2013初三锐角三角函数
锐角三角函数课件
45度角的余弦值
$cos 45^circ = frac{sqrt{2}}{2}$
30度角的余弦值
$cos 30^circ = frac{sqrt{3}}{2}$
60度角的正弦值
$sin 60^circ = frac{sqrt{3}}{2}$
45度角的正弦值
在工程学中的应用
结构设计
在建筑和机械设计中,锐角三角 函数用于计算结构件的角度和长
度。
控制系统
在控制系统的设计中,锐角三角函 数用于描述系统的传递函数和稳定 性。
信号处理
在信号处理中,锐角三角函数用于 频谱分析和滤波器的设计。
05
特殊角度的三角函数值
30度、45度、60度的三角函数值
30度角的正弦值
正切函数的图像在每 一个开区间(π/2+kπ, π/2+kπ), k∈Z内都是递增的。
04
锐角三角函数的应用
在几何学中的应用
01
02
03
计算角度
锐角三角函数可以帮助我 们计算出特定角度的三角 形的角度,例如直角三角 形中的锐角。
计算边长
通过已知的角度和边长, 我们可以使用锐角三角函 数来计算其他边的长度。
04
90度角的余弦值
$cos 90^circ = 0$
06
习题与解答
习题
题目1
已知直角三角形中,一个锐角为 30°,邻边长为3,求对边长。
题目2
在直角三角形中,已知一个锐角 为45°,斜边长为5,求邻边长。
题目3
已知直角三角形中,一个锐角为 60°,对边长为6,求斜边长。
答案与解析
01
初三数学锐角三角函数试题答案及解析
初三数学锐角三角函数试题答案及解析1.(2013四川乐山)如图,在直角坐标系中,P是第一象限内的点,其坐标是(3,m),且OP与x轴正半轴的夹角α的正切值是,则sinα的值为()A.B.C.D.【答案】A【解析】如图,过点P作PA⊥x轴于点A,则OA=3.在Rt△POA中,∵,∴.∴.∴.故选A.2.(2013广东汕头)在Rt△ABC中,∠ABC=90°,AB=3,BC=4,则sinA=________.【答案】【解析】∵∠ABC=90°,AB=3,BC=4,∴.∴.3.(2014江苏无锡)如图,□ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于________.【答案】【解析】设AC、BD交于点O.在Rt△AEO中,,即,解得.∵四边形ABCD是平行四边形,∴.4.如图,在Rt△ABC中,∠C=90°,∠B=37°,BC=32,则AC的值为________.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】24【解析】在Rt△ABC中,∠C=90°,所以,即,所以AC=32·tan37°≈32×0.75=24.5. (2014江苏无锡)如图,在□ABCD中,AE⊥BD于E,∠EAC=30°,AE=3,则AC的长等于________.【答案】【解析】如图,在直角△AOE中,,∴.又∵四边形ABCD是平行四边形,∴.6. (2014四川宜宾)规定:sin(-x)=-sinx,cos(-x)=cosx,sin(x+y)=sinx·cosy+cosx·siny.据此判断下列等式中成立的是________(写出所有正确的序号).①;②;③sin2x=2sinx·cosx;④sin(x-y)=sinx·cosy-cosx·siny.【答案】②③④【解析】①,故①错误;②sin75°=sin(30°+45°)=sin30°·cos45°+cos30°·sin45°,故②正确;③sin2x=sinx·cosx+cosx·sinx=2sinx·cosx,故③正确;④sin(x-y)=sinx·cos(-y)+cosx·sin(-y)=sinx·cosy-cosx·siny,故④正确.7. (2014福建三明)如图,在山坡上植树,已知山坡的倾斜角α是20°,小明种植的两棵树之间的坡面距离AB是6米,要求相邻两棵树之间的水平距离AC为5.3~5.7米.问:小明种植的这两棵树是否符合这个要求?(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【答案】符合要求【解析】在Rt△ACB中,AB=6米,∠A=20°,∴AC=AB·cosA≈6×0.94=5.64(米).又5.3<5.64<5.7,∴小明种植这两棵树符合要求.8. (2014浙江绍兴)某校九(1)班的同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.(1)如图①,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求α的度数.(2)如图②,第二小组用皮尺量得EF的长为16米(E为护墙上的端点),EF的中点距离地面FB的高度为1.9米,请你求出E点距离地面FB的高度.(3)如图③,第三小组利用第一、第二小组的结果,来测量护墙上旗杆的高度,在点P处测得旗杆顶端A的仰角为45°,向前走4米到达点Q处,测得A的仰角为60°,求旗杆的高度AE(精确到0.1米.参考数据:tan60°≈1.732,tan30°≈0.577,,).【解析】(1)∵BD=BC,∴∠CDB=∠DCB,∴α=2∠CDB=2×38°=76°.(2)设EF的中点为M,过M作MN⊥BF,垂足为点N,过点E作EH⊥BF,垂足为点H,如图①.∴MN∥EH,又M为EF的中点,∴MN为△EFH的中位线,又∵MN=1.9米,∴EH=2MN=3.8米,∴E点距离地面FB的高度是3.8米.(3)延长AE,交PB于点C,如图②.设AE=x米,则AC=(x+3.8)米.∵∠APB=45°,∴PC=AC=(x+3.8)米.∵PQ=4米,∴CQ=x+3.8-4=(x-0.2)米.∵,∴,解得x≈5.7,即AE≈5.7米.答:旗杆的高度AE约为5.7米.9.(2014贵州六盘水)为践行党的群众路线,六盘水市教育局开展了大量的教育教学实践活动.下图是其中一次“测量旗杆高度”的活动场景抽象出的平面几何图形.活动中测得数据如下:①小明的身高DC=1.5m;②小明的影长CE=1.7m;③小明的脚到旗杆底部的距离BC=9m;④旗杆的影长BF=7.6m;⑤从D点看A点的仰角为30°.请选择你需要的数据,求出旗杆的高度.(计算结果精确到0.1,参考数据:,)【答案】6.7m【解析】解法一:选用①、②、④.∵AB⊥FC,CD⊥FC,∴∠ABF=∠DCE=90°.又∵AF∥DE,∴∠AFB=∠DEC.∴△ABF∽△DCE.∴.又∵DC=1.5m,FB=7.6m,EC=1.7m,∴AB≈6.7m.即旗杆高度约为6.7m.解法二:选用①、③、⑤.如图,过D点作DG⊥AB于G点.∵AB⊥FC,CD⊥FC,∴四边形BCDG为矩形.∴CD=GB=1.5m,DG=BC=9m.在Rt△AGD中,∠ADG=30°,∴,∴m.又∵AB=AG+GB,∴(m),即旗杆高度约为6.7m.10.为了响应某市人民政府“形象重于生命”的号召,在甲建筑物上从点A到点E挂一长为30米的宣传条幅.如图所示,在乙建筑物的顶点D处测得条幅顶端点A的仰角为45°,测得条幅底端点E的俯角为30°,求底部不能直接到达的甲、乙两建筑物之间的水平距离BC.(精确到1米)【答案】19米【解析】要求BC的长,即求△ADE中AE边上的高,如图,过点D作DF⊥AB,垂足为F.由题意,得∠ADF=45°,∠EDF=30°,∴AF=DF.在Rt△DFE中,.∵AE=30,∴,解关于DF的方程得.又∵DF=BC,∴.∴甲、乙两建筑物之间的水平距离约为19米.11.如图所示,在△ABC中,∠C=90°,,D为AC上一点,∠BDC=45°,DC=6,求AB的长.【答案】15【解析】先解直角三角形BCD,求得BC=DC=6,再解直角三角形ABC,由正弦的定义可得,从而得.所以在较复杂的图形中求线段的长度时,有时要通过两次或更多次解直角三角形才能达到目的.因为∠C=90°,∠BDC=45°,所以∠DBC=45°,所以BC=DC=6.在Rt△ABC中,,所以,即AB的长为15.12. (2014福建漳州)将一盒足量的牛奶按如图①所示的方式倒入一个水平放置的长方体容器中,当容器中的牛奶刚好接触到点P时停止倒入.图②是它的平面示意图,请根据图中的信息,求出容器中牛奶的高度.(结果精确到0.1cm.参考数据:,)【答案】约5.5cm【解析】过点P作PN⊥AB于点N,由题意可得∠ABP=30°,AB=8cm,则AP=4cm,cm.∵.∴(cm),∴(cm).∴容器中牛奶的高度约为5.5cm.13.如图,某翼装飞行运动员从离水平地面高AC=500m的A处出发,沿着俯角为15°的方向,直线滑行1600米到达D点,然后打开降落伞以75°的俯角降落到地面上的B点.求他飞行的水平距离(结果精确到1m).【答案】1575米【解析】如图,过点D作DE⊥AC,作DF⊥BC,垂足分别为E,F,∵AC⊥BC,∴四边形ECFD是矩形,∴EC=DF.在Rt△ADE中,∠ADE=15°,AD=1600.∴AE=AD·sin∠ADE=1600sin15°,DE=AD·cos∠ADE=1600cos15°,∵EC=AC-AE,∴EC=500-1600sin15°.在Rt△DBF中,BF=DF·tan∠FDB=ECtan15°,∴BC=CF+BF=1600cos15°+(500-1600sin15°)·tan15°≈1575.∴运动员飞行的水平距离约为1575米.14.(2014江苏南通)如图,海中有一灯塔P,它的周围8海里内有暗礁,海轮以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上,航行40分钟到达B处,测得灯塔P在北偏东30°方向上,如果海轮不改变航线继续向东航行,有没有触礁的危险?【答案】没有【解析】如图,过点P作PH⊥AB于点H,则∠PHB=90°.∵海轮的速度是18海里/时,行驶了40分钟,∴(海里),由题意可得∠PAB=90°-60°=30°,∠PBH=90°-30°=60°,∴∠APB=30°,∴∠PAB=∠APB,∴BP=AB=12.在Rt△PBH中,,所以.∵,∴海轮不改变航线继续向东航行,没有触礁的危险.15.已知在△ABC中,∠C=90°,∠B=60°,,求a,b,c的值及∠A的度数.【答案】,b=3,,∠A=30°【解析】先求∠A,再根据∠A的三角函数关系及已知列方程组求a,b,最后利用勾股定理求c.∵∠C=90°,∴∠A+∠B=90°.∵∠B=60°,∴∠A=30°.由直角三角形的边角关系,得,即,所以,又∵,∴解得∴,∴,b=3,,∠A=30°.16.如图,在Rt△ABC中,∠C=90°,BC=8,,点D在BC上,且BD=AD.求AC的长和cos∠ADC的值.【答案】4;【解析】在Rt△ABC中,∵BC=8,,∴AC=4.设AD=x,则BD=x,CD=8-x,由勾股定理,得(8-x)2+42=x2.解得x=5.∴.17.已知:如图,在Rt△ABC中,∠C=90°,.点D为BC边上一点,且BD=2AD,∠ADC=60°,求△ABC的周长.(结果保留根号)【答案】【解析】在Rt△ADC中,∠C=90°,,∠ADC=60°,因为,即,所以AD=2.由勾股定理得:.所以BD=2AD=4,BC=BD+DC=5.在Rt△ABC中,∠C=90°,,BC=5,由勾股定理得:,所以Rt△ABC的周长为.18.已知:如图,在△ABC中,∠B=45°,∠C=60°,AB=6,求BC的长.(结果保留根号)【答案】【解析】如图,过点A作AD⊥BC于点D,在Rt△ABD中,∠B=45°,∴AD=BD,设AD=x,又∵AB=6,∴Rt△ABD中,x2+x2=62,解得,即.在Rt△ACD中,∠ACD=60°,∴∠CAD=30°,∴,即,∴,∴.19. (2014福建厦门)sin30°的值是( )A.B.C.D.1【答案】A【解析】直接根据特殊角的三角函数值进行计算即可..故选A.20. (2014贵州铜仁)cos60°=________.【答案】【解析】.。
中考复习: 锐角三角函数
中考复习:锐角三角函数知识梳理一、锐角三角函数(正弦、余弦、正切)1、定义:在Rt △ABC 中,∠C =90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sinc ), 记作sin A ,即sin A aA c∠==的对边斜边。
把∠A 的邻边与斜边的比叫做∠A 的余弦(cosine ),记作cos A ,即;把∠A 的对边与邻边的比叫做∠A 的正切(tangent ),记作tan A ,即。
锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数(trigonometric function of acute angle )。
当锐角A 的大小确定时,∠A 的对边与斜边的比(正弦)、∠A 的邻边与斜边的比(余弦)、∠A 的对边与邻边的比(正切)分别是确定的。
2、增减性:在0°到90°之间,正弦值、正切值随着角度的增大而增大,余弦随着角度的增大而减小。
3、取值范围:当∠A 为锐角时,三角函数的取值范围是:0<sin A <1,0<cos A <1,tan A >0。
4、互余两角的函数关系:如果两角互余,则其中一有的正弦等于另一角的余弦,即:若α是一个锐角,则sin α=cos (90°-α),cos α=sin (90°-α)。
5、正、余弦的平方关系:sin 2α+ cos 2α=1。
二、300、450、600的正弦值、余弦值和正切值如下表:三、解直角三角形bcos c A A ∠==的邻边斜边atan bA A A ∠=∠的对边=的邻边C ∠A 的邻边b∠A 的对边a在直角三角形中,由已知元素求未知元素的过程就是解直角三角形。
1、在Rt△ABC 中,∠C=90°,设三个内角A 、B 、C 所对的边分别为a 、b 、c (以下字母同),则解直角三角形的主要依据是:(1)边角之间的关系: sinA =cosB =a c , cosA =sinB =bc,tanA =cotB =a b ,cotA =tanB =b a。
锐角三角函数(含习题及答案)
锐角三角函数——正弦一、教学目标1.通过探究使学生知道当直角三角形的锐角固定时,它的对边与用计算器求锐角三角函数值和根据三角函数值求锐角斜边的比值都固定(即正弦值不变)这一事实.2.能根据正弦概念正确进行计算3.经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力.二、教学重点、难点重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.三、教学过程(一)复习引入操场里有一个旗杆,老师让小明去测量旗杆高度.(演示学校操场上的国旗图片)小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34º,并已知目高为1米.然后他很快就算出旗杆的高度了.你想知道小明怎样算出的吗?师:通过前面的学习我们知道,利用相似三角形的方法可以测算出旗杆的大致高度;实际上我们还可以象小明那样通过测量一些角的度数和一些线段的长度,来测算出旗杆的高度.这就是我们本章即将探讨和学习的利用锐角三角函数来测算物体长度或高度的方法.下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦(二)实践探索为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉.现测得斜坡与水平面所成角的度数是30º,为使出水口的高度为35m,那么需要准备多长的水管?分析:问题转化为,在Rt△ABC中,∠C=90º,∠A=30º,BC=35m,求AB根据“再直角三角形中,30o角所对的边等于斜边的一半”,即==可得AB=2BC=70m,即需要准备70m长的水管结论:在一个直角三角形中,如果一个锐角等于30o,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于如图,任意画一个Rt△ABC,使∠C=90º,∠A=45º,计算∠A的对边与斜边的比,能得到什么结论?分析:在Rt△ABC 中,∠C=90º,由于∠A=45º,所以Rt△ABC是等腰直角三角形,由勾股定理得AB2 = AC2+BC2 = 2BC2,AB =BC故===结论:在一个直角三角形中,如果一个锐角等于45º,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于一般地,当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?如图:Rt△ABC与Rt△A’B’C’,∠C=∠C’=90º,∠A=∠A’=α,那么与有什么关系?分析:由于∠C=∠C’=90º,∠A=∠A’=α,所以Rt△ABC与Rt△A’B’C’相似,=,即=结论:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比也是一个固定值.认识正弦如图,在Rt△ABC中,∠A、∠B、∠C所对的边分别记为a、b、c.师:在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦.记作sinA.板书:sinA== (举例说明:若a = 1,c = 3,则sinA=)注意:1、sinA不是 sin与A的乘积,而是一个整体;2、正弦的三种表示方式:sinA、sin56º、sin∠DEF;3、sinA 是线段之间的一个比值;sinA 没有单位.提问:∠B的正弦怎么表示?要求一个锐角的正弦值,我们需要知道直角三角形中的哪些边?(三)教学互动例、如图,在RtΔABC中,∠C = 90º,求sinA和sinB的值.分析:可利用勾股定理分别求出两个三角形中未知的那一边长,再根据正弦的定义求解.解答按课本.锐角三角函数——余弦和正切一、教学目标1.使学生知道当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实.2.逐步培养学生观察、比较、分析、概括的思维能力.二、教学重点、难点重点:理解余弦、正切的概念难点:熟练运用锐角三角函数的概念进行有关计算三、教学过程(一)复习引入1.口述正弦的定义2.如图,在Rt△ABC中,∠ACB=90º,CD⊥AB于点D.已知AC=,BC=2,那么sin∠ACD=()A. B. C.D.(二)实践探索一般地,当∠A取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?如图:Rt△ABC与Rt△A’B’C’,∠C=∠C’=90o,∠A=∠A’=α,那么与有什么关系?分析:由于∠C=∠C’=90o,∠B=∠B’=α,所以Rt△ABC与Rt△A’B’C’相似,=,即=结论:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的邻边与斜边的比也是一个固定值.如图,在Rt△ABC中,∠C=90o,把锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA;即cosA ==类似地,把∠A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA =锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(三)教学互动例、如图,在RtΔABC中,∠C = 90º,BC=6,sinA =,求cosA和tanB的值.解:∵sinA =,∴AB == 6×= 10又AC === 8∴cosA ==,tanB ==30°、45°、60°角的三角函数值一、教学目标1.能推导并熟记30º、45º、60º角的三角函数值,并能根据这些值说出对应的锐角度数.2.能熟练计算含有30º、45º、60º角的三角函数的运算式二、教学重点、难点重点:熟记30º、45º、60º角的三角函数值,能熟练计算含有30º、45º、60º角的三角函数的运算式难点:30º、45º、60º角的三角函数值的推导过程三、教学过程(一)复习引入还记得我们推导正弦关系的时候所到结论吗?即sin30º =,sin45º=你还能推导出sin60º的值及30º、45º、60º角的其它三角函数值吗?(二)实践探索让学生画30º、45º、60º的直角三角形,分别求sin30º、cos45º、tan60°归纳结果(三)教学互动例1、求下列各式的值:(1) cos260º+cos245º+sin30ºsin45º(2)+解:(1)原式 = ()2+()2+××=++= 1(2)原式 =+=+= −(1+)2−(1−)2=−3−2−3+2= −6说明:本题主要考查特殊角的正弦余弦值,解题关键是熟悉并牢记特殊角的正弦余弦值.易错点因没有记准特殊角的正弦余弦值,造成计算错例2、(1)如图(1), 在RtΔABC中,∠C = 90º,AB =,BC =,求∠A的度数.(2)如图(2),已知圆锥的高AO等于圆锥的底面半径OB的倍,求α.解:(1)在图(1)中,∵sinA ===,∴∠A = −45º,(2)在图(2)中,∵tanα ===,∴α = 60º用计算器求锐角三角函数值和根据三角函数值求锐角一、教学目标1.让学生熟识计算器一些功能键的使用2.会熟练运用计算器求锐角的三角函数值和由三角函数值来求角二、教学重点、难点重点:运用计算器处理三角函数中的值或角的问题难点:知道值求角的处理三、教学过程(一)复习引入通过上课的学习我们知道,当锐角A是等特殊角时,可以求得这些角的正弦、余弦、正切值;如果锐角A不是这些特殊角,怎样得到它的三角函数值呢?我们可以用计算器来求锐角的三角函数值.(二)实践探索1.用计算器求锐角的正弦、余弦、正切值利用求下列三角函数值(这个教师可完全放手学生去完成,教师只需巡回指导)sin37º24′sin37°23′cos21º28′ cos38°12′tan52°tan36°20′ tan75°17′2.熟练掌握用科学计算器由已知三角函数值求出相应的锐角.例如:sinA=0.9816.∠A=;cosA=0.8607,∠A=;tanA=0.1890,∠A=;tanA=56.78,∠A=.典型例题1.若把ΔABC中锐角A的两边AB、AC分别缩小为原来的,已知其中∠C = 90º,则锐角A的正弦,则sinA的变化情况为( )A.nsinA B.sinA C. D.保持原值不变答案:D说明:因为当一个锐角大小不变时,其正弦值是固定的,与∠A的两边大小无关,所以正确答案为D.2.已知ΔABC中,∠C = 90º,∠A、∠B、∠C所对的边分别是a、b、c、且c = 3b,则cosA = ( )A. B. C.D.答案:C说明:因为cosA =,而c = 3b,所以cosA =,答案为C.3.a、b、c是ΔABC的三边,a、b、c满足等式(2b)2= 4(c+a)(c−a),且有5a−3c = 0,求sinA+sinB的值.分析:用正弦的定义把正弦换为边的比,再由所给的边与边的关系即可求值.解:由(2b)2 = 4(c+a)(c−a)得b2 = c2−a2,∴c2 = a2+b2,∴ΔABC是直角三角形,且∠C = 90º;由5a−3c = 0,得=,即sinA =设a = 3k,则c = 5k,∴b == 4k,∴sinB ===∴sinA+sinB =+=.4.如图,∠POQ = 90º,边长为2 cm的正方形ABCD的顶点B在OP上,C在OQ上,且∠OBC = 30º;分别求点A、D到OP的距离.分析:由正方形的性质可证ΔABE≌ΔBCO≌ΔCDG,再由∠OBC = 30º,即可求出OC、CG、AE的长.解:过点A、D分别作AE⊥OP、DF⊥OP,DG⊥OG,垂足分别为E、F、G.在正方形ABCD中,∠ABC =∠BCD = 90º∵∠OBC = 30º,∴∠ABE =∠BCO = 60º同理可求∠CDG = 60º,又AB = BC = CD = 2 cm,∴RtΔABE≌RtΔBCO≌RtΔCDG∴CG = AE = AB•sin∠ABE = 2•=(cm)OC = BC•sin∠OBC = 2•= 1(cm)∴DF = OG = GC+OC = (+1)(cm)即点A到OP的距离为cm,点D到OP的距离为(+1)cm.习题精选选择题:1.如图,CD是RtΔABC斜边上的高,AC = 4,BC = 3,则cos∠BCD的值是( )A.B.C. D.答案:D说明:因为CD⊥AB,所以∠BCD+∠B = 90º;又∠A+∠B = 90º,所以∠BCD =∠A;由BC = 3,AC = 4,得AB === 5,∴cos ∠BCD = cosA ==,所以答案为D.2.如图,以平面直角坐标系的原点为圆心,以1为半径作圆,若点P是该圆在第一象限内的一点,且OP与x轴正方向组成的角为α,则点P的坐标是( )A.(cosα,1)B.(1,sinα)C.(sinα,cosα)D.(cosα,sinα)答案:D说明:如图,作PA⊥x轴于点A;由锐角三角函数定义知,cosα =,sinα =,所以OA = OPcosα = cosα,PA = OPsinα,所以点P的坐标为(cosα,sinα),所以答案为D.3.如图,将矩形ABCD沿着对角线BD折叠,使点C落在C’处,BC’交AD于E,下列结论不一定成立的是( )A.AD = BC’B.∠EBD =∠EDBC.ΔABE与ΔBCD相似D.sin∠ABE =答案:C说明:因为ΔBC’D≌ΔBCD,所以BC’ = BC;又BC = AD,所以AD = BC’;因为AD//BC,所以∠EDB =∠CBD,而∠CBD =∠EBD,所以∠EDB =∠EBD,所以EB = ED;而sin∠ABE ==,所以A、B、D都是成立的,答案为C.4.如图,RtΔABC中,∠C = 90º,D为BC上一点,∠DAC = 30º,BD = 2,AB = 2,则AC的长是( )A. B.2 C.3D.答案:A说明:在RtΔACD中,因为∠CAD = 30º,设CD = x,因为tan∠DAC =,则AC =x,在RtΔABC中,由勾股定理得AB2= AC2+BC2= AC2+(CD+DB)2,即(2)2= (x)2+(x+2)2,∴x2+x−2 = 0,解得x1 = 1或x2 = −2(舍去),即DC = 1,AC =,答案为A.5.在RtΔABC中,∠C = 90º,如果∠A = 30º,那么sinA+cosB的值等于( )A.1 B. C.D.答案:A说明:因为在RtΔABC中,∠C = 90º,∠A = 30º,所以∠B = 60º,所以sinA = sin30º =,cosB = cos60º =,故sinA+cosB =+= 1,所以答案为A.6.在矩形ABCD中,BC = 2,AE⊥BD于E,∠BAE = 30º,那么ΔECD的面积是( )A.2 B. C.D.答案:C说明:如图,由题意得,ΔABE与ΔBDC相似,∴∠CBD =∠BAE = 30º,∴CD = BC•tan∠CBD = 2•=,AB = CD =,BE = AB•sin30º =×=,EF = BE•sin30º =×=,∴SΔECD = SΔBCD−SΔEBC =BC•CD−BC•EF =×2×−×2×=,答案为C.7.如图,两条宽度都是1的纸条,交叉重叠放在一起,且它们的夹角为α,则它们重叠部分(图中黄色部分)的面积为( )A. B.sinα C. D.cosα答案:C说明:如图,过点A作AN⊥CD于N,过点D作DM⊥BC于M,则AN = DM = 1,∠DCM =α,在RtΔDCM中,CD == ,所以S平行四边形ABCD = CD•AN =,答案为C.解答题:1.如果α是锐角,且cosα =,求sinα及tanα的值.分析:事实上,因为α为锐角,所以可构造一个RtΔABC,使∠C = 90º,∠A = α,则有AC = 4k,AB = 5k,由勾股定理得BC == 3k,从而可求sinα;还可直接用公式sinA =求解.解:构造RtΔABC,使∠A = α,∠C = 90º,如图,∵cosα = cosA =,∴可令AC = 4k,AB = 5k,∴BC == 3k,∴sinA ===,tanA ===,即sinα =,tanα =.2.若tan2x−(+1)tanx+= 0,求锐角x.分析:这是以tanx为未知数的一元二次方程,可先求出tanx,再求x.解:tan2x−(+1)tanx+= 0,(tanx−1)(tanx−) = 0,得tanx = 1或tanx =;当tanx = 1时,x = 45º;当tanx =时,x = 60º;∴x1 = 45º,x2 = 60º.。
锐角三角函数
锐角三角函数作为数学中的一个重要概念,锐角三角函数是我们学习三角函数的关键部分之一。
在几何学和三角学中,锐角指的是小于90度的角。
而锐角三角函数是以锐角作为自变量的三角函数。
一、正弦函数(sine function)在锐角三角函数中,正弦函数是最常见也是最重要的一个函数。
正弦函数可以表示为:sin(θ) = 对边/斜边其中,θ代表锐角的度数,对边代表锐角的对边长度,斜边代表锐角的斜边长度。
二、余弦函数(cosine function)余弦函数是锐角三角函数中的另一个核心函数,表示为:cos(θ) = 临边/斜边同样,θ代表锐角的度数,临边代表锐角的临边长度,斜边代表锐角的斜边长度。
三、正切函数(tangent function)正切函数是另一个重要的锐角三角函数,表达式为:tan(θ) = 对边/临边在这个公式中,θ代表锐角的度数,对边代表锐角的对边长度,临边代表锐角的临边长度。
四、余切函数(cotangent function)余切函数是正切函数的倒数,可以表示为:cot(θ) = 临边/对边θ代表锐角的度数,临边代表锐角的临边长度,对边代表锐角的对边长度。
五、正割函数(secant function)正割函数是余弦函数的倒数,可以表示为:sec(θ) = 斜边/临边θ代表锐角的度数,斜边代表锐角的斜边长度,临边代表锐角的临边长度。
六、余割函数(cosecant function)余割函数是正弦函数的倒数,可以表示为:csc(θ) = 斜边/对边在这个公式中,θ代表锐角的度数,斜边代表锐角的斜边长度,对边代表锐角的对边长度。
锐角三角函数在数学和实际应用中具有广泛的重要性。
无论是在几何学、物理学还是工程学中,锐角三角函数都扮演着重要的角色。
它们可以帮助我们计算和解决各种三角形和锐角相关问题。
在实际应用中,锐角三角函数还广泛应用于测量和建模等领域。
总结起来,锐角三角函数是数学中不可或缺的一部分。
通过掌握和理解正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数,我们可以更好地理解和解决与锐角有关的各种数学和实际问题。
锐角三角函数
关系式
李善兰三角函数展开式 tanα·cotα=1 希腊三角函数公式 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 1+(tanα)^2=(secα)^2 1+(cotα)^2=(cscα)^2 锐角三角函数诱导公式 直角三角形中的锐角三角形函数sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα
三角函数值
取值范围
特殊角
变化情况
特殊角的三角函数值如下 : 注:非特殊角的三角函数值,请查三角函数表
θ是锐角: 0 0 tanθ>0 cotθ>0
1.锐角三角函数值都是正值。 2.当角度在0°~90°间变化时, 正弦值随着角度的增大(或减小)而增大(或减小),余弦值随着角度的增大(或减小)而减小(或增大) ; 正切值随着角度的增大(或减小)而增大(或减小),余切值随着角度的增大(或减小)而减小(或增大); 正割值随着角度的增大(或减小)而增大(或减小),余割值随着角度的增大(或减小)而减小(或增大)。 3.当角度在0°≤A≤90°间变化时,0≤sinA≤1, 0≤cosA≤1;当角度在0°0。
锐角三角函数
数学函数
01 相关概念
03 关系式
目录
02 三角函数值
锐角三角函数是以锐角为自变量,以比值为函数值的函数。我们把锐角∠A的正弦、余弦、正切和余切都叫做 ∠A的锐角函数。
相关概念
图1直角三角形锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割 (csc)都叫做角A的锐角三角函数。初中学习的锐角三角函数值的定义方法是在直角三角形中定义的,所以在初 中阶段求锐角的三角函数值,都是通过构造直角三角形来完成的,即把这个角放到如图1所示的直角三角形中,则 锐角三角函数可表示如下:
初中数学九年级锐角三角函数知识点总结
锐角三角函数是初中九年级数学中的一个重要内容,其中包括对正弦、余弦和正切函数的理解和应用。
下面是对锐角三角函数知识点的详细总结:1.三角函数的定义:- 正弦函数(sin):对于单位圆上的一个角,其对边的长度与斜边的长度的比值。
- 余弦函数(cos):对于单位圆上的一个角,其邻边的长度与斜边的长度的比值。
- 正切函数(tan):对于单位圆上的一个角,其对边的长度与邻边的长度的比值。
2.锐角的定义:锐角是角度在0°到90°之间的角。
3.单位圆:单位圆指半径长度为1的圆,锐角三角函数可以通过单位圆来定义和理解。
4.三角函数的图像:正弦函数、余弦函数和正切函数的图像可以通过将单位圆绕过原点旋转得到。
5. 正弦函数(sin)的特点:-定义域:[0°,90°]或[0,π/2]-值域:[-1,1]-周期:360°或2π- 特殊值:sin0° = 0, sin30° = 1/2, sin45° = √2/2, sin60° = √3/2, sin90° = 1-图像特点:关于y轴对称6. 余弦函数(cos)的特点:-定义域:[0°,90°]或[0,π/2]-值域:[-1,1]-周期:360°或2π- 特殊值:cos0° = 1, cos30° = √3/2, cos45° = √2/2,cos60° = 1/2, cos90° = 0-图像特点:关于x轴对称7. 正切函数(tan)的特点:-定义域:(0°,90°)或(0,π/2)-值域:R(实数集)-周期:180°或π- 特殊值:tan30° = 1/√3, tan45° = 1, tan60° = √3, tan90° = 不存在(无限大)-图像特点:周期性递增8.三角函数之间的关系:- 正弦函数和余弦函数的关系:sinθ = cos(90° - θ)- 正切函数与正弦、余弦函数的关系:tanθ = sinθ / cosθ9.锐角三角函数的应用:-通过正弦函数、余弦函数和正切函数可以求解三角形的边长和角度大小。
锐角三角函数公式大全
锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A) ) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a =sin(2a+a) =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) 推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos^2α 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα/2)^2 =2sina(1-sin²a)+(1-2sin²a)sina =3sina-4sin³a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos²a-1)cosa-2(1-sin²a)cosa =4cos³a-3cosa sin3a=3sina-4sin³a =4sina(3/4-sin²a) =4sina[(√3/2)²-sin²a] =4sina(sin²60°-sin²a) =4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos³a-3cosa =4cosa(cos²a-3/4) =4cosa[cos²a-(√3/2)²] =4cosa(cos²a-cos²30°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述两式相比可得 tan3a=tanatan(60°-a)tan(60°+a) 半角公式 tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) 两角和差 cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 和差化积 sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 积化和差 sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2 诱导公式 sin(-α) = -sinα cos(-α) = cosα tan (—a)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限 万能公式 sinα=2tan(α/2)/[1+tan^(α/2)] cosα=[1-tan^(α/2)]/1+tan^(α/2)] tanα=2tan(α/2)/[1-tan^(α/2)]。
九年级数学《锐角三角函数》知识点总结归纳
一、三角函数的定义1. 正弦函数sinx:对于任意实数x,将x的终边与x轴正方向的夹角的终点的纵坐标就是sinx。
2. 余弦函数cosx:对于任意实数x,将x的终边与x轴正方向的夹角的终点的横坐标就是cosx。
3. 正切函数tanx:对于任意实数x,将sinx除以cosx就是tanx。
4. 余切函数cotx:对于任意实数x,将cosx除以sinx就是cotx。
5. 正割函数secx:对于任意实数x,将1除以cosx就是secx。
6. 余割函数cscx:对于任意实数x,将1除以sinx就是cscx。
二、三角函数的性质1. 基本关系式:sin^2x + cos^2x = 12. 周期性:sin(x+2kπ) = sinx,cos(x+2kπ) = cosx,其中k为任意整数。
3. 奇偶性:奇函数有sinx、tanx和cotx,偶函数有cosx、secx和cscx。
4. 正函数和负函数:在单位圆上,sinx和cscx为正函数,cosx和secx为负函数。
5. 三角函数的范围:sinx、cosx和tanx的范围是[-1,1],cotx、secx和cscx的范围是(-∞,∞)。
三、特殊角的三角函数值1.0°、30°、45°、60°和90°的三角函数值。
2.30°、45°、60°和90°的三角函数值的推导。
四、角度的度量转换1.度和弧度之间的转换:π弧度=180°,1°=π/180弧度。
2.角度的换算:1°=60',1'=60''。
五、倍角、半角和三倍角公式1. 倍角公式:sin2x = 2sinxcosx,cos2x = cos^2x - sin^2x,tan2x = 2tanx / (1 - tan^2x)。
2. 半角公式:sin(x/2) = ±√[(1-cosx)/2],cos(x/2) =±√[(1+cosx)/2],tan(x/2) = ±√[(1-cosx) / (1+cosx)]。
初三锐角三角函数题型及解题方法
初三锐角三角函数题型及解题方法初三数学中,锐角三角函数是一个非常重要的内容。
学习锐角三角函数,不仅需要掌握其概念和公式,还需要掌握一些常见的题型及解题方法。
本文将介绍一些常见的锐角三角函数题型及解题方法,帮助初三学生更好地掌握这一内容。
一、求三角函数值求三角函数值是锐角三角函数中最基本的题型。
一般来说,题目都会给出三角函数的角度,要求求出其对应的正弦、余弦、正切等函数值。
解题方法:对于这类题目,我们需要掌握三角函数的定义和公式。
例如,正弦函数的定义是:在直角三角形中,对于一个锐角角度A,其对边长度与斜边长度的比值称为正弦值sinA。
因此,我们只需要根据这个定义和公式进行计算即可。
举个例子,题目给出角度A=30度,要求求出其正弦值sinA。
根据正弦函数的定义和公式,我们得到:sinA=对边长度/斜边长度=sqrt(3)/2因此,sinA=√3/2。
二、三角函数的基本关系式三角函数的基本关系式指的是三角函数之间的基本等式。
例如,正切函数的基本关系式是tanA=sinA/cosA。
这类题目一般要求将一个三角函数用另外一个三角函数表示出来,或者将两个三角函数相互表示。
解题方法:对于这类题目,我们需要掌握三角函数之间的基本关系式。
例如,正切函数的基本关系式是:tanA=sinA/cosA因此,如果题目给出sinA的值,要求求出tanA的值,我们只需要将sinA/cosA代入上式,即可得到:tanA=sinA/cosA=√3/3三、三角函数值的范围三角函数值的范围是指,每个三角函数的取值范围。
例如,正弦函数的取值范围是[-1,1],余弦函数的取值范围也是[-1,1]。
解题方法:对于这类题目,我们需要掌握每个三角函数的取值范围。
例如,正弦函数的取值范围是[-1,1],因此,如果题目给出sinA=-0.5,我们就可以知道sinA的值在[-1,1]范围之内。
四、三角函数的性质三角函数的性质指的是,它们在不同象限中的正负性和大小关系。
九年级数学《锐角三角函数》知识点总结归纳
《锐角三角函数》是九年级数学中的一个重要的章节,它在高中数学中也有重要的应用。
下面是对《锐角三角函数》的知识点进行总结归纳。
一、角度的度和弧度制1.角度的度制:一个圆周分为360等份,每一份称为一度,用符号°表示。
2.角度的弧度制:弧度制通过角对应的弧长与半径的比值来表示。
弧度制度数=角度的度数×π/180二、正弦、余弦、正切关系1. 正弦函数:对于任意锐角A,正弦函数表示为sinA=对边/斜边。
2. 余弦函数:对于任意锐角A,余弦函数表示为cosA=邻边/斜边。
3. 正切函数:对于任意锐角A,正切函数表示为tanA=对边/邻边。
三、特殊角的值1. 30°特殊角的正弦、余弦、正切值:sin30°=1/2,cos30°=√3/2,tan30°=1/√32. 45°特殊角的正弦、余弦、正切值:sin45°=√2/2,cos45°=√2/2,tan45°=13. 60°特殊角的正弦、余弦、正切值:sin60°=√3/2,cos60°=1/2,tan60°=√3四、三角函数的基本性质1. 同角三角函数值的关系:sinA/cosA=tanA,cosA/sinA=1/tanA,sin^2A+cos^2A=12. 三角函数的周期性:sin(A+2π)=sinA,cos(A+2π)=cosA,tan(A+π)=tanA。
3. 正负关系:在第一象限,sinA>0,cosA>0,tanA>0,在第二象限,sinA>0,cosA<0,tanA<0,在第三象限,sinA<0,cosA<0,tanA>0,在第四象限,sinA<0,cosA>0,tanA<0。
五、三角函数的应用1.解三角形:根据已知两边和夹角,用余弦定理和正弦定理求解。
锐角三角形的三角函数
锐角三角形的三角函数三角函数是数学中的重要概念,它们在几何、物理学等领域中具有广泛的应用。
其中,锐角三角函数是指以锐角为自变量的三角函数。
本文将介绍锐角三角形的三角函数,并探讨其性质和应用。
一、正弦函数正弦函数是将一个锐角的相对边长度与斜边长度的比值定义为该锐角的正弦。
用符号表示为 sin,其计算公式如下:sin A = 相对边长度 / 斜边长度正弦函数的定义域为(0°, 90°),值域为[0, 1]。
正弦函数具有周期性,即 sin(A + 180°) = -sinA。
二、余弦函数余弦函数是将一个锐角的邻边长度与斜边长度的比值定义为该锐角的余弦。
用符号表示为 cos,其计算公式如下:cos A = 邻边长度 / 斜边长度余弦函数的定义域为(0°, 90°),值域为(0, 1]。
余弦函数也具有周期性,即 cos(A + 180°) = -cosA。
三、正切函数正切函数是将一个锐角的相对边长度与邻边长度的比值定义为该锐角的正切。
用符号表示为 tan,其计算公式如下:tan A = 相对边长度 / 邻边长度正切函数的定义域为(0°, 90°),值域为(0, +∞)。
正切函数也具有周期性,即 tan(A + 180°) = tanA。
四、余切函数余切函数是将一个锐角的邻边长度与相对边长度的比值定义为该锐角的余切。
用符号表示为 cot,其计算公式如下:cot A = 邻边长度 / 相对边长度余切函数的定义域为(0°, 90°),值域为(0, +∞)。
余切函数也具有周期性,即 cot(A + 180°) = cotA。
五、正割函数和余割函数正割函数是将一个锐角的斜边长度与邻边长度的比值定义为该锐角的正割。
用符号表示为 sec,其计算公式如下:sec A = 斜边长度 / 邻边长度正割函数的定义域为(0°, 90°),值域为(1, +∞)。
初中数学锐角三角函数
初中数学锐角三角函数锐角三角函数是数学中的重要分支,用来描述角度和边长之间的关系。
在初中数学中,我们学习了正弦函数、余弦函数和正切函数,它们分别是三角形的对边比斜边、邻边比斜边,以及对边比邻边。
下面,让我们来详细了解一下这些锐角三角函数。
首先,让我们来了解正弦函数。
正弦函数给出了一个角度与其对边和斜边之间的关系。
我们可以通过以下公式来表示:sin(A) = a / c,其中A代表角度,a代表对边的长度,c代表斜边的长度。
通过正弦函数,我们可以求得一个锐角三角形中的对边和斜边之间的比例关系。
正弦函数的取值范围是-1到1之间。
接下来,我们来了解一下余弦函数。
余弦函数描述了一个角度与其邻边和斜边之间的关系。
余弦函数的表示形式为:cos(A) = b / c,其中A代表角度,b代表邻边的长度,c代表斜边的长度。
通过余弦函数,我们可以计算锐角三角形中邻边和斜边之间的比例关系。
余弦函数的取值范围也是-1到1之间。
最后,让我们来了解一下正切函数。
正切函数表示了一个角度与其对边和邻边之间的关系。
正切函数的表示形式为:tan(A) = a / b,其中A代表角度,a代表对边的长度,b代表邻边的长度。
通过正切函数,我们可以计算锐角三角形中对边和邻边之间的比例关系。
正切函数的取值范围可以是任意实数。
锐角三角函数在现实生活中有着广泛的应用。
例如,在建筑、工程、天文学和地理学等领域中,我们经常需要利用这些函数来计算各种三角形的边长和角度。
此外,在电视信号传输和音频处理中,正弦函数的应用也非常广泛。
通过学习锐角三角函数,我们不仅能够了解角度和边长之间的关系,还能够解决与三角形相关的实际问题。
因此,学习锐角三角函数对我们的数学学习和实际应用都具有重要的指导意义。
在学习锐角三角函数时,我们还需要注意一些常用的角度值。
例如,30度、45度和60度等特殊角度值,它们对应的三角函数值可以事先记住,以方便在计算中的应用。
此外,我们还可以利用三角函数的周期性,简化计算过程。
锐角三角函数锐角三角函数
03
证明方法
利用正弦定理和余弦定理,将边的关 系转化为角的关系,再利用三角函数 的性质推导得出。
05
锐角三角函数的作图及演 示
利用计算器或计算机软件绘制锐角三角函数图像
总结词
通过使用计算器或计算机软件,我们可以 轻松地绘制出锐角三角函数的图像。
详细描述
首先,我们需要输入锐角的角度值,然后 在计算器或计算机软件中选择对应的三角 函数(正弦、余弦或正切)。这样,我们 就可以得到一个关于角度的函数值。将这 些值在坐标系中表示,就可以形成锐角三 角函数的图像。
证明方法
通过正弦定理将角的关系转化为 边的关系,再利用勾股定理推导 得出。
正切定理的公式及证明
01
02
总结词
详细描述
正切定理是指在一个三角形中,任意 两边长度的比值等于这两边所夹角的 正切值与第三边所对应角的正切值的 比值。
正切定理的公式为 tan(A)/tan(B) = c/b。其中,A、B、C 分别代表与三 边相对应的角度,a、b、c 分别代表 三角形的三边长。
求边长
已知直角三角形的一个锐角和对应的边长,可以应用锐角三 角函数来求解另一条边长。例如,在直角三角形ABC中,已 知角A为30度,对应边a为10单位长度,那么对应边b的长度 可以通过应用三角函数求解。
在实际问题中求解角度或边长
地球定位
在地球上定位一个点,需要知道该点与北极的夹角和该点到北极的距离。这些信息可以通过应用锐角 三角函数来求解。
余弦定理
对于任意三角形ABC,有cosA = (b² + c² - a²) / (2bc),其中a、b、c分别是三角形的三边长度。这表明一个 角的余弦值等于由该角两边长度和它们夹角所确定的三角形的另一边的平方与两邻边平方和的差与两邻边的积 之比。
初中九年级数学中考锐角三角函数知识点总结
九年级数学中,锐角三角函数是一个重要的知识点。
锐角三角函数是指对于锐角的正弦、余弦和正切函数。
下面我将对锐角三角函数的基本概念、性质和应用进行总结。
一、基本概念1.弧度和角度:角度是常用的角度度量单位,弧度是角度的另一种度量单位。
1个弧度对应360°/2π≈57.3°。
角度和弧度之间的关系式:弧度=角度×π/180°。
2.锐角:指角度小于90°的角。
3. 三角函数:对于一个锐角A,定义其正弦(sin A)为对边与斜边的比值,余弦(cos A)为邻边与斜边的比值,正切(tan A)为对边与邻边的比值。
二、性质1.正弦函数的性质:(1)对于锐角A,0 < A < 90°,sin A > 0;(2)sin A = sin (180° - A) = sin (A + 360°);(3)sin (90° - A) = cos A;(4)sin A ≠ 0,当且仅当A是锐角。
2.余弦函数的性质:(1)对于锐角A,0 < A < 90°,cos A > 0;(2)cos A = cos (180° - A) = cos (360° + A);(3)cos (90° - A) = sin A;(4)cos A ≠ 0,当且仅当A是锐角。
3.正切函数的性质:(1)对于锐角A,0 < A < 90°,tan A > 0;(2)tan A = tan (180° + A);(3)tan (90° - A) = 1/tan A;(4)tan A ≠ 0,当且仅当A是锐角。
4.三角函数的关系:(1)sin^2 A + cos^2 A = 1;(2)tan A = sin A / cos A。
三、应用1.解三角形:利用已知角的正弦、余弦和正切的值,可以求解未知边长或角度的三角形问题。
人教版初三数学:锐角三角函数—知识讲解
锐角三角函数—知识讲解【学习目标】1.结合图形理解记忆锐角三角函数定义;2.会推算30°、45°、60°角的三角函数值,并熟练准确的记住特殊角的三角函数值; 3.理解并能熟练运用“同角三角函数的关系”及“锐角三角函数值随角度变化的规律”.【要点梳理】要点一、锐角三角函数的概念如图所示,在Rt △ABC 中,∠C =90°,∠A 所对的边BC 记为a ,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b ,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB 记为c ,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sin A aA c ∠==的对边斜边;锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cos A bA c ∠==的邻边斜边;锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tan A aA A b∠==∠的对边的邻边.同理sin B b B c ∠==的对边斜边;cos B aB c∠==的邻边斜边;tan B b B B a ∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化. (2)sinA ,cosA ,tanA 分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin 与∠A ,cos 与∠A ,tan 与∠A 的乘积.书写时习惯上省略∠A 的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan ∠AEF ”,不能写成 “tanAEF ”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在. (4)由锐角三角函数的定义知:当角度在0°<∠A<90°间变化时,,,tanA >0.B Ca b c要点二、特殊角的三角函数值利用三角函数的定义,可求出30°、45°、60°角的各三角函数值,归纳如下:锐角30°45° 160°要点诠释:(1)通过该表可以方便地知道30°、45°、60°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:、、的值依次为、、,而、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:①正弦、正切值随锐角度数的增大(或减小)而增大(或减小);②余弦值随锐角度数的增大(或减小)而减小(或增大).要点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.【典型例题】类型一、锐角三角函数值的求解策略1.(2016•安顺)如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2B .C .D .【思路点拨】根据勾股定理,可得AC 、AB 的长,根据正切函数的定义,可得答案. 【答案】D . 【解析】 解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC 为直角三角形, ∴tan ∠B==,故选:D .【总结升华】本题考查了锐角三角函数的定义,先求出AC 、AB 的长,再求正切函数. 举一反三:【高清课程名称:锐角三角函数 高清ID 号: 395948 关联的位置名称(播放点名称):例1(1)-(2)】【变式】在Rt ΔABC 中,∠C =90°,若a =3,b =4,则c = ,sinA = , cosA = ,sinB = , cosB = .Ca bc【答案】c= 5 ,sinA=35,cosA=45,sinB=45,cosB=35.类型二、特殊角的三角函数值的计算2.求下列各式的值:(1)(2015•茂名校级一模)6tan230°﹣sin60°﹣2sin45°;(2)(2015•乐陵市模拟)sin60°﹣4cos230°+sin45°•tan60°;(3)(2015•宝山区一模)+tan60°﹣.【答案与解析】解:(1)原式==122-.(2)原式=×﹣4×()2+×=﹣3+=63-;(3)原式=+﹣=2+﹣=3﹣2+2322【总结升华】熟记特殊角的三角函数值或借助两个三角板推算三角函数值,先代入特殊角的三角函数值,再进行化简.举一反三:【高清课程名称:锐角三角函数高清ID号:395948关联的位置名称(播放点名称):例1(3)-(4)】【变式】在RtΔABC中,∠C=90°,若∠A=45°,则∠B=,sinA=,cosA=,sinB=,cosB=.【答案】∠B=45°,sinA=22,cosA=22,sinB=22,cosB=22.类型三、锐角三角函数之间的关系3.(2015•河北模拟)已知△ABC中的∠A与∠B满足(1﹣tanA)2+|sinB﹣|=0(1)试判断△ABC的形状.(2)求(1+sinA)2﹣2﹣(3+tanC)0的值.【答案与解析】解:(1)∵|1﹣tanA)2+|sinB﹣|=0,∴tanA=1,sinB=,∴∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴△ABC是锐角三角形;(2)∵∠A=45°,∠B=60°,∠C=180°﹣45°﹣60°=75°,∴原式=(1+)2﹣2﹣1=.【总结升华】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.类型四、锐角三角函数的拓展探究与应用4.如图所示,AB是⊙O的直径,且AB=10,CD是⊙O的弦,AD与BC相交于点P,若弦CD=6,试求cos∠APC的值.【答案与解析】连结AC,∵ AB是⊙O的直径,∴∠ACP=90°,又∵∠B=∠D,∠PAB=∠PCD,∴△PCD∽△PAB,∴PC CDPA AB=. 又∵ CD =6,AB =10, ∴ 在Rt △PAC 中,63cos 105PC CD APC PA AB ∠====.【总结升华】直角三角形中,锐角的三角函数等于两边的比值,当这个比值无法直接求解,可结合相似三角形的性质,利用对应线段成比例转换,间接地求出这个比值.锐角的三角函数是针对直角三角形而言的,故可连结AC ,由AB 是⊙O 的直径得∠ACB =90°,cos PC APC PA ∠=,PC 、PA 均为未知,而已知CD =6,AB =10,可考虑利用△PCD ∽△PAB 得PC CDPA AB=.5.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图1①,在△ABC 中,AB =AC ,顶角A 的正对记作sadA ,这时sadA BCAB==底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=________.(2)对于0<A <180°,∠A 的正对值sadA 的取值范围是_______.(3)如图1②,已知sinA =35,其中∠A 为锐角,试求sadA 的值.【答案与解析】(1)1; (2)0<sadA <2;(3)如图2所示,延长AC 到D ,使AD =AB ,连接BD .设AD =AB =5a ,由3sin 5BC A AB ==得BC =3a , ∴ 22(5)(3)4AC a a a =-=,∴ CD =5a-4a =a ,22(3)10BD a a a =+=,∴ 10sadA 5BD AD ==. 【总结升华】(1)将60°角放在等腰三角形中,底边和腰相等,故sadA =1;(2)在图①中设想AB =AC的长固定,并固定AB 让AC 绕点A 旋转,当∠A 接近0°时,BC 接近0,则sadA 接近0但永远不会等于0,故sadA >0,当∠A 接近180°时,BC 接近2AB ,则sadA 接近2但小于2,故sadA <2;(3)将∠A 放到等腰三角形中,如图2所示,根据定义可求解.附录资料:弧长和扇形面积、圆锥的侧面展开图—知识讲解(基础)【学习目标】1.通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,会应用公式解决问题;3. 能准确计算组合图形的面积.【要点梳理】要点一、弧长公式 半径为R 的圆中360°的圆心角所对的弧长(圆的周长)公式: n °的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R 为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式 1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形. 2.扇形面积公式 半径为R 的圆中360°的圆心角所对的扇形面积(圆面积)公式: n °的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量. (3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.要点三、圆锥的侧面积和全面积连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.圆锥的母线长为,底面半径为r ,侧面展开图中的扇形圆心角为n °,则圆锥的侧面积2360l S rl ππ=扇n =, 圆锥的全面积.要点诠释:扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.【典型例题】类型一、弧长和扇形的有关计算1.如图(1),AB 切⊙O 于点B ,OA=23,AB=3,弦BC∥OA,则劣弧BC 的弧长为( ). A .33π B .32πC .πD .32π图(1) 【答案】A.【解析】连结OB 、OC ,如图(2)则0OBA ∠︒=9,OB=3,0A ∠︒=3,0AOB ∠︒=6, 由弦BC ∥OA 得60OBC AOB ∠∠=︒=, 所以△OBC 为等边三角形,0BOC ∠︒=6.CBAO则劣弧BC的弧长为6033=1803ππ,故选A. 图(2)【总结升华】主要考查弧长公式:.举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)【答案】R=40mm,n=110∴的长==≈76.8(mm)因此,管道的展直长度约为76.8mm.【高清ID号:359387 高清课程名称:弧长扇形圆柱圆锥关联的位置名称(播放点名称):经典例题1-2】2.如图,⊙O的半径等于1,弦AB和半径OC互相平分于点M.求扇形OACB的面积(结果保留π)【答案与解析】∵弦AB和半径OC互相平分,∴OC⊥AB,OM=MC=OC=OA.∴∠B=∠A=30°,∴∠AOB=120°∴S扇形=.【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【高清ID号:359387 高清课程名称:弧长扇形圆柱圆锥关联的位置名称(播放点名称):经典例题1-2】【变式】如图(1),在△ABC 中,BC=4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上的一点,且∠EPF=40°,则图中阴影部分的面积是( ).A .449-π B .849-πC .489-πD .889-π图(1)【答案】连结AD ,则AD ⊥BC ,△ABC 的面积是:BC•AD=×4×2=4, ∠A=2∠EPF=80°.则扇形EAF 的面积是:28028=.3609ππ⨯故阴影部分的面积=△ABC 的面积-扇形EAF 的面积=84-9π. 图(2) 故选B .类型二、圆锥面积的计算3.(2014秋•广东期末)如图,一个圆锥的高为cm ,侧面展开图是半圆,求:(1)圆锥的底面半径r 与母线R 之比; (2)圆锥的全面积.【思路点拨】(1)设出圆锥的底面半径及圆锥的母线长,利用底面周长等于圆锥的弧长得到圆锥的母线与底面的半径之比即可;(2)首先求得圆锥的底面半径和圆锥的母线长,然后利用圆锥的侧面积的计算方法求得其侧面积即可.A EB DC F P【答案与解析】解:(1)由题意可知∴,R=2r(3分)r:R=r:2r=1:2;(2)在Rt△AOC中,∵R2=r2+h2∴,4r2=r2+27r2=9,r=±3∵r>0∴r=3,R=6.∴S侧=πRr=18π(cm2)(cm2)∴S全=S侧+S底=18π+9π=27π(cm2).【总结升华】本题考查了圆锥的计算,解题的关键是牢记有关的公式.类型三、组合图形面积的计算4.(2015•槐荫区三模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC==2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S扇形OBC=π×OC2=π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。
锐角三角函数知识点九年级
锐角三角函数知识点九年级三角函数是我们数学学习中非常重要的一部分,它在几何学、物理学、工程学等领域中都有广泛的应用。
在初中九年级的数学课程中,我们学习了锐角三角函数的知识。
在本文中,我们将深入探讨这一知识点,并且尽量避免枯燥单调的表述方式,让大家能够更好地理解。
首先,让我们回顾一下三角函数的定义。
在一个直角三角形中,当某个角度为锐角时,我们可以定义三角函数。
最常见的三角函数有正弦函数、余弦函数和正切函数。
正弦函数(sin)定义为直角三角形中的对边与斜边的比值,余弦函数(cos)定义为邻边与斜边的比值,正切函数(tan)定义为对边与邻边的比值。
接下来,我们可以讨论一些锐角三角函数的基本性质。
首先是正弦函数和余弦函数的性质。
在单位圆中,我们可以看出正弦函数和余弦函数都是周期函数,周期为2π。
这意味着当角度增加2π时,这两个函数的值会重复。
此外,正弦函数的图像关于原点对称,而余弦函数的图像关于y轴对称。
正切函数的性质也非常有意思。
正切函数的图像在某些情况下可能会趋于无穷大或负无穷大。
这些情况发生在余弦函数的值为零的地方,也就是角度为90°的整数倍时。
因此,在角度为这些特殊值时要特别小心处理。
接下来,我们将介绍与锐角三角函数相关的一些重要公式。
首先是勾股定理,它是一个著名的三角恒等式,用于计算一个直角三角形的两个边的关系。
勾股定理表明,直角三角形中直角边的平方等于两个其他边的平方和。
这个定理在解决许多几何问题时非常有用。
另一个重要的公式是正弦定理和余弦定理。
正弦定理给出了一个锐角三角形中边与角度之间的关系。
它表明,一个锐角三角形的任意一条边的长度与这条边所对应的角的正弦值成正比。
而余弦定理则给出了锐角三角形中边与角之间的更具体的关系。
它表明,一个锐角三角形的任意一条边的长度的平方等于其他两条边长度的平方和减去这两条边长度的乘积与这条边所对应的角的余弦值成正比。
除了这些基本的性质和公式,我们还可以进一步讨论一些与锐角三角函数相关的应用问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 5
B.
5 2
C.
3 2
D.
1 2
.
考点二:特殊角的三角函数值 例 2 (2012•孝 感)计算:cos245°+tan30°•sin60°= 对应训练 (2012•南昌)计算:sin30°+cos30°•tan60°.
考点三:化斜三角形为直角三角形 例 3 (2012•安徽)如图,在△ABC 中,∠A=30° ,∠B=45° ,AC=2 3 ,求 AB 的长.
红对钩教育
做让人民感动的教育
红对钩教育“小班”辅导方案
(年级)
学生: 课题 课时 小时 上课日期 联系方式: 共
(科目)
次;第 次;剩余 次 授课安排:一周 次;每周 上课 任课教师:
锐角三角函数
年 月 日 上课时间 : —— : 教学内容
【基础知识回顾】 一、 锐角三角函数定义: 在 RE△ABC 中 , ∠C=900, ∠A 、 ∠B 、 ∠C 的 对 边 分 别 为 a 、 b 、 c , 则 ∠A 的 正 弦 可 表 示 为 : sinA= ,∠A 的余弦可表示为 cosA= ∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 提醒: 1、sinA、cosA 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形)。 2、sinA、 cosA 是一个比值(数值) 。 3、sinA、 cosA 的大小只与∠A 的大小有关,而与直角三角形的边长无关。 4\ 在直角三角形中,当锐角 A 的度数一定时,不管三角形的大小如何,∠A 的对边与邻边的比是一个固 定值。 例:1、在 Rt△ABC 中,锐角 A 的邻边和斜边同时扩大 100 倍,tanA 的值 , 2、 :如图,已知 AB 是半圆 O 的直径,弦 AD、BC 相交于点 P,若 AB=10,CD=6,求 sinA 5、对于任何一个锐角 α ,有 0<sin α <1, 0<cos α <1,tan α >0, 二、特殊角的三角函数值: α sinα cosα tanα 300 450 600 提醒:1、三个特殊角的三角函数值都是根据定义应用直角三角形性质算出来的,要在理解的基础上结合表 格进行记忆 2、当 时,正弦和正切值随着角度的增大而 余弦值随着角度的增大而 , 3、几个特殊关系:⑴sinA+cos2A= ⑵若∠A+∠B=900,则 sinA= cosA.
(1)求该岛的周长和面积; (结果保留整数,参考数据 2 ≈1.414, 3 ≈1.73 , 6 ≈2.45) (2)求∠ACD 的余弦值.
对应训练
红对钩教育
做让人民感动的教育
6. (2012•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识 检测车速.如图,观测点设在 A 处,离益阳大道的距离(AC)为 30 米.这时,一辆小轿车由西向东匀速行 驶,测得此车从 B 处行驶到 C 处所用的时间为 8 秒,∠BAC=75° . (1)求 B、C 两点的距离; (2)请判断此车是否超过了益阳大道 60 千米/小时的限制速度? (计算时距离精确到 1 米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732, 3 ≈1.732,60 千米/小 时≈16.7 米/秒)
6、 (2013•荆门)如图,在半径为 1 的⊙O 中,∠AOB=45°,则 sinC 的值为( A . B . C .
8、 (2013•鄂州)如图,Rt△ABC 中,∠A=90°,AD⊥BC 于点 D,若 BD:CD=3:2,则 tanB=(
)
A .
B .
C .
D .
9、(2013 年深圳市)如图 3,已知 l1 // l 2 // l3 ,相邻两条平行直线间的距离相等, 若等腰直角△ABC 的三个项点分别在这三条平行直线上,则 sin 的值是( A. )
8. 综合实践课上,小明所在的小组要测量护城河的宽度.如图所示是护城河的一段,两岸 AB∥CD,河岸 AB 上有一排大树,相邻两棵大树之间的距离均为 10 米.小明先用测角仪在河岸 CD 的 M 处测得∠α =36°,然后沿河岸走 50 米到达 N 点,测得∠β =72°.请你根据这些数据帮小明他们算出河宽 FR(结果保留 两位有效数字).
1 3
B.
5 6 C. 5 17
.
D.
10 10
11、 (2013•攀枝花)如图,在菱形 ABCD 中,DE⊥AB 于点 E,cosA= ,BE=4,则 tan∠DBE 的值是
15、 (2013•自贡)如图,边长为 1 的小正方形网格中,⊙O 的圆心在格点上,则∠AED 的余弦值是
.
红对钩教育
做让人民感动的教育
18、 (2013•曲靖)如图,在直角梯形 ABCD 中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,则 CD=
.
29、 (2013 菏泽)如图,BC 是⊙O 的直径,A 是⊙O 上一点,过点 C 作⊙O 的切线,交 BA 的延长线于点 D, 取 CD 的中点 E,AE 的延长线与 BC 的延长线交于点 P. (1)求证:AP 是⊙O 的切线; (2)OC=CP,AB=6,求 CD 的长.
对应训练 3.(2012•重庆)如图,在 Rt△ABC 中,∠BAC=90° ,点 D 在 BC 边上,且△ABD 是等边三角形.若 AB=2,求△ABC 的周长.(结果保留根号)
考点四:解直角三角形的应用 例 4 (2012•张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个 数学模型如图乙所示,其中∠B=∠D=90° ,AB=BC=15 千米,CD= 3 2 千米,请据此解答如下问题:
【聚焦中考】 1.(2012)如图,在 8× 的矩形网格中,每格小正方形的边长都是 1,若△ABC 的三个顶点在图中相应的 4 格点上,则 tan∠ACB 的值为( ) A.
1 3
B.
1 2
C.
2 2
D.3
. 2.(2012•滨州)把△ABC 三边的长度都扩大为原来的 3 倍,则锐角 A 的正弦函数值( A.不变
2. (2012 湖南娄底)如图,小红同学用仪器测量一棵大树 AB 的高度,在 C 处测得∠ADG=30° ,在 E 处测 得∠AFG=60° ,CE=8 米,仪器高度 CD=1.5 米,求这棵树 AB 的高度(结果保留两位有效数字, 3 ≈1.732).
3. (2012 湖南常德)如图,一天,我国一渔政船航行到 A 处时,发现正东方向的我领海区域 B 处有一可疑 渔船,正在以 12 海里/时的速度向西 北方向航行.我渔政船立即沿北偏东 60° 方向航行,1.5 小时后,在我领 海区域的 C 处截获可疑渔船.问我渔政船的航行路程是多少海里?(结果保留根号)
)
1 B.缩小为原来的 3
)
C.扩大为原来的 3 倍
D.不能确定
3、 (2013•雅安)如图,AB 是⊙O 的直径,C、D 是⊙O 上的点,∠CDB=30°,过点 C 作⊙O 的切线交 AB 的延 长线于 E,则 sin∠E 的值为( 5、 (2013•孝感)式子 A . B0 . C . 的值是( ) D2 . ) D .
新 课 教 学ຫໍສະໝຸດ sin A,tanA=
三、解直角三角形: 1、定义:由直角三角形中除直角外的 个已知元素,求出另外 2、解直角三角形的依据: RT∠ABC 中,∠C900 三边分别为 a、b、c ⑴三边关系: , ⑵两锐角关系
个未知元素的过程叫解直角三角形
提醒:解直角三角形中已知的两个元素应至少有一个是 、 当没有直角三角形时应注意构造直角三角形,再利用相应的边角关系解决】 3、解直角三角形应用中的有关概念 ⑴仰角和俯角: ⑵坡度坡角: ⑶方位角:是指南北方向线与目标方向所成的小于 900 的水平角 利用解直角三角形知识解决实际问题的一般步骤: ⑴把实际问题抓化为数字问题(画出平面图形,转化为解直角三角形的问题) ⑵根据条件特点选取合适的锐角三角函数去解直角三角形 ⑶解数学问题答案,从而得到实际问题的答案 提醒:在解直角三角形实际应用中,先构造符合题意的三角形,解题的关键是弄清在哪个直角三角形中 用多少度角的哪种锐角三角函数解决 【重点考点例析】
(参考数据:sin 36°≈0. 59.cos 36°≈0.81,tan 36°≈0.73,sin 72°≈0.95,cos 72°≈0.31,tan 72°≈ 3.08)
红对钩教育
做让人民感动的教育
考点一:锐角三角函数的概念 例 1 (2012•内江)如图所示,△ABC 的顶点是正方形网格的格点,则 sinA 的值为( A.
)
1 2
B.
5 5
C.
10 10
D.
2 5 5
对应训练 1.(2012•贵港)在平面直角坐标系中,已知点 A(2,1)和点 B(3,0),则 sin∠AOB 的值等于 ( ) A.