A corrosion-resistance superhydrophobic TiO2 film
凝固冷却速率对2507超级双相不锈钢微观组织的演变及耐蚀性能的影响
Vol.54 N o.4 Apr. 2021凝固冷却速率对2507超级双相不锈钢微观组织的演变及耐蚀性能的影响沈楚,邹德宁,赵洁,陈阳(西安建筑科技大学冶金工程学院,陕西西安710055)[摘要]为探究凝固冷却速率对2507超级双相不锈钢微观组织与耐蚀性能的影响,采用光学显微镜(0M)和 扫描电子显微镜(S E M)研究了不同凝固冷却速率2507超级双相不锈钢的微观组织演变规律,并结合Image-P r o图像分析软件与铁素体分析仪,确定了各不同凝固冷速试样组织中的各相含量,得到了凝固冷却速率对c t相析出的 影响规律及(T相的析出机理。
再采用动电位极化法与交流阻抗谱法研究了各不同凝固冷却速率2507超级双相不 锈钢的耐蚀性能。
结果表明:试样组织中的(T析出相含量随着凝固冷却速率的降低而增加,试样的耐蚀性能随着 凝固冷却速度的降低而减弱。
[关键词]2507超级双相不锈钢;凝固冷却速率;<7析出相;微观组织;耐蚀性能[中图分类号]T G506.7+1 [文献标识码]A[文章编号]100卜1560(2021)04-0074-06Effect of Solidification Cooling Rate on the Microstructure Evolution andCorrosion Resistance of 2507 Super Duplex Stainless SteelS H F.N C h u,Z O U De-ning, Z H A O Jie, C H E N Y a n g(School of Metallurgy and Engineering, X i*a n University of Architecture and Technology, X i'a n 710055, China)Abstract:For exploring the influence of solidification cooling rate on the microstructure evolution and corrosion resistance of 2507 super duplex stainless steel, the law of the microstructure evolution of 2507super duplex stainless steel with different solidification cooling rates was investigated by optical microscope (O M)and scanning electron microscope (S E M). T h e contents of each phase in the samples with different solidification cooling rates were determined by Image-Pro image analysis software and ferrite analyzer, and the effect of solidification rate on the precipitation of a phase and the precipitation m e c h a n i s m of a phase were obtained. Furthermore, the corrosion resistance properties of 2507 super duplex stainless steel with different solidification and cooling rates were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy. Results showed that the content of a phase in the samples structure increased with the decrease of solidification cooling rate, and the corrosion resistance of the samples weakened with the decrease of solidification ccxjling rate.Key words:2507 super duplex stainless steel;solidification cooling rate;a p h ase;microstructure;corrosion resistance〇前言2507超级双相不锈钢是超低碳并具有较高合金含 量的一种高性能不锈钢,它兼具有铁素体不锈钢和奥 氏体不锈钢的优点,而其中最为突出的是它具有比普 通双相不锈钢更优异的耐腐蚀性能。
表面处理英语
阳极氧化anodic oxidation阳极酸化处理anodizing (英),anodising (美)阳极酸化皮膜anodic oxide coating,anodic oxide film自然酸化natural oxidation阳极酸化涂装复合皮膜combined coating of anodic oxide and organic films 化学氧化膜chemical conversion coatingconversion coating电解electrolysis电解液electrolytic solution阳极anode阴极cathode辅助电极auxiliary electrode极间距离distance between electrodes,anode-cathode distance电解电压bath voltage电流密度current density电流分布current distribution皮膜产生率coating ratio活性化处理activation去离子水deionizer water散射diffuse reflection镜面反射mirror reflection specula reflection反射率reflectivity reflectance光泽gloss,luster面光泽度relative-specula glossiness色差color difference灰度grey scale研磨材abrasive染料 dye dyestuff水溶性染料water soluble dye油溶性染料oil soluble dye治具jig,rack电解框frame for racking前处理pretreatment梨地处理mat(matt)finish环形加工spin finish发丝hair-line finishDiamond-cut finish光泽处理退光bright finish,bright dipping研磨sanding ,grinding ,polishing皮带研磨belt sanding ,belt grinding ,belt polishing振动研磨 barrel polishing,barreling,tumbling电解研磨electrolytic polishing化学研磨chemical polishing,chemical brightening脱脂degreasing碱蚀alkaline degreasing酸脱脂acid degreasing有机溶剂脱脂organic solvent degreasing乳胶脱脂emulsion degreasing电解蚀刻electrolytic etching中和demitting直流法direct current anodizing交流法alternating current anodizing交直重叠法process of superimposed direct current on alternating current定电流法constant current anodizing定电压法constant voltage anodizing草酸皮膜oxalic acid anodic oxide coating硫酸皮膜sulphoacid anodic oxide coating硬质皮膜hard anodic oxide coating原色皮膜self-color anodic oxide coating,integral color anodic oxide coating电解染色皮膜electrolytic colored anodic oxide coating多孔质皮膜porous anodic oxide film阻挡层膜barrier layer anodic oxide coating功能皮膜functional coating膜flexible anodic oxide吹付け染色spray dyeing涂布染色daub dyeing菲林法photo-printing印刷染色法direct printing转写染色法heat transfer printing脱膜 removing of coating,stripping of coating封孔处理sealing of anodic oxide coating水合封孔处理hydro-thermal sealing水蒸气封孔处理steam sealing热水封孔处理boiling water sealing镍盐封孔处理nickel sealing化学氧化处理boehmite process电解涂装electrodeposition coating,electrophoretic coating磷酸盐法phosphate process皮膜单元oxide cell多孔质层porous layer一水合氧化铝boehmite皮膜厚度coating thickness表面粗度surface roughness皮膜均一性uniformity of film皮膜表面密度apparent density of film皮膜质量coating mass阳极酸化皮膜的固化ageing皮膜烧焦burning of anodic oxide coating皮膜破坏cracking of anodic oxide coating,crazing of anodic oxide coating,stress cracking阳极粉化blooming挂灰sealing smut风化weathering bloom干涉色iridescence孔腐蚀pitting corrosion局部腐蚀local corrosion系状腐蚀filiform corrosion接触腐蚀galvanic corrosion耐侯性weather resistance耐腐蚀性corrosion resistance耐磨性abrasion resistance,wear resistance耐污染性stain resistance写像性image clarity光泽brightness色堅ろう度color fastness脱离耐力dielectric strength击穿电压breakdown voltage色匹配度color matching色的许容差color tolerance皮膜厚試験coating thickness test盐雾试验salt spray test盐雾试验copper accelerated acetic acid salt spray test(CASS test) 耐碱试验alkali resistance test封孔试验sealing test皮膜硬度试验hardness test of anodic oxide coating耐磨耗性试验abrasion resistance test,光堅ろう度试验accelerated light fastness test色差计color-difference meter屋外曝晒试验outdoor-exposure test加速耐候性试验accelerated weathering test。
三甲基硅烷化改性二氧化硅气凝胶
第21卷第1期强激光与粒子束Vol.21,N o.1 2009年1月H IGH POW ER LASER AND PA RTICLE BEAM S Jan.,2009 文章编号: 1001-4322(2009)01-0076-03三甲基硅烷化改性二氧化硅气凝胶*陈素芬, 李 波, 刘一杨, 张占文(中国工程物理研究院激光聚变研究中心,四川绵阳621900) 摘 要: 采用六甲基二硅氮烷对二氧化硅凝胶进行疏水处理,得到了疏水性的二氧化硅气凝胶。
用红外光谱和热分析表征处理前后二氧化硅气凝胶的性质,用测量显微镜跟踪处理前后气凝胶柱在空气中直径变化。
结果表明,处理后气凝胶的表面羟基明显减少,在空气中的吸潮性大大降低,圆柱体在空气中的径向收缩率从30%降至3%。
关键词: 二氧化硅; 气凝胶; 疏水处理; 三甲基硅烷化 中图分类号: T Q127.2; T L639.11 文献标志码: A 二氧化硅由于硅原子序数适中,并且易于制成低密度气凝胶,因此在激光惯性约束聚变(inertial confine-ment fusio n,ICF)研究中获得了广泛的应用,如辐射输运研究中的输运管填充材料[1-2]。
二氧化硅气凝胶网络表面存在羟基(-OH)和未水解的乙氧基(-OC2H5)官能团。
由于-OH的存在,气凝胶易吸收空气中的水分,导致网络结构塌陷,使得气凝胶收缩,其线性收缩率可达30%[3-5]。
而ICF辐射输运研究中的输运管长度只有几百μm,且要求填充材料均匀,输运管内部填充材料微小的收缩会使材料与管壁之间产生空隙,对最终的实验结果有很大的影响。
因此需要对二氧化硅气凝胶进行疏水改性,提高其对空气中水分的稳定性,降低其收缩率[6-7]。
文献报道,利用气态介质对气凝胶进行表面疏水处理,如气相甲氧基化,得到的气凝胶疏水性能很好,但是此方法成本高,工艺复杂,因此适用范围不广泛[8]。
此外,还可在合成前体时,在正硅酸甲酯(tetrame-tho xy silane,TM OS)中混入甲基三甲氧基硅烷(M eSi(OM e)3)[9],但是该凝胶在超临界干燥时易收缩,且随着M eSi(OMe)3用量增加,气凝胶的透明度降低。
低介电片状FeNi_吸波剂的山嵛酸辅助制备及其织构行为
包 装 工 程第45卷 第1期 ·262·PACKAGING ENGINEERING 2024年1月收稿日期:2023-07-18基金项目:国家自然科学基金(52071239) 低介电片状FeNi 吸波剂的山嵛酸辅助制备及其织构行为王睿a ,王峰a ,徐逸凡b ,官建国a,b ,陈志宏c*(武汉理工大学 a.材料复合新技术国家重点实验室 b.材料科学与工程国际化示范学院c.理学院,武汉 430070)摘要:目的 在吸波剂表面化学吸附一层绝缘小分子,制备低介电常数且耐腐蚀的低频吸波剂。
方法 通过机械化学处理活化合金粒子表面,增强山嵛酸与合金粒子间形成的化学吸附,从而制备具有低介电常数、光滑表面、高晶粒取向度和耐腐蚀的片状Fe 50Ni 50@山嵛酸吸波剂。
结果 形成的山嵛酸包覆层可调控球磨过程中粉体间的冷焊效应和粉体受到的外界载荷,诱导Fe 50Ni 50粉体沿{111}晶面的滑移,促使粉体内形成{001}面织构。
同时,绝缘且疏水的山嵛酸包覆层可阻碍粉体间导电网络的形成,降低片状Fe 50Ni 50吸波剂的介电常数,使粉体兼具低介电常数、高磁导率和耐腐蚀能力。
结论 Fe 50Ni 50@山嵛酸吸波剂粒子展现出良好的低频吸波性能和耐腐蚀能力,为发展兼具优良耐环境性能和低频强吸收能力的新型吸波材料提供了一种思路。
关键词:电磁吸波材料;机械化学改性;脂肪酸;低频;耐腐蚀中图分类号:TB34 文献标志码:A 文章编号:1001-3563(2024)01-0262-11 DOI :10.19554/ki.1001-3563.2024.01.031Behenic Acid-assisted Preparation of Low Permittivity Flaky FeNiAbsorbent and Its Texture BehaviorWANG Rui a , WANG Feng a , XU Yifan b , GUAN Jianguo a,b , CHEN Zhihong c*(a. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, b. International School of Materials Science and Engineering, c. School of Science, Wuhan University of Technology, Wuhan 430070, China) ABSTRACT: The work aims to chemically adsorb a layer of small insulating molecules on the surface of microwave absorbent to prepare a low frequency wave absorbent of low permittivity and high corrosion resistance. The particle surface of alloywas treated by mechano-chemical ball milling to enhance the chemical adsorption between behenic acid and the absorbent, so as to prepare a flaky Fe 50Ni 50@behenic acid composite absorbent with low permittivity, smooth surface, high grain orientation and corrosion resistance. The behenic acid coating could regulate the cold-welding effect among powder, induce the slipping of Fe 50Ni 50 powder along the {111} crystal planes, and promote the formation of {001} texture in the powder. At the same time, the insulated and hydrophobic behenic acid coating could prevent the formation of conductive network among powder and reduce the permittivity of flaky Fe 50Ni 50. Thus, the powder had low permittivity, high permeability and corrosion resistance. In conclusion, Fe 50Ni 50@behenic acid wave absorbent particles show good low frequency wave absorption and corrosion resistance, which provides a new idea for developing new wave absorbing materials with excellent environmental resistance and strong low frequency wave absorption ability.KEY WORDS: electromagnetic absorbing material; mechano-chemical modification; fatty acid; low frequency;corrosion resistance第45卷第1期王睿,等:低介电片状FeNi吸波剂的山嵛酸辅助制备及其织构行为·263·近年来,随着雷达探测技术的发展,低频耐环境吸波材料变得越来越重要[1-3]。
关于表面处理专业词汇的中英文对照
关于表面处理专业词汇的中英文对照关于表面处理专业词汇的中英文对照来源:/topic_944918.html阳极氧化 anodic oxidation阳极酸化处理anodizing (英),anodising (美)阳极酸化皮膜anodic oxide coating,anodic oxide film自然酸化 natural oxidation-阳极酸化涂装复合皮膜 combined coating of anodic oxide and organic films化学氧化膜 chemical conversion coatingconversion coating 电解 electrolysis5电解液 electrolytic solution阳极 anode阴极 cathode辅助电极 auxiliary electrode极间距离 distance between electrodes, anode-cathode dist ance电解电压 bath voltage电流密度 current density电流分布 current distribution皮膜产生率 coating ratio活性化处理 activation去离子水 deionizer water散射 diffuse reflection镜面反射 mirror reflection specula reflection反射率 reflectivity reflectance光泽 gloss面光泽度 relative-specula glossiness色差 color difference灰度grey scale研磨材 abrasive染料 dye dyestuff水溶性染料 water soluble dye油溶性染料 oil soluble dye治具 jig, rack电解框 frame for racking前处理 pretreatment梨地处理 mat(matt)finish环形加工 spin finish发丝 hair-line finishDiamond-cut finish;光泽处理退光bright finish,bright dipping研磨 sanding ,grinding ,polishing皮带研磨 belt sanding ,belt grinding ,belt polishing振动研磨 barrel polishing, barreling, tumbling电解研磨 electrolytic polishing化学研磨 chemical polishing, chemical brightening!脱脂 degreasing碱蚀 alkaline degreasing酸脱脂 acid degreasing有机溶剂脱脂 organic solvent degreasing乳胶脱脂 emulsion degreasing电解蚀刻 electrolytic etching中和demitting直流法 direct current anodizing交流法 alternating current anodizing交直重叠法 process of superimposed direct current on altern ating current定电流法 constant current anodizing定电压法 constant voltage anodizing草酸皮膜 oxalic acid anodic oxide coating/硫酸皮膜 sulphoacid anodic oxide coating硬质皮膜 hard anodic oxide coating原色皮膜 self-color anodic oxide coating, integral color ano dic oxide coating:电解染色皮膜electrolytic colored anodic oxide coating多孔质皮膜 porous anodic oxide film阻挡层膜 barrier layer anodic oxide coating功能皮膜functional coating膜 flexible anodic oxide喷雾染色 spray dyeing涂布染色 daub dyeing菲林法 photo-printing-印刷染色法 direct printing转写染色法 heat transfer printing脱膜 removing of coating, stripping of coating封孔处理 sealing of anodic oxide coating水合封孔处理 hydro-thermal sealing水蒸气封孔处理 steam sealing热水封孔处理 boiling water sealing镍盐封孔处理nickel sealing.化学氧化处理 boehmite process'电解涂装 electrodeposition coating, electrophoretic coatin g磷酸盐法 phosphate process(皮膜单元 oxide cell多孔质层 porous layer2一水合氧化铝 boehmite皮膜厚度 coating thickness表面粗度 surface roughness皮膜均一性 uniformity of film'皮膜表面密度 apparent density of film皮膜质量coating mass阳极酸化皮膜的固化 ageing皮膜烧焦 burning of anodic oxide coating皮膜破坏 cracking of anodic oxide coating, crazing of anod ic oxide coating, stress cracking阳极粉化blooming挂灰sealing smut"风化weathering bloom干涉色iridescence;孔腐蚀 pitting corrosion;局部腐蚀 local corrosion系状腐蚀 filiform corrosion接触腐蚀 galvanic corrosion耐侯性 weather resistance耐腐蚀性 corrosion resistance耐磨性 abrasion resistance, wear resistance)耐污染性 stain resistance写像性 image clarity'光泽 brightness色堅度 color fastness:脱离耐力 dielectric strength击穿电压 breakdown voltage色匹配度 color matching色的许容差 color tolerance皮膜厚試験 coating thickness test盐雾试验 salt spray test盐雾试验 copper accelerated acetic acid salt spray test(CASStest)耐碱试验 alkali resistance test封孔试验 sealing test皮膜硬度试验 hardness test of anodic oxide coating耐磨耗性试验 abrasion resistance test,光堅ろう度试验 accelerated light fastness test色差计 color-difference meter屋外曝晒试验 outdoor-exposure tes加速耐候性试验 accelerated weathering test1 表面预处理1.1 光亮化 brightening用化学或电化学抛光的方法,使金属表面光亮的过程。
疏水缔合聚合物缔合程度及其油藏适应性
DOI :1 0 . 3 9 6 9 / J . I S S N. 1 0 0 0 — 3 7 5 4 . 2 0 1 3 . 0 4 . 0 2 2
疏 水 缔 合 聚 合 物 缔 合 程 度 及 其 油 藏 适 应 性
姜维 东 ’ 康晓 东 , 谢 坤。 卢祥 国。
聚合物溶液 黏度 、聚合物分子线 团尺寸 、渗 流特 性和驱 油效果 等为评 价指标 ,以渤 海某 油藏储层 特征 和流体性 质 为研究平 台 ,开展 了缔合程度对疏水缔合 聚合 物性 能及其 油藏适应性 影响研 究。结果表 明 :调节剂 B 一 环糊精
可 以抑制疏 水缔 合聚合物分子链上疏水基 团间缔合 作用 ,改 变调节剂 质量分 数就可 以改变 疏水缔合 聚合 物缔合
J I ANG We i d o n g - 一 。 KANG Xi a o d o n g , XI E Ku n ,L U Xi a n g g u o
f 1 . S t a t e K e y L a b o r a t o r y o fO f f s h o r e O i l E x p l o i t a t i o n , B e i j i n g 1 0 0 0 2 7 ,C h i n a ;2 . C NO O C R e s e a r c h I n s t i t u t e , B e i j i n g 1 0 0 0 2 7 ,C h i n a ;3 . MO E ey K ab L o r a t o r y o f E n h a n c e d O i l R e c o v e r y ,
N o r t h e a s t P e t r o l e u m U n i v e r s i t y , D a q i n g 1 6 3 3 1 8 ,C h i n a )
微纳米结构对聚合物超疏水表面润湿性的影响
表面的过程 中提 出了复合接触的概念 , 他们认为液滴在粗糙
表 面 上 的 接 触 是 一 种 复 合 接 触 。微 细 结 构 化 了 的 表 面 因 为
结构尺度小于表 面液滴 的尺度 , 当表 面结构 疏水性 较强 时 ,
Wezl C si理 论 为 超 疏 水 性 表 面 的 制 备 提 供 了有 ne 和 as e 力 的 理论 基 础 。在 某 种 程 度 上 , 触 角 的增 加 意 味 着 表 面 自 接 由能增 加 。 在 We zl 型 中 , ne 模 由额 外 的 液/ 固界 面提 供 额 外 的 界 面 自由 能 。而 在 C s e 型 中 , 外 的表 面 自由能 来 自 as 模 i 额
吉 海 燕 , : 纳 米 结 构 对 聚 合 物 超 疏 水 表 面 润 湿 性 的 影 响 等 傲
9 5
表 观 接 触 角与 界 面 张 力 不 符 合 Y u g S 程 所 适 用 的 原 子 on ’ 方 及 分 子 尺 度 上 理 想 光 滑 的 要 求 。从 热 力 学 的 角 度 , n We— zl C si 分 别 对 Y u g S 程 进 行 了修 正 , 到 了 We — e 和 as e on’ 方 得 n zl 型 和 C si 型 。 e模 as e模
3 1 We zl 型 . ne 模
造 成 的 势 垒 。 当液 滴 振 动能 小 于 这 种 势 垒 时 , 滴 不 能 达 到 液 Wezl 程 所 要 求 的 平 衡 状 态 而 可 能 处 于 亚 稳 平 衡 状 态 。 ne 方
因此 . ne 模 型只适用 于中等疏水区与 中等亲水 区。 Wezl
滤膜知识
样品及流动相过滤滤器及滤膜选择指南一.过滤的重要性由于色谱系统的精密性和对结果分析的准确性要求,对样品的过滤显得尤为重要。
过滤可以保护色谱系统和色谱柱,延长柱子的使用寿命,改善数据的精确度。
过滤可以消除由于摩擦产生颗粒而引起的压力波动和无规律的杂质引起的基线波动。
可以消除由于存在气泡对检测系统的干扰。
因此通常采用微孔滤膜(Membrane)来过滤流动相,使用针头滤器(Filter)来过滤样品。
二.滤膜的相关参数及常识1.绝对孔径:绝对孔径等级是指通过在十分严格的测试条件下100% 截留下某种特定尺寸的挑战菌来区分孔径。
必须指明的条件里有:测试有机体(或分子)尺寸及浓度,测试压力和检测法。
2.空气通量:为测量空气通过滤器之一种方法。
即在不同的压力、不同的孔率和不同滤器面积情况下,空气所流过的流量。
3.气泡点:在微孔滤膜行业中,使用特定液体浸湿滤膜,并在特定温度下,所须排挤出滤膜孔中液体的最小压力之称。
4.过滤器功效:过滤器在其特定压力下,以其过滤总量和阻碍微粒大小定义其过滤功效。
一般来说,阻碍程度及压力越低时,过滤器的功效越大。
5. 滤材寿命:在特定操作条件下,过滤器的最长使用时间。
它取决于许多因素,例如过滤液的性质,操作温度,过滤材质的选择等。
6.亲水性:Hydrophilicity 的定义为亲水性,亲水性的滤膜通常有一层特殊化学层使得滤膜可以被水浸润; Hydrophobiity 是对水的斥力的一个参考。
疏水性滤膜很少完全不吸水。
在观察上可目视小水液滴停留在滤膜的表面而不会被表面吸附而扩散成水面。
疏水性的大小取决于滤材的孔径和滤膜原料的特性。
7.流率和流量:流率是在特定温度及压力下单位时间内过滤液通过滤膜的总量。
流率与滤膜表面性质有密切关系。
流率和通量是滤材和设计性能的二个重要参数。
这种性能取决于以下几个方面:1粘性:粘度决定了液体流动的难易。
液体的粘度越高(在一定的温度和压力条件下)流率越低。
最新狂犬病ppt课件
患者交感神经功能常亢进。 神志多清晰,少数病人可出现精神失常。 本期约1~3d。
(三)麻痹期
患者肌肉痉挛停止,进人全身弛缓性瘫 痪,患者由安静进入昏迷状态,最后因 呼吸、循环衰竭死亡。
该期持续时间较短,一般仅为6~18小时。
临床表现
本病全病程一般不超过6d。 除上述狂躁型表现外.尚有以脊髓或延
髓受损为主的麻痹型(静型)。
实验室检查
(一)周围血象及脑脊液
白 细 胞 总 数 轻 至 中 度 增 多 (12.0 ~ 30.0×109/L),中性粒细胞占80%以上。
脑脊液细胞数可稍增多(大多在200 以内,以淋巴细胞为主),蛋白质可轻 度增高,糖及氯化物正常。
狂犬病ppt课件
概念
狂犬病(rabies)又名恐水症(hydrophobi-a), 是由狂犬病毒所致,以侵犯中枢神经系 统为主的急性人兽共患传染病。
人狂犬病通常由病兽以咬伤方式传给人。 临床表现为特有的恐水、怕风、恐惧不 安、咽肌痉挛、进行性瘫痪等。病死率 几乎100%。
糖蛋白能与乙酰胆碱受体结合,决 定了病毒的嗜神经性,能刺激产生 中和抗体,诱导产生保护性免疫应 答,核蛋白是荧光免疫法检测的靶 抗原,有助于诊断。
病原学
狂犬病毒易被灭活。 病毒耐低温。 豚鼠接种能分离病毒,也能用地鼠肾细胞、人 二倍体细胞等细胞株增殖、传代。
病原学
野毒株的特点为致病力强,自脑外途径 接种后,易侵入脑组织和唾液腺内繁殖, 潜伏期较长。
固定毒株的特点为毒力减弱,对人和犬 失去致病力,可供制备疫苗。
流行病学
(一)传染源
带狂犬病毒的动物是本病的传染源。 本病主要传染源是狂犬。 人狂犬病由其传播者约占80%~90%,其次是
水溶性疏水缔合聚合物单体的合成
第8期化学世界·437·水溶性疏水缔合聚合物单体的合成钟传蓉1’2,黄荣华1,代华1(1.四川大学高分子研究所,高分子材料工程国家重点实验室,四川成都610065,2.成都理工大学材料与生物工程学院,四川成都610059)摘要:水溶性疏水缔合聚合物含有大量的亲水基团和少量的疏水基团,疏水基团间的疏水缔合作用使这种聚合物具有独特的增粘、抗剪切、耐温和耐盐的溶液性能,通常采用亲水单体和疏水单体共聚制备这类聚合物。
对常用亲水单体AMPS及各类疏水单体如季铵盐不饱和单体AMPDAC 和DAMAB、长链丙烯酸酯,Ⅳ一烷基丙烯酰胺和.Ⅳ一芳烷基丙烯酰胺的合成进行了综述。
关键词:单体;N一烷基丙烯酰胺;合成;疏水缔合聚合物;水溶性中图分类号:0 631.5 文献标识码:A 文章编号:0367—6358(2004)08—0437—05Synthesis of Monomers of Water—solubleHydrophobically Associating PolymersZ H O N G Chuan—ron91”。
H U A N G Rong—hual,DA I Hual(J.Pol yme r R es e a r c h Institute of S ic h u an U n i ve r gi t y,T he S ta t e K e y L ab o r at o r y of Polyme r Materials Engineering,Sich uan C hen gdu 610065,Ch ina l Z Material a n d B io e n g i ne e r i n g C ol l eg e of C h e n g d u University of T e ch no lo g y,Sic hua n Ch en gdu61 0059 Ch i na)Abstract:Hydrophobicall y associating wa te r-s ol ub le copolymers c on ta in many water-s ol ubl e g r o u p s and few hydrophobic groups.The copolymers sh ow e xc ell en t s ol ut io n pr op er ti es,su ch a s viscosifying,antis—hearing,antielectrolyte and heat—resisting p ro pe r ti es,b ec a us e of,the hydrop ho bic al ly a ss oc ia tin g effect.A sso ciat ing polymers a r e prepare d by t h e copolymer izat ion of w ater-solu ble and hydrophobi c monome rs.The syn t he s e s of water—solubl e mon ome r AM PS and h y dr op h ob i c monom ers inc lu di n g AMPDAC,DAM—AB,咒一a l ky l acrylates,N—alkyl acrylamides a n d N—arylalkyl acr yla mi des a r e re vi e w e d.Key words:mo nome rs;N—alky lacr yla mide s;s ynt hesi s;h ydr opho bica lly as s o c ia t i n g polymers;water—solu—b l e水溶性疏水缔合聚合物除含有大量的亲水极性发生在分子链之间,也可能发生在同一大分子链内。
Q235_碳钢表面SiO2
第52卷第9期表面技术2023年9月SURFACE TECHNOLOGY·209·Q235碳钢表面SiO2/PDMS超疏水涂层的制备及防腐性能研究于元昊,董玉花,邢静,陈亚敏,宁浩良,赵彤,彭淑鸽*(河南科技大学 化学化工学院 洛阳市产业废物资源化利用工程重点实验室,河南 洛阳 471000)摘要:目的提高Q235碳钢的耐腐蚀性能。
方法在Q235表面先提拉聚二甲基硅氧烷(PDMS),预固化后再次提拉含疏水气相二氧化硅的PDMS分散液,完全固化后在Q235表面构建一个SiO2/PDMS超疏水涂层。
通过扫描电镜、激光共聚焦显微镜、能谱、接触角、砂纸磨损、划格试验对涂层的形貌、结构和表面性质进行分析;采用电化学工作站对涂层的耐腐蚀性和耐久性进行评价。
结果SiO2纳米粒子被镶嵌在PDMS中,在Q235表面形成了一种微纳粗糙结构,平均粗糙度为2.2 μm;涂层表面能仅为5.6 mJ/m2,接触角为152.6°;涂层机械稳定性和结合力优异,砂纸磨损15个周期及划格试验30个周期后,仍保持超疏水。
电化学研究表明,在Q235表面引入SiO2/PDMS后,阻抗提升了2个数量级,电容降低了6个数量级;腐蚀电位正向移动了0.419 2 V,腐蚀电流密度降低了3个数量级;涂层对Q235的防腐效率高达99.8%,呈现出优异的耐腐蚀性。
在腐蚀液中浸泡一周后,SiO2/PDMS涂层仍保持超疏水和优异的耐腐蚀性,表明涂层耐久性良好。
结论以PDMS为疏水层,纳米SiO2为填料构筑粗糙表面,通过条件控制实现防腐底层和超疏水表层间的界面融合,从而引入稳定的SiO2/PDMS超疏水涂层,提高了Q235的耐腐蚀性和耐久性。
本研究为在金属表面构筑稳定的超疏水涂层提供了一种方法,有望拓展金属在恶劣环境中的应用。
关键词:超疏水;耐腐蚀;复合涂层;Q235碳钢;聚二甲基硅氧烷;SiO2中图分类号:TG172 文献标识码:A 文章编号:1001-3660(2023)09-0209-11DOI:10.16490/ki.issn.1001-3660.2023.09.017Preparation and Anti-corrosion Properties of SiO2/PDMSSuper-hydrophobic Coating on Q235 Carbon Steel YU Yuan-hao, DONG Yu-hua, XING Jing, CHEN Ya-min, NING Hao-liang, ZHAO Tong, PENG Shu-ge*(Luoyang Key Laboratory of Industrial Waste Resource Utilization, School of Chemistry & Chemical Engineering,Henan University of Science and Technology, Henan Luoyang 471000, China)ABSTRACT: Metal corrosion has brought huge losses to human society, so it is of great significance to study the corrosion and protection of materials. To improve the corrosion resistance of Q235 carbon steel, the work aims to prepare the SiO2/PDMS super-hydrophobic coating on the surface of Q235, and discuss the corrosion resistance and mechanism of the composite coating.收稿日期:2022-07-15;修订日期:2022-12-13Received:2022-07-15;Revised:2022-12-13基金项目:国家自然科学基金(22175057)Fund:The National Natural Science Foundation of China (22175057)引文格式:于元昊, 董玉花, 邢静, 等. Q235碳钢表面SiO2/PDMS超疏水涂层的制备及防腐性能研究[J]. 表面技术, 2023, 52(9): 209-219. YU Yuan-hao, DONG Yu-hua, XING Jing, et al. Preparation and Anti-corrosion Properties of SiO2/PDMS Super-hydrophobic Coating on Q235·210·表面技术 2023年9月In this study, Q235 with a diameter of 13.5 mm and a thickness of 2.0 mm was selected as the metal substrate, and was ultrasonically cleaned by acetone, ethanol and deionized water respectively. Then, the pretreated Q235 was immersed in polydimethylsiloxane (PDMS) dispersion and hydrophobic vapor silica nanoparticles/PDMS dispersion successively, and was pulled at a speed of 1 mm/min to introduce SiO2/PDMS super-hydrophobic composite coating on the surface of Q235. The morphology, microstructure, and surface characteristics were investigated by field emission scanning electron microscope (FESEM, JSM-7610FPlus), confocal laser scanning confocal microscope (CLSM, KEYENCE/VK-X1100), energy dispersive X-ray spectrometer (EDS), contact angle measuring instrument (SDC-100), sandpaper abrasion test, knife scratching and tape stripping test. The anti-corrosion property of the SiO2/PDMS super-hydrophobic coating was evaluated by electrochemical impedance spectrum (EIS) and Tafel polarization curve with 3.5wt.% sodium chloride solution as the corrosive medium. The FESEM, CLSM and EDS characterization results showed that the SiO2/PDMS super-hydrophobic coating had been successfully coated on the surface of Q235, and the surface of Q235 became rough and presented a strewn gully structure after the super-hydrophobic coating modification. The average roughness was2.2 μm. The surface energy of coating was only 5.6 mJ/m2, the contact angle was 152.6°, and the coating remainedsuper-hydrophobic after 15 cycles of sandpaper wear and 30 cycles of taping and peeling, indicating that the surface of Q235 had excellent super-hydrophobicity. In addition, the EIS results showed that the introduction of SiO2/PDMS super-hydrophobic coating on the surface of Q235 increased the impedance value by two orders of magnitude and decreased the capacitance value by six orders of magnitude. The Tafel curve showed that the corrosion potential of super-hydrophobic coating/Q235 was 0.419 2 V higher than that of the bare Q235, the corrosion current was reduced by three orders of magnitude, and the protection efficiency of the coating could be as high as 99.8%, demonstrating that the coating had excellent corrosion resistance. In addition, the durability test showed that the SiO2/PDMS coating retained super-hydrophobicity and excellent corrosion resistance after a week of immersion in corrosion solution, implying that the SiO2/PDMS coating had good anti-corrosion durability.In conclusion, with PDMS as hydrophobic coating and SiO2 nanoparticles as filler to construct rough surface, a stable SiO2/PDMS super-hydrophobic coating can be prepared on the surface of Q235 by a simple dipping and pulling process. The dense PDMS coating plays a shielding role on the corrosive solution, and its excellent adhesion makes it become the intermediate bridge between the metal substrate and SiO2. The introduction of nano-sized SiO2 makes the surface of Q235 showa rough structure of microscopic convex, and enhances the stability of the system. The synergistic effect of PDMS and SiO2realizes the transformation from hydrophilic to super-hydrophobic surface of Q235 and improves the corrosion resistance of Q235. This study provides a facile method to construct a robust super-hydrophobic surface on metal surface, which is expected to expand the application of metal in harsh environment.KEY WORDS: super-hydrophobic; anti-corrosion; composite coating; Q235 carbon steel; polydimethylsiloxane; SiO2Q235碳钢作为一种重要的金属工程材料,在交通建筑、制造业、航空等行业中应用广泛。
表面处理英语
阳极氧化anodic oxidation阳极酸化处理anodizing (英),anodising (美)阳极酸化皮膜anodic oxide coating,anodic oxide film自然酸化natural oxidation阳极酸化涂装复合皮膜combined coating of anodic oxide and organic films 化学氧化膜chemical conversion coatingconversion coating电解electrolysis电解液electrolytic solution阳极anode阴极cathode辅助电极auxiliary electrode极间距离distance between electrodes,anode-cathode distance电解电压bath voltage电流密度current density电流分布current distribution皮膜产生率coating ratio活性化处理activation去离子水deionizer water散射diffuse reflection镜面反射mirror reflection specula reflection反射率reflectivity reflectance光泽gloss,luster面光泽度relative-specula glossiness色差color difference灰度grey scale研磨材abrasive染料 dye dyestuff水溶性染料water soluble dye油溶性染料oil soluble dye治具jig,rack电解框frame for racking前处理pretreatment梨地处理mat(matt)finish环形加工spin finish发丝hair-line finishDiamond-cut finish光泽处理退光bright finish,bright dipping研磨sanding ,grinding ,polishing皮带研磨belt sanding ,belt grinding ,belt polishing振动研磨 barrel polishing,barreling,tumbling电解研磨electrolytic polishing化学研磨chemical polishing,chemical brightening脱脂degreasing碱蚀alkaline degreasing酸脱脂acid degreasing有机溶剂脱脂organic solvent degreasing乳胶脱脂emulsion degreasing电解蚀刻electrolytic etching中和demitting直流法direct current anodizing交流法alternating current anodizing交直重叠法process of superimposed direct current on alternating current定电流法constant current anodizing定电压法constant voltage anodizing草酸皮膜oxalic acid anodic oxide coating硫酸皮膜sulphoacid anodic oxide coating硬质皮膜hard anodic oxide coating原色皮膜self-color anodic oxide coating,integral color anodic oxide coating电解染色皮膜electrolytic colored anodic oxide coating多孔质皮膜porous anodic oxide film阻挡层膜barrier layer anodic oxide coating功能皮膜functional coating膜flexible anodic oxide吹付け染色spray dyeing涂布染色daub dyeing菲林法photo-printing印刷染色法direct printing转写染色法heat transfer printing脱膜 removing of coating,stripping of coating封孔处理sealing of anodic oxide coating水合封孔处理hydro-thermal sealing水蒸气封孔处理steam sealing热水封孔处理boiling water sealing镍盐封孔处理nickel sealing化学氧化处理boehmite process电解涂装electrodeposition coating,electrophoretic coating磷酸盐法phosphate process皮膜单元oxide cell多孔质层porous layer一水合氧化铝boehmite皮膜厚度coating thickness表面粗度surface roughness皮膜均一性uniformity of film皮膜表面密度apparent density of film皮膜质量coating mass阳极酸化皮膜的固化ageing皮膜烧焦burning of anodic oxide coating皮膜破坏cracking of anodic oxide coating,crazing of anodic oxide coating,stress cracking阳极粉化blooming挂灰sealing smut风化weathering bloom干涉色iridescence孔腐蚀pitting corrosion局部腐蚀local corrosion系状腐蚀filiform corrosion接触腐蚀galvanic corrosion耐侯性weather resistance耐腐蚀性corrosion resistance耐磨性abrasion resistance,wear resistance耐污染性stain resistance写像性image clarity光泽brightness色堅ろう度color fastness脱离耐力dielectric strength击穿电压breakdown voltage色匹配度color matching色的许容差color tolerance皮膜厚試験coating thickness test盐雾试验salt spray test盐雾试验copper accelerated acetic acid salt spray test(CASS test) 耐碱试验alkali resistance test封孔试验sealing test皮膜硬度试验hardness test of anodic oxide coating耐磨耗性试验abrasion resistance test,光堅ろう度试验accelerated light fastness test色差计color-difference meter屋外曝晒试验outdoor-exposure test加速耐候性试验accelerated weathering test。
第1节 绪论和组织形貌分析
材料特性表征Characteristic Technique of Materials教材:材料分析方法 杜希文 原续波 天津大学出版社 2006任课教师:董文飞 吉林大学电子科学与工程学院地址:南区理化楼D113 Email: dongwf@绪 论材料特性表征是讲述材料分析测试技术及相关 理论的一门课程。
材料就是用以制造有用物件的 物质。
材料的发展标志着社会的进步,比 如石器的广泛使用是“石器时代”, 相似的还有“青铜时代”和“铁器时 代”等等。
材料和信息与能源被称为现代文明 的三大支柱。
石器时代: 硅酸盐青铜器时代: 铜合金铁器,水泥,钢时代, 石油,信息……绪 论材料科学工程的四个基本要素成分} 结构加工性能成分和结构从根本上决定材料的性能成分决定性能有良好的塑性和韧 性,能承受冲击和振 动荷载,易于加工和 装配,广泛应用于建 筑工程中钢材:铁碳合金质轻、机械性能好, 适宜的阻隔 性与渗透性,化学稳定性好,光 学性能优良,透明卫生性良好, 阻气包装、防潮包装、防水包装、 保香包装 、保鲜包装,无毒, 良好的加工性能和装饰性高分子聚合物结构决定性能飞蛾、蚊子的眼部结构---复眼决定其具有低的反 光性,异常黑,夜间飞行不易被敌人察觉。
蚊子复眼的微米-纳米双重结构(a)-(e)及由此模拟的人 造复眼结构(f)结构决定性能(a) (c)(b)(d)Self-cleaning effect and iridescence colors结构决定性能(c)(d)Superhydrophobic ability: high surface roughness and low surface energy.Irdisecence: regular microstructures.The contact angle is about 158°±2°(superhydrophobility, > 150°)不但具有超疏水而且还有彩虹色,多功能的仿生表面Sun et al, Soft Matter 6, 263 (2010),Highlights in Chemical Technology ,的,控制其运动方向。
硅橡胶聚丙烯酰胺@二氧化钛超疏水材料的制备及耐久性能
第42卷第3期青岛科技大学学报(自然科学版)2021年6月Journal of Qingdao University of Science and Tcchnology(Natural Science Edition)Vol..2No. J un.2021文章编号:1672-6987(2021)03-0080-05;DOI:10.16351/j.1672-6987.2021.03.013硅橡胶/聚丙烯酰胺@二氧化钛超疏水材料的制备及耐久性能胡云浩1,于良2,马小凡1,毕红华1,孙举涛1*(1.青岛科技大学高分子科学与工程学院,山东青岛266042;2.中国检验认证集团山东有限公司,山东青岛266071)摘要:针对人工合成的超疏水材料机械稳定性差以及复杂工艺性问题,通过简单的溶胶-凝胶法(so-gel)在硅橡胶表面原位生长二氧化钛,以制备高耐磨、柔性超疏水材料。
制备的超疏水橡胶接触角达到156.8°,可以在1kPa压力下承受100次磨损循环后仍保持其超疏水性.此外,在硅橡胶中添加聚丙烯酰胺(PAM)吸水树脂,利用吸水树脂与TiO2的强相互作用,在橡胶表面构筑TiO2-PAM的微纳米粗糙结构,可以使硅橡胶超疏水表面的磨损寿命提升到200次循环。
关键词:超疏水表面;机械稳定性;硫化硅橡胶;聚丙烯酰胺中图分类号:TB324文献标志码:A引用格式:胡云浩,于良,马小凡,等.硅橡胶/聚丙烯酰胺@二氧化钛超疏水材料的制备及耐久性能[J].青岛科技大学学报(自然科学版),2021,42(3):8084.HU Yunhao,YU Liang,MA Xiaofan,et al.Preparation and properties of wear-resistant,silicone rubber/polyacrylamide@Ti()2superhydrophobic materials[J].Journal of Qingdao University of Science and Technology(Natural Science Edition),2021,42(3):8084.Preparation and Properties of Wear-Resistant Silicone Rubber/ Polyacrylamide@TO2Superhydrophobic MaterialsHU Yunhao1,YU Liang2,MA Xiaofan1,BI Honghua1,SUN Jutao1 (.College of Polymer Science and Engineering,Qingdao University of Science and Technology,Qingdao266042,China;2.China Certification and Inspection Group Shandong Co.,Ltd.,Qingdao266071,China)Abstract:In view of the poor mechanical stability and complex processability of artificial superhydrophobic materials,a simple sol-gel method was used to have titanium dioxide(TiO?) particles in-situ“grown”from the surface of silicone rubber to prepare highly wear-resistant, and flexible superhydrophobic materials.The contact,angle of the prepared super-hydrophobic rubber reached156.8°,and its superhydrophobicity was maintained after100cycles of wear under a pressure of1kPa.Furthermore,the wear life of the superhydrophobic surface could be improved to200cycles after adding polyacrylamide(PAM),a water-absorbent,resin,to silicone rubber compounds.A robust,micro-nano rough structure of TiO2-PAM was built,on the rubber surface by taking advantages of the strong interaction between PAM and收稿日期:2020-06-21基金项目:山东省重点研发计划项目(2018GSF117019).作者简介:胡云浩(1997—)男,硕士研究生.*通信联系人.第3期胡云浩等:硅橡胶/聚丙烯酰胺@二氧化钛超疏水材料的制备及耐久性能81TiO?particles.Key words:superhydrophobic surface;mechanical stability;vulcanized silicone rubber;polyacrylamide超疏水材料指水在材料表面的接触角大于150°滚动角小于10°的材料.超疏水材料由于优异的疏水性、防冰性[12],减阻[3]等,被认为是一种有巨大潜力的材料.超疏水性表面通常需要2个基本特征:微米或纳米的表面形貌和非极性的表面化学性质,以帮助捕集稀薄的空气层,可减少固体表面与表面之间有吸引力的相互作用液体.但这种微纳结构和非极性化学物质十分脆弱,极易受到机械损坏和化学降解.因此机械耐久性是超疏水性表面在工业应用上的最重要的要求,而关于提高各种磨损的抵抗力的研究受到广泛关注[014.超疏水性表面上的机械接触或磨损会破坏甚至消除表面上的多尺度粗糙度特征,导致暴露亲水基团或者基体,从而导致疏水性受到破坏.而使用弹性基体来代替刚性基体,利用橡胶在受到剪切力时发生弹性变形的性能,分担外界机械力,减小对于表面微纳米结构的直接破坏,增强材料的疏水性稳定性.本研究提出了一种通过在溶胀的硅橡胶中进行溶胶-凝胶工艺来制备耐用的超疏水表面的简便方法.通过将催化剂溶胀到橡胶,再浸入钛酸四丁酯溶液中进行溶胶-凝胶反应,经过催化作用在橡胶表面“原位生长”出TiO2颗粒,形成多尺度粗糙结构.此外通过在橡胶中添加聚丙烯酰胺(PAM),利用PAM和硅橡胶相容性差,会从硫化胶中析出到表面的原理,制备PAM/TiO2微纳米粗糙结构,进一步提升超疏水的稳定性.1实验部分1.1实验材料与仪器混炼硅橡胶(0份白炭黑),深圳市正安有机硅材料有限公司;0.075mm的聚酰亚胺薄膜,广州北龙电子有限公司;过氧化二异丙苯(DCP)上海方瑞达化学品有限公司;正丁胺、乙醇(EA)、钛酸四丁酯(TBT)异丙醇,分析纯,天津北联精细化工有限公司;硬脂酸(SA)工业级,湖南长沙恒昌获得的中国化工有限公司;聚丙烯酰胺(PAM),600万〜1200万相对分子质量非离子聚丙烯酰胺,工业级,巩义市腾龙水处理材料有限公司.双辐筒开炼机,DL-6175BL型,宝轮精密检测仪器有限公司;真空平板硫化机,VC-50T-3-FT-MO-3-RT型,佳鑫电子设备科技(深圳)有限公司产品;扫描电子显微镜,JSM-7500F型,日本电子株式会社;接触角测量仪,JC200D2型,上海中晨数字技术设备有限公司.1.2实验步骤实验中选用的基体是硫化硅橡胶,00g混炼胶和3g DCP,0.5g PAM在开炼机上混炼均匀,硫化时用聚酰亚胺薄膜包覆胶片上下两个表面,防止胶片表面被模具污染,硫化温度为160 C.将硫化胶片用乙醇清洗完毕,裁剪成35mmX15mm的小块.硅橡胶超疏水表面的制备包括,将硫化胶片在正丁胺的水溶液中溶胀,然后在钛酸四丁酯溶液中进行溶胶凝胶反应.在30C的水浴下,将裁剪好的胶片在比例为1:2的正丁胺/水溶液中溶胀3h,然后转移到用比例为6:1的乙醇/钛酸四丁酯溶液中反应4h.在正丁胺的催化下,水与钛酸四丁酯在硅橡胶片表层反应,通过钛溶胶-凝胶过程在交联网络中生成TiO2颗粒并逐渐长大,最终在胶片表面原位生长出,从而形成TiO2多尺度粗糙结构.再对产物进行干燥,超声处理后,在80C水浴下,用质量分数3%SA/IPA溶液改性处理1h,然后用纯IPA浸泡1h,得到超疏水硅橡胶.1.表征用接触角测量仪对处理前后的硅橡胶进行表面接触角(CA)测试;通过在试样上放置20g砝码在砂纸上做循环线性磨耗,测试不同磨损周期接触角的变化,检测超疏水的稳定性;将试样喷金处理,用扫描电子显微镜对磨损前后的硅橡胶表面进行形貌分析.2结果与讨论2.1超疏水表面的形貌分析将未处理的硫化硅橡胶片与疏水改性后硅橡胶片进行喷金处理,使用扫描电镜(SEM)表征其表面形貌.分析疏水改性前后硫化硅橡胶片的形貌结构,如图1所示.82青岛科技大学学报(自然科学版)第42卷图1处理前后橡胶表面SEM照片Fig.1SEM images of rubber sheet before and after treated从图1(a)可见,未处理的硅橡胶表面光滑平整,没有明显的粗糙结构。
石油化工英语词汇
AAPG(American Association of Petroleum Geologists) 美国石油地质学家协会abandoned well 废弃井accumulation of oil 石油聚集acidic rock 酸性岩类acid treating 酸处理acid treatment of well 井内酸处理acoustic wave 声波additive 添加物aeolian deposit 风化afterburning 二次燃烧agglomerate 集块岩air pollution 空气污染albertite 黑沥青alkali rock 碱性岩类alluvial deposits 冲积层API(American Petroleum Institute) 美国石油协会anticline 背斜antirusting oil 防锈油ASTM(American Society for Testing and Materials) 美国材料试验协会automotive engine oil 车用机油basalt 玄武岩base oil 基础油bitumen 沥青blowout 井喷BOP(blowout preventer) 防喷器boiler 锅炉bottom hole pressure 井底压力bottom residue 残渣油brake fluid 刹车油bunker 船用重油catalyst 触媒catalytic reforming 媒组coal field 煤田core analysis 岩心分析cracked gasoline 裂解汽油cracking process 裂解法crude 原油crude oil 原油crude oil cracking 源由裂解cut back asphalt 涂料柏油dehydrogenation 脱氢density 密度derrick 井架development well 开发井diesel oil 柴油directional well 定向井discovery well 发现井distillate 分馏油distillation 蒸馏drilling 钻井EA(Environmental Assessment) 环境评价energy conservation 节约能源evaluation well 评价井exploration 探勘exploratory well 采勘井extract 萃取物extraction 萃取filling station 加油站flash point 闪火点float 浮筒floating roof tank 浮顶油槽flowing well 自喷井,自流井fluid catalytic cracking 流体媒裂法fossil fuel 矿物燃料fractionation 分馏fuel oil 燃料油gallon 加仑gasoline 汽油gas reservoir 气层geochemical exploration 地球化学探勘geochemical prospecting 地球化学探勘geophysical exploration 地球物理探勘如需转载,请注明来自:FanE『翻译中国』http;// geophysical prospecting 地球物理探勘heavy oil 重油heavy oil cracking 重油裂解hydrocarbon 碳氢化合物hydrocracking 加氢裂解hydrocracking process 加氢裂解法inert gas 惰性气体inflamable gas 易燃气体injection well 注入井isomer 异构物isomerization 异构化jet fuel 喷射机燃油joint venture 合资公司Jurassic period 侏罗纪kill (a well) 压井knocking 爆震laying of pipeline 管路铺设light crude 轻质原油light naphtha 轻质石油脑LNG(liquefied natural gas) 液化天然气LPG(liquefied petroleum gas) 液化石油气methane 甲烷methanol 甲醇motor oil 车用机油mud 泥浆multi purpose grease 多效润滑油脂naphtha 石油脑,轻油naphtha cracking 石油脑裂解naphtha reforming 石油脑重组national petroleum company 国营石油公司natural gas 天然气OAPEC(Organization of Arab Petroleum Exporting Countries) 阿拉伯石油输出国家组织octane number 辛烷直offshore drilling 海域钻井oil coke 石油焦oil industry 石油工业oil refinery 炼油厂oil well 油井OPEC(Organization of Petroleum Exporting Countries) 石油输出国家组织如需转载,请注明来自:FanE『翻译中国』http;// petrochemical industry 石油化学工业petrochemicals 石油化学产品petroleum geology 石油地质学petroleum industry 石油工业petroleum products 石油产品pipeline 管线posted price 牌价premium gasoline 高级汽油production well 生产井qualitative analysis 定性分析quality control 质量管理quantitative analysis 定量分析refinery 炼油厂refining 炼油reformate(reformed gasoline) 重组汽油reforming 重组reserves 蕴藏量reservoir 油层residual oil 残余油royalty 权利金seismic survey 震测探勘basalt 玄武岩base oil 基础油bitumen 沥青blowout 井喷BOP(blowout preventer) 防喷器boiler 锅炉bottom hole pressure 井底压力bottom residue 残渣油brake fluid 刹车油bunker 船用重油catalyst 触媒catalytic reforming 媒组coal field 煤田core analysis 岩心分析cracked gasoline 裂解汽油cracking process 裂解法crude 原油crude oil 原油crude oil cracking 源由裂解cut back asphalt 涂料柏油dehydrogenation 脱氢density 密度derrick 井架development well 开发井diesel oil 柴油directional well 定向井discovery well 发现井distillate 分馏油distillation 蒸馏drilling 钻井EA(Environmental Assessment) 环境评价如需转载,请注明来自:FanE『翻译中国』http;// energy conservation 节约能源evaluation well 评价井exploration 探勘exploratory well 采勘井extract 萃取物extraction 萃取filling station 加油站flash point 闪火点float 浮筒floating roof tank 浮顶油槽flowing well 自喷井,自流井fluid catalytic cracking 流体媒裂法fossil fuel 矿物燃料fractionation 分馏fuel oil 燃料油gallon 加仑gasoline 汽油gas reservoir 气层geochemical exploration 地球化学探勘geochemical prospecting 地球化学探勘geophysical exploration 地球物理探勘如需转载,请注明来自:FanE『翻译中国』http;// geophysical prospecting 地球物理探勘heavy oil 重油heavy oil cracking 重油裂解hydrocarbon 碳氢化合物hydrocracking 加氢裂解hydrocracking process 加氢裂解法inert gas 惰性气体inflamable gas 易燃气体injection well 注入井isomer 异构物isomerization 异构化jet fuel 喷射机燃油joint venture 合资公司Jurassic period 侏罗纪kill (a well) 压井knocking 爆震laying of pipeline 管路铺设light crude 轻质原油light naphtha 轻质石油脑LNG(liquefied natural gas) 液化天然气LPG(liquefied petroleum gas) 液化石油气methane 甲烷methanol 甲醇motor oil 车用机油mud 泥浆multi purpose grease 多效润滑油脂naphtha 石油脑,轻油naphtha cracking 石油脑裂解naphtha reforming 石油脑重组national petroleum company 国营石油公司natural gas 天然气OAPEC(Organization of Arab Petroleum Exporting Countries) 阿拉伯石油输出国家组织octane number 辛烷直offshore drilling 海域钻井oil coke 石油焦oil industry 石油工业oil refinery 炼油厂oil well 油井OPEC(Organization of Petroleum Exporting Countries) 石油输出国家组织如需转载,请注明来自:FanE『翻译中国』http;// petrochemical industry 石油化学工业petrochemicals 石油化学产品petroleum geology 石油地质学petroleum industry 石油工业petroleum products 石油产品pipeline 管线posted price 牌价premium gasoline 高级汽油production well 生产井qualitative analysis 定性分析quality control 质量管理quantitative analysis 定量分析refinery 炼油厂refining 炼油reformate(reformed gasoline) 重组汽油reforming 重组reserves 蕴藏量reservoir 油层residual oil 残余油royalty 权利金seismicsurvey 震测探勘acid gas 含硫气体acid oil 高含硫原油acid sulfate spring 酸性硫酸盐水泉active sulphur 活性硫air sweetening 空气氧化脱硫醇AircoHoover Sweetening 艾尔科胡佛脱硫法alabandite 硫锰矿alcohol ether sulfate 醇醚硫酸盐alkyl polyoxyethylene ether sulfate 烷基聚氧乙烯醚硫酸盐alkyl sulfate 烷基硫酸盐alkyl sulfhydryl 烷基硫醇alkyl sulfide 硫醚alkylated thiobisphenol 烷基化硫化双酚allyl isothiocyanate 异硫代氰酸烯丙酯aluminium potassium sulfate 硫酸铝钾aluminium sulphate 硫酸铝amine unit 醇胺脱硫化氢装置amino oxyethylene sulfate 氨基氧乙烯硫酸盐ammonium bisulfite 亚硫酸氢铵ammonium persulfate 过硫酸铵ammonium sulfate 硫酸铵ammonium thiocyanate 硫氰酸铵amyl mercaptan 戊基硫醇anaerobic sulfate reducer 厌氧硫酸盐还原菌anglesite 硫酸铅矿antimony pentasulfide 五硫化锑bacterial desulfurization 微生物脱硫barium sulfate scale 硫酸钡垢barium sulphate 硫酸钡barium sulphide 硫化钡belt detector 硫化氢探测仪beta-uranopilite β -水硫铀矿bisulfate 酸式硫酸盐bisulfide 二硫化物bisulfite cooking 亚硫酸氢盐蒸煮bisulfite 亚硫酸氢盐bluestone 天然硫酸铜;胆矾;蓝灰砂岩;硬粘土;青石brimstone 硫磺brochantite 水硫酸铜butyl hydrogen sulfate 硫酸氢丁酯calcium sulfate 硫酸钙calcium sulfide 硫化钙calcium sulfite 亚硫酸钙calcium sulphate 硫酸钙carbon bisulfide 二硫化碳carbon disulfide 二硫化碳carbon disulphide 二硫化碳cetyl alcohol sulfate 十六烷醇硫酸盐chemsweet process 化学脱硫工艺chirvinskite 含硫沥青Claus tailgas CBA process 硫回收尾气低温吸附过程cobaltous sulphate 硫酸钴combined sulfur 化合硫concentrated sulphuric acid 浓硫酸cooperite 天然硫砷化铂copper sulfate eletrode 硫酸铜电极copper-copper sulfate cell 铜-硫酸铜电池copperas 硫酸亚铁coppercopper sulphate half electrode 铜硫酸铜半电极cupric sulfate 硫酸铜cuprobond 硫酸铜处理cured rubber 硫化橡胶cyclical sulfide 环状硫化物desulfidation 脱硫作用Desulfovibrio 脱硫弧菌属desulfovibro 硫酸盐还原菌desulfuration 脱硫desulfurization catalyst 脱硫催化剂desulfurizer 脱硫塔desulphovibrio 脱硫弧菌desulphurization 脱硫desulphurize 脱硫devulcanizing 脱硫的diethyl thiourea 二乙基硫脲dihydrazine sulfate 硫酸二联氨酯dimethyl sulfide 甲硫醚direct desulfurization 直接脱硫disulfate 焦硫酸盐;硫酸氢盐disulfide 二硫化物dithiocarbamate 二硫代氨基甲酸酯dithiocarbonate 二硫代碳酸盐dithioglycidol 二硫代缩水甘油dithionic acid 连二硫酸doctor negative 低硫的doctor positive 高硫的doctor solution 试硫液doctor sweet 脱除硫醇的石油产品doctor test 检硫醇试验dodecyl mercaptans 十二烷硫醇elemental sulfur 元素硫elementary sulfur 元素硫enargite 硫砷铜矿Eshka method 埃斯卡测硫法ethyl mercaptan 乙硫醇ethyl sulfuric acid 乙基硫酸fatty acid sulfate 脂肪酸硫酸酯ferric sulfate 硫酸铁ferric sulfide 硫化铁ferrous sulfate 硫酸亚铁ferrous sulfide 硫化亚铁ferrous sulphate 硫酸亚铁flue gas desulfurization process 烟道气脱硫过程formolite number 硫酸甲醛值free sulfur 单体硫fuming sulfuric acid 发烟硫酸gas cure 气体硫化gas sweetening 天然气脱硫gersdorffite 砷硫镍矿glazier's salt 硫酸钾GR-P 聚硫橡胶harbolite 硫氢氮沥青HDS 加氢脱硫high sulfate-resistant cement 高抗硫水泥high-sulpur crude 高含硫原油hydrodesulfurization 加氢脱硫过程hydrodesulphurization 加氢脱硫hydrogen sulfide corrosion 硫化氢腐蚀hydrogen sulfide detector 硫化氢探测器hydrogen sulfide stripping 硫化氢脱除hydrogen sulfide 硫化氢hydrosulfate 硫酸氢盐hydrosulfide 氢硫化物hydrosulfite 亚硫酸氢盐hydrosulphite formaldehyde 连二亚硫酸钠甲醛hydroxylamine sulfate 羟胺硫酸盐hyposulfite 连二亚硫酸盐indirect desulfurization 间接脱硫iron protosulfide 硫化亚铁iron sulfide 硫化铁ironic sulfate 硫酸铁isosulfur map 等含硫值图jamesonite 脆硫锑铅矿juvenile hydrogen sulfide 深源硫化氢kerite 硫沥青;沥青类kieserite 水镁矾;硫镁矾lamp test 灯法定硫试验latiumite 硫硅碱钙石lauryl mercaptan 月桂基硫醇lauryl sulfate 月桂烷硫酸酯lignosulfite 亚硫酸纸浆废液low sulfur waxy residue 低硫含蜡渣油low-sulphur crude 低硫原油magnesium sulphate 硫酸镁mayberyite 富硫石油mercaptal 缩硫醛mercaptan sulfur 硫醇硫mercaptan 硫醇mercaptide 硫醇盐mercaptol 缩硫醇metabisulphite 偏亚硫酸氢盐methionine 甲硫氨酸methyl mercaptan 甲硫醇microbial desulfurization 微生物脱硫moderate sulfate-resistant type 中等抗硫酸盐型molybdenum disulfide 二硫化钼monocyclic sulfide 单环硫化物MSR 中等抗硫酸盐型mundic 磁性硫化铁nitrosyl-sulfuric acid 亚硝基硫酸non-sulfur modified polychloroprene rubber 非硫调氯丁橡胶non-sulfur vulcanization 非硫硫化oleum 发烟硫酸one-component polysulfide sealant 单组分聚硫密封剂onozote 加填料的硫化橡胶organic sulfide 有机硫化物organic sulfur 有机硫organosulfur emission 有机硫排放物overvulcanization 过度硫化oxidation sweetening 氧化脱硫permissible sulphur 允许含硫量persulfate 过硫酸盐polyphenylene sulfide 聚苯硫polysulfide 多硫化合物potassium persulfate 过硫酸钾presulfided catalyst 经预硫化的催化剂presulfiding of catalyst 催化剂预硫化presulfurization 预硫化quisqueite 高硫钒沥青;硫沥青realgar 鸡冠石;雄黄;二硫化二砷reduced crude direct desulfurization process 重油直接脱硫过程revultex 浓缩硫化乳胶rhodanate 硫氰酸盐roman vitrilo 硫酸铜RTV 室温硫化S 硫scorching 过早硫化;灼热的;烧焦似的selexol process 天然气脱硫skunk oil 含硫原油smeller 地质学家;含硫气井sodium bisulfite 亚硫酸氢钠sodium hydrosulfite 连二亚硫酸钠sodium sulfate 硫酸钠sodium sulfide 硫化钠sodium sulfite 亚硫酸钠sodium sulfocyanate 硫氰酸钠sodium sulphate 硫酸钠sodium sulphide 硫化钠sodium sulphite 亚硫酸钠sodium thiocyanate 硫氰酸钠sodium thiosulfate 硫代硫酸钠solar-powered H2S analyzer 太阳能硫化氢分析仪sour corrosion 含硫腐蚀sour crude oil 含硫原油sour crude 含硫原油sour formation 含硫层sour gas line pipe 含硫气体管线管sour gas well 含硫气井sour gas 含硫气sour product 含硫油品sour water stripping 含硫污水汽提sour water 含硫污水sour well 含硫井SRB 硫酸盐还原菌SSC 硫化物应力裂纹stack desulfurization 排烟脱硫stick sulfur 棒状硫磺stink damp 硫化氢气strontium sulfate scale 硫酸锶垢strontium sulfate 硫酸锶Su 硫sulf-=sulfa- 或sulfo- 硫的sulfaldehyde 硫醛sulfamide 硫酰胺;磺酰胺sulfate ash 硫酸化灰分sulfate ion 硫酸根离子sulfate reducers 硫酸盐还原菌sulfate reducing bacteria 硫酸盐还原菌sulfate reduction 硫酸盐还原sulfate residue test 硫酸化残渣试验sulfate resistant cement 抗硫酸盐水泥sulfate scale 硫酸盐垢sulfate 硫酸盐;硫酸酯sulfate-sodium type 硫酸钠水型sulfation 硫化作用;硫酸化sulfidal 胶状硫sulfidation corrosion 硫蚀sulfidation 硫化sulfide embrittlement 硫化氢致脆sulfide 硫化物sulfide-stress cracking 硫化物应力腐蚀开裂sulfidization 硫化sulfinyl 亚硫酰基sulfite 亚硫酸盐;亚硫酸酯sulfo- 硫代;磺基sulfocompound 含硫化合物sulfoether 硫醚sulforhodanide 硫氰酸盐sulfur by bomb method 氧弹法测定的硫含量sulfur content by Schoeninger 申宁格法测定的硫含量sulfur content 含硫量sulfur corrosion 硫腐蚀sulfur dioxide 二氧化硫sulfur elimination 脱硫;去硫sulfur ether 硫醚sulfur group 硫族sulfur hexafluoride 六氟化硫sulfur isotope ratio 硫同位素比值sulfur oxide 硫的氧化物sulfur recovery facility 硫磺回收装置sulfur recovery 硫回收sulfur removal 脱硫sulfur transfer catalyst 硫转移催化剂sulfur trioxide 三氧化硫sulfur 硫;用硫处理;用亚硫酸盐处理;用硫磺烟熏sulfur-bearing oil 含硫石油sulfur-coated urea 含硫尿素sulfur-free 不含硫的sulfur-phosphorous type additive 硫磷型添加剂sulfurated 加硫的;硫化的sulfuration 硫化作用sulfurator 硫磺熏蒸器sulfuret 硫化物;硫醚;硫化sulfuretted hydrogen 硫化氢sulfuric acid alkylation process 硫酸烷基化过程sulfuric acid process 硫酸法sulfuric acid 硫酸sulfuric anhydride 三氧化硫sulfurized base oil 含硫原油sulfurizing 渗硫sulfurous acid 亚硫酸sulfurous fuel 含硫燃料sulfurous gas 含硫气体sulphate attack 硫酸盐侵蚀sulphate reducing bacteria 硫酸盐还原菌sulphate salinity 硫酸盐矿化度sulphate-ethoxylated alcohols 乙氧基化醇类的硫酸盐;乙氧基化醇类的硫酸酯sulphate-resistant cement 抗硫酸盐水泥sulphating 硫酸盐化;硫酸酯化sulphide attack 硫化物的腐蚀作用sulphite 亚硫酸盐sulpho-aluminous cement 硫酸铝水泥sulphur dioxide 二氧化硫sulphur removal 除硫sulphur 硫sulphur-bearing crude 含硫原油sulphurate 加硫;硫化sulphureous 硫的;含硫的sulphuretted 硫化的sulphuric acid 硫酸sulphuric dioxide 二氧化硫sulphurized lubricant 含硫润滑剂sulphurizing 渗硫sulphurous acid 亚硫酸sweet corrosion 无硫腐蚀sweet crude oil 无硫原油sweet dry gas 脱硫干气sweet gas 无硫气;低硫气sweet oil 无硫油;低硫油品sweet well 低硫井sweet 甜的;新鲜的;脱去硫的油品sweetener 脱硫设备sweetening 脱硫;脱臭tert-butyl mercaptan 叔丁基硫醇thiacyclopentane 硫杂环戊烷thio 含硫的thioalcohol 硫醇thiocarbamide 硫脲thiocyanate 硫氰酸盐thioelaterite 硫弹性沥青thioester 硫酯thioether 硫醚thiogenic bacteria 产硫细菌thiokerite 九硫沥青thiokol 聚硫橡胶thiol 硫醇thionyl 亚硫酸基thiophenic sulfur 噻吩硫thiophenol 硫酚thiophile 新硫的thioretinite 含硫树脂thiosulfate 硫代硫酸盐thiosulfuric acid 硫代硫酸thiourea type accelerator 硫脲素促进剂thiourea 硫脲thiourea-formaldehyde precondensate 硫脲甲醛预缩物trinascol 稠硫沥青石油trinkerite 富硫树脂trisulfide 三硫化物tscherwinskite 贫硫沥青tschirwinskite 含硫沥青ullmanite 锑硫镍矿undercuring 欠处理;欠硫化;欠熟velikhovite 氮硫沥青vishnevite 硫碱钙霞石vitriol 硫酸盐;矶;硫酸;刻薄vitriolic acid 硫酸vitriolization 硫酸处理;溶于硫酸volcanite 火山岩;歪辉安山岩;辉石;含硒硫磺VR 硫化橡胶vulcanizate 硫化产品;硫化橡胶vulcanization accelerator 硫化促进剂vulcanization activator 硫化活化剂vulcanization of rubber 橡胶硫化vulcanization retardant 硫化延缓剂vulcanization 硫化;硬化;热补vulcanizator 硫化剂vulcanized rubber 硫化橡胶vulcanizer 硫化剂vulcanizing agent 硫化剂vulcanizing ingredient 硫化配合剂vultex 硫化胶乳weidgerite 硫弹沥青wetherilite 硫弹沥青wiedgerite 硫弹沥青wischnewite 硫碱钙霞石zinc dialkyl dithiocarbamate 二烷基二硫代氨基甲酸锌zinc dialkyl dithiophosphate 二烷基二硫代磷酸锌mid of year method 年中法MID PLOT 骨架识别图MID 多离子检测器MID 骨架识别mid- 中Mid-Arctic Ridge 北冰洋中脊Mid-Atlantic Ridge 大西洋中脊Mid-Atlantic Rift Valley 中大西洋裂谷mid-channel bar 河心沙坝Mid-continent 中陆地区mid-depth 中深Mid-Indian Ridge 印度洋中脊Mid-Indian rift system 印度洋中央裂谷系mid-infrared spectral 中红外光谱的mid-latitude 中纬度;等比例纬线mid-ocean canyon 大洋中央峡谷mid-ocean plateau 洋中海台mid-ocean ridge crest 洋中脊峰线mid-plate continental margin 板块中间大陆边缘mid-plate melting anomaly 板内熔融异常mid-plate 板块中部mid-point pump station 中间泵站mid-point rate 平均汇率mid-pumparound 中段循环回流mid-stroke cavitation 中间冲程空化mid-structure 构造中部mid-value 中值mid-volume plot 中体积百分曲线mid. 中间;中点midar 近程移动目标显示雷达MIDAS 导弹防御警报系统midchannel buoy 航道中央浮标midchannel 河流中部middle diagenesis 中期成岩作用middle distillate 中间馏分middle fan 海底扇中扇middle ground buoy 中沙浮标middle ground 潮间浅滩middle intertidal zone 中潮间带middle latitude 中纬度middle layer 中间层middle limb 中翼middle line bulkhead 中线舱壁middle line keelson 中线内龙骨middle man 经纪人middle management level 中层管理水平middle management 中级管理;中层管理middle part cut and weight method 中段切断称重法middle point 中点middle pressure hydrocracking 中压加氢裂化middle sample 中间样品middleshoreface 中临滨middle square method 平方取中法middle term 中项middle water 层间水middle 中央;中间的;中等的;中项middle-fan channel 中扇水道middle-gray range 灰色范围middling 中等的;中矿;中级品midfan 中部洪积扇midget 小型Midland Bank 米兰银行midland 陆中的midline 中线midlittoral 潮间的MIDM 骨架识别M 值MIDN 骨架识别N 值midnight ethyl 车用凝析油或天然汽油midnight 午夜;漆黑midocean 海洋中央midoceanic rift 洋中裂谷midoceanic rise crest 洋中隆起顶部midoceanic 大洋中央的midpercent curve 中百分曲线midpoint of pay zone 油层中部深度midpoint weighting 中点权midpoint 中点midrange 中列数midsection 中间截面midship coefficient 舯剖面系数midship shaft 船的中轴midship 船中央;舯midst 正中midtrough 地堑中部midway 中途;在中途midwinter shutdown 隆冬停输Mie scatter 米氏散射MIEP 多用途集成电子信息处理机Miesch Q-mode factor analysis 米舍Q 型因子分析MIFL 国际频率总表。
超疏水表面的制备方法
功 能 高 分 子 学 报Journal of Fu nctional Polym ers Vol.21No.22008年6月收稿日期:2008-03-10基金项目:国家自然科学基金(10672197)作者简介:石 璞(1976-),男,安徽安庆人,讲师,在读博士,研究方向:生物医学材料。
E -m ail:s hipu1976@通讯联系人:陈 洪,E -mail:ch enh ong cs@综 述超疏水表面的制备方法石 璞1,3, 陈 洪2, 龚惠青3, 袁志庆1, 李福枝3, 刘跃军3(1.中南大学粉末冶金研究所,长沙410083; 2.中南林业科技大学,长沙410004;3.湖南工业大学包装新材料与技术重点实验室,湖南株洲412008)摘 要: 超疏水表面材料具有防水、防污、可减少流体的粘滞等优良特性,是目前功能材料研究的热点之一。
其中超疏水表面的制备方法是研究的关键点。
介绍和评述超疏水表面的制备方法,对该领域的发展方向进行了展望。
关键词: 超疏水;表面;制备方法中图分类号: O647 文献标识码: A 文章编号: 1008-9357(2008)02-0230-07Methods to Prepare Superhydrophobic SurfaceSH I Pu 1,3, CH EN H ong 2, GONG H u-i qing 3, YUAN Zh-i qing 1, LI Fu -zhi 3, LIU Yue -jun 3(1.Institute o f Pow der M etallurgy ,Central South U niv ersity ,Chang sha 410083,China;2.Central South University of Forestry and Technology ,Changsha 410004,China;3.Key Laboratory ofNew Material and Technology for Package,Hunan University of Technology ,Zhuzhou 412008,Hunan,China)Abstract: Superhydr ophobic m aterials have received tremendous attention in recent year s because of its special proper ties such as w ater -proof,ant-i po llution,reduction resistance o f flow ing liquid,etc.It beco mes ho tspo t research in functional m aterial field,and the preparation m ethods to acquir e excellent superhydropho bic surface are key to the r esearch.Repr esentative articles in r ecent years about prepar ation methods are review ed in this article.T he prospect of dev elo pments is proposed.Key words: super hy drophobic;surface;preparation methods自从Onda 等[1]1996年首次报道在实验室合成出人造超疏水表面以来,超疏水表面引起了研究人员的广泛兴趣。
利用银镜反应制备梯度润湿性表面
利用银镜反应制备梯度润湿性表面*周亚丽,李 梅(上海交通大学化学化工学院,上海200240)摘要 利用工艺简单的银镜反应制备了润湿性均一的纳米银表面。
该表面具有一定的粗糙度,随着与低表面能的正十二烷基硫醇自组装时间的延长,银表面的接触角逐步增大,并达到超疏水性。
通过调节正十二烷基硫醇溶液的浓度或滴加速度,能在同一银表面的不同位置实现从疏水性到超疏水性的梯度润湿性调控。
关键词 银镜反应 梯度润湿 超疏水 正十二烷基硫醇 自组装Fabrication of Wettability Gradient Surface by Silver Mirror ReactionZHOU Y ali,LI M ei(Scho ol of Chem istry and Chemical T echno log y,Shang hai Jiaoto ng U niver sity,Shang hai 200240)Abstract Silv er mirr or reaction is used as a facile method to sy nthesize nano -silv er sur face w ith unifo rm wetta -bilit y.T he r ough surfaces ex hibit hy dr opho bic pr operties.A further self -assembly w ith dodecanethio l mo no lay er can increase co ntact angles on silv er sur faces and lead to a superhydro pho bic behav ior.A g radient w ettability r ang ing fro m hydro phobicit y to superhydro phobicity in differ ent positions can be achieved o n one silver surface by adjusting the co n -centrat ion or adding t he r ate of dodecanethiol solution.Key words silver mir ro r reactio n,g radient wettability ,super hy dr ophobic,n -do decanthiol,self -assembly*国家自然科学基金资助项目(60577049);上海市基础研究重点项目(08JC1412300)周亚丽:女,1981年生,硕士研究生,主要从事特殊润湿性表面的研究 李梅:通讯作者,副教授,研究方向为材料表面纳米结构的制备与性能、纳米复合材料 E -mail:meili@0 引言表面梯度材料是通过表面形貌结构或表面化学成分的连续变化从而达到材料的表面物理或化学性质连续变化的一类功能界面材料。
HIGHLY CORROSION-RESISTANT AND WEARING-RESISTANT
专利名称:HIGHLY CORROSION-RESISTANT ANDWEARING-RESISTANT MEMBER WITHTHERMAL-SPRAYING DEPOSIT ANDPOWDER FOR THERMAL-SPRAYINGDEPOSIT FORMATION FOR FORMING THESAME发明人:IWANAGA, Kengo,YAMAZAKI, Yuji,HIRATA, Hiroo申请号:JP2009001058申请日:20090310公开号:WO10/103563P1公开日:20100916专利内容由知识产权出版社提供摘要:A corrosion-resistant and wearing-resistant member is provided which comprises a metallic member and a thermal-spraying deposit having corrosion resistance and wearing resistance formed on that surface of the metallic member which is to be in contact with a resin generating a highly corrosive gas. Also provided is a thermal-spraying powder. The highly corrosion-resistant and wearing-resistant member having a thermal-spraying deposit is one obtained by subjecting a metal powder to thermal spraying on a metallic base to form a thermal-spraying deposit on a surface of the metallic base. The member is characterized in that the thermal-spraying deposit is a composite boride cermet of a tetragonal Mo2(Ni,Cr)B2 type or tetragonal Mo2(Ni,Cr,V)B2 type. The powder for forming a thermal-spraying deposit is made of a composite boride cermet of a tetragonal Mo2(Ni,Cr)B2 type and comprises 4.0-6.5 mass% boron, 39.0-64.0 mass%molybdenum, and 7.5-20.0 mass% chromium, the remainder being at least 5 mass% nickel and incidental elements.申请人:IWANAGA, Kengo,YAMAZAKI, Yuji,HIRATA, Hiroo地址:JP,JP,JP,JP国籍:JP,JP,JP,JP代理机构:OHTA PATENT OFFICE更多信息请下载全文后查看。
纳米Si02
纳米SiO2/聚酰胺网超疏水复合材料沿面闪络特性研究马国爽a,刘兆宸a,闫纪源a,谢庆a,王鹏b(华北电力大学 a.电气与电子工程系;b.机械工程系,河北保定071000)摘要:绝缘材料的沿面闪络特性受许多因素的影响,如表面粗糙度、纳米填料和化学官能团。
本研究以聚酰胺网为支架,以疏水纳米二氧化硅颗粒为改性材料,基于溶解和再凝固的处理方法,将纳米填料嵌入聚酰胺网中。
通过改变网孔尺寸确定微观结构,利用氟化纳米颗粒改变复合表面化学基团。
研究了微结构/纳米填料对沿面闪络的耦合效应,同时赋予了材料超疏水性能。
结果表明:当聚酰胺网目数为300目时,SiO2/聚酰胺网超疏水复合材料具有最佳的抗闪络性能,闪络电压提高20%。
关键词:聚酰胺网;硅橡胶;纳米改性;沿面闪络;超疏水中图分类号:TM215文献标志码:A文章编号:1009-9239(2022)06-0060-04DOI:10.16790/ki.1009-9239.im.2022.06.011Study on Surface Flashover Characteristics ofNano SiO2/Polyamide Mesh Superhydrophobic Composite MA Guoshuang a,LIU Zhaochen a,YAN Jiyuan a,XIE Qing a,WANG Peng b(a.School of Electrical and Electronic Engineering;b.Department of Mechanical Engineering,North China Electric Power University,Baoding071000,China)Abstract:The surface flashover of insulating material is affected by many factors,such as surface roughness,nano fillers,and chemical functional groups.In this study,polyamide mesh was used as support and hydrophobic nano silica particles were used as modified materials.Nano fillers were embedded into polyamide mesh by the treatment method of dissolution and resolidification.The microstructure was determined by changing the mesh size,and the chemical groups on the composite surface were changed by fluorinated nanoparticles.The coupling effect of microstructure/nano filler on surface flashover was studied,and the material was endowed with superhydrophobic properties.The results show that with the polyamide mesh of300mesh,the composite has the best anti flashover performance,and the flashover voltage was increased by20%.Key words:polyamide mesh;silicone rubber;nano modification;surface flashover;superhydrophobic0引言高压电力设备,特别是以绝缘子为代表的室外绝缘设备,对材料表面的沿面闪络性能提出越来越高的要求[1]。
蛋白质在格子模型中改进的PERM算法
7
48 —3:
(PzH2)2P3H
PHzPH3PH4 P2H3P6HPHznHzPHn}b 8 48 —3】
(PH)zPHzP3
(PH)zP4(HP)2HP2HP}knH3PHPzH 9 48 —3日
PHoPzHPHaRH
PHzP6}kP3HRPHPzHPHz(P£H)2 10 48 —3j
P2H2RH7RH2
一34(O.6 min) 一34(0.2 rain) 一33(3 min) 一32(1 rain) 一32(0.Z rain) 一32(1 min) 一31(O.6 min)
一34(0.081 min) 一34(O.186 min) 一33(O.033 rain) 一32(1.338 rain) 一32(0.759 m/n) 一32(O.006 rain) 一3“O.296 min)
计算机科学2007Voi.34№.7
蛋白质在格子模型中改进的PERM算法。)
李小妹 (广东工业大学计算机学院广州510006)
摘要PERM算法是当前蛋白质结构预镬l的棒子模型优化算法中最为有效的一种算法,在馕算法的基础上,我们 提出了一种改进的增长算法IPERM。谊方法简化了PERM算法中的权重计算公式,在遇到不同类型的残基时选用 不同的上下限阉值以提高算法的有效性,并根据链长的大小使用不同的网格足寸。实验结果表明。改进的增长算法使 得HP序列在格子模型中能更快地找到其能量最低构象。 关键词蛋白质折叠,格子模型,PERM
的实验是在掣州O 1.7G微处理器上每条序列运行5次后
得到的最好结果。表3中黑体宇显示的能量为当前所知的最
低能量值。从表3可以看出利用IPERM算法平均0.垂~80 秒时间可找到一条能量最低构象。通过比较可以看出 PERM算法较以前的优化算法得到的结果更优,面改进的 增长算法除了5号和6号链,其他链均能在比PERM算法更 短的时问内找到最小能量构象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Applied Surface Science 258 (2012) 7460–7464Contents lists available at SciVerse ScienceDirectApplied SurfaceSciencej o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /a p s u scA corrosion-resistance superhydrophobic TiO 2filmYawei Hu a ,b ,Siya Huang a ,Shan Liu a ,Wei Pan a ,∗a State Key Laboratory of New Ceramics and Fine Processing,Tsinghua University,Beijing 100084,PR ChinabCollege of Chemistry and Chemical Engineering,Shaanxi University of Science and Technology,Xi’an,Shaanxi 710021,PR Chinaa r t i c l ei n f oArticle history:Received 21December 2011Received in revised form 8April 2012Accepted 9April 2012Available online 20 April 2012Keywords:TiO 2filmSuperhydrophobicity Corrosion-resistancea b s t r a c tA superhydrophobic TiO 2film with water contact angle greater than 170◦on Hastelloy substrate was fab-ricated through simply dip-coating method from TiO 2precursor solution containing TiO 2nanoparticles with the average diameter 25nm,followed by heat-treatment and modification with fluoroalkylsilane (FAS)molecules.The as-obtained sample was characterized by scanning electron microscopy (SEM),X-ray diffractometer (XRD),X-ray photoelectron spectroscopy (XPS),and water contact angle measurement respectively.Moreover,the dynamic light scattering (DLS)size distribution of TiO 2aggregated particles in the TiO 2precursor solution containing P25particles was evaluated by Laser Particle Sizer.It is found that the TiO 2nanoparticles in TiO 2precursor solution play a crucial role to form high superhydrophobicity.Simultaneously,the superhydrophobic TiO 2film still showed great superhydrophobicity after corroded with strong acid or alkali solutions and protected the substrate from corrosion which should be critical to the potential application in industry.© 2012 Elsevier B.V. All rights reserved.1.IntroductionSuperhydrophobic surface with a water contact angle greater than 150◦has aroused considerable interest in recent years because of the important applications in numerous aspects such as self-cleaning surfaces,non-contaminated materials,corrosion-resistant films,microfluidic devices,and other important industrial pro-cesses [1–4].As is well known,superhydrophobicity of the solid surface is not only governed by the chemical composition but also by the geometrical microstructure of the surface.It is demonstrated that superhydrophobic surface can be fabricated via either creating micro-nanostructured hydrophobic surface or chemically modify-ing the micro-nanostructured surface with low surface free energy materials,or both [5–7].Up to now,a large number of superhy-drophobic surfaces have been generated [8–13].However,very few have achieved the extremely high contact angle (greater than 170◦).Since the extremely high contact angle is very interesting and has the wealth of potential practical application,such as the reducing-friction materials in turbulent flows,efforts have been made to investigate and exploit the superhydrophobic materials with water contact angles greater than 170◦[14].At the same time,extensive researches have recently been con-ducted to realize superhydrophobicity on various metal substrate [15–17].In order to protect metals from corrosion,organic coatings have been widely used in the industry [18–20].Many inorganic∗Corresponding author.Tel.:+861062772858;fax:+861062771160.E-mail address:panw@ (W.Pan).film are also very attractive because they are more resistant to oxidation and corrosion than metals in high temperature environ-ments or corrosive conditions [21–23],such as TiO 2films which are frequently used as protective coatings [24–26].Therefore,it is practically significant to create superhydrophobic TiO 2film with water contact angle greater than 170◦on metal substrates,espe-cially considering the corrosion-resistance in the application.Until now,there have been some reports of TiO 2superhydrophobic films through various process [27].However,few of publications on TiO 2superhydrophobic films with the water contact angles greater than 170◦has been reported,in contrast to the huge number of litera-tures on TiO 2superhydrophobic films.Herein,we report a simple method for preparation of a corrosion-resistance superhydropho-bic TiO 2film on Hastelloy substrate with water contact angle 173.7◦which consists of fabricating a micro-nanostructured TiO 2film and modifying the resultant film with fluoroalkylsilane molecules.Significantly,the superhydrophobic TiO 2film still showed great superhydrophobicity after corroded with strong acid or alkali solu-tion which indicated the good corrosion-resistance property,and the superhydrophobic TiO 2film protected the metal substrate from corrosion.2.Experimental details2.1.Pretreatment of the substrates and preparation of TiO 2superhydrophobic filmIn our experiment,the Hastelloy (mainly containing Ni:56%;Cr:22%;Mo:13%;W:3%;Fe:3%and Co:3%)is used as the substrate,and0169-4332/$–see front matter © 2012 Elsevier B.V. All rights reserved./10.1016/j.apsusc.2012.04.061Y.Hu et al./Applied Surface Science258 (2012) 7460–74647461all reagents are analytical grade and used without further purifica-tion.Specific process of preparation is as follows.2.1.1.Pretreatment of HastelloyThe Hastelloy substrates,with a size of10mm×20mm×2mm were mechanically polished by metallographic abrasive paper and ultrasonically cleaned in acetone,alcohol and deionized water for 30min,respectively.Then the Hastelloy substrates were immersed in1:1HCl aqueous for1h,washed with water,and blown dry. 2.1.2.Preparation of TiO2precursorTiO2precursor was prepared through a typical controlled hydrolysis process modified from the reported method[28].First, 8.2mL tetra-n-butyl titanate was dissolved in5.8mL ethanol.The other5.8mL ethanol was mixedwith0.4mL water and0.25mL68% aqueous solution of nitric acid,and0.9g TiO2nanoparticles with the average diameter25nm(P25,containing80%anatase and20% rutile)were added and ultrasonically dispersed,then the mixturewas added dropwise to the former solution under ice-cooled con-dition with vigorous stirring.0.5g poly(ethylene glycol)(PEG)was added to the solution as soon as the0◦C mixing wasfinished.The container was sealed with stirring to dissolve PEG completely under atmosphere,and then the TiO2sol solution was stirred another24h.2.1.3.Process of TiO2filmThe Hastelloy pre-treated was immersed in TiO2sol for5min, and withdrawn with the rate of3mm s−1.After drying naturally in the ambience,such an operation is repeated two times.Then the specimen was sintered at450◦C for60min with a heating rate 5◦C min−1.2.1.4.Surface modificationThe prepared specimen was placed into a 1.0wt%ethanol solution of CF3(CF2)7CH2CH2Si(OCH3)3(FAS-17),which had been hydrolyzed by the addition of a threefold molar excess of water. The specimen was left in this solution for1h,washed with ethanol, and blown dry,finally placed in an oven at140◦C for1h.2.2.Measurement and characterizationThe TiO2gel was obtained from the TiO2precursor TiO2precur-sor heated at80◦C for20h.The thermal property of the TiO2gel was characterized by thermogravimetric analysis(TG)operating in atmosphere at a heating rate of10◦C min−1from room tem-perature to800◦C.The phases and the crystallographic structures of the TiO2films were characterized by an X-ray diffractometer (XRD)with Cu K␣radiation( =0.154nm)at a scan rate of8◦min−1 ranging from20◦to90◦.Dynamic light scattering(DLS)size distri-bution of TiO2aggregated particles in the TiO2precursor solution containing P25particles was measured by Laser Particle Sizer.The surface topography and structures of the TiO2films were charac-terized by afield-emission scanning electron microscope(FE-SEM) operating at15kV.The chemical composition of the TiO2film modified with FAS was analyzed on an X-ray photoelectron spec-troscope(XPS)equipped with a standard monochromatic Al K␣source(hv=1486.6eV).Water contact angles were measured with a drop shape analyzer at ambient temperature.Water droplets were dropped carefully on to the surfaces and the average value offive measurements at different positions of the sample were adopted as the contact angle.Advancing and receding contact angles were recorded while the water was added to and withdrawn from the drop,respectively.The corrosion-resistant property of the super-hydrophobic TiO2film was so good that the results could be found by eyes.The metal substrates with and without superhydrophobic TiO2films were placed into the corrosion solutions for100h,and Fig.1.The TG pattern of the TiO2gel obtained from the TiO2precursor without TiO2 P25nanoparticles.the corrosion-resistant property of metal substrates with super-hydrophobic TiO2films was evaluated by the photographs of the corrosion solutions.3.Results and discussionAccording to the TG pattern of the TiO2gel obtained from the TiO2precursor without TiO2P25nanoparticles heated at80◦C for 20h(Fig.1),the organic matter in TiO2gel is decomposed before 450◦C completely,which indicates that an annealing treatment at a temperature equal to or greater than450◦C may be required to eliminate the organism residing in the TiO2gel.The SEM images of the TiO2films prepared from the TiO2precur-sor solution containing TiO2P25nanoparticles with heat treatment at450◦C are shown in Fig.2a and b.Fig.2a presents a typical SEM image,which exhibits that the morphology of the TiO2film is composed of nanoparticles with sizes about50–200nm and the relatively small nanoparticles are aggregated to form clusters with the sizes about1m.As a result,the TiO2film containing TiO2 P25nanoparticles with heat treatment at450◦C shows micro-and nano-hierarchical structure.And after modified with low surface energy material FAS,the TiO2film displays excellent superhy-drophobic property with the water contact angle of173.7◦and contact angle hysteresis of less than5◦.Fig.2b displays the cross-section SEM image,from which it can be found that the thickness of TiO2film is about500nm.However,the surface morphology of TiO2film fabricated from the TiO2precursor solution without TiO2P25nanoparticles with heat treatment at450◦C shows that thefilm isflatter(Fig.2c)than that fabricated from the TiO2precursor containing P25nanoparti-cles,and its water contact angle and contact angle hysteresis after modified with FAS are only125.3◦and31.8◦,respectively,which indicate that the TiO2P25nanoparticles added into the TiO2pre-cursor solution have an important influence on formation of great superhydrophobicity.The particle size of the TiO2precursor solution containing TiO2 P25nanoparticles was measured by the Laser Particle Sizer.The result suggests that the TiO2P25nanoparticles in the TiO2precur-sor solution obviously generate aggregation with a size range of 150–1200nm(most frequent size,1000nm)(Fig.3),which plays a crucial role in forming the micro-and nanostructured hierarchi-cal structure of TiO2surface.The hierarchical structure of surface likely leads to the efficient trapping of numerous air pockets in the TiO2film surface which makes the TiO2surface minimal contact7462Y.Hu et al./Applied Surface Science 258 (2012) 7460–7464Fig.2.SEM images of TiO 2films of (a)and (b)containing TiO 2P25nanoparticles annealed at 450◦C,(c)without TiO 2P25nanoparticles with heat treatment at 450◦C,(d)containing TiO 2P25nanoparticles with heat treatment at 650◦C.Insets are the images of spherical water droplet placed on FAS modified TiO 2films.with the water and contributes greatly to the superhydrophobicity as often discussed in literature [29].For comparison,the SEM image of TiO 2film fabricated from the TiO 2precursor solution containing TiO 2P25nanoparticles with heat treatment at 650◦C is shown in Fig.2d.It can be observed that the grain grows,the surface becomes dense,and the roughness of surface reduces.After modified with FAS,its water contact angle is about 156.7◦and the contact angle hysteresis is about 17.5◦.As is well known,superhydrophobicity of the solid surface is governed by the chemical composition and the geometrical microstructure of the surface.The growth of TiO 2grains with heat treatment at 650◦C leads to insufficient roughness on the surface for great surperhy-drophobicity to some extent.On the other hand,the phase of TiO 2film containing TiO 2nanoparticles with heat treatment at 650◦C isFig.3.DLS size distribution of TiO 2aggregated particles in the TiO 2precursor solu-tion containing P25particles.rutile phase (curve a in Fig.4).However,the XRD pattern of TiO 2film containing TiO 2nanoparticles with heat treatment at 450◦C (curve b in Fig.4)displays that the film is mainly composed of anatase phase,and comprises little amount of rutile phase.(The rutile phase comes from TiO 2P25nanoparticles because the phase of TiO 2film uncontaining TiO 2P25with heat treatment at 450◦C is pure anatase shown in Fig.4curve c.)It is well known that the anatase TiO 2surface can more easily form hydroxyls than rutile phase,which combine with FAS to achieve superhydrophobicity.Fig.5shows the X-ray photoelectron spectroscopy (XPS)data of the TiO 2superhydrophobic surface.A strong fluorine peak located at 690eV and also the peaks of C and O were observed in this case.This demonstrated that the TiO 2surface was covered by the flu-Fig.4.XRD patterns of TiO 2films.(a and b)Containing TiO 2P25nanoparticles with heat treatment at (a)650◦C and (b)450◦C respectively,(c)without TiO 2P25nanoparticles with heat treatment at 450◦C.Y.Hu et al./Applied Surface Science258 (2012) 7460–74647463Fig.5.XPS spectrum of thefluoroalkylsilanefilm on the superhydrophobic surface. oroalkylsilanefilm which greatly reduced the free energy of the surface.It is confirmed that rough structure of the surface has a profound influence on superhydrophobic property.The superhydrophobicity of a rough surface can be described by Cassie-Baxter equation[30], cosÂr=f(cosÂ+1)−1(1) whereÂandÂr are the contact angles of the smooth and rough sur-face respectively.Here,f is the fraction of area of the solid surface that is actually in contact with water;Âr andÂ(125.3◦,the TiO2sur-face fabricated from the TiO2precursor without TiO2nanoparticles with heat treatment at450◦C is assumed to be smooth TiO2sur-face)are the contact angles of the rough and the smooth TiO2film surface,respectively.According to the equation,f is calculated to 0.014when the contact angle is173.7◦,implying that only1.4%of the observed contact area beneath a water droplet actually touches with the water droplet.In other words,the water droplet is sus-pended on the air pockets trapped in the cavities of the micro-and nano-hierarchical structure of TiO2film surface.By the same way, f is up to0.193when the contact angle is156.7◦,which means that there is19.3%of the observed contact area beneath a water droplet contacting with the water droplet.Eq.(1)has been recently modified to account for the local surface roughness on the wetted area as follows[31]cosÂr=r f f cosÂ+f−1(2) where f is the fraction of the projected area of the solid surface wet-ted by water and r f is the surface roughness of the wetted area.For the surface mainly composed of FAS(Â>90◦for a smooth FAS sur-face),since r f>1for a rough surface in comparison with a smooth wetted area,rough surface can enhance the hydrophobicity. Clearly,the preparedfilm containing TiO2nanoparticles with heat treatment at450◦C(Fig.2a)mainly composed of FAS with the spe-cial hierarchical structure,consisting of microclusters and nanopar-ticles,will have even higher values of r f.Once r f reaches a certain level,air may become trapped within the interstices of the micro-clusters underneath a water droplet.Furthermore,nanoparticles would further enhance the surface hydrophobicity and lead to the high surface superhydrophobicity,which offer less contact areas with water droplet.Therefore,we can conclude that the micro-and nano-hierarchical structure would produce more much cavities to trap air to form air pockets which make the water droplet suspend on the TiO2surface to generate excellent superhydrophobicity.One may doubt that this kind of superhydrophobic TiO2film is stable because of the highly photocatalytic property of anatase TiO2which has a negative influence on the durability of the super-hydrophobicity of TiO2film[32].To release from this suspicion,the water contact angles of the superhydrophobic TiO2film that was placed in a well-lighted room for one,two and three months were measured.However,the water contact angles almost not changed, which indicates that the superhydrophobic TiO2film has quite great stability under indoor conditions.To evaluate the corrosion-resistance property of the super-hydrophobic TiO2film on substrate,the samples were placed into extremely rigorous environment,25%HCl,10%HNO3,50% H2SO4,15%CH3COOH,5mol L−1NaOH and25%CH3CH2OH solu-tion,respectively.In this test,the samples prepared with the same method were immersed into the different corrosive solutions for 100h respectively,then washed with water and dried,followed the water contact angles were measured.The result shows that the water contact angles of TiO2films are still as high as over 170◦and contact angle hysteresis are less than10◦after eroded with H2SO4and NaOH corrosive solutions for100h respectively. Even though the wettability of TiO2film corroded with HCl cor-rosive solution is worst,its water contact angle is still154.3◦and contact angle hysteresis is27.2◦(Table1).However,the hydropho-bic TiO2film(without P25TiO2nanoparticles)with water contact angle of125.3◦has a high contact angle hysteresis of64.5◦after eroded with HCl corrosive solution which will limit the applica-tion of TiO2film as self-cleaning material(Table2).In our work, the corrosion-resistance test of the superhydrophobic TiO2film is completely different from the literatures reported in which only the acid solutions of pH1–2or alkali solutions of pH13–14were used[33–35].The concentrations of acid corrosive solutions in our work are30–1000times more than ones reported in literatures. And the concentration of alkali corrosive solution is increased to 5–50times as against ones reported in literatures.Since the acid corrosions of Hastelloy are more easily than the other solutions,the anti-acid-corrosive property of Hastelloy covered with and without superhydrophobic TiO2film was studied simply.In this test,the samples prepared with the same method were immersed into the different acid corrosive solutions for 100h respectively,then washed with water and dried,followed the water contact angles were measured.After the bare Hastelloy substrates were placed into25%HCl,50%H2SO4and10%HNO3 corrosive solution for100h,respectively,the colors of the corro-sive solutions exhibited dark green,light green and colorless in turn(Fig.6),which means that the substrate was corroded most severely in25%HCl solution.However,to the substrate with the superhydrophobic TiO2film,the colors of HCl,H2SO4and HNO3Table1Water contact angle data of TiO2film with equilibrium contact angle173.7◦after immersed in different corrosion solutions for100h.Corrosion solution Equilibrium contact angle(◦)Advancing contact angle(◦)Receding contact angle(◦)Contact angle hysteresis(◦)Before corrosion173.7176.2171.5 4.7HCl(25%)154.3169.5142.327.2HNO3(10%)164.3171.4158.113.3H2SO4(50%)171.5176.2167.09.2CH3COOH(15%)161.9170.6154.116.5NaOH(5mol/L)172.6176.6168.38.3CH3CH2OH(25%)158.1168.6148.819.87464Y.Hu et al./Applied Surface Science 258 (2012) 7460–7464Table 2Water contact angle data of TiO 2film (without P25TiO 2nanoparticles)with equilibrium contact angle 125.3◦after immersed in different corrosion solutions for 100h.Corrosion solutionEquilibrium contact angle (◦)Advancing contact angle (◦)Receding contact angle (◦)Contact angle hysteresis (◦)Before corrosion 125.3142.5110.731.8HCl (25%)100.4136.772.264.5HNO 3(10%)114.7138.392.545.8H 2SO 4(50%)116.3136.596.440.1CH 3COOH (15%)115.6137.795.342.4NaOH (5mol/L)120.0138.1102.535.6CH 3CH 2OH (25%)108.1130.678.652.0Fig.6.Photo images of corrosion solutions,(a)25%HCl,(c)50%H 2SO 4,(e)10%HNO 3after the bare Hastelloy substrate was immersed for 100h,respectively;(b)25%HCl,(d)50%H 2SO 4and (f)10%HNO 3after the Hastelloy substrate with superhydrophobic TiO 2film was immersed for 100h,respectively.corrosive solutions were colorless which illuminated that the substrates nearly were not corroded.The result powerfully proved that the TiO 2superhydrophobic film,as a barrier,effectively protected the metal substrate from corrosion.4.ConclusionsIn summary,we have succeeded in fabricating superhydropho-bic TiO 2film on metal by a simple two-step method,which consists of dip-coating TiO 2film from TiO 2sol solution contain-ing TiO 2nanoparticles with the average diameter 25nm which has been rare reported,and modifying with fluoroalkylsilane CF 3(CF 2)7CH 2CH 2Si(OCH 3)3molecules.This superhydrophobic TiO 2film exhibits high superhydrophobicity with water contact angle of 173.7◦and corrosion-resistance property.This corrosion-resistance superhydrophobic TiO 2film can be tailored on various metal or ceramic substrates.We believe that this corrosion-resistance superhydrophobic TiO 2film will be potentially very useful in industrial applications.AcknowledgmentsThis work was supported by the National Natural Science Foun-dation of China (Grant No.50572042),Foundation of Shaanxi Educational Committee (11JK0561),Natural Science Foundation of Shaanxi Province of China (2011JQ2009)and Specialized Research Fund for the Doctoral Program of High Education (20116125120004).References[1]M.Callies,D.Quéré,Soft Matter 1(2005)55–61.[2]T.L.Sun,L.Feng,X.F.Gao,L.Jiang,Accounts of Chemical Research 38(2005)644–652.[3]M.Nosonovsky,B.Bhushan,Advanced Functional Materials 18(2008)843–855.[4]X.Zhang,F.Shi,J.Niu,Y.G.Jiang,Z.Q.Wang,Journal of Materials Chemistry 18(2008)621–633.[5]A.Tuteja,W.Choi,M.L.Ma,J.M.Mabry,S.A.Mazzella,G.C.Rutledge,G.H.McKin-ley,R.E.Cohen,Science 318(2007)1618–1622.[6]X.F.Gao,L.Jiang,Nature 432(2004)36.[7]S.S.Wang,L.Feng,L.Jiang,Advanced Materials 18(2006)767–770.[8]F.Shi,Z.Q.Wang,X.Zhang,Advanced Materials 17(2005)1005–1009.[9]H.Wu,R.Zhang,Y.Sun,D.D.Lin,Z.Q.Sun,W.Pan,P.Downs,Soft Matter 4(2008)2429–2433.[10]L.Jiang,Y.Zhao,J.Zhai,Angewandte Chemie International Edition 43(2004)4338–4341.[11]B.Xu,Z.S.Cai,Applied Surface Science 254(2008)5899–5904.[12]M.Nicolas,F.Guittard,S.Gribaldi,Angewandte Chemie International Edition 45(2006)2251–2254.[13]P.Roach,N.J.Shirtcliffe,M.I.Newton,Soft Matter 4(2008)224–240.[14]rmour,S.E.J.Bell,G.C.Saunders,Angewandte Chemie International Edi-tion 46(2007)1710–1712.[15]X.X.Zhang,M.Honkanen,M.Järn,J.Peltonen,V.Pore,E.Levänen,T.Mäntylä,Applied Surface Science 254(2008)5129–5133.[16]L.H.Kong,X.H.Chen,G.B.Yang,L.G.Yu,P.Y.Zhang,Applied Surface Science 254(2008)7255–7258.[17]B.T.Qian,Z.Q.Shen,Langmuir 21(2005)9007–9009.[18]maka,D.G.Shchukin,D.V.Andreeva,M.L.Zheludkevich,H.Möhwald,M.G.S.Ferreira,Advanced Functional Materials 18(2008)3137–3147.[19]A.Pilbáth,I.Bertóti,I.Sajó,L.Nyikos,E.Kálmán,Applied Surface Science 255(2008)1841–1849.[20]A.Pilbáth,L.Nyikos,I.Bertóti, E.Kálmán,Corrosion Science 50(2008)3314–3321.[21]Z.F.Zhou,E.Chalkova,S.N.Lvov,P.Chou,R.Pathania,Corrosion Science 49(2007)830–843.[22]T.K.Yeh,Y.C.Chien, B.Y.Wang, C.H.Tsai,Corrosion Science 50(2008)2327–2337.[23]J.H.Huang,Z.E.Tsai,G.P.Yu,Surface and Coatings Technology 202(2008)4992–5000.[24]O.Zubillaga,F.J.Cano,I.Azkarate,I.S.Molchan,G.E.Thompson,P.Skeldon,Surface and Coatings Technology 203(2009)1494–1501.[25]G.X.Shen,Y.C.Chen,C.J.Lin,Thin Solid Films 489(2005)130–136.[26]H.Yun,J.Li,H.B.Chen,C.J.Lin,Electrochimica Acta 52(2007)6679–6685.[27]X.J.Feng,J.Zhai,L.Jiang,Angewandte Chemie International Edition 44(2005)5115–5118.[28]K.Kajihara,T.Yao,The Journal of Sol–Gel Science and Technology 12(1998)185–192.[29]L.Feng,S.H.Li,Y.S.Li,H.J.Li,L.J.Zhang,J.Zhai,Y.L.Song,B.Q.Liu,L.Jiang,D.B.Zhu,Advanced Materials 14(2002)1857–1860.[30]G.McHale,Langmuir 23(2007)8200–8205.[31]S.Michielsen,H.J.Lee,Langmuir 23(2007)6004–6010.[32]R.Wang,K.Hashimoto,A.Fujishima,Nature 388(1997)431–432.[33]S.Srinivasan,V.K.Praveen,R.Philip,A.Ajayaghosh,Angewandte Chemie Inter-national Edition 47(2008)5750–5754.[34]W.G.Xu,H.Q.Liu,S.X.Lu,J.M.Xi,Y.B.Wang,Langmuir 24(2008)10895–10900.[35]H.Q.Liu,S.Szunerits,W.G.Xu,R.Boukherroub,ACS Applied Materials &Inter-faces 1(2009)1150–1153.。