过秒相遇;(2)①(Ⅰ)当点P在AO上,点Q在BC上时,设点P与点Q运动的时间为t秒时,=2,∵=AO﹣AP+BC﹣BQ,8﹣2t+6﹣t=2,解得:t=4,此时,点P运动至点O,点Q运动至点C;(Ⅱ)∵点P在OC上运动速度为1个单位/秒,点Q在OC上运动速度为2个单位/秒,结合(1),当点P运动到OC中点时,点Q运动到点O,此时,=1,∵=8,=2,点P在AO上运动速度为2个单位/秒,在OC上运动速度为1个单位/秒,∴点P运动到OC中点所需时间为:+1=5秒,。

〖数学〗人教版2024—2025学年七年级上册数学期中考试模拟试卷

〖数学〗人教版2024—2025学年七年级上册数学期中考试模拟试卷

人教版2024—2025学年七年级上册数学期中考试模拟试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、实数3的相反数是()A.3B.﹣3C.D.﹣2、下列四个数中最小的数是()A.﹣2B.0C.﹣D.53、下列各题中的两项是同类项的是()A.ab2与B.xy3与x2y2C.x2与y2D.3与﹣54、若4xy|k|﹣5(k﹣3)y2+1是四次三项式,则k的值为()A.±2B.2C.﹣3D.±35、实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2B.a>﹣b C.a>b D.|a|>|b|6、已知m2+mn=﹣2,3mn+n2=﹣9,则2m2+11mn+3n2的值是()A.﹣27B.﹣31C.﹣4D.﹣237、一个两位数,十位上的数字是3,个位上的数字是a,这个两位数是()A.3a B.30+a C.3+a D.3+10a8、如果a>0,b<0,|a|<|b|,则a,b,﹣a,﹣b的大小关系是()A.﹣b>a>﹣a>b B.a>b>﹣a>﹣bC.﹣b>a>b>﹣a D.b>a>﹣b>﹣a9、若关于x的多项式3x2﹣x+1+kx中不含一次项,则k的值为()A.1B.﹣1C.0D.±110、如图,文化广场上摆了一些桌子,若并排摆25张桌子,可同时容纳()人.A.106B.98C.100D.102二、填空题(每小题3分,满分18分)11、一个多项式减去x2+14x﹣6,结果得到2x2﹣x+3,则这个多项式是.12、已知多项式x2+2x+3的值是5,则多项式2x2+4x+3=.13、如果|m|=|﹣6|,那么m=.14、如图所示是计算机某计算程序,若开始输入x=﹣2,则最后输出的结果是.15、A是数轴上一点,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A 所表示的数是.16、在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①,图②,已知大长方形的长为a,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是.(用a的代数式表示)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________题号12345678910答案11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:;18、先化简,再求值3(x2y+xy2)﹣2(x2y﹣1)﹣2,其中x=﹣2,y=3.19、已知数a、b、c在数轴上的对应点的位置如图所示,化简:|a+c|+|b+c|﹣|a+b|.20、某出租车司机从公司出发,在东西走向的路上连续接送五批客人,如果规定向东为正,向西为负出租车行驶的路程记录如下(单位:千米):+5,﹣4,+2,﹣3,+8.(1)该司机接送完第五批客人后,他在公司的什么方向?距离多少?(2)若该出租车每千米耗油0.2升,求在这个过程中出租车的耗油量.(3)若该出租车的计价标准为行驶路程不超过3千米收费7元,超过3千米的部分按每千米1.5元收费,求该司机送完五批客人共收到的车费.21、一辆客车从甲地开往乙地,车上原有(4a﹣2b)人,中途停车一次,有一些人下车,此时下车的人数比车上原有人数一半还多2人,同时又有一些上车,上车的人数比(8a﹣4b)少3人.(1)用代数式表示中途下车、上车之后,车上现在共有多少人?(2)当a=10,b=9时,求中途下车、上车之后,车上现在的人数?22、理解与思考:整体代换是数学的一种思想方法.例如:若x2+x=0,则x2+x+1186=;我们将x2+x作为一个整体代入,则原式=0+1186=1186.仿照上面的解题方法,完成下面的问题:(1)若x2+x﹣1=0,则x2+x+2024=;(2)如果a+b=3,求2(a+b)﹣4a﹣4b+21的值;(3)若a2+2ab=20,b2+2ab=8,求a2+2b2+6ab的值.23、定义新运算:满足A〇B=A﹣3B.(1)计算3〇(﹣2)的值;(2)当A=2x2﹣3xy﹣y,B=﹣x2+xy﹣y,化简A〇B并按x进行降幂排列.(3)若(x+2)2+|y﹣1|=0,求第(2)问中A〇B的值.24、(1)若(x﹣1)2+|y+2|=0,求(x+y)2025的值;(2)已知|a+3|+|b2+2023|=2025,求b﹣a的值;(3)已知(a+1)2+|b+5|=b+5,且|2a﹣b﹣1|=1,求ab的值.25、如图,点A、B、C在数轴上表示的数a、b、c满足:(b+2)2+(c﹣24)2=0,且多项式x|a+3|y2﹣ax3y+xy2﹣1是关于x、y的五次四项式.(1)a的值为,b的值为,c的值为;(2)点P是数轴上A、C两点间的一个点,当P点满足PC﹣2P A=12时,求P点对应的数.(3)若动点M,N分别从点A,C同时出发向右运动,点M,N的速度为2个单位长度/秒和4个单位长度/秒,点Q到M,N两点的距离相等,点M在从点A运动到点O的过程中,的值是否发生变化?若不变,求其值;若变化,说明理由.。

七年级数学上册期中模拟卷人教版2024

七年级数学上册期中模拟卷人教版2024

七年级数学上学期期中模拟卷(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:人教版2024七年级上册1.1-3.2。

5.难度系数:0.85。

第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图,数轴上的两个点分别表示数a 和2-,则a 的值可以是( )A .2B .1-C .4-D .02.在数轴上表示2-的点与原点的距离为( )A .2B .2-C .2±D .03.下列各对数中,互为相反数的是( )A .2与12B .(3)﹣﹣和3+﹣C .(2)﹣﹣与2﹣﹣ D .(5)+﹣与()5+﹣4.若0,0a b <>,则,,,b b a b a ab +-中最大的一个数是( )A .b a -B .b a +C .bD .ab5.根据地区生产总值统一核算结果,2023年上半年,子州县生产总值完成3665000000元,将数据3665000000用科学记数法表示为( )A .6366510⨯B .7366.510⨯C .93.66510⨯D .100.366510⨯6.周末小明与同学相约在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的菜单总共为10个汉堡,x 杯饮料,y 份沙拉,则他们点的B 餐份数为( )A .10x -B .10y-C .x y-D .10x y--7.如图,a ,b 是数轴上的两个有理数,以下结论:①b a -<-;②0a b +>;③b a a b -<<-<;④+=-a b a b ,其中正确的是( )A .①②③B .②③④C .②③D .②④8.定义一种新运算:*a b ab b =-.例如:1*21220=⨯-=.则()()4*2*3⎡⎤--⎣⎦的值为( )A .3-B .9C .15D .279.已知数a ,b ,c 在数轴上的位置如图所示,化简a b a b a c +--+-的结果为( )A .2a b c ---B .a b c---C .a c--D .2a b c--+10.如图,这是由一些火柴棒摆成的图案,按照这种方式摆下去,摆第20个图案需用火柴棒的根数为( )A .20B .41C .80D .81第Ⅱ卷二、填空题:本题共5小题,每小题3分,共15分。

人教版数学七年级上册《期中考试卷》(含答案)

人教版数学七年级上册《期中考试卷》(含答案)

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:(每题3分,共24分,每题只有一个正确答案)1. 若规定收入为“+”,那么﹣50元表示( )A. 收入了50元B. 支出了50元C. 没有收入也没有支出D. 收入了100元2.2017-的倒数是( ) A. 12017 B. 2017 C. 2017- D. 12017-3.下列式子中,正确的是( )A. 68--<B. 101000->C. 1157--< D. 10.33< 4.下列各式中,等号不成立的是( )A. |﹣4|=4B. ﹣|4|=|﹣4|C. |﹣4|=|4|D. ﹣|﹣4|=﹣4 5. 下列说法正确的是( ) A.23xyz 与23xy 是同类项 B. 1x和2x 是同类项 C. 320.5x y -和232x y 是同类项D. 25m n 和22nm -是同类项6.下列各式计算中,正确的是( )A. 2a +2=4aB. ﹣2x 2+4x 2=2x 2C. x +x=x 2D. 2a +3b=5ab 7.用四舍五入法按要求对0.050 19分别取近似值,其中错误..是( ) A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)8.某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为( )A. 0.7a 元B. 0.3a 元C. 0.3a 元D. 0.7a 元二、填空题:(每题3分,共24分)9.“早穿皮袄午穿纱”这句民谣形象地描绘了我们新疆奇妙的气温变化现象.乌鲁木齐市五月的某一天,最低气温是t ℃,温差是15 ℃,则当天的最高气温是________℃.10.单项式 35ab -8的系数是__,次数是__. 11.若315k y x 与3873x y -是同类项,则k=_____. 12.我国2006年参加高考报名总人数约为950万人,则该人数可用科学记数法表示为_____人. 13.某种零件的直径规格是20±0.02mm ,经检查,一个零件的直径是19.9mm ,该零件____________(填“合格”或“不合格”).14.已知单项式3a m b 2与423n a b -和是单项式,那么m=_____,n=_____. 15.数轴上到点﹣3的距离是3个单位长度的点表示的数是_____.16.若|a |=3,|b |=2,且a >b ,则a +b 的值可能是:_____.三、计算题:(每题5分,共30分)17.计算题(1)﹣8﹣6+22﹣9.(2)(﹣16+34﹣112)×48. (3)|﹣0.75|+(﹣3)﹣(﹣0.25)+|﹣18|+78. (4)﹣22+3×(﹣1)4﹣(﹣4)×5.(5)(7m 2n ﹣5mn)﹣(4m 2n ﹣5mn) (6)13(9a ﹣3)+2(a +1). 四、解答题:(第1、2、3题每题10分,第4题12分,共42分)(说明:答题时要写出必要的步聚和过程)18.如果规定符号“*”的意义是:a*b=ab a b+,试求2*(﹣4)的值. 19.化简求值:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y ),其中x=﹣1,y=2.20.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A 处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油05升,这一天共耗油多少升?21.已知:m,x,y满足:(1)23(x-5)2+5|m|=0;(2)-2a2b y+1与7b3a2同类项.求:代数式2x2-6y2+m(xy-9y2)-(3x2-3xy+7y2)的值.答案与解析一、选择题:(每题3分,共24分,每题只有一个正确答案)1. 若规定收入为“+”,那么﹣50元表示( )A. 收入了50元B. 支出了50元C. 没有收入也没有支出D. 收入了100元【答案】B【解析】试题分析:若规定收入为“+”,则“﹣”表示与之相反的意义,即支出.解:∵收入用“+”表示,∴﹣50元表示支出50元,故选B .考点:正数和负数.2.2017-的倒数是( ) A. 12017 B. 2017 C. 2017- D. 12017- 【答案】D【解析】分析】根据乘积为1的两个数互为倒数,可得答案.【详解】解:-2017的倒数是12017-.故选D.【点睛】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.3.下列式子中,正确的是( )A. 68--<B. 101000->C. 1157--< D. 10.33<【答案】C【解析】【分析】(1)根据两个负数,绝对值大的其值反而小作答;(2)根据负数都小于0作答;(3)根据两个负数,绝对值大的其值反而小作答;(4)根据两个正数,绝对值大的数较大作答.【详解】A.∵|−6|<|−8|,∴−6>−8,错误;B.∵11000-−11000是负数,∴11000-<0,错误; C.∵11,57->- ∴1157--<,正确; D.1 3>0.3,错误.故选C.【点睛】考查有理数的大小比较,掌握正数都大于0,负数都小于0,正数大于负数,两个负数,绝对值大的反而小是解题的关键.4.下列各式中,等号不成立是( )A. |﹣4|=4B. ﹣|4|=|﹣4|C. |﹣4|=|4|D. ﹣|﹣4|=﹣4 【答案】B【解析】试题分析:正数绝对值等于它本身,负数的绝对值等于它的相反数,零的绝对值为零.444-==,则本题不成立的是B .5. 下列说法正确的是( ) A.23xyz 与23xy 是同类项 B. 1x和2x 是同类项 C. 320.5x y -和232x y 是同类项D. 25m n 和22nm -是同类项【答案】D【解析】试题分析:由同类项的定义可知,D 选项中的两个单项式所含字母m 、n 相同,并且相同字母的指数也相等,因此本题选D.考点:同类项6.下列各式计算中,正确的是( )A. 2a +2=4aB. ﹣2x 2+4x 2=2x 2C. x +x=x 2D. 2a +3b=5ab【答案】B【解析】【详解】解:A 选项不是同类项,无法进行加减法计算;B 选项计算正确;C 、原式=2x ;D 选项不是同类项,无法进行加减法计算.故选B .【点睛】本题主要考查的就是合并同类项的计算,属于简单题目.对于同类项的加减法,我们只需要将同类项的系数进行相加减,字母和字母的指数不变即可得出答案,很多同学会将字母的指数也进行相加减,这样就会出错.如果两个单项式不是同类项,我们无法进行加减法计算,这一点很多同学会出错.7.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是( ) A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1) 【答案】C【解析】【分析】一个近似数的有效数字是从左边第一个不为0的数字起,后面所有的数字都是这个数的有效数字,精确到哪位,就是对它后边一位进行四舍五入.【详解】A :0.05019精确到0.1是0.1,正确;B :0.05019精确到百分位是0.05,正确;C :0.05019精确到千分位是0.050,错误;D :0.05019精确到0.0001是0.0502,正确本题要选择错误的,故答案选择C.【点睛】本题考查的是近似数,近似数和精确数的接近程度可以用精确度表示.一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确度就是精确程度.8.某种品牌的彩电降价30%以后,每台售价为元,则该品牌彩电每台原价应为( )A. 0.7a 元B. 0.3a 元C. 0.3a 元D. 0.7a 元 【答案】D【解析】 由题意得0.7a 元,所以选D. 点睛:涨价,降价与折扣一个物品价格为a ,涨价b %,现价 为a (1+b %),一个物品价格为a ,降价b %,现价 为a (1-b %),一个物品价格为a ,9折出售,现价为90%a.二、填空题:(每题3分,共24分)9.“早穿皮袄午穿纱”这句民谣形象地描绘了我们新疆奇妙的气温变化现象.乌鲁木齐市五月的某一天,最低气温是t ℃,温差是15 ℃,则当天的最高气温是________℃.【答案】(t +15)【解析】(t +15).10.单项式 35ab -8的系数是__,次数是__. 【答案】 (1). 58- (2). 4【解析】 因为单项式的系数是指字母前数字因数,所以358ab -的系数是58-,单项式的次数是指所含字母指数之和,所以358ab -的次数是4,故答案为5 8-,4. 11.若315k y x 与3873x y -是同类项,则k=_____. 【答案】8【解析】试题分析:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.根据定义可知:k=8.12.我国2006年参加高考报名的总人数约为950万人,则该人数可用科学记数法表示为_____人.【答案】9.5×106【解析】试题分析:科学计数法是指将一个数字表示成a 10n ⨯的形式,其中1≤a <10,n 为原数的整数位数减一,则950万人=9500000人=69.510⨯人.13.某种零件的直径规格是20±0.02mm ,经检查,一个零件的直径是19.9mm ,该零件____________(填“合格”或“不合格”).【答案】不合格【解析】【分析】根据正负数的意义,求得合格零件的直径的范围,再进一步分析.【详解】解:根据题意,得该零件直径最小是20-0.02=19.98(mm ),最大是20+0.02=20.02(mm ),因为19.9<19.98,所以该零件不合格.故答案为不合格.【点睛】此题考查了正、负数在实际生活中的意义,±0.02表示和标准相比,超过或不足0.02. 14.已知单项式3a m b 2与423n a b -的和是单项式,那么m=_____,n=_____. 【答案】 (1). 4 (2). 2【解析】试题分析:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.根据定义可知:m=4,n=2.15.数轴上到点﹣3的距离是3个单位长度的点表示的数是_____.【答案】0或﹣6.【解析】试题分析:在数轴上两点所表示的数的差的绝对值为这两个点之间的距离.设这个点表示的数为x ,则()33x --=,则x 33+=±,解得:x=0或-6,即这个点表示的数为0或-6.16.若|a |=3,|b |=2,且a >b ,则a +b 的值可能是:_____.【答案】5或1.【解析】试题分析:根据绝对值的计算方法可得:a 3=±,b 2=±,根据a b >可得:a=3,b 2=±,则a+b=3+2=5或a+b=3+(-2)=1.点睛:正数的绝对值等于它本身,负数的绝对值等于它的相反数,零的相反数为零;互为相反数的两个数的绝对值相等.本题首先根据绝对值的性质求出a 和b 的值,然后根据有理数的大小比较方法确认a 和b 的值,然后进行计算得出答案.这种题目有的时候还是会出现平方根,根据平方根的性质得出答案.三、计算题:(每题5分,共30分)17.计算题(1)﹣8﹣6+22﹣9.(2)(﹣16+34﹣112)×48.(3)|﹣0.75|+(﹣3)﹣(﹣0.25)+|﹣18|+78.(4)﹣22+3×(﹣1)4﹣(﹣4)×5.(5)(7m2n﹣5mn)﹣(4m2n﹣5mn)(6)13(9a﹣3)+2(a+1).【答案】(1)﹣1;(2)24;(3)﹣1;(4)19;(5)3m2n;(6)5a+1【解析】试题分析:(1)、首先将同号的进行相加,然后再进行异号的加法计算;(2)、利用乘法分配律进行简便计算;(3)、首先进行绝对值和去括号计算,然后将同分母的放在一起进行计算,最后进行整数之间的计算;(4)、先进行幂的计算,然后进行加减法计算;(5)、首先根据去括号的法则进行去括号,然后进行合并同类项计算得出答案;(6)、首先根据去括号的法则进行去括号,然后进行合并同类项计算得出答案.试题解析:解:(1)、原式=﹣23+22=﹣1;(2)、原式=﹣8+36﹣4=24;(3)、原式=0.75﹣3+0.25+18+78=1﹣3+1=﹣1;(4)、原式=﹣4+3×1+20=﹣4+3+20=19;(5)、原式=7m2n﹣5mn﹣4m2n+5mn=3m2n;(6)、原式=3a﹣1+2a+2=5a+1四、解答题:(第1、2、3题每题10分,第4题12分,共42分)(说明:答题时要写出必要的步聚和过程)18.如果规定符号“*”的意义是:a*b=aba b+,试求2*(﹣4)的值.【答案】4【解析】【分析】根据给出的新定义的计算法则将数字分别代入公式计算即可得出答案.【详解】2*(﹣4)=()()248 244⨯--=+--=4.【点睛】考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.19.化简求值:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y ),其中x=﹣1,y=2.【答案】6.【解析】试题分析:首先根据去括号的法则将括号去掉,然后再进行合并同类项计算,最后将x 和y 的值代入化简后的式子进行计算即可得出答案.试题解析:解:(2x 2y ﹣4xy 2)﹣(﹣3xy 2+x 2y)=2x 2y ﹣4xy 2+3xy 2﹣x 2y=x 2y ﹣xy 2,当x=﹣1,y=2时,原式=(﹣1)2×2﹣(﹣1)×22=1×2+1×4=2+4=6.20.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A 处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2(1)A 处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油05升,这一天共耗油多少升?【答案】(1)A 处在岗亭南方,距离岗亭14千米;(2)34L【解析】【分析】(1)由已知,把所有数据相加,如果得数是正数,则A 处在岗亭北方,否则在北方.所得数的绝对值就是离岗亭的距离.(2)把所有数据的绝对值相加就是行驶的路程,已知摩托车每行驶1千米耗油0.5升,那么乘以0.5就是一天共耗油的量.【详解】解:(1)(+10)+(-8)+( +7)+(-15)+(+6)+(-16)+(+4)+(-2) 1分=-14答:停留时,A 处在岗亭的南方,距离14千米(2)()108715616420.5+++++++++++⨯---- ()108715616420.5=+++++++⨯680.5=⨯34=答:这一天共耗油34升考点:正数和负数.21.已知:m,x,y 满足:(1)23(x -5)2+5|m|=0;(2)-2a 2b y +1与7b 3a 2是同类项. 求:代数式2x 2-6y 2+m(xy -9y 2)-(3x 2-3xy +7y 2)的值.【答案】-47.【解析】【分析】根据几个非负数的和为零,则每一个非负数都是零的性质求出x 和m 的值;根据同类项的定义求出y 的值,然后将x 、y 和m 的值代入所求的代数式得出答案. 【详解】解:∵()225503x m -+=,(x ﹣5)2≥0,|m |≥0, ∴(x ﹣5)2=0,|m |=0, ∴x ﹣5=0,m=0,∴x=5∵﹣2a 2b y +1与7b 3a 2是同类项∴y +1=3,∴y=2∴2x 2﹣6y 2+m(xy ﹣9y 2)﹣(3x 2﹣3xy +7y 2)=2x 2﹣6y 2+mxy ﹣9my 2﹣3x 2+3xy ﹣7y 2=﹣x 2﹣13y 2﹣9my 2+mxy +3xy=﹣52﹣13×22﹣9×0×22+0×5×2+3×5×2=﹣47.【点睛】本题主要考查的就是非负数的性质、同类项的定义以及代数式的化简求值问题.计算结果为非负数的我们在初中阶段学过三种:平方、绝对值、算术平方根.这种题目经常会在考试当中出现,我们一定要引起重视.对于同类项,我们一定要明确同类项的定义,根据定义可以得出未知数的值.。

人教版七年级上册数学期中试卷【含答案】

人教版七年级上册数学期中试卷【含答案】

人教版七年级上册数学期中试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的周长是?A. 32厘米B. 36厘米C. 42厘米D. 46厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 一个正方形的边长是8厘米,那么这个正方形的面积是?A. 32平方厘米B. 64平方厘米C. 128平方厘米D. 256平方厘米5. 下列哪个数是奇数?A. 45B. 46C. 47D. 48二、判断题(每题1分,共5分)1. 2的倍数都是偶数。

()2. 所有的三角形都有三个角。

()3. 1是质数。

()4. 一个正方形的四条边都相等。

()5. 任何两个奇数相加的和都是偶数。

()三、填空题(每题1分,共5分)1. 最大的两位数是______。

2. 2的3次方等于______。

3. 一个等边三角形的三个角都是______度。

4. 一个长方形的长是10厘米,宽是5厘米,那么这个长方形的面积是______平方厘米。

5. 下列数中,______是4的倍数。

四、简答题(每题2分,共10分)1. 请写出1到10的所有质数。

2. 请解释什么是等腰三角形。

3. 请写出2的4次方和3的3次方的值。

4. 请解释什么是长方形的周长。

5. 请写出5个偶数。

五、应用题(每题2分,共10分)1. 一个长方形的长是15厘米,宽是8厘米,请计算这个长方形的面积。

2. 请计算下列两个数的和:23和17。

3. 一个正方形的边长是12厘米,请计算这个正方形的面积。

4. 请计算下列两个数的差:57和29。

5. 一个等腰三角形的底边长是10厘米,腰长是12厘米,请计算这个三角形的周长。

六、分析题(每题5分,共10分)1. 请分析下列数的特点:2,3,5,7,11,13,17,19。

2. 请分析下列图形的特点:正方形,长方形,三角形,圆形。

人教版七年级上学期期中考试数学试卷(含答案)

人教版七年级上学期期中考试数学试卷(含答案)

人教版七年级第一学期期中数学试卷及答案一、单选题(共10题,每小题4分,合计40分)1.(4分)的相反数是()A.6B.﹣6C.D.﹣【解答】解:的相反数是﹣,故选:D.2.(4分)如果和﹣x2y n是同类项,则m+n=()A.3B.2C.1D.﹣1【解答】解:∵和﹣x2y n是同类项,∴m=2,n=1,∴m+n=2+1=3.故选:A.3.(4分)如果m=n,那么下列等式不一定成立的是()A.m﹣3=n﹣3B.2m+3=3n+2C.5+m=5+n D.【解答】解:A.∵m=n,∴m﹣3=n﹣3,故本选项不符合题意;B.∵m=n,∴2m=2n,∴2m+3=2n+3,不能推出2m+3=3n+2,故本选项符合题意;C.∵m=n,∴5+m=5+n,故本选项不符合题意;D.∵m=n,∴=,故本选项不符合题意;故选:B.4.(4分)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.5.(4分)已知x=2是方程3x﹣5=2x+m的解,则m的值是()A.1B.﹣1C.3D.﹣3【解答】解:∵x=2是方程3x﹣5=2x+m的解,∴把x=2代入方程可得6﹣5=4+m,解得m=﹣3,故选:D.6.(4分)解一元一次方程(x+1)=1﹣x时,去分母正确的是()A.3(x+1)=1﹣2x B.2(x+1)=1﹣3xC.2(x+1)=6﹣3x D.3(x+1)=6﹣2x【解答】解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.7.(4分)多项式a2+a与多项式﹣a+1的差为()A.a2+1B.a2+2a+1C.a2﹣1D.a2+2a﹣1【解答】解:(a2+a)﹣(﹣a+1)=a2+a+a﹣1=a2+2a﹣1,故选:D.8.(4分)多项式x2﹣kxy﹣5y2+xy﹣6合并同类项后不含xy项,则k的值是()A.0B.1C.2D.﹣2【解答】解:∵项式x2﹣kxy﹣5y2+xy﹣6合并同类项后不含xy项,∴﹣k+1=0,∴k=2.故选:C.9.(4分)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.10.(4分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.故选:C.二.填空题(共6题,每小题4分,合计24分)11.(4分)我市2020年常住人口约9080000人,该人口数用科学记数法可表示为9.08×106人.【解答】解:9080000人用科学记数法可表示为9.08×106人.故答案为:9.08×106.12.(4分)若a﹣b=1,则代数式2a﹣(2b﹣1)的值是3.【解答】解:整理代数式得,2a﹣2b+1=2(a﹣b)+1,∵a﹣b=1,∴原式=2+1=3.13.(4分)当x=1时,代数式x+2与代数式的值相等.【解答】解:∵代数式x+2与代数式的值相等,∴x+2=,2x+4=7﹣x,2x+x=7﹣4,3x=3,x=1,故答案为:1.14.(4分)若|x|=3,|y|=4,且xy>0,则x+y的值为7或﹣7.【解答】解:∵|x|=3,|y|=4,∴x=±3,y=±4,∵xy>0,∴x=3时,y=4,x+y=7,x=﹣3时,y=﹣4,x+y=﹣3+(﹣4)=﹣7,综上所述,x+y的值是7或﹣7.故答案为:7或﹣7.15.(4分)一台整式转化器原理如图,开始时输入关于x的整式M,当M=x+1时,第一次输出3x+1,继续下去,则第2次输出的结果是7x+1.【解答】解:第一次输入M=x+1得整式:(x+1+)×2+N=3x+1,整理得3x+2+N=3x+1,故2+N=1,解得N=﹣1,故运算原理为:(M+)×2﹣1,第二次输入M=3x+1,运算得(3x+1+)×2﹣1=7x+1.故答案为:7x+1.16.(4分)有理数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|a﹣c|+|b﹣c|的结果是﹣2a.【解答】解:根据图形,c<b<0<a,且|a|<|b|<|c|,∴a+b<0,a﹣c>0,b﹣c>0,∴原式=(﹣a﹣b)﹣(a﹣c)+(b﹣c),=﹣a﹣b﹣a+c+b﹣c,=﹣2a.故答案为:﹣2a.三.解答题(共9题,合计86分)17.(8分)计算:(1);(2).【解答】解:(1)=()×(﹣60)=﹣×60+×60﹣×60+×60=﹣20+15﹣12+10=﹣7;(2)=﹣1﹣×(﹣20)+4=﹣1+8+4=11.18.(8分)先化简再求值:3a2b﹣[2a2b﹣(2ab﹣a2b)﹣4a2]﹣ab,其中a=﹣3,b=﹣2.【解答】解:3a2b﹣[2a2b﹣(2ab﹣a2b)﹣4a2]﹣ab=3a2b﹣2a2b+(2ab﹣a2b)+4a2﹣ab=3a2b﹣2a2b+2ab﹣a2b+4a2﹣ab=ab+4a2当a=﹣3,b=﹣2时,原式=(﹣3)×(﹣2)+4×(﹣3)2=6+36=42.19.(8分)解方程:(1)y﹣3(20﹣2y)=10(2)(x﹣2)=1﹣(4﹣3x)【解答】解:(1)去括号得:y﹣60+6y=10,移项得:y+6y=10+60,合并同类项得:7y=70,系数化为1得:y=10,(2)方程两边同时乘以12得:3(x﹣2)=12﹣2(4﹣3x),去括号得:3x﹣6=12﹣8+6x,移项得:3x﹣6x=12﹣8+6,合并同类项得:﹣3x=10,系数化为1得:x=﹣.20.(8分)某一食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g)﹣5﹣20136袋数143453这批样品的平均质量比标准质量多还是少?多或少几克,若标准质量为450克,则抽样检测的总质量是多少?【解答】解:与标准质量的差值的和为﹣5×1+(﹣2)×4+0×3+1×4+3×5+6×3=24,其平均数为24÷20=1.2,即这批样品的平均质量比标准质量多,多1.2克.则抽样检测的总质量是(450+1.2)×20=9024(克).21.(8分)若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.【解答】解:(1)3*(﹣4),=4×3×(﹣4),=﹣48;(2)(﹣2)*(6*3),=(﹣2)*(4×6×3),=(﹣2)*(72),=4×(﹣2)×(72),=﹣576.22.(10分)已知:M+N=4x3+16xy2+8y3,N=3x3﹣4y3+16xy2.(1)求M;(2)若|x﹣2|+(y+1)2=0,计算M的值.(2)直接利用非负数的性质得出x,y的值,进而代入计算得出答案.【解答】解:(1)∵M+N=4x3+16xy2+8y3,N=3x3﹣4y3+16xy2,∴M=4x3+16xy2+8y3﹣(3x3﹣4y3+16xy2)=4x3+16xy2+8y3﹣3x3+4y3﹣16xy2=x3+12y3;(2)∵|x﹣2|+(y+1)2=0,∴x﹣2=0,y+1=0,解得:x=2,y=﹣1,∴M=23+12×(﹣1)=8﹣12=﹣4.23.(10分)阅读下面解题过程.利用运算律有时能进行简便计算.例1:98×12=(100﹣2)×12=1200﹣24=1176;例2:﹣16×233+17×233=(﹣16+17)×233=233;请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15);(2)999×118+999×(﹣)﹣999×18.【解答】解:(1)999×(﹣15)=(1000﹣1)×(﹣15)=1000×(﹣15)﹣1×(﹣15)=﹣15000+15=﹣14985;(2)999×118+999×(﹣)﹣999×18=999×[118+(﹣)+(﹣18)]=999×100=99900.24.(12分)有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作;第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8;继续依次操作下去.问(1)第一次操作后,增加的所有新数之和是多少?(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和是多少?(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和是多少?【解答】解:(1)第一次操作后增加的新数是6,﹣1,则6+(﹣1)=5.(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和为3+3+(﹣10)+9=5.(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和为5.25.(14分)如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.【解答】解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则10÷2+x÷1=8÷1+(10﹣x)÷2,解得x=.故相遇点M所对应的数是.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.综上所述:t的值为2、6.5、11或17.。

2024年全新七年级数学上册期中试卷及答案(人教版)

2024年全新七年级数学上册期中试卷及答案(人教版)

2024年全新七年级数学上册期中试卷及答案(人教版)一、选择题(每题2分,共20分)1. 下列哪个数是质数?A. 11B. 12C. 13D. 142. 下列哪个数是合数?A. 15B. 16C. 17D. 183. 下列哪个数是偶数?A. 19B. 20C. 21D. 224. 下列哪个数是奇数?A. 23B. 24C. 25D. 265. 下列哪个数是整数?A. 27B. 28C. 29D. 306. 下列哪个数是分数?A. 31B. 32C. 33D. 347. 下列哪个数是无理数?A. 35B. 36C. 37D. 388. 下列哪个数是有理数?A. 39B. 40C. 41D. 429. 下列哪个数是正数?A. 43B. 44C. 45D. 4610. 下列哪个数是负数?A. 47B. 48C. 49D. 50二、填空题(每题2分,共20分)1. 一个正方形的边长是4厘米,它的面积是_________平方厘米。

2. 一个长方形的长是8厘米,宽是5厘米,它的周长是_________厘米。

3. 一个圆的半径是6厘米,它的周长是_________厘米。

4. 一个圆柱的底面半径是3厘米,高是5厘米,它的体积是_________立方厘米。

5. 一个圆锥的底面半径是4厘米,高是9厘米,它的体积是_________立方厘米。

6. 一个三角形的底是6厘米,高是8厘米,它的面积是_________平方厘米。

7. 一个梯形的上底是5厘米,下底是10厘米,高是6厘米,它的面积是_________平方厘米。

8. 一个平行四边形的底是7厘米,高是8厘米,它的面积是_________平方厘米。

9. 一个正六边形的边长是6厘米,它的周长是_________厘米。

10. 一个等腰三角形的底是8厘米,腰是5厘米,它的面积是_________平方厘米。

三、解答题(每题10分,共50分)1. 已知一个三角形的两边长分别是5厘米和8厘米,求第三边的长度。

人教版七年级上册数学《期中测试卷》及答案

人教版七年级上册数学《期中测试卷》及答案

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,如果向东走5米记为+5米,那么-8米表示( )A. 向东走8米B. 向西走8米C. 向南走8米D. 向北走8米 2.如图,几何体从上面看到的几何图形是( )A. B. C. D. 3.下列运算中正确的是( )A. 2233a a -=B. 235a b ab +=C. ()333a b a b --=-+D. 224a b a += 4.下列图形中,经过折叠不能围成正方体的是( ) A. B. C. D. 5.中国倡导的“一带一路”是中国与世界的互利共赢之路,据统计,“一带一路”地区覆盖的总人口约为44亿人,则“44亿”这个数用科学记数法可表示为( )A. 44×107B. 4.4×108C. 4.4×109D. 0.44×1010 6.将1, ,3-,2这四个数分别用点表示在数轴上,其中与所表示的点最近的数是( )A. 1B. -2C. -3D. 27.将3p ﹣(m +5n ﹣4)去括号,下列结论正确的是( )A 3p ﹣m +5n +4B. 3p ﹣m +5n ﹣4C. 3P ﹣m ﹣5n ﹣4D. 3p ﹣m ﹣5n +48.有理数a 、b 在数轴上的对应位置如图所示,则下列四个结论正确的是( )A. 0a b <B. 0ab >C. 0a b ->D. 0a b += 9.已知x ﹣2y =5,则整式2x ﹣4y 的值为( )A. 5B. ﹣5C. 10D. ﹣1010.下列说法: ①﹣1乘以任何一个有理数得这个有理数的相反数;②任何互为相反数的商都等于﹣1;③数轴上原点两侧的数互为相反数;④互为相反数的两个有理数分别立方所得到的两个数也一定是互为相反数.其中正确说法的个数有( )A. 1个B. 2个C. 3个D. 4个二.填空题11.计算:①12-+=__;②12--=___;③12-⨯=___;④12-÷=____.12.式子“21-”读作________.13.单项式7xy -的系数是_____;多项式224532x y y -+的次数是_____. 14.如图,是一个数值转换机,若输入数x 为一1,则输出数是_________.三.解答题15.计算(1)114 1.55( 2.75)45⎛⎫-+--- ⎪⎝⎭ (2)321|2|3182⎛⎫--+⨯- ⎪⎝⎭16.先化简,再求值:已知(x-2)2+|y+1|=0求代数式4(12x2-3xy-y2)-3(x2-7xy-2y2)的值.17.对于有理数a,b,定义一种新运算“”,规定.(1)计算的值;(2)当,在数轴上位置如图所示时,化简18.如图,大小两个正方形的边长分别为a、b.(1)用含a、b的代数式表示阴影部分的面积S;(2)如果a=6,b=4,求阴影部分的面积.19.某出租车一天上午从A地出发在沿着东西向的大街营运,向东为正,向西为负,行驶里程(单位:km)依先后次序记录如下:+18,-5,-2,+3,+10,-9,+12,-3,-7,-15.(1)将最后一名乘客送到目的地,出租车相对出发地的位置?(2)不超过3千米时,按起步价收费10元,超过3千米的部分,每千米收费2元,司机上午的营业额是多少?20.小明家住房户型呈长方形,平面图如下(单位:米).现准备铺设整个长方形地面,其中三间卧室铺设木地板,其它区域铺设地砖.(房间内隔墙宽度忽略不计)(1)求a的值;(2)请用含x的代数式分别表示铺设地面需要木地板和地砖各多少平方米;(3)按市场价格,木地板单价为300元/平方米,地砖单价为100元/平方米.装修公司有A,B两种活动方案,如表:已知卧室2的面积为21平方米,则小方家应选择哪种活动,使铺设地面总费用(含材料费及安装费)更低? 一.填空题21.计算:202020191(3)3⎛⎫-⨯ ⎪⎝⎭=_____.22.已知|a |=4,|b |=2,且a >b ,a +b 值为___.23.下列是有规律排列的一列数:12345,,,,2481632---,…,请观察此一列数,按此规律,第n 个数应是__________.24.三个互不相等的有理数,既可以表示为0,b ,b a 的形式,也可以表示为1,a ,a +b 的形式,那么a =_______;b =_________.25.在数轴上有理数a ,11a-分别用点A ,A 1表示,我们称点A 1是点A 的“差倒数点”.已知数轴上点A 的差倒数点为点A 1;点A 1的差倒数点为点A 2;点A 2的差倒数点为点A 3…这样在数轴上依次得到点A ,A 1,A 2,A 3,…,A n .若点A ,A 1,A 2,A 3,…,A n 在数轴上分别表示的有理数为a ,a 1、a 2、a 3、…,a n .则当a 12=-时,代数式a 1+a 2+a 3+…+a 2020的值为______. 二.解答题26.已知与互为相反数,与互为倒数,的绝对值是,的相反数是它本身,求20192020223xy b m a n -+-+的值 27.观察下列等式: 第1个等式:a 1=114⨯=13×(11﹣14); 第2个等式:a 2=147⨯=13×(14﹣17); 第3个等式:a 3=1710⨯=13×(11710-);第4个等式:a 4=11013⨯=13×(111013-); … 请解答下列问题:(1)按以上规律列出第5个等式:a 5= = ;第n (n 正整数)个等式:a n = = ;(2)求a 1+a 2+a 3+a 4+…+a 100的值;(3)数学符号1n x =∑f (x )=f (1)+f (2)+f (3)+…+f (n ),试求10x=13(3)x x +∑值. 28.已知数轴上有A ,B ,C 三点,分别代表-24,-10,10,两只电子蚂蚁甲,乙分别从A ,C 两点同时相向而行,甲的速度为4个单位/秒.(1)问多少秒后,甲到A ,B ,C 的距离和为40个单位?(2)若乙的速度为6个单位/秒,两只电子蚂蚁甲,乙分别从A ,C 两点同时相向而行,问甲,乙在数轴上的哪个点相遇?(3)在(1)(2)的条件下,当甲到A 、B 、C 的距离和为40个单位时,甲调头返回.问甲,乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.答案与解析一、选择题1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,如果向东走5米记为+5米,那么-8米表示()A. 向东走8米B. 向西走8米C. 向南走8米D. 向北走8米【答案】B【解析】【分析】根据题意,向东走5米记为+5米,则米就表示相反的概念,问题得以解决.【详解】解:向东走5米记为+5米,则米就表示向西走8米;故答案选:B.【点睛】本题考查相反数的意义.2.如图,几何体从上面看到的几何图形是( )A. B. C. D.【答案】C【解析】【分析】根据从上面看得到的图形是俯视图,可得答案.【详解】解:观察几何体,俯视图如下:故选C .【点睛】本题考查了简单组合体的三视图,解题时注意从上面看得到的图形是俯视图.3.下列运算中正确的是( )A. 2233a a -=B. 235a b ab +=C. ()333a b a b --=-+D. 224a b a +=【答案】C【解析】【分析】根据合并同类项法则以及去括号法则,逐一判断选项,即可得到答案.【详解】A. 22232a a a -=,故本选项错误,B. 2a 与不是同类项,不能合并,故本选项错误,C. ()333a b a b --=-+,正确,D. 2a 与2b 不是同类项,不能合并,故本选项错误.故选C .【点睛】本题主要考查合并同类项法则以及去括号法则,掌握合并同类项法则以及去括号法则,是解题的关键.4.下列图形中,经过折叠不能围成正方体的是( ) A. B. C. D.【答案】A【解析】【分析】由平面图形的折叠及正方体的展开图的常见形式作答即可.【详解】解:A 、有两个面重叠,不能折成正方体; 选项B 、C 、D 经过折叠均能围成正方体. 故选A.【点睛】本题主要考查展开图折叠成几何体的知识点,注意只要有“田”字格的展开图都不是正方体的表面展开图.5.中国倡导的“一带一路”是中国与世界的互利共赢之路,据统计,“一带一路”地区覆盖的总人口约为44亿人,则“44亿”这个数用科学记数法可表示为( )A. 4.4×107B. 4.4×108C. 4.4×109D. 0.44×1010 【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:44亿=4400000000,∴将44亿用科学记数法表示应为4.4×109. 故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.将1, ,3-,2这四个数分别用点表示在数轴上,其中与所表示的点最近的数是( )A. 1B. -2C. -3D. 2 【答案】B【解析】【分析】分别计算出选项中各点与的距离,即可解答.【详解】解:∵选项A :1与的距离为()112--=;选项B :与的距离为()211---=;选项C :3-与的距离为()312---=;选项D :2与的距离为()213--=;∴-2与的距离最近,故选:B .【点睛】本题考查了数轴两点的距离,解决本题的关键是掌握数轴上两点距离的计算方法,即AB 两点距离A B AB x x =- .7.将3p ﹣(m +5n ﹣4)去括号,下列结论正确的是( )A. 3p ﹣m +5n +4B. 3p ﹣m +5n ﹣4C. 3P ﹣m ﹣5n ﹣4D. 3p ﹣m ﹣5n +4【答案】D【解析】【分析】根据去括号法则解答即可.【详解】解:3p ﹣(m +5n ﹣4)=3p ﹣m ﹣5n +4故选:D . 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.顺序为先大后小.8.有理数a 、b 在数轴上的对应位置如图所示,则下列四个结论正确的是( )A. 0a b <B. 0ab >C. 0a b ->D. 0a b += 【答案】A【解析】【分析】根据相反数在数轴上的表示,可判断0a b b a <-<<<-,由此可知答案B 、C 、D 均是错误的,答案A 为正确的.【详解】解:观察图形可知:a <0<b ,且|a|>|b|,∴0a b b a <-<<<-, ∴0a b<,0ab <,0a b -<,0a b +<, 故选A.【点睛】本题考查的是有理数的大小比较,利用数形结合的数学思想是解决本题的关键.9.已知x ﹣2y =5,则整式2x ﹣4y 的值为( )A. 5B. ﹣5C. 10D. ﹣10【答案】D【解析】【分析】将整式2x ﹣4y 变形为2(x-2y ),再将已知式子代入求值即可.【详解】解:∵x ﹣2y =5,∴2x ﹣4y =2(x-2y )=2×(-5)=-10,故选D.【点睛】本题考查了代数式求值,能将待求式子进行适当变形是解题的关键.10.下列说法: ①﹣1乘以任何一个有理数得这个有理数的相反数;②任何互为相反数的商都等于﹣1;③数轴上原点两侧的数互为相反数;④互为相反数的两个有理数分别立方所得到的两个数也一定是互为相反数.其中正确说法的个数有( )A. 1个B. 2个C. 3个D. 4个 【答案】B【解析】【分析】根据乘法法则、相反数的意义、乘方的意义判断即可.【详解】解:(1)﹣1乘以任何一个有理数得这个有理数的相反数,这个说法正确;(2)任何互为相反数的商都等于﹣1,这个说法错误,例如0的相反数是0,但0除以0没有意义;(3)数轴上原点两侧的数互为相反数,这个说法错误,例如﹣1和6是数轴上原点两侧的数,但不是互为相反数;(4)互为相反数的两个有理数分别立方所得到的两个数也一定是互为相反数,这个说法正确;则说法正确的个数有2个.故选:B .【点睛】此题考查了有理数的乘法法则、相反数的意义、乘方的意义,熟练掌握运算法则是解本题的关键. 二.填空题11.计算:①12-+=__;②12--=___;③12-⨯=___;④12-÷=____.【答案】 (1). 1 (2). -3 (3). -2 (4). 12-【解析】【分析】分别根据有理数的加减乘除运算法则计算即可.【详解】解:121-+=,123--=-,122-⨯=-,1122-÷=-, 故答案为:1;-3;-2;12-. 【点睛】本题考查了有理数的加减乘除运算,解题的关键是掌握运算法则. 12.式子“21-”读作________. 【答案】1的平方的相反数 【解析】 【分析】根据﹣12表示12的相反数,即可求解.【详解】解:式子﹣12的底数是1,指数是2,读作1的平方的相反数,结果是﹣1. 故答案为:1的平方的相反数.【点睛】本题考查了乘方的定义, a n 中,a 叫底数,n 叫指数,n 表示相同的因数的个数.13.单项式7xy -的系数是_____;多项式224532x y y -+的次数是_____. 【答案】 (1). 17- (2). 3【解析】 【分析】根据单项式和多项式的概念进行解答. 【详解】解:单项式7xy -的系数是17-, 多项式224532x y y -+的次数是3, 故答案为:17-,3. 【点睛】本题考查了单项式和多项式的概念,单项式的系数,多项式的次数是基础知识,应该掌握. 14.如图,是一个数值转换机,若输入数x 为一1,则输出数是_________.【答案】7 【解析】【分析】依题意可以得到x×(-3)-8=-3x-8,代入x=-1计算求解即可.【详解】解:∵x=-1,∴x×(-3)-8=-3x-8,则原式=-3×(-1)-8=3-8=-5<0,∴-3×(-5)-8=15-8=7.故答案为7.【点睛】本题考查了代数式求值,解答本题的关键就是弄清楚题图给出的计算程序.三.解答题15.计算(1)114 1.55( 2.75)45⎛⎫-+---⎪⎝⎭(2)321|2|3182⎛⎫--+⨯-⎪⎝⎭【答案】(1)0;(2)37 4 -【解析】【分析】(1)根据有理数的加减法法则及加法运算律计算即可;(2)根据有理数的乘方的意义、乘法法则、加减法法则及绝对值的代数意义计算即可.【详解】解:(1)原式=[414﹣(﹣2.75)]+[﹣1.5+(﹣512)]=7+(﹣7) =0;(2)原式=1 2918()8 -+⨯-=9 74 --=374 -.【点睛】本题考查了有理数的混合运算,熟练掌握有理数的运算法则、运算顺序及有理数的加法运算律是解决本题的关键.16.先化简,再求值:已知(x-2)2+|y+1|=0求代数式4(12x2-3xy-y2)-3(x2-7xy-2y2)的值.【答案】﹣x 2+9xy +2y 2,﹣20 【解析】 【分析】先根据整式的加减化简代数式,再根据(x -2)2+|y +1|=0确定x 和y 的值,代入化简后的的代数式求值即可. 【详解】解:原式=2x 2﹣12xy ﹣4y 2﹣3x 2+21xy +6y 2 =﹣x 2+9xy +2y 2 ∵(x -2)2+|y +1|=0, ∴x =2,y =﹣1原式=﹣4﹣18+2=﹣20【点睛】本题考查整式的化简求值,熟练掌握整式的加减运算法则,同时还需掌握平方的非负性及绝对值的非负性是解题关键.17.对于有理数a ,b ,定义一种新运算“”,规定.(1)计算的值;(2)当,在数轴上位置如图所示时,化简【答案】(1)-6;(2)2b 【解析】 【分析】(1)根据定义:a b a b a b ⊗=---代入计算即可; (2)根据定义:a b a b a b ⊗=---,再化简绝对值即可. 【详解】解:(1)原式=2323----- =﹣6(2)由a ,b 在数轴上位置,可得0,0b a <> a ﹣b >0, 则a b a b a b ⊗=--- =a+b ﹣a+b =2b【点睛】本题考查定义新运算与绝对值结合,掌握绝对值化简是解题关键. 18.如图,大小两个正方形的边长分别为a 、b .(1)用含a 、b 的代数式表示阴影部分的面积S ; (2)如果a =6,b =4,求阴影部分的面积. 【答案】(1)22111222a b ab +-;(2)14 【解析】 【分析】(1)依据阴影部分的面积等于两个正方形的面积之和减去空白部分的面积,即可用含a 、b 的代数式表示阴影部分的面积S ;(2)把a =6,b =4,代入代数式,即可求阴影部分面积. 【详解】(1)大小两个正方形的边长分别为a 、b , ∴阴影部分的面积为:S =a 2+b 2﹣12a 2﹣12(a+b )b =12a 2+12b 2﹣12ab ; (2)∵a =6,b =4,∴S =12a 2+12b 2﹣12ab =12×62+12×42﹣12×6×4 =18+8﹣12 =14.所以阴影部分的面积是14.【点睛】本题考查了列代数式和求代数式的值,解题的关键是利用面积的和差关系求出阴影部分的面积. 19.某出租车一天上午从A 地出发在沿着东西向的大街营运,向东为正,向西为负,行驶里程(单位:km )依先后次序记录如下:+18,-5,-2,+3,+10,-9,+12,-3,-7,-15.(1)将最后一名乘客送到目的地,出租车相对出发地的位置?(2)不超过3千米时,按起步价收费10元,超过3千米的部分,每千米收费2元,司机上午的营业额是多少?【答案】(1)在向东2km 处;(2)营业额为210元. 【解析】分析】(1)把各数相加即可得相对出发地的位置;(2)根据不同路程不同价格进行计算,再加起来即可.【详解】(1)∵+18-5-2+3+10-9+12-3-7-15=2,故在向东2km处;(2)营业额=1010+(15+2+7+6+9+4+12) 2=210元.【点睛】此题主要考查有理数的计算,解题的关键是根据题意列出式子求解.20.小明家住房户型呈长方形,平面图如下(单位:米).现准备铺设整个长方形地面,其中三间卧室铺设木地板,其它区域铺设地砖.(房间内隔墙宽度忽略不计)(1)求a的值;(2)请用含x的代数式分别表示铺设地面需要木地板和地砖各多少平方米;(3)按市场价格,木地板单价为300元/平方米,地砖单价为100元/平方米.装修公司有A,B两种活动方案,如表:已知卧室2的面积为21平方米,则小方家应选择哪种活动,使铺设地面总费用(含材料费及安装费)更低? 【答案】(1)3;(2)木地板:75﹣7x,地砖:7x+53;(3)B种活动方案【解析】【分析】(1)根据长方形的对边相等可得a+5=4+4,即可求出a的值;(2)根据三间卧室铺设木地板,其它区域铺设地砖,可知将三间卧室的面积的和为木地板的面积,用长方形的面积-三间卧室的面积,所得的差为地砖的面积;(3)根据卧室2的面积为21平方米求出x,再分别求出所需的费用,然后比较即可.【详解】解:(1)根据题意,可得a +5=4+4, 得a =3;(2)铺设地面需要木地板:4×2x +a [10+6﹣(2x ﹣1)﹣x ﹣2x ]+6×4=8x +3(17﹣5x )+24=75﹣7x , 铺设地面需要地砖:16×8﹣(75﹣7x )=128﹣75+7x =7x +53; (3)∵卧室2面积为21平方米, ∴3[10+6﹣(2x ﹣1)﹣x ﹣2x ]=21, ∴3(17﹣5x )=21, ∴x =2,∴铺设地面需要木地板:75﹣7x =75﹣7×2=61, 铺设地面需要地砖:7x +53=7×2+53=67,A 种活动方案所需的费用:61×300×0.8+67×100×0.85+2000=22335(元),B 种活动方案所需的费用:61×300×0.9+67×100×0.85=22165(元), 22335>22165,所以小方家应选择B 种活动方案,使铺设地面总费用(含材料费及安装费)更低.【点睛】本题考查了列代数式,长方形的面积,分别求出铺设地面需要木地板与地砖的面积,理解A ,B 两种活动方案是解题的关键.一.填空题21.计算:202020191(3)3⎛⎫-⨯ ⎪⎝⎭=_____.【答案】13- 【解析】 【分析】根据积的乘方和同底数幂的乘法运算法则计算即可. 【详解】解:202020191(3)3⎛⎫-⨯ ⎪⎝⎭=()2019201911333⎛⎫-⨯⨯ ⎪⎝⎭=201911333⎛⎫-⨯⨯ ⎪⎝⎭ =113-⨯=13-.故答案为:13-.【点睛】本题考查了积的乘方运算和同底数幂的乘法,解题的关键是掌握运算法则. 22.已知|a |=4,|b |=2,且a >b ,a +b 的值为___. 【答案】6或2 【解析】 【分析】先根据绝对值的定义,得出a =±4,b =±2,所以a 与b 的对应值有四种可能性.再根据a >b 确定具体值,最后代入即可求出a +b 的值. 【详解】解:∵|a |=4,|b |=2, ∴a =±4,b =±2. ∵a >b ,∴当a =4,b =2时,a +b =4+2=6; 当a =4,b =﹣2时,a +b =4﹣2=2. ∴a +b 的值为6或2. 故答案为:6或2.【点睛】此题主要考查了绝对值的定义,即正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0.本题还用到了分类讨论的数学思想. 23.下列是有规律排列的一列数:12345,,,,2481632---,…,请观察此一列数,按此规律,第n 个数应是__________. 【答案】(1)2nn n -⨯ 【解析】 【分析】第奇数个数是负数,第偶数个数是正数,那么第n 个数的符号为(﹣1)n ,第1个数的分子是1,分母为21,第2个数的分子为2,分母为22,可得第n 个数的分子与分母.【详解】解:第n 个数的符号为(﹣1)n ,分子为n ,分母为2n , ∴第n 个数应是(1)2nnn -⨯, 故答案为:(1)2nn n -⨯. 【点睛】本题考查了数字的变化规律;得到第n 个数的符号,分子,分母相应的规律是解决本题的关键. 24.三个互不相等的有理数,既可以表示为0,b ,ba的形式,也可以表示为1,a ,a +b 的形式,那么a =_______;b =_________.【答案】 (1). ﹣1 (2). 1 【解析】 【分析】根据三个互不相等的有理数,既可以表示为1,a +b ,a 的形式,又可以表示为0,ba,b 的形式,也就是说这两个数组的数分别对应相等,即a +b 与a 中有一个是0,ba与b 中有一个是1,再根据分母不能为0的条件判断出a 、b 的值,代入代数式进行计算即可.【详解】解:∵三个互不相等的有理数,既表示为1,a +b ,a 的形式,又可以表示为0,ba,b 的形式, ∴这两个数组的数分别对应相等.∴a +b 与a 中有一个是0,b a 与b 中有一个是1,但若a =0,会使ba无意义, ∴a ≠0,只能a +b =0,即a =﹣b ,于是 ba=﹣1.只能是b =1,于是a =﹣1.故答案为:﹣1,1.【点睛】本题考查的是有理数的概念及计算,能根据题意得出“a +b 与a 中有一个是0,ba与b 中有一个是1”是解答此题的关键. 25.在数轴上有理数a ,11a-分别用点A ,A 1表示,我们称点A 1是点A 的“差倒数点”.已知数轴上点A 的差倒数点为点A 1;点A 1的差倒数点为点A 2;点A 2的差倒数点为点A 3…这样在数轴上依次得到点A ,A 1,A 2,A 3,…,A n .若点A ,A 1,A 2,A 3,…,A n 在数轴上分别表示的有理数为a ,a 1、a 2、a 3、…,a n .则当a 12=-时,代数式a 1+a 2+a 3+…+a 2020的值为______. 【答案】127916【解析】 【分析】先根据已知求出各个数,根据求出的数得出规律,即可得出答案. 【详解】解:∵a 12=-, ∴11121131()2a a ===---,∴21113211()3a a ===--, ∴321111132a a ===---, ∴431121131()2a a ===---,…,∵2020÷3=673……1, ∴202011121131()2a a a ====---∴a 1+a 2+a 3+…+a 20202123()673323⎡⎤=++-⨯+⎢⎥⎣⎦127916=故答案为:127916. 【点睛】本题考查了数轴和有理数的计算,能根据求出的结果得出规律是解此题的关键.二.解答题26.已知与互为相反数,与互为倒数,的绝对值是,的相反数是它本身,求20192020223xyb m a n -+-+的值 【答案】43或23- 【解析】 【分析】根据相反数的性质、倒数的定义、绝对值的性质可得+=0,1xy=,1m =±, =0,然后代入求值即可.【详解】解:∵与互为相反数,与互为倒数,的绝对值是,的相反数是它本身, ∴+=0,1xy=,1m =±, =020192020223xyb m a n -+-+ =2019202012()03a b m -+++ =201912003m -⨯++ =201913m + 当=1时,原式=43; 当1m =-时,原式=23-. 【点睛】此题考查的是有理数的相关运算,掌握相反数的性质、倒数的定义、绝对值的性质和有理数的各个运算法则是解决此题的关键. 27.观察下列等式:第1个等式:a 1=114⨯=13×(11﹣14); 第2个等式:a 2=147⨯=13×(14﹣17);第3个等式:a 3=1710⨯=13×(11710-);第4个等式:a 4=11013⨯=13×(111013-); …请解答下列问题:(1)按以上规律列出第5个等式:a 5= = ;第n (n 为正整数)个等式:a n = = ; (2)求a 1+a 2+a 3+a 4+…+a 100的值; (3)数学符号1nx =∑f (x )=f (1)+f (2)+f (3)+…+f (n ),试求10x=13(3)x x +∑值. 【答案】(1)11316⨯,13×(111316-);1(32)(31)n n -+,13×(113231n n --+);(2)100301;(3)905572【解析】【分析】(1)根据题干中的规律可得第5个等式,再总结规律可得1(32)(31)n n -+的值等于132n -和131n +的差再乘以13; (2)将a 1+a 2+a 3+a 4+…+a 100用各自算式替换,再根据(1)中归纳的等式进行拆项计算;(3)依据数学符号1n x =∑的概念,可得10x=13(3)x x +∑对应的算式,再利用前两问得到的拆项算法计算即可. 【详解】解:(1)按以上规律知第5个等式为a 5=11316⨯=13×(111316-), 第n 个等式a n =1(32)(31)n n -+=13×(113231n n --+) (2)a 1+a 2+a 3+a 4+…+a 100 =114⨯+ 147⨯+ 1710⨯+…+ 1(31002)(31001)⨯-⨯⨯+ =13×(1﹣14)+13×(1147-)+ 13×(11710-)+…+13×(11298301-) =13×(1﹣111447+-+ 11710-+…+11298301-) =13×(1﹣1301) =13×300301=100301; (3)()10x=133x x +∑ =314⨯+ 325⨯+ 336⨯+…+11013⨯. =3×(111142536++⨯⨯⨯+…+11013⨯) =3×[13×(1﹣ 14 )+ 13×(1125-)+13×(1136-)+…+13×(111013-)] =1﹣14+ 12﹣15+ 13﹣16+ 14﹣17+ 15﹣18+ 16﹣19 + 17﹣11018+﹣ 111 +11912-+111013-=1+ 12+13﹣111﹣112﹣113=905 572.【点睛】此题考查数字的变化规律,找出数字之间的运算规律,理解拆分数字的变化,利用变化的规律解决问题.28.已知数轴上有A,B,C三点,分别代表-24,-10,10,两只电子蚂蚁甲,乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒.(1)问多少秒后,甲到A,B,C的距离和为40个单位?(2)若乙的速度为6个单位/秒,两只电子蚂蚁甲,乙分别从A,C两点同时相向而行,问甲,乙在数轴上的哪个点相遇?(3)在(1)(2)的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回.问甲,乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.【答案】(1)AB之间时2s:BC之间时5s:3.4s(2)-10.4点处(3)不能相遇,理由见解析.【解析】【详解】(1)设x秒后,甲到A,B,C的距离和为40个单位.B点距A,C两点的距离为14+20=34<40,A点距B,C两点的距离为14+34=48>40,C点距A,B的距离为34+20=54>40,故甲应位于AB或BC之间.①AB之间时:4x+(14-4x)+(14-4x+20)=40,x=2s;②BC之间时:4x+(4x-14)+(34-4x)=40,x=5s,(2)设xs后甲与乙相遇4x+6x=34解得:x=3.4s,4×3.4=13.6,-24+13.6=-10.4,答:甲,乙在数轴上表示-10.4的点处相遇;(3)①甲位于AB之间时:甲返回到A需要2s,乙4s只能走24连AB之间的一半都到不了,故不能与A相遇;②甲位于BC时:甲已用5s,乙也已用5s,走了30,距A点只剩4了,连一秒都用不了,甲距A20,故不能相遇.。

人教版七年级上册数学期中考试试卷含答案

人教版七年级上册数学期中考试试卷含答案

人教版七年级上册数学期中考试试题一、单选题1.2-的相反数是()A .2-B .2C .12D .12-2.下列运算中结果正确的是()A .-1+1=0B .133444-⨯=C .369777-+=-D .(-10)÷(-5)=-53.有理数a ,b 在数轴上的位置如图所示,则a+b 是()A .正数B .负数C .零D .都有可能4.下列说法不正确的是()A .相反数等于本身的数是0B .绝对值最小的数是0C .平方最小的数是0D .最小的整数是0.5.请将88300000用科学记数法表示为()A .0.883×109B .8.83×108C .8.83×107D .88.3×1066.下列各式与a b c --的值不等的是()A .()()a b c -++-B .()()a b c -+--C .()()a b c +-+-D .()()a b c -+-+7.若ab >0,则必有()A .a >0,b >0B .a <0,0b <C .0a >,0b <D .a 、b 同号8.下列各组数中是同类项的是()A .3x 与3yB .2xy 2与﹣x 2yC .﹣3x 2y 与4yx 2D .﹣x 2与99.下列关于单项式-235x y的说法中,正确的是()A .系数、次数都是3B .系数是35,次数是3C .系数是35-,次数是2D .系数是35-,次数是310.若a 2+2a -1=0,则2a 2+4a +2021的值是()A .2019B .2020C .2021D .2023二、填空题11.比较大小-12______-13;-(-3.2)______- 3.2-.12.已知4,5x y ==,且x y >,则x—y =______.13.用四舍五入法求5.4349精确到0.01的近数是______.14.绝对值小于3的所有整数的和是______.15.若单项式x 2ym +2与﹣3xny 的和仍然是一个单项式,则m +n 的值为______.16.如图是某年10月份的月历,用正方形圈出9个数.如果用相同的方法,在月历中用正方形圈出9个数,设最中间一个是x ,则用x 表示这9个数的和是________.17.一个多项式A 减去多项式2x2+5x ﹣3,马虎同学将2x2+5x ﹣3抄成了2x2+5x+3,计算结果是﹣x2+3x ﹣7,那么这个多项式A 是_____.18.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯…,计算:111111223344520202021+++++⨯⨯⨯⨯⨯ 的结果为___________.三、解答题19.把下列各数分类,并填在表示相应集合的大括号内:35-, 3.2-,0,12,-6.4;4%-,2001(1)-.(1)整数集合:(2)分数集合:(3)正数集合:(4)负数集合20.把下列各数表示的点画在数轴上,并用“<”把这些数连接起来.-5, 1.5-,0,-132,-(-4).21.计算(1)1(2)8(3)(8)--++--+(2)131(1)(6448-+÷-(3)﹣(3﹣5)+(﹣3)2×(1﹣3)(4)5(2x -7y )-3(4x -10y )(5)()421110.52(3)3⎡⎤---⨯⨯--⎣⎦22.若│a│=4,b 是绝对值最小的数,c 是最大的负整数,求a +b -c 的值.23.先化简、再求值22222523(42)xy x y xy xy x y ⎡⎤-+--⎣⎦,其中x =2、y =-124.为了有效控制酒后驾驶,金昌市某交警的汽车在一条东西方向的大街上巡逻,规定向东为正,向西为负,已知从出发点开始所行使的路程(单位:千米)为:+4,﹣3,+2,+1,﹣2,﹣1,+2(1)若此时遇到紧急情况要求这辆汽车回到出发点,请问司机应该怎么走?要走多远?(2)该辆汽车的时速为每小时6千米,问该车回到出发点共用了多少时间?25.对于任何有理数,规定符号a b c d 的意义是a b ad bc c d=-.例如:1214—23234=⨯⨯=-.(1)计算23-11的值.(2)当21(2)0x y ++-=时,求22231x yx y ----值.26.已知1520a b c ++-++=,且a ,b ,c 分别是点A ,B ,C 在数轴上对应的数.(1)求a ,b ,c 的值,并在数轴上标出点A ,B ,C .(2)若动点P ,Q 同时从A ,B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度,求运动几秒后,Q 可以追上点P ?(3)在数轴上找一点M ,使点M 到A ,B 两点的距离之和等于10,请求出所有点M 对应的数,并说明理由.参考答案1.B【解析】【分析】根据相反数的定义可得结果.【详解】因为-2+2=0,所以-2的相反数是2,故选:B .【点睛】本题考查求相反数,熟记相反数的概念是解题的关键.2.A【解析】【分析】根据有理数的运算法则,逐条分析计算即可判断.【详解】解:A 、-1+1=0,正确;B 、1334416-⨯=-,错误;C 、363777-+=,错误;D 、(-10)÷(-5)=2,错误.故选:A .【点睛】本题考查的了绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,即:a÷b=a•1b(b≠0).两数相除,同号得正,异号得负,并把绝对值相除.3.B【解析】【分析】根据数轴得到0,0a b <>,且a b >,再有理数的加法进行分析即可得到答案.【详解】根据数轴得到0,0a b <>,且a b >,则a+b<0,故选择B.【点睛】本题考查用数轴表示有理数、绝对值和有理数的加法,解题的关键是掌握用数轴表示有理数和有理数的加法.4.D【解析】【分析】A 、根据有理数的相反数定义可得;B 、由有理数的绝对值规律可得;C 、计算正数、0与负数的平方进行比较;D 、根据整数的定义得出.【详解】解:选项A 、B 、C 的说法都正确,只有D ,因为没有最小的整数,所以D 错误.故选:D .【点睛】本题考查了相反数、绝对值、平方的有关知识,应注意既没有最大的整数,也没有最小的整数.5.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:将88300000用科学记数法表示为:8.83×107.故选:C .【点睛】本题考查用科学记数法表示绝对值大于1的数,能正确确定a 和n 是解题关键.6.B【解析】【分析】直接根据去括号法则将选项进行整理化简即可得出答案.【详解】解:A 、()()a b c a b c -++-=--,不符合题意;B 、a b c a b c -+≠--,符合题意;C 、()()a b c +-+-=a b c --,不符合题意;D 、()()a b c -+-+=a b c --,不符合题意;故选:B .【点睛】本题考查了整式的加减,熟练掌握去括号法则是解本题的关键.7.D【解析】【分析】根据有理数的乘法法则求解即可.【详解】解:∵ab>0,∴a 与b 同号,故选:D .【点睛】本题考查了有理数的乘法,比较简单,掌握ab >0,a 和b 同号,ab <0,a 和b 异号是关键.8.C【解析】【分析】根据同类项的定义进行判断即可得到答案.【详解】解:A.所含字母不同,不是同类项,故本选项不合题意;B.所含字母的指数不同,不是同类项,故本选项不合题意;C.所含字母相同,相同字母的指数相同,是同类项,故本选项符合题意;D.﹣x 2与9不是同类项,故本选项不符合题意;故选:C【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项:所含字母相同,且相同字母的指数相同.9.D【解析】【分析】根据单项式系数、次数的定义:单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数先求出单项式-23 5x y 的系数和次数,然后确定正确选项.【详解】解:根据单项式系数、次数的定义可知:单项式-23 5x y 的系数是﹣35,次数是2+1=3,只有D 正确,故选:D .x 2【点睛】本题考察了单项式的系数和次数的求法,熟记它们的概念是解题的关键10.D【解析】【分析】先把a 2+2a -1=0变形为a 2+2a =1,再代入原式化简后的式子22(2)2021a a ++得出结果.【详解】解:∵a 2+2a -1=0,∴a 2+2a =1,∴2a 2+4a +2021=22(2)2021a a ++=2×1+2021=2023,故选:D .【点睛】本题考查了代数式求值,考查了整体思想,把a 2+2a =1整体代入求值是解题的关键.11.<>【解析】【分析】根据两个负数比较,绝对值大的反而小,正数大于负数,即可判断.【详解】解:∵12-=1326=;13-=12=36,∴36>26,∴-12<-13;∵-(-3.2)=3.2, 3.2--=-3.2,∴-(-3.2)>- 3.2-,故答案为:<,>.【点睛】本题考查了有理数的大小比较,掌握“两个负数比较,绝对值大的反而小”是解题的关键.12.1或9##9或1【解析】【分析】由题意依据|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.然后分两种情况分别计算x-y的值.【详解】解:因为|x|=4,|y|=5,所以x=±4,y=±5,因为x>y,所以x=4,y=-5或x=-4,y=-5.4-(-5)=9,-4-(-5)=1,所以x-y=1或9.故答案为:1或9.【点睛】本题主要考查绝对值的定义以及有理数的减法法则,注意结合分类讨论的数学思想分析,解题时注意分类要不重不漏.13.5.43【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:5.4349精确到0.01的近数是5.43.故答案为5.43.【点睛】本题考查了近似数,经过四舍五入得到的数为近似数,近似数与精确数的接近程度,可以用精确度表示.近似数的最后一个数字实际在什么位上,即精确到了什么位,要求精确到某一位,应当对下一位的数字进行四舍五入.14.0【解析】【分析】绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.【详解】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,2±.所以011220+-+-=.故答案为:0.【点睛】本题考查了绝对值的意义,解题的关键是理解绝对值的意义并运用到实际当中.15.1【解析】【分析】根据同类项的定义,单项式22m x y +与3n x y -的和仍然是一个单项式,意思是22m x y +与3n x y -是同类项,根据同类项中相同字母的指数相同得出m 、n 的值,然后代入计算即可得出答案.【详解】解: 单项式22m x y +与3n x y -的和仍然是一个单项式,∴单项式22m x y +与3n x y -是同类项,2n ∴=,21+=m ,2n ∴=,1m =-,121m n ∴+=-+=;故答案是:1.【点睛】本题主要考查了同类项定义,解题的关键是掌握同类项定义中的三个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.16.9x【解析】【分析】由题意根据最中间的为x ,进而由日历中数字的规律表示出其他8个数,求出之和即可.【详解】解:设最中间的一个是x ,这9个数的和可表示为:x-8+x-7+x-6+x-1+x+x+1+x+6+x+7+x+8=9x .故答案为:9x .【点睛】本题考查列代数式和整式的加减,注意月历中日期和日期的关系,设出一个日期后将其他日期表示出来然后求解.17.x2+8x ﹣4【解析】【分析】根据题意列出算式A=(-x 2+3x-7)+(2x 2+5x+3),再去括号,合并同类项即可得.【详解】根据题意知,A=(-x 2+3x-7)+(2x 2+5x+3)=-x 2+3x-7+2x 2+5x+3=x 2+8x-4,故答案为x 2+8x-4.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是去括号,合并同类项是解答此题的关键.18.20202021【分析】根据题干的例子,可以对所求代数式化简,再依次抵消即可.【详解】解:111111223344520202021+++++⨯⨯⨯⨯⨯ =1111111111...223344*********-+-+-+-=112021-=20202021.故答案为:20202021.【点睛】本题考查探索与表达规律.解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值.19.(1)0,12,2001(1)-;(2)35-, 3.2-,-6.4;4%-;(3) 3.2-,12;(4)35-,-6.4;4%-,2001(1)-.【解析】【分析】根据有理数的分类解答即可.【详解】(1)整数集合:0,12,2001(1)-;(2)分数集合:35-, 3.2-,-6.4;4%-;(3)正数集合: 3.2-,12;(4)负数集合:35-,-6.4;4%-,2001(1)-.【点睛】本题考查有理数的分类,掌握有理数的两种分类方法是解决问题的关键.20.作图见解析,-5<-132<0< 1.5-<-(-4)【解析】根据绝对值、相反数和有理数大小比较的性质排序,结合数轴的性质作图,即可得到答案.【详解】1.5 1.5-=,()44--=数轴如下图:∴-5<-132<0<1.5-<-(-4).【点睛】本题考查了有理数的知识;解题的关键是熟练掌握绝对值、相反数、有理数大小比较、数轴的性质,从而完成求解.21.(1)0;(2)-76;(3)-16;(4)-2x-5y;(5)1 6【解析】【分析】(1)原式利用减法法则变形,计算即可求出值;(2)先把除法转化成乘法,再用括号中的每一项与(-48)进行相乘即可求出答案;(3)原式先算乘方,再算乘除法、最后算加减法;(4)先去括号,然后合并同类项即可解答本题;(5)原式先算括号里边的乘方、乘法及减法,再算括号外边的乘方、乘除即可得到结果.【详解】(1)1(2)8(3)(8)--++--+=1+2+8-3-8=0;(2)(1-16+34)÷(-148)=(1-16+34)×(-48)=1×(-48)-16×(-48)+34×(-48)=-76;(3)﹣(3﹣5)+(﹣3)2×(1﹣3)=﹣(﹣2)+9×(﹣2)=2+(﹣18)=﹣16;(4)解:5(2x -7y )-3(4x -10y )=10x -35y -12x+30y=-2x -5y ;(5)解:原式=[]1112923--⨯⨯-=[]111723--⨯⨯-=716-+=16【点睛】本题考查了有理数的混合运算,以及整式的加减,熟练掌握运算法则是解题的关键.22.-3或5【解析】【分析】根据|a|=4、b 是绝对值最小的数、c 是最大的负整数,即可求出a 、b 、c 的值,将其代入a+b-c 中即可求出结论.【详解】解:∵│a│=4,∴a=4或a=-4,∵b 是绝对值最小的数,∴b=0,又∵c 是最大的负整数,∴c=-1∴a+b-c=4+0-(-1)=4+1=5,或a+b-c=-4+0-(-1)=-4+1=-3,∴a+b -c=-3或5.【点睛】本题考查了代数式求值、绝对值以及正、负数,根据给定条件求出a 、b 、c 的值是解题的关键.23.24xy ,8.【解析】【分析】去括号后,再合并同类项,最后把x 、y 的值代入计算即可.【详解】原式2222252342xy x y xy xy x y =-+-+,24xy =,当2x =,1y =-时,原式242(1)8=⨯⨯-=.【点睛】本题主要考查了整式的加减运算,关键是掌握去括号法则:整式中如果有多重括号应按照先去小括号,再去中括号,最后去大括号的顺序进行.24.(1)向西走3千米;(2)2.5小时【解析】【分析】(1)把+4,﹣3,+2,+1,﹣2,﹣1,+2加起来,即可求解;(2)先求出该汽车行驶的总路程,再用总路程除以速度,即可求解.【详解】解:(1)4+(﹣3)+2+1+(﹣2)+(﹣1)+2=3,答:司机应该向西走3千米;(2)|4|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|+2|=4+3+2+1+2+1+2=15(千米);15÷6=2.5(小时).答:该车回到出发点共用了2.5小时.【点睛】本题主要考查了有理数的应用,明确题意,理解正负数实际意义是解题的关键.25.(1)5;(2)-3【解析】【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义化简,再利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】解:(1)根据题中的新定义得:原式=213(1)235⨯-⨯-=+=;(2)原式=22222(2)(1)+3()2+332x y x y x y x y x y -⋅--=-+-=-,由于()2120x y ++-=,∴10,20x y +=-=,∴1,2x y =-=,∴原式=2(1)22143--⨯=-=-.26.(1)1a =-,b=5,c=-2,数轴作图见解析;(2)6秒;(3)-3或7,理由见解析【分析】(1)结合题意,根据绝对值的性质计算,即可得到a ,b ,c 的值;结合数轴的性质作图,即可得到答案;(2)结合题意,设时间为t 秒,通过列方程并求解,即可得到答案;(3)结合题意列方程,再根据绝对值、一元一次方程的性质求解,即可得到答案.【详解】(1)根据题意得:105020a b c ⎧+=⎪-=⎨⎪+=⎩∴105020a b c +=⎧⎪-=⎨⎪+=⎩∴1a =-,b=5,c=-2数轴如图所示:(2)设时间为t 秒()516AB =--=∵动点P 、Q 同时从A 、B 出发沿数轴负方向运动,点P 的速度是每秒1个单位长度,点Q 的速度是每秒2个单位长度∴26t t =-∴t=6秒∴运动6秒后,点Q 可以追上点P ;(3)点M 到A ,B 两点的距离之和等于10,设点M 在数轴上对应的点为x ∴1510x x --+-=当M 在A 点左侧,即1x <-,则1050x x -->⎧⎨->⎩()()1510x x --+-=∴3x =-,即M 对应的数是-3当M 在A 点和B 点之间,即15x -≤≤,则1050x x --≤⎧⎨-≥⎩∴()()1510x x ---+-=,此时等式不成立,故舍去当M 在B 点右侧,即5x >,则1050x x --<⎧⎨-<⎩∴()()1510x x ---+--=⎡⎤⎣⎦∴1510x x ++-=∴7x =,即M 对应的数是7∴所有点M 对应的数是-3或7.。

2024-2025学年初中七年级上学期数学期中考及答案(人教版)

2024-2025学年初中七年级上学期数学期中考及答案(人教版)

2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−2.在2−、1−、0、1这四个数中,最小的数是( )A.1B.0C.-1D.-23.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C° B.1C° C.17C−° D.1C−°4.水结成冰体积增大111,现有体积为a 水结成冰后体积为( )A 111a B.1211a C.1011a D.1112a 5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×6.李伯家有山羊m 2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1B.1− C.5D.5−8.已知表示有理数a ,b 的点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.29.如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或910.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()的.A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4C.20D.20−12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C.2021D.20202021二、填空题(每题4分,共计24分)13.计算:23−=____________. 14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.15.若()22430||a b ++−-=,则b =___________;a =___________.16.若220230x y −−=,则代数式202424x y −+的值是__________.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____.18.计算:111123344520132014++++=×××× ()三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004−非正数集合:{ …}; 非负数集合:{ …}; 非正整数集合:{ …}; 非负整数集合:{ …}.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 中点D 表示的数.22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c ,d 值:(2)试求代数式()()328b ac d −+−的值.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.24.先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=;的的的(2)若1x a x −++的最小值为4,求a 的值.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− . 请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−【答案】A 【解析】【分析】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.【详解】解:“正”和“负”相对,所以,如果水位上升5米记作5+米,那么水位下降8米记作8−米. 故选:A .2.在2−、1−、0、1这四个数中,最小的数是( )A 1 B.0C.-1D.-2【答案】D 【解析】【分析】本题考查有理数大小比较法则,熟练掌握此法则是解答此题的关键.由有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,即可判断.【详解】解:由有理数的大小比较法则,可得:2101−<−<<,∴在2−,1−,0,1这四个数中,最小的数是2−.故选:D .3.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C ° B.1C° C.17C−° D.1C−°【答案】A 【解析】【分析】本题主要考查的是有理数的减法.用最高气温减去最低气温进行计算即可.【详解】解:()()8917C −−=°..故选:A .4.水结成冰体积增大111,现有体积为a 的水结成冰后体积为( )A.111a B.1211a C.1011a D.1112a 【答案】B 【解析】【分析】本题是基础题型,弄清冰的体积=(1+增长率)×水的体积是解题的关键.体积为a 的水结成冰后体积,冰的体积为1111a +.【详解】解:依题意有水结成冰后体积为11211111a a += .故选:B .5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×【答案】B 【解析】【分析】本题考查用科学记数法表示较大的数,一般形式为10n a ×,其中110a ≤<,n 可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:175000000用科学记数法表示为81.7510×. 故选:B .6.李伯家有山羊m 只,绵羊的数量比山羊的2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +【答案】D 【解析】【分析】本题考查列代数式,根据题意可知:绵羊的只数=山羊只数的2倍+18,根据此解答即可.【详解】∵李伯家有山羊m 只,∴绵羊的数量比山羊的2倍多18只,绵羊的数量为()218m +只,故选:D .7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1 B.1− C.5D.5−【答案】B 【解析】【分析】此题考查了有理数的混合运算,新定义运算的含义,熟练掌握运算法则是解本题的关键.根据新定义运算的运算法则先列式,再计算即可.【详解】解:∵2a b a b =− , ∴13213231=×−=−=− , 故选:B .8.已知表示有理数a ,b 点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.2【答案】C 【解析】【分析】本题考查了数轴和去绝对值,根据数轴分别判断0a <,0b >,然后去掉绝对值即可,解题的关键是结合数轴判断绝对值符号里面代数式的正负.【详解】由数轴可得,0a <,0b >,∴a b a b+a b a b=+−,110=−+=,故选:C .9. 如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或9【答案】D 【解析】的【分析】本题考查了绝对值的意义,有理数的除法,有理数的减法.先根据绝对值的意义得出2x =或4x =−,5y =±,再根据有理数的除法法则得出x 和y 异号,最后进行分类讨论即可.【详解】解:∵13x +=, ∴13x +=±,解得:2x =或4x =−, ∵5y =, ∴5y =±, ∵0yx−>,∴0yx<,即x 和y 异号, ∴当2x =时5y =−,当4x =−时,5y =, ①当2x =,5y =−时,527y x −=−−=−,②当4x =−,5y =时,()549y x −=−−=,∴y x −的值是7−或9,故选:D .10.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −【答案】C 【解析】【分析】本题考查了列代数式,要注意长方形窗框的横条有3条,观察图形求出长方形窗框的竖条长度是解答本题的关键.根据长方形窗框的横条长度求出长方形窗框的竖条长度,再根据长方形的面积公式计算即可求解.【详解】解:∵长方形窗框的横条长度为m x , ∴长方形窗框的竖条长度为8334m 22x x −=−,∴长方形窗框的面积为:234m 2x x −,故选∶C .11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4 C.20 D.20−【答案】A 【解析】【分析】本题考查有理数的乘方,有理数的混合运算,求代数式的值,分别求出a 、b 、c 并代入a bc +计算即可.掌握相应的运算法则是解题的关键.【详解】解:∵()328a =−−=,()3327b =−=−, ∴()827481249a bc ×=−+=+=−, ∴a bc +的值为4−. 故选:A .12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C. 2021D.20202021【答案】D 【解析】【分析】本题考查了有理数的混合运算,利用拆项法解答即可求解,掌握拆项法是解题的关键.【详解】解:∵111111111111122232334344545=−=−=−=−×××× ,,,,, ∴111111223344520202021+++++×××××1111111111223344520202021=−+−+−+−++− ,112021=−,20202021=,故选:D .二、填空题(每题4分,共计24分)13.计算:23−=____________. 【答案】23【解析】【分析】本题考查求一个数的绝对值,根据负数的绝对值等于它的相反数,即可得出结果.【详解】解:23−=23;故答案为:23.14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.【答案】12 【解析】根据新定义得到()(2)5225−∗=−−−×,再计算即可.【详解】解:由题意得,()(2)522512−∗=−−−×=,故答案为:12.15.若()22430||a b ++−-=,则b =___________;a =___________.【答案】①.3 ②. 2【解析】【分析】根据有理数的非负性解答即可.本题考查了有理数的非负性,熟练掌握性质是解题的关键.【详解】解:∵()22430||a b ++−-=, ∴20,30a b +=−=-,解得:3,2b a ==.故答案为:3,2.16.若220230x y −−=,则代数式202424x y −+的值是__________.【答案】2022−【解析】【分析】本题考查了代数式求值,整体代入是解题的关键.将202424x y −+变形为()202422x y −−,然后将22023x y −=代入求解即可. 【详解】解:∵220230x y −−=, ∴22023x y −=, 则()2024242024222024202322022x y x y −+=−−=−×=−,故答案为:2022−.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____. 【答案】a ab +##a b a+【解析】【分析】本题考查了列代数式,第一个图形中下底面积为未知数,利用第一个图可得墨水的体积,利用第二个图可得空余部分的体积,进而可得玻璃瓶的容积,让求得的墨水的体积除以玻璃瓶容积即可,掌握知识点的应用是解题的关键.【详解】解:设第一个图形中下底面积为S .倒立放置时,空余部分的体积为bS ,正立放置时,有墨水部分的体积是aS ,因此墨水体积约占玻璃瓶容积的as a as bs a b=++,故答案为:a a b+.的18.计算:111123344520132014++++=×××× ()【答案】5031007【解析】【分析】本题主要考查了有理数的混合运算,解答此题关键是找出解题的规律.根据裂项相消的方法把原式化为1111111123344520132014−+−+−++− ,再计算即可.【详解】解:111123344520132014++++×××× 1111111123344520132014=−+−+−++− 1122014=−1007120142014−10062014=5031007=;故答案为5031007.三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+ .【答案】(1)10 (2)5【解析】【分析】本题主要考查有理数的加减混合运算;(1)先去括号,再把分数通分成分母相同的分数,最后根据有理数的加减混合运算法则即可求解;(2)先去括号,再运用加法结合律把分母相同的分数结合,最后根据有理数的加减混合运算法则即可求解.【小问1详解】 解:112712623−−++−112712623=++−71547666=++−71547666 =++−73=+10=;【小问2详解】 解:273132515858++−−−−+273132515858=−+−237135215588 =+−+94=−5=.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004− 非正数集合:{ …};非负数集合:{ …};非正整数集合:{ …};非负整数集合:{ …}.【答案】0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0【解析】【分析】本题考查有理数的分类(正数和分数统称为有理数;有理数的分类:按整数、分数的关系分类;按正数、负数与零的关系分类),根据非正数(负数和零)、非负数(正数和零)、非正整数(负整数和零)和非负整数(正整数和零)的意义进行选取即可.准确理解相关概念的意义是解题的关键.【详解】解:非正数集合:{0.20−,789−,0,23.13−,2004−,…};非负数集合:{1,135,325,0,0.618,…};非正整数集合:{789−,0,2004−,…};非负整数集合:{1,325,0,…}.故答案为:0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示的数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 的中点D 表示的数.【答案】(1)58m −(2)2−【解析】【分析】本题考查了数轴的知识,代数式,正确认识数轴并理解数轴,能够表示数轴上两点的距离是解题的关键.(1)根据数轴上的两点间的距离公式求解即可;(2)首先由5AB =建立方程求解m ,再求解、B 、C 对应的数即可得到答案.【小问1详解】解: 点A 、C 表示数分别是1m +,94m −,∴()19458AC m m m =+−−=−;【小问2详解】()125AB m m =+−−=,∴()125m m +−−=,解得:3m =,∴2231m −=−=−,949123m −=−=−,∴当5AB =时,B 点表示的数是1−,C 点表示的数是3−,∴BC 的中点D 表示的数是()1322−+−=−. 22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c,d 的值:的(2)试求代数式()()328b a c d −+−的值.【答案】(1)11,2a b ==−,0,1c d ==− (2)8−【解析】【分析】本题考查了非负数的性质和求代数式的值,解题关键是根据题意求出字母的值.(1)根据非负数的性质及有理数相关概念求出a 、b 、c 、d 的值即可;(2)将求出的a 、b 、c 、d 的值代入代数式求值即可.【小问1详解】解:()21102a b -++= , 110,02a b ∴-=+=, 11,2a b ∴==-, c 是最小的自然数,d 是最大负整数,0,1c d ∴==-;【小问2详解】 解:11,2a b ==- ,0,1c d ==− ()()328b a c d ∴-+-()32181012⎛⎫⎡⎤ ⎪=⎦⎡⎤⎢⎥⎢⎥⨯--+-- ⎪⎣⎝⎭⎣⎦18118⎛⎫ ⎪=⎪⎡⎤⎢⨯--+ ⎢⎝⎥⎥⎣⎦⎭ 9818⎛⎫ ⎪=⨯-+ ⎪⎝⎭()91=-+8=−.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.【答案】(1)()24ab x −平方米 (2)196平方米【解析】【分析】(1)根据图形中的数据,可以用含a 、b 、x 的代数式表示出阴影部分的面积; (2)将20a =,10b =,1x =代入(1)中的代数式,即可求得阴影部分的面积.本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式,求出相应的代数式的值.小问1详解】解:∵某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米. ∴由图可得,阴影部分的面积是2(4)ab x −平方米;【小问2详解】解:当20a =,10b =,1x =时,24ab x −2201041×−×2004−196=(平方米), 即阴影部分的面积是196平方米.24. 先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=; (2)若1x a x −++的最小值为4,求a 的值.【答案】(1)2x =或43x =−; (2)3a =或5a =−.【【解析】【分析】本题考查了绝对值方程的解法,数轴上两点间的距离,熟练掌握绝对值的定义是解答本题的关键,对值等于一个正数的数有2个,它们是互为相反数的关系.(1)根据题中所给解法求解即可;(2)根据1x a x −++的最小值为4,得出表示a 的点与表示1−的点的距离为4,求解即可.【小问1详解】 解:3150x −−=, 移项,得315x −=, 当310x −≥,即13x ≥时,原方程可化为:315x −=,解得:2x =, 当310x −<,即13x <时,原方程可化为:315x −=−,解得43x =−. ∴原方程的解是:2x =或43x =−. 【小问2详解】 解:1x a x −++ 的最小值为4,∴表示a 的点与表示1−的点的距离为4,143−+= ,145−−=−,3a ∴=或5a =−.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?【答案】(1)29 (2)达到了(3)3585元【解析】【分析】此题考查了正数与负数,有理数混合运算的应用,熟练掌握运算法则是解本题的关键.(1)根据最大正数和最小负数的差值得出结论即可;(2)根据所有差值的和的正负来判断即可;(3)根据售价﹣运费得出收入即可.【小问1详解】()21829−−=(斤),故答案为:29;【小问2详解】43514821617+−−+−+−=(斤),∴本周实际销售总量达到了计划数量;【小问3详解】()()100717833585×+×−=(元),答:小明本周一共收入3585元.26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− .请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).【答案】(1)123410112222221++++++=− ;(2)()23411133333312n n +++++++=− . 【解析】【分析】本题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.(1)设23410122222S =++++++ ,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;(2)设234133333n S =++++++ ,两边乘以3后得到关系式,与已知等式相减,变形即可求出所求式子的值.【小问1详解】设23410122222S =++++++ ,将等式两边同时乘2,得23410112222222S =++++++ ,将下式减上式,得 11221S S −−,即 1121S =−则123410112222221++++++=−【小问2详解】设 234133333,n S =++++++将等式两边同时乘3,得 23413333333,n n S +=++++++下式减上式,得1331n S S +−=−,即 ()11312n S +−,即 )234113333331n n +++++++=− .。

人教版数学七年级上册《期中测试卷》(附答案)

人教版数学七年级上册《期中测试卷》(附答案)

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.12-的相反数是( ) A.B. 2C. 12-D.122.下列有理数的大小比较正确的是( ) A.1123< B. 11||||23->- C. 1123->- D. 11||||23-->-+ 3.下列各组数中的两个数,不相等的是( ) A. ()6++和()6-- B. ()6-+和()6+- C. -6和6-D. -0.2和15-4.有理数a b ,在数轴上的对应的位置如图所示,则下列四个选项正确的是( )A. 0a b +<B. 0a b +=C. 0a b -=D. 0a b ->5.下列计算正确的是( ) A. 2x +3y =5xy B. 2a 2+2a 3=2a 5 C. 4a 2﹣3a 2=1D. ﹣2ba 2+a 2b =﹣a 2b6.对于单项式22r π-的系数、次数分别是( ) A. -2,2 B. -2,3C. -2,2D. -2,37.如果12a 3xb y与–a 2y b 3同类项,则 A. x =–2,y =3B. x =2,y =3C. x =–2,y =–3D. x =2,y =38.下列各式中正确的是( ) A 由213132x x --=-去分母得()()221133x x -=-- B 由 ()()221331x x ---=去括号得42391x x ---= C. 由743x x =-移项得743x x -=D. 由743x x -=-合并同类项,化系数为1得1x =- 9.若关于x 的方程2x+a-4=0的解是x=-2,则a=( ) A. -8B. 0C. 2D. 810.下列等式形式运用正确的是( ) A 若22x y =,则x y = B. 若x ya a=,则x y = C. 若382x -=,则12x =- D. 若axy a =,则1xy =11.已知a b 、互为相反数,是绝对值最小的负整数,mn 、互为倒数,则243a b c mn ++-的值等于( ) A. 1B. 2C. 3D. -312.若2237y y ++的值为8,则2469y y +-的值是( ). A. 2B. -17C. -7D. 7二、填空题(每题3分,满分18分)13.若1260m x -+=是关于x 的一元一次方程,则m 的值为_______.14.大型纪录片《厉害了,我的国》上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是________.15.某农户有水稻田6亩,计划每亩施化肥a kg ,有玉米田11亩,计划每亩田施化肥b kg .该农户共应购回化肥__________千克.16.代数式21a +与2a +互为相反数,则a =__________. 17.定义新运算“”,规定bab a a=+⊗,则42-=⊗__________.18.已知关于x y ,的多项式222x axy xy +-与多项式233xy axy y --的和不含项,则的值为__________.三、解答题:共66分.19.有理数的计算 (1)713620-+-+(2)()()()231118533⎛⎫--⨯-+-⨯- ⎪⎝⎭20.整式的化简 (1)22a a -+-(2)()22231253x xy xy x -+--+21.解一元一次方程 (1)()2179x x -=- (2)253164x x---= 22.先化简再求值:已知()2210m n n ++-=,求多项式()231mn mn mn ⎡⎤---⎣⎦的值.23.某检修站,甲小组乘坐一辆汽车,沿东西方向公路进行检修线路,约定向东为正,从地出发到收工时,行走记录为(单位:km ): +8,- 2, -13, -1, +10.同时,乙小组也从地出发, 沿南北方向的公路检修线路,约定向北为正,行走记录为: -7, +9,- 2, +8,- 6.(1)分别计算收工时,甲,乙两组各在地的哪一边,分别距离地多远? (2)若每千米汽车汽油消耗为0.3,求出发到收工时两组各耗油多少升?24.一辆公交车上原来有()66a b -人,中途下去一半,又上来若干人,使车上共有乘客()106a b -人. (1)中途上来了多少乘客?(用含a b 、式子表示) (2)当3a =,2b =时,中途上车的乘客是多少? 25.规律探究计算:123499100++++⋅⋅⋅++如果一个个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的的运算律,可简化计算, 提高计算速度.()()()12349910011002995051101505050++++⋅⋅⋅++=++++⋅⋅⋅++=⨯=计算:(1)246898100++++⋅⋅⋅++(2)()()()()22334100101a m a m a m a m ++++++⋅⋅⋅++ 26.阅读型综合题对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L = ,31,22L ⎛⎫=⎪⎝⎭; (2)已知(),3L x y x by =+,31,222L ⎛⎫=⎪⎝⎭.若正格线性数(),18L x kx =,(其中为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.答案与解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.12-的相反数是( ) A. B. 2C. 12-D.12【答案】D 【解析】 【详解】因为-12+12=0,所以-12的相反数是12. 故选D.2.下列有理数的大小比较正确的是( ) A.1123< B. 11||||23->- C. 1123->- D. 11||||23-->-+ 【答案】B 【解析】 选项A ,1123>,A 错误;选项B ,1123->-正确;选项C ,1123--<,C 错误;选项D ,11|23---+,D 错误.故选B .3.下列各组数中的两个数,不相等的是( ) A. ()6++和()6-- B. ()6-+和()6+- C. -6和6- D. -0.2和15-【答案】C 【解析】 【分析】先化简再比较两个数,即可判断出答案.【详解】解:A. ()6++和()6--相等,此选项错误; B. ()6-+和()6+-相等,此选项错误;C. -6和6-不相等,此选项正确;D. -0.2和15-相等,此选项错误; 故选:C .【点睛】本题考查的知识点是绝对值以及有理数的加法,比较基础,易于掌握. 4.有理数a b ,在数轴上的对应的位置如图所示,则下列四个选项正确的是( )A. 0a b +<B. 0a b +=C. 0a b -=D. 0a b ->【答案】D 【解析】 【分析】根据数轴可得出101,b a a b -<<<<>,据此逐项分析即可.【详解】解:根据异号相加,去绝对值较大的数的符号,则0a b +>,选项A 错误,选项B 错误; 根据减去一个负数等于加上这个数的相反数,则0a b ->,选项C 错误,选项D 正确. 故选:D .【点睛】本题考查的知识点是数轴,根据数轴得出a ,b 的关系是解此题的关键. 5.下列计算正确的是( ) A. 2x +3y =5xy B. 2a 2+2a 3=2a 5 C. 4a 2﹣3a 2=1 D. ﹣2ba 2+a 2b =﹣a 2b【答案】D 【解析】试题分析:A .2x 和3y 不是同类项,无法合并,错误; B .22a 和32a 不是同类项,无法合并,错误; C .22243a a a -=,错误; D .2222ba a b a b -+=-,正确.故选D .考点:合并同类项.6.对于单项式22r π-的系数、次数分别是( ) A. -2,2 B. -2,3C. -2,2D. -2,3【答案】C 【解析】 分析】根据单项式的系数、次数的定义求解即可.【详解】解:单项式单项式22r π-的系数、次数分别是-2,2. 故选:C .【点睛】此题重点考查学生对单项式系数、次数的把握,抓住次数包含所有未知数的次数是解题关键. 7.如果12a 3xb y与–a 2y b 3同类项,则 A. x =–2,y =3 B. x =2,y =3 C. x =–2,y =–3 D. x =2,y =3【答案】B 【解析】 【分析】根据同类项的定义列出方程组,然后利用代入消元法求解即可. 【详解】∵312x ya b 与23y a b -是同类项, ∴323x y y =⎧⎨=⎩①②, ②代入①得,3x =6, 解得x =2,所以,方程组的解是23.x y =⎧⎨=⎩故选:B.【点睛】考查同类项的概念,所含字母相同并且相同字母的指数也相同的项叫做同类项. 8.下列各式中正确的是( )A. 由213132x x --=-去分母得()()221133x x -=-- B. 由 ()()221331x x ---=去括号得42391x x ---= C. 由743x x =-移项得743x x -=D. 由743x x -=-合并同类项,化系数为1得1x =- 【答案】D 【解析】 【分析】根据解一元一次方程的步骤计算,判断即可得出答案. 【详解】解:A. 由213132x x --=-去分母得()()221633x x -=--,故错误; B. 由 ()()221331x x ---=去括号得42391x x --+=,故错误; C. 由743x x =-移项得743x x -=-,故错误;D. 由743x x -=-合并同类项,化系数为1得1x =-,故正确. 故选:D .【点睛】本题考查的知识点是解一元一次方程以及整式的加减,掌握解一元一次方程的步骤是解此题的关键.9.若关于x 的方程2x+a-4=0的解是x=-2,则a=( ) A. -8 B. 0C. 2D. 8【答案】D 【解析】 【分析】将方程的解x=-2代入方程即可求得答案. 【详解】将x=-2代入方程,得-4+a-4=0, 得a=8, 故选:D.【点睛】此题考查方程的解,一个数是方程的解即可将其代入方程,由此求出方程中其他未知数的值. 10.下列等式形式运用正确的是( ) A 若22x y =,则x y =B. 若x ya a=,则x y =C. 若382x -=,则12x =- D. 若axy a =,则1xy =【答案】B 【解析】 【分析】利用等式的性质对四个选项逐一判断即可.【详解】解:A. 若22x y =,则x y =±,此选项错误;B. 若x ya a =,则x y =,此选项正确; C. 若382x -=,则163x =-,此选项错误;D. 当0a =时不成立,此选项错误. 故选:B .【点睛】本题考查的知识点是等式的性质,熟记等式的性质内容是解此题的关键.11.已知a b 、互为相反数,是绝对值最小的负整数,mn 、互为倒数,则243a b c mn ++-的值等于( ) A. 1 B. 2C. 3D. -3【答案】D 【解析】 【分析】根据相反数的定义可知0a b +=,根据倒数的定义可知1mn =,由绝对值最小的负整数得出1c =-,代入计算即可.【详解】解:由已知条件可得:0a b +=,1c =-,1mn =, ∴241433a b c mn ++-=-=-. 故选:D .【点睛】本题考查了相反数、倒数、有理数的加减运算,理解题意得出0a b +=,1c =-,1mn =,是解此题的关键.12.若2237y y ++的值为8,则2469y y +-的值是( ). A. 2 B. -17C. -7D. 7【答案】C 【解析】【详解】解:由题意知,2y 2+3y=1, 代入4y 2+6y-9得:2(2y 2+3y)-9=2×1-9=-7. 故选C.【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式2y 2+3y 的值,然后利用“整体代入法”求代数式的值.二、填空题(每题3分,满分18分)13.若1260m x -+=是关于x 的一元一次方程,则m 的值为_______. 【答案】2 【解析】【详解】∵方程2x m-1+6=0是关于x 的一元一次方程, ∴m-1=1, 解得:m=2, 故答案为2.14.大型纪录片《厉害了,我的国》上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是________. 【答案】4.027810⨯ 【解析】分析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:4 0270 0000用科学记数法表示是4.027×108. 故答案为4.027×108.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.某农户有水稻田6亩,计划每亩施化肥a kg ,有玉米田11亩,计划每亩田施化肥b kg .该农户共应购回化肥__________千克. 【答案】(611)a b + 【解析】 【分析】根据题意水稻田需化肥6a 千克,玉米田需化肥11b 千克,求和即可得出答案.【详解】解:由题意可得,农户共应购回化肥:(611)a b +千克.故答案是: (611)a b +.【点睛】本题考查的知识点是列代数式,比较基础,注意要加括号.16.代数式21a +与2a +互为相反数,则a =__________.【答案】-1【解析】【分析】根据互为相反数的性质可得2a+1+(2+a)=0,解出a 的值即可.【详解】因为代数式21a +与2a +互为相反数,所以2a+1+(2+a)=0,解得a=-1,故答案为-1.【点睛】本题考查的是相反数的意义,根据相反数的意义列式结算是本题的关键.17.定义新运算“”,规定b ab a a =+⊗,则42-=⊗__________. 【答案】12【解析】【详解】解:∵b a b a a=+⊗, ∴()2424441612-⊗=-+-=-+=-故答案为:12.18.已知关于x y ,的多项式222x axy xy +-与多项式233xy axy y --的和不含项,则的值为__________. 【答案】32-【解析】【分析】 将两个多项式相加,得出项的系数,令其为0,即可得出答案.【详解】解:222322323(23)(1+)x axy xy xy axy y x a xy a xy y +=--++--+-∵多项式222x axy xy +-与多项式233xy axy y --的和不含项,∴230a += ∴32a =-.故答案为:32-. 【点睛】本题考查的知识点是整式的加减运算和多项式的项,解题的关键是通过计算得出xy 项的系数.三、解答题:共66分.19.有理数的计算(1)713620-+-+(2)()()()231118533⎛⎫--⨯-+-⨯- ⎪⎝⎭ 【答案】(1)20;(2)12【解析】【分析】(1)根据有理数的加减运算法则计算即可;(2)先算乘方运算,再进行乘法运算,最后进行加减运算.【详解】解:(1)71362020-+-+=;(2)()()()231118531215123⎛⎫--⨯-+-⨯-=--+= ⎪⎝⎭ 【点睛】本题考查知识点是有理数的混合运算,掌握运算顺序以及运算法则是解此题的关键.20.整式的化简(1)22a a -+-(2)()22231253x xy xy x -+--+【答案】(1)2a -;(2)39xy -【解析】【分析】(1)合并同类项即可化简;(2)先去括号,再合并同类项即可.【详解】解:(1)222a a a -+-=-(2)()2222231253231106239x xy xy x x xy xy x xy -+--+=-+-+-=-【点睛】本题考查的知识点是整式的加减,掌握去括号法则以及合并同类项法则是解此题的关键. 21.解一元一次方程(1)()2179x x -=-(2)253164x x ---= 【答案】(1)7x =;(2)13x =【解析】【分析】(1)去括号,移项合并同类项,系数化为1即可;(2)方程两边同时乘以12,再去括号,移项合并同类项,系数化为1即可;【详解】解:(1)()2179x x -=-21637x x -=-642x =7x =(2)253164x x ---= 122(25)3(3)x x --=-1241093x x -+=-13x -=-13x =【点睛】本题考查的知识点是解一元一次方程,掌握解一元一次方程的一般步骤是解此题的关键. 22.先化简再求值:已知()2210m n n ++-=,求多项式()231mn mn mn ⎡⎤---⎣⎦的值. 【答案】23mn -;132-【解析】【分析】利用绝对值的非负性以及偶次方的非负性求出m ,n 的值,再将原式化简后代入求解即可.【详解】解:∵210n -=,0m n += ∴12m =-,12n = 原式23mn =- 当12m =-,12n =时原式132=-. 【点睛】本题考查的知识点是整式的化简求值,利用已知条件求出m ,n 的值是解此题的关键.23.某检修站,甲小组乘坐一辆汽车,沿东西方向的公路进行检修线路,约定向东为正,从地出发到收工时,行走记录为(单位:km ): +8,- 2, -13, -1, +10.同时,乙小组也从地出发, 沿南北方向的公路检修线路,约定向北为正,行走记录为: -7, +9,- 2, +8,- 6.(1)分别计算收工时,甲,乙两组各在地哪一边,分别距离地多远?(2)若每千米汽车汽油消耗为0.3,求出发到收工时两组各耗油多少升?【答案】(1)甲在正东方向2km 处,乙在正北方向2km 处;(2)甲:10.2L ,乙:9.6L【解析】【分析】(1)将两组的各数依次相加,结合正负数的含义即可得出结论;(2)将两组数据各数的绝对值相加,得出路程,再乘以油耗即可得出结论.详解】解:甲:()()()()82131102++-+-+-++=乙:()()()7928(6)2-+++-+++-=∴甲在正东方向2km 处乙在正北方向2km 处(2)甲:()82131100.3340.310.2L ++++⨯=⨯=乙:()792860.3320.39.6L ++++⨯=⨯=【点睛】本题考查的知识点是正负数,根据题目理解正负数所表示的含义是解此题的关键.24.一辆公交车上原来有()66a b -人,中途下去一半,又上来若干人,使车上共有乘客()106a b -人.(1)中途上来了多少乘客?(用含a b 、的式子表示)(2)当3a =,2b =时,中途上车的乘客是多少?【答案】(1)73a b -;(2)15【解析】【分析】根根据题意表示出车上原来的人数,将a ,b 的值代入计算即可.【详解】解:(1)由题意得出:()()1106(66)66732a b a b a b a b ⎡⎤-----=-⎢⎥⎣⎦, 即中途上车的人数为:73a b -;(2)当3a =,2b =时, 73732315a b -=⨯-⨯=(人)【点睛】本题考查的知识点是列代数式、代数式求值以及整式的加减,弄清题意是解此题的关键. 25.规律探究计算:123499100++++⋅⋅⋅++如果一个个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的的运算律,可简化计算, 提高计算速度.()()()12349910011002995051101505050++++⋅⋅⋅++=++++⋅⋅⋅++=⨯=计算:(1)246898100++++⋅⋅⋅++(2)()()()()22334100101a m a m a m a m ++++++⋅⋅⋅++【答案】(1)2550;(2)50505150a m +【解析】【分析】(1)利用所给规律计算求解即可;(2)先去括号,再分组利用所给规律计算.【详解】解:(1)原式()()()21004985052=++++⋅⋅⋅++102252550=⨯=(2)原式()()23100234101a a a a m m m m =+++⋅⋅⋅+++++⋅⋅⋅+50505150a m =+【点睛】本题考查的知识点是去括号与添括号、有理数的加法、合并同类项,灵活运用加法的运算律是解此题的关键.26.阅读型综合题对于实数x y ,我们定义一种新运算(),L x y ax by =+(其中a b ,均为非零常数),等式右边是通常的 四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x y ,叫做线性数的一个数对.若实数x y ,都取正整数,我们称这样的线性数为正格线性数,这时的x y ,叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L = ,31,22L ⎛⎫= ⎪⎝⎭; (2)已知(),3L x y x by =+,31,222L ⎛⎫= ⎪⎝⎭.若正格线性数(),18L x kx =,(其中为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由.【答案】(1)5,3;(2)有正格数对,正格数对为()26L ,【解析】【分析】(1)根据定义,直接代入求解即可;(2)将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+求出b 的值,再将(),18L x kx =代入(),3L x y x by =+,表示出kx ,再根据题干分析即可.【详解】解:(1)∵(),3L x y x y =+∴()2,1L =5,31,22L ⎛⎫= ⎪⎝⎭3 故答案为:5,3;(2)有正格数对. 将31,222L ⎛⎫= ⎪⎝⎭代入(),3L x y x by =+, 得出,1111323232L b ⎛⎫=⨯+⨯= ⎪⎝⎭,, 解得,2b =,∴()32L x y x y =+,,则()3218L x kx x kx =+=, ∴1832x kx -= ∵,为正整数且为整数∴329k +=,3k =,2x =,∴正格数对为:()26L ,. 【点睛】本题考查的知识点是实数的运算,理解新定义是解此题的关键.。

人教版七年级上册《数学》期中考试卷及答案【可打印】

人教版七年级上册《数学》期中考试卷及答案【可打印】

人教版七年级上册《数学》期中考试卷及答案一、选择题:每题1分,共5分1. 下列数中,最小的数是()。

A. 1B. 0C. 1D. 22. 如果 a > b,那么 a b 的结果一定()。

A. 大于0B. 小于0C. 等于0D. 无法确定3. 下列式子中,不是同类项的是()。

A. 3xB. 4x^2C. 5xD. 6x^24. 已知 a = 3,b = 2,那么 a + b 的结果是()。

A. 1B. 1C. 5D. 55. 下列数中,是有理数的是()。

A. √2B. √3C. πD. 1/2二、判断题:每题1分,共5分1. 任何两个有理数的和一定是有理数。

()2. 任何两个整数的积一定是整数。

()3. 0 是最小的自然数。

()4. 任何数乘以0都等于0。

()5. 1 是最小的正整数。

()三、填空题:每题1分,共5分1. 如果 a = 5,那么 3a 7 的值是______。

2. 已知 |x 3| = 4,那么 x 的值是______或______。

3. 两个数的和是 15,它们的差是 5,那么这两个数分别是______和______。

4. 如果 a = 2,b = 3,那么 a 2b 的值是______。

5. 下列式子中,同类项是______和______。

四、简答题:每题2分,共10分1. 解释有理数的概念。

2. 举例说明同类项的概念。

3. 解释绝对值的概念。

4. 解释相反数的概念。

5. 解释整除的概念。

五、应用题:每题2分,共10分1. 如果一个数加上8后等于15,那么这个数是多少?2. 如果一个数乘以3后等于18,那么这个数是多少?3. 如果 |x 5| = 7,那么 x 的值是多少?4. 如果 a = 4,b = 2,那么 a + 3b 的值是多少?5. 如果 a = 3,b = 4,那么 a^2 + b^2 的值是多少?六、分析题:每题5分,共10分1. 已知 |x 2| = 3,求 x 的值,并解释解题过程。

人教版七年级上册数学期中试卷及答案

人教版七年级上册数学期中试卷及答案

人教版七年级上册数学期中试卷及答案一、选择题1. 下列数中是无理数的是:A. 2B. 3√2C. 0.333...D. -5答案:B2. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 26答案:C3. 下列各数中是等差数列的是:A. 2, 5, 8, 11, 14B. 3, 6, 12, 18, 24C. 1, 1/2, 1/3, 1/4, 1/5D. 2, 4, 8, 16, 32答案:A4. 某数的平方根是3,则这个数是:A. 9B. -9C. 8D. -8答案:A5. 下列各数中,最小的数是:A. -1/2B. 0C. 1/2D. 1答案:A二、填空题1. 已知a=3,b=4,则a²+b²的值是______。

答案:252. 2的立方根是______。

答案:∛83. 下列数中,是无理数的是______。

答案:3√24. 若|x|=5,则x的值为______。

答案:±55. 一个等差数列的第一项是2,公差是3,则第五项是______。

答案:14三、解答题1. 解方程:2x+5=15答案:x=52. 已知数列是等差数列,首项为1,公差为2,求第10项的值。

答案:193. 计算:(-3)²×(-2)³答案:244. 解方程:3x-7=2x+1答案:x=85. 已知一个正方形的边长是6,求它的面积。

答案:36。

期中达标测试卷(含答案)2024-2025学年人教版(2024)数学七年级上册

期中达标测试卷(含答案)2024-2025学年人教版(2024)数学七年级上册

人教版(2024)数学七年级上册期中达标测试卷(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分)1.的倒数是( )A.B .C .D .2.李老师在实验室中发现了四个因操作不规范沾染污垢或被腐蚀的砝码,经过测量,超出标准质量的部分记为正数、不足标准质量的部分记为负数,它们中质量最接近标准质量的是( )ABCD3.单项式-12x 3y 的系数和次数分别是( )A .-12,4B .-12,3C .12,3D .12,44.著名的数学家苏步青被誉为“数学大王”.为纪念其卓越贡献,国际上将一颗距地球约218 000 000公里的行星命名为“苏步青星”.数据218 000 000用科学记数法表示为( )A .0.218×109B .2.18×108C .2.18×109D .218×1065.下列运算结果正确的是( )A .a +2a 2=3a 2B .3a 2b -2ba 2=a 2b C .5a -a =5D .2a +b =2ab6.下列说法中正确的是( )A .0不是单项式B .-a 一定小于0C .最大的负有理数是-1D .2-a -ab 是二次三项式7.若-x 3y m 与2x n y 是同类项,则2024m +n 的值为( )A .2027B .2021C .4051D .40458.2024年,第33届夏季奥林匹克运动会在法国巴黎举行.如图1,将5个城市的国际标准时间(单位:时)在数轴上表示,那么开幕式的巴黎时间7月26日19时30分对应的是( )A .纽约时间7月26日14时30分B .伦敦时间7月26日18时30分23-233232-23-C .北京时间7月27日3时30分D .汉城时间7月26日3时30分图19.多项式x 3-3x 2+2x +1与多项式-2x 3-3x 2+3x +5相减,化简后不含的项是( )A .三次项B .二次项C .一次项D .常数项10.【跨学科】苯是一种有机化合物,是组成结构最简单的芳香烃,可以合成一系列衍生物.如图2是某小组用小木棒摆放的苯及其衍生物的结构式,第1个图形需要9根小木棒,第2个图形需要16根小木棒,第3个图形需要23根小木棒……按此规律,第n 个图形需要的小木棒的根数是( )A .7n +2B .7n +5C .7n +7D .7n +9图2二、填空题(本大题共6小题,每小题4分,共24分)11.化简:-(-4)=__________.12.2024年3月8日,我国在南海珠江口盆地发现首个深水深层大油田——开平南油田,探明油气地质储量1.02亿吨油当量.该油田是全球核杂岩型凹陷最大的商业发现.数据“1.02亿”精确到的数位是______位. 13强p 与受力面积S 成__________比例关系.14=__________.15.如图3是一个数据转换器的示意图,它的作用是求转换器内各代数式的和.现输入x 的值,经过转换器,输出的值为y ,若无论输入的x 为何值,输出的y 不变,则m =__________.图3图416.如图4,若从一个宽为5 cm 的长方形纸片中剪去两个形状和大小完全相同的小长方形卡片,那么余下的两块阴影部分的周长之和是__________ cm .三、解答题(本大题共7小题,共66分)17.(6分)根据下列语句列代数式:(1)b 的倍的相反数;(2)比a 与b 的积的2倍小5的数;(3)一件商品原价为a 元,现按原价的九折销售,则售价是多少元?18.(8分)计算:.阅读下面的解答过程并完成相应任务:解:原式………… 第一步=(-15)÷(-1)………………………第二步=15.………………………………………第三步任务:(1)上面解题过程中,第__________步开始就出现了错误,错误的原因是____________________;(2)把正确的解题过程写出来.19.(8分)先化简,再求值:3(a 2b +b )-2(4a 2b -2),其中a =-3,b =2.43()1115632⎛⎫-÷-⨯ ⎪⎝⎭()11566⎛⎫=-÷-⨯ ⎪⎝⎭20.(10分)某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表:(增加的车辆数记为正数,减少的车辆数记为负数)(1)星期三生产了__________辆摩托车,本周产量最多的一天比产量最少的一天多生产__________辆;(2)本周总生产量与计划生产量相比,是增加还是减少了?增加或减少了多少辆?21.(10分)食品加工厂准备把一批新酿的醋装瓶运往商店,每瓶容量和所装瓶数如下表:(1)表中a=____________;(2)用n表示所装瓶数,m表示每瓶容量,用式子表示n与m的关系,n与m成什么比例关系?(3)如果把这批新酿的醋装了150瓶,那么每瓶的容量是多少毫升?22.(12分)用数学的眼光观察:甲、乙两位同学用标有数字1,2,…,9的9张卡片做游戏.甲同学:“你先从这9张卡片中随意抽取两张(按抽取的先后顺序分别称为“卡片A”和“卡片B”),别告诉我卡片上是什么数字,然后你把卡片A上的数字先乘5,再加7,再乘2,再加上卡片B的数字,把最后得到的数告诉我,我就能猜出你抽出的是哪两张卡片啦!”乙同学:“这么神奇?我不信.”……用数学的思维思考:(1)如果乙同学抽出的卡片A上的数字为3,卡片B上的数字为6,他最后得到的数M为__________;(2)若乙同学最后得到的数M为76,则卡片A上的数字为_________,卡片B上的数字为_________;用数学的语言表达:(3)请你说明:对任意告知的数M,甲同学是如何猜到乙抽出的是哪两张卡片的.23.(13分)已知A,B,P为数轴上三点,我们规定:点P到点A的距离是点P到点B的距离的k倍,则称P是[A,B]的“k倍点”,记作P[A,B]=k.例如:若点P表示的数为0,点A表示的数为-2,点B表示的数为1,则P是[A,B]的“2倍点”,记作P[A,B]=2.【知识运用】(1)如图5,A,B,P为数轴上三点,回答下面问题:①P[B,A]=__________;②若点C在数轴上,且C[A,B]=1,则点C表示的数为__________ ;③若D是数轴上一点,且D[A,B]=2,求点D所表示的数.图5【知识拓展】(2)E,F为数轴上两点(点E在点F的左边),M,N为线段EF上的两点,且M,N两点之间的距离为a,若M[E,N]=3,N[F,M]=2,直接写出E,F两点之间的距离.(用含a的代数式表示)期中自我评估 参考答案答案速览一、1. C 2. D 3. A 4. B 5. B 6. D 7. A 8. B 9. B 10. A 二、11. 4 12. 百万 13. 反 14. 9 15. -3 16. 20三、17.(1)-b ;(2)2ab -5;(3)0.9a .18.解:(1)二运算顺序错误(2)原式=(-15)×(-6)×6=540.19.解:原式=3a 2b +3b -8a 2b +4=-5a 2b +3b +4.当a =-3,b =2时,原式=-5×(-3)2×2+3×2+4=-5×9×2+3×2+4=-90+6+4=-80.20.解:(1)335 114(2)根据题意,得-50-72+35+42+10=-35(辆).答:本周总生产量与计划生产量相比,减少了35辆.21.解:(1)600(2.(3)每瓶的容量是2000毫升.22. 解:(1)50(2)6 2(3)设卡片A 上的数字为x ,卡片B 上的数字为y .经过题中的计算后得到的数M =2(5x +7)+y =10x +y +14.所以10x +y 的值为M-14.因为x ,y 都是1至9这9个数字,所以由告知的数M 减去14,所得两位数的十位上数字为卡片A 上的数字x ,个位上数字为卡片B 上的数字y .23. 解:(1)①4②2③因为D 是数轴上一点,且D [A ,B]=2,所以DA =2DB .因为点A 表示的数为-1,点B 表示的数为5,所以AB =5-(-1)=6.当点D 在点B 的右边时,点D 表示的数为-1+2×6=11.所以点D 表示的数为3或11.(2)E ,F 两点之间的距离为6a 或4a .43()11566⎛⎫=-÷-⨯ ⎪⎝⎭解析:因为M,N两点之间的距离为a,M[E,N]=3,N[F,M]=2,所以ME=3MN=3a,NF=2MN=2a.因为M,N为线段EF上的两点,所以分两种情况:当点M在点N的左边时,如图2-①,E,F两点之间的距离为ME+MN+NF=3a+a+2a=6a.①②图2当点M在点N的右边时,如图2-②,E,F两点之间的距离为ME-MN+NF=3a-a+2a=4a.综上,E,F两点之间的距离为6a或4a.。

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。

人教版七年级上册数学《期中考试试卷》含答案

人教版七年级上册数学《期中考试试卷》含答案

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、反复比较,慎重选择哟!(每小题3分,共30分)1.计算()33--的结果是( )A. 6B. 3C. 0D. -62.下列结论中错误的是( )A. 零整数B. 零不是正数C. 零是偶数D. 零不是自然数 3.若2=a ,则a 的值为( )A. 2B. -2C. ±2D. 不确定 4.如果一个数的平方等于它的倒数,那么这个数一定是( )A. 0B. 1C. ﹣1D. ±1 5.关于多项式26﹣3x 5+x 4+x 3+x 2+x 的说法正确的是( )A. 是六次六项式B. 是五次六项式C. 是六次五项式D. 是五次五项式6.在﹣(﹣1)4,23,﹣32,(﹣4)2这四个数中,最大的数与最小的数的和等于( )A. 7B. 15C. ﹣24D. ﹣17.一个两位数,个位数字为a ,十位数字比个位数字大1,则这个两位数可表示为( )A 11a -1B. 11a +1C. 11a +10D. 11a -108.不改变代数式a 2﹣(2a+b+c )的值,把它括号前的符号变为相反的符号,应为( )A. a 2+(﹣2a+b+c)B. a 2+(﹣2a ﹣b ﹣c) C a 2+(﹣2a)+b+cD. a 2﹣(﹣2a ﹣b ﹣c) 9.化简2a ﹣[3b ﹣5a ﹣(2a ﹣7b)]的结果是( )A. ﹣7a+10bB. 5a+4bC. ﹣a ﹣4bD. 9a ﹣10b 10.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是( )A. 25B. 27C. 55D. 120二、注意审题,细心填空呦!(每小题3分,共30分)11.-3的相反数是_______,-2018的倒数是_______.12.稀士元素具有独特的性质和广泛的应用,我国稀土资源的总储量约为1050000000吨,用科学记数法表示为_____.13.比较有理数大小:﹣3_____﹣2016(选用“>”、“<”或“=”号填空).14.规定a*b=5a+2b-1,则(﹣4)*6的值为_______.15.若|x|=3,y 的倒数为12,则x+y=_____. 16.某城市按以下规定收取每月的煤气费:用气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分每立方米按1.2元收费.已知某户用煤气x 立方米(x >60),则该户应交煤气费_____元. 17.在数﹣1,2,﹣3,5,﹣6中,任取两个数相乘,其中最大积是_____.18.单项式﹣2223a b cπ是_____次单项式,系数为_____.19.已知代数式x 2+3x+5的值等于7,则代数式3x 2+9x+2的值_____.20.有一列式子,按一定规律排列成3a,﹣9a 2,27a 3,﹣81a 4,243a 5,…这列列式子中第n 个式子为_____.(n 为正整数)三、解答题(共55分)21.计算:(1)5×(﹣2)+(﹣8)÷(﹣2)(2)(﹣24)×(1231238--) (3)﹣14﹣(1﹣0×4)÷13×[(﹣2)2﹣6]. 22.已知|x|=3,(y+1)2=4,且xy <0,求x+y 的值.23.按要求求值(1)化简求值:(4a 2﹣2a ﹣6)﹣2(2a 2﹣2a ﹣5)其中a=﹣1.(2)若化简(2mx 2﹣x+3)﹣(3x 2﹣x ﹣4)的结果与x 的取值无关,求m 的值.24.某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下(单位:元):+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2,当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少?25.一位同学做一道题:“已知两个多项式A 、B ,计算2A ﹣B”.他误将“2A ﹣B”看成“A ﹣2B”,求得的结果5x 2﹣2x+4.已知B=2x 2+3x ﹣7,求2A ﹣B 的正确答案.26.如图所示,用棋子摆成的“上”字:第一个“上”字第二个“上”字第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用和枚棋子.(2)第n个“上”字需用枚棋子.(3)如果某一图形共有102枚棋子,你知道它是第几个“上”字吗?27.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利15%,并可用本金和利润再投资其他商品,到月末又可获利10%;如果月末出售可获利30%,但要付出仓储费用700元.(1)若商场投资x元,分别用含x的代数式表示月初出售和月末出售所获得的利润;(2)若商场投资40000元,问选择哪种销售方式获利较多?此时获利多少元?答案与解析一、反复比较,慎重选择哟!(每小题3分,共30分)1.计算()33--的结果是( )A. 6B. 3C. 0D. -6【答案】A【解析】试题解析:根据有理数减法法则计算,减去一个数等于加上这个数的相反数得:3-(-3)=3+3=6. 故选A .2.下列结论中错误的是( )A. 零是整数B. 零不是正数C. 零是偶数D. 零不是自然数 【答案】B【解析】【分析】由于零是有理数,也是整数,还是自然数,由此可分别进行判断.【详解】 解:A .零是整数,所以A 选项的说法是正确的;B .零不是整数,所以B 选项说法是错误的;C .零是自然数,所以C 选项的说法是正确的;D .零是有理数,所以D 选项的说法是正确的.故选B .【点睛】本题考查了有理数:整数和分数统称为有理数.3.若2=a ,则a 的值为( )A. 2B. -2C. ±2D. 不确定 【答案】C【解析】试题解析:∵|2|=2,|-2|=2,∴若|a|=2,则a 的值为±2.故选C .4.如果一个数的平方等于它的倒数,那么这个数一定是( )A. 0B. 1C. ﹣1D. ±1【答案】B【解析】试题分析:因为1的平方和倒数都为1,所以一个数的平方等于它的倒数,则这个数一定是1,故答案选B.考点:倒数.5.关于多项式26﹣3x5+x4+x3+x2+x说法正确的是( )A. 是六次六项式B. 是五次六项式C. 是六次五项式D. 是五次五项式【答案】B【解析】【分析】根据多项式次数的定义知,该多项式的次数是5次,又因为次多项式有6个单项式组成,所以是五次六项式.【详解】多项式26﹣3x5+x4+x3+x2+x次数最高的项的次数是5,且有6个单项式组成,所以是五次六项式.故选B.【点睛】本题考查多项式的次数,多项式中,次数最高的项的次数是这个多项式的次数,不含字母的项叫做常数项,26的次数是0,即该多项式的次数不是六次,而是五次.6.在﹣(﹣1)4,23,﹣32,(﹣4)2这四个数中,最大的数与最小的数的和等于( )A. 7B. 15C. ﹣24D. ﹣1【答案】A【解析】【分析】根据乘方的意义,可得答案.【详解】﹣(﹣1)4=﹣1,23=8,﹣32=﹣9,(﹣4)2=16,最大数是16=(-4)2,最小的数是﹣9=﹣32,最大的数与最小的数的和等于16+(﹣9)=7,故选A.【点睛】本题考查了有理数的加法,利用乘方的意义确定最大数最小数是解题关键7.一个两位数,个位数字为a,十位数字比个位数字大1,则这个两位数可表示为()A. 11a -1B. 11a +1C. 11a +10D. 11a -10【答案】C【解析】【分析】 由于十位数字比个位数字大1,则十位上的数位a+1,又个位数字为a ,则两位数即可表示出来.【详解】由于个位数字为a ,十位数字比个位数字大1,则十位数字为a+1,∴这个两位数可表示为10(a+1)+a=11a+10.故选C .【点睛】本题考查了代数式的列法,正确理解题意是解决这类题的关键.注意两位数的表示方法为:十位数×10+个位数.8.不改变代数式a 2﹣(2a+b+c )的值,把它括号前的符号变为相反的符号,应为( )A. a 2+(﹣2a+b+c)B. a 2+(﹣2a ﹣b ﹣c)C. a 2+(﹣2a)+b+cD. a 2﹣(﹣2a ﹣b ﹣c)【答案】B【解析】试题解析:原式2(2).a a b c =+---故选B.9.化简2a ﹣[3b ﹣5a ﹣(2a ﹣7b)]的结果是( )A ﹣7a+10bB. 5a+4bC. ﹣a ﹣4bD. 9a ﹣10b 【答案】D【解析】试题分析:原式=2a -(3b -5a -2a+7b)=2a -(10b -7a)=2a -10b+7a=9a -10b .考点:去括号的法则和合并同类项10.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是( )A. 25B. 27C. 55D. 120 【答案】C【解析】试题分析:观察发现,从第三个数开始,后一个数是前两个数的和,依次计算求解即可.解:1+1=2,1+2=3,2+3=5,3+5=8,5+8=13,8+13=21,13+21=34,21+34=55.所以第10个数十55.故选C .考点:规律型:数字的变化类.二、注意审题,细心填空呦!(每小题3分,共30分)11.-3的相反数是_______,-2018的倒数是_______.【答案】 (1). 3 (2). -12018 【解析】试题解析:根据相反数,倒数的概念得:-3的相反数是3;-2018的倒数等于-12018. 12.稀士元素具有独特的性质和广泛的应用,我国稀土资源的总储量约为1050000000吨,用科学记数法表示为_____.【答案】91.0510⨯【解析】【分析】绝对值大于1的正数可以科学计数法,a×10n ,即可得出答案. 【详解】n 由左边第一个不为0数字前面的0的个数决定,所以此处n=9,a=1.05,所以答案填写91.0510.⨯【点睛】本题考查了科学计数法的运用,熟悉掌握概念是解决本题的关键.13.比较有理数大小:﹣3_____﹣2016(选用“>”、“<”或“=”号填空).【答案】>【解析】【分析】先计算它们的绝对值,根据两个负数,绝对值大的反而小,即可得出结论.【详解】因为|﹣3|=3,|﹣2006|=2006,3<2006,所以﹣3>﹣2006.故答案为>.【点睛】本题考查了有理数大小的比较,一般有两种办法:一是借助于数轴,先把各数描在数轴上,利用右边的数总大于左边的数比较;二是利用法则,正数大于0;0大于负数,正数大于一切负数;两个负数,绝对值大的反而小.14.规定a*b=5a+2b-1,则(﹣4)*6的值为_______.【答案】-9【解析】【分析】根据a*b=5a+2b-1,可以求得题目中所求式子的值,本题得以解决.【详解】∵a*b=5a+2b-1,∴(-4)*6=5×(-4)+2×6-1=(-20)+12-1=-9,故答案为-9.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.15.若|x|=3,y的倒数为12,则x+y=_____.【答案】-1或5【解析】【分析】由绝对值等于3的数为3或﹣3,求出x的值,利用倒数的定义求出y的值,即可求出x+y的值.【详解】∵|x|=3,y的倒数为1 2 ,∴x=±3 y=2,当x=3时,x+y=3+2=5,当x=-3时,x+y=-3+2=-1故答案为﹣1或5.【点睛】此题考查了有理数的加法运算,熟练掌握加法法则是解本题的关键.16.某城市按以下规定收取每月的煤气费:用气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分每立方米按1.2元收费.已知某户用煤气x立方米(x>60),则该户应交煤气费_____元.【答案】(1.2x﹣24)【解析】【分析】根据应交煤气费=前60立方米的付费+超过60立方米的付费列式即可.【详解】∵超出60立方米的煤气用量为:x﹣60,∴超出的费用是1.2(x﹣60)=1.2x﹣72元,∴应交煤气费是1.2x﹣72+60×0.8=1.2x﹣24.故答案为1.2x﹣24.【点睛】本题考查列代数式,找到所求的量的等量关系是解题关键.17.在数﹣1,2,﹣3,5,﹣6中,任取两个数相乘,其中最大的积是_____.【答案】18.【解析】试题分析:最大的积是:(﹣3)×(﹣6)=18,故答案为18.考点:1.有理数的乘法;2.有理数大小比较.18.单项式﹣2223a b cπ是_____次单项式,系数为_____.【答案】(1). 5(2).2 3π-【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】解:根据单项式定义得:单项式2223a b cπ-是5次单项式,系数为23π-.故答案为:5;23π-.19.已知代数式的x2+3x+5的值等于7,则代数式3x2+9x+2的值_____.【答案】8【解析】试题解析:∵x 2+3x+5=7,∴x 2+3x=2,∴3x 2+9x+2=3(x 2+3x)+2=3×2+2=8. 20.有一列式子,按一定规律排列成3a,﹣9a 2,27a 3,﹣81a 4,243a 5,…这列列式子中第n 个式子为_____.(n 为正整数)【答案】(﹣1)n+13n a n【解析】【分析】利用归纳法来得出规律解答即可.【详解】第一个式子为:(-1)2 3a,第二个式子为:(-1)2+132a 2,第三个式子为:(-1)3+133a 3,第四个式子为:(-1)4+134a 4,第五个式子为:(-1)5+135a 5,…∴第n 个式子为:(-1)n+13n a n ,故答案为(-1)n+13n a n .【点睛】本题考查了规律型数字的变化.利用归纳法来得出规律是解题关键.三、解答题(共55分)21.计算:(1)5×(﹣2)+(﹣8)÷(﹣2)(2)(﹣24)×(1231238--) (3)﹣14﹣(1﹣0×4)÷13×[(﹣2)2﹣6]. 【答案】(1)-6;(2)37;(3)5.【解析】【分析】(1)原式先计算乘除运算,再计算加减运算即可求出值;(2)原式利用乘法分配律计算即可求出值;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值【详解】(1)原式=﹣10+4=﹣6;(2)原式=﹣12+40+9=37;(3)原式=﹣1﹣3×(﹣2)=﹣1+6=5.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.已知|x|=3,(y+1)2=4,且xy<0,求x+y的值.【答案】0或-2【解析】分析:利用绝对值及平方根定义求出x与y的值,代入计算即可求出x+y的值.详解:根据题意得:x=±3,y+1=±2,即y=1或-3,∵xy<0,∴x=3,y=-3;x=-3,y=1,则x+y=0或-2.点睛:此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.23.按要求求值(1)化简求值:(4a2﹣2a﹣6)﹣2(2a2﹣2a﹣5)其中a=﹣1.(2)若化简(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,求m的值.【答案】(1)2;(2)1.5【解析】【分析】(1)原式去括号合并得到最简结果,把a的值代入计算即可求出值;(2)原式去括号合并后,由结果与x的取值无关,确定出m的值即可.【详解】(1)原式=4a2﹣2a﹣6﹣4a2+4a+10=2a+4,当a=﹣1时,原式=﹣2+4=2;(2)原式=2mx2﹣x+3﹣3x2+x+4=(2m﹣3)x2+7,由结果与x的取值无关,得到2m﹣3=0,解得:m=1.5.【点睛】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下(单位:元):+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2,当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少?【答案】盈利37元.【解析】试题分析:所得的正负数相加,再加上预计销售的总价,减去总进价,结果为正数说明盈利了,结果是负数说明亏损了.解:由题意,得55×8+2+(-3)+2+1+(-2)+(-1)+0+(-2)-400=37(元),所以他卖完这8套儿童服装后是盈利,盈利37元.点睛:本题主要考查有理数的混合运算的实际应用,利用正数跟负数的性质来解决实际生活问题是比较常见的题型,我们应区分现实生活中正数与负数的意义,根据实际情况来解决问题.25.一位同学做一道题:“已知两个多项式A、B,计算2A﹣B”.他误将“2A﹣B”看成“A﹣2B”,求得的结果5x2﹣2x+4.已知B=2x2+3x﹣7,求2A﹣B的正确答案.【答案】4x2+5x﹣13.【解析】【分析】先根据题意求出A,再将A与B代入2A﹣B中,去括号合并即可得答案.【详解】∵A﹣2(﹣2x2+3x﹣7)=5x2﹣2x+4,∴A=x2+4x﹣10,∴2A﹣B=2(x2+4x﹣10)﹣(﹣2x2+3x﹣7)=2x2+8x﹣20+2x2﹣3x+7=4x2+5x﹣13.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.26.如图所示,用棋子摆成的“上”字:第一个“上”字第二个“上”字第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现:(1)第四、第五个“上”字分别需用和枚棋子.(2)第n个“上”字需用枚棋子.(3)如果某一图形共有102枚棋子,你知道它是第几个“上”字吗?【答案】(1)18,22;(2)4n+2;(3)25【解析】【分析】(1)找规律可以将上字看做有四个端点每次每个端点增加一个,还有两个点在里面不发生变化,据此可得第四、五个上字所需棋子数;(2)根据(1)中规律即可得;(3)结合(2)中结论可列方程,解方程即可得.【详解】(1)∵第一个“上”字需用棋子4×1+2=6枚;第二个“上”字需用棋子4×2+2=10枚;第三个“上”字需用棋子4×3+2=14枚;∴第四个“上”字需用棋子4×4+2=18枚,第五个“上”字需用棋子4×5+2=22枚,故答案为18,22;(2)由(1)中规律可知,第n个“上”字需用棋子4n+2枚,故答案为4n+2;(3)根据题意,得:4n+2=102,解得:n=25,答:第25个上字共有102枚棋子.【点睛】此题考查了图形的变化类,关键是从图中特殊的例子推理得出一般的规律,本题的规律是四个端点每次每个端点增加一个,还有两个点在里面不发生变化.27.某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售,可获利15%,并可用本金和利润再投资其他商品,到月末又可获利10%;如果月末出售可获利30%,但要付出仓储费用700元.(1)若商场投资x元,分别用含x的代数式表示月初出售和月末出售所获得的利润;(2)若商场投资40000元,问选择哪种销售方式获利较多?此时获利多少元?【答案】(1)0.265x;0.3x-700;(2)月末出售所获得的利润较多,此时获利11300元.【解析】试题分析:(1)根据题意可以用代数式表示出月初月末两种销售方式获得的利润;(2)将x=40000分别代入(1)中的代数式,然后比较,即可解答本题.试题解析:(1)由题意可得,该商月初出售时的利润为:15%x+x(1+15%)×10%=0.265x(元),该商月末出售时的利润为:30%x-700=(0.3x-700)(元);(2)当x=40000时,该商月初出售时的利润为:0.265×40000=10600(元),该商月末出售时的利润为:0.3×40000-700=11300(元),∵11300>10600,∴选择月末出售这种方式,即若商场投资40000元,选择月末销售方式获利较多,此时获利11300元.。

人教版七年级上学期期中数学试卷及答案

人教版七年级上学期期中数学试卷及答案

人教版七年级上学期期中数学试卷及答案一、单选题(每题3分,共24分)1.(3分)下列各组数中,数值相等的是()A.﹣12和(﹣1)2B.(﹣2)3和﹣23C.﹣3×23和﹣(3×2)3D.﹣(﹣3)和﹣|﹣3|2.(3分)下列计算错误的是()A.4÷(﹣)=4×(﹣2)=﹣8B.(﹣2)×(﹣3)=2×3=6C.﹣(﹣32)=﹣(﹣9)=9D.﹣3﹣5=﹣3+(+5)=23.(3分)钓鱼岛是位于我国东海钓鱼岛列岛的主岛,被誉为“深海中的翡翠”,面积约4400000平方米,数据4400000用科学记数法表示为()A.4.4×106B.0.44×107C.44×105D.4.4×1054.(3分)若ab<0,则++的值为()A.1B.﹣1C.1或﹣1D.不能确定5.(3分)若关于x,y的多项式x2+axy﹣(bx2﹣y﹣3)不含二次项,则a﹣b的值为()A.0B.﹣2C.2D.﹣16.(3分)有理数a、b、c在数轴上位置如图,则|c﹣a|﹣|a+b|﹣|b﹣c|的值为()A.2a+2b﹣2c B.0C.﹣2c D.2a7.(3分)甲、乙、丙三家超市为标价相同的同一种商品搞促销活动,甲超市一次性降价40%,乙超市连续两次降价20%,丙超市第一次降价30%,第二次降价10%.此时顾客要想购买这种商品更划算,应选择的超市是()A.甲B.乙C.丙D.都一样8.(3分)一组数据:2,1,3,x,7,﹣9,…,满足“从第三个数起,若前两个数依次为a、b,则紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到,那么该组数据中的x为()A.﹣2B.﹣1C.1D.2二、填空题(每题3分,共24分)9.(3分)下列各数﹣2.5,10,3.14,0,,﹣20,9.7,+58,,﹣1中正分数有,非负整数有.10.(3分)﹣的系数是,次数是.11.(3分)如果|a+2|与(b﹣1)2互为相反数,那么代数式(a+b)2021的值是.12.(3分)如果关于x、y的多项式是三次三项式,则a的值为.13.(3分)已知一个多项式与2x2﹣8x的和等于5x2+3x﹣7,则这个多项式是.14.(3分)若单项式2x m﹣1y2与单项式x2y n+1是同类项,则m+n=.15.(3分)已知|x﹣2|+(y+3)2=0,那么y x的值为.16.(3分)已知代数式x﹣2y+1的值是3,则2x﹣4y+1代数式的值是.三、解答题(共66分)17.计算:(1)﹣7+(﹣3)﹣4﹣|﹣8|;(2);(3);(4).18.化简:(1);(2)5a2﹣[a2+(5a2﹣2a)﹣2(a2﹣3a)].19.若|x﹣5|+|y+1|=0,那么3x2y﹣[x2﹣(2xy﹣x2y)]﹣xy的值是多少?20.若单项式(m﹣3)x2y n﹣1与单项式5x m y5的和还是单项式,求m,n的值.21.有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点与原点的距离相等.(1)用“>”“<”或“=”填空:a﹣c0,b﹣c0;(2)化简|a﹣1|﹣|b﹣1|.22.已知A=2x2+3xy+2x﹣1,B=x2+xy+3x﹣2.(1)求A﹣2B的值;(2)若A﹣2B的值与x无关,则求y的值.23.国庆节放假七天,高速公路免费通行,各地风景区游人如织,其中闻名于世的北京故宫,在10月1日的游客人数就已经达到了7万人,接下来的六天中,每天的游客人数变化(单位:万人)如表:(正数表示比前一天多的人数,负数表示比前一天少的人数)日期10月2日10月3日10月4日10月5日10月6日10月7日人数变化+0.6﹣0.2+0.1+0.2﹣0.8﹣1.6(1)10月3日的人数为万人;(2)这七天,游客人数最多的是10月日,达到万人,游客人数最少的是10月日,为万人;(3)请计算这7天参观故宫的总人数.24.如图,一块正方形的铁皮,边长为x米(x>4),如果一边截去宽4米的一条,另一边截去宽3米的一条.(1)用含x的代数式表示阴影部分的面积.(2)当x=6时,阴影部分的面积.(3)用含x的代数式直接写出阴影部分的周长.25.某公园的成人票每张20元,儿童票每张8元,甲旅行团有x名成人,y名儿童;乙旅行团的成人数是甲旅行团成人数的2倍,儿童数是甲旅行团儿童数的一半.(1)求甲旅行团的门票总费用;(2)求乙旅行团的门票总费用;(3)求两个旅行团的门票的总费用;(4)当x=10,y=4时,两个旅行团的总费用是多少?参考答案与试题解析一、单选题(每题3分,共24分)1.(3分)下列各组数中,数值相等的是()A.﹣12和(﹣1)2B.(﹣2)3和﹣23C.﹣3×23和﹣(3×2)3D.﹣(﹣3)和﹣|﹣3|【分析】把每一选项的算式计算出结果,然后进行比较.【解答】解:A、﹣12=﹣1,(﹣1)2=1,∴不符合题意;B、(﹣2)3=﹣8,﹣23=﹣8,∴符合题意;C、﹣3×23=﹣24,﹣(3×2)2=﹣36,∴不符合题意;D、﹣(﹣3)=3,﹣|﹣3|=﹣3,∴不符合题意;故选:B.【点评】本题主要考查了有理数乘方、有理数乘法、相反数、绝对值,掌握这四个知识点的性质应用是解题关键.2.(3分)下列计算错误的是()A.4÷(﹣)=4×(﹣2)=﹣8B.(﹣2)×(﹣3)=2×3=6C.﹣(﹣32)=﹣(﹣9)=9D.﹣3﹣5=﹣3+(+5)=2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=4×(﹣2)=﹣8,不符合题意;B、原式=6,不符合题意;C、原式=﹣(﹣9)=9,不符合题意;D、原式=﹣8,符合题意,故选:D.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.(3分)钓鱼岛是位于我国东海钓鱼岛列岛的主岛,被誉为“深海中的翡翠”,面积约4400000平方米,数据4400000用科学记数法表示为()A.4.4×106B.0.44×107C.44×105D.4.4×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将4400000用科学记数法表示为:4.4×106.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)若ab<0,则++的值为()A.1B.﹣1C.1或﹣1D.不能确定【分析】先判断a、b中一个正数、一个负数,然后根据绝对值的意义计算.【解答】解:∵ab<0,∴a、b中一个正数、一个负数,∴原式=1﹣1﹣1=﹣1.故选:B.【点评】本题考查了绝对值:数轴上某个数与原点的距离叫做这个数的绝对值.互为相反数的两个数绝对值相等;绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.也考查了相反数.5.(3分)若关于x,y的多项式x2+axy﹣(bx2﹣y﹣3)不含二次项,则a﹣b的值为()A.0B.﹣2C.2D.﹣1【分析】先对多项式进行化简可得(1﹣b)x2+axy+y+3,然后根据题意可得:a=0,1﹣b=0,从而可得a=0,b=1,最后代入式子中进行计算即可解答.【解答】解:x2+axy﹣(bx2﹣y﹣3)=x2+axy﹣bx2+y+3=(1﹣b)x2+axy+y+3,由题意得:a=0,1﹣b=0,解得:a=0,b=1,∴a﹣b=0﹣1=﹣1,故选:D.【点评】本题考查了合并同类项,多项式,熟练掌握合并同类项的法则是解题的关键.6.(3分)有理数a、b、c在数轴上位置如图,则|c﹣a|﹣|a+b|﹣|b﹣c|的值为()A.2a+2b﹣2c B.0C.﹣2c D.2a【分析】根据数轴可知b<c<0<a,且|b|>|a|,再由绝对值的意义,化简运算即可.【解答】解:由数轴可知,b<c<0<a,且|b|>|a|,∴|c﹣a|﹣|a+b|﹣|b﹣c|=a﹣c+(a+b)﹣(c﹣b)=a﹣c+a+b﹣c+b=2a+2b﹣2c,故选:A.【点评】本题考查实数与数轴,熟练掌握数轴上点的特征,绝对值的意义是解题的关键.7.(3分)甲、乙、丙三家超市为标价相同的同一种商品搞促销活动,甲超市一次性降价40%,乙超市连续两次降价20%,丙超市第一次降价30%,第二次降价10%.此时顾客要想购买这种商品更划算,应选择的超市是()A.甲B.乙C.丙D.都一样【分析】根据各超市降价的百分比分别计算出此商品降价后的价格,再进行比较即可得出结论.【解答】解:设该商品定价为m元,降价后三家超市的售价是:甲为(1﹣40%)m=0.6m,乙为(1﹣20%)2m=0.64m,丙为(1﹣30%)(1﹣10%)m=0.63m,∵0.6m<0.63m<0.64m,∴此时顾客要购买这种商品最划算应到的超市是甲.故选:A.【点评】此题考查了列代数式,解题的关键是根据题目中的数量关系列出代数式,并对代数式比较大小.8.(3分)一组数据:2,1,3,x,7,﹣9,…,满足“从第三个数起,若前两个数依次为a、b,则紧随其后的数就是2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到,那么该组数据中的x为()A.﹣2B.﹣1C.1D.2【分析】根据数列中数的规律即可得出x=2×1﹣3=﹣1,此题得解.【解答】解:根据题意得x=2×1﹣3=﹣1.故选:B.【点评】本题考查了规律型中数字的变化类,根据数列中数的变化,代入数据求出x值是解题的关键.二、填空题(每题3分,共24分)9.(3分)下列各数﹣2.5,10,3.14,0,,﹣20,9.7,+58,,﹣1中正分数有 3.14,9.7,,非负整数有10,0,+58.【分析】根据有理数分类解答即可.【解答】解:在﹣2.5,10,3.14,0,,﹣20,9.7,+58,,﹣1中,正分数有3.14,9.7,,非负整数有10,0,+58.故答案为:3.14,9.7,;10,0,+58.【点评】本题考查有理数的分类,解题的关键是掌握有理数分为整数和分数,整数又分为正整数、0和负整数,分数分为正分数和负分数.10.(3分)﹣的系数是﹣,次数是3.【分析】根据单项式的概念解答即可.【解答】解:﹣的系数是﹣,次数是3.故答案为:﹣,3.【点评】此题考查的是单项式,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.11.(3分)如果|a+2|与(b﹣1)2互为相反数,那么代数式(a+b)2021的值是﹣1.【分析】由相反数的定义和非负数的性质求出a、b的值,代入计算即可.【解答】解:∵|a+2|与(b﹣1)2互为相反数,∴|a+2|+(b﹣1)2=0,∴a+2=0,b﹣1=0,解得a=﹣2,b=1,∴(a+b)2021=(﹣2+1)2021=(﹣1)2021=﹣1.故答案为:﹣1.【点评】本题考查了相反数的定义和非负数的性质,解题的关键是求出a、b的值.12.(3分)如果关于x、y的多项式是三次三项式,则a的值为﹣2.【分析】直接利用绝对值与多项式的定义得出a的值,即可得出答案.【解答】解:∵关于x,y的多项式xy|a|﹣(a−2)y2+1是三次三项式,∴|a|=2且a﹣2≠0,∴a=﹣2.故答案为:﹣2.【点评】此题考查的是多项式,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.13.(3分)已知一个多项式与2x2﹣8x的和等于5x2+3x﹣7,则这个多项式是3x2+11x﹣7.【分析】根据题意可列出相应的式子,再利用整式的减法的法则进行运算即可.【解答】解:由题意得:5x2+3x﹣7﹣(2x2﹣8x)=5x2+3x﹣7﹣2x2+8x=3x2+11x﹣7.故答案为:3x2+11x﹣7.【点评】本题主要考查整式的加减,解答的关键是对相应的运算法则的掌握.14.(3分)若单项式2x m﹣1y2与单项式x2y n+1是同类项,则m+n=4.【分析】根据同类项的意义,列方程求解即可.【解答】解:∵单项式2x m﹣1y2与单项式x2y n+1是同类项,∴,∴m+n=4,故答案为:4.【点评】本题考查同类项的意义,理解同类项的意义是正确解答的前提.15.(3分)已知|x﹣2|+(y+3)2=0,那么y x的值为9.【分析】根据非负数的性质求出x、y的值,计算即可.【解答】解:x﹣2=0,y+3=0,解得,x=2,y=﹣3,则y x=9,故答案为:9.【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.16.(3分)已知代数式x﹣2y+1的值是3,则2x﹣4y+1代数式的值是5.【分析】由代数式x﹣2y+1的值是3得x﹣2y=2,再把两边都乘以2可得答案.【解答】解:∵代数式x﹣2y+1的值是3,∴x﹣2y+1=3,∴x﹣2y=2,∴2x﹣4y=4,∴2x﹣4y+1=4+1=5.故答案为:5.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.三、解答题(共66分)17.计算:(1)﹣7+(﹣3)﹣4﹣|﹣8|;(2);(3);(4).【分析】(1)先化简,进行绝对值运算,再算加减即可;(2)利用乘法的分配律进行运算即可;(3)逆用乘法的分配律进行运算较简便;(4)先算乘方,再算括号里的减法,接着算乘法,最后算加法即可.【解答】解:(1)﹣7+(﹣3)﹣4﹣|﹣8|=﹣7﹣3﹣4﹣8=﹣(7+3+4+8)=﹣22;(2)==﹣18+20﹣21=2﹣21=﹣19;(3)====;(4)=﹣1﹣=﹣1﹣×(﹣7)=﹣1+=.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.18.化简:(1);(2)5a2﹣[a2+(5a2﹣2a)﹣2(a2﹣3a)].【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可.【解答】解:(1)=2x﹣3y﹣x+4y=x+y;(2)5a2﹣[a2+(5a2﹣2a)﹣2(a2﹣3a)]=5a2﹣(a2+5a2﹣2a﹣2a2+6a)=5a2﹣a2﹣5a2+2a+2a2﹣6a=a2﹣4a.【点评】本题主要考查整式的加减,解答的关键是去括号时注意符号的变化.19.若|x﹣5|+|y+1|=0,那么3x2y﹣[x2﹣(2xy﹣x2y)]﹣xy的值是多少?【分析】先去小括号,再去中括号,然后合并同类项,最后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:3x2y﹣[x2﹣(2xy﹣x2y)]﹣xy=3x2y﹣(x2﹣2xy+x2y)﹣xy=3x2y﹣x2+2xy﹣x2y﹣xy=2x2y﹣x2+xy,∵|x﹣5|+|y+1|=0,∴x﹣5=0,y+1=0,∴x=5,y=﹣1,∴当x=5,y=﹣1时,原式=2×52×(﹣1)﹣52+5×(﹣1)=2×25×(﹣1)﹣25﹣5=﹣50﹣25﹣5=﹣80.【点评】本题考查了整式的加减﹣化简求值,绝对值的非负性,准确熟练地进行计算是解题的关键.20.若单项式(m﹣3)x2y n﹣1与单项式5x m y5的和还是单项式,求m,n的值.【分析】根据同类项的定义:所含字母相同,相同字母的指数也相同,可得m=2,n﹣1=5,然后进行计算即可解答.【解答】解:由题意得:m=2,n﹣1=5,解得:m=2,n=6,∴m的值为2,n的值为6.【点评】本题考查了合并同类项,熟练掌握同类项的定义是解题的关键.21.有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点与原点的距离相等.(1)用“>”“<”或“=”填空:a﹣c>0,b﹣c<0;(2)化简|a﹣1|﹣|b﹣1|.【分析】(1)根据数轴,判断出a,b,c的取值范围,进而求解;(2)根据绝对值的性质,去绝对值号,合并同类项即可.【解答】解:(1)由题意可得,b<﹣1<c<0<1<a,|a|=|b|,∴a﹣c>0,b﹣c<0;故答案为:>;<;(2)∵a﹣1>0,b﹣1<0,∴|a﹣1|﹣|b﹣1|=a﹣1﹣(1﹣b)=a﹣1﹣1+b=a+b﹣2.【点评】本题主要考查数轴、绝对值、整式的加减等知识的综合运用,解决此题的关键是能够根据数轴上的信息,判断出a,b,c等字母的取值范围,同时解决此题时也要注意绝对值性质的运用.22.已知A=2x2+3xy+2x﹣1,B=x2+xy+3x﹣2.(1)求A﹣2B的值;(2)若A﹣2B的值与x无关,则求y的值.【分析】(1)把A,B的式子代入进行计算,即可解答;(2)根据题意可得y﹣4=0,然后进行计算即可解答.【解答】解:(1)∵A=2x2+3xy+2x﹣1,B=x2+xy+3x﹣2,∴A﹣2B=2x2+3xy+2x﹣1﹣2(x2+xy+3x﹣2)=2x2+3xy+2x﹣1﹣2x2﹣2xy﹣6x+4=xy﹣4x+3,∴A﹣2B的值为xy﹣4x+3;(2)∵A﹣2B=xy﹣4x+3,∴A﹣2B=(y﹣4)x+3,由题意得:y﹣4=0,解得:y=4,∴y的值为4.【点评】本题考查了整式的加减﹣化简求值,准确熟练地进行计算是解题的关键.23.国庆节放假七天,高速公路免费通行,各地风景区游人如织,其中闻名于世的北京故宫,在10月1日的游客人数就已经达到了7万人,接下来的六天中,每天的游客人数变化(单位:万人)如表:(正数表示比前一天多的人数,负数表示比前一天少的人数)日期10月2日10月3日10月4日10月5日10月6日10月7日人数变化+0.6﹣0.2+0.1+0.2﹣0.8﹣1.6(1)10月3日的人数为7.4万人;(2)这七天,游客人数最多的是10月5日,达到7.7万人,游客人数最少的是10月7日,为 5.3万人;(3)请计算这7天参观故宫的总人数.【分析】(1)根据每天人数的变化情况进行计算即可;(2)分别计算出每一天的游客人数,比较得出答案;(3)求出这7天游客人数的和即可.【解答】解:(1)10月3日的人数为:7+0.6﹣0.2=7.4(万人),故答案为:7.4;(2)10月2日的人数为:7+0.6=7.6(万人),10月3日的人数为:7.6﹣0.2=7.4(万人),10月4日的人数为:7.4+0.1=7.5(万人),10月5日的人数为:7.5+0.2=7.7(万人),10月6日的人数为:7.7﹣0.8=6.9(万人),10月7日的人数为:6.9﹣1.6=5.3(万人),所以10月5日,人数最多达到7.7万人;10月7日,人数最少,达到5.3万人,故答案为:5,7.7;7,5.3;(3)7×7+(0.6﹣0.2+0.1+0.2﹣0.8﹣1.6)=47.4(万人),答:这7天参观故宫的总人数为47.4万人.【点评】本题考查正数和负数,理解正数与负数所表示的意义是正确计算的前提.24.如图,一块正方形的铁皮,边长为x米(x>4),如果一边截去宽4米的一条,另一边截去宽3米的一条.(1)用含x的代数式表示阴影部分的面积.(2)当x=6时,阴影部分的面积.(3)用含x的代数式直接写出阴影部分的周长.【分析】(1)用正方形的面积减去矩形的面积即可;(2)把x的值代入进行计算即可得解;(3)用平移的方法可确定阴影部分的周长等于正方形的周长.【解答】解:(1)S阴影=S正方形﹣S矩形=x2﹣3×4=(x2﹣12)平方米;(2)当x=6时,x2﹣12=36﹣12=24(平方米);(3)阴影部分的周长=正方形的周长=4x(米).【点评】本题考查了列代数式,代数式求值,仔细观察图形表示出阴影部分的邻边的长是解题的关键.25.某公园的成人票每张20元,儿童票每张8元,甲旅行团有x名成人,y名儿童;乙旅行团的成人数是甲旅行团成人数的2倍,儿童数是甲旅行团儿童数的一半.(1)求甲旅行团的门票总费用;(2)求乙旅行团的门票总费用;(3)求两个旅行团的门票的总费用;(4)当x=10,y=4时,两个旅行团的总费用是多少?【分析】(1)计算甲旅行团成人票费与儿童票费的和即可;(2)计算乙旅行团成人票费与儿童票费的和即可;(3)计算两个旅行团门票费用之和即可;(4)将x=10,y=4代入(3)的代数式计算即可.【解答】解:(1)根据题意可得:甲旅行团的门票总费用为20x+8y;(2)根据题意可得乙旅行团的成人数是2x人,儿童人数是人∴旅行团的门票总费用为:20×2x+8×=40x+4y;(3)∵甲旅行团的门票总费用为20x+8y,乙旅行团的门票总费用为:40x+4y,∴20x+8y+40x+4y=60x+12y,∴两个旅行团的门票总费用为(60x+12y)元;(4)当x=10,y=4时,两个旅行团的门票总费用是:60x+12y=60×10+12×4=648(元).答:两个旅行团的门票总费用是648元.【点评】本题主要考查了列代数式,求代数式的值,准确利用题中的数量关系列出代数式是解题的关键.。

人教版七年级上册《数学》期中考试卷及答案【可打印】

人教版七年级上册《数学》期中考试卷及答案【可打印】

一、选择题(每题1分,共5分)1. 一个等边三角形的每个内角是多少度?A. 30°B. 45°C. 60°D. 90°2. 一个正方形的对角线长是边长的多少倍?A. 1B. √2C. 2D. √33. 一个圆的半径是5cm,它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 25π4. 一个长方形的长是10cm,宽是5cm,它的面积是多少平方厘米?A. 50B. 25C. 20D. 155. 一个立方体的体积是27cm³,它的边长是多少厘米?A. 3B. 6C. 9D. 12二、判断题(每题1分,共5分)1. 一个等腰三角形的底角和顶角相等。

()2. 一个圆的直径等于它的半径的两倍。

()3. 一个正方形的对角线等于它的边长的√2倍。

()4. 一个长方形的面积等于它的长乘以宽。

()5. 一个立方体的体积等于它的边长的三次方。

()三、填空题(每题1分,共5分)1. 一个等边三角形的每个内角是______度。

2. 一个正方形的对角线长是边长的______倍。

3. 一个圆的半径是5cm,它的面积是______平方厘米。

4. 一个长方形的长是10cm,宽是5cm,它的面积是______平方厘米。

5. 一个立方体的体积是27cm³,它的边长是______厘米。

四、简答题(每题2分,共10分)1. 简述等边三角形的性质。

2. 简述正方形的性质。

3. 简述圆的性质。

4. 简述长方形的性质。

5. 简述立方体的性质。

五、应用题(每题2分,共10分)1. 一个等边三角形的边长是6cm,求它的面积。

2. 一个正方形的对角线长是10cm,求它的面积。

3. 一个圆的半径是4cm,求它的面积。

4. 一个长方形的长是8cm,宽是4cm,求它的面积。

5. 一个立方体的边长是3cm,求它的体积。

六、分析题(每题5分,共10分)1. 分析等边三角形、正方形、圆、长方形、立方体之间的区别和联系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册期中试卷
一、正确选择(本大题共10个小题;每小题3分,共30分)
1.-3的相反数是( )
A .-3
B .3
C .31
D .31

2.下列每组中的两个代数式,属于同类项的是( )
A 、223221xy y x 与
B 、c a b a 225.05.0与
C 、ab abc 33与
D 、3382
1nm n m -与
3.如图所示,陀螺是由下面哪两个几何体组合而成的?( )
A .长方体和圆锥
B .长方形和三角形
C .圆和三角形
D .圆柱和圆锥
4. 数a ,b 在数轴上的位置如图所示,则b a +是( )
A .正数
B .零
C .负数
D .都有可能
5.两个互为相反数的有理数相乘,积为( )
A . 正数
B .负数
C .零
D .负数或零
6. 长方形剪去一个角后所得的图形一定不是( )
A.五边形
B.梯形
C.长方形
D.三角形
7下列代数式中符合书写要求的是( )
A.42⨯ab
B.xy 41
C.b a 221
2 D.632÷xy
8.去括号:-(-a +b -1)结果正确的是( )
A .-a +b -1
B .a +b +1
C .a -b +1
D .-a +b +1
9.组成多项式2x 2-3x -5的各项是( )
A. 2x 2, 3x ,5
B.2,-3,-5
C.2x 2 , -3x,-5
D.2x 2 -3x-5
10.一根绳子弯曲成如图3—1所示的形状.当用剪刀像图3—2那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图3—3那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就
被剪为9段.若用剪刀在虚线a ,b 之间把绳子再剪(n -2)次(剪刀的方向与a 平行),
这样一共剪n 次时绳子的段数是( )
图3—
1 图3—2
图3—3 ……
A .4n +1
B .4n +2
C .4n +3
D .4n +5
二、准确填空(每小题3分,共24分)
11. 一个数的绝对值是5,则这个数是 。

12.菜场上西红柿每千克a 元,白菜每千克b 元,学校食堂买30kg 西红柿,50kg 白菜共需 _______________元.
13.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 .
14.观察每个等式:12 + 1 = 1 × 2,22 + 2 = 2 × 3,32 + 3 = 3 × 4,…,请你将猜
测到的规律,用含整数n (n ≥1)的等式表示出来为 .
15. -b a 2
31π的系数是 16.“*”是规定的一种运算法则:b a b a -=*2,则()15-*的值是
17.如果水库的水位高于标准水位3米时,记作+3米,那么低于标准水位2米时,应记
____________米
18.3223-的值是
三、解答题(共66分)
16.(本题16分)
(1)–2÷(-412
)×(-4.5) (2)⎪⎭
⎫ ⎝⎛+-⨯-127654324
(3)812142-⨯÷
- (4)()()43283--+-+a a a
17.(本题8分)先化简,再求值
()()x y y x x 2322-++- ,其中12=-=y x ,
18.(本题9分)画出这个几何体的三视图
19.(本题7分) 3、某一矿井的示意图如图2—16所示:以地面为准,A点的高度是+4米,B、C两点的高度分别是–15米与–30米.A点比B点高多少?比C点呢?
20.(本题6分)将连续的偶数2,4,6,8…排列成如下的数表用十字框框出5个数(如图)
2 4 6 8 10 12
14 16 18 20 22 24
26 28 30 32 34 36
38 40 42 44 46 48
……
(1)十字框框出5个数的和与框子正中间的数20有什么关系?
(2)若将十字框上下左右平移,但一定要框住数列中的5个数,若设中间的数为a,用a 的代数式表示十字框框住的5个数字之和;
21.(10分)观察下列各式:
-1×1
2
= -1+
1
2
-1
2
×
1
3
= -
1
2

1
3
-1
3
×
1
4
= -
1
3

1
4

⑴你能探索出什么规律?(用文字或表达式)
⑵试运用你发现的规律计算
(-1×1
2
)+(-
1
2
×
1
3
)+(-
1
3
×
1
4
)+…+(-
1
2007
×
1
2008
)+(-
1
2008
×
1
2009
):
22.(本题10分)学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费。

⑴两印刷厂的收费各是多少元?(用含x的代数式表示)
⑵学校要到印刷2400份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由。

相关文档
最新文档