盐酸泄露环境风险评价

合集下载

盐酸风险评估

盐酸风险评估

盐酸风险评估成分/组成信息化学品名称:硫酸(混合物)有害成分含量CASNO盐酸79647-01-0危险性概述危险性类别:20酸性腐蚀品侵入途径:吸入、食入、皮肤接触。

健康危害接触其蒸气或烟雾,引起眼结膜炎,鼻及口腔粘膜有烧灼感,鼻衄、齿龈出血、气管炎;刺激皮肤发生皮炎,慢性支气管炎等病变。

误服盐酸中毒,可引起消化道灼伤、溃疡形成,有可能胃穿孔、腹膜炎等。

皮肤接触:立即用水冲洗至少15分钟。

或用2%碳酸氢钠溶液冲洗。

若有灼伤,就医治疗。

眼睛接触:立即提起眼睑,用流动清水冲洗10分钟或用2%碳酸氢钠溶液冲洗。

吸入:迅速脱离现场至空气新鲜处。

呼吸困难时给输氧。

给予2-4%碳酸氢钠溶液雾化吸入。

就医。

食入:误服者立即漱口,给牛奶、蛋清、植物油等口服,不可催吐。

立即就医。

危险特性能与一些活性金属粉末发生反应,放出氢气。

遇氰化物能产生剧毒的氰化氢气体。

与碱发生中合反应,并放出大量的热。

具有强腐蚀性。

燃烧(分解)产物:氯化氢。

灭火方法:雾状水、砂土。

泄漏应急处理应急处理:疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,建议应急处理人员戴好面罩,穿化学防护服。

不要直接接触泄漏物,禁止向泄漏物直接喷水。

更不要让水进入包装容器内。

用沙土、干燥石灰或苏打灰混合,然后收集运至废物处理场所处置。

也可以用大量水冲洗,经稀释的洗水放入废水系统。

如大量泄漏,利用围堤收容,然后收集、转移、回收或无害处理后废弃接触控制/个体防护最高容许浓度:中国(TJ36-79)车间空气中有害物质的最高容许浓度15mg/m3监测方法:1.现场应急监测方法:气体检测管法2.实验室监测方法:硫氰酸汞比色法呼吸系统防护:可能接触其蒸气或烟雾时,必须佩戴防毒面具或供气式头盔。

紧急事态抢救或逃生时,建议佩带自给式呼吸器。

眼睛防护:戴化学安全防护眼镜。

防护服:穿工作服(防腐材料制作)。

手防护:戴橡皮手套。

其它:工作后,淋浴更衣。

单独存放被毒物污染的衣服,洗后再用。

盐酸风险评价

盐酸风险评价

20万吨/年胎圈钢丝盐酸库环境风险评价胎圈钢丝项目使用的盐酸属于危险化学品,储存过程中存在环境风险。

1、盐酸的性质简介氯化氢的水溶液即盐酸,纯盐酸无色,工业品因含有铁、氯等杂质,略带微黄色。

,有强烈的腐蚀性,能腐蚀金属,对动植物纤维和人体肌肤均有腐蚀作用。

浓盐酸在空气中发烟,触及氨蒸气会生成白色云雾。

氯化氢气体对动植物有害。

盐酸是极强的无机酸,与金属作用能生成金属氯化物并放出氯;与金属氧化物作用生成盐和水;与碱起中和反应生成盐和水;与盐类能起复分解反应生成新的盐和新的酸。

表1 盐酸特性一览表国标编号81013CAS号7647-01-0中文名称盐酸英文名称Hydrochloric别名氢氯酸分子式HCl 外观与形状无色有刺激性和臭味的气味分子量 36.46 蒸汽压熔点-114.8℃溶解性易溶于水密度稳定性危险标记主要用途2、风险识别本项目所用酸不属于剧毒物质和一般毒物(属低毒类);酸属腐蚀,爆炸危险物质;根据重大危险源辨识(GB18218-2009)重规定,项目酸库储存酸的数量约70吨,超过临界量,构成重大危险源。

酸的使用是一个封闭的系统,对照《爆炸和火灾危险环境电力装置设计规范》(GB50058-92)规范标准,酸装置在正常运行时不会释放易燃物质;即使释放也是在酸泵的轴封处和阀门、法兰、管件接头等密封处偶尔的、短时的发生。

第二级释放源存在的区域,可划为2区。

2区的概念是在正常运行时不可能出现爆炸性气体混合物的环境。

正常运行是指正常的开车、运转、停车,易燃物质产品的装卸,密闭容器的开闭,安全阀、排放阀、以及所有设备都在其设计参数范围内工作的状态。

“当通风良好时,易燃物质可能出现的最高浓度不超过爆炸下限的10%”,可划为非爆炸危险区。

从上述分析中得知,出现最高浓度能超过爆炸下限10%的概率近似为零。

同时酸的比重很轻,因此,它难以聚集到爆炸极限的浓度。

因此,可以将酸系统作为非爆炸危险区看待。

同时,酸在正常工况下的自然损耗不会对环境造成污染影响。

盐酸渗漏风险分析报告

盐酸渗漏风险分析报告

盐酸渗漏风险分析报告根据目前掌握的情况,我们对盐酸渗漏的风险进行分析。

盐酸是一种常见的强酸,具有腐蚀性和刺激性,一旦发生泄漏可能对人员的健康和环境造成严重影响。

因此,我们有必要对盐酸渗漏的可能性和后果进行全面评估。

首先,我们需要考虑盐酸的储存和使用环境。

储存盐酸的容器、管道和设备是否完好无损,是否存在潜在的泄漏点?使用盐酸的工艺过程是否存在操作不当或设备失效的风险?对于这些问题,我们需要仔细检查设备的使用状况、维修记录以及工艺操作流程,并与相关人员进行讨论和交流,以便更好地了解潜在的风险因素。

其次,我们需要评估盐酸泄漏的可能性。

盐酸的泄漏可能来自于容器或管道的破裂、设备的失效,或者人为操作失误等原因。

我们需要考虑这些情况是否有发生的可能性,并分析其概率。

除此之外,还需要考虑外部因素,例如自然灾害、事故、设备维修或更换等情况,是否会增加盐酸泄漏的风险。

在评估可能性的基础上,我们还需要研究盐酸泄漏的后果。

盐酸泄漏可能对人员的健康和环境造成严重影响。

因此,我们需要考虑以下问题:泄漏的规模大小、泄漏物质的性质、泄漏物质与周围环境的相容性以及泄漏物质的扩散路径等。

这些因素将有助于我们预测泄漏对人员、设备和环境的潜在影响。

最后,我们需要制定防范措施和应急预案。

根据盐酸渗漏的风险分析结果,我们应该采取一系列措施来减少泄漏的可能性,例如定期检查设备、增强设备维护、加强员工培训等。

同时,我们还需要制定详细的应急预案,以便在发生泄漏事故时能够及时、有效地应对。

这包括应急处理程序、紧急疏散计划、防护装备和设备的备件储备等。

综上所述,盐酸渗漏风险分析报告需要对储存和使用环境、泄漏可能性、泄漏后果以及防范措施和应急预案等进行全面评估。

通过专业的分析和前瞻性的措施,我们可以有效地降低盐酸渗漏带来的风险,并保障人员的健康和环境的安全。

建设项目环境影响报告书盐酸泄露环境风险评价

建设项目环境影响报告书盐酸泄露环境风险评价

1.盐酸泄露的定量分析 1.1泄露流量的计算要估算盐酸的泄露范围,首先要确定其泄露流量,盐酸可以应用液体经小孔泄露的源模式计算泄露流量,其公式为:式中:Q —流量,kg/s ;C 0—孔流系数,取0.6; A —小孔的横截面积,m 2; ρ—流体密度;kg/m 3; P g —液体压力,Pa ; g —重力加速度,9.81m/s 2; A 0—储罐的横截面积,m 2; Z 0—储罐内液面距小孔高度,m ; t —泄露时间,s 1.2泄露参数本次盐酸罐泄露的相关计算参数见表13-1。

表13-1 盐酸罐泄露计算相关参数一览表1.3泄露速率本次工程盐酸储罐的容积为50m 3,尺寸为Ф3.6m ,高5m ,单罐最大储量为60t ,评价根据盐酸储罐泄露量的计算参数,确定本次盐酸罐事故泄露的速度为3.25kg/s ,根据盐酸储罐的储存量,则本次盐酸罐全部泄露完需5h 。

考虑0.5小时事故泄漏应急时间,则0.5h 内的盐酸的泄漏量为5.85t ,约占总储量总量的9.8%。

220o ogC A Q C A tA r =2.盐酸酸雾的产生量考虑0.5小时事故泄漏应急时间,则0.5h 内的盐酸的泄漏量为5.85t ,盐酸储罐围堰长:3.6m ,宽:9m ,高:2m ,考虑泄漏出口的盐酸闪蒸,则0.5h 盐酸泄漏量在围堤内形成0.15m 深的液池(除去单只盐酸贮罐罐脚所占面积后,液池有效面积22.23m 2)。

由于盐酸的沸点为-114.8℃,沸点远远低于液体贮存的常温,因此盐酸泄漏在围堤形成液池后,将产生闪蒸、热量蒸发和质量蒸发。

由于盐酸的沸点为-33.5℃,沸点远远低于液体贮存的常温,因此盐酸泄漏在围堤形成液池后,将产生闪蒸、热量蒸发和质量蒸发。

评价选择适用于硫酸、硝酸和盐酸等酸液蒸发量的计算公式来分析本次工程盐酸泄露后酸雾的产生量,计算公式如下: 式中:Gz ——酸雾量,kg/h ;M ——液体分子量;U ——蒸发液体表面上的空气流速(m/s),应以实测数据为 准。

某火电厂盐酸储罐泄漏的环境风险预测评价

某火电厂盐酸储罐泄漏的环境风险预测评价

第39卷第2期红水河Vol.39No.22020年4月HongShuiRiverApr.2020某火电厂盐酸储罐泄漏的环境风险预测评价范荣洋1,高何凤2(1.广西泰能工程咨询有限公司,广西㊀南宁㊀530023;2.广西壮族自治区环境保护科学研究院,广西㊀南宁㊀530022)摘㊀要:文章以某火电厂盐酸储罐泄漏引发液体蒸发的突发环境事件作为研究对象,在HJ169-2018‘建设项目环境风险评价导则“正式施行的背景下,根据该电厂现场储存盐酸的实际情况及危险特性,利用AFTOX模型对盐酸储罐发生泄漏引发液体蒸发的风险事故情形进行风险分析㊁预测与评价,为盐酸储罐泄漏环境风险事故的防范㊁应急与减缓措施提供技术支持,以使其突发环境事件的环境影响达到可接受水平㊂关键词:环境风险;AFTOX模型;盐酸储罐;泄漏;预测评价中图分类号:X820.4文献标识码:A文章编号:1001-408X(2020)02-0061-040㊀引言火电厂化水车间处理锅炉补给水时,盐酸可作为阳离子交换树脂的再生剂使用,锅炉补给水处理盐酸系统的主要设备有盐酸储罐㊁盐酸计量箱和连接管道等㊂为保证火电厂盐酸系统的安全运行,应从定期检修设备㊁防止盐酸储罐泄漏㊁减少酸雾(氯化氢气体)影响等方面着手[1]㊂本文以某火电厂发生盐酸储罐泄漏突发环境事件为切入点,通过对泄漏事故环境风险的定量计算,科学㊁准确㊁及时地评估盐酸泄漏导致液体蒸发产生氯化氢气体的影响范围㊁影响时间和影响程度,这不仅对企业的安全环保生产具有重要的指导意义,同时也有助于制定盐酸储罐泄漏突发环境事件应急预案,为政府及行业管理部门进行决策提供科学依据[2]㊂1㊀风险识别盐酸是氯化氢(HCl)的水溶液,属于一元无机强酸,工业用途广泛㊂盐酸的性状为无色透明的液体,有强烈的刺鼻气味,具有较高的腐蚀性㊂浓盐酸具有极强的挥发性,因此装有浓盐酸的储罐泄漏后会很容易发生质量蒸发产生氯化氢气体,氯化氢气体在常温常压下为具有刺激性臭味的无色有毒气体,气体扩散会对环境和人体造成污染和不可逆性损害㊂氯化氢为无色气体,有刺激性臭味,溶于水㊁乙醇㊁乙醚和苯,熔点-114.2ħ,沸点-85ħ㊂其毒性效应如下:低浓度的氯化氢能刺激眼㊁鼻㊁喉,空气中含有万分之一的氯化氢就会严重影响人的健康,会使呼吸道和皮肤粘膜中毒,轻度中毒时有灼热㊁压迫感,喉炎发痒,呼吸困难,眼睛刺激流泪;高浓度的氯化氢会引起人慢性中毒,产生鼻炎㊁支气管炎㊁肺气肿等,有的还会过敏,出现皮炎㊁湿疹等㊂氯化氢CAS号为7647-01-0,大气毒性终点浓度-1为150mg/m3㊁大气毒性终点浓度-2为33mg/m3[3],其中大气毒性终点浓度-2为人员短期暴露出现健康影响的大气污染物浓度,大气毒性终点浓度-1为人员短期暴露出现死亡的大气污染物浓度[4]㊂2㊀源项分析根据HJ169-2018‘建设项目环境风险评价技术导则“,环境风险评价的关注点是事故对厂界外环境的影响,最大可信事故指在所有预测的概率不为零的事故中,对环境(或健康)危害最严重的重大事故㊂因此某火电厂盐酸储罐可能发生的最大可信事故为储罐泄漏,泄漏的盐酸发生液体蒸发会产生有毒有害物质氯化氢,其发生大气扩散后会污染环境并影响人体健康㊂2.1㊀盐酸储罐泄漏源强液态物料泄漏量采用HJ169-2018‘建设项目环境风险评价技术导则“附录F推荐的方法进行计㊀㊀收稿日期:2019-12-03;修回日期:2019-12-05㊀㊀作者简介:范荣洋(1989),男,河南商城人,工程师,硕士,主要从事工作为环境影响评价及环保设计等,E-mail:tngsfry@163.com㊂16㊀红水河2020年第2期算,具体如下:液体泄漏速率采用伯努利方程计算:QL=CdAρ2(P-P0)ρ+2gh(1)式中:QL 液体泄漏速率,kg/s;Cd 液体泄漏系数,此值常用0.40 0.65,本次取0.65(最不利情况);A 裂口面积,m2,裂口直径取20mm,则裂口面积为0.0003m2;ρ 泄漏液体密度,kg/m3;P 容器内介质压力,盐酸罐区均为常压储罐,取101325Pa;P0 环境压力,取101325Pa;g 重力加速度,9.81m/s2;h 裂口之上液位高度,m,取5m㊂㊀㊀经上述计算,该电厂盐酸储罐泄漏速率为1.93kg/s,按应急响应时间30min计,则盐酸泄漏量约3.47t㊂2.2㊀盐酸储罐泄漏后蒸发量源强有毒化学物质泄漏后,液态物料部分蒸发进入大气,其余仍以液态形式存在,待收容等应急处置㊂泄漏液体的蒸发分为闪蒸蒸发㊁热量蒸发和质量蒸发三种,其蒸发总量为这三种蒸发之和㊂由于该电厂所涉及液体储罐均为常温常压储存,当泄漏事故发生后不会发生闪蒸蒸发,其液态物质沸点温度均高于贮存温度,因此泄漏后亦不会发生热量蒸发,所以泄漏后的质量蒸发量即为蒸发总量㊂质量蒸发速率按下式进行估算:Q3=αpMRT0u(2-n)(2+n)r(4+n)(2+n)(2)式中:Q3 质量蒸发速率,kg/s;p 液体表面蒸气压,Pa,设定盐酸浓度为28%,30ħ下蒸汽分压为9.9mmHg,即1320Pa;R 气体常数,J/(mol∙K),取值8.314J/(mol∙K);T0 环境温度,K,取值298K;M 物质的摩尔质量,kg/mol;盐酸的摩尔质量为36.46kg/mol;u 风速,m/s;r 液池半径,m;围堰面积为1037m2;α,n 大气稳定度系数,按HJ169-2018表F.3选取,分别为0.005285和0.3㊂㊀㊀通过计算盐酸储罐泄漏后,其质量蒸发速率为0.313kg/s,根据HJ169-2018,一般情况下,蒸发时间可按15 30min计,本次取30min,则蒸发量为56.34kg㊂3㊀环境风险分析㊁预测与评价该火电厂化水车间发生有毒有害物质大气扩散风险影响的情形主要设定为盐酸储罐泄漏后发生液体蒸发的HCl扩散㊂根据HJ169-2018‘建设项目环境风险评价技术导则“,需对风险情形对应的预测模型进行筛选判定㊂3.1㊀连续排放和瞬时排放判定根据HJ169-2018,判定是连续排放还是瞬时排放,可以通过排放时间Td和污染物到达最近受体点(网格点或敏感点)的时间T来确定㊂T=2X/Ur(3)式中:X 事故发生地与计算点的距离,m;Ur 10m高处风速,m/s㊂假设风速和风向在T时间段内保持不变㊂㊀㊀当Td>T时,可被认为是连续排放;当TdɤT时,可被认为是瞬时排放㊂该电厂距离最近敏感点A村为320m,网格点为每50m布设一个点,则将网格点定为最近受体点,则X为50m;最不利气象条件风速为1.5m/s㊂通过计算,污染物到达最近受体点的时间T为66.7s,小于排放时间Td=1800s,因此该电厂盐酸储罐泄漏后发生液体蒸发的HCl扩散属于连续排放㊂3.2㊀是否为重质气体判定根据HJ169-2018,判定烟团/烟羽是否为重质气体,取决于它相对于空气的 过剩密度 和环境条件等因素㊂通常采用理查德森数(Ri)作为标准进行判断㊂Ri的概念公式为Ri=烟团的势能环境的湍流动能㊀㊀Ri是个流体动力学参数㊂根据不同的排放性质,理查德森数的计算公式不同㊂一般地,依据排放类型,理查德森数的计算分连续排放㊁瞬时排放两种形式㊂本次选取连续排放计算公式:Ri=[g(Q/ρrel)Drelˑ(ρrel-ρaρa)]13Ur(4)式中:ρrel 排放物质进入大气的初始密度,kg/m3;ρa 环境空气密度,kg/m3;Q 连续排放烟羽的排放速率,kg/s;Drel 初始的烟团宽度,即源直径,m;26范荣洋,高何凤:某火电厂盐酸储罐泄漏的环境风险预测评价㊀Ur 10m高处风速,m/s㊂㊀㊀判断标准为:对于连续排放,Riȡ1/6为重质气体,Ri<1/6为轻质气体;对于瞬时排放,Ri>0.04为重质气体,Riɤ0.04为轻质气体㊂当Ri处于临界值附近时,说明烟团/烟羽既不是典型的重质气体扩散,也不是典型的轻质气体扩散㊂经过计算Ri为0.0192,属轻质气体,根据HJ169-2018附录G,适用于AFTOX风险预测模型㊂AFTOX模型适用于平坦地形下中性气体和轻质气体排放以及液池蒸发气体的扩散模拟,可模拟连续排放或瞬时排放,液体或气体,地面源或高架源,点源或面源的指定位置浓度㊁下风向最大浓度及其位置等[5]㊂预测选取最不利气象条件为:F类稳定度,1.5m/s风速,温度25ħ,相对湿度50%㊂对氯化氢气体扩散的污染范围及危害程度进行模拟计算,预测结果如表1所示㊂表1 某火电厂盐酸储罐泄漏后发生液体蒸发的氯化氢气体扩散事故最大浓度预测结果表距离/m浓度出现时间/min高峰浓度/(mg/m3)距离/m浓度出现时间/min高峰浓度/(mg/m3)距离/m浓度出现时间/min高峰浓度/(mg/m3)100.111.34171019.001.80341045.890.72600.67157.19176019.561.73346046.440.701101.2299.78181020.111.67351047.000.691601.7866.09186020.671.61356048.560.682102.3346.51191021.221.55361049.110.672602.8934.47196021.781.50366049.670.653103.4426.62201022.331.45371050.220.643604.0021.23206022.891.40376050.780.634104.5617.37211023.441.36381051.330.624605.1114.50216024.001.32386051.890.615105.6712.32221024.561.28391052.440.605606.2210.61226025.111.24396053.000.596106.789.24231025.671.21401053.560.586607.338.14236026.221.17406055.110.577107.897.23241026.781.14411055.670.567608.446.47246027.331.11416056.220.558109.005.83251027.891.08421056.780.548609.565.29256028.441.05426057.330.5391010.114.82261029.001.03431057.890.5396010.674.41266029.561.00436058.440.52101011.224.06271037.110.98441059.000.51106011.783.75276037.670.95446059.560.50111012.333.47281038.220.93451060.110.49116012.893.23286038.780.91456061.670.49121013.443.01291039.330.89461062.220.48126014.002.82296039.890.87466062.780.47131014.562.64301040.440.85471063.330.47136015.112.48306042.000.83476063.890.46141015.672.32311042.560.81481064.450.45146016.222.22316043.110.79486065.000.45151016.782.12321043.670.78491065.560.44156017.332.03326044.220.76496066.110.44161017.891.95331044.780.75501066.670.43166018.441.87336045.330.73506068.220.42㊀㊀根据预测结果分析,盐酸储罐泄漏后发生液体蒸发的氯化氢气体扩散事故情形,在最不利气象条件下,氯化氢预测浓度达到毒性终点浓度-1(150mg/m3)的最远距离约为60m,预测浓度达到毒性终点浓度-2(33mg/m3)的最远距离约为260m,该火电厂距离最近的敏感点为320m,可以满足氯化氢毒性终点浓度-1和毒性终点浓度-2的要求㊂由于泄漏时间和扩散时间持续较短,而且一旦发生事故后,会立即采取相关防护措施,及时启动应急预案,保护和减缓事故对厂区周边敏感点的影响,因此本次评价认为该电厂盐酸储罐泄漏对大气环境的影响是可接受的㊂36㊀红水河2020年第2期4㊀环境风险防范措施对于某火电厂盐酸储罐的泄漏引起的突发环境事件,设备失灵和人为操作失误是引发泄漏的主要原因,因此选用较好的设备㊁制定好应急措施㊁认真进行操作人员培训是减少泄漏事故的关键㊂具体防范和应急措施如下:1)建设单位首先应树立环境风险意识,并在管理过程当中强化环境风险意识,在实际工作与管理过程当中应落实环境风险防患措施㊂2)为防止设备泄漏事故时发生液体蒸发造成有毒有害气体扩散的影响,可在储罐上方安装喷淋设施进行气体吸收㊂3)储罐区安装安全淋浴器(带洗眼装置),受伤害人员可得到及时冲洗㊂4)定期对储罐外部检查,及时发现破损和漏处,设置储罐高液位报警器及其他自动安全措施,对储罐焊缝㊁垫片㊁铆钉或螺栓的泄漏及时采取必要措施㊂5)盐酸储罐㊁盐酸计量箱的进酸阀门应设置液位自动控制,当液位达到要求时进酸阀门能自动关闭[1]㊂6)储罐区内要设有安全照明设施和观察窗口㊂7)应设计有堵截泄漏的裙脚,地面与裙脚所围建的容积不低于堵截最大容器的最大储量或总储量的五分之一㊂5㊀结语依据HJ169-2018‘建设项目环境风险评价技术导则“,环境风险评价工作的重点为预测和防护事故引起的对厂界外人群的伤害和环境质量的恶化影响[6]㊂本文通过利用AFTOX模型对某火电厂盐酸储罐发生泄漏引发液体蒸发的风险事故情形进行风险分析㊁预测与评价,在不利气象条件下给出事故可能影响的范围㊁程度和发生时间,由此分析该电厂盐酸储罐泄漏事故的风险水平在可接受范围内,并可为盐酸泄漏环境风险事故的防范㊁应急与减缓措施提供技术支持,以减少环境污染事故的发生㊂参考文献:[1]㊀喻军,高文峰.保证火电厂盐酸系统安全运行[J].劳动保护,2007(5):88-89.[2]㊀陈婷婷,王晓艳,原媛.基于AFTOX模型预测煤焦油储罐火灾爆炸突发环境事件风险预测与后果分析[J].区域治理,2019(11):239.[3]㊀HJ169-2018,建设项目环境风险评价技术导则[S].[4]㊀徐静,寿幼平.散装液体化学品泄漏大气环境风险影响因素研究[J].绿色科技,2019(18):138-140.[5]㊀廉洁,刘军,王东香.建设项目化工环境风险评价存在问题的探讨[J].焦作大学学报,2009,23(1):94-96.[6]㊀王涛,刘慧.二噁英风险评价在垃圾焚烧发电项目环评中的应用[J].红水河,2017,36(3):28-30.EnvironmentalRiskPredictionandEvaluationofHydrochloricAcidTankLeakageinaThermalPowerPlantFANRongyang1 GAOHefeng21.GuangxiT-EnergyEngineeringConsultingCo. Ltd. Nanning Guangxi 5300232.ScientificResearchAcademyofGuangxiEnvironmentalProtection Nanning Guangxi 530022Abstract Inthispaper theemergencyenvironmentaleventofliquidevaporationcausedbyleakageofhydrochloricacidtankinathermalpowerplantistakenastheresearchobject underthebackgroundoftheformalimplementationof TechnicalGuidelinesforEnvironmentalRiskAssessmentonProjects HJ169-2018 theriskanalysis predictionandevaluationoftheriskaccidentofliquidevaporationcausedbyleakageofhydrochloricacidtankarecarriedoutbyusingAFTOXmodelaccordingtotheactualsituationandhazardouscharacteristicsofhydrochloricacidstoredinthepowerplant whichprovidestechnicalsupportforprevention emergencyandmitigationmeasuresofenvironmentalriskaccidentscausedbyleakageofhydrochloricacidtank soastomaketheenvironmentalimpactofemergencyenvironmentaleventsreachanacceptablelevel.Keywords environmentalrisk AFTOXmodel hydrochloricacidtank leakage predictionandevaluation46。

盐酸泄漏事故环境风险评价及管控措施

盐酸泄漏事故环境风险评价及管控措施
针对盐酸的化学特性,结合某化工企业实际情况,开展盐酸泄漏事故环境风险预测,并结合预测结果提出切实可行的风险防控措施,以
降低企业盐酸泄漏事故环境影响程度。
关键词:盐酸;泄漏;环境风险评价
doi:10.3969/j.issn.1008-553X.2020.01.024
中图分类号:X82
文献标识码:A
文章编号:1008-553X(2020)01-0080-03
80
第 46 卷,第 1 期
2020 年 2 月
Vol.46,No.1
Feb.2020
安 徽 化 工
ANHUI CHEMICAL INDUSTRY
盐酸泄漏事故环境风险评价及管控措施
吴 润,
卢茂骥
(安徽省化工研究院,安徽 合肥 230041)
摘要:盐酸广泛应用于企业生产中,由于其蒸气氯化氢毒性较高,在贮存、使用过程中一旦发生泄漏等环境风险事故,对环境影响较大。
浓度值(mg/m3)
毒性终点浓度-1
150
毒性终点浓度-2
33
氯 化 氢 初 始 密 度 大 于 空 气 密 度 ,根 据(HJ 1692018)选择 SLAB 模型,采用 EIAPro2018 软件进行预测,
由危险物质浓度达到评价标准时的最大影响范围可知,
在拟定事故情形条件下,盐酸泄漏事故产生的氯化氢在
8.62 t)。泄漏液体的蒸发分为闪蒸蒸发、热量蒸发和质
量蒸发三种,其蒸发总量为这三种蒸发之和。由于盐酸
沸点高于储存温度和环境温度,因此不考虑闪蒸蒸发和
热量蒸发。按照 HJ 169-2018《建设项目环境风险评价
技术导则》附录 F 中提供的质量蒸发计算公式:
Q=α×p×M/(R×T0)×u(2-n)/(2+n)×r(4+n)/(2+n)

盐酸

盐酸

盐酸风险评价盐酸库环境风险评价使用的盐酸属于危险化学品,储存过程中存在环境风险。

1、盐酸的性质简介氯化氢的水溶液即盐酸,纯盐酸无色,工业品因含有铁、氯等杂质,略带微黄色。

,有强烈的腐蚀性,能腐蚀金属,对动植物纤维和人体肌肤均有腐蚀作用。

浓盐酸在空气中发烟,触及氨蒸气会生成白色云雾。

氯化氢气体对动植物有害。

盐酸是极强的无机酸,与金属作用能生成金属氯化物并放出氯;与金属氧化物作用生成盐和水;与碱起中和反应生成盐和水;与盐类能起复分解反应生成新的盐和新的酸。

2、风险识别本项目所用酸不属于剧毒物质和一般毒物(属低毒类);酸属腐蚀,爆炸危险物质;根据重大危险源辨识(GB18218-2009)重规定,项目酸库储存酸的数量约70吨,超过临界量,构成重大危险源。

酸的使用是一个封闭的系统,对照《爆炸和火灾危险环境电力装置设计规范》(GB50058-92)规范标准,酸装置在正常运行时不会释放易燃物质;即使释放也是在酸泵的轴封处和阀门、法兰、管件接头等密封处偶尔的、短时的发生。

第二级释放源存在的区域,可划为2区。

2区的概念是在正常运行时不可能出现爆炸性气体混合物的环境。

正常运行是指正常的开车、运转、停车,易燃物质产品的装卸,密闭容器的开闭,安全阀、排放阀、以及所有设备都在其设计参数范围内工作的状态。

“当通风良好时,易燃物质可能出现的最高浓度不超过爆炸下限的10%”,可划为非爆炸危险区。

从上述分析中得知,出现最高浓度能超过爆炸下限10%的概率近似为零。

同时酸的比重很轻,因此,它难以聚集到爆炸极限的浓度。

因此,可以将酸系统作为非爆炸危险区看待。

同时,酸在正常工况下的自然损耗不会对环境造成污染影响。

发生酸泄漏的常见原因是由于管理不善,工人违章操作以及设备、容器陈旧,管道破裂,阀门损漏,或者运输不当等导致生产性事故或者意外事故所造成。

综上所述,本项目按库存环境风险来源酸泄漏。

酸泄漏因素主要有:1)管路系统漏泄(包括管道、阀门、连接法兰、泵的密封等设备及部位);2)储罐泄漏;3)自认因素,如地震、雷击等。

盐酸风险评价

盐酸风险评价

20万吨/年胎圈钢丝盐酸库环境风险评价胎圈钢丝项目使用的盐酸属于危险化学品,储存过程中存在环境风险。

1、盐酸的性质简介氯化氢的水溶液即盐酸,纯盐酸无色,工业品因含有铁、氯等杂质,略带微黄色。

,有强烈的腐蚀性,能腐蚀金属,对动植物纤维和人体肌肤均有腐蚀作用。

浓盐酸在空气中发烟,触及氨蒸气会生成白色云雾。

氯化氢气体对动植物有害。

盐酸是极强的无机酸,与金属作用能生成金属氯化物并放出氯;与金属氧化物作用生成盐和水;与碱起中和反应生成盐和水;与盐类能起复分解反应生成新的盐2、风险识别本项目所用酸不属于剧毒物质和一般毒物(属低毒类);酸属腐蚀,爆炸危险物质;根据重大危险源辨识(GB18218-2009)重规定,项目酸库储存酸的数量约70吨,超过临界量,构成重大危险源。

酸的使用是一个封闭的系统,对照《爆炸和火灾危险环境电力装置设计规范》(GB50058-92)规范标准,酸装置在正常运行时不会释放易燃物质;即使释放也是在酸泵的轴封处和阀门、法兰、管件接头等密封处偶尔的、短时的发生。

第二级释放源存在的区域,可划为2区。

2区的概念是在正常运行时不可能出现爆炸性气体混合物的环境。

正常运行是指正常的开车、运转、停车,易燃物质产品的装卸,密闭容器的开闭,安全阀、排放阀、以及所有设备都在其设计参数范围内工作的状态。

“当通风良好时,易燃物质可能出现的最高浓度不超过爆炸下限的10%”,可划为非爆炸危险区。

从上述分析中得知,出现最高浓度能超过爆炸下限10%的概率近似为零。

同时酸的比重很轻,因此,它难以聚集到爆炸极限的浓度。

因此,可以将酸系统作为非爆炸危险区看待。

同时,酸在正常工况下的自然损耗不会对环境造成污染影响。

发生酸泄漏的常见原因是由于管理不善,工人违章操作以及设备、容器陈旧,管道破裂,阀门损漏,或者运输不当等导致生产性事故或者意外事故所造成。

综上所述,本项目按库存环境风险来源酸泄漏。

酸泄漏因素主要有:1)管路系统漏泄(包括管道、阀门、连接法兰、泵的密封等设备及部位);2)储罐泄漏;3)自认因素,如地震、雷击等。

建设项目环境影响评价评价评价报告书盐酸泄露环境风险评价

建设项目环境影响评价评价评价报告书盐酸泄露环境风险评价

1.盐酸泄露的定量分析1.1泄露流量的计算要估算盐酸的泄露范围,首先要确定其泄露流量,盐酸可以应用液体经小孔泄露的源模式计算泄露流量,其公式为:2R22A r gC g0+2gzQ=CA r-t oor A o式中:Q—流量,kg/s;—孔流系数,取0.6; C 02;小孔的横截面积,m A—3;流体密度;kg/m ρ——液体压力,Pa;P g2;9.81m/s g—重力加速度,2m储罐的横截面积,—; A 0—储罐内液面距小孔高度,m;Z 0t—泄露时间,s1.2泄露参数本次盐酸罐泄露的相关计算参数见表13-1。

表13-1 盐酸罐泄露计算相关参数一览表1.3泄露速率3,尺寸为Ф3.6m,高5m,单罐最大储量为60t50m本次工程盐酸储罐的容积为,评价根据盐酸储罐泄露量的计算参数,确定本次盐酸罐事故泄露的速度为3.25kg/s,根据盐酸储罐的储存量,则本次盐酸罐全部泄露完需5h。

考虑0.5小时事故泄漏应急时间,则0.5h内的盐酸的泄漏量为5.85t,约占总储量总量的9.8%。

12.盐酸酸雾的产生量考虑0.5小时事故泄漏应急时间,则0.5h内的盐酸的泄漏量为5.85t,盐酸储罐围堰长3.6m,宽:9m ,高:2m,考虑泄漏出口的盐酸闪蒸,则0.5h盐酸泄漏量在围堤内:2)。

22.23m 形成0.15m深的液池(除去单只盐酸贮罐罐脚所占面积后,液池有效面积由于盐酸的沸点为-114.8℃,沸点远远低于液体贮存的常温,因此盐酸泄漏在围堤形成液池后,将产生闪蒸、热量蒸发和质量蒸发。

由于盐酸的沸点为-33.5℃,沸点远远低于液体贮存的常温,因此盐酸泄漏在围堤形成液池后,将产生闪蒸、热量蒸发和质量蒸发。

评价选择适用于硫酸、硝酸和盐酸等酸液蒸发量的计算公式来分析本次工程盐酸泄露后酸雾的产生量,计算公式如下:G=M(0.000352+0.000786V)PF z;——酸雾量,kg/h式中:Gz 液体分子量;M——,应以实测数据为蒸发液体表面上的空气流速(m/s) U——或查表计算;~0.5m/s准。

基于AFTOX模型预测盐酸泄漏的环境风险预测与评价

基于AFTOX模型预测盐酸泄漏的环境风险预测与评价

基于AFTOX模型预测盐酸泄漏的环境风险预测与评价作者简介:边长龙,男,陕西榆林人,工程师,硕士,主要从事环保工程设计及环境影响评价等工作。

摘要:盐酸在工业企业中广泛应用,盐酸易挥发有毒有害的HCl气体,在企业储存过程中一旦发生泄漏会对环境造成较大的影响。

本文以某企业盐酸储罐泄漏引发环境事件为研究对象,采取AFTOX模型对该企业盐酸储罐的环境风险进行预测评价,提出了切实可行的环境风险防范措施,以降低环境风险影响程度。

关键词:AFTOX模型;盐酸泄漏;环境风险;预测评价引言盐酸在医药合成、工业生产及水的消毒等行业中作为重要的工业原料而得到广泛应用于。

由于盐酸的用途广泛,近年来发生盐酸泄漏的事故也越来越多。

盐酸泄漏后挥发的HCl气体不仅对环境有产生危害,还可能会造成人员中毒、伤亡事件,因此降低盐酸储罐的泄漏风险是企业必须重视的问题。

本文以某企业盐酸储罐发生泄漏事故为源项,依据《建设项目环境风险评价技术导则》(HJ 169-2018),对盐酸储罐发生泄漏事故产生的环境风险进行预测,科学的预测盐酸泄漏事故产生HCl气体的影响范围和程度,并提出可行的环境风险防范措施和应急管理要求,以降低企业盐酸储罐发生泄漏事故对外环境的影响程度,不仅对企业的安全生产提供指导,同时也为应急管理部门的应急指挥提供科学的依据[1-4]。

1、风险识别盐酸具有强烈的刺激性气味,同时具有很强的腐蚀性,因此盐酸储罐泄漏后都会伴随发生质量蒸发而产生HCl气体。

HCl为无色有毒气体,有强烈的刺激性,扩散后会对环境造成污染甚至对人体造成危害。

HCl的大气毒性终点浓度-1的意义为人员短期暴露在HCl中发生死亡的浓度,大气毒性终点浓度-2的意义为人员短期暴露在HCl中影响人体健康的浓度[5]。

2、源项分析环境风险的关注重点是企业产生的环境事故对厂区外环境造成的影响,最大可信事故是在所有概率不为零的环境事件中对环境造成危害最严重的事故。

因此最大可信事故为储罐破裂导致盐酸泄漏,泄漏的盐酸挥发产生HCl随大气扩散造成污染环境并影响周围人群健康。

建设项目环境影响报告书盐酸泄露环境风险评价

建设项目环境影响报告书盐酸泄露环境风险评价

1.盐酸泄露的定量分析 1.1泄露流量的计算要估算盐酸的泄露范围,首先要确定其泄露流量,盐酸可以应用液体经小孔泄露的源模式计算泄露流量,其公式为:式中:Q —流量,kg/s ;C 0—孔流系数,取0.6; A —小孔的横截面积,m 2; ρ—流体密度;kg/m 3; P g —液体压力,Pa ; g —重力加速度,9.81m/s 2; A 0—储罐的横截面积,m 2; Z 0—储罐内液面距小孔高度,m ; t —泄露时间,s 1.2泄露参数本次盐酸罐泄露的相关计算参数见表13-1。

表13-1 盐酸罐泄露计算相关参数一览表1.3泄露速率本次工程盐酸储罐的容积为50m 3,尺寸为Ф3.6m ,高5m ,单罐最大储量为60t ,评价根据盐酸储罐泄露量的计算参数,确定本次盐酸罐事故泄露的速度为3.25kg/s ,根据盐酸储罐的储存量,则本次盐酸罐全部泄露完需5h 。

考虑0.5小时事故泄漏应急时间,则0.5h 内的盐酸的泄漏量为5.85t ,约占总储量总量的9.8%。

220o ogC A Q C A tA r =2.盐酸酸雾的产生量考虑0.5小时事故泄漏应急时间,则0.5h 内的盐酸的泄漏量为5.85t ,盐酸储罐围堰长:3.6m ,宽:9m ,高:2m ,考虑泄漏出口的盐酸闪蒸,则0.5h 盐酸泄漏量在围堤内形成0.15m 深的液池(除去单只盐酸贮罐罐脚所占面积后,液池有效面积22.23m 2)。

由于盐酸的沸点为-114.8℃,沸点远远低于液体贮存的常温,因此盐酸泄漏在围堤形成液池后,将产生闪蒸、热量蒸发和质量蒸发。

由于盐酸的沸点为-33.5℃,沸点远远低于液体贮存的常温,因此盐酸泄漏在围堤形成液池后,将产生闪蒸、热量蒸发和质量蒸发。

评价选择适用于硫酸、硝酸和盐酸等酸液蒸发量的计算公式来分析本次工程盐酸泄露后酸雾的产生量,计算公式如下: 式中:Gz ——酸雾量,kg/h ;M ——液体分子量;U ——蒸发液体表面上的空气流速(m/s),应以实测数据为 准。

盐酸风险评价

盐酸风险评价

20万吨/年胎圈钢丝盐酸库环境风险评价胎圈钢丝项目使用的盐酸属于危险化学品,储存过程中存在环境风险。

1、盐酸的性质简介氯化氢的水溶液即盐酸,纯盐酸无色,工业品因含有铁、氯等杂质,略带微黄色。

,有强烈的腐蚀性,能腐蚀金属,对动植物纤维和人体肌肤均有腐蚀作用。

浓盐酸在空气中发烟,触及氨蒸气会生成白色云雾。

氯化氢气体对动植物有害。

盐酸是极强的无机酸,与金属作用能生成金属氯化物并放出氯;与金属氧化物作用生成盐和水;与碱起中和反应生成盐和水;2、风险识别本项目所用酸不属于剧毒物质和一般毒物(属低毒类);酸属腐蚀,爆炸危险物质;根据重大危险源辨识(GB18218-2009)重规定,项目酸库储存酸的数量约70吨,超过临界量,构成重大危险源。

酸的使用是一个封闭的系统,对照《爆炸和火灾危险环境电力装置设计规范》(GB50058-92)规范标准,酸装置在正常运行时不会释放易燃物质;即使释放也是在酸泵的轴封处和阀门、法兰、管件接头等密封处偶尔的、短时的发生。

第二级释放源存在的区域,可划为2区。

2区的概念是在正常运行时不可能出现爆炸性气体混合物的环境。

正常运行是指正常的开车、运转、停车,易燃物质产品的装卸,密闭容器的开闭,安全阀、排放阀、以及所有设备都在其设计参数范围内工作的状态。

“当通风良好时,易燃物质可能出现的最高浓度不超过爆炸下限的10%”,可划为非爆炸危险区。

从上述分析中得知,出现最高浓度能超过爆炸下限10%的概率近似为零。

同时酸的比重很轻,因此,它难以聚集到爆炸极限的浓度。

因此,可以将酸系统作为非爆炸危险区看待。

同时,酸在正常工况下的自然损耗不会对环境造成污染影响。

发生酸泄漏的常见原因是由于管理不善,工人违章操作以及设备、容器陈旧,管道破裂,阀门损漏,或者运输不当等导致生产性事故或者意外事故所造成。

综上所述,本项目按库存环境风险来源酸泄漏。

酸泄漏因素主要有:1)管路系统漏泄(包括管道、阀门、连接法兰、泵的密封等设备及部位);2)储罐泄漏;3)自认因素,如地震、雷击等。

安全管理应急预案之盐酸泄漏环境应急预案

安全管理应急预案之盐酸泄漏环境应急预案

02
制定培训计划,安排培训时间、地点和参与人员,确保培训的
有效性和针对性。
培训材料应注重实用性和可操作性,以便参与人员在紧急情况
03
下能够迅速掌握应急处理技能。
演练和培训效果的评估与改进
1
对演练和培训的效果进行评估,分析存在的问题 和不足之处。
2
根据评估结果,制定相应的改进措施,进一步完 善应急预案的演练和培训工作。
蚀性物质等。
泄漏影响范围的预测
风向与风速
根据当时的风向和风速,预测泄漏气体的扩散方向和 范围。
地形与障碍物
考虑地形和周围障碍物质
了解盐酸的性质,如密度、挥发性等,以更准确地预 测其影响范围。
03
应急组织与职责
应急指挥部的设立
设立应急指挥部,负 责统一组织、协调和 指挥应急处置工作。
适用范围
本应急预案适用于公司内部及周 边地区发生的盐酸泄漏事故。
盐酸泄漏的危害性
01
盐酸是一种强酸,具有强烈的腐 蚀性和刺激性气味,对人体和环 境造成严重危害。
02
盐酸泄漏可导致人员中毒、灼伤 和环境污染,对周边生态造成长 期影响。
应急预案的重要性和意义
1 2 3
提高应对能力
应急预案的制定和实施有助于提高企业和相关部 门的应对能力,确保在事故发生时能够迅速、有 序地进行处置。
安全管理应急预案之盐酸泄 漏环境应急预案
汇报人:文小库 2024-01-09
目录
• 应急预案概述 • 盐酸泄漏的识别与评估 • 应急组织与职责 • 应急处置与救援措施 • 医疗救治与健康监护 • 事故后的恢复与重建 • 应急预案的演练与培训
01
应急预案概述
目的和适用范围

盐酸生产厂家环境评价要求

盐酸生产厂家环境评价要求

盐酸生产厂家环境评价要求
根据建立工程环境风险评价技术导则,风险评价的目的是分析和预测建立工程存在的潜在危险、有害因素,工程建立和运行期间可能发生的突发性事件或事故,引起有毒有害和易燃易爆等物质泄漏,所造成的人身平安与环境影响和损害程度,提出合理可行的防范、应急与减缓措施,以便建立工程事故率、损失和环境影响到达可承受水平。

环境风险评价工作的重点是预测和防护事故引起厂界外人群的
伤害、环境质量的恶化及对生态系统影响。

有关规定,盐酸属于有毒物质,本工程在使用盐酸过程中存在一定的风险。

应选择具有运送危险品相应资质的单位开展运送,并催促提醒其按照有关道路运输管理方法严格执行、做到平安运输。

根据上述风险评价的目的和要求,确定本次环境风险识别的重点是本工程运输、使用或贮运过程中的有毒有害化学品对周围环境的影响。

盐酸泄露环境风险评价

盐酸泄露环境风险评价

8环境风险评价8.1评价目的和评价重点环境风险是从事生产和社会活动时可能发生对环境有害后果的描述。

评估的目的就是通过分析建设项目运营期内可能发生的事故类型及其影响程度和范围,以确定开发建设及生产项目什么样的风险是社会可以承受的,从而为工程设计提供参考依据。

本项目具有一定的事故风险性,需要进行必要的环境事故风险分析,提出进一步降低事故风险措施,使得工厂在生产正常运转的基础上,确保生产区内外的环境质量,确保职工及周边影响区内人群生物的健康和生命安全。

本次评价主要以发生环境污染事故引起的大气和水环境污染而对周围居民的危害和环境质量影响程度为重点。

8.2项目物质及风险识别8.2.1项目原料辅料及产品危险源识别根据该厂所涉及的原料、辅料及产品,对照《重大危险源识别》(GB18218-2000) 标准规定,该厂主要危险源物质中被列入危险性物质的为:氯化氢(有毒物质),该危险物质在生产区、贮存区的实际量与临界量要求对比见表8.2.1-1。

表8.2.1-1 该厂主要危险源物质生产场所、贮存区临界量和实际量对照表*按盐酸的浓度核算HCL量因此,根据生产场所的实际使用量和贮存区的实际贮存量对照规定临界量,按规定,可确定该厂各生产区及贮存区没有物质构成重大危险源。

8.2.2物质风险因素识别根据《职业性接触毒物危害程度分级》,盐酸属于中度危害,可见,该厂所使用的化学品原料中有部分为危险化学品,存在着中毒、化学灼烫等危险有害因素。

主要危险因素为化学灼烫和中毒事故,主要风险类型为毒物泄漏中毒和化学灼烫,造成的危害主要是HCL通过呼吸道、皮肤对人员造成伤亡。

由此,本评价主要针对该原辅材料(HCL)的危险性及有毒危害性,计算分析事故状态下毒物泄漏对环境可能造成的影响程度、范围,从而提出事故应急措施。

HCL的危险性特征参数如下:形态特征:无色有刺激性气味的气体熔点:-114.2℃沸点:-85.0℃蒸汽压:4225.6kPa(20℃)(30%盐酸30.66kPa(21℃))毒理指标:LD50 400mg/kg(兔经口);LC50 4600mg/m3(大鼠吸入)8.3 评价等级及范围本项目无重大风险源且处于环境非敏感地区,根据《建设项目环境风险评价评价技术导则》(HJ/T169-2004)的相关规定,本项目环境风险评价等级确定为二级,评价范围以源点3km区域。

盐酸贮罐泄漏定量分析评价(模拟)

盐酸贮罐泄漏定量分析评价(模拟)

5.5.2 盐酸贮罐泄漏定量分析评价该项目硫酸钾厂单元需要设置一个70m 3的贮罐,储存环境为常温、常压,设水喷淋冷却保护装置,事故清水池等。

由于盐酸贮罐储量较大,且属于8.1类酸性腐蚀品,有一定的挥发性,危险性较大,事故发生的腐蚀及中毒的影响范围较广,因此对该贮罐利用事故后果模拟分析法进行分析,并确定其泄漏量、泄漏时间、最大影响半径等。

1、泄漏量的计算基本数据:盐酸贮罐体积70m 3,高h =6.6m 。

假设裂口半径=0.1m液体泄漏速度可按流体力学的伯努利方程计算,其泄漏速度为:0d Q C A = (1)式中,0Q 为液体泄漏速度,kg/s ;d C 为液体泄漏系数,(取0.50);A 为裂口面积,m 2,(均取220.0314m A r π==);ρ为泄漏液体密度,kg/m 3,(盐酸11097ρ=);P 为容器内介质压力,Pa ,(0P P =);0P 为环境压力,Pa ;g 为重力加速度,29.8m /s g =;h 为裂口之上液位高度,m ,(盐酸液位与裂口之间的高差为h =5m )。

将各参数值代入式(1)中,得盐酸:Q 0=170.5kg/s表5.5-2 液体泄漏系数d Q对于常压下的液体泄漏速度。

取决于裂口之上液位的高低;对于非常压下的液体泄漏速度,主要取决于贮罐内介质压力与环境压力之差和液位高低。

当容器内液体是过热液体,即液体的沸点低于周围环境温度,液体流过裂口时由于压力减小而突然蒸发。

蒸发所需热量取自液体本身,而容器内剩下的液体温度将降至常压沸点。

在这种情况下,泄漏时直接蒸发的液体所占百分比F ,可按下式计算:p 0()/F C T T H =- (2)式中,p C 为液体的定压比热,J /(kg K)⋅,[查得:盐酸p 136.4J/(mol C)C =⋅];T 为泄漏前液体的温度,K ,(均取常温20C T =);0T 为液体常压下的沸点,K ,(盐酸0110C T =);H 为液体的汽化潜热,J/kg ,(盐酸167.15kJ /mol H =)。

盐酸硫酸泄漏危害分析与控制

盐酸硫酸泄漏危害分析与控制

盐酸硫酸泄漏危害分析与控制集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-盐酸、硫酸泄漏危害分析与控制盐酸、硫酸若发生泄漏,会引发燃烧、爆炸、腐蚀、毒害等严重的灾害事故,危及公共安全和人民群众的生命财产安全,导致环境污染。

2002年3月15日正式实施的《危险化学品安全管理条例》就是危险化学品安全管理最主要的法律依据。

以下结合该条例,对盐酸、硫酸储运中发生泄漏事故后的危害范围及应急措施的问题进行探讨,以期引起各企业有关部门的重视。

一、盐酸、硫酸的物化特性1.盐酸的理化性质盐酸能与水混溶,并溶于碱液。

不燃烧,但危险性也很大,能与一些活性金属粉末发生反应而放出氢气,若遇氰化物,能产生剧毒的氰化氢气体,碱发生中和反应时放热;具有较强的腐蚀性,分解产物是氯化氢。

山于能与碱发生中和反应并大量放热,所以它的禁忌物为碱类、碱金属,易燃或可燃物,胺类等。

2.硫酸的理化性质硫酸对水具有很大的亲和力,能与水混溶,并从空气和有机物中吸取水分,一旦与水、醇混合会产生大量的热;因此,在稀释硫酸时要特别注意,应将硫酸慢慢倒入水中。

硫酸还能助燃,与易燃物和有机物接触会发生剧烈反应,甚至引起燃烧;遇水大量放热,可发生沸溅。

硫酸的禁忌物主要有碱类、碱金属、水、强还原剂、易燃物和可燃物。

由于其固有的危险性和广泛的使用性,对硫酸事故的防范很蘑要。

二、泄漏控制一般性措施盐酸、硫酸的泄漏,容易发生人员中毒、伤亡和严重环境污染事故。

因此泄漏处理要及时、得当,避免重大事故的发生。

要成功地控制盐酸、硫酸的泄漏,必须事先进行计划。

并且对盐酸、硫酸的化学性质和反应特性有充分的了解。

泄漏事故控制一般分为泄漏源控制和泄漏物处置两部分。

1.泄漏处理注意事项进入泄漏现场进行处理时,应注意以下几项:(1)进入现场人员必须配备必要的个人防护器具;(2)应急处理时严禁单独行动。

要有监护人,必要时用水枪、水炮掩护:(3)应从上风、上坡处接近现场。

盐酸安全评估报告

盐酸安全评估报告

盐酸安全评估报告
盐酸 (HCl) 是一种常见的酸性化学品,广泛应用于工业生产中。

本篇报告对盐酸的安全性进行评估。

首先,盐酸的物理性质应予以考虑。

盐酸为无色液体,有刺激性气味。

其沸点为38℃,闪点为-40℃。

盐酸与水混合形成盐
酸溶液,常见浓度为37%。

由于其强酸性,应在通风良好的
环境中操作,并佩戴适当的防护设备,如防护眼镜和手套。

其次,盐酸的危害性也是评估的关键点。

盐酸是一种腐蚀性物质,接触到皮肤或眼睛时会引起灼伤。

吸入高浓度的盐酸蒸气会对呼吸系统造成刺激,引起咳嗽、气喘等症状。

长期暴露于盐酸环境中可能导致慢性呼吸系统疾病。

因此,必须保持操作区域的良好通风,并采取必要的个人防护措施。

此外,盐酸的储存和处理也是安全性考虑的重要方面。

盐酸应储存在防腐材料制成的容器中,并远离可燃物和氧化剂。

当盐酸溶液泄漏时,应立即采取措施进行清理,并使用防腐材料吸收。

废弃的盐酸溶液应根据当地法规和标准进行处理。

最后,针对可能发生的事故情况,应制定应急预案。

应急队伍应进行培训,以便在事故发生时迅速应对。

应事先准备好安全设备和药品,如洗眼器、消防器材等。

综上所述,盐酸具有较高的危害性,但通过合理的操作和防范措施,可以最大程度地降低事故风险。

必须定期进行员工培训,提高安全意识,并严格按照相关法规和标准执行操作和处理。

同时,应建立完善的安全管理体系,确保盐酸在工业生产中的安全使用。

盐酸、硫酸泄漏危害分析与控制

盐酸、硫酸泄漏危害分析与控制

盐酸、硫酸泄漏危害分析与控制1. 背景介绍盐酸和硫酸是常见的化学品,在工业生产和实验室中广泛应用。

然而,由于各种原因,如设备故障、操作失误等,这两种化学品有时会发生泄漏事故。

盐酸和硫酸泄漏会产生严重的危害,包括对人体健康的威胁、环境污染以及财产损失。

因此,对盐酸和硫酸泄漏的危害进行分析,并制定相应的控制措施,对于确保安全生产和保护环境具有重要意义。

2. 盐酸、硫酸的危害性分析2.1 盐酸的危害性分析盐酸是一种强酸,具有腐蚀性和刺激性。

其主要危害包括:•腐蚀皮肤和眼睛:盐酸与皮肤接触会引起化学灼伤,严重时可能导致溃烂和组织坏死。

进入眼睛后,盐酸可以造成严重的眼睛损伤。

•呼吸道刺激:盐酸气体具有刺激性气味,吸入高浓度的盐酸气体会引起呼吸道刺激和呼吸困难。

•毒性:盐酸蒸气对于某些动物和植物有毒性,对水生生物也具有较大的危害。

2.2 硫酸的危害性分析硫酸也是一种强酸,其危害主要体现在以下几个方面:•腐蚀性:硫酸与皮肤接触会引起严重的化学灼伤,会导致皮肤溃疡和组织坏死。

眼睛接触硫酸会导致眼睛损伤甚至失明。

•高温效应:硫酸与有机物接触时会产生热量,可能引发爆炸事故。

•毒性:硫酸蒸气对于人体健康有一定毒性,长期接触会对中枢神经系统、呼吸系统和消化系统产生影响。

•环境污染:硫酸泄漏会对土壤、水源和空气造成污染,对生态环境造成不可逆转的损害。

3. 盐酸、硫酸泄漏的控制措施3.1 泄漏事故的预防•对于盐酸和硫酸的存储和使用场所,应建立相应的安全规范和操作程序,确保设备完好且符合安全标准。

•员工应接受专业的培训,了解盐酸和硫酸的危害性,并掌握正确的操作方法和应急措施。

•对于化学品包装容器,应定期检查,确保其防漏性能。

必要时,应对容器进行更换或修理。

3.2 泄漏事故的应急处理•一旦发生盐酸、硫酸泄漏事故,首先要确保人员安全,迅速撤离事故现场。

•在事故现场设置警戒区,阻止其他人员进入,并通知相关专业人员参与事故处理。

•使用适当的个人防护装备,包括化学防护服、护目镜、防酸手套等,进入事故现场进行泄漏源的封堵和清理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8环境风险评价8.1评价目的和评价重点环境风险是从事生产和社会活动时可能发生对环境有害后果的描述。

评估的目的就是通过分析建设项目运营期内可能发生的事故类型及其影响程度和范围,以确定开发建设及生产项目什么样的风险是社会可以承受的,从而为工程设计提供参考依据。

本项目具有一定的事故风险性,需要进行必要的环境事故风险分析,提出进一步降低事故风险措施,使得工厂在生产正常运转的基础上,确保生产区内外的环境质量,确保职工及周边影响区内人群生物的健康和生命安全。

本次评价主要以发生环境污染事故引起的大气和水环境污染而对周围居民的危害和环境质量影响程度为重点。

8.2项目物质及风险识别8.2.1项目原料辅料及产品危险源识别根据该厂所涉及的原料、辅料及产品,对照《重大危险源识别》(GB18218-2000) 标准规定,该厂主要危险源物质中被列入危险性物质的为:氯化氢(有毒物质),该危险物质在生产区、贮存区的实际量与临界量要求对比见表8.2.1-1。

表8.2.1-1 该厂主要危险源物质生产场所、贮存区临界量和实际量对照表*按盐酸的浓度核算HCL量因此,根据生产场所的实际使用量和贮存区的实际贮存量对照规定临界量,按规定,可确定该厂各生产区及贮存区没有物质构成重大危险源。

8.2.2物质风险因素识别根据《职业性接触毒物危害程度分级》,盐酸属于中度危害,可见,该厂所使用的化学品原料中有部分为危险化学品,存在着中毒、化学灼烫等危险有害因素。

主要危险因素为化学灼烫和中毒事故,主要风险类型为毒物泄漏中毒和化学灼烫,造成的危害主要是HCL通过呼吸道、皮肤对人员造成伤亡。

由此,本评价主要针对该原辅材料(HCL)的危险性及有毒危害性,计算分析事故状态下毒物泄漏对环境可能造成的影响程度、范围,从而提出事故应急措施。

HCL的危险性特征参数如下:形态特征:无色有刺激性气味的气体熔点:-114.2℃沸点:-85.0℃蒸汽压:4225.6kPa(20℃)(30%盐酸30.66kPa(21℃))毒理指标:LD50 400mg/kg(兔经口);LC50 4600mg/m3(大鼠吸入)8.3 评价等级及范围本项目无重大风险源且处于环境非敏感地区,根据《建设项目环境风险评价评价技术导则》(HJ/T169-2004)的相关规定,本项目环境风险评价等级确定为二级,评价范围以源点3km区域。

8.4 环境风险事故源项分析8.4.1生产车间事故风险源项分析根据若干家冷轧带钢企业的调查结果,生产车间由于非正常生产工况和事故工况可能存在的情况包括:(1)突然停电、废气吸收的风机及循环碱液泵电机等损坏而不能工作,以及因酸洗槽外罩大面积破裂等突发性事故。

该类事故发生时,酸洗槽中HCL将从进出料口及外罩破裂处无组织挥发溢入空气中。

该类事故的发生机率不大,但其泄露时间较难控制,其无组织排放量核定为0.38kg/h。

建议企业加强管理,增加槽液收集沟槽回收系统,一旦酸洗槽液等因机械故障或职工操作不当造成泄漏,泄漏液首先进入槽液收集沟槽回收系统,避免出现物料外溢而直接进入废水处理系统而造成直排事故现象。

(2)因外协、管理等原因,部分酸洗废槽液以及废水处理污泥未能得到妥善外销处理利用而直接排入或经简单中和处理后直接排放。

该类事故情况在乡镇企业中尚占有一定比例。

8.4.2物料贮存区事故风险源项分析根据前述分析,该厂化学原料贮存区贮存盐酸过程中具有一定事故隐患。

具体包括:(1)运输途中发生交通事故,火灾等意外情况,导致盐酸泄漏。

(2)装卸过程中管道损坏、破裂以及运输过程中运输车辆储槽损坏、破裂均会导致盐酸泄露。

当发生该类事故时,可经由围堰及收集沟将泄漏物料控制在围堰内并将其大部分重新收集至贮槽(桶)内。

通常回收完泄露的物料后,用水对地面进行冲洗,其冲洗废水将收集并送至厂内废水处理站集中处理,不允许出现随意外排现象。

发生该类事故,只要措施控制得当,不会造成泄漏物进入附近水体而造成明显的水环境污染事故,因此,该类事故主要为泄漏物料挥发而造成的废气污染事故。

该厂主要事故挥发性物料废气污染物为HCL。

假设物料仓储区因各种原因造成储桶(槽)破裂、倾翻(倒)等物料泄漏溢出,一次性泄漏盐酸250kg,泄漏及事故排放历时不超过10分钟。

发生该假设事故情况下,盐酸在常温下为液体,发生事故后,并不是立即变成气体扩散到空气中,立即采取应急措施,可以收集部分泄漏物由管道泄漏至围堰并控制在10m2内。

因此,假设事故液体泄漏物扩散到大气中的数量可根据其常温下的饱和蒸汽压和Kundsen公式计算:Q=αβP0(Mi/2πRT)0.5式中: P0—饱和蒸汽压(20℃,kPa);Mi—分子量;R为气体常数,8.314J/mol·K;T—绝对温度(以**市年平均温度287.9K计);α、β—系数,纯物质蒸发,其值均为1.0;Q—蒸发通量(g/m2·s)。

具体源强计算结果列于表8.4.2-1。

表8.4.2-1 仓储区泄漏最大可信事故污染物源强及工作场所职业卫生标准*中华人民共和国职业卫生标准《工作场所有害因素职业接触限值》GBZ2-2002。

8.4.3生产废水管网收集系统及废水处理站事故风险源项分析一般情况下,生产和污水管网不会发生堵塞、破裂等导致废水直接进入水体。

发生该类事故的可能原因主要有管网设计不合理、操作不当、人为往下水道倾倒大量废液、废水处理站机械故障及贮池破损等。

另外,在发生地震时,可能造成污水收集系统及废水处理站毁坏或其它事故。

当发生该类事故时,生产废水外溢直接流入附近水体,将对水环境产生一定影响。

该厂废水收集及处理系统的最大可信事故为因以上各种原因造成全厂废水不经处理或仅经简单中和后直接排入附近水体,其污染物排放源项主要考虑铁和pH 值,与太平河混合后,混合断面中铁含量达1.036mg/L ,pH 仅5.46。

故在事故排放时,对太平河水质影响较大,恢复时间较长。

详见第七章水环境影响预测。

8.4.4槽边废气处理系统事故风险源项分析槽边废气处理系统发生故障的最大可能事故为不经处理直接排空。

一旦发生故障,企业可在1小时得以修复正常。

其排放源强见表8.4.4-1。

表8.4.4-1 项目槽边废气事故污染源排放参数8.5事故危害性及影响预测8.5.1事故环境影响预测方法(一)环境空气影响假设仓储区酸类物质物料泄漏事故将造成大气环境污染,使用大气扩散模型计算这种假设事故排放造成下风向污染物浓度分布和超标距离。

评价标准按国家职业卫生标准《工作场所有害因素职业接触限值》GBZ-2002中短时间接触容许浓度执行(见表8.4.2-1)。

使用非正常排放模式。

计算所需的气象条件考虑最不利条件(静小风条件,u≤0.5m /s))。

非正常排放模式:]2exp[]2exp[2222z e y z y H y u QC σσσσπ--=G 1 ⎪⎩⎪⎨⎧=≤-+-----T t X X Ut T t X UT Ut X Ut z z z z G 1)()()()(1σφσφσφσφ式中: t 为扩散时间;T 为非正常排放时间。

(二)水环境影响风险事故水环境影响预测方式参见第七章水环境影响预测。

8.5.2预测计算结果(一)仓储区物料泄漏假设事故对空气环境影响预测仓储区物料泄漏对空气环境影响预测计算结果见表8.5.2-1。

表8.5.2-1仓储区物料泄漏事故排放时大气污染物最大浓度及超标距离(静小风)预测结果表明,在假设事故(物料仓储区因各种原因造成储桶(槽)破裂、倾翻(倒)等物料泄漏溢出)发生的短时间内,在静小风不利条件下,区域环境空气中HCl污染物指标在事故源点附近210m范围内超过国家职业卫生标准《工作场所有害因素职业接触限值》GBZ-2002中短时间接触容许浓度的要求,即在该范围内将对人群有一定短时伤害影响。

但该类事故对厂界外相应聚居村落等人居场所不会产生明显的伤害影响。

若事故得到及时控制,则可在事故结束后的数分钟内恢复正常。

该类事故均不会造成厂区及附近区域的人员死亡。

(二)酸洗槽边废气处理系统事故污染物排放对环境影响预测当发生酸洗槽边废气处理设施故障而直接排放时,其在短时事故排放状况下对环境空气质量的影响预测情况见表8.5.2-2。

表8.5.2-2 槽边废气事故排放对环境空气影响贡献值预测结果(静小风)预测结果表明,本项目槽边废气事故性直接排放,其对环境空气中贡献最大落地点浓度均低于环境空气质量的相应评价标准之要求(氯化氢仅在B、C大气稳定度下略有超标,且超标距离不超下源点130m范围内),且远远低于国家职业卫生标准《工作场所有害因素职业接触限值》GBZ-2002中短时间接触容许浓度的要求。

因此,本项目槽边废气事故排放不会对附近人居健康产生明显伤害影响,而且对环境空气质量的影响也较小。

(三)废水收集及处理系统事故下水环境污染影响预测影响预测计算结果详见第七章表7.2.4-1。

预测结果表明,项目废水在出现不经处理而直接排放的事故时, 总铁、pH 浓度明显增高,将对太平河造成明显不利影响,项目建设单位仍应加强废水处理和利用,设立应急事故废水收集处理池,杜绝废水事故排放的发生。

8.6事故风险计算和评价(一)风险值风险值是风险评价表征量,包括事故的发生概率和事故的危害程度。

定义为:⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛每次事故后果危害程度单位时间事故数概率时间后果风险值 (二)风险评价原则(1)在后果计算中针对本项目所可能产生的最大可信事故,进行了事故泄漏及火灾情况下的污染物浓度分布计算,然后按GBZ2《工作场所有害因素职业接触限值》规定的短时间接触容许浓度值,给出该浓度分布范围及在该范围内的人口分布。

(2)本项目区域内无需特别保护的水生生态环境。

在发生泄漏及火灾事故时,泄漏物料及消防冲洗废液(废水)将进入管网。

(3)通过分析,本项目不存在显著的以生态系统损害为特征的事故风险评价。

同时鉴于目前毒理学研究资料的局限性,本次风险值计算不考虑对急性死亡、非急性死亡的致伤、致残、致畸、致癌等慢性损害后果。

(三) 风险计算本项目风险评价对危害值的计算采用简化分析法,以各种危害的死亡人数代表危害值,对泄漏扩散的危害值,以LC 50来求毒性影响。

若事故发生后下风向某处,污染物浓度的最大值大于或等于该污染物的半致死浓度LC 50,则事故导致评价区内因发生污染物致死确定性效应而致死的人数C 由下式给出:∑=ln ln ln ),(5.0j i Y X N C根据前述预测计算分析,具体风险危害计算结果如表8.6-1所示。

表8.6-1 事故后果危害值估算最大可信事故所有有毒有害物泄漏所致环境危害C ,为各种危害Ci 综合:∑==n i iC C 1最大可信事故对环境所造成的风险R 按下式计算:C P R ⋅=式中: R ——风险值;P ——最大可信事故概率(事件数/单位时间);C ——最大可信事故造成的危害(损害/事件)。

相关文档
最新文档