(完整版)人教版初中数学七年级下册第六章《实数》单元测试题(含答案)
人教版七年级数学下册 第六章 实数。单元测试题精选(Word版附答案)
人教版七年级数学下册第六章实数。
单元测试题精选(Word版附答案)人教版七年级数学第6章《实数》单元测试题精选完成时间:120分钟满分:150分得分评卷人:______________ 姓名:______________ 成绩:______________一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10答案 B A D A A C D C B B二、填空题(每题5分,共20分)11.m = 3.n = 1.(m+n)^5 = 243.12.(1) 0.000 521 7 (2) 0.002 284.13.3.14.x = 8.三、解答题(共90分)15.1) x = ±5/3;2) x = 3/5.16.1.17.a = 9.b = -8.3a+b的算术平方根为 5.18.已知 $m=\lfloor 313\rfloor$。
$n=0.13$,求 $m-n$ 的值。
19.如图,计划围一个面积为 $50\text{ m}^2$ 的长方形场地,一边靠旧墙(墙长为 $10$ m),另外三边用篱笆围成,并且它的长与宽之比为 $5:2$。
讨论方案时,XXX说:“我们不可能围成满足要求的长方形场地。
”小军说:“面积和长宽比例是确定的,肯定可以围得出来。
”请你判断谁的说法正确,为什么?解:设长为 $5x$,宽为 $2x$,则面积为 $10x^2$,另一条边长为 $10-5x$,由题意得 $10x^2=(10-5x)\times2x$,解得$x=1$,长为 $5$,宽为 $2$,可以围成满足要求的长方形场地,小军的说法正确。
20.若 $x+3+(y-3)^2=3$,则 $(xy)^{\frac{2015}{3}}$ 等于多少?解:移项得 $(y-3)^2=3-x-3=-x$,所以 $xy=\frac{3-x}{y-3}$,将其代入 $(xy)^{\frac{2015}{3}}$ 得 $\left(\frac{3-x}{y-3}\right)^{\frac{2015}{3}}$,根据乘方的运算法则,得$\left(\frac{3-x}{y-3}\right)^{671}$。
【3套精选】人教版初中数学七年级下册第六章《实数》单元测试题(含答案)
人教版七年级下册第六章实数单元同步测试一、选择题1、以下说法正确的选项是()A.负数没有立方根B.一个正数的立方根有两个,它们互为相反数C.假如一个数有立方根,则它必有平方根D.不为 0 的任何数的立方根,都与这个数自己的符号同号2、以下语句中正确的选项是()A.-9 的平方根是 -3B.9 的平方根是 3C.9 的算术平方根是3D.9 的算术平方根是 33、以下说法中正确的选项是()A、若 a 为实数,则a0 B 、若 a 为实数,则 a 的倒数为1aC、若 x,y 为实数,且x=y ,则x y D 、若 a 为实数,则a204、估量287 的值在A. 7和8之间B. 6和 7之间C. 3和4之间D. 2和 3之间5、以下各组数中,不可以作为一个三角形的三边长的是()A、 1、 1000、 1000B、 2、 3、5C、32,42,52D、38 , 327 , 3646、以下说法中,正确的个数是()(1)- 64 的立方根是- 4;( 2)49的算术平方根是7 ;(3)1的立方根为1;(4)1是27341的平方根。
16A 、1B 、2C 、3D 、47、一个数的平方根与立方根相等,则这个数是( )A.1B. ±1C.0D. —18、假如 3 2.37 1.333 , 3 23.7 2.872 ,那么 3 0.0237 约等于().A. 13.33B. 28.72C. 0.1333D. 0.28729、若x 1 +( y+2 ) 2=0,则( x+y ) 2017=( )A .﹣ 1B . 1C . 32017D .﹣ 3201710、若 0a 1,则 a, a 2, 1的大小关系是 ()a二、填空题11、 0.0036 的平方根 是,81 的算术平方根是.12、若a 的平方根为 3 ,则 a=.13、假如一个数的平方根是 a+6 和 2a-15 ,则这个数为。
14、比较大小:5 11(填“>”、“<”或“ =”).15、比较大小: 3 10 ________5 ( 填“>”或 “<” ) .16、立方等于它自己的数是。
人教版七年级数学下册-第六章《实数》单元测试(含答案)
七年级下册 第六章《实数》单元测试姓名: 班级: 座号:一、单选题(共8题;共32分)1.一个正数的两个平方根分别是2a-1与-a+2,则a 的值为( )A. 1B. -2C. 2D. -12.实 数 1−2a 有平方根,则 a 可以取的值为 ( ) A. 12 B. 1 C. √2 D. π3.下列说法错误的是( ) A. 0的平方根是0 B. 4的平方根是±2 C. ﹣16的平方根是±4 D. 2是4的平方根4.若 √x 3+√y 3=0 ,则x 和y 的关系是( ).A. x =y =0B. x 和y 互为相反数C. x 和y 相等D. 不能确定5.已知正方体的体积为64,则这个正方体的棱长为( )A. 4B. 8C. 4√2D. 2√26.下列语句正确的是( )A. √64 的立方根是2B. -3是27的立方根C. 125216 的立方根是 ±56D. (−1)2 的立方根是-17.在 18 ,-82, √8 ,√83 四个数中,最大的是( ) A. 18 B. -82 C. √8 D. √838.下列四个式子:① √8<√10 ;② √65 <8;③ √5−12 <1;④ √5−12 >0.5. 其中大小关系正确的式子的个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题(共6题;共24分)1.若某个正数的平方根是 a −3 和 a +5 ,则这个正数是________.2.3是m 的一个平方根,则m 的另一个平方根是________,m =________.3.已知2b+1的平方根为±3,3a+2b ﹣1的算术平方根为4,则2b ﹣3a 的立方根是________.4.若 √0.0000049133 =0.017, √x 3 =17, √−4.9133 =y ,则x =________,y =________.5.绝对值小于 √41 的整数有________个.6.若a 是小于1的正数,则a, 1a ,-a 的大小关系用“<”连接起来 ________________________________三、计算题(共2题;共20分)1.求x 的值:(1)(x ﹣1)2=25 (2)8x 3﹣125=02.已知a 是一64的立方根,b 的算术平方根为2.(1)写出a ,b 的值;(2)求3b 一a 的平方根,四、综合题(共3题;共19分)1.请将图中数轴上标有字母的各点与下列实数对应起来,并回答下列问题:π , −√3 , √73 , −212(1)A________、B________、C________、D________;(2)把这四个数用“<”连接起来__________________________________;(3)在这四个点中,到1的距离小于2个单位长度的有__________________________________ (填字母). 2仔细观察下列各数,回答问题: −√3 ,0, √0.25 , π , −|−112| , √3(1)在数轴上表示上述各数中的非负数(标在数轴上方,无理数标出大致位置),并把它们用“<”号连接.(2)上述各数中介于−2与−1之间的数有______________个.3.数学活动课上,王老师说:“ √2是无理数,无理数就是无限不循环小数,同学们,你能把√2的小数部分全部写出来吗?”大家议论纷纷,小明同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用√2﹣1表示它的小数部分.”王老师说:“小明同学的说法是正确的,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:(1)填空题:√3的整数部分是____________;小数部分是____________.(2)已知8+ √3=x+y,其中x是一个整数,且0<y<1,求出2x+(y- √3)2012的值。
最新人教版初中数学七年级下册第六章《实数》检测试卷(含答案)
人教版七年级数学下册 第六章 实数 单元练习及答案人教版七年级数学下册 第六章 实数 单元练习1.下列实数是无理数的是( )A.23 B. 3 C .0 D .-1.010 101 2. 下列计算正确的是( )A.9=±3 B .|-3|=-3 C.9=3 D .-32=9 3. 下列说法中错误的是( ) A.12是0.25的一个平方根 B .正数a 的两个平方根的和为0 C.916的平方根是34D .当x ≠0时,-x 2没有平方根 4. 若m <0,则m 的立方根是( )A.3m B .-3m C .±3m D.3-m 5. 关于“10”,下面说法不正确的是( ) A .它是数轴上离原点10个单位长度的点表示的数 B .它是一个无理数C .若a <10<a +1,则整数a 为3D .它表示面积为10的正方形的边长6. 实数a ,b 在数轴上的对应点的位置如图,且a =-2,b =3,则化简a 2-b 2-|a -b|的结果为( )A.-2 2 B.-2 3 C.0 D.2 37. 若x-3有意义,则x的取值范围是___________8. 如图,将两个边长为3的正方形对角线剪开,将所得的四个三角形拼成一个大的正方形,则这个大正方形的边长是__________.9. 观察分析下列数据:0,-3,6,-3,12,-15,18,…,根据以上数据排列的规律,第n个数据应是_______________________.(n为正整数)10. 下列四个数:-3,-3,-π,-1,其中最小的数是11. 将实数5,π,0,-6由小到大用“<”连起来,可表示为________________.12. 己知a,b为两个连续整数,且a<28<b,则ab=____.13. 在实数22,38,0,-π,16,13,0.101 001 000 1…(相邻两个1之间依次多一个0)中,有理数的个数为B,无理数的个数为A,则A-B=____.14. 已知5=2.236,50=7.071,则0.5=_____________,500=___________15. 已知310=2.154,3100=4.642,则310 000=_______,-30.1=________.16. 计算:(1)|2-4|+2;(2)(0.01+30.001)×144;(3)(78)2-4964-4717. 一个非负数的两个平方根分别是2a-1和a-5,则这个非负数是多少?18. 已知x-2的平方根是±1,2x+y+17的立方根是3,求x2+y2的平方根和立方根.19. 已知(x-12)2=169,(y-1)3=-0.125,求x-2xy-34y+x的值.20. 如果5+13的小数部分为a ,5-13的小数部分为b ,求a +b 的值.21. 如图,数轴上表示1,3的对应点分别为A ,B ,点C 为点B 关于点A 的对称点,设点C 所表示的数为x.人教版七年级数学下册第六章实数章末综合测试卷一.选择题(共10小题)1.下列式子,表示4的平方根的是( ) A . 4B .42C .-4D .±42.若a 是无理数,则a 的值可以是( )A .14B .1C .2D .93.已知实数a ,b 在数轴上对应的点如图所示,则下列式子正确的是( ) A .-a<-b B .a+b<0 C .|a|<|b| D .a-b>04.实数3的大小在下列哪两个整数之间,正确的是( ) A .0和1 B .1和2 C .2和3 D .3和45.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是( ) A .9,10 B .10,11 C .11,12 D .12,13 6.在-3、0、6、4这四个数中,最大的数是( ) A .-3 B .0 C . 6 D .47.下列说法正确的是( )A .立方根等于它本身的实数只有0和1B .平方根等于它本身的实数是0C .1的算术平方根是±1D .绝对值等于它本身的实数是正数8.已知a ,b 为两个连续整数,且a< 13<b,则a+b 的值为( ) A .9 B .8 C .7 D .6 9.如果一个实数的平方根与它的立方根相等,则这个数是( ) A .0 B .正实数 C .0和1 D .1 10.有下列说法:①实数与数轴上的点一一对应; ②2- 7的相反数是7-2;③在1和3之间的无理数有且只有2, 3,5,7这4个;④2+3x-4x 2是三次三项式; ⑤绝对值等于本身的数是正数; 其中错误的个数为( ) A .1 B .2 C .3 D .4二.填空题(共6小题)11.4的算术平方根是 ,-64的立方根是 .12.若m 为整数,且5<m< 10,则m=13.某个正数的平方根是x 与y,3x-y 的立方根是2,则这个正数是 .14.已知实数a 、b 都是比2小的数,其中a 是整数,b 是无理数,请根据要求,分别写出一个a 、b 的值:a= ,b= . 15.如图,在数轴上点A ,B 表示的数分别是1,- 2,若点B ,C 到点A 的距离相等,则点C所表示的数是 .16.如图,长方形内有两个相邻的正方形,面积分别为4和3,那么阴影部分的面积为 .三.解答题(共7小题)17.求x 的值: (1)2x 2-32=0; (2)(x-1)3=2718.计算:49-| 3-64|+(-3)2- 31252719.已知2的平方等于a,2b-1是27的立方根,± c-2表示3的平方根. (1)求a,b,c 的值;(2)化简关于x 的多项式:|x-a|-2(x+b)-c,其中x <4.20.正数x 的两个平方根分别为3-a 和2a+7. (1)求a 的值;(2)求44-x 这个数的立方根.21.定义新运算:对任意实数a 、b ,都有a △b=a 2-b 2,例如:(3△2)=32-22=5,求(1△2)△4的值.22.如图甲,这是由8个同样大小的立方体组成的魔方,总体积为64cm 3. (1)这个魔方的棱长为cm;(2)图甲中阴影部分是一个正方形ABCD,求这个正方形的边长;(3)把正方形ABCD 放置在数轴上,如图乙所示,使得点A 与数1重合,则D 在数轴上表示的数为.23.有两个大小完全一样的长方形OABC 和EFGH 重合放在一起,边OA 、EF 在数轴上,O 为数轴原点(如图1),长方形OABC 的边长OA 的长为6个坐标单位. (1)数轴上点A 表示的数为.(2)将长方形EFGH 沿数轴所在直线水平移动①若移动后的长方形EFGH 与长方形OABC 重叠部分的面积恰好等于长方形OABC 面积的13,则移动后点F 在数轴上表示的数为.②若出行EFGH 向左水平移动后,D 为线段AF 的中点,求当长方形EFGH 移动距离x 为何值时,D 、E 两点在数轴上表示的数是互为相反数?答案: 1.D 2.C 3.C 4.B 5.B 6.D 7.B 8.C 9.A 10.C 11.2,-4 12.3 13.4 14.1,15.2+ 16.2-3 17. 解:(1)∵2x 2-32=0, ∴2x 2=32, 则x 2=16, 所以x=±4;(2)∵(x-1)3=27, ∴x-1=3, 则x=4. 18.解:原式=23-4+3- 53=-2.19. 解:(1)由题意知a=22=4, 2b-1=3,b=2; c-2=3,c=5; (2)∵x <4, ∴|x-a|-2(x+b )-c =|x-4|-2(x+2)-5 =4-x-2x-4-5 =-3x-5. 20. 解:(1)∵正数x 的两个平方根是3-a 和2a+7, ∴3-a+(2a+7)=0, 解得:a=-10(2)∵a=-10,∴3-a=13,2a+7=-13.∴这个正数的两个平方根是±13, ∴这个正数是169. 44-x=44-169=-125, -125的立方根是-5. 21. 解:(1△2)△4 =(12-22)△4 =(-3)人教版七年级数学下册第六章实数素质检测卷一.选择题(共10小题)1 ) A .2B .-2C .±2D .42.算术平方根等于它相反数的数是( ) A .0B .1C .0或1D .0或±13.下列实数是无理数的是( )A .-2B .πC .13D4.下列说法正确的是( ) A .16的平方根是4 B .8的立方根是±2C .-27的立方根是-3D ±75 ,则x 与y 的关系是( )A .x=y=0B .x=yC .x 与y 互为相反数D .x 与y 互为倒数6.-64的平方根之和是( ) A .0B .-6C .-2D .-6或-27.在实数中,立方根等于它本身的数有( ) A .1个 B .2个C .3个D .无数个8.绝对值大于不大于6的整数有( )个. A .5B .10C .6D .139.对于非零的两个实数a,b,规定a※b=am–bn.若3※(–5)=15,(–1)※2 = –13,则4※(–7) 的值为()A.‒28B.28C. ‒2D.210.如图,数轴上的点A,B,C,D,E对应的数分别为-1,0,1,2,3,那么与实数112-对应的点在()A.线段AB上B.线段BC上C.线段CD上D.线段DE上二.填空题(共6小题)11.9的平方根是; 的立方根是.12.有一个数值转换器,原理如图:当输入的x=4时,输出的y等于.13的最大整数是.14.数轴上从左到右依次有A、B、C三点表示的数分别为a、b其中b为整数,且满足|a+3|+|b-2|=b-2,则b-a= .15.已知|a|=的值为.16.将一组数按下面的方式进行排列:若的位置记为的位置记为(3,3),则这组数中最大的有理数的位置记为.三.解答题(共6小题)17||-18.求下列各式中x 的值:(1)(x+2)2-36=0;(2)64(x+1)3=27.19.已知a 的平方根是它本身,b 是2a+8的立方根,求ab+b 的算术平方根.20.已知+=0,求20172018()a a b ++的值.21.小丽想在一块面积为640 cm 2的正方形纸片中,沿着边的方向裁出一块面积为420 cm 2的长方形的纸片,使它的长与宽之比为3:2,小丽能用这块纸片裁出符合要求的纸片吗?请简要说明理由.22.如图,面积为30的长方形OABC 的边OA 在数轴上,O 为原点,OC=5,将长方形OABC 沿数轴水平移动,O,A,B,C 移动后的对应点分别记为1111,,,,O A B C 移动后的长方形1111O A B C 与原长方形OABC 重叠部分的面积记为S .(1)当S 恰好等于原长方形面积的一半时,数轴上点1A 表示的数是多少?(2)设点A 的移动距离1AA =x .①当S=10时,求x 的值;②D 为线段1AA 的中点,点E 在线段1OO 上,且OE=11,3OO 当点D ,E 所表示的数互为相反数时,求x 的值.答案:1-5 AABCC 6-10 DCBBC 11.。
人教版七年级数学下第6章 实数 单元测试(含答案)
第6章 实数 单元测试卷一、单选题1.关于√8的叙述正确的是( )A .在数轴上不存在表示√8的点B .√8=√2+√6C .与√8最接近的整数是2D .√8=2√22.在25-,π-,0,3.14,,0.33333133中,无理数的个数有( )A .1个B .2个C .3个D .4个3.在﹣1.732π,3.14••,,3.212212221……,56,这些数中,有理数的个数为()A .2B .3C .4D .54的值是( )A .2BC .±2D .5.下列说法正确的 ( )A .任何实数aB .任何实数aC .任何实数a 的绝对值是aD .任何实数a 的倒数是1a6.下列实数是无理数的是( )A .-1B .0CD .327.下列各数中最小的数是( )A .π-B .0C .D .18.下列说法正确的是( )A .14是0.5的一个平方根B .()22-的平方根是-2C .正数有两个平方根,且这两个平方根之和等于0D .负数有一个平方根9.如图,在数轴上,点A 与点C 到点B 的距离相等,A ,B 两点所对应的实数分别是1,则点C 对应的实数是( )A .1B .2C .1D .1二、填空题 10.已知2x 3-是81的算术平方根,则x 的值为______.11.数轴上点A ,B -110,则点A 距点B 的距离为_________.12.在数轴上,实数2﹣√5对应的点在原点的_____侧.(填“左”、“右”)13.2(4)-的算术平方根为__________14.已知一个正数的平方根是3a+4和5-6a ,则这个正数是___.15=x y +,则x y -=______.16.比较3(填“<”或“>”)17.已知m ,n 是两个连续整数,且m <n ,则m +n =_____.18.把下列各数的序号填入相应的括号内.①10,①π-,① 3.14-,①0,①113,①1-,①1.3,①1.8080080008…(相邻两个8之间依次多一个0)整数集合_________________________负分数集合_________________________正有理数集合_________________________无理数集合_________________________19.规定a*b=5×a-12×b(其中a,b是自然数),求(1)10*6=_______,(2)6*10=______三、解答题20.(1)的近似值的过程,请你仔细阅读并补充完整:我们知道,面积是2的正方,1,1+x(0<x<1),可画出如图所示的示意图.由各部分面积之和等于总面积.可列方程为:x2++1=2,①0<x<1,①认为x2是个较为接近于0的数,令x2≈0,因此省略x2后,得到方程:,解得,x=,即=1+x≈.(2)请仿照(1) 1.7+y(0<y<1)的近似值(精确到千分位)2122.阅读材料:对于任何数,我们规定一种运算a bad bc c d=-.例如:121423234=⨯-⨯=-.(1)按照这个规定,请你计算10634-的值. (2)请计算当21(2)02x y ++-=时,22232x y -的值.23.用“①”表示一种新的运算,对于正实数 a ,b ,都有 a ①b b , 例如 25①88=13. (1)求 1①5 的值;(2)若 16①(m 3-1)=11,求 m 的值24.(1-2(2)求x 的值:225(2)360x +-=25.计算:(1)()178-++ (2)()222169333÷-⨯--(3)(2332⨯++-26.在一次“智慧课堂”教学比武的课堂上,李老师说:是无理数,无理数就是无限不循环小数,同学们,你能的小数部分全部写出来吗?”大家议论纷纷,张晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用1)-表示它的小数部分.”李老师说:“的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:已知8x y +=+,其中x 是一个整数,且01y <<,请你求出20122)x y +的值.27.求下列各式中的x .(1)2528x -=;(2)()3164x -=-.28.计算:求下列各式的值.(2(3) 31(2)2⎛⎫-- ⎪⎝⎭. (4) ||2|+29.计算:(1)232111(2)83-+-⨯+ ;(2)23346()()a a a a a a --+-g g g参考答案一、选择题1.D 2.B 3.B 4.A 5.B6.C 7.A 8.C 9.B二、填空题10.6 11.11 12.左13.4 14.169. 15.10 16.>17.518.①①① ①① ①①① ①①① 19.47 25三、解答题20.(1)2x,2x+1=2,0.5,1.5;(2)1.732.【解析】【分析】(1)解方程即可得到结论;(2)解方程即可得到结论.【详解】(1)由面积公式,可得x2+2x+1=2.略去x2,得方程2x+1=2.解得x=0.5;故答案为:2x,2x+1=2,0.5,1.5;(2)由面积公式,可得x2+2×1.7x+1.72=3.略去x2,得方程2×1.7x+1.72=2.解得x=0.32≈1.732;【点睛】本题考查了估算无理数的大小,正确的解方程是解题的关键.21.4.【解析】【分析】分别根据算术平方根和立方根的意义进行求解,然后再进行加减运算即可.【详解】,=4-3+3=4.【点睛】本题主要考查了实数的混合运算,熟练掌握算术平方根和立方根的意义是解此题的关键.22.(1)58;(2)-13.【解析】【分析】(1)根据题目的意思,掌握新运算的实际运算方法,按照新运算的方法进行计算即可(2)利用非负性,得出x 、y 的值,然后按照新运算的顺序进行代入计算即可【详解】解:(1)1061046(3)34=⨯-⨯--,4018=+,58=.(2)由21(2)02x y ++-=得:1 2.2x y =-=, 222222(2)332x y x y =---, 2214()322=-⨯--⨯,112=--, .13=-.【点睛】本题主要考查了新运算的实际运用,读懂题中所给的新运算是关键23.(1)6;(2)m=2.【解析】【分析】(1)根据定义的运算法则进行计算即可;(2)由新定义的运算法则可得关于m 的方程,解方程即可求得答案.【详解】(1)①a ①b b ,+5=1+5=6;(2)①a ①b b ,16①(m 3-1)=11,m 3-1)=11,即4+m 3-1=11,①m 3=8,①m=2.【点睛】本题考查了新定义运算,涉及了算术平方根,利用立方根的概念解方程等,弄清新定义运算的运算法则,熟练掌握相关知识是解题的关键.24.(1)-3;(2)145x =-,2165x =-. 【解析】【分析】(1)原式利用立方根的定义及算术平方根的意义化简,计算即可得到结果;(2)方程整理后,利用平方根定义开方即可求出解.【详解】解:(1)原式2833=-+=-;(2)225(2)360x +-= 方程整理得:236(2)25x +=, 开平方得:625x +=±, 解得:145x =-,2165x =-.【点睛】此题考查了实数的运算,以及平方根,熟练掌握运算法则是解本题的关键.25.(1)2;(2)﹣27;(3)9.【解析】【分析】(1)根据有理数的加减运算法则进计算即可;(2)先算乘方,再算乘除,然后进行加减运算即可;(3)先去括号,再进行加减运算即可.【详解】解:(1)原式=1﹣7+8=2;(2)原式=6×32﹣13×81﹣9=9﹣27﹣9=﹣27;(3)原式=6+﹣【点睛】本题主要考查实数的混合运算解此题的关键在于熟练掌握各个运算法则.26.19.【解析】【分析】x y的值,最后代入求出即可.【详解】①12,①9<810,①8x +y ,其中x 是一个整数,且0<y <1,①x =9,y =8,①2x )2012=2×9+−1)]2012=18+1=19.【点睛】本题考查了估算无理数的大小和实数的混合运算的应用,关键是求出x,y 的值.27.(1)x=;(2)x= -3.【解析】【分析】(1)先变形得到x 2=2,然后根据平方根的定义即可得到x 的值;(2)根据立方根的定义得到x -1=-4,然后解一次方程即可得到x 的值.【详解】解:(1)2528x -=2510x =,22x = ,所以x=;(2)()3164x -=-x -1=-4,所以x= -3.【点睛】本题考查立方根:如果一个数的立方等于a ,那么这个数叫做a28.(1)0.7;(2)53;(3)30;(4)4; 【解析】【分析】(1)根据算术平方根的性质可求解;(2)根据立方根的性质可得答案;(3)根据立方根、算术平方根的性质,可得答案;(4)根据绝对值、算术平方根的性质,可得答案【详解】(1=0.9-0.2,=0.7;(2=53;(3) 31(2)2⎛⎫-- ⎪⎝⎭=184(4)()2-⨯+-⨯-,=-32+2=-30.(4) ||2|+22=4.【点睛】本题考查了实数的运算,熟记法则并根据法则计算是解决此题的关键.29.(1)-1;(2)5a【解析】【分析】(1)根据实数的性质进行化简即可求解;(2)根据幂的运算公式即可求解.【详解】(1)232111(2)83-+-⨯-+ =111(8)3283-+-⨯-⨯+ =1112---+=-1;(2)23346()()a a a a a a --+-g g g=577a a a +-=5a【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质及幂的运算法则.。
人教版初中七年级数学下册第六单元《实数》测试题(含答案解析)
一、选择题1.下列各数中,无理数有( )3.14125,8,127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个D解析:D【分析】 直接根据无理数的定义直接判断得出即可.【详解】解:无理数有8,π,2.32232223共3个. 故选D .【点睛】本题考查了无理数的定义,正确把握无理数的定义:无限不循环小数是无理数进而得出是解题关键.2.64的算术平方根是( )A .8B .±8C .22D .22± C解析:C【分析】先化简64,再求算术平方根即可.【详解】64=8, 8的算术平方根是22,即64的算术平方根是22.故选择:C .【点睛】本题考查一个数的算术平方根的算术平方根,掌握求算式的平方根,一定要把算式化简得到结果后再求是解题关键.3.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+ B解析:B【分析】根据是数的运算,A 点表示的数加两个圆周,可得B 点,根据数轴上的点与实数一一对应,可得B 点表示的数.【详解】解:A 点表示的数加两个圆周,可得B 点,所以,21π-,故选:B .【点睛】本题考查了实数与数轴,直径为1个单位长度的圆从A 点沿数轴向右滚动,A 点表示的数加两个圆周.4.已知n 是正整数,并且n -1<3+<n ,则n 的值为( )A .7B .8C .9D .10C 解析:C【分析】根据实数的大小关系比较,得到5<6,从而得到n 的值.【详解】解:∵<5<6,∴8<<9,∴n =9.故选:C .【点睛】5.下列选项中,属于无理数的是( )A .πB .227-CD .0A 解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A.π是无理数; B.227-是分数,属于有理数;是整数,属于有理数;D.0是整数,属于有理数.故选:A .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,2,0.8080080008…(每两个8之间依次多1个0)等形式.6.若53a=-,则a在()A.3-和2-之间B.2-和1-之间C.1-和0之间D.0和1之间C解析:C【分析】依据被开方数越大对应的算术平方根越大可求得5的大致范围,然后可得到问题的答案.【详解】解:∵4<5<9,∴2<5<3.∴-1<5-3<0.故选:C.【点睛】本题考查了估算无理数的大小,求得5的大致范围是解题的关键.7.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第(n﹣2)个数是()(用含n的代数式表示)A21n-D24n- Bn-C23n-B22解析:B【分析】观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n-1行的数据的个数,再加上n-2得到所求数的被开方数,然后写出算术平方根即可.【详解】解:前(n﹣1)行的数据的个数为2+4+6+…+2(n﹣1)=n(n﹣1),所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数的被开方数是n(n﹣1)+n﹣2=n2﹣2,所以,第n(n是整数,且n≥3)行从左到右数第n﹣222n-.故选:B.【点睛】本题考查了算术平方根,观察数据排列规律,确定出前(n-1)行的数据的个数是解题的关键.8.已知:m、n为两个连续的整数,且5<<,以下判断正确的是()m nA 4B .3m =C 0.236D .9m n += A解析:A【分析】根据无理数的估算、实数的运算即可得.【详解】 459<<,<<23<<,22,则选项C 错误;∴)224-=A 正确;又m 、n 为两个连续的整数,且m n <<,2,3m n ==∴,则选项B 错误;235m n ∴+=+=,则选项D 错误;故选:A .【点睛】本题考查了无理数的估算、实数的运算,熟练掌握无理数的估算方法是解题关键.9. )A .5和6B .6和7C .7和8D .8和9A 解析:A【分析】【详解】解:∵∴56,∴在两个相邻整数5和6之间.故选:A .【点睛】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.10.1的值在( )A .5~6之间B .6~7之间C .7~8之间D .8~9之间B解析:B【分析】的取值即可得到答案.【详解】由题意得78<<,617∴<<,1介于6~7之间.故选B .【点睛】二、填空题11.已知1,25x a y a =-=-.(1)已知x 的算术平方根为3,求a 的值;(2)如果x y ,都是同一个数的平方根,求这个数.(1)a=-8;(2)1或9【分析】(1)根据平方运算可得(1-a )的值求解可得答案;(2)根据题意可知相等或互为相反数列式求解可得a 的值根据平方运算可得答案【详解】解:(1)∵x 的算术平方根是3∴解析:(1)a=-8;(2)1或9.【分析】(1)根据平方运算,可得(1-a )的值,求解可得答案;(2)根据题意可知x y ,相等或互为相反数,列式求解可得a 的值,根据平方运算,可得答案.【详解】解:(1)∵x 的算术平方根是3,∴1-a=9,∴a=-8;(2)x ,y 都是同一个数的平方根,∴1-a=2a-5或1-a+(2a-5)=0,解得a=2,或a=4,当a=2时,(1-a )=(1-2)2=1,当a=4时,(1-a )=(1-4)2=9,答:这个数是1或9.【点睛】本题考查了平方根和算术平方根,注意第(2)问符合条件的答案有两个,小心漏解. 12.对于有理数,a b ,我们规定*a b b ab =-(1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.(1)3;(2)【分析】(1)由新定义的运算法则进行计算即可得到答案;(2)由新定义列出方程解方程即可得到答案【详解】解:∵∴;(2)由题意则∵∴解得:【点睛】本题考查了一元一次方程新定义的运算法则解析:(1)3;(2)1x =.【分析】(1)由新定义的运算法则进行计算,即可得到答案;(2)由新定义列出方程,解方程即可得到答案.【详解】解:∵*a b b ab =-,∴(2)*11(2)1123-=--⨯=+=;(2)由题意,则∵(2)*36x -=,∴(2)*333(2)6x x -=--=,解得:1x =.【点睛】本题考查了一元一次方程,新定义的运算法则,解题的关键是掌握运算法则进行解题. 13.求x 的值:(1)2(3)40x +-=(2)33(21)240x ++=(1)或;(2)【分析】(1)整理后利用平方根的定义得到然后解两个一元一次方程即可;(2)整理后利用立方根的定义得到然后解一元一次方程即可【详解】(1)移项得:∴∴或;(2)整理得:∴∴【点睛】本题解析:(1)1x =-或5x =-;(2)32x =-. 【分析】(1)整理后,利用平方根的定义得到32x +=±,然后解两个一元一次方程即可; (2)整理后,利用立方根的定义得到212x +=-,然后解一元一次方程即可.【详解】(1)2(3)40x +-=, 移项得:2(3)4x +=,∴32x +=±,∴1x =-或5x =-;(2)33(21)240x ++=, 整理得:3(21)8x +=-,∴212x +=-, ∴32x =-. 【点睛】 本题考查了立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.这就是说,如果x 3=a ,那么x 叫做a 的立方根.也考查了平方根.14.对两数a ,b 规定一种新运算:2a b ab ⊗=,例如:2422416⊗=⨯⨯=,若不论x 取何值时,总有a x x ⊗=,则a =______.【分析】将转化为2ax=x 来解答【详解】解:∵可转化为:2ax=x 即∵不论x 取何值都成立∴解得:故答案为:【点睛】本题考查实数的运算正确理解题目中的新运算是解题的关键 解析:12【分析】将a x x ⊗=,转化为2ax=x 来解答.【详解】解:∵a x x ⊗=可转化为:2ax=x ,即()210a x -=,∵不论x 取何值,()210a x -=都成立,∴210a -=, 解得:12a =, 故答案为:12. 【点睛】本题考查实数的运算,正确理解题目中的新运算是解题的关键.15.把下列各数填在相应的集合里:4,3.5,0,3π,5-4,10%,2-3,2016,﹣2.030030003…(每两个3之间依次多一个0)正分数集合{ …}负有理数集合{ …}非负整数集合{ …}无理数集合{ …}.510;;402016;﹣2030030003…(每两个3之间依次多一个0)【分析】根据实数的分类即可求出答案【详解】解析:5,10%;52,43--;4,0,2016;3π,﹣2.030030003…(每两个3之间依次多一个0)【分析】根据实数的分类即可求出答案.【详解】16.在实数的原有运算法则中,我们补充新运算法则“*”如下:当a≥b 时,a*b=b 2,当a<b时,a*b=a ,则当时,()()1*-3*=x x x ______【分析】根据题中所给的运算法则进行求解即可;【详解】∵当a≥b 时a*b=当a <b 时a*b=a ∴当x=时1*=13*=2∴(1*)-(3*)=故答案为:【点睛】本题是新定义的问题解决此类问题的关键是按2【分析】根据题中所给的运算法则进行求解即可;【详解】∵当a≥b 时,a*b=2b ,当a <b 时,a*b=a∴ 当=1,=2,∴)2,2.【点睛】本题是新定义的问题,解决此类问题的关键是按题中的规定去运算即可;17.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.或【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4※(-2)=;(-1)※1=(-1)※1※m=2※m=36当时原式可化为解得:;解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-;11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.18.若30a +=,则+a b 的立方根是______.-1【分析】根据绝对值和二次根式的非负性求出ab 的值计算即可;【详解】∵∴∴∴∴的立方根-1故答案是-1【点睛】本题主要考查了代数式求值结合绝对值二次根式的非负性立方根的性质计算是解题的关键解析:-1【分析】根据绝对值和二次根式的非负性求出a ,b 的值计算即可;【详解】∵30a ++=,∴30a +=,20b -=,∴3a =-,2b =, ∴321a b +=-+=-,∴+a b 的立方根-1. 故答案是-1.【点睛】本题主要考查了代数式求值,结合绝对值、二次根式的非负性、立方根的性质计算是解题的关键.19_____;16的平方根为_____;()34-的立方根是_____.【分析】分别根据算术平方根相反数平方根和立方根的概念直接计算即可求解【详解】解:=所以的相反数是;16的平方根为;的立方根是故答案为:;±4;-4【点睛】本题考查了算术平方根平方根和立方根的概念进行解析:- 4± 4-【分析】分别根据算术平方根、相反数、平方根和立方根的概念直接计算即可求解.【详解】-;16的平方根为4±;()34-的立方根是4-.故答案为:—±4;-4【点睛】本题考查了算术平方根、平方根和立方根的概念进行求解即可.注意一个正数有两个平方根,它们互为相反数,正的平方根即为它的算术平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.20.已知3y =,则y x 的平方根是____.±3【分析】根据二次根式的非负性和平方根的定义即可求出【详解】∵二次根式的被开方数是非负数∴且∴∴y=3∴yx=32=9∴yx 的平方根是±3故答案是:±3【点睛】本题主要考查了二次根式非负性和平方根解析:±3【分析】根据二次根式的非负性和平方根的定义即可求出.【详解】∵二次根式的被开方数是非负数∴20x -≥且20x -≥∴=2x∴y=3∴y x =32=9∴y x 的平方根是±3故答案是:±3.【点睛】本题主要考查了二次根式非负性和平方根知识点,准确理解记住它们的基本性质是解题关键.三、解答题21.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数.解析:(1)8888;(2)1134 .【分析】(1)根据进步数的定义分别求出四位正整数中的最大“进步数”与最小“进步数”即可得解; (2)根据进步数的定义可以推得所求数为1114、1124、1134、1144中的某一个,再根据这个四位正整数能被7整除逐一对4个数进行验证可以得解 .【详解】解:(1)由进步数的定义可知四位正整数中最大的“进步数”应该是9999,又最高位不能为0,所以四位正整数中的千位最小为0,所以四位正整数中最小的“进步数”应该是1111,∴9999-1111=8888,∴四位正整数中的最大的“进步数”与最小的“进步数”的差为8888;(2)由已知可得所求数的千位为1,十位为1-4中的某个数字,∴所求数为1114、1124、1134、1144中的某一个,∵这个四位正整数能被7整除,∴由1114=159×7+1,1124=160×7+4,1134=162×7,1144=163×7+3可知所求数为1134 .【点睛】本题考查新定义下的实数规律探索,由材料归纳出新定义并应用于具体问题求解是解题关键.22.(1)求x 的值:2490x -=;(2)计算:()2325227+-- 解析:(1)32x =或32x =-;(2)4 【分析】 (1)利用开方要根的概念求出x 的值即可;(2)根据实数混合运算的法则进行计算即可.【详解】解:(1)294x = 32x =或3-2x = (2)原式=5+2﹣3=4.【点睛】 本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.23.计算:()23143282--⨯-⨯-() 解析:【分析】 利用实数的混合运算法则计算得出答案.【详解】解:原式=4+9⨯12-(2)2⎡⎤⨯-⎢⎥⎣⎦=4+9⨯[]2+1=4+9⨯3=4+27=31.【点睛】本题主要考查了实数的运算,正确化简各数是解题的关键.24.如图,数轴上点A ,B ,C 所对应的实数分别为a ,b ,c ,试化简()323|-|b a c a b -++.解析:2a-c【分析】根据数轴得到a<b<0<c ,由此得到a-c<0,a+b<0,依此化简各式,再合并同类项即可.【详解】由数轴得a<b<0<c ,∴a-c<0,a+b<0,∴|-|a c =-b-(c-a )+(a+b)=-b-c+a+a+b=2a-c.【点睛】此题考查数轴上的点表示数,利用数轴比较数的大小,绝对值的性质,立方根的化简,整式的加减法计算法则,解题的关键是依据数轴确定各式子的符号由此化简各式. 25.计算题.(1)12(7)6(22)-+----(2)2122⨯(33(2)(4)-⨯- (4)13248243⎛⎫-⨯-+- ⎪⎝⎭ 解析:(1)-3(2)-1(3)2(4)-20【分析】(1)先去括号在进行加减运算.(2)先进行平方和开方,在进行乘法和减法的运算.(3)先进行开方和平方,在由左至右进行除法和乘法的运算.(4)首先去括号内的绝对值,在进行括号内的分式加减,最后相乘.【详解】(1)12(7)6(22)-+----=127622---+=3-(2)2122⨯ 1=432⨯- =1-(33(2)(4)-⨯-=4(8)(4)÷-⨯-1=(-)(4)2⨯- =2 (4)13248()243-⨯-+-4354812=-⨯ 20=-【点睛】考察有理数的混合运算,掌握运算法则的顺序是解答本题的关键.26.计算:(12(2)22(2)8x -=解析:(1)1;(2)124,0x x ==【分析】(1)实数的混合运算,利用算术平方根和立方根的概念逐个进行化简计算; (2)直接用平方根的概念求解.【详解】解:(12=4(2)23----=4+223--=1(2)22(2)8x -=2(2)4x -=22x -=±22x =±∴124,0x x ==.【点睛】本题考查实数的混合运算及利用平方根解方程,掌握相关概念和性质正确计算是解题关键.27.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯ 解析:10102021【分析】利用裂项法计算即可.【详解】 原式1111111233520192021⎛⎫=⨯-+-+⋯+- ⎪⎝⎭22021 ⎪⎝⎭1202022021=⨯ 10102021=. 【点睛】 本题考查了利用裂项法进行分数的加法计算,熟练掌握裂项法是解题的关键. 28.把下列各数填在相应的横线上1.4,2020,,32-,0.31,0π-,1.3030030003…(每相邻两个3之间0的个数依次加1)(1)整数:______(2)分数:______(3)无理数:______解析:(1)2020,02)1.4,32-,0.31;(3),π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【分析】根据实数的分类进行填空即可.【详解】,(1)整数:2020,0(2)分数:1.4,32-,0.31(3)无理数:π-,1.3030030003…(每相邻两个3之间0的个数依次加1)故答案为:2020,0 1.4,32-,0.31;π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【点睛】本题考查了实数的分类,掌握实数的分类是解题的关键.。
人教版七年级下册第六章《实数》单元测试题及答案
第六章《实数》单元测试题一、用心填一填,一定能填对:(每空1分,共53分)1. 正数a 的平方根记作 ,正数a 的正的平方根记作 ,正数a 的负的平方根记作 .2. 如果x 2=4,则x 叫作4的 ,记作 .3。
81的平方根是 ,0。
64的算术平方根是 . 5的平方根是 ,0的平方根是 .4. 491的算术平方根的相反数是 ,平方根的倒数是 ,平方根的绝对值是 . 5。
24-的相反数的倒数是 ,这个结果的算术平方根是 。
6. 当a 时,1-a 有意义,当a 时,1-a =0。
7. 如果2x =5,则x = 。
8。
如果一个正数的一个平方根是m,那么这个数的另一个平方根是 ,这个数的算术平方根是 ,两个平方根的和是 。
9。
当x >0时,x -表示x 的 ,当x <0时,3x -表示x的 。
10。
16 的负的平方根是 ,2)5(-的平方根是 .11. 962+-x x 的平方根是 .12. 如果a x =3那么x 是a 的 ,a 是x 的 。
13。
0.064的立方根是 ,1-的立方根是 ,3的立方根是 ,0的立方根是 ,9-的立方根是 .14.35是5的 ,一个数的立方根是2-,则这个数是 。
15.=-364 ,=-327 ,=--3125 。
16.=--33)0001.0( . 17.当x 时,32-x 有意义。
18、若22)3(-=a ,则a = ,若23)3(-=a ,则a = .19.=--32)125.0( 。
20.若12-x 是225的算术平方根,则x 的立方根是 。
21。
3343的平方根是 。
22. 若x 是64125的立方根,则x 的平方根是 . 23.25-的相反数是 。
24.若1.1001.102=,则=±0201.1 。
25. 若x x -+有意义,则=+1x26. 1- ,-22 , 33 27. 数轴上离原点距离是5的点表示的数是 。
28. 无理数a 满足14-<<-a , 请写出两个你熟悉的无理数a .二、你很聪明,一定能选对:(每小题1分,共10分)1. 0.0196的算术平方根是( )A 0。
最新人教版初中数学七年级下册第六章《实数》测试卷(含答案)
人教版七年级数学下册 第六章 实数 单元综合能力提升测试卷一、选择题(每小题3分,共30分)1.下列选项中正确的是( )A .27的立方根是±3B .16 的平方根是±4C .9的算术平方根是3D .立方根等于平方根的数是1 2.在实数﹣0.8,2015,﹣,四个数中,是无理数的是( ) A .﹣0.8 B .2015 C .﹣D . 3.(-)2的平方根是( ) A . B .- C . D .± 4.下列四个数中的负数是( )A .﹣22B .C .(﹣2)2D . |﹣2|5.|的值为( )A .5 B .5-2 C .1D .2-16.在下列各式中正确的是()A .=-2B .=3C .=8D .=2 7.一个自然数a 的算术平方根为x ,则a+1的立方根是( )A B C D8.下列结论中正确的个数为( )(1)零是绝对值最小的实数; (2)数轴上所有的点都表示实数; (3)无理数就是带根号的数; (4)-的立方根为±; A .1个 B .2个 C .3个 D .4个9=3,则(x+3)2的值是( )A .81B .27C .9D .310.若有理数a 和b 在数轴上所表示的点分别在原点的右边和左边,则-︱a -b 72233722331512512515152)1(-662)2(-1622127132b︱等于( )A .aB .-aC .2b +aD .2b -a二、填空题(每小题3分,共30分)11.在下列各数 中无理数有 个。
,,-,-,,,0,0.5757757775……(相邻两个5之间的7的个数逐次加1).12.一个数的算术平方根等于它本身,则这个数应是__________。
13.如果x-4是16的算术平方根,那么x+ 4的值为________.14.比较大小: 3; 15.若=5.036,=15.906,则=__________。
16.化简:= . 17. 的平方根是 ;125的立方根是 . 18.实、在数轴上的位置如图所示,则化简= .19.一正方形的边长变为原来的倍,则面积变为原来的 倍;一个立方体的体积变为原来的倍,则棱长变为原来的 倍.20.我们知道,黄老师又用计算器求得:,,,则计算:(2001个3,2001个4)= .三、解答题(共60分)21.(16分)计算:(1)(2)16π329251036.256.253253600()23π-94a b ()2a b b a -++m n 53422=+55334422=+55533344422=+55553333444422=+22333444 +)(25.08-⨯-4002254-+(3) (4) 22.(16分)求下列各式中的的值:(1) ; (2) ;(3); (4); 23.(8分)已知实数、、在数轴上的对应点如图所示,化简:24.(10分)若、、是有理数,且满足等式,试计算 的值。
(完整版)新人教版七年级数学下册:第六章实数单元测试卷及答案.doc
第六章实数单元同步测试卷一、选择题(每小题 3 分,共 30 分)1. 下列语句中正确的是()A.49 的算术平方根是7B.49 的平方根是 -7C.-49 的平方根是 7D.49 的算术平方根是72. 下列实数 3 , 7,0, 2, 3.15, 9, 3 中,无理数有()8 3A.1 个B.2 个C.3 个D.4 个3. 8 的立方根与 4 的算术平方根的和是( )A. 0B. 4C. 2D. 44.下列说法中:( 1)无理数就是开方开不尽的数;( 2)无理数是无限小数;( 3)无理数包括正无理数、零、负无理数;( 4)无理数可以用数轴上的点来表示, 共有()个是正确的 .A. 1B. 2C. 3D. 45. 下列各组数中互为相反数的是()A . 2 与 ( 2) 2 B . 2 与3 8 C. 2 与 1 D. 2 与 226. 圆的面积增加为原来的n 倍,则它的半径是原来的()A. n 倍;B. n 倍C. n 倍D. 2n倍 .27. 实数在数轴上的位置如图 6 C 1,那么化简 a b a 2 的结果是()b 0 a6 c 1A. 2a bB. bC. bD. 2a b8. 若一个数的平方根是它本身,则这个数是()A、 1 B 、 -1 C 、 0 D 、 1 或 09. 一个数的算术平方根是x,则比这个数大2的数的算术平方根是()A. x2 2 B 、x 2 C. x 2 2 D. x 2 210. 若3 x 3 y 0 ,则 x和 y 的关系是()A. x y 0B. x和 y 互为相反数C. x和 y 相等D. 不能确定一、填空题(每小题3分,共 30 分)11. ( 4) 2的平方根是 _______, 36的算术平方根是 ______ ,8 的立方根是 ________ .12512. 3 8 的相反数是 ______,的倒数是 ______.213. 若一个数的算术平方根与它的立方根相等,那么这个数是.14. 下列判断: ①0.3 是 0.09 的平方根; ② 只有正数才有平方根; ③4 是16 的平方根; ④ ( 2) 25的平方根是2.正确的是 ______________(写序号) .515. 如果 a 的平方根是 3 ,则 3a17 =.16. 比较大小: 3 2 2 517. 满足2 x 5 的整数 x 是.18. 用两个无理数列一个算式 , 使得它们和为有理数 ______.19. 计算: 1 xx 1 x22 ______ .20. 小成编写了一个如下程序:输入x → x 2→立方根→倒数→算术平方根→1,则 x 为2______________ . 三 . 解答题(共 60 分): 21.(8 分 ) 求 x ( 1)(2x 1) 2 4 ( 2) 3( x 2) 3 8122. ( 8 分)计算( 1)23 2 2(2) ( 2)3( 4)2 3( 4)3( 1)2 3 27223. ( 8 分)已知2a b 2 b 2 90 , 求 a b 的值 .24.若 9 的平方根是 a,b 的绝对值是 4,求 a+b 的值?25. ( 10 分)例如∵ 4 79 , 即 2 7 3 ,∴7 的整数部分为 2 ,小数部分为7 2 ,如果 2 小数部分为 a , 3 的小数部分为b ,求 a b 2 的值.26. ( 8 分)一种长方体的书,长与宽相等,四本同样的书叠在一起成一个正方体,体积为216 立方厘米,求这本书的高度.27. ( 10 分)如图,有高度相同的A、 B、 C 三只圆柱形杯子,A、B 两只杯子已经盛满水,小颖把A、B 两只杯子中的水全部倒进C 杯中,C杯恰好装满,小颖测量A、B 两只杯子底面圆的半径分别是 3得厘米和 4 厘米,你能求出C杯底面的半径是多少吗?A B C参考答案一、选择1.A2.C3.A4.B5. B6.C7.C8.D9.D 10.B二、填空11.4, 6,2 12.2,2513.1 ,014. ①④ 15.4 解析:2 a33a ( 3) ,;a 1781 17 4 .8116. <17.-1 , 0, 1, 218. 2 1,12 ( 只要符合题意即可 ).19.-1 20.821. ⑴ x3或x 1 ⑵ x=12222. ⑴ 3 2 解析:原式 = 3 2 2 2 = 32⑵ -36解析:原式 =-8 × 4+(-4 )× 1-34=-32-1-3=-3623.-3或 -15 解析:由题意知,22 02,所以 2a b 20, b 290 ,可得 b b 922ab3, a99 , b3 时, a b 3 ②当 a93 时, a b152 ,故①当 a2 , b.22224.7 或 125. 23 解析: 因为 12 2 ,所以 2 的整数部分是 1,小数部分为2 1;13 2 ,所以3 的整数部分为 1,小数部分为3 1 ,所以可得a b 22 1+3 1 +2= 23 .26.1.5 ㎝ 解析:设书的高度为 x ㎝,由题意可得(4x)3216,4x 6, x 1.527.5 ㎝ 解析:设圆柱的高为h ,C 杯的底面半径为 r ㎝,由题意得:32 h 42 h r 2 h ,可得 r5 .。
人教版七年级数学下第六章 实数单元测试题含答案
人教版七年级下第六章实数单元测试题含答案一、选择题(本大题共7小题,每小题4分,共28分)1.16的平方根是( )A.±2 B.2 C.±4 D.42.下列计算正确的是( )A.9=±3B.3-8=-2C.(-3)2=-3D.2+3= 5 3.下列各数中,是无理数的有( )2,31000,π,-3.1416,13,9,3.030030003…(相邻两个3之间依次多一个0),0.57143,|3-1|.A.2个 B.3个 C.4个 D.5个4.下列说法正确的是( )A.2是(-2)2的算术平方根B.-2是-4的平方根C.(-2)2的平方根是2D.8的立方根是±25.如图1,已知数轴上的点A,B,C,D分别表示数-2,1,2,3,则表示3-2的点P应落在线段( )图1A.AO上 B.OB上 C.BC上 D.CD上6.三个数-π,-3,-3的大小关系是( )A.-3<-π<-3 B.-π<-3<- 3C.-3<-π<- 3 D.-3<-3<-π7.有下列叙述:①立方根等于它本身的数只有0和1;②38的立方根是2;③3-125的立方根是±5;④负数没有平方根和立方根;⑤一个数的立方根有两个,它们互为相反数.其中正确的有( )A.0个 B.1个 C.2个 D.3个二、填空题(本大题共5小题,每小题4分,共20分) 8.4的平方根是________;4的算术平方根是________.9.实数8的立方根是________.10.计算与化简:-179=________,±225=________,3(-3)3=________.11.若|a|=4,b=2,且ab<0,则a+b+3=______________________________________.12.已知数轴上A,B两点到原点的距离分别是2和3 2,则线段AB的长为________.三、解答题(本大题共6小题,共52分)13.(8分)求下列各式的值:(1)0.49-378-1-(-3)2;(2)-22÷4+3-1×5-|2-5|.14.(8分)求下列各式中x的值:(1)x2-5=4;(2)x3-3-8=-36.15.(8分)在数轴上表示下列各数,并回答问题:-2,|-2.5|,-9,(-2)2.图2(1)将上面的几个数用“<”连接起来;(2)求数轴上表示|-2.5|和-9的这两点之间的距离.16.(8分)已知a的倒数是-12,b的相反数是0,c是-1的立方根,求a2+b2+c2的值.17.(8分)已知一个正数的两个平方根分别是3a+1和a+11,求这个数的立方根.18.(12分)如图3所示,一个瓶子的容积为1 L,瓶内装着溶液,当瓶子正放时,瓶内溶液的高度为20 cm,当瓶子倒放时,空余部分的高度为5 cm.现把瓶内的溶液全部倒在一个圆柱形的杯子里,杯内的溶液高度为10 cm.求:(1)瓶内溶液的体积;(2)圆柱形杯子的内底面半径(π取3.14,结果精确到0.1 cm).图3详解详析1.[解析] A ∵16=4,4的平方根为±2, ∴16的平方根为±2.故选A.2.[解析] B A .原式=3,故A 错误;B.原式=-2,故B 正确;C.原式=9=3,故C 错误;D.2与3不是同类二次根式,故D 错误.故选B.3.[解析] B 无理数有2,π,3.030030003…(相邻两个3之间依次多一个0),共有3个.故选B.4.[答案] A 5.[答案] C6.[解析] B 因为π>3,3<3,所以π>3>3,因此-π<-3<- 3.7.[解析] A 从立方根的意义去考虑.[点评] 38的立方根是32;3-125的立方根是3-5.要注意立方根的表示方法.8.[答案] ±2 2[解析] ±4=±2,4=2.9.[答案] 210.[答案] -43±15 -3 [解析] 因为⎝ ⎛⎭⎪⎫432=169,152=225,所以179⎝ ⎛⎭⎪⎫即169的算术平方根的相反数为-43;225的平方根有两个,它们是15和-15. 11.[答案] 3[解析] ∵b =2,∴b =4.由ab <0知a <0,而|a |=4,∴a =-4.因此a +b +3=-4+4+3= 3.12.[答案] 2 2或4 2[解析] (1)当A ,B 两点在原点的同侧时,AB =3 2-2=2 2;(2)当A ,B 两点在原点的异侧时,AB =3 2+2=4 2.综上所述,AB =2 2或4 2.13.解:(1)原式=0.7+0.5-3=-1.8.(2)原式=-2-5-(5-2)=-2 5.14.解:(1)∵x2-5=4,∴x2=9,∴x=±3.(2)原式变形为x3+2=-6,∴x3=-8,∴x=-2.15.解:各点在数轴上的位置如图所示:(1)-9<-2<|-2.5|<(-2)2.(2)|-2.5|-(-9)=2.5+3=5.5.故数轴上表示|-2.5|和-9的这两点之间的距离为5.5.16.解:∵a的倒数是-12,∴a=- 2.∵b的相反数是0,∴b=0,∴b=0.∵c是-1的立方根,∴c=-1,∴a2+b2+c2=(-2)2+02+(-1)2=3. 17.解:根据题意,得(3a+1)+(a+11)=0,解得a=-3,于是3a+1=-8,所以这个数是(±8)2=64.故这个数的立方根是364=4.18.解:1 L=1000 cm3.(1)设瓶内溶液的体积为x cm3.根据题意,得x+520x=1000,解得x=800.答:瓶内溶液的体积为800 cm3.(2)设圆柱形杯子的内底面半径为r cm,则π·r2·10=800,∴r=80π≈5.0.答:圆柱形杯子的内底面半径约为5.0 cm.。
人教版数学七年级下册-第六章《实数》单元测试(含答案)
第六章《实数》单元测试姓名:班级:座号:一、单选题(共8题;共32分)1. 9的算术平方根是()A. 81B. ±81C. 3D. ±32. -8的立方根是()A. B. C.D.3.在,1.01001000100001,2 ,3.1415,- ,,0,,这些数中,无理数共有()A. 2个B. 3个C. 4个D. 5个4.下列说法中错误的是( )A. 0的算术平方根是0B. 36的平方根为±6C.D. -4的算术平方根是-25.已知a2=25, =7,且|a+b|=a+b,则a﹣b的值为()A. 2或12B. 2或﹣12C. ﹣2或12D. ﹣2或﹣126.,则a与b的关系是()A. B. a与b相等 C. a与b互为相反数 D. 无法判定7.下列计算或说法:①±3都是27的立方根;②=a;③的立方根是2;④=±4,其中正确的个数是()A. 1个B. 2个C. 3个 D. 4个8.下列六种说法正确的个数是()①无限小数都是无理数;②正数、负数统称实数;③无理数的相反数还是无理数;④无理数与无理数的和一定还是无理数;⑤无理数与有理数的和一定是无理数;⑥无理数与有理数的积一定仍是无理数.A. 1B. 2C. 3 D . 4二、填空题(共24分)1.算术平方根等于本身的实数是________.2.﹣125的立方根是________.3.比较大小:﹣π________﹣3.14(选填“>”、“=”、“<”).4.某正数的平方根是n+l和n﹣5,则这个数为________.5.已知一个正数的两个平方根是x﹣7和3x﹣1,则x的值是________.6.方程(x﹣1)3﹣8=0的根是 ________7.若=2﹣x,则x的取值范围是________;若3+ 的小数部分是m,3﹣的小数部分是n,则m+n=________.三、求下列各式中x的值(共10分)(1)(2x﹣1)2=9 (2)2x3﹣6=四、解答题(共10分)1.已知某数的平方根是a+3和2a﹣15,求1﹣7a的立方根。
精选人教版初中数学七年级下册第六章《实数》单元测试及答案
精选⼈教版初中数学七年级下册第六章《实数》单元测试及答案⼈教版七年级数学下册第六章实数复习检测试题⼀、选择题(每⼩题3分,共30分)1.下列各数中最⼤的数是( )A.3 C.π D.-32.下列说法正确的是()A.任何数都有算术平⽅根B.只有正数有算术平⽅根C.0和正数都有算术平⽅根D.负数有算术平⽅根3.下列语句中,正确的是( )A.⽆理数都是⽆限⼩数B.⽆限⼩数都是⽆理数C.带根号的数都是⽆理数D.不带根号的数都是⽆理数4.的⽴⽅根是( )A.-1B.OC.1D. ±15.在-1.732,π,3.,2,3.212 212 221…(每相邻两个1之间依次多⼀个2),3.14这些数中,⽆理数的个数为( )A.5个B.2个C.3个D.4个6.有下列说法:①实数和数轴上的点⼀⼀对应;②不含根号的数⼀定是有理数;③负数没有平⽅根;④是17的平⽅根.其中正确的有()A.3个B.2个C.1个D.0个7.下列说法中正确的是( )A.若a为实数,则a≥0B.若a为实数,则a的倒数为1 aC.若x,y为实数,且x=yD.若a为实数,则a2≥08.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59.实数a,b在数轴上的位置如图所⽰,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b10.如图,数轴上的点A,B,C,D分别表⽰数﹣1,1,2,3,则表⽰2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上⼆、填空题(每⼩题3分,共24分)1.按键顺序是“,,则计算器上显⽰的数是.2.⼀个数的平⽅根和它的⽴⽅根相等,则这个数是.3.计算:-2+-|-2|=.4.若某数的平⽅根为a+3和2a-15,则这个数是.5.⽐较⼤⼩:-23-0.02;3.6.定义运算“@”的运算法则为:x@y=xy﹣1,下⾯给出关于这种运算的⼏种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0.其中正确结论的序号是.7.计算:|3-π|+-的结果是.三、解答题(共46分)1.计算(6分)(1)|1-|+||+|-2|+|2-|;(2) (-2)3×---.2.(6分)求未知数的值:(1)(2y﹣3)2﹣64=0;(2)64(x+1)3=27.3.(8分)已知=0,求实数a,b的值,并求出的整数部分和⼩数部分.4.(8分)设a.b为实数,且=0,求a2﹣的值.5. (10分)王⽼师给同学们布置了这样⼀道习题:⼀个数的算术平⽅根为2m-6,它的平⽅根为±(m-2),求这个数.⼩张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的⼀个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=83.(4)所以这个数为2m-6=2×83-6=-23.(5)综上可得,这个数为2或-23.(6)王⽼师看后说,⼩张的解法是错误的.你知道⼩张错在哪⾥吗?为什么?请予以改正.6.(8分)设的整数部分和⼩数部分分别是x,y,试求x,y的值与x﹣1的算术平⽅根.参考答案与解析⼀、选择题1.B2. C3.A4.C5.D6.A7.D8.B9.C 10. A A⼆、填空题11.4 12.0 13.1 14. 49 15.<> 16. ①②④17.1三、解答题1. 解:(1)原式1221-+=-.(2)原式=-8×4-4×14-3=-32-1-3=-36. 2 ⼈教版初中数学七年级下册第六章《实数》检测卷含答案⼀、选择题(每⼩题3分,共30分) 1. 916的平⽅根是( )A. C. 34 D. ±342. ,227,π-20.121 221 222 1…(相邻两个“1”之间依次多⼀个“2”)中,有理数有( )A. 1个B. 2个C. 3个D. 4个3. 若x 2=16,则5-x 的算术平⽅根是( )A. ± 1B. ±4C. 1或9D. 1或34. 下列说法中,不正确的是( )A. 0.027的⽴⽅根是0.3B. -8的⽴⽅根是-2C. 0的⽴⽅根是0D. 125的⽴⽅根是±55. 的值在( )A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间6. ⼀个⾃然数的算术平⽅根是a ,则下⼀个⾃然数的算术平⽅根是( )A. B. +1C. a+1D.7. 如图,数轴上A,B和5.1,则A,B两点之间表⽰整数的点共有( )A. 6个B. 5个C. 4个D. 3个8. ≈0.793 7≈1.710 0,那么下列各式正确的是( )A. B. ≈7.937C. D. ≈79.379. 0,则a与b的关系是( )A. a=b=0B. a与b相等C. a与b互为相反数D. a=1 b10. 若a2=(-5)2,b3=(-5)3,则a+b的值为( )A. 0B. ±10C. 0或10D. 0或-10⼆、填空题(每⼩题3分,共24分)11. ⽐较⼤⼩:-5 -26(填“>”“=”或“<”).12. 3-11的相反数是,绝对值是.13. =3,则2x+5的平⽅根是.14. ⼩成编写了⼀个程序:输⼊x→x2→⽴⽅根→倒数→算术平⽅根→12,则x为.15. 若数m,n满⾜(m-1)20,则(m+n)5=.16. 已知36=x3,z是16的算术平⽅根,则2x+y-5z的值为.17. 点A在数轴上和原点相距3个单位长度,点B在数轴上和原点相距5个单位长度,则A,B两点之间的距离是.18. 对于任意不相等的两个数a,b,定义⼀种运算※如下:a※b,如3※2= 5.那么12※4=.三、解答题(共66分)19. (8分)计算:1-3;(1)3+1+3+||(2)25+144.20. (8分)求下列各式中的x的值:(1)25(x-1)2=49;(2)64(x-2)3-1=0.21. (9分)已知2a-1的平⽅根是±3,3a+b-1的平⽅根是±4,求a+2b的平⽅根.22. (9分)已知某正数的两个平⽅根分别是a +3和2a -15,b 的⽴⽅根是-2,求3a +b 的算术平⽅根.23.⼈教版七年级数学下册第六章实数单元综合能⼒提升测试卷⼀、选择题(每⼩题3分,共30分)1.下列选项中正确的是()A .27的⽴⽅根是±3B .16 的平⽅根是±4C .9的算术平⽅根是3D .⽴⽅根等于平⽅根的数是1 2.在实数﹣0.8,2015,﹣,四个数中,是⽆理数的是() A .﹣0.8 B .2015 C .﹣D . 3.(-)2的平⽅根是() A . B .- C . D .± 4.下列四个数中的负数是()A .﹣22B .C .(﹣2)2D . |﹣2|5.|的值为()A.5 B .5-2 C .1D .2-16.在下列各式中正确的是()A .=-2B .=3C .=8D .=2 7.⼀个⾃然数a 的算术平⽅根为x ,则a+1的⽴⽅根是()A B C D8.下列结论中正确的个数为() 72233722331512512515152)1(-662)2(-1622(1)零是绝对值最⼩的实数;(2)数轴上所有的点都表⽰实数;(3)⽆理数就是带根号的数;(4)-的⽴⽅根为±; A .1个 B .2个 C .3个 D .4个9=3,则(x+3)2的值是()A.81 B .27C .9 D.310.若有理数a 和b 在数轴上所表⽰的点分别在原点的右边和左边,则-︱a -b ︱等于()A .aB .-aC .2b +aD .2b -a⼆、填空题(每⼩题3分,共30分)11.在下列各数中⽆理数有个。
人教版七年级数学下册第六章《实数》单元测试(含答案)
人教版七年级数学下册第六章《实数》单元测试一、单项选择题(共 11 题,共 52 分) 1.下列四个实数中,是无理数的是( )A.0 B.C.—2D.2.下列结论一定正确的是( )A.16 的立方根是 B. 没有立方根 C.立方根等于本身的数是 0 D. 3.下列说法中正确的是( ) A.带根号的数都是无理数 B.无限小数都是无理数 C.无理数是无限不循环小数 D.无理数是开方开不尽的数 4.对任意实数 a,下列等式一定成立的是( )A.B.C.D.5.下列等式一定成立的是( )A.B.C.D.6.下列各数中,界于 6 和 7 之间的数是( )A.B.C.D.7.若 有意义,则 x 的取值范围是( )A.x≥1B.x>1 C.x≤1 D.x<18.的大小顺序是( )A.B.C.D.9.实数 a 在数轴上对应点的位置如图所示,则化简∣a+3∣的结果是( )A.a+3B.C.-a+3 D.-a-310.若 a、b 均为正整数,且 a> ,b< ,则 a+b 的最小值是( ) A.3 B.4 C.5 D.611.若,则 a+b 所有可能的值为( )A.8 B.8 或 2 C.8 或-2 D.二、填空题(共 6 题,共 24 分)12.在中,其中___________________ 是无理数;___________________是有理数.13. 的相反数是__________________,绝对值是__________________.14.15. 比较下列各数的大小:16.已知_______________________ .17.如图所示的数轴上,点 B 与点 C 关于点 A 对称,A、B 两点对应的实数分别是,则点 C 所对应的实数是.三、解答题(共 6 题,共 24 分) 18.计算: (1)(2) 19.求下列各式中 x 的值: (1)49x2=25 (2) 3(x-2)2 =9 20.一个正数 x 的平方根是 2a-3 与 5-a,求 a 和 x 的值.21.已知实数 a、b 分别是的整数和小数部分,求式子:的值.22.已知 23.如图所示,(1)两个边长为 1 个单位长的正方形沿对角线剪开所得的四个三角形能 拼 成 一 个 较 大 的 正 方 形 , 设 这 个 大 的 正 方 形 的 边 长 为 x ( x>0 ) , 则 可 得 方程, 解 得 x=,所以小正方形的对角线的长是。
人教版七年级数学下册- 第六章 《实数》 单元试卷(含答案)
第六章《实数》单元测试姓名:班级:座号:一、单选题(共8题;共32分)1.√83的算术平方根是()A. 2B. ±2C. √2D. ±√22.下列各等式中成立的是()A. ﹣√(−2)2=﹣2B. ﹣√3.6=﹣0.6C. √(−13)(−13)=﹣13D. √36=±63.下列4个数:√9、227、π、(√3)0,其中无理数是()A. √9B. 227C. πD. (√3)04.若x,y为实数,且|x+2|+√y−2=0,则(x y)2011的值为()A. 1B. -1C. 2D. -25.若0<a<1,则a,1a,a2从小到排列正确的是( )A. a2<a<1a B. a < 1a< a2 C. 1a<a< a2 D. a < a2 <1a6.已知a是实数√10的整数部分,b是√10的小数部分,那么a﹣b值是()A. 3+ √10B. 3﹣√10C. √10﹣3D. 6﹣√107.下列说法正确的是( )A. √16的平方根是±4B. −√6表示6的算术平方根的相反数C. 任何数都有平方根D. ﹣a2一定没有平方根8.下列命题:①若a<1,则(a﹣1)√11−a=﹣√1−a;②平行四边形既是中心对称图形又是轴对称图形;③√9的算术平方根是3;④如果方程ax2+2x+1=0有两个不相等的实数根,则实数a<1.其中正确的命题个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(共8题;共20分)1.写出一个大于1且小于2的无理数________ .2.计算(﹣4)0+√9﹣(12)﹣1的结果是________ .3.比较大小:−√29________ −5.4(填<或=或>)4.比较大小:−√503________ −4(填“ <”或“ =”或“ >”).5.已知a,b为两个连续的整数,且a< √57<b,则a+b=________.6.√49=________;1﹣√33的相反数为________;| √3﹣2|=________.7.在实数√5,0,π,3.1415,﹣3,√4,2.1010010001…(相邻两个1之间0的个数逐次加1)中,无理数有________个.8.设边长为3的正方形的对角线长为a,下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是________.三、计算题(共15分)(1)(−12)−5+(−14)−(−39);(2)−9÷3+(12−23)×12+32;(3)−42−√−13+√(−3)2−|1−√2|.四、解答题(共8分)1.已知x+1的平方根为±3,y-1的立方根为3,求x+y的平方根。
人教版初中数学七年级下册第六章《实数》单元测试卷及答案解析
人教版初中数学七年级下册第六章《实数》单元测试卷及答案解析学校:___________姓名:___________班级:___________学号:___________一、选择题1、一个数的平方根与立方根都是它本身,这个数是()A .1B .﹣1C .0D .±1,02、下列运算中,正确的是( )A .=24B .=3C .=±9D .-=-3、的平方根是( )A .B .-C .±D .±4、下列实数是无理数的是( )A .B .-C .0D .-1.010 1015、下列说法不正确的是( )A .8的立方根是2B .-8的立方根是-2C .0的立方根是0D .125的立方根是±56、下列四个数:-3,-,,-1,其中最小的数是( )A .B .-3C .-1D .-7、正方体A 的体积是正方体B 的体积的27倍,那么正方体A 的棱长是正方体B 的棱长的( )A .2倍B .3倍C .4倍D .5倍8、如图,数轴上点A 表示的数可能是( )A .B .C .D .9、关于的叙述正确的是( )A .在数轴上不存在表示的点B .=+C .,±2D .与最接近的整数是310、已知+=0,则的值为( )A .0B .2 018C .-1D .1二、填空题11、比较大小:.(填“>”或“=”或“<”)12、请写出一个大于0而小于2的无理数:______-.13、-2的相反数是_____________绝对值是________________14、若一个数的算术平方根是8,则这个数的立方根是____.15、一个正数x 的平方根是3a -4和1-6a ,则a =____,x =____.16、如图,已知直径为1个单位长度的圆形纸片上的点A 与数轴上表示-1的点重合.若将该圆形纸片沿数轴顺时针滚动一周(无滑动)后点A 与数轴上的点A ′重合,则点A ′表示的数为_____三、计算与求值17、计算:(1)|-2|+(-3)2-; (2)+3-5;(3) ×(-); (4) +-.18、求下列各式中x 的值.(1)4x 2-9=0; (2)8(x -1)3=-.四、解答题19、已知一个正方体的体积是1000Cm³,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488Cm³,问截得的每个小正方体的棱长是多少?20、已知a是的整数部分,b是它的小数部分,求(-a)3+(b+3)2的值.参考答案1、C2、D3、C4、B5、D6、B7、B8、C9、D10、D11、>12、答案不唯一,如:13、2-,2-14、415、-1 4916、π-117、(1)9;(2)-;(3)-5;(4)3-2.18、(1)x=±;(2)x=-.19、截得的每个小正方体的棱长是4cm.20、-17.【解析】1、试题分析:平方根等于本身的数是0;立方根等于本身的数是0和±1;则平方根和立方根都等于本身的数是0.考点:(1)、平方根;(2)、立方根2、试题分析:根据平方根的性质,可知,故A不正确;根据二次根式的性质,可得=,故B不正确;根据算术平方根的意义,可知=9,故不正确;根据二次根式的性质,可知-=-,故D正确. 故选:D.点睛:此题主要考查了二次根式的化简,解题时,应用二次根式的性质和意义,化简即可求解判断,此题是中考常考的易错题,解题时要特别小心,以免出错.3、试题解析:的平方根是:故选C.点睛:正数的平方根有两个,0的平方根是0,负数没有平方根.4、试题解析:是无理数.故选B.点睛:无限不循环小数就是无理数.5、试题解析:125的立方根是5.D选项错误.故选D.点睛:正数的立方根是正数,0的立方根是0,负数的立方根是负数.6、试题解析:最小的数是:故选B.7、试题解析:设正方体A的棱长是a,正方体B的棱长是b,依题意得:∴a=3b,即正方体A的棱长是正方体B的棱长的3倍.故选:B.8、试题解析:在2和3之间的数可能是:故选C.9、试题解析:A,数轴上的点与实数是一一对应的,故A错误.B. 故B错误.C. 是8的平方根.故C错误.D. 故D正确.故选D.10、试题解析:故选D.11、利用<得到2<<3,则-1>1,即可得到∴与0.5的大小关系∵<,∴2<<3,∴-1>1,∴>0.5;12、试题解析:答案不唯一,如:故答案为:13、试题解析:的相反数是:的绝对值是:故答案为:14、试题解析:若一个数的算术平方根是8,则这个数是:的立方根是:故答案为:4.15、试题解析:正数的两个平方根互为相反数,解得:这个数的平方根是和,这个数是:故答案为:16、试题解析:圆的直径为1,圆的周长为:点表示的数为:故答案为:17、试题分析:按照运算法则运算即可.注意含绝对值的代数式的化简.试题解析:(1)原式(2)原式(3)原式(4)原式18、试题分析:按照平方根,立方根的定义运算即可.试题解析:19、试题分析:设截得的每个小正方体的棱长,根据已知条件可以列出方程,解方程即可求解.试题解析:设截得的每个小正方体的棱长xcm,依题意得1000-8x3=488,∴8x3=512,∴x=4,答:截得的每个小正方体的棱长是4cm.点睛:此题主要考查了立方根的应用,其中求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号.20、试题分析:因为所以的整数部分为:小数部分为代入求解即可.试题解析:的整数部分为:小数部分为得。
人教版初中数学七年级下册第六章《实数》单元测试题(含答案)(20210309045519)
第六章?实数?检测题一、选择题〔每题只有一个正确答案〕1.4的平方根是〔〕.A.2B.2C.2D.22.以下运算正确的选项是〔〕A.9=±3B.|﹣3|=﹣3C.﹣92=﹣3D.﹣3=93.在实数22,3,3,39,中,无理数有72A.2个B.3个C.4个D.5个4.估计 13 1的值在〔〕和3之间和4之间和5之间和6之间5.如果一个实数的平方根与它的立方根相等,那么这个数是〔〕〕A.0和1B.正实数C.0D.16.对于实数a,b,给出以下4个判断:①假设ab,那么ab;②假设ab,那么a b;③假设x281,那么x9;④假设m5,那么m225,其中正确的判断有〔〕个个 C.2个个7.64的立方根等于〔〕A.8B.4C.2D.〕28.以下说法不正确的选项是()2A.1的平方根是±1B.-5是25的一个平方根44C.的算术平方根是D.32739.假设a223b的所有可能值为〔5,b35,那么a〕.A.0B.10或10或1010.假设将三个数-3,7,11表示在数轴上,其中能被如下列图的墨迹覆盖的数是〔〕A.- 3B. 7C. 11D. 7和11 11.以下运算中,正确的个数是〔〕①125=15;②22=﹣22=﹣2;③1111④4=±4;⑤21441216442125=﹣5.个个个个12.用计算器探索:按一定规律排列的20个数:1,1,1,,1,23191.如果从中选出假设干个数,使它们的和<1,那么选取的数的个数最多是〔〕20A.4个个个个二、填空题13.计算:(1)1(5)03.21 4.9的平方根是____〕的立方根为﹣2〕15.a<19<b,且a,b为两个连续整数,那么a+b=__.1 6.假设x,y为实数,且|x﹣2|+〔y+1〕2=0,那么x y的值是__.17.观察下面的规律:,, 2,20,200,2000 20000;⑵假设,3,那么.三、解答题1218.计算:2021319.计算:〔1〕12 3 2 6 3322.21〔2〕23322332 2〔3〕218-41+332〔4〕〔8-53〕×6827 32〔6〕aa 22〔5〕2a4a a a1 b2b a21a1a120.求x的值:〔1〕〔x-1〕2=9;〔2〕8x3-27=021.某正数的两个平方根分别是2a〕7和a+4〕b〕12的立方根为﹣2〕〕〕1求a〕b的值;〕〕2求a+b的平方根.22.张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2.他不知能否裁得出来,正在发愁.李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.〞你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?参考答案1.C2.C3.B4.C5.C6.D7.C8.C9.C10.B11.B12.A 13. 214. ±3〕8〕 15.9 16. 317.〕0.1732. 18.9. 19.解:〔1〕原式=232 31 4= 3 5 ;223 22〔2〕原式= 3 =4×3-9×2=12 –-618;=〔3〕原式=6 2 - 2 +12== 17 2 ;2〔6-1+12〕2〔4〕原式=8 × 6 -5 3× 6 = 8×6 - 5 3?6= 4 -15 2;272738a 316a 28a 3b 2a〔5〕原式=- 6 ÷ b 2 =-b 6 × 3 =- 4 ;b16a2ba1 aa 1a1 21a 1a=a1.〔6〕原式=? ?= a1a1a121a 2a1a20. 1 x1 29,x13或x 1 3.x 1 4,x 22.28x327.x3278x32738.221.〔1〕a1,b4;〔2〕522.不同意李明的说法解:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,那么3x?2x=300,x2=50,解得x=52,而面积为400平方厘米的正方形的边长为20厘米,由于152>20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2.试题解析:解:不同意李明的说法.设长方形纸片的长为3x 〔x>0〕cm,那么宽为2xcm,依题意得:3x?2x=300,6x2=300,x2=50,∵x>0,∴x=50=52,∴长方形纸片的长为152cm,∵50>49,∴52>7,∴15 2>21,即长方形纸片的长大于20cm,由正方形纸片的面积为400cm2,可知其边长为20cm,∴长方形纸片的长大于正方形纸片的边长.答:李明不能用这块纸片裁出符合要求的长方形纸片.。
最新人教版初中数学七年级下册第六章《实数》单元测试(含答案解析)
人教版数学七下第六章实数能力水平检测卷一.选择题(共10小题)1.下列选项中的数,小于4且为有理数的为()A.πB.16 C.D.92.已知|a|=5, =7,且|a+b|=a+b,则a-b的值为()A.2或12 B.2或-12 C.-2或12 D.-2或-123.若实数a,b是同一个数的两个不同的平方根,则()A.a-b=0 B.a+b=0 C.a-b=1 D.a+b=14.用计算器求25的值时,按键的顺序是()A.5、x y、2、= B.2、x y、5、= C.5、2、x y、= D.2、3、x y、=5.如果x2=2,有x=±当x3=3时,有x想一想,从下列各式中,能得出x=±的是()A.2x=±20 B.20x=20 D.3x=±20x=2 C.±206.下列选项中正确的是()A.27的立方根是±3B的平方根是±4C.9的算术平方根是3D.立方根等于平方根的数是17.在四个实数、3、-1.4中,大小在-1和2之间的数是()A.B.3 C D.-1.481-的相反数是()A.1-B1+-D1-C.19a,小数部分为b,则a-b的值为()A.- 13 B.6-C.8-D6-10.下列说法:①-1是1的平方根;②如果两条直线都垂直于同一直线,那么这两条直线平行;在两个连续整数a 和b 之间,那么a+b=7;④所有的有理数都可以用数轴上的点表示,反过来,数轴上的所有点都表示有理数;⑤无理数就是开放开不尽的数;正确的个数为( ) A .1个B .2个C .3个D .4个二.填空题(共6小题)11.已知a 的平方根是±8,则它的立方根是 ;36的算术平方根是 .122(3)b ++=0= .13A 的算术平方根为B ,则A+B= .14.若45,<<则满足条件的整数a 有 个.15.如图,M 、N 、P 、R 分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若|a|+|b|=3,则原点是 (M 、N 、P 、R 中选).16.=5,付老师又用计算器求得:=55=555, =5555,个3,2016个4)= . 三.解答题(共7小题) 17.求出下列x 的值 (1)4(x-1)2-36=0(2)27(x+1)3=-6418.计算:(1)|2||1|--(2--++19.学校计划围一个面积为50m2的长方形场地,一边靠旧墙(墙长为10m),另外三边用篱笆围成,并且它的长与宽之比为5:2.讨论方案时,小马说:“我们不可能围成满足要求的长方形场地”小牛说:“面积和长宽比例是确定的,肯定可以围得出来.”请你判断谁的说法正确,为什么?20.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c(1)求a,b,c的值;(2)求3a-b+c的平方根.21.如果一个正数的两个平方根是a+1和2a-22,求出这个正数的立方根.22-的小数部分,此1事实上,小明的表示方法是有道理的,1,将这个数减去其整数部分,222<<<<即23,23,人教版七年级下册数学第六章实数培优试题一.选择题(共10小题) 1.下列实数中,无理数是( ) A .-1B .22C .16D .2 ) A .线段AB 上B .线段BC 上C .线段CD 上D .线段DE 上3.下列说法正确的是( ) A .立方根等于它本身的实数只有0和1 B .平方根等于它本身的实数是0 C .1的算术平方根是±1D .绝对值等于它本身的实数是正数4是2的( ) A .倒数B .平方根C .立方根D .算术平方根5-8的立方根之和是( ) A .0B .-4C .4D .0或-46.已知则以下对m 的估算正确的是( ) A .3<m<4B .4<m<5C .5<m<6D .6<m<77.已知实数a 在数轴上的位置如图所示,则化简|a+2|-|a-1|的结果为( ) A .-2a-1B .2a+1C .-3D .38.数轴上A,B,C,D,E 的点在( ) A .点A 与点B 之间 B .点B 与点C 之间 C .点C 与点D 之间D .点D 与点E 之间9.已知a ,b 为两个连续整数,且,a b <<则a+b 的值为( )A .9B .8C .7D .610.最“接近1)-的整数是( ) A .0B .1C .2D .3二.填空题(共6小题)11.若一个数的立方根是-3,则这个数是 .12.9的平方根是 .13=0.102,则x= ,已知=155.8,则y= 14.已知实数a 、b 都是比2小的数,其中a 是整数,b 是无理数,请根据要求,分别写出一个a 、b 的值:a= ,b= .15.如图,在数轴上点A ,B 表示的数分别是1,若点B ,C 到点A 的距离相等,则点C 所表示的数是 .16.现在规定一种新运算:对于任意实数对(a,b),满足a ※b=a 2-b-5,若45※m=1,则m= .三.解答题(共7小题) 17.求出下列x 的值(1)3(x-1)2(2)8(x 3+1)=-5618.计算:2018(1)|2|---19.将12--在数轴上表示,并将原数用“<”连接.20.已知|a|=5,b 2=4,c 3=-8. (1)若a<b,求a+b 的值; (2)若abc>0,求a-3b-2c 的值.21.将一个体积为364cm 的立方体木块锯成8个同样大小的小立方体木块.求每个小立方体木块的表面积.22.对于实数a 、b 定义运算"#"a#b=ab-a-1. (1)求(-2)#3的值;(2)通过计算比较3#(-2)与(-2)#3的大小关系; (3)若x#(-4)=9,求x 的值.23.如图,在数轴上有两个长方形ABCD和EFGH,这两个长方形的宽都是2个单位长度,长方形ABCD的长AD是4个单位长度,长方形EFGH的长EH是8个单位长度,点E在数轴上表示的数是5,且E、D两点之间的距离为12.(1)填空:点H在数轴上表示的数是,点A在数轴上表示的数是.(2)若线段AD的中点为M,线段EH上一点N,EN=1,4EH M以每秒4个单位的速度向右匀速运动,N以每秒3个单位的速度向左运动,设运动时间为x秒;当x为何值时,原点O 恰为线段MN的三等分点.答案:1-5 BCBDD6-10 BBCCA11.-2712. ±3,213. 0.010404 , 378000014.15. 2+16.201917.解:(1)3(x-1)2=9,(x-1)2=3,x-1=±,x1=+1,x2=-+1;(2)x3+1=-7,x3=-8,x=-2.18. 解:原式=-1-(2-)+9-3=-1-2++9-3=3+.19.解:20. 解:(1)∵|a|=5,b2=4,c3=-8.∴a=±5,b=±2,c=-2,∵a<b,∴a=-5,b=±2,∴a+b=-5+2=-3或a+b=-5-2=-7,即a+b的值为-3或-7;(2)∵abc>0,c=-2,∴ab<0,∴a=5,b=-2 或 a=-5,b=2,∴当a=5,b=-2,c=-2时,a-3b-2c=5-3×(-2)-2×(-2)=15,当 a=-5,b=2,c=-2时,a-3b-2c=-5-3×2-2×(-2)=-7,∴a-3b-2c=15 或-7.21.解:根据题意知64÷8=8(cm3),=2(cm),6×22=24(cm2)或=4(cm),4÷2=2(cm),22×6=24(cm2)答:每个小立方体木块的表面积是24cm222. 解:(1)人教版七年级下册单元检测卷:第六章实数一.选择题(共10小题)1.2的平方根是()A B.C.D.42.若a2=4,b2=9,且ab<0,则a-b的值为()A.-2 B.±5 C.5 D.-53的平方根是则a的值为()A.2 B.-2 C.5 D.-54.下列说法正确的是()A.-3是-9的平方根B.1的立方根是±1C.a是2a的算术平方根D.4的负的平方根是-25.下列各式中正确的是()A 3 B=x C 3 D=-x 6.如果-b是a的立方根,则下列结论正确的是()A.3b-=a B.-b=3a C.b=3a D.3b=a7.小明在作业本上做了4;②=4=9=-6,他做对的题有( ) A .1道B .2道C .3道D .4道8.下列实数是无理数的是( )A .227B .C .πD .09.实数a 、b 在数轴上的对应点的位置如图所示,则正确的结论是( ) A .b>-2B .-b<0C .-a>bD .a>-b10.如图,数轴上的点A,B,C,D,E 对应的数分别为-1,0,1,2,3,那么与实数112-对应的点在( )A .线段AB 上B .线段BC 上C .线段CD 上D .线段DE 上二.填空题(共6小题)11.有一个数值转换器,原理如图:当输入的x=4时,输出的y 等于 .12.如果某数的一个平方根是-5,那么这个数是 . 13.若3a =-8,则a= .14.已知=2,ab<0,的值为 .15.现在规定一种新运算:对于任意实数对(a,b),满足a ※b=a 2-b-5,若45※m=1,则m= .16.实数a 、b 在数轴上的位置如图所示,则化简|a+2b|-|a-b|的结果为 .三.解答题(共7小题)17.将-2,12-在数轴上表示,并将原数用“<”连接.1819.已知5a+2的立方根是3,4a+2b+1的平方根是±5,求a-2b 的平方根.20.解下列方程:(1)(x-2)2-25=0(2)x 3-1=21521.已知一个正方体的体积是1000cm 3,现要在它的8个角上分别截去1个大小相同的小正方体,截去后余下部分的体积是488cm 3. (1)截去的每个小正方体的棱长是多少?(2)截完余下部分的表面积是多少?22.阅读完成问题:数轴上,已知点A 、B 、C .其中,C 为线段AB 的中点:(1)如图,点A表示的数为-1,点B表示的数为3,则线段AB的长为,C点表示的数为;(2)若点A表示的数为-1,C点表示的数为2,则点B表示的数为;(3)若点A表示的数为t,点B表示的为t+2,则线段AB的长为,若C点表示的数为2,则t=,(4)点A表示的数为1,x点B表示的为2x。
新人教版初中数学七年级下册第六章《实数》单元测试(含答案解析)
人教版初中数学七年级下册第六章《实数》检测卷含答案一、选择题(每小题3分,共30分) 1. 916的平方根是( )A. C. 34 D. ±342. ,227,π-20.121 221 222 1…(相邻两个“1”之间依次多一个“2”)中,有理数有( )A. 1个B. 2个C. 3个D. 4个3. 若x 2=16,则5-x 的算术平方根是( )A. ± 1B. ±4C. 1或9D. 1或34. 下列说法中,不正确的是( )A. 0.027的立方根是0.3B. -8的立方根是-2C. 0的立方根是0D. 125的立方根是±55. 的值在( )A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间6. 一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( )A. B. +1C. a +1D.7. 如图,数轴上A ,B 和5.1,则A ,B 两点之间表示整数的点共有( )A. 6个B. 5个C. 4个D. 3个8. ≈0.793 7≈1.710 0,那么下列各式正确的是( )A.B. ≈7.937C. D. ≈79.379. 0,则a与b的关系是( )A. a=b=0B. a与b相等C. a与b互为相反数D. a=1 b10. 若a2=(-5)2,b3=(-5)3,则a+b的值为( )A. 0B. ±10C. 0或10D. 0或-10二、填空题(每小题3分,共24分)11. 比较大小:-5 -26(填“>”“=”或“<”).12. 3-11的相反数是,绝对值是.13. =3,则2x+5的平方根是.14. 小成编写了一个程序:输入x→x2→立方根→倒数→算术平方根→12,则x为.15. 若数m,n满足(m-1)20,则(m+n)5=.16. 已知36=x3,z是16的算术平方根,则2x+y-5z的值为.17. 点A在数轴上和原点相距3个单位长度,点B在数轴上和原点相距5个单位长度,则A,B两点之间的距离是.18. 对于任意不相等的两个数a,b,定义一种运算※如下:a※b,如3※2= 5.那么12※4=.三、解答题(共66分)19. (8分)计算:(1)3+1+3+||1-3;(2)25+144.20. (8分)求下列各式中的x的值:(1)25(x-1)2=49;(2)64(x-2)3-1=0.21. (9分)已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根.22. (9分)已知某正数的两个平方根分别是a+3和2a-15,b的立方根是-2,求3a+b 的算术平方根.23.人教版七年级数学下册第六章实数单元测试题一、选择题1.立方根是-0.2的数是( D )A.0.8 B.0.08 C.-0.8 D.-0.0082.与最接近的整数是( B )A.0 B.2 C.4 D.53.若一个数的算术平方根等于它的相反数,则这个数是( D )A.0 B.1C.0或1 D.0或±14.如果是实数,则下列一定有意义的是( D )A.B.C.D.5.下列说法中,正确的个数有( A )①两个无理数的和是无理数;②两个无理数的积是有理数;③无理数与有理数的和是无理数;④有理数除以无理数的商是无理数.A.1个 B.2个 C.3个 D.4个6.若x-3是4的平方根,则x的值为( C )A.2B.±2C.1或5D.167.化简:人教版七年级数学下册第六章实数单元检测题一、选择题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.估计 13 1 的值在(
)
A. 2 和 3 之间 B. 3 和 4 之间 C. 4 和 5 之间 D. 5 和 6 之间
5.如果一个实数的平方根与它的立方根相等,则这个数是(
))
A. 0 和 1 B. 正实数 C. 0 D. 1
6.对于实数 a ,b,给出以下 4 个判断:①若 a b ,则 a b ;②若 a b ,则 a
第六章《实数》检测题
一、选择题(每小题只有一个正确答案)
1. 4 的平方根是(
).
A. 2 B. 2 C. 2 D. 2
2.下列运算正确的是(
)
A. 9 =±3 B. | ﹣3|= ﹣ 3
C. ﹣ 9 =﹣ 3
2
D. ﹣ 3 =9
3. 在实数 22 , 7
A. 2 个 B. 3 个
3 , 3 , 3 9 , 3.14 中,无理数有 2
.
三、解答题
2
1
0
18 .计算:
2017
3
2
3
2.
19 .计算:
( 1) 12 3 2
0
63
2
1 2
(2) 2 3 3 2 2 3 3 2
( 3) 2 18 - 4 1 + 3 32 8
( 4)( 8 - 5 3 )× 6 27
( 5)
3
2a b2
2
4a b
a a2 (6) a2 1
a a1
2
a1 a1
__.
16.若 x,y 为实数,且 |x ﹣ 2|+ ( y+1)2=0,则 x y 的值是
17.观察下面的规律 :
0.02 0.1414 ,
0.2 0.4472 ,
__ .
2 1.414 ,
20 4.472 ,
200 14.14 ,
2000 44.72
20000
;
⑵ 若 0.3 0.5477 , 3 1.732 , 则 0.03
2
20. 1 x 1 9,
x 1 3 或 x 1 3. x1 4 , x2 2.
2 8x3 27.
x3 27 8
27 3
x3
.
82
21.( 1) a 1 , b 4 ;( 2) 5
22.不同意李明的说法 解:设面积为 300 平方厘米的长方形的长宽分为
3x 厘米, 2x 厘米,则 3x?2x=300,x2.3 D. 3 27 3
9.若 a 2
2
5,
b3
3
5 ,则 a b 的所有可能值为(
).
A. 0 B. 10 C. 0 或 10 D. 0 或 10
10.若将三个数- 3 , 7 , 11 表示在数轴上,其中能被如图所示的墨迹覆盖的
数是( )
A. - 3 B. 7 C. 11
300cm2
的长方形纸片,使它的长宽之比为
3:2.他不知能否裁得出来,正在发愁.李明见了
说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意李明的说
法吗?张华能用这块纸片裁出符合要求的纸片吗?
参考答案 1. C 2. C 3. B 4.C 5. C 6. D 7. C 8.C 9. C 10. B 11. B 12. A
依题意得: 3x?2x=300,6x2=300,x2=50,∵ x> 0,∴ x= 50 = 5 2 ,∴长方形纸片的长为 15 2
cm,∵ 50> 49,∴ 5 2 > 7,∴ 15 2 > 21,即长方形纸片的长大于 20cm,由正方形纸片
的面积为 400 cm2,可知其边长为 20cm,∴长方形纸片的长大于正方形纸片的边长. 答:李明不能用这块纸片裁出符合要求的长方形纸片.
11 .下列运算中,正确的个数是(
D. 7 和 11
)
①
25 1
=1
5
;②
144 12
22 =﹣ 22 =﹣ 2;③
1
1
11
④
16 4 4 2
3 125 =﹣5.
A. 0 个 B. 1 个
C. 2 个
D. 3 个
2
4 =±4;⑤
12 .用计算器探索:已知按一定规律排列的
20 个数: 1, 1 , 1 ,… , 1 ,
解得 x= 5 2 ,而面积为 400 平方厘米的正方形的边长为 20 厘米,由于 15 2 > 20,所以用
一块面积为 400 平方厘米的正方形纸片, 沿着边的方向裁不出一块面积为 300 平方厘米的长
方形纸片,使它的长宽之比为 3: 2. 试题解析:解:不同意李明的说法.设长方形纸片的长为
3 x ( x> 0)cm,则宽为 2x cm,
( 4)原式 =
8 × 6 -5 3 × 6 =
8 ×6 - 5 3?6 = 4 - 15 2 ;
27
27
3
8a3 16a 2 ( 5)原式 = - b6 ÷ b 2 = -
8a 3 b6
b2
×
16a
3
=
-
a 2b4
;
2
a1 a
( 6)原式 =
?
a
1a
?
11
2=
a
1a
2
a
=
1.
a1a1
a
a1
1a
1a
13. 2
14. ± 3 ) 8) 15. 9
16. 3
17. 141.4 ) 0.1732. 18. 9. 19.
解:( 1)原式 = 2 3 2 3 1 4 = 3 5 ;
2
2
( 2)原式 = 2 3
3 2 =4× 3- 9 × 2 =12 –-61;8 =
( 3)原式 = 6 2 - 2 +12 2 =(6-1+12) 2 =17 2 ;
20.求 x 的值: ( 1)(x-1) 2=9;
(2) 8x3-27= 0
21 .已知某正数的两个平方根分别是 ) )1 求 a)b 的值; ) )2 求 a+b 的平方根.
2a)7和 a+4)b) 12的立方根为﹣ 2)
22.张华想用一块面积为 400cm2 的正方形纸片,沿着边的方向剪出一块面积为
2
3
19
1
.如果从中选出若干个数,使它们的和< 1,那么选取的数的个数最多是(
)
20
A. 4 个 B. 5 个 C. 6 个 D. 7 个
二、填空题
13 .计算:
1 ()
1
(5
)0
3
.
2
14. 9 的平方根是 ____ ) __的_ 立方根为﹣ 2)
15.已知 a< 19 < b,且 a, b 为两个连续整数,则 a+b=
b;
③若 x2 81 ,则 x 9 ;④若 m 5 ,则 m2 25 ,其中正确的判断有(
)
A. 4 个 B. 3 个 C. 2 个 D. 1 个
7. 64 的立方根等于(
)
A. 8 B. 4 C. 2 D. )2 8.下列说法不正确的是 ( )
2
A.
1 的平方根是 ±1
4
4
B. - 5 是 25 的一个平方根