新人教版八年级下册数学第十七章勾股定理单元测试题 (1)

合集下载

人教版八年级数学下册《第十七章勾股定理》单元测试卷(带答案)

人教版八年级数学下册《第十七章勾股定理》单元测试卷(带答案)

人教版八年级数学下册《第十七章勾股定理》单元测试卷(带答案)(本试卷3个大题,25个小题。

满分150分,考试时间120分钟。

)学校:___________班级:___________姓名:___________考号:___________一、选择题(本题共10个小题,每小题4分,共40分。

) 1.在ABC 中,AB=13,BC=5,AC=12,则ABC 的面积为( )A .60B .30C .65D .782.在ABC 中,A B C ∠∠∠、、的对边分别为a b c 、、.下列所给数据中,不能判断ABC 是直角三角形的是( )A .ABC ∠-∠=∠B .::3:4:5A BC ∠∠∠= C .222a c b -=D .9a b c =:::40:413.如图,在ABC 中,AD BC ⊥于点D ,BF 平分ABC ∠交AD 于点E ,交AC 于点F .171528AC AD BC ===,,则AE 的长等于( )A .5B .20C .203D .2534.如图,在Rt ABC △中90,6,8,ACB AC BC AD ∠=︒==平分CAB ∠交BC 于D 点,,E F 分别是,AD AC 上的动点,则CE EF +的最小值为( )A .403B .154C .245D .65.在正方形网格中,AOB ∠的位置如图所示,到AOB ∠两边距离相等的点应是( )A .M 点B .N 点C .P 点D .Q 点6.如图,在ABC 中,AB AC AD AB =⊥,交BC 于点D ,若30DAC ∠=︒,3cm =AD 则BC的长为( )A .9cmB .10cmC .6cmD .12cm7.如图,在Rt ABC △中90C ∠=︒,D 为AC 上一点.若10DA DB ==,ABD △的面积为40,则CD 的长是( )8.四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时,ABC 的面积为( )9.如图,在Rt ABC △中90ACB ∠=︒,AC=6,BC=8,AD 是BAC ∠的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC PQ +的最小值是( )A .2.4B .4C .4.8D .510.赵爽是我国著名的数学家,“赵爽弦图”是他研究勾股定理的重要成果.古人有记载“勾三,股四,则弦五”的定理.如图,外围四个小长方形的宽相等,且邻长互相垂直,对长互相平行.若AB 的长是小长方形宽的2倍,内部小正方形面积为9,则最外围的大正方形的二、选填空题题(本题共10个小题,每小题4分,共40分。

八年级下册数学第17章《勾股定理》单元测试题(含答案)

八年级下册数学第17章《勾股定理》单元测试题(含答案)

⼋年级下册数学第17章《勾股定理》单元测试题(含答案)⼋年级下册数学第17章《勾股定理》单元测试题(含答案)⼀、选择题(共10⼩题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,152.在△ABC中,BC=6,AC=8,AB=10,则该三⾓形为()A.锐⾓三⾓形B.直⾓三⾓形C.纯⾓三⾓形D.等腰直⾓三⾓形3.如图,在边长为1个单位长度的⼩正⽅形⽹格中,点A、B都是格点(即⽹格线的交点),则线段AB的长度为()A.3B.5C.6D.44.我国汉代数学家赵爽为了证明勾股定理,创制了⼀副“弦图”,后⼈称其为“赵爽弦图如图,由弦图变化得到,它是由⼋个全等的直⾓三⾓形拼接⽽成.记图中正⽅形ABCD,正⽅形EFGH,正⽅形MNKT的⾯积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.75.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直⾓三⾓形,四边形ABCD和EFGH都是正⽅形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.156.在我国古代数学著作《九章算术》“勾股”章有⼀题:“今有开门去阃(kǔn)⼀尺,不合⼆⼨,问门⼴⼏何.”⼤意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10⼨),双门间的缝隙CD为2⼨,那么门的宽度(两扇门的和)AB 为()A.100⼨B.101⼨C.102⼨D.103⼨7.2019年10⽉1⽇,中华⼈民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举⾏了简朴⽽降重的升旗仪式.倾听着雄壮的国歌声,⽬送着五星红旗级缓升起,不禁⼼潮澎湃,爱国之情油然⽽⽣.爱动脑筋的王梓涵设计了⼀个⽅案来测量学校旗杆的⾼度.将升旗的绳⼦拉直到末端刚好接触地⾯,测得此时绳⼦末端距旗杆底端2⽶,然后将绳⼦末端拉直到距离旗杆5m处,测得此时绳⼦末端距离地⾯⾼度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的⾼度为()A.10mB.11mC.12mD.13m8.如图,笑笑将⼀张A4纸(A4纸的尺⼨为210mm×297mm,AC>AB)剪去了⼀个⾓,量得CF =90mm,BE=137mm,则剪去的直⾓三⾓形的斜边长为()A.50mmB.120mmC.160mmD.200mm9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240⽶.如果⽕车⾏驶时,周围200⽶以内会受到噪⾳的影响.那么⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶时,A处受噪⾳影响的时间为()A.32秒B.36秒C.40秒D.44秒10.如图,⼩明(视为⼩⿊点)站在⼀个⾼为10⽶的⾼台A上,利⽤旗杆OM顶部的绳索,划过90°到达与⾼台A⽔平距离为17⽶,⾼为3⽶的矮台B.那么⼩明在荡绳索的过程中离地⾯的最低点的⾼度MN是()A.2⽶B.2.2⽶C.2.5⽶D.2.7⽶⼆、填空题(共8⼩题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=.12.直⾓三⾓形的两边长为3cm,4cm,则第三边边长为.13.如图,以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,则S2=.14.中国古代三国时期的数学家赵爽,创作了⼀幅“勾股弦⽅图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦⽅图”中,以弦为边长得到的正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,这⼀图形被称作“赵爽弦图”张天同学要⽤细塑料棒制作“赵爽弦图”,若正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,则所⽤细塑料棒的长度为.15.已知三⾓形三边长分别为5,12,13,则此三⾓形的最⼤边上的⾼等于.16.如图所⽰的⽹格是正⽅形⽹格,则∠PAB+∠PBA=°(点A,B,P是⽹格线交点).17.勘测队按实际需要构建了平⾯直⾓坐标系,并标⽰了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修⼀条从C到铁路AB的最短公路l,并在l上建⼀个维修站D,使D到A,C的距离相等,则C,D间的距离为km.18.如图,在离⽔⾯⾼度为8⽶的岸上,有⼈⽤绳⼦拉船靠岸,开始时绳⼦BC的长为17⽶,此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了⽶.(假设绳⼦是直的)三、解答题(共4⼩题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.20.如图,将直⾓三⾓形分割成⼀个正⽅形和两对全等的直⾓三⾓形,直⾓三⾓形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正⽅形IECF中,IE=EC=CF=FI=x(1)⼩明发明了求正⽅形边长的⽅法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)⼩亮也发现了另⼀种求正⽅形边长的⽅法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据⼩亮的思路完成他的求利⽤S△ABC解过程:(3)请结合⼩明和⼩亮得到的结论验证勾股定理.21.为了积极响应国家新农村建设,遂宁市某镇政府采⽤了移动宣讲的形式进⾏宣传动员.如图,笔直公路MN的⼀侧点A处有⼀村庄,村庄A到公路MN的距离为600⽶,假使宣讲车P周围1000⽶以内能听到⼴播宣传,宣讲车P在公路MN上沿PN⽅向⾏驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200⽶/分钟,那么村庄总共能听到多长时间的宣传?22.有⼀架秋千,当它静⽌时,踏板离地的垂直⾼度DE=1m,将它往前推送6m(⽔平距离BC=6m)时,秋千的踏板离地的垂直⾼度BF=4m,秋千的绳索始终拉得很直,求绳索AD 的长度.参考答案⼀、选择题(共10⼩题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,15【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需满⾜两⼩边的平⽅和等于最长边的平⽅.【解答】解:A、32+42≠62,不是勾股数,此选项正确;B、72+242=252,是勾股数,此选项错误;C、62+82=102,是勾股数,此选项错误;D、92+122=152,是勾股数,此选项错误.故选:A.2.在△ABC中,BC=6,AC=8,AB=10,则该三⾓形为()A.锐⾓三⾓形B.直⾓三⾓形C.纯⾓三⾓形D.等腰直⾓三⾓形【分析】根据勾股定理的逆定理解答即可.【解答】解:∵在△ABC中,BC=6,AC=8,AB=10,∵BC2+AC2=AB2,∴△ABC是直⾓三⾓形,故选:B.3.如图,在边长为1个单位长度的⼩正⽅形⽹格中,点A、B都是格点(即⽹格线的交点),则线段AB的长度为()A.3B.5C.6D.4【分析】由勾股定理即可得出线段AB的长.【解答】解:由勾股定理得:AB==5;故选:B.4.我国汉代数学家赵爽为了证明勾股定理,创制了⼀副“弦图”,后⼈称其为“赵爽弦图如图,由弦图变化得到,它是由⼋个全等的直⾓三⾓形拼接⽽成.记图中正⽅形ABCD,正⽅形EFGH,正⽅形MNKT的⾯积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.7【分析】根据正⽅形的⾯积和勾股定理即可求解.【解答】解:设全等的直⾓三⾓形的两条直⾓边为a、b且a>b,由题意可知:S1=(a+b)2,S2=a2+b2,S3=(a﹣b)2,因为S1+S2+S3=21,即(a+b)2+a2+b2+(a﹣b)2=213(a2+b2)=21,所以3S2=21,S2的值是7.故选:D.5.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直⾓三⾓形,四边形ABCD和EFGH都是正⽅形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.15【分析】在直⾓三⾓形AHB中,利⽤勾股定理进⾏解答即可.【解答】解:∵△ABH≌△BCG,∴BG=AH=12,∵四边形EFGH都是正⽅形,∴HG=EF=4,∴BH=16,∴在直⾓三⾓形AHB中,由勾股定理得到:AB===20.故选:C.6.在我国古代数学著作《九章算术》“勾股”章有⼀题:“今有开门去阃(kǔn)⼀尺,不合⼆⼨,问门⼴⼏何.”⼤意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10⼨),双门间的缝隙CD为2⼨,那么门的宽度(两扇门的和)AB 为()A.100⼨B.101⼨C.102⼨D.103⼨【分析】画出直⾓三⾓形,根据勾股定理即可得到结论.【解答】解:设OA=OB=AD=BC=r,过D作DE⊥AB于E,则DE=10,OE=CD=1,AE=r﹣1.在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得2r=101.故门的宽度(两扇门的和)AB为101⼨.故选:B.7.2019年10⽉1⽇,中华⼈民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举⾏了简朴⽽降重的升旗仪式.倾听着雄壮的国歌声,⽬送着五星红旗级缓升起,不禁⼼潮澎湃,爱国之情油然⽽⽣.爱动脑筋的王梓涵设计了⼀个⽅案来测量学校旗杆的⾼度.将升旗的绳⼦拉直到末端刚好接触地⾯,测得此时绳⼦末端距旗杆底端2⽶,然后将绳⼦末端拉直到距离旗杆5m处,测得此时绳⼦末端距离地⾯⾼度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的⾼度为()A.10mB.11mC.12mD.13m【分析】根据题意画出⽰意图,设旗杆⾼度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m,在Rt△ABC中利⽤勾股定理可求出x.【解答】解:设旗杆⾼度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m根据勾股定理得,绳长的平⽅=x2+12,右图,根据勾股定理得,绳长的平⽅=(x﹣1)2+52,∴x2+22=(x﹣1)2+52,解得x=11.故选:B.8.如图,笑笑将⼀张A4纸(A4纸的尺⼨为210mm×297mm,AC>AB)剪去了⼀个⾓,量得CF =90mm,BE=137mm,则剪去的直⾓三⾓形的斜边长为()A.50mmB.120mmC.160mmD.200mm【分析】解答此题只要把原来的图形补全,构造出直⾓三⾓形解答.【解答】解:延长BE、CF相交于D,则EFD构成直⾓三⾓形,运⽤勾股定理得:EF2=(210﹣90)2+(297﹣137)2=1202+1602=40000,所以EF=200.则剪去的直⾓三⾓形的斜边长为200mm.故选:D.9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240⽶.如果⽕车⾏驶时,周围200⽶以内会受到噪⾳的影响.那么⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶时,A处受噪⾳影响的时间为()A.32秒B.36秒C.40秒D.44秒【分析】过点A作AC⊥ON,利⽤锐⾓三⾓函数的定义求出AC的长与200m相⽐较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪⾳影响的时间.【解答】解:如图:过点A作AC⊥ON,AB=AD=200⽶,∵∠QON=30°,OA=240⽶,∴AC=120⽶,当⽕车到B点时对A处产⽣噪⾳影响,此时AB=200⽶,∵AB=200⽶,AC=120⽶,∴由勾股定理得:BC=160⽶,CD=160⽶,即BD=320⽶,∵⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶,∴影响时间应是:320÷10=32秒.故选:A.10.如图,⼩明(视为⼩⿊点)站在⼀个⾼为10⽶的⾼台A上,利⽤旗杆OM顶部的绳索,划过90°到达与⾼台A⽔平距离为17⽶,⾼为3⽶的矮台B.那么⼩明在荡绳索的过程中离地⾯的最低点的⾼度MN是()A.2⽶B.2.2⽶C.2.5⽶D.2.7⽶【分析】⾸先得出△AOE≌△OBF(AAS),得出OE=BF,AE=OF,求出OE+OF=AE+BF =CD=17⽶,得出EF=EM﹣FM =AC﹣BD=7⽶,求出BF=OE=5⽶,OF=12⽶,得出CM=CD﹣DM=CD﹣BF=12⽶,OM=OF+FM=15⽶,由勾股定理求出ON=OA=13⽶,进⽽求出MN的长即可.【解答】解:作AE⊥OM于E,BF⊥OM于F,如图所⽰:则∠OEA=∠BFO=90°,∵∠AOE+∠BOF=∠BOF+∠OBF=90°∴∠AOE=∠OBF在△AOE和△OBF中,,∴△AOE≌△OBF(AAS),∴OE=BF,AE=OF,∴OE+OF=AE+BF=CD=17(⽶)∵EF=EM﹣FM=AC﹣BD=10﹣3=7(⽶),∵OE+OF=2EO+EF=17⽶,∴2OE=17﹣7=10(⽶),∴BF=OE=5⽶,OF=12⽶,∴CM=CD﹣DM=CD﹣BF=17﹣5=12(⽶),OM=OF+FM=12+3=15(⽶),由勾股定理得:ON=OA===13(⽶),∴MN=OM﹣OF=15﹣13=2(⽶).故选:A.⼆、填空题(共8⼩题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=9.【分析】设BC=3x,AC=4x,⼜其斜边AB=15,再根据勾股定理即可得出答案.【解答】解:设BC=3x,AC=4x,⼜其斜边AB=15,∴9x2+16x2=152,解得:x=3或﹣3(舍去),∴BC=3x=9.故答案为:9.12.直⾓三⾓形的两边长为3cm,4cm,则第三边边长为5或.【分析】根据勾股定理分两种情况解答,⼀是把两边长都看作直⾓边,⼆是把4cm长边看作斜边,根据勾股定理计算即可.【解答】解:(1)若把两边都看作是直⾓边,那么据已知和勾股定理,设第三边长为xcm,则:x2=32+42=25,∴x=5;(2)若把4cm长的边看作斜边,设第三边长为xcm,则:x2+32=42,x2=42﹣32=7,∴x=.故答案为:5或.13.如图,以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,则S2=9.【分析】由三⾓形ABC为直⾓三⾓形,利⽤勾股定理列出关系式,结合正⽅形⾯积公式得到S3=S1+S2,即可求出S2的值.【解答】解:∵△ABC为直⾓三⾓形,∴AB2=AC2+BC2,∵以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,∴S3=S1+S2,则S2=S3﹣S1=15﹣6=9,故答案为:914.中国古代三国时期的数学家赵爽,创作了⼀幅“勾股弦⽅图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦⽅图”中,以弦为边长得到的正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,这⼀图形被称作“赵爽弦图”张天同学要⽤细塑料棒制作“赵爽弦图”,若正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,则所⽤细塑料棒的长度为100.【分析】根据正⽅形的⾯积可得两个正⽅形的边长分别为13和7,再根据勾股定理可求得直⾓三⾓形的两条直⾓边长,进⽽求解.【解答】解:∵正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,∴AE=BF,∠AEB=90°,∵正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,∴AB=13,EF=7,在Rt△ABE中,BE=BF﹣EF=AE﹣7根据勾股定理,得AE2+BE2=AB2,即AE2+(AE﹣7)2=132解得,AE=12,所以BE=12﹣7=5,所以所⽤细塑料棒的长度为:4(AB+AE)=4(13+12)=100.故答案为100.15.已知三⾓形三边长分别为5,12,13,则此三⾓形的最⼤边上的⾼等于.【分析】根据勾股定理的逆定理,△ABC是直⾓三⾓形,利⽤它的⾯积:斜边×⾼÷2=短边×短边÷2,就可以求出最长边的⾼.【解答】解:∵52+122=132,∴根据勾股定理的逆定理,△ABC是直⾓三⾓形,最长边是13,设斜边上的⾼为h,则S△ABC=×5×12=×13h,解得:h=,故答案为.16.如图所⽰的⽹格是正⽅形⽹格,则∠PAB+∠PBA=45°(点A,B,P是⽹格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三⾓形外⾓的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠PAB+∠PBA=45°,故答案为:45.17.勘测队按实际需要构建了平⾯直⾓坐标系,并标⽰了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修⼀条从C到铁路AB的最短公路l,并在l上建⼀个维修站D,使D到A,C的距离相等,则C,D间的距离为13km.【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x 的值.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;18.如图,在离⽔⾯⾼度为8⽶的岸上,有⼈⽤绳⼦拉船靠岸,开始时绳⼦BC的长为17⽶,此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了9⽶.(假设绳⼦是直的)【分析】在Rt△ABC中,利⽤勾股定理计算出AB长,再根据题意可得CD长,然后再次利⽤勾股定理计算出AD长,再利⽤BD =AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17⽶,AC=8⽶,∴AB===15(⽶),∵此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17﹣1×7=10(⽶),∴AD===6(⽶),∴BD=AB﹣AD=15﹣6=9(⽶),答:船向岸边移动了9⽶.故答案为:9.三、解答题(共4⼩题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC 于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.【分析】(1)根据等腰直⾓三⾓形的性质解答;(2)作PF⊥AC于F,根据⾓平分线的性质定理求出PF,根据勾股定理计算即可.【解答】解:(1)∵DE垂直平分AB,∴AD=AB=2,∵AP平分∠BAC,∴∠PAD=∠BAC=45°,∴DP=AD=2;(2)作PF⊥AC于F,∵AP平分∠BAC,PD⊥AB,PF⊥AC,∴PF=PD=2,∠PAC=45°,∴AF=PF=2,∴FC=AC﹣AF=1,在Rt△PFC中,PC==.20.如图,将直⾓三⾓形分割成⼀个正⽅形和两对全等的直⾓三⾓形,直⾓三⾓形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正⽅形IECF中,IE=EC=CF=FI=x(1)⼩明发明了求正⽅形边长的⽅法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)⼩亮也发现了另⼀种求正⽅形边长的⽅法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据⼩亮的思路完成他的求利⽤S△ABC解过程:(3)请结合⼩明和⼩亮得到的结论验证勾股定理.【分析】(1)根据全等三⾓形的性质和线段的和差即得结论;(2)根据⼤三⾓形的⾯积等于三个⼩三⾓形的⾯积和即可求解;(3)综合(1)和(2)的结论进⾏推导即可得结论.=S△ABI+S△BIC+S△AIC【解答】解:(2)因为S△ABC=cx+ax+bx所以x=.答:x与a、b、c的关系为x=.(3)根据(1)和(2)得:x==.即2ab=(a+b+c)(a+b﹣c)化简得a2+b2=c2.21.为了积极响应国家新农村建设,遂宁市某镇政府采⽤了移动宣讲的形式进⾏宣传动员.如图,笔直公路MN的⼀侧点A处有⼀村庄,村庄A到公路MN的距离为600⽶,假使宣讲车P周围1000⽶以内能听到⼴播宣传,宣讲车P在公路MN上沿PN⽅向⾏驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200⽶/分钟,那么村庄总共能听到多长时间的宣传?【分析】(1)根据村庄A到公路MN的距离为600⽶<1000⽶,于是得到结论;(2)根据勾股定理得到BP=BQ=800⽶,求得PQ=1600⽶,于是得到结论.【解答】解:(1)村庄能否听到宣传,理由:∵村庄A到公路MN的距离为600⽶<1000⽶,∴村庄能听到宣传;(2)如图:假设当宣讲车⾏驶到P点开始影响村庄,⾏驶QD点结束对村庄的影响,则AP=AQ=1000⽶,AB=600⽶,∴BP=BQ=⽶,∴PQ=1600⽶,∴影响村庄的时间为:1600÷200=8分钟,∴村庄总共能听到8分钟的宣传.22.有⼀架秋千,当它静⽌时,踏板离地的垂直⾼度DE=1m,将它往前推送6m(⽔平距离BC=6m)时,秋千的踏板离地的垂直⾼度BF=4m,秋千的绳索始终拉得很直,求绳索AD。

八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)

八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)

八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)一 选择题(每小题3分 共30分)1. 如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组数是( )A. √2 √3 √5B. 1.5C. 32 42 52D. 1 22. 点A(−3,−4)到原点的距离为( )A. 3B. 4C. 5D. 73. 有一个直角三角形的两边长分别为3和4,则第三边的长为( )A. 5B. √7C. √5D. 5或√74.如果直角三角形两直角边的比为5∶12, 则斜边上的高与斜边的比为( ) A 60∶13B 5∶12C 12∶13D 60∶1695. 若一直角三角形两边长分别为12和5 则第三边长为( ) A .13 B .13或C .13或15D .156.一个圆桶底面直径为24cm ,高32cm ,则桶内所能容下的最长木棒为( )A .20cmB .50cmC .40cmD .45cm7.如图 小明准备测量一段水渠的深度 他把一根竹竿AB 竖直插到水底 此时竹竿AB 离岸边点C 处的距离米.竹竿高出水面的部分AD 长0.5米 如果把竹竿的顶端A 拉向岸边点C 处 竿顶和岸边的水面刚好相齐 则水渠的深度BD 为( )A .2米B .2.5米C .2.25米D .3米1.5CD8.如图, “赵爽弦图”是用四个相同的直角三角形与一个小正方形无缝隙地铺成一个大正方形 已知大正方形面积为25 (x +y)2=49 用x y 表示直角三角形的两直角边(x >y) 下列选项中正确的是( )A. 小正方形面积为4B. x 2+y 2=5C. x 2−y 2=7D. xy =249.如图,在△ABC 中 ∠C =90° AC =4 BC =2.以AB 为一条边向三角形外部作正方形 则正方形的面积是( )A. 8B. 12C. 18D. 2010.如图 在Rt △ABC 中 ∠ACB =90° AC =3 BC =4 BE 平分∠ABC CD ⊥AB 于D BE 与CD 相交于F 则CF 的长是( )A. 1B. 43C. 53D. 2二 填空题(每题3分 共24分)11.若一个三角形的三边之比为5:12:13 且周长为60cm 则它的面积为_____cm 2. 12.如图所示 所有的四边形都是正方形 所有的三角形都是直角三角形 其中最大的正方形的边长为7cm 正方形A B C 的面积分别是28cm 210cm 214cm 则正方形D 的面积是___________2cm .13.在ABC中90C∠=︒AB=5 则222AB AC BC++=______.14.如图在△ABC中∠ABC=90° 分别以BC AB AC为边向外作正方形面积分别记为S1S2,S3若S2=4 S3=6则S1=__________.15.方程思想如图在Rt△ABC中∠C=90° BC=6cm AC=8cm 按图中所示方法将△BCD沿BD折叠使点C落在AB边的点C’处那么△ADC’的面积是_____cm2. 16.如图一架秋千静止时踏板离地的垂直高度DE=0.5m将它往前推送1.5m(水平距离BC=1.5m)时秋千的踏板离地的垂直高度BF=1m秋千的绳索始终拉直则绳索AD的长是m.17.如图小明利用升旗用的绳子测量学校旗杆BC的高度他发现绳子刚好比旗杆长11米若把绳子往外拉直绳子接触地面A点并与地面形成30°角时绳子末端D距A点还有1米那么旗杆BC的高度为米.18.在△ABC中AB=AC=5 BC=6.若点P在边AC上移动则BP的最小值是.三、解答题(满分46分,19题6分20 21 22 23 24题每题8分)19.小明将一副三角板如图所示摆放在一起发现只要知道其中一边的长就可以求出其它各边的长若已知CD=2求AC的长.20.如图折叠长方形的一边AD使点D落在边BC的点F处已知AB=8cm BC=10cm求(1)FC的长.(2)EF的长.21 (8分)如图已知∠ADC=90°AD=8 CD=6 AB=26 BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.22.如图 在长方形中 点在边上 把长方形沿直线折叠 点落在边上的点处。

八年级数学下册第十七章《勾股定理》单元测试卷-人教版(含答案)

八年级数学下册第十七章《勾股定理》单元测试卷-人教版(含答案)

八年级数学下册第十七章《勾股定理》单元测试卷-人教版(含答案)一、单选题(本大题共12小题,每小题3分,共36分)1.如图是我国汉代数学家赵爽在注解《周髀算经》时给出的“勾股方圆图”(又称赵爽弦图),它是由四个全等的直角三角形(直角边分别为a ,b ,斜边为c )与中间的一个小正方形拼成的一个大正方形.如果大正方形的面积为11,小正方形的面积为3,则44a b +的值为( )A .68B .89C .119D .1302.如图,ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE 沿DE 翻折,使点A 与点B 重合,则CE 的长为()A .198 B .2 C .254 D .743.已知点M 的坐标为()3,4-,则下列说法正确的是( )A .点M 在第二象限内B .点M 到x 轴的距离为3C .点M 关于y 轴对称的点的坐标为()3,4D .点M 到原点的距离为54.如图,点A 表示的实数是( )AB C D5.如图,圆柱的底面周长为12cm ,AB 是底面圆的直径,在圆柱表面的高BC 上有一点D ,且10cm BC =,2cm DC =.一只蚂蚁从点A 出发,沿着圆柱体的表面爬行到点D 的最短路程是( )cm .A .14B .12C .10D .86.△ABC 的三边长a ,b ,c (b ﹣12)2+|c ﹣13|=0,则△ABC 的面积是( )A .65B .60C .30D .267.如图,Rt ABC 中,90,4,6B AB BC ∠=︒==,将ABC 折叠,使点C 与AB 的中点D 重合,折痕交AC 于点M ,交BC 于点N ,则线段CN 的长为( ).A .73B .83C .3D .1038.如图,在ABC 中,△B =22.5°,△C =45°,若AC =2,则ABC 的面积是( )A B .C . D .9.我们知道,如果直角三角形的三边的长都是正整数,这样的三个正整数就叫做一组勾股数.如果一个正整数c 能表示为两个正整数a ,b 的平方和,即22c a b =+,那么称a ,b ,c 为一组广义勾股数,c 为广义斜边数,则下面的结论:△m 为正整数,则3m ,4m ,5m 为一组勾股数;△1,2,3是一组广义勾股数;△13是广义斜边数;△两个广义斜边数的和是广义斜边数;△若2222,12,221a k k b k c k k =+=+=++,其中k 为正整数,则a ,b ,c 为一组勾股数;△两个广义斜边数的积是广义斜边数.依次正确的是( )A .△△△B .△△△△C .△△△D .△△△10.为预防新冠疫情,民生大院入口的正上方 A 处装有红外线激光测温仪(如图所示),测温仪离地面的距离 AB =2.4 米,当人体进入感应范围内时,测温仪就会自动测温并报告人体体温.当身高为 1.8 米的市民 CD 正对门缓慢走到离门 0.8 米的地方时(即 BC =0.8 米),测温仪自动显示体温,则人头顶离测温仪的距离 AD 等于( )A .1.0 米B .1.2 米C .1.25 米D .1.5 米11.中国古代称直角三角形为勾股形,如果勾股形的三边长为三个正整数,则称三边长叫“勾股数”;如果勾股形的两直角边长为正整数,那么称斜边长的平方叫“整弦数”对于以下结论:△20是“整弦数”;△两个“整弦数”之和一定是“整弦数”;△若c 2为“整弦数”,则c 不可能为正整数;△若m =a 12+b 12,n =a 22+b 22,11a b ≠22a b ,且m ,n ,a 1,a 2,b 1,b 2均为正整数,则m 与n 之积为“整弦数”;△若一个正奇数(除1外)的平方等于两个连续正整数的和,则这个正奇数与这两个连续正整数是一组“勾股数”.其中结论正确的个数为( )A .1个B .2个C .3个D .4个12.如图,三角形纸片ABC 中,点D 是BC 边上一点,连接AD ,把△ABD 沿着直线AD 翻折,得到△AED ,DE 交AC 于点G ,连接BE 交AD 于点F .若DG =EG ,AF =4,AB =5,△AEG 的面积为92,则2BD 的值为( )A .13B .12C .11D .10二、填空题(本大题共8小题,每小题3分,共24分)13.无理数可以用数轴上的点表示.如图,数轴上点A 表示的数是______.14.我国古代数学名著《算法统宗)有一道“荡秋干”的问题,“平地秋千未起,踏板一尺离地.送行二步与人齐,5尺人高曾记,仕女家人争蹴.良工高士素好奇,算出索长有几?”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离P A 的长为1尺,将它向前水平推送10尺时,即10P C '=尺,秋千踏板离地的距离P B '就和身高5尺的人一样高,秋千的绳索始终拉得很直,则秋千的绳索长为________尺.15.如图,在Rt ABC △中,9068C AC BC ∠=︒==,,,将ABC 按如图方式折叠,使点B 与点A 重合,折痕为DE ,则CD 的长为________.16.如图,一棵垂直于地面的大树在离地面3米处折断,树的顶端落在离树干底部4米处,那么这棵树折断之前的高度是____________米.17.如图,圆柱形容器的高为0.9m,底面周长为1.2m,在容器内壁离容器底部0.3m处的点B处有一蚊子.此时,一只壁虎正好在容器外壁,离容器上沿0.2m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为_____ m.18.观察下列几组勾股数,并填空:△6,8,10,△8,15,17,△10,24,26,△12,35,37,则第△组勾股数为______.19.爱动脑筋的小明某天在家玩遥控游戏时遇到下面的问题:已知,如图一个棱长为8cm无盖的正方体铁盒,小明通过遥控器操控一只带有磁性的甲虫玩具,他先把甲虫放在正方体盒子外壁A处,然后遥控甲虫从A处出发沿外壁面正方形ABCD爬行,爬到边CD上后再在边CD上爬行3cm,最后在沿内壁面正方形ABCD上爬行,最终到达内壁BC的中点M,甲虫所走的最短路程是______cm20.如图,在△ABC中,AB=AC,BD△AC于点D,把线段AC绕点C旋转得到线段CE,点E恰好落在AB的延长线上,12BE CD,△BCD的面积是8,则BC的长为________.三、解答题(本大题共5小题,每小题8分,共40分)21.某海上有一小岛,为了测量小岛两端A,B的距离,测量人员设计了一种测量方法,如图,已知B是CD的中点,E是BA延长线上的一点,且△CED=90°,测得AE=16.6海里,DE=60海里,CE=80海里.(1)求小岛两端A,B的距离.(2)过点C作CF△AB交AB的延长线于点F,求BFBC值.22.阅读下列一段文字,然后回答下列问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离12PP=式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为﹣1,试求A、B两点间的距离;(3)已知一个三角形各顶点坐标为D(1,6)、E(﹣2,2)、F(4,2),你能判定此三角形的形状吗?说明理由.23.某天,暴雨突然来袭,两艘搜救艇接到消息,在海面上有遇险船只从A、B两地发出求救信号.于是,第一艘搜救艇以20海里/时的速度离开港口O沿北偏东40°的方向向A地出发,同时,第二艘搜救艇也从港口O出发,以15海里/时的速度向B地出发,2小时后,他们同时到达各自的目标位置.此时,他们相距50海里.的大小)(1)求第二艘搜救艇的航行方向是北偏西多少度?(求BOD(2)由于B地需要被援救的人数较多,故需要搭载人数较少的第一艘搜救艇改道去到B地支援,在从A地前往到B 地的过程中,与港口O最近的距离是多少?24.如图所示,一架云梯长25m,斜靠在一面墙上,梯子底端离墙7m,这个梯子的顶端距地面有多高?如果梯子顶端下滑了4m,那么梯子的底端在水平方向上也滑动了4m吗?25.【阅读思考】已知0<x<1分析:如图,我们可以构造边长为1的正方形ABCD,P为BC边上的动点.设BP=x,则PC=1-x,那么可以用含x的式子表示AP、DP,问题可以转化为AP与PD的和的最小值,用几何知识可以解答(1)AP+PD的最小值为________(2)的最小值,其中x、y为两正数,且x+y=6(3)参考答案1.B2.D3.D4.B5.C6.C7.D8.D9.D10.A11.C12.A13.214.14.515.7 416.817.118.16,63,6519.1620.1021.(1)33.4海里(2)72522.(1)AB=13(2)AB=5(3)△DEF是等腰三角形,23.(1)50度(2)24海里24.这个梯子的顶端距地面24m;梯子的底端在水平方向上不是滑动了4m,而是滑动了8m.25.5(2)(3)。

人教版数学八年级下册《第十七章勾股定理》单元测试题(含答案)

人教版数学八年级下册《第十七章勾股定理》单元测试题(含答案)

人教版数学八年级下册第十七章勾股定理单元测试题一、选择题1.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为(C)A. 米B. 米C. (+1)米D. 3米2.发现下列几组数据能作为三角形的边:(1)8,15,17;(2)5,12,13;(3)12,15,20;(4)7,24,25.其中能作为直角三角形的三边长的有( C )A.1组B.2组C.3组D.4组3.下列各组数:①3、4、5 ②4、5、6 ③2.5、6、6.5 ④8、15、17,其中是勾股数的有(C)A. 4组B. 3组C. 2组D. 1组4.若一个三角形的三边长的平方分别为:32,42,x2则此三角形是直角三角形的x2的值是( D )A.4B.52C.7D.52或75.由下列条件不能判定△ABC为直角三角形的是(B)A. ∠A+∠C=∠BB. a=13,b=14,c=15C. (b+a)(b-a)=c2D. ∠A:∠B:∠C=5:3:26.已知x、y为正数,且│x2-4│+(y2-3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( C )A.5B.25C.7D.157. 如图,在Rt△ABC中,∠ACB=90°,AC=BC,CD⊥AB于D点,M,N是AC,BC上的动点,且∠MDN=90°,下列结论:①AM=CN;②四边形MDNC的面积为定值;③AM2+BN2=MN2;④NM平分∠CND.其中正确的是(A)A.①②③B. ①②④C. ①③④D. ①②③④8.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c.试判断△ABC的形状( A )A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形9.在测量旗杆的方案中,若旗杆高为21m,目测点到杆的距离为15 m,则目测点到杆顶的距离为(设目高为1 m)( B ).A.20m B.25mC.30m D.35m10.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形,则展开后三角形的周长是(B).A.2+B.2+C.12D.1811.直角三角形的面积为S,斜边上的中线长为d,则这个三角形周长为( C )A. B. C. D.12.如图,P是等边三角形ABC内的一点,连结PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连结CQ.若PA∶PB∶PC=3∶4∶5,连结PQ,试判断△PQC的形状( A )A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形二、填空题13.如图,数轴上点A表示的实数是__________.【答案】5114.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,①若a2+b2>c2,则∠c为____________;②若a2+b2=c2,则∠c为____________;③若a2+b2<c2,则∠c为____________.【答案】①锐角;②直角;③钝角.15.如果一梯子底端离建筑物9 m远,那么15 m长的梯子可到达建筑物的高度是_______m.【答案】1216.如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3s 时,△BPQ的面积为cm2.【答案】1817.如果Rt△的两直角边长分别为k2-1,2k(k >1),那么它的斜边长是【答案】k2+118. 如图,D为△ABC的边BC上一点,已知AB=13,AD=12,AC=15,BD=5,则BC的长为__________.【答案】14三、解答题19.如图,在四边形ABCD中,∠B=90°,AB=BC=2,AD=1,CD=3.(1)求∠DAB的度数.(2)求四边形ABCD的面积.【答案】(1)∠BAD=135°;(2)四边形ABCD的面积2+解析:(1)∵∠B=90°,AB=BC=2,∴AC==2,∠BAC=45°,又∵CD=3,DA=1,∴AC2+DA2=8+1=9,CD2=9,∴AC2+DA2=CD2,∴△ACD是直角三角形,∴∠CAD=90°,∴∠DAB=45°+90°=135°.故∠DAB的度数为135°.(2)连接AC,如图所示:在直角△ABC中,AC为斜边,且AB=BC=2,则AC=,∵AD=1,CD=3,∴AC2+CD2=AC2,即△ACD为直角三角形,且∠ADC=90°,四边形ABCD的面积=S△ABC+S△ACD=AB×BC+AD×AC=2+.20.如图,在5×5的方格纸中,每一个小正方形的边长都为1。

人教版八年级下册数学 第17章 勾股定理 单元测试卷(含答案)

人教版八年级下册数学 第17章 勾股定理 单元测试卷(含答案)

人教版八年级下册数学第17章勾股定理单元测试卷(时间:120分钟分值:120分)一、选择题(每小题3分,共30分)1.在△ABC中,∠A,∠B,∠C的对应边分别是a,b,c,若∠B=90°,则下列等式中成立的是( )A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2-a2=b22.如图,在△ABC中,∠C=90°,∠A=30°,AB=12,则AC=( )A. 6 B.6 2 C.6 3 D. 123.如图,AD为△ABC的中线,且AB=13,BC=10,AD=12,则AC等于( )A.10 B.11 C.12 D.134.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为( )A.4米B.8米C.9米D.7米5.如图,分别以三角形三边为直径向外作三个半圆,如果较小的两个半圆面积之和等于较大的半圆面积,那么这个三角形为( )A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形6.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M,N两点相距100海里,则∠NOF的度数为( )A.50° B.60° C.70° D.80°7.在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于( )A.10 B.8 C.6或10 D.8或108.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A.0.7米B.1.5米C.2.2米D.2.4米9.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为( )A.3-1B.3+1C.5-1D.5+110.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,则∠ABC 的度数为( )A.90° B.60° C.45° D.30°二、填空题(每小题4分,共24分)11.直角三角形斜边的长是5,一直角边的长是3,则此直角三角形的面积为.12.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD =.13.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑米.14.如图,阴影部分是一个正方形,则此正方形的面积为.。

人教版八年级下册数学 第十七章 勾股定理 单元测试

人教版八年级下册数学  第十七章  勾股定理  单元测试

人教版八年级下册数学第十七章 勾股定理 单元测试一.单选题(本大题共12小题,每小题3分,共36分)1.在△ABC 中,∠C =90°,AB =3,则222AB BC AC ++的值为( )A .24B .18C .12D .92.已知点M 的坐标为()3,4-,则下列说法正确的是( )A .点M 在第二象限内B .点M 到x 轴的距离为3C .点M 关于y 轴对称的点的坐标为()3,4D .点M 到原点的距离为53.如图,八年级一班的同学准备测量校园人工湖的深度,他们把一根竹竿AB 竖直插到水底,此时竹竿AB 离岸边点C 处的距离0.8CD =米.竹竿高出水面的部分AD 长0.2米,如果把竹竿的顶端A 拉向岸边点C 处,竿顶和岸边的水面刚好相齐,则人工湖的深度BD 为( )A .1.5米B .1.7米C .1.8米D .0.6米4.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A .4 cmB .4.75 cmC .6 cmD .5cm5.《九章算术》中有一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:如图,一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?若设折断处离地面x 尺,则下面所列方程正确的是( )A .2223(1)x x +=-B .222(1)3x x +-=C .222(10)3x x +-=D .2223(10x)x +=-6.如图,x 轴、y 轴上分别有两点A(3,0)、B(0,2),以点A 为圆心,AB 为半径的弧交x 轴负半轴于点C ,则点C 的坐标为( )A .(﹣1,0)B .(20) C .3,0) D .(30)7.如图,ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE V 沿DE 翻折,使点A 与点B 重合,则CE 的长为( )A .198B .2C .254D .748.如图,Rt ABC 中,8,6,90AB BC B ==∠=︒,M ,N 分别是边,AC AB 上的两个动点.将ABC 沿直线MN 折叠,使得点A 的对应点D 落在BC 边的三等分点处,则线段BN 的长为( )A .3B .53C .3或53D .3或1549.△ABC 的三边长a ,b ,c(b ﹣12)2+|c ﹣13|=0,则△ABC 的面积是( )A .65B .60C .30D .2610.如图,斜靠在墙上的一根竹竿,AB =10m ,BC =6m ,若A 端沿垂直于地面的方向AC 下移2m ,则B 端将沿CB 方向移动的距离是( )米.A .1.6B .1.8C .2D .2.211.中国古代称直角三角形为勾股形,如果勾股形的三边长为三个正整数,则称三边长叫“勾股数”;如果勾股形的两直角边长为正整数,那么称斜边长的平方叫“整弦数”对于以下结论:①20是“整弦数”;②两个“整弦数”之和一定是“整弦数”;③若c 2为“整弦数”,则c 不可能为正整数;④若m =a 12+b 12,n =a 22+b 22,11a b ≠22a b ,且m ,n ,a 1,a 2,b 1,b 2均为正整数,则m 与n之积为“整弦数”;⑤若一个正奇数(除1外)的平方等于两个连续正整数的和,则这个正奇数与这两个连续正整数是一组“勾股数”.其中结论正确的个数为( )A .1个B .2个C .3个D .4个12.如图所示,ABCD 是长方形地面,长20AB =,宽10AD =,中间整有一堵砖墙高2MN =,一只蚂蚁从A 点爬到C 点,它必须翻过中间那堵墙,则它至少要走( )A .20B .24C .25D .26二.填空题(本大题共8小题,每小题3分,共24分)13.一根直立于水中的芦节(BD )高出水面(AC )2米,一阵风吹来,芦苇的顶端D 恰好到达水面的C 处,且C 到BD 的距离AC =6米,水的深度(AB )为________米14.如图,在ABC 中,按以下步骤作图:①分别以点B 和C 为圆心,以大于12BC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交边AB 于点E .若5AC =,4BE =,45B ∠=︒,则AB 的长为_________.15.如图所示,在四边形ABCD 中,AB =5,BC =3,DE ⊥AC 于E ,DE =3,S △DAC =6,则∠ACB 的度数等于 _____.16.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草.则他们仅仅少走了 _____步路.(假设2步为1米)17.观察下列几组勾股数,并填空:①6,8,10,②8,15,17,③10,24,26,④12,35,37,则第⑥组勾股数为______.18.如图,AB ⊥BC 于点B ,AB ⊥AD 于点A ,点E 是CD 中点,若BC =5,AD =10,BE =132,则AB 的长是 _____.19.如图,Rt △ABC ≌Rt △FDE ,∠ABC =∠FDE =90°,∠BAC =30°,AC =4,将Rt△FDE 沿直线l 向右平移,连接BD 、BE ,则BD+BE 的最小值为___.20.如图所示的是我国古代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由4个全等的直角三角形与1个小正方形拼成的一个大正方形,若大正方形的边长为5,小正方形的边长为1.(1)如图1,若用a ,b 表示直角三角形的两条直角边(a<b ),则ab=______.(2)如图2,若拼成的大正方形为正方形ABCD ,中间的小正方形为正方形EFGH ,连接AC ,交BG 于点P ,交DE 于点M ,AFP CGP S S -△△=______.三.解答题(本大题共5小题,每小题8分,共40分)21.在ABC 中,90C =∠,3AC =,4CB =,CD 是斜边AB 上高.(1)求ABC 的面积;(2)求斜边AB ;(3)求高CD .22.如图,在△ABC 中,∠B =45°,∠C =30°,边AC 的垂直平分线分别交边BC 、AC 于点D 、E ,DC =6.求AB 的长.23.琪琪与婷婷进行遥控赛车游戏,终点为点A ,琪琪的赛车从点C 出发,以4米/秒的速度由西向东行驶,同时婷婷的赛车从点B 出发,以3米/秒的速度由南向北行驶(如图).已知赛车之间的距离小于或等于25米时,遥控信号会产生相互干扰,40AC =米,30AB =米,(1)出发3秒钟时,遥控信号是否会产生相互干扰?(2)当两赛车距A 点的距离之和为35米时,遥控信号是否会产生相互干扰?24.先阅读下列一段文字,再解答问题:已知在平面内有两点111222(,),(,)P x y P x y ,其两点间的距离公式为12PP 同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为21x x -或21y y -(1)已知点M (2,4),N (3,8),试求M ,N 两点间的距离;(2)已知点(0,6)(3,2),(3,,2)A B C -,判断线段AB ,BC ,AC 中哪两条是相等的?并说明理由.25.在平面直角坐标系xOy中,对于点A,规定点A的α变换和β变换.α变换:将点A向左平移一个单位长度,再向上平移两个单位长度;β变换:将点A向右平移三个单位长度,再向下平移一个单位长度(1)若对点B进行α变换,得到点(1,1),则对点B进行β变换后得到的点的坐标为.=,求m的值.(2)若对点C(m,0)进行α变换得到点P,对点C(m,0)进行β变换得到点Q,OP OQ(3)点D为y轴的正半轴上的一个定点,对点D进行α变换后得到点E,点F为x轴上的一个动点,对点+的最小值为D的坐标.F进行β变换之后得到点G,若DG EF。

人教版八年级数学下册 第17章勾股定理 单元测试题(有答案)

人教版八年级数学下册 第17章勾股定理 单元测试题(有答案)

人教版八年级数学下册第17章勾股定理单元测试题一.选择题(共10小题)1.如图,线段AB=、CD=,那么,线段EF的长度为()A.B.C.D.2.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A.8B.4C.6D.无法计算3.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4B.6C.8D.104.下列长度的三条线段不能组成直角三角形的是()A.3,4,5B.1,,2C.6,8,10D.1.5,2.5,35.如图,在△ABC中,AB=13,BC=10,BC边上的中线AD=12,试判定△ABC的形状()A.直角三角形B.等边三角形C.等腰三角形D.以上都不对6.下列各组数中,不是直角三角形的三条边的长的是()A.3,4,5B.6,8,10C.5,12,13D.4,5,67.下列各组数中,是勾股数的是()A.1,2,3B.0.3,0.4,0.5C.,,D.7,24,258.已知一直角三角形的木板,三边的平方和为12800cm2,则斜边长为()A.80cm B.30cm C.90cm D.120cm9.从电线杆离地面6米处向地面拉一条钢缆,钢缆与地面的夹角是60°,则这根钢缆的地面固定点到电线杆底部的距离是()A.2B.2C.3D.610.小明想知道学校旗杆(垂直地面)的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子拉直后,发现绳子下端拉开5m,且下端刚好接触地面,则旗杆的高是()A.6m B.8m C.10m D.12m二.填空题(共8小题)11.如图,将一根长为15cm的筷子置于底面直径为5cm的装满水的圆柱形水杯中,已知水深为12cm,设筷子露出水面的长为hcm,则h的取值范围是.12.三角形的三边长分别为3,4,5,则这个三角形的面积是.13.如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于.14.直角三角形的两直角边是3和4,则斜边是15.已知小明和小王从同一地点出发,小明向正东方向走了2km,小王向正南方向走了3km,此时两人之间相距km.16.如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯的长度至少是.17.小明向东走6m后,沿另一方向又走了8m,再沿第三个方向走了10m回到原地,小明向东走6m 后是向方向走的(填方位).18.在平面直角坐标系中,已知点P的坐标为(1,﹣3),那么点P到原点O的距离OP的长度为.三.解答题(共8小题)19.已知,如图,在△ABC中,D为边BC上的一点,AB=13,AD=12,AC=15,BD=5,求BC 的长.20.如图,在△ABC中,AB=20,AC=15,BC=25,AD⊥BC,垂足为D.求AD,BD的长.21.已知:如图,四边形ABCD中,∠B=90°.AB=2.BC=4,CD=,AD=10,求(1)AC的长;(2)四边形ABCD的面积.22.如图,已知在△ABC中,AB=AC=13,D是AB上一点,且CD=12,BD=8.(1)求△ADC的面积.(2)求BC的长.23.如图,东西方向的河道宽2000米,水流自西向东水速为3米/秒,一船从港口A以5米/秒的速度驶向对岸,港口A的正对岸是港口B(1)若船头正对对岸,则船最终停在对岸何处?(2)若要使船正好到达港口B,请画出船头方向,并计算此时到对岸要多长时间?24.如图,一架长5米的梯子AB,顶端B靠在墙上,梯子底端A到墙的距离AC=3米.(1)求BC的长;(2)梯子滑动后停在DE的位置,当AE为多少时,AE与BD相等?25.如图,四边形ABCD中,∠B=90°,∠ACB=30°,AB=2,CD=3,AD=5.(1)求证:AC⊥CD;(2)求四边形ABCD的面积.26.如图,在平面直角坐标系中,点A(0,12),点B(m,12),且B到原点O的距离OB=20,动点P从原点O出发,沿路线O→A→B运动到点B停止,速度为每秒5个单位长度,同时,点Q从点B出发沿路线B→A→O运动到原点O停止,速度为每秒2个单位长度.设运动时间为t.(1)求出P、Q相遇时点P的坐标.(2)当P运动到AB边上时,连接OP、OQ,若△OPQ的面积为6,求t的值.参考答案与试题解析一.选择题(共10小题)1.解:∵AB==,CD==,∴图形中的网格是由边长为1的小正方形构成的,则EF==.故选:C.2.解:∵Rt△ABC中,BC为斜边,∴AB2+AC2=BC2,∴AB2+AC2+BC2=2BC2=2×22=8.故选:A.3.解:由题意得:大正方形的面积是9,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,即a2+b2=9,a﹣b=1,所以ab=[(a2+b2)﹣(a﹣b)2]=(9﹣1)=4,即ab=4.解法2,4个三角形的面积和为9﹣1=8;每个三角形的面积为2;则ab=2;所以ab=4故选:A.4.解:A、∵32+42=52,∴此三角形是直角三角形,不符合题意;B、∵12+()2=(2)2,∴此三角形是直角三角形,不符合题意;C、∵62+82=102,∴此三角形是直角三角形,不符合题意;D、∵1.52+2.52≠32,∴此三角形不是直角三角形,符合题意;故选:D.5.解:∵AD是中线,AB=13,BC=10,∴BD=BC=5.∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵BD=CD,∴AC=AB=13,∴△ABC的形状是等腰三角形,故选:C.6.解:∵42+52=41,62=36,41≠36,∴4,5,6不能作为直角三角形的三边长.故选:D.7.解:A、∵12+22≠32,∴这组数不是勾股数;B、∵0.32+0.42=0.52,但不是整数,∴这组数不是勾股数;C、∵+≠,∴这组数不是勾股数;D、∵72+242=252,∴这组数是勾股数.故选:D.8.解:设直角三角形的斜边长为x,∵三边的平方和为12800cm2,∴x2=6400cm2,解得x=80cm.故选:A.9.解:如图,已知∠C=60°,AB=6,在Rt△ABC中,设BC=x米,则AC=2x米,由勾股定理得:x2+62=(2x)2,解得:x=2,故选:B.10.解:设旗杆的高AB为xm,则绳子AC的长为(x+1)m在Rt△ABC中,AB2+BC2=AC2∴x2+52=(x+1)2解得x=12∴AB=12∴旗杆的高12m.故选:D.二.填空题(共8小题)11.解:∵将一根长为15cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,∴在杯子中筷子最短是等于杯子的高,最长是等于杯子斜边长度,∴当杯子中筷子最短是等于杯子的高时,h=12,最长时等于杯子斜边长度,即:h==13,∴h的取值范围是:(15﹣13)≤h≤(15﹣12),即2≤h≤3.故答案为:2≤h≤3.12.解:∵三角形的三边长分别为3,4,5,∴52=32+42,∴此三角形为直角三角形,∴这个三角形的面积=×3×4=6.故答案为:6.13.解:设设三角形的两直角边分别为x,y,则,由②得x2+y2﹣2xy=4…③,①﹣③得2xy=48则(x+y)2=x2+y2+2xy=52+48=100,x+y==10.故答案是:10.14.解:在直角三角形中,三边边长符合勾股定理,已知两直角边为3、4,则斜边边长==5,故答案为5.15.解:如图所示,∠ACB=90°,∴AB===(km).故答案为:.16.解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17米.故答案为:17m.17.解:如图,AB=6m,BC=BD=8m,AC=AD=10m,∵602+802=1002,∴∠ABC=∠ABD=90°,故小明向东走6m后是向北或向南走的.故答案为:北或南.18.解:∵点P的坐标为(1,﹣3),点O为坐标原点,∴OP==.答:点P到原点O的距离OP的长度为.故答案为:.三.解答题(共8小题)19.解:∵AD2+BD2=144+25=169,AB2=169,∴AD2+BD2=AB2,∴AD⊥BC,即∠ADC=90°,∴CD===9,∴BC=CD+BD=5+9=14.20.解:∵AB2+AC2=202+152=625=252=BC2,∴△ABC是直角三角形,∵S=×AB×AC=×BC×AD,△ACB∴15×20=25×AD,∴AD=12,由勾股定理得:BD==16.21.解:(1)如图,连接AC,∵∠B=90°,∴△ABC为直角三角形,又∵AB=2,BC=4,∴根据勾股定理得:AC=;(2)又∵CD=,AD=10,∴AD 2=102=100,CD 2+AC 2==80+20=100,∴CD 2+AC 2=AD 2,∴△ACD 为直角三角形,∠ACD =90°,则S 四边形ABCD =S △ABC +S △ACD =AB •BC +AC •CD =×2×4+×× =4+20=24.故四边形ABCD 的面积为24.22.解:(1)∵AB =13,BD =8,∴AD =AB ﹣BD =5,∴AC =13,CD =12,∴AD 2+CD 2=AC 2,∴∠ADC =90°,即△ADC 是直角三角形,∴△ADC 的面积=×AD ×CD =×5×12=30;(2)在Rt △BDC 中,∠BDC =180°﹣90°=90°,由勾股定理得:BC ===4,即BC 的长是4. 23.解:(1)2000÷5=400(秒),3×400=1200(米).答:船最终停在港口B 东边的1200米处.(2)在Rt △ACD 中,AC =5米/秒,CD =3米/秒,∴AD ==4(米/秒).2000÷4=500(秒).答:此时到对岸要500秒钟.24.解:(1)∵一架长5米的梯子AB,顶端B靠在墙上,梯子底端A到墙的距离AC=3米,∴BC==4(m),答:BC的长为4m;(2)当BD=AE,则设AE=x,故(4﹣x)2+(3+x)2=25解得:x1=1,x2=0(舍去),故AE=1m.25.(1)证明:在Rt△ABC中,∠B=90°,∠ACB=30°,AB=2,∴AC=2AB=4,在△ACD中,AC=4,CD=3,AD=5,∵42+32=52,即AC2+CD2=AD2,∴∠ACD=90°,∴AC⊥CD;(2)解:在Rt△ABC中,∠B=90°,AB=2,AC=4,∴BC==2,∴Rt△ABC的面积为AB•BC=×2×2=2,又∵Rt△ACD的面积为AC•CD=×4×3=6,∴四边形ABCD的面积为:2+6.26.解:(1)设t秒后P,Q相遇.在Rt△AOB中,∵∠BAO=90°,OA=12,OB=20,∴AB===16,由题意:5t+2t=12+16,解得t=4,此时BQ=8.AQ=AB﹣BQ=16﹣8=8,∴P(8,12).(2)当P,Q都在AB边上时,•|16﹣(5t﹣12)﹣2t|×12=6,解得t=或当点Q在OA上时,•16•(28﹣2t)=6,解得t=,综上所述,满足条件的值为或或.。

八年级数学下册第十七章勾股定理单元检测习题一(含答案) (24)

八年级数学下册第十七章勾股定理单元检测习题一(含答案) (24)

八年级数学下册第十七章勾股定理单元检测习题一(含答案)如图,每个小正方形的边长为1,剪一剪,并拼成一个大正方形,()1画出拼成的正方形图形;()2请求这个拼成的正方形的周长.【答案】(1)见解析;【解析】【分析】()1根据正方形的判定作图可得.()2由图可知每个小正方形的边长为1,面积为1,得出拼成的小正方形的面积为5【详解】解:()1分割图形如下:()2=【点睛】本题主要考查作图-应用与设计作图,解题的关键是掌握正方形的判定与勾股定理.102.如图,在△ABC中,∠ACB=90°,CD⊥AB于D.把三角形沿AE 对折使点C落在AB边上的点F上,CD与折痕AE相交于G,连结FG并延长交AC于H.(1)判断FH与BC的位置关系,并说明理由;(2)判断HG与DG的数量关系,并说明理由.【答案】(1)FH∥BC;理由见解析;(2)HG=DG;理由见解析.【解析】试题分析:(1)连接EF,根据翻折变换的性质可得∠CAE=∠EAF,∠AFE=90°,CE=EF,根据垂直的定义可得∠ADC=90°,然后根据同位角相等,两直线平行判断出EF∥CD,然后根据等角的余角相等求出∠AGD=∠AEC,再求出∠CGE=∠AEC,根据等角对等边可得CG=CE,然后求出CG=EF,再根据一组对边平行且相等的四边形是平行四边形判断出四边形CEFG是平行四边形,根据平行四边形对边平行可得GF∥CE,即FH∥BC;(2)根据两直线平行,同位角相等可得∠AHG=∠ACB=90°,再根据角平分线上的点到角的两边距离相等可得HG=DG.试题解析:(1)解:如图,连接EF,由翻折的性质得,∠CAE=∠EAF,∠AFE=∠ACB=90°,CE=EF,∵CD⊥AB,∴∠ADC=90°,∴∠ADC=∠AFE,∴EF∥CD,∵∠CAE=∠EAF,∠CAE+∠AEC=∠EAF+∠AGD=90°,∴∠AGD=∠AEC,又∵∠AGD=∠CGE(对顶角相等),∴∠CGE=∠AEC,∴CE=CG,∴CG=EF,∴四边形CEFG是平行四边形,∴GF∥CE,即FH∥BC;(2)解:∵FH∥BC,∴∠AHG=∠ACB=90°,又∵∠CAE=∠EAF,∴HG=DG.考点:翻折变换(折叠问题).103.如图,矩形ABCD中,AB=6cm,BC=8cm,E、F是对角线AC 上的两个动点,分别从A、C同时出发,相向而行,速度均为2cm/s,运动时间为t(0≤t≤5)秒.(1)若G、H分别是AB、DC的中点,且t≠2.5s,求证:以E、G、F、H为顶点的四边形始终是平行四边形;(2)在(1)的条件下,当t为何值时?以E、G、F、H为顶点的四边形是矩形;(3)若G、H分别是折线A-B-C,C-D-A上的动点,分别从A、C开始,与E.F相同的速度同时出发,当t为何值时,以E、G、F、H为顶点的四边形是菱形,请直接写出t的值.【答案】(1)证明见解析;(2)当t为4.5秒或0.5秒时,四边形EGFH是秒时,四边形EGFH是菱形.矩形;(3)t为318【解析】【分析】(1)根据勾股定理求出AC,证明△AFG≌△CEH,根据全等三角形的性质得到GF=HE,利用内错角相等得GF∥HE,根据平行四边形的判定可得结论;(2)如图1,连接GH,分AC-AE-CF=8.AE+CF-AC=8两种情况,列方程计算即可;(3)连接AG.CH,判定四边形AGCH是菱形,得到AG=CG,根据勾股定理求出BG,得到AB+BG的长,根据题意解答.【详解】解:(1)∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD∥BC,∠B=90°,∴∠BAC=∠DCA,∵AB=6cm,BC=8cm,∴AC=10cm,∵G、H分别是AB、DC的中点,∴AG=12AB,CH=12CD,∴AG=CH,∵E、F是对角线AC上的两个动点,分别从A、C同时出发,相向而行,速度均为2cm/s,∴AE=CF,∴AF=CE,∴△AGF≌△CHE(SAS),∴GF=HE,∠AFG=∠CEH,∴GF∥HE,∴以E、G、F、H为顶点的四边形始终是平行四边形;(2)如图1,连接GH,由(1)可知四边形EGFH是平行四边形,∵G、H分别是AB.DC的中点,∴GH=BC=8cm,∴当EF=GH=8cm时,四边形EGFH是矩形,分两种情况:①若AE=CF=2t,则EF=10-4t=8,解得:t=0.5,②若AE=CF=2t,则EF=2t+2t-10=8,解得:t=4.5,即当t为4.5秒或0.5秒时,四边形EGFH是矩形;(3)如图2,连接AG、CH,∵四边形GEHF是菱形,∴GH⊥EF,OG=OH,OE=OF,∵AF=CE∴OA=OC,∴四边形AGCH是菱形,∴AG=CG,设AG=CG=x,则BG=8-x,由勾股定理得:AB2+BG2=AG2,即62+(8-x)2=x2,解得:x=254,∴BG=8-254=74,∴AB+BG=6+74=314,t=314÷2=318,即t为318秒时,四边形EGFH是菱形.本题是四边形的综合题,考查了矩形的性质.平行四边形的判定和菱形的判定,掌握矩形的性质定理.菱形的判定定理,灵活运用分情况讨论思想是解题的关键.104.阅读材料:分析探索题:细心观察如图⑴,认真分析各式,然后解答问题.222(2)48OA =+= 12S =;223412OA =+= 2S ===224416OA =+= 3S ===……⑴请用含有n (n 为正整数)的等式n S = ;⑵推算出10OA = .求出222123S S S +++……210S +的值.【答案】(1);(2) ;222123S S S +++……210S +的值:220【解析】【分析】(1)此题要利用直角三角形的面积公式,观察上述结论,会发现,第n 个图形的一直角边OAn 就是,然后利用面积公式可得.(2)由(1)所得规律可求出OA 10的值;根据(1)得出的规律直接代入数据,然后利用求和公式计算即可得解.(1)结合已知数据,可得: OA n=1S 22n =⨯=; (2)OA10;(((()2222123102222S +S +S +......2......4812 (40)4123 (10455)220S +=++++=++++=⨯++++=⨯= .故答案为:(1);(2) ;222123S S S +++……210S +的值:220.【点睛】本题考查勾股定理、算术平方根.解题的关键是观察,观察题中给出的结论,由此结论找出规律进行计算.105.如图,点E 在正方形ABCD 内,AE=6,BE=8,AB=10.试求出阴影部分的面积S .【答案】76【解析】试题分析:先判断△ABE 是直角三角形,再用正方形的面积-直角△ABE 的面积即可求解.在△ABE 中,∵AE=6,BE=8,AB=10,62+82=102,∴△ABE 是直角三角形,∴S 阴影部分=S 正方形ABCD ﹣S △ABE=AB 2﹣×AE ×BE=100﹣×6×8=76.106.已知面积为30的菱形ABCD 的顶点坐标分别为A(1,﹣2),B(a ,b),C(1,4),D(c ,d),求a ,b ,c ,d 的值及菱形的周长.【答案】a =6,b =1,c =﹣4,d =1或a =﹣4,b =1,c =6,d =1;菱形的周长=.【解析】【分析】先根据菱形的面积公式求出对角线BD 的长,再在坐标系中画出符合题意的菱形即可求出B 、D 的坐标,然后根据勾股定理即可求出菱形的边长,进一步可得周长.【详解】解:∵菱形的面积为30,AC =6,∴16302BD ⨯=,解得BD =10. 则菱形ABCD 在平面直角坐标系如图所示,由图象可知:a =6,b =1,c =﹣4,d =1;当B 、D 互换位置时,c =6,d =1,a =﹣4,b =1.菱形的周长=4.本题以平面直角坐标系为载体,考查了菱形的判定与性质以及勾股定理,根据题意准确的画出符合题意的图形是解题的关键.107.如图,梯子长25米,斜靠在一面墙上,梯子底端离墙7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?【答案】(1)24米;(2)8米.【解析】【分析】(1)根据勾股定理计算即可;(2)计算出A B'长度,根据勾股定理求出BC',问题得解.【详解】(1)根据题意得=90ABC ∠︒,∴梯子顶端距地面的高度24=米;(2)A B '=24420-=米,∵=90ABC ∠︒∴根据勾股定理得,15BC '==米,∴1578CC BC BC '='-=-=米,答:梯子下端滑行了8米.【点睛】本题考查勾股定理的应用,难度不大,解题的关键在于根据题意得到=90ABC ∠︒,根据勾股定理解决问题.108.台风是一种自然灾害,它在以台风中心为圆心,一定长度为半径的圆形区域内形成极端气候,有极强的破坏力.如图,监测中心监测到一台风中心沿监测点B 与监测点A 所在的直线由东向西移动,已知点C 为一海港,且点C 与A , B 两点的距离分别为300km 、 400km ,且∠ACB=90°,过点C 作CE ⊥AB 于点E ,以台风中心为圆心,半径为260km 的圆形区域内为受影响区域.(1)求监测点A 与监测点B 之间的距离;(2)请判断海港C 是否会受此次台风的影响,并说明理由;(3)若台风的速度为25km/h ,则台风影响该海港多长时间?【答案】(1)监测点A 与监测点B 之间的距离是500 km ;(2)海港C 会受到此次台风的影响,见解析;(3)台风影响该海港8小时【解析】【分析】(1)利用勾股定理直接求解;(2)利用等面积法得出CE 的长,进而得出海港C 是否受台风影响;(3)利用勾股定理得出受影响的界点P 与Q 离点E 的距离,进而得出台风影响该海港持续的时间.【详解】解:在Rt ABC ∆中,90ACB ∠=︒, 由勾股定理得500AB ==()km答:监测点A 与监测点B 之间的距离是500 km .(2)海港C 会受到此次台风的影响,理由如下: ∵1122ABC S AB CE AC BC ∆==, ∴1150030040022CE ⨯⨯=⨯⨯ 解得:240CE =.∵240260<∴海港C 会受到此次台风的影响.(3)如图,海港C 在台风中心从Q 点移动到P 点这段时间内受影响.∵260CP CQ km ==∴在Rt CEP ∆中,222CE PE CP +=,即222240260PE +=解得:PE=100同理得:100QE km =∵台风的速度为25km/h∴台风影响该海港的时长为:()()100100258h +÷=答:台风影响该海港8小时.【点睛】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是将实际问题中的各个条件转化为几何语言.109.如图,已知A 、B 两点的坐标分别为(0,A ,(4,0)B -,直线AB 与反比例函数m y x=的图象相交于点C 和点()2,D n .(1)求直线AB 与反比例函数的解析式;(2)求ACO ∠的度数;(3)将OBC ∆绕点O 顺时针方向旋转α角(α为锐角),得到OB C ''∆,当α为多少度时OC AB '⊥,并求此时线段AB '的长度.【答案】(1)直线AB 的解析式为y =,反比例函数的解析式为y =;(2)∠ACO =30°;(3)当α为60°时,OC '⊥AB ,AB '=4. 【解析】【分析】(1)设直线AB 的解析式为y=kx+b (k ≠0),将A 与B 坐标代入求出k 与b 的值,确定出直线AB 的解析式,将D 坐标代入直线AB 解析式中求出n 的值,确定出D 的坐标,将D 坐标代入反比例解析式中求出m 的值,即可确定出反比例解析式;(2)联立两函数解析式求出C 坐标,过C 作CH 垂直于x 轴,在直角三角形OCH 中,由OH 与HC 的长求出tan ∠COH 的值,利用特殊角的三角函数值求出∠COH 的度数,在三角形AOB 中,由OA 与OB 的长求出tan ∠ABO 的值,进而求出∠ABO 的度数,由∠ABO-∠COH 即可求出∠ACO 的度数;(3)过点B 1作B ′G ⊥x 轴于点G ,先求得∠OCB=30°,进而求得α=∠COC ′=60°,根据旋转的性质,得出∠BOB ′=α=60°,解直角三角形求得B ′的坐标,然后根据勾股定理即可求得AB ′的长.【详解】解:(1)设直线AB 的解析式为y=kx+b (k ≠0),将A(0,,B(-4,0)代入得:40b k b ⎧=⎪⎨-+=⎪⎩解得b k ⎧=⎪⎨=⎪⎩ 故直线AB 解析式为将D(2,n)代入直线AB 解析式得:则D(2,,将D 坐标代入中,得:,则反比例解析式为y x=; (2)联立两函数解析式得:y y ⎧=+⎪⎨=⎪⎩解得解得:2x y =⎧⎪⎨=⎪⎩6x y =-⎧⎪⎨=-⎪⎩, 则C 坐标为(-6,,过点C 作CH ⊥x 轴于点H ,在Rt △OHC 中,CH=,OH=3,∵tan ∠COH=3CH OH =, ∴∠COH=30°,∵tan ∠ABO=2AO OB == ∴∠ABO=60°,∴∠ACO=∠ABO-∠COH=30°;(3)过点B′作B′G⊥x轴于点G,∵OC′⊥AB,∠ACO=30°,∴∠COC′=60°,∴α=60°.∴∠BOB′=60°,∴∠OB′G=30°,∵OB′=OB=4,∴OG=OB′=2,B′G=2,∴B′(-2,2),∴AB′.【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法确定函数解析式,一次函数与x轴的交点,坐标与图形性质,勾股定理,以及锐角三角函数定义,熟练掌握待定系数法是解本题的关键.110.一架梯子AB长25米,如图所示,斜靠在一面上,此时梯子底端B离墙7米;如果梯子的顶端A下滑了4米至点A',那么梯子的底端水平滑动的距离BB'是多少米?【答案】8【解析】【分析】根据勾股定理求出OA 的长度,再通过勾股定理求出OB '的长度,即可求出梯子的底端水平滑动的距离BB '.【详解】在Rt △AOB 中24OA ===(米)∴24420OA OA AA ''=-=-=(米)在Rt A OB ''△中15OB '===(米) ∴1578BB OB OB ''=-=-=(米).【点睛】本题考查了勾股定理的实际应用,掌握勾股定理是解题的关键.。

八年级数学下册《第十七章 勾股定理》单元测试卷带答案(人教版)

八年级数学下册《第十七章 勾股定理》单元测试卷带答案(人教版)

八年级数学下册《第十七章 勾股定理》单元测试卷带答案(人教版)班级 姓名 学号一、选择题:1.设一个直角三角形的两直角边分别是a ,b ,斜边是c .若用一把最大刻度是20cm 的直尺,可一次直接测得c 的长度,则a ,b 的长可能是( )A .a =12,b =16B .a =11,b =17C .a =10,b =18D .a =9,b =192.在△ABC 中,AC=9,BC=12,AB=15,则AB 边上的高是( )A .365B .1225C .94D 3.已知,一轮船以16海里/时的速度从港口A 出发向北偏东63?方向航行,另一轮船以8海里/时的速度同时从港口A 出发向南偏东27 方向航行,则离开港口1小时后,两船相距( )A .B .海里C .16海里D .24海里4.如图,一根木杆在离地面3m 处折断,木杆顶端落在离木杆底端4m 处,木杆折断之前的高度是( )A .5mB .6mC .7mD .8m5.如图,牧童在 A 处放牛,牧童家在 B 处, A , B 处距河岸 DC 的距离 AC 、 BD 的长分别为5km 和10km ,且 C , D 两点的距离为8km ,天黑前牧童从 A 处将牛牵到河边饮水再回家,那么牧童最少要走的距离为( ).A .15kmB .16kmC .17kmD .18km6.如图,点A ,B 是棱长为1的立方体的两个顶点,若将该立方体按图中所示展开,则在展开图中,A ,B 两点间的距离是( )AB C D7.如图,在Rt △ABC 中,∠ACB =90°,AE 为△ABC 的角平分线,且ED ⊥AB ,若AC =6,BC =8,则ED 的长( )A .2B .3C .4D .58.如图,已知△ABC 中,∠ABC=90°,AB=BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,则AC 的长是( )A .B .C .D .7二、填空题: 9.在Rt ABC 中90C ∠=︒,4AB =则222AB AC BC ++= .10.如果△ABC 的三边长a 、b 、c 满足关系式(a+2b ﹣60)2+|b ﹣18|+|c ﹣30|=0,则△ABC 的形状是 .11.将一根长为17cm 的筷子,置于内径为6cm 高为8cm 的圆柱形水杯中,设筷子露在杯子外面的长度为x cm ,则x 的取值范围是 .12.如图,等腰ABC 中,AB=AC ,AD 是底边上的高,若AB=5cm ,BC=6cm ,则AD= cm .13.Rt △ABC 中,∠B =90°,D 为BC 上的一点,若DC =DA =5,△ACD 的面积为10,则BD 的长为 .14.如图,在ABC 中,90301ABC A BC M N ︒︒∠=∠==,,,,分别是AB AC ,上的任意一点,求MN NB +的最小值为 .三、解答题:15.如图,小丽想知道自家门前小河的宽度,于是她测出如下数据:在河岸选取A点,A点对岸选取参照点C,测得∠A=30°;她沿河岸向前走了30米选取点B,并测得∠CBD=60°.根据数据能否测得小河宽度?若能请算出小河宽度,若不能请说明理由.16.某建筑物的金属支架如图所示,根据要求AB长为4m,C为AB的中点,点B到D的距离比立柱CD的长小0.5m,∠BCD=60°,求立柱CD长.17.在△ABC中,∠ACB=90°,P为BC中点,PD⊥AB于D,求证:AD2﹣BD2=AC2.18.一架方梯AB长25米,如图所示,斜靠在一面上:(1)若梯子底端离墙OB=7米,这个梯子的顶端距地面AO有多高?(2)在(1)的条件下,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了BB´几米?19.如图,ABC 是等边三角形,D 是边AB 上一点,以CD 为边作E 等边CDE ,DE 交AC 于点F ,连接AE(1)求证:BCD ≌.ACE(2)若6BC =,2AE =求CD 的长.20.如图,已知在△ABC 中,∠B=90°,AB=8cm ,BC=6cm ,点P 开始从点A 开始沿△ABC 的边做逆时针运动,且速度为每秒1cm ,点Q 从点B 开始沿△ABC 的边做逆时针运动,且速度为每秒2cm ,他们同时出发,设运动时间我t 秒.(1)出发2秒后,求PQ 的长;(2)在运动过程中,△PQB 能形成等腰三角形吗?若能,则求出几秒后第一次形成等腰三角形;若不能,则说明理由;(3)从出发几秒后,线段PQ 第一次把直角三角形周长分成相等的两部分?参考答案:1.A 2.A 3.B 4.D 5.C 6.C 7.B 8.A9.3210.直角三角形11.7≤x ≤912.413.314.1.515.解:能测出小河的宽度.原因如下:过C 作CE ⊥AD 于点E∵∠CBD=60°∴∠ABC=120°∴A=∠ACB=∠ECB=30°∴BC=AB=30,BE=15.根据勾股定理得: 22CB BE -223015-3 .综上,小河宽度为3米.16.解:连接BD ,作OB ⊥CD 于点O∵在直角三角形BCO 中,∠BCD=60°,AB 长为4m ,C 为AB 的中点∴OC= 112BC = m ,33 m在直角三角形BOD 中,设CD 为x ,OD=DC-OC=x-1,BD=CD-0.5=x-0.5,3可得: 222(0.5)(1)3)x x -=-+解得:x=3.75答:CD 的长为3.75m .17.解:证明:连接AP ,如图所示AD 2﹣BD 2=AP 2﹣PD 2﹣(BP 2﹣PD 2)=AC 2+CP 2﹣PD 2﹣BP 2+PD 2=AC 2+CP 2﹣BP2 ∵P 为BC 中点∴CP=BP∴CP 2﹣BP 2=0∴AD 2﹣BD 2=AC 2.18.(1)解:在Rt △AOB 中,AB=25米,OB=7米,OA 2222257AB OB =-=-= 24(米). 答:梯子的顶端距地面24米;(2)解:在Rt △AOB 中,A'O=24﹣4=20米,OB' 2222'''2520A B OA =--= 15(米),BB'=15﹣7=8米.答:梯子的底端在水平方向滑动了8米.19.(1)证明:ABC 与CDE 是等边三角形 AC BC ∴=,CD CE =和60ACB DCE ∠=∠=BCD ACE ∴∠=∠BCD ∴≌()ACE SAS(2)解:如图,作DG BC ⊥于点GBCD ≌ACE2.BD AE ∴==60B ∠=1BG ∴= 3DG =615CG BC BG ∴=-=-=222827.CD CG DG ∴=+==20.(1)解:∵出发2秒后AP=2cm∴BP=8-2=6(cm ),BQ=2×2=4(cm )在Rt △PQB 中,由勾股定理得:22PB BQ +=13cm ),即出发2秒后,PQ 的长为13(2)解:在运动过程中,△PQB 能形成等腰三角形AP=t ,BP=AB-AP=8-t ,BQ=2t由PB=BQ 得:8-t=2t解得t=83(秒),即出发83秒后第一次形成等腰三角形. (3)解:在Rt △ABC 中,由勾股定理得:22AB BC +=10=10(cm );∵AP=t ,BP=AB-AP=8-t ,BQ=2t ,QC=6-2t ,线段PQ 第一次把直角三角形周长分成相等的两部分 ∴AC+AP+QC=PB+BQ∴10+t+(6-2t)=8-t+2t解得t=4(cm ),即从出发4秒后,线段PQ 第一次把直角三角形周长分成相等的两部分。

人教版八年级下数学《第17章勾股定理》单元测试(含答案)

人教版八年级下数学《第17章勾股定理》单元测试(含答案)

人教版八年级下数学《第17章勾股定理》单元测试(含答案)第17 章勾股定理一、选择题1.以下列各组数为边长,能构成直角三角形的是()A. 5、6、7B. 10、8、4C. 7、24、25D. 9、15、172.△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为()A. 14B. 4C. 14或4D. 以上都不对3.下列四组数中,其中有一组与其他三组规律不同,这一组是()A. 3,4,5B. 6,8,10C. 5,12,13D. 4,5,74.在△ABC中,若AC=15,BC=13,AB边上的高CD=12,则△ABC的周长为()A. 32B. 42C. 32或42D. 以上都不对5.如图,正方形ABCD的边长为9.将正方形折叠.使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是( )A. 3B. 4C. 5D. 66.如图,正方形小方格边长为1,则网格中的△ABC是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 以上答案都不对7.给出下列长度的四组线段:①1,2,2;②5,12,13;③6,7,8;④3m,4m,5m(m>0).其中能组成直角三角形的有()A. ①②B. ②④C. ②③D. ③④8.如图,一架25分米的梯子,斜立在一竖直的墙上,这时梯的底部距墙底端7分米,如果梯子的顶端沿墙下滑4分米,那么梯的底部将平滑()A. 9分米B. 15分米C. 5分米D. 8分米9.下列各组数是三角形的三边,能组成直角三角形的一组数是()A. ,,B. 2,3,4C. 3,4,5D. 6,8,1210.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A. 8B. 4C. 6D. 无法计算11.在Rt△ABC中,∠ACB=90°,AC= ,BC=2,则AB的长为()A. B. C. D. 612.已知△ABC的三边长分别为a,b,c,且满足(a﹣5)2+|b﹣12|+ =0,则△ABC()A. 不是直角三角形B. 是以a为斜边的直角三角形C. 是以b为斜边的直角三角形D. 是以c为斜边的直角三角形二、填空题13.如图,Rt△ABC的周长为cm,以AB、AC为边向外作正方形ABPQ和正方形ACMN.若这两个正方形的面积之和为25 cm2,则△ABC的面积是________cm2.14.观察下列式子:当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a=________ ,b=________ ,c=________15.一棵树因雪灾于A处折断,如图所示,测得树梢触地点B到树根C处的距离为4米,∠ABC约45°,树干AC垂直于地面,那么此树在未折断之前的高度约为________米(答案可保留根号)16.平面直角坐标系内点P(﹣2,0),与点Q(0,3)之间的距离是________.17.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,EF=2,那么AH等于________18.如图,O为矩形ABCD内的一点,满足OD=OC,若O点到边AB的距离为d,到边DC的距离为3d,且OB=2d,求该矩形对角线的长 ________19.我们学习了勾股定理后,都知道“勾三、股四、弦五”.观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.(1)请你根据上述的规律写出下一组勾股数:________.(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为________和________,请用所学知识说明它们是一组勾股数.20.四边形ABCD中,AD=3,AB=4,BC=12,CD=13,∠BAD=90°,则△BDC为________三角形.21.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=________.三、解答题22.如图,在△ABC中,D为BC边上的一点,已知AB=13,AD=12,AC=15,BD=5,求CD的长.23.如图,在四边形ABCD中,已知AB=4cm,BC=3cm,AD=12cm,DC=13cm,∠B=90°,求四边形ABCD的面积。

人教版八年级数学下册《第十七章勾股定理》单元练习题(含答案)

人教版八年级数学下册《第十七章勾股定理》单元练习题(含答案)

第十七章《勾股定理》单元练习题2. 下列命题中是假命题的是 ()A. △ ABC 中,若/ B =Z C -Z 代则厶ABC 是直角三角形B. △ ABC 中,若 a 2= (b + c )( b - c ),则△ ABC 是直角三角形C.△ ABC 中,若/ A : / B :Z C = 3 : 4 : 5,则△ ABC 是直角三角形D. △ ABC 中,若 a : b : c = 5 : 4 : 3,则厶 ABC 是直角三角形3. 如图,在4X 4方格中作以AB 为一边的Rt △ ABC 要求点C 也在格点上,这样的A. 2个B. 3个C. 4个D. 6个 4.下列各组数中,不能作为直角三角形的三边长的是( )A. 0.3,0.4,0.5B. 8,9,10C. 7,24,25D. 9,12,15 5.在厶 ABC 中,/ A, / B ,/ C 的对边分别为 a , b, c ,且(a + b )( a -b ) = c 2,则(、选择题 1.已知直角三角形的周长是 2 +.,斜边长为2,则它的面积是(Rt △ ABC 能作出( )A. / A为直角B. / C为直角C. / B为直角D. 不是直角三角形6. 如图,一个圆柱体的底面周长为24,高BD= 5, BC是直径.一只蚂蚁从点D出发,到C的最短路程大约为()A. 13 cmB. 12 cmC. 6 cmD. 16 cm7. 若一个直角三角形的三边长分别为a, b, c,且a2= 9, b2= 16,则c2为()A. 25B. 7C. 7 或25D. 9 或168. 如图,透明的圆柱形容器(容器厚度忽略不计)的高为12 cm ,底面周长为10 cm , 离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13 cmB .21 cmC .1 cm沿着表面爬在容器内壁3 cm的点AD .2 ::% m_ 二>.填空题9. 如图,以直角厶ABC的三边向外作正方形,其面积分别为S, S2, S3且S1= 4, S2= 8,贝U S=10. 一幢高层住宅楼发生火灾,消防车立即赶到,在距住宅楼9米的B 处升起梯搭在火灾窗口 (如图),已知云梯长 15米,云梯底部距地面 2米,发生火灾的住户窗口 A 离地面有 _____________________ 米.11.如图,图①是棱长为 4 cm 的立方体,沿其相邻三个面的对角线(虚线)裁掉一个角,得到如图②的几何体,则一只蚂蚁沿着图②几何体的表面,从顶点A 爬到顶点B 的最短距离为 __________ cm.12.如图,四边形 ABCD 中,AB 丄 AD 于 A AB=, AD= 8 , BC= 7, CD= 25,则四边形 ABCD 勺面积为 ___________ .13.如图,阴影部分是两个正方形,其他三个图形是一个正方形和两个直角三角形,则阴影部分的A B C,则点A 到BC 的距离为=17.如图,一个长方体形的木柜放在墙角处 (与墙面和地面均没有缝隙),有一只蚂蚁从柜角 A 处沿着木柜表面爬到柜角 C 1处.(1) 请你在备用图中画出蚂蚁能够最快到达目的地的可能路径;(2) 当AB= 4, BC = 4, CC = 5时,求蚂蚁爬过的最短路径的长.18.在厶ABC 中,AB= 15, AC= 20, BC 边上的高 AD= 12,试求BC 的长./ B = 90°, BC= 15, AC= 17,以AB 为直径作半圆,则此半圆的面积AD= 3, AB= 4, BC= 12, CD= 13,/ A = 90°,计算四边形 ABCD 的面积 ___________三、解答题19. 写出如图格点△ ABC各顶点的坐标,求出此三角形的周长.20. 在四边形ABCD中,AB= AD= 8,/ A= 60°,/ D= 150°,四边形周长为32,求BC和CD的长21. 如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD,经测量,在四边形ABCD中, AB= 3 m,BC= 4 m, CD= 12 m, DA= 13 m, / B= 90° .小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?第十七章《勾股定理》单元练习题答案解析1. 【答案】A【解析】设直角三角形的两直角边为a、b,则a+ b+ 2= 2+ . , a2+ b2= 22= 4,a+ b= . , (a+ b)2-2ab= 4,解得ab= 1,•••这个直角三角形的面积为,ab=;故选A.2. 【答案】C【解析】A. / B+Z A=Z C,所以/ C= 90°,所以△ ABC是直角三角形,故本选项不符合题意.B. 若a2= (b+ c)( b-c),所以a2+ c2= b2,所以△ ABC是直角三角形,故本选项不符合题意.C. 若Z A :Z B:Z C= 3 : 4 : 5,最大角为75°,故本选项符合题意.D. 若a : b : c= 5 : 4 : 3,则△ ABC是直角三角形,故本选项不符合题意.故选C.3. 【答案】D【解析】当AB是斜边时,则第三个顶点所在的位置有: C D, E, H四个;当AB是直角边,A是直角顶点时,第三个顶点是F 点;当AB是直角边,B是直角顶点时,第三个顶点是G因而共有6个满足条件的顶点.故选D.4. 【答案】B【解析】A.0.3 2+ 0.4 2= 0.5 2,故是直角三角形,故此选项不合题意;2 2 2B. 8 + 9工10 ,故不是直角三角形,故此选项符合题意;C. 72+ 242= 252,故是直角三角形,故此选项不合题意;D. 92+ 122= 152,故是直角三角形,故此选项不合题意.故选B.5. 【答案】A【解析I:(a+ b)( a—b) = c2,••• a2—b2= c2,即c2+ b2= a2,故此三角形是直角三角形,•••/ A为直角.故选A.6. 【答案】B【解析】将圆柱体展开,连接DC圆柱体的底面周长为24,则DE= 12,根据两点之间线段最短,CD=「「L一= 13.而走B- D— C的距离更短,24•/ BD= 5, BC=7F故选:B.7. 【答案】C【解析】当a, b为直角边时,c2= a2+ b2= 9+ 16= 25, 当a, c为直角边,b为斜边时,c2= b2—a2= 16—9 = 7, 故选C.8. 【答案】A【解析】如图:• BD+ B012.a为直角三角:高为12 cm,底面周长为10 cm,在容器内壁离容器底部 3 cm的点B处有一饭粒, 此时蚂蚁正好在容器外壁,离容器上沿 3 cm与饭粒相对的点A处,/• A D= 5 cm , BD= 12—3+AE= 12 cm,•••将容器侧面展开,作A关于EF的对称点A',连接A B则A B即为最短距离,A B= 丨山;:=.:i .ii=13(cm).故选A.9. 【答案】12【解析】•••△ ABC直角三角形,•- B C+A C = A B,T S= BC, 82= AC, S3= A B, S = 4, 82= 8,•- 83= S+ 82= 12.10. 【答案】14【解析】••• ACL BC•••/ ACB= 90°;根据勾股定理,得AC=丿詁-肘=门〉=12,• AF= 12 + 2 = 14(米);答:发生火灾的住户窗口距离地面14米;11. 【答案】2+ 2【解析】如图所示:△ BCD是等腰直角三角形,△ ACD是等边三角形,在Rt△ BCD中, CD= = 4 cm,1 则BE= CD=2 cm,在Rt△ ACE中, AE= I;-:: J = 2 cm,B的最短距离为(2 . + 2 ■ ) cm.12.【答案】84 + 96.【解析】连接BD,•/ AB丄AD•••/ A= 90°,••• BD= 24,••• BC+ BD= 72+ 242= 625 = 25? = CD,• △ CBD为直角三角形,...S 四边形ABCD= S\ABD+ S\ BCD=;X 8 X 8 + ' X 24X 7=96 . + 84.13.【答案】81【解析】两个阴影正方形的面积和= 152- 122= 81. 14•【答案】【解析】连接AC,作ADL BC于点D,1 1 1 1•/ S A ABC= BC- AD= 4X 5- X 2 X 5- X 2X 4 — X 1 X 4= 9,2 2 2 2BC= 2 J,•••点A到BC的距离为AD= .15. 【答案】8n【解析】在Rt△ ABC中, AB=冷厂・打=」厂!匸=8,亍2所以S半圆=X 4 = 8 n .16. 【答案】36【解析】在厶ABD中,•••/ A= 90°, AD= 3, AB= 4,••• BD=,;厂丨d 5,S^ ABD= AB- AD= X 4 X 3 = 6,在厶BCD中,•/ BC= 12, CD= 13, BD= 5,•B D+ B C= CD,•△ CBD是直角三角形,•• S A CBD= BC" BD= —X 12 X 5= 30.••四边形ABC啲面积=S A ABD+S A BCD= 6+ 30= 36.17. 【答案】解(1)如图,木柜的表面展开图是两个矩形ABCD和ACCA.蚂蚁能够最快到达目的地的可能路径有如图的AC'和AC.(2)蚂蚁沿着木柜表面经线段A B到C1,爬过的路径的长是I 1 =•〈— / 4 丫了=.,蚂蚁沿着木柜表面经线段BB到C,爬过的路径的长是丨2 =.. :=:.I 1> I 2,最短路径的长是|2 = ■:'.【解析】(1)将长方体形的木柜展开,求出对角线的长即可;(2)求出蚂蚁沿着木柜表面经线段A1B1到C,以及蚂蚁沿着木柜表面经线段BB到C,的距离,再进行比较即可.18. 【答案】解如图(1) , △ ABC中, AB= 15, AC= 20, BC边上高AD= 12,在Rt△ ABD中AB= 15, AD= 12,由勾股定理,得BD=丁丁 1 J = 9,在Rt△ ADC中AC= 20, AD= 12,由勾股定理,得DC= . | .. = 16,BC的长为B內DC= 9+ 16= 25.如图(2), △ ABC中, AB= 15, AC= 20, BC边上高AD= 12, 在Rt△ ABD中AB= 15, AD= 12,由勾股定理,得BD=门一:宀9,在Rt△ ACC中AC= 20, AD= 12,由勾股定理,得DC=厂丁・匸=16 , BC= CD- BD= 7.综上所述,BC的长为25或7.【解析】已知三角形两边的长和第三边的高,未明确这个三角形为钝角还是锐角三角形,所以需分情况讨论,即/ ABC是钝角还是锐角,然后利用勾股定理求解.19. 【答案】解由图可知,A(2,2),B(—2,- 1),C(3,- 2).AB= .! = 5,AC=丨=I ,BC= ,故周长=5+ •.I【解析】根据各点在坐标系中的位置写出各点坐标,再根据勾股定理求出各边的长,进而可得出周长. 20. 【答案】解如图,连接BD由AB= AD / A= 60° .则厶ABD是等边三角形.即BD= 8,/ 1 = 60° .又/ 1 + Z 2= 150°,则/ 2= 90° .设BC= x,CD= 16-x,由勾股定理,得x2= 82+ (16 -x)2,解得x = 10,16 -x = 6【解析】如图,连接BD构建等边厶ABD直角△ CDB利用等边三角形的性质求得BD= 8;然后利用勾股定理来求线段BC CD的长度.21. 【答案】解连接AC 则由勾股定理得AC= 5 m,•/ A C+D C=A D,•••/ ACD= 90° .I I I 2这块草坪的面积= S Rt^ABC+ S Rt^ACD=~AB- BC+ ~AC- DC=- x (3 x 4+ 5X 12) = 36 m .故需要的费用为36x 100 = 3 600元.答:铺满这块空地共需花费 3 600元.角形•从而用求和的方法求面积,也可得出需要的费用. 【解析】连接AC 先根据勾股定理求出AC 的长,然后利用勾股定理的逆定理证明△ ACD 为直角三。

人教版八年级数学下册第十七章勾股定理单元练习题(含答案)

人教版八年级数学下册第十七章勾股定理单元练习题(含答案)

第十七章勾股定理一、选择题1.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,这里的水深为()A. 1.5米B. 2米C. 2.5米D. 1米2.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4等于()A. 86B. 64C. 54D. 483.如图表示的是一个十字路口,O是两条公路的交点,点A、B、C、D表示的是公路上的四辆车,若OC=8 cm,AC=17 cm,AB=5 cm,BD=10m,则C,D两辆车之间的距离为()A. 5 mB. 4 mC. 3 mD. 2 m4.如图是由三个棱长均为1的正方体箱子堆积而成的几何体,在底端的顶点A处有一只蚂蚁,它想吃到顶端的顶点B处的食物,则它沿该几何体表面爬行的最短路程等于()A.B. 2+1C.D. 55.如图,长方体的透明玻璃鱼缸,假设其长AD=80 cm,高AB=60 cm,水深为AE=40 cm,在水面上紧贴内壁G处有一鱼饵,G在水面线EF上,且EG=60 cm;一小虫想从鱼缸外的A点沿壁爬进鱼缸内G处吃鱼饵,则小动物爬行的最短路线长为()A. 40 cmB. 60 cmC. 80 cmD. 100 cm6.三角形三边长为6、8、10,那么最长边上的高为()A. 6B. 4.5C. 4.8D. 87.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2 m,梯子的顶端B到地面的距离为7 m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3 m,同时梯子的顶端B下降至B′,那么BB′()A.小于1 mB.大于1 mC.等于1 mD.小于或等于1 m8.如图,一根垂直于地面的旗杆在离地面5 m处撕裂折断,旗杆顶部落在离旗杆底部12 m处,旗杆折断之前的高度是()A. 5 mB. 12 mC. 13 mD. 18 m二、填空题9.直角三角形斜边长是5,一直角边的长是3,则此直角三角形的面积为________.10.一个三角形的三边长之比为5∶12∶13,它的周长为120,则它的面积是________.11.如图,分别以△ABC的三边为直径向外作3个半圆,它们的面积分别为4、5、9,则△ABC________直角三角形.(填“是”或“不是”)12.如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于________.13.中国古代的数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是三国时期的数学家赵爽,不仅最早对勾股定理进行了证明,而且创制了“勾股圆方图”,开创了“以形证数”的思想方法.在图1中,小正方形ABCD的面积为1,如果把它的各边分别延长一倍得到正方形A1B1C1D1,则正方形A1B1C1D1的面积为________;再把正方形A1B1C1D1的各边分别延长一倍得到正方形A2B2C2D2(如图2),如此进行下去,得到的正方形AnBnCnDn的面积为________(用含n的式子表示,n为正整数).14.如图,四边形ABCD中,AB⊥AD于A,AB=8,AD=8,BC=7,CD=25,则四边形ABCD的面积为__________.15.如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=________.16.在△ABC中,已知AB=BC=CA=4 cm,点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C 运动,速度为1 cm/s;点Q沿CA、AB向终点B运动,速度为2 cm/s,设它们运动的时间为x(s),当x=__________,△BPQ是直角三角形.三、解答题17.如图所示的一块地,AD=9 m,CD=12 m,∠ADC=90°,AB=39 m,BC=36 m,求这块地的面积.18.如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度全速前进,2小时后甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船沿那个方向航行吗?19.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.20.为了弘扬“社会主义核心价值观”,乐至县政府在广场树立公益广告牌,如图所示,为固定广告牌,在两侧加固钢缆,已知钢缆底端D距广告牌立柱距离CD为3米,从D点测得广告牌顶端A点和底端B点的距离分别是5米和3米.(1)求公益广告牌的高度AB;(2)求∠BDC的度数.21.阅读与应用:阅读以下材料,并按要求完成相应的任务.中国最早的一部数学著作--《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地的数据呢?”商高回答说:“数的产生来源于对方和圆这些形体的认识,其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5.这个原理是大禹在治水的时候就总结出来的呵.”任务:(1)上面周公与商高的这段对话,反映的数序原理在数学上叫做__________定理;(2)请你利用以上数学原理解决问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,求问题中葛藤的最短长度是多少尺.答案解析1.【答案】A【解析】设水深为h米,则红莲的高(h+1)米,且水平距离为2米,则(h+1)2=22+h2,解得h=1.5.故选A.2.【答案】C【解析】如图1,S1=AC2,S2=AB2,S3=BC2,∵BC2=AB2-AC2,∴S2-S1=S3,如图2,S4=S5+S6,∴S3+S4=45-16+11+14=54.故选C.3.【答案】D【解析】在Rt△AOC中,∵OA2+OC2=AC2,∴OA===15(m),∴OB=OA+AB=20 m,在Rt△BOD中,∵BD2=OB2+OD2,∴OD===10(m),∴CD=OD-OC=2 m,故选D.4.【答案】A【解析】如图所示,由图可知,AB==.故选A.5.【答案】D【解析】如图所示作点A关于BC的对称点A′,连接A′G交BC与点Q,小虫沿着A→Q→G的路线爬行时路程最短.在直角△A′EG中,A′E=80 cm,EG=60 cm,∴AQ+QG=A′Q+QG=A′G==100 cm.∴最短路线长为100 cm.故选D.6.【答案】C【解析】∵62+82=102,∴这个三角形是直角三角形,∴最长边上的高为6×8÷10=4.8.故选C.7.【答案】A【解析】在直角三角形AOB中,因为OA=2,OB=7,由勾股定理,得AB=,由题意可知AB=A′B′=,又OA′=3,根据勾股定理得OB′=,∴BB′=7-<1.故选A.8.【答案】D【解析】旗杆折断后,落地点与旗杆底部的距离为12 m,旗杆离地面5 m折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为=13 m,所以旗杆折断之前高度为13 m+5 m=18 m.故选D.9.【答案】6【解析】∵直角三角形斜边长是5,一直角边的长是3,∴另一直角边长为=4.该直角三角形的面积S=×3×4=6.10.【答案】480【解析】设三边的长是5x,12x,13x,则5x+12x+13x=120,解得x=4,则三边长是20,48,52.∵202+482=522,∴三角形是直角三角形,∴三角形的面积是×20×48=480.11.【答案】是【解析】由分别以△ABC的三边为直径向外作3个半圆,它们的面积分别为4、5、9,得BC2+AC2=AB2,则△ABC是直角三角形.12.【答案】96【解析】连接AC,在Rt△ACD中,AD=8,CD=6,∴AC===10,在△ABC中,∵AC2+BC2=102+242=262=AB2,∴△ABC为直角三角形;∴图形面积为S△ABC-S△ACD=×10×24-×6×8=96.13.【答案】55n【解析】已知小正方形ABCD的面积为1,则把它的各边延长一倍后,△AA1B1的面积是1,新正方形A1B1C1D1的面积是5,从而正方形A2B2C2D2的面积为5×5=25=52,…正方形AnBnCnDn的面积为5n.14.【答案】84+96【解析】连接BD,∵AB⊥AD,∴∠A=90°,∴BD=24,∵BC2+BD2=72+242=625=252=CD2,∴△CBD为直角三角形,∴S四边形ABCD=S△ABD+S△BCD=×8×8+×24×7=96+84.15.【答案】12【解析】∵△ABC直角三角形,∴BC2+AC2=AB2,∵S1=BC2,S2=AC2,S3=AB2,S1=4,S2=8,∴S3=S1+S2=12.16.【答案】2或【解析】根据题意,得BP=t cm,CQ=2t cm,BQ=(8-2t) cm,若△BPQ是直角三角形,则∠BPQ=90°或∠BQP=90°,①当∠BPQ=90°时,Q在A点,CQ=CA=4 cm,4÷2=2(s);②当∠BQP=90°时,∵∠B=60°,∴∠BPQ=90°-60°=30°,∴BQ=BP,即8-2t=t,解得t=,故当t=2或秒时,△BPQ是直角三角形.17.【答案】解连接AC,则在Rt△ADC中,AC2=CD2+AD2=122+92=225,∴AC=15,在△ABC中,AB2=1521,AC2+BC2=152+362=1521,∴AB2=AC2+BC2,∴∠ACB=90°,∴S△ABC-S△ACD=AC·BC-AD·CD=×15×36-×12×9=270-54=216.答:这块地的面积是216平方米.【解析】连接AC,运用勾股定理逆定理可证△ACD,△ABC为直角三角形,可求出两直角三角形的面积,此块地的面积为两个直角三角形的面积差.18.【答案】解BM=8×2=16海里,BP=15×2=30海里,在△BMP中,BM2+BP2=256+900=1156,PM2=1156,BM2+BP2=PM2,∴∠MBP=90°,180°-90°-60°=30°,故乙船沿南偏东30°方向航行.【解析】先根据路程=速度×时间,求出BM,BP的长,再根据勾股定理的逆定理得到∠MBP=90°,进一步即可求解.19.【答案】解如图,在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14-x,由勾股定理,得AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2,故152-x2=132-(14-x)2,解之得x=9.∴AD=12.∴S△ABC=BC·AD=×14×12=84.【解析】根据题意利用勾股定理表示出AD2的值,进而得出等式求出答案.20.【答案】解(1)在直角三角形ADC中,AC ===4(m),在直角三角形BDC中,BC ===3(m),故AB=AC-BC=1(米),答:公益广告牌的高度AB的长度为1 m;(2)∵在直角三角形BDC中,BC=CD=3 m,∴△DBC是等腰直角三角形,∴∠BDC=45°.【解析】(1)直接利用勾股定理得出AC的长,进而得出BC的长即可得出AB的长;(2)利用已知结合(1)中所求得出△DBC是等腰直角三角形,进而得出答案.21.【答案】解(1)上面周公与商高的这段对话,反映的数序原理在数学上叫做勾股定理;故答案是勾股;(2)如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).答:问题中葛藤的最短长度是25尺.【解析】(1)根据勾股定理的概念填空;(2)这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.。

人教版数学八年级下册 第十七章 勾股定理 单元测试卷(含答案解析)

人教版数学八年级下册 第十七章 勾股定理 单元测试卷(含答案解析)

人教版数学八年级下册第十七章勾股定理单元测试卷一、单选题(共10题;共20分)1.下列说法:①无理数分为正无理数,零,负无理数;②-4是16的平方根;③如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;④任何实数都有立方根,其中正确的有()A. 4B. 3C. 2D. 12.若一个直角三角形的三边分别为a、b、c,a2=144,b2=25,则c2=()A. 169B. 119C. 169或119D. 13或253.如图,∠B=∠ACD=90°;AD=13;CD=12;BC=3,则AB的长为()A. 4B. 5C. 8D. 104.下列各组数是勾股数的是()A. 12、15、18B. 6、8、12C. 4、5、6D. 7、24、255.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处.若M,N两点相距100海里,则∠NOF的度数为()A. 50°B. 60°C. 70°D. 90°6.如图以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点处,则点表示的数是()A. B. C. D.7.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂0A=OB=10分米,晾衣臂支架HG=FE=5分米,HO=FO=4分米。

当∠AOC=90°,且OB∥CD时,线段OG与OE的长分别为( )A. 3和7B. 3和C. 3和2+D. 和2+8.如图,圆柱形容器高为18cm,底面周长为32cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好也在杯内壁,离杯上沿2cm与蜂蜜正相对的点A处,则蚂蚁从内壁A处到达内壁B处的最短距离为()A. 13cmB. cmC. 2 cmD. 20cm9.如图,在△ABC中,AB=AC,∠BAC=60°,BC=2,AD⊥BC于D,点F是AB的中点,点E在AD边上,则BE+EF的最小值是( )A. 1B.C. 2D.10.如图,小江同学把三角尺含有60°角的一端以不同的方向穿入进另一把三角尺(含有45°角)的孔洞中。

新人教版八年级数学(下)《第17章 勾股定理》单元测试卷

新人教版八年级数学(下)《第17章 勾股定理》单元测试卷

折断之前有
ห้องสมุดไป่ตู้米.
三.做一做(8 分) 14.(8 分)如图是由 16 个边长为 1 的小正方形拼成的,任意连结这些小正方形
的若干个顶点,可得到一些线段,试分别画出一条长度是有理数的线段和一 条长度是无理数的线段,并写出这两条线段的长度.
四.解答题(1 题 4 分,2、3 题各 6 分,4、5、6 各 8 分,共 40 分) 15.(4 分)如图:带阴影部分的半圆的面积是多少?(π 取 3)
第4页(共4页)
是( )
A.等边三角形 B.钝角三角形 C.直角三角形 D.锐角三角形
8.(4 分)如图,将一个边长分别为 4,8 的长方形纸片 ABCD 折叠,使 C 点与 A
点重合,则 BE 的长是( )
第1页(共4页)
A.3
B.4
C.5
D.6
二.填空题(每小题 4 分,共 20 分)
9.(4 分)在直角三角形中,若两直角边的长分别为 1cm,2cm,则斜边长


10.(4 分)在△ABC 中,∠C=90°,AB=5,则 AB2+AC2+BC2=

11.(4 分)正方形的对角线为 4,则它的边长 AB=

12.(4 分)直角三角形有一条直角边为 6,另两条边长是连续偶数,则该三角形
周长为

13.(4 分)如图,一根树在离地面 9 米处断裂,树的顶部落在离底部 12 米处.树
第3页(共4页)
新人教版八年级数学下册《第 17 章 勾股定理》单元测 试卷
参考答案
一.选择题(每小题 4 分,共 32 分) 1.A; 2.D; 3.C; 4.D; 5.B; 6.D; 7.C; 8.A; 二.填空题(每小题 4 分,共 20 分) 9. cm; 10.50; 11.2 ; 12.24; 13.24;

(完整版)人教版八下数学第十七章《勾股定理》单元测试卷及答案【1】(最新整理)

(完整版)人教版八下数学第十七章《勾股定理》单元测试卷及答案【1】(最新整理)

()
A、25 海里
B、30 海里
C、35 海里
D、40 海里
8、下列叙述中,正确的是( )
A、直角三角形中,两条边的平方和等于第三边的平方
B、如果一个三角形中两边的平方差等于第三边的平方,那么这个三角形是直角三角形
C、△ABC 中,∠A、∠B、∠C 的对边分别为 a、b、c,若 a2+b2=c2,则∠A=90°
决不让每一位孩子掉队
6
索罗学院 诲人不倦
二、 填空题 11~20 41 5 直角 25 90° 24 20 9.6cm 20° 135°
提示:11、如题图,过 M 作 MN∥BA′,因为 M 为 A′B′的中点,所以 N 为 B′C 的中点 在 Rt△ACB 中,由 AB=10,BC=6 得 AC=8 ∴∠A′=8 B′C=6 ∴B′N=NC=3 AB′=AC-B′C=8-6=2
23
BC AD
2 35
h= AC = 5 = 5
C D B
5、可代 m=2,n=1,检验
图1
6、AC2=32+22=13 AB2=62+42=52
BC2=82+12=65 ∵AC2+AB2=BC2 ∴△ABC 为直角三角形
2 9、设 AC=3x,BC=x,则 9x2+x2=4 x2= 5
ACBC 3xx 3x2 3 2 3 由 CD·AB=AC·BC,得 CD= AB = 2 = 2 = 2 · 5 = 5
cm.
12、如图 6,直线 l 过正方形 ABCD 的顶点 B,点 A、C 到直线 l 的距离分别是 1 和 2,则
正方形的边长是

A
D
C
E
M F

人教版八年级数学下《第十七章勾股定理》单元测试题(含答案)

人教版八年级数学下《第十七章勾股定理》单元测试题(含答案)

人教版八年级数学下册《第十七章勾股定理》单元测试题一.选择题(共10小题,满分40分,每小题4分)1.已知一个直角三角形的两直角边长分别为5和12,则第三边长的平方是()A.169B.119C.13D.1442.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.3.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的边长分别是4,9,1,4,则最大正方形E的面积是()A.18B.114C.194D.3244.如图是一个直角三角形,它的未知边的长x等于()A.13B.C.5D.5.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣6,0),(0,8),以点A为圆心,以AB长为半径画弧,交x轴正半轴于点C,则点C的坐标为()A.(10,0)B.(0,4)C.(4,0)D.(2,0)6.以下列三个数据为三角形的三边,其中能构成直角三角形的是()A.2,3,4B.4,5,6C.5,12,13D.5,6,77.下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,7,98.满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:159.如图,在Rt△ABC中,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=4,BC=2时,则阴影部分的面积为()A.4B.4πC.8πD.810.如图,这是用面积为24的四个全等的直角三角形△ABE,△BCF,△CDG和△DAH拼成的“赵爽弦图”,如果AB=10,那么正方形EFGH的边长为()A.1B.2C.2D.4二.填空题(共4小题,满分20分,每小题5分)11.平面直角坐标系上有点A(﹣3,4),则它到坐标原点的距离为.12.一个直角三角形的两条直角边长分别为3,4,则第三边为.13.如图,每个小正方形边长为1,A、B、C是小正方形的顶点,则AB2=,∠ABC=°.14.已知两线段的长分别是5cm、3cm,则第三条线段长是时,这三条线段构成直角三角形三.解答题(共9小题,满分90分)15.在△ABC中,∠ACB=90°,AC=5,AB=BC+1,求Rt△ABC的面积.16.如图,在△ADC中,∠C=90°,AB是DC边上的中线,∠BAC=30°,若AB=6,求AD的长.17.如图,某人划船横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B25m,结果他在水中实际划了65m,求该河流的宽度.18.如图,在△ABC中,AB=20,AC=15,BC=25,AD⊥BC,垂足为D.求AD,BD的长.19.如图,在Rt△ABC中,∠C=90°,AC=30cm,BC=21cm,动点P从点C出发,沿CA方向运动,动点Q从点B出发,沿BC方向运动,如果点P,Q的运动速度均为1cm/s.那么运动几秒时,它们相距15cm?20.如图,在△ABC中,AD⊥BC,AB=10,BD=8,∠ACD=45°.(1)求线段AD的长;(2)求△ABC的周长.21.在△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C所对的边.(1)若b=2,c=3,求a的值;(2)若a:c=3:5,b=16,求△ABC的面积.22.如图所示,四边形ABCD ,∠A =90°,AB =3m ,BC =12m ,CD =13m ,DA =4m .(1)求证:BD ⊥CB ; (2)求四边形ABCD 的面积;(3)如图2,以A 为坐标原点,以AB 、AD 所在直线为x 轴、y 轴建立直角坐标系,点P 在y 轴上,若S△PBD=S 四边形ABCD ,求P 的坐标.23.如图,一艘轮船以30km /h 的速度沿既定航线由西向东航行,途中接到台风警报,某台风中心正以20km /h 的途度由南向北移动,距台风中心200km 的圆形区域(包括边界)都属台风影响区.当这艘轮船接到台风警报时,它与台风中心的距离BC =500km ,此时台风中心与轮船既定航线的最近距离BA =300km . (1)如果这艘轮船不改变航向,那么它会不会进入台风影响区?(2)如果你认为这艘轮船会进入台风影响区,那么从接到警报开始,经过多长时间它就会进入台风影响区?(3)假设轮船航行速度和航向不变,轮船受到台风影响一共经历了多少小时?人教版八年级数学下册《第十七章勾股定理》单元测试题参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【解答】解:第三边长的平方是52+122=169.故选:A.2.【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB===,故选:B.3.【解答】解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1=42+92,S2=12+42,则S3=S1+S2,∴S3=16+81+1+16=114.故选:B.4.【解答】解:∵x==,故选:B.5.【解答】解:∵点A,B的坐标分别为(﹣6,0),(0,8),∴OA=6,OB=8,在Rt△AOB中,由勾股定理得:AB==10,∴AC=AB=10,∴OC=10﹣6=4,∴点C的坐标为(4,0),故选:C.6.【解答】解:A、22+32≠42,故不能构成直角三角形;B、42+52≠62,故不能构成直角三角形;C、52+122=132,故能构成直角三角形;D、52+62≠72,故不能构成直角三角形.故选:C.7.【解答】解:A、32+42=52,能构成直角三角形,是整数,故错误;B、72+242=252,能构成直角三角形,是整数,故错误;C、82+152=172,构成直角三角形,是正整数,故错误;D、52+72≠92,不能构成直角三角形,故正确;故选:D.8.【解答】解:b2﹣c2=a2则b2=a2+c2△ABC是直角三角形;a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.9.【解答】解:由勾股定理得,AB2=AC2+BC2=20,则阴影部分的面积=×AC×BC+×π×()2+×π×()2﹣×π×()2=×2×4+×π××(AC2+BC2﹣AB2)=4,故选:A.10.【解答】解:∵正方形EFGH的面积=正方形ABCD的面积﹣4S=102﹣4×24=4,△ABE∴正方形EFGH的边长=2,故选:C.二.填空题(共4小题,满分20分,每小题5分)11.【解答】解:∵点A(﹣3,4),∴它到坐标原点的距离==5,故答案为:5.12.【解答】解:由勾股定理得:第三边为:=5,故答案为:5.13.【解答】解:连接AC.根据勾股定理可以得到:AB2=12+32=10,AC2=BC2=12+22=5,∵5+5=10,即AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠ABC=45°.故答案为:10,45.14.【解答】解:当第三条线段为直角边时,5cm为斜边,根据勾股定理得,第三条线段长为=4cm;当第三条线段为斜边时,根据勾股定理得,第三条线段长为=cm.故答案为4或cm.三.解答题(共9小题,满分90分)15.【解答】解:如图所示:设AB=x,则BC=x﹣1,故在Rt△ACB中,AB2=AC2+BC2,故x2=52+(x﹣1)2,解得;x=13,即AB=13.∴BC=12,∴S=•AC•BC=×5×12=30.△ABC16.【解答】解:在Rt△ABC中,∠C=90°,∠BAC=30°,AB=6,∴BC=AB=3,在Rt△ABC中,AC==3,∵AB是DC边上的中线,∴DB=BC=3,所以CD=6,在Rt△ACD中,AD===3.答:AD的长是317.【解答】解:根据图中数据,由勾股定理可得:AB===60(米).∴该河流的宽度为60米.18.【解答】解:∵AB2+AC2=202+152=625=252=BC2,∴△ABC是直角三角形,∵S=×AB×AC=×BC×AD,△ACB∴15×20=25×AD,∴AD=12,由勾股定理得:BD==16.19.【解答】解:设运动x秒时,它们相距15cm,则CP=xcm,CQ=(21﹣x)cm,依题意有x2+(21﹣x)2=152,解得x1=9,x2=12.故运动9秒或12秒时,它们相距15cm.20.【解答】解:(1)∵AD⊥BC,∴∠ADB=90°.在Rt△ABD中,∠ADB=90°,AB=10,BD=8,∴AD==6.(2)∵AD⊥BC,∠ACD=45°,∴△ACD为等腰直角三角形,又∵AD=6,∴CD=6,AC=6,=AB+BD+CD+AC=24+6.∴C△ABC21.【解答】解:(1)∵△ABC中,∠C=90°,b=2,c=3,∴a==;(2)∵a:c=3:5,∴设a=3x,c=5x,∵b=16,∴9x2+162=25x2,解得:x=4,∴a=12,∴△ABC的面积=×12×16=96.22.【解答】(1)证明:连接BD.∵AD=4m,AB=3m,∠BAD=90°,∴BD=5m.又∵BC =12m ,CD =13m , ∴BD 2+BC 2=CD 2. ∴BD ⊥CB ;(2)四边形ABCD 的面积=△ABD 的面积+△BCD 的面积=×3×4+×12×5 =6+30 =36(m 2).故这块土地的面积是36m 2;(3)∵S △PBD =S 四边形ABCD ,∴•PD •AB =×36,∴•PD ×3=9, ∴PD =6,∵D (0,4),点P 在y 轴上, ∴P 的坐标为(0,﹣2)或(0,10).23.【解答】解:(1)根据题意得:轮船不改变航向,轮船会进入台风影响区; (2)如图所示:设x 小时后,就进入台风影响区,根据题意得出: CE =30x 千米,BB ′=20x 千米, ∵BC =500km ,AB =300km ,∴AC ===400(km ),∴AE =400﹣30x ,AB ′=300﹣20x , ∴AE 2+AB ′2=EB ′2,即(400﹣30x )2+(300﹣20x )2=2002,解得:x 1=≈8.3,x 2=≈19.3,∴轮船经8.3小时就进入台风影响区;(3)由(2)知,从8.3小时到19.3小时轮船受到台风影响, ∴轮船受台风影响的时间=19.3﹣8.3=11(小时),答:轮船受到台风影响一共经历了11小时.。

人教版八年级数学下册第十七章《勾股定理》单元同步检测试题(含答案)

人教版八年级数学下册第十七章《勾股定理》单元同步检测试题(含答案)

第十七章《勾股定理》单元检测题题号一二三总分21 22 23 24 25 26 27 28分数一、选择题:(每题3分,共30分)1.下列各组数中,是勾股数的是()A.9,40,41 B.2,2,2 C.5,4,41D.3,2,52.一个直角三角形,两直角边长分别为3和4,下列说法正确的是()A.斜边长为5 B.三角形的周长为25C.斜边长为25 D.三角形的面积为203.在三边分别为下列长度的三角形中,不是直角三角形的是()A.6,8,10 B.1,2,3C.2,3,5D.4,5,74.如图,在数轴上点A,B所表示的数分别为-1,1,CB⊥AB,BC=1,以点A为圆心,AC长为半径画弧,交数轴于点D(点D在点B的右侧),则点D所表示的数是()A.5B.51-C.2D.25-5.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.4 B.3 C.2 D.56. 如图,在正方形网格中,每个正方形的边长为1,则在△ABC 中,边长为无理数的边数是( )A .0 B.1 C .2 D.37.如图,数轴上的点A 表示的数是1,OB ⊥OA ,垂足为O ,且BO=1,以点A 为圆心,AB 为半径画弧交数轴于点C ,则C 点表示的数为( )A .﹣0.4B .﹣2C .1﹣2D .2﹣18.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON =30°.公路PQ 上A 处距O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以20米/秒的速度行驶时,A 处受噪音影响的时间为( )A .16秒B .18秒C .20秒D .22秒9.三角形的三边长为22()2a b c ab +=+,则这个三角形是( ) A .等边三角形B .钝角三角形C .直角三角形D .锐角三角形10.如图,在△ABC 中,∠C =90°,AD 是△ABC 的一条角平分线.若AC =6,AB =10,则点D 到AB 边的距离为( )A .2B .2.5C .3D .4二、填空题:(每题3分,共30分)11.如图,O 为数轴原点,数轴上点A 表示的数是3,AB ⊥OA ,线段AB 长为2,以O 为圆心,OB 为半径画弧交数轴于点C .则数轴上表示点C 的数为_________.12.如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.13.已知△ABC 的三边长分别为1,3,10,则△ABC 的面积为_____. 14.如图,已知Rt ABC 中,90ABC ∠=︒,5AB =,12BC =,点D 在AC 上,ABD △是等腰三角形且AB BD ≠,则AD =__________.15.所谓的勾股数就是使等式222a b c +=成立的任何三个正整数.我国清代数学家罗士林钻研出一种求勾股数的方法,对于任意正整数m ,n(m >n),取a =22m n -,b =2mn ,c =22m n +,则a ,b ,c 就是一组勾股数.请你结合这种方法,写出85(三个数中最大),84和________组成一组勾股数.16.如图,一架梯子AB 长2.5m ,顶端A 靠墙AC 上,这时梯子下端B 与墙角C 距离为1.5m ,梯子滑动后停在DE 的位置上,测得BD 长为0.5m ,则梯子顶端A 下落了_______m.17.有一个棱长为1m且封闭的正方形体纸箱,一只蚂蚁沿纸箱表面从顶点A爬到顶点B,那么这只蚂蚁爬行的最短路程是 m.18.如图,已知矩形ABCD中,AB=4,AD=3,P是以CD为直径半圆上的一个动点,连接BP,则BP最大值是.19.如图,正方形的边长均为1,可以计算出,图(1)中正方形的对角线长为2;图(2)中长方形的对角线长为5;图(3)中长方形对角线的长为10,那么第n个长方形的对角线的长为_____.20.有一块田地的形状和尺寸如图,则它的面积为_________.三、解答题:(共60分)21.(10分)A,B两个居民楼在公路同侧,它们离公路的距离分别为AE=200米,BF =70米,它们的水平距离EF =390米.现欲在公路旁建一个超市P ,使超市到两居民楼的距离相等,则超市应建何处?为什么?22.(10分)已知某实验中学有一块四边形的空地ABCD ,如图所示,学校计划在空地上种植草坪,经测量∠A=90°,AC=3m ,BD=12m ,CB=13m ,DA=4m ,若每平方米草坪需要300元,间学校需要投入多少资金买草坪?23.(10分)如图,ABC 中,10,8,6AB cm AC cm BC cm ===,若点P 从点A 出发,以每秒2cm 的速度沿折线A C B A ---运动一周,设运动时间为t 秒()0t >.问:当t 为何值时,PA PB =?24. (10分)如图,公路MN 和公路PQ 在点P 处交汇,且∠QPN=30°,点A 处有一所中学,AP=160m.假设拖拉机行驶时,周围100m 以内会受到噪音的影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h ,那么学校受影响的时间为多少秒?25. (10分)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.26. (10分)如图,等边△ABC,其边长为1,D是BC中点,点E,F分别位于AB,AC边上,且∠EDF=120°.(1)直接写出DE与DF的数量关系;(2)若BE,DE,CF能围成一个三角形,求出这个三角形最大内角的度数;(要求:写出思路,画出图形,直接给出结果即可)(3)思考:AE+AF的长是否为定值?如果是,请求出该值,如果不是,请说明理由.参考答案一、选择题:1.A2.A3.D4.B5.A6.D7.C8.A9.C10.C二、填空题:11.13 12.213.3 214.5或13 215. 答案:1316.答案为:0.517.18.答案为:+2.1921n.20.96.三、解答题21.超市应建在距离E处150米的位置. 22.学校需要投入10800元买草坪23.t=258或19224.解:作AB⊥MN,垂足为B。

人教版八年级数学下册第17章《勾股定理》单元测试卷 (word版,含解析)

人教版八年级数学下册第17章《勾股定理》单元测试卷  (word版,含解析)

人教版八年级下册第17章《勾股定理》单元测试卷满分120分一.选择题(共10小题,满分30分,每小题3分)1.下列各组数中,是勾股数的一组是( )A .6,7,8B .5,12,13C .0.6,0.8,1D .2,4,52.下列线段a ,b ,c 能组成直角三角形的是( )A .2a =,3b =,4c =B .4a =,5b =,6c =C .1a =,2b =,3c = D .7a =,3b =,6c =3.如图,在四边形ABCD 中,90DAB BCD ∠=∠=︒,分别以四边形的四条边为边向外作四个正方形,若14135S S +=,349S =,则2(S = )A .184B .86C .119D .814.如图,在22⨯的网格中,有一个格点ABC ∆,若每个小正方形的边长为1,则ABC ∆的边AB 上的高为( )A .22B .55C .510D .15.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要( )A .4米B .5米C .6米D .7米6.若直角三角形的两边长分别是5和12,则它的斜边长是( )A .13B .13或119C .119D .12或137.在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面( )尺.A .4B .3.6C .4.5D .4.558.如图,一轮船以12海里/时的速度从港口A 出发向东北方向航行,另一轮船以5海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后两船相距( )A .13海里B .16海里C .20海里D .26海里 9.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条长16cm 的直吸管露在罐外部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A .45aB .34aC .23aD .12a10.如图,在DEF ∆中,90D ∠=︒,:1:3DG GE =,GE GF =,Q 是EF 上一动点,过点Q 作QM DE ⊥于M ,QN GF ⊥于N ,43EF =,则QM QN +的长是( )A .43B .32C .4D .23二.填空题(共6小题,满分24分,每小题4分)11.在Rt ABC ∆中,斜边2AB =,则222AB BC AC ++= .12.直角坐标平面内的两点(4,5)P -、(2,3)Q 的距离为 .13.周长为24,斜边长为10的直角三角形面积为 .14.一架云梯长2.5米,如图斜靠在一面墙上,梯子的底端离墙0.7米,如果梯子的顶端下滑了0.4米,那么梯子的底端在水平方向滑动了 米.15.将一根长为30cm 的细木棒放入长、宽、高分别为8cm 、6cm 和24cm 的长方体有盖盒子中,在M 处是盒子的开口处,设细木棒露在杯子外面的长度是为h cm ,则h 的取值范围是 .16.如图,1OP =,过点P 作1PP OP ⊥,且11PP =,得12OP;再过点1P 作121PP OP ⊥且121PP =,得23OP =;又过点2P 作232P P OP ⊥且231P P =,得32OP =⋯,依此法继续作下去,得2022OP = .三.解答题(共9小题,满分66分)17.(6分)在ABC ∆中,90C ∠=︒,AB c =,BC a =,AC b =.(1)6a =,8b =,求c ;(2)8a =,17c =,求b .18.(6分)如图所示的一块地,90ADC ∠=︒,16AD m =,12CD m =,52AB m =,48BC m =,求这块地的面积.19.(6分)小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m ,当他把绳子的下端拉开5m 后,发现下端刚好接触地面,求旗杆的高.20.(6分)如图,在四边形ABCD 中,60A ∠=︒,90B D ∠=∠=︒,3AD =,2BC =.求AB 的长.21.(8分)如图,在ABC ∆中,点D 是BC 边上一点,连接AD .若10AB =,17AC =,6BD =,8AD =.(1)求ADB ∠的度数;(2)求BC 的长.22.(8分)《城市交通管理条例》规定:小汽车在城市街路上的行驶速度不得超过70千米/时.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到车速检测仪A 正前方30米的C 处,过了2秒后,小汽车行驶至B 处,若小汽车与观测点间的距离AB 为50米,请通过计算说明:这辆小汽车是否超速?23.(8分)我们新定义一种三角形:两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.例如:某三角形三边长分别是2,410因为22224202(10)+==⨯,所以这个三角形是奇异三角形.(1)若ABC ∆三边长分别是2,22和6,判断此三角形是否奇异三角形,说明理由;(2)若Rt ABC ∆是奇异三角形,直角边为a 、()b a b <,斜边为c ,求::a b c 的值.(比值从小到大排列)24.(9分)某游乐场部分平面图如图所示,点C 、E 、A 在同一直线上,点D 、E 、B 在同一直线上,DB AB ⊥.测得A 处与E 处的距离为80m ,C 处与E 处的距离为40m ,90C ∠=︒,30BAE ∠=︒.(1)请求出旋转木马E 处到出口B 处的距离;(2)请求出海洋球D 处到出口B 处的距离;(3)判断入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离是否相等?若相等,请证明;若不相等,请说明理由.25.(9分)已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动且速度为每秒1cm ,点Q 从点B 开始沿B C A→→方向运动,在BC边上的运动速度是每秒2cm,在AC边上的运动速度是每秒1.5cm,它们同时出发,当其中一个点到达终点时,另一个点也随之停止,设运动时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,t为何值时,ACQ∆的面积是ABC∆面积的13;(3)当点Q在边CA上运动时,t为何值时,PQ将ABC∆周长分为23:25两部分.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A 、222678+≠,6∴,7,8不是一组勾股数,本选项不符合题意;B 、22251213+=,5∴,12,13是一组勾股数,本选项符合题意;C 、0.6,0.8,1不都是正整数,0.6∴,0.8,1不是一组勾股数,本选项不符合题意; D 、222245+≠,2∴,4,5不是一组勾股数,本选项不符合题意;故选:B .2.【解答】解:A 、222234+≠,不能组成直角三角形,不符合题意; B 、222456+≠,不能组成直角三角形,不符合题意;C 、2221+=,能组成直角三角形,符合题意;D 、222+≠,不能组成直角三角形,不符合题意; 故选:C .3.【解答】解:由题意可知:21S AB =,22S BC =,23S CD =,24S AD =,连接BD ,在直角ABD ∆和BCD ∆中,22222BD AD AB CD BC =+=+,即1432S S S S +=+,因此21354986S =-=,故选:B .4.【解答】解:如图,过点C 作CD AB ⊥于D ,在直角ABE ∆中,90AEB ∠=︒,1AE =,2BE =,则由勾股定理知,AB ==由1122AE BC AB CD ⋅=⋅知,AE BCCD AB ⋅===.故选:B .5.【解答】解:在Rt ABC ∆中,224AC AB BC =-=米, 故可得地毯长度7AC BC =+=米,故选:D .6.【解答】解:当12是斜边时,它的斜边长是12; 当12是直角边时,它的斜边长2212513=+=; 故它的斜边长是:12或13.故选:D .7.【解答】解:如图,由题意得:90ACB ∠=︒,3BC =尺,10AC AB +=尺, 设折断处离地面x 尺,则(10)AB x =-尺,在Rt ABC ∆中,由勾股定理得:2223(10)x x +=-, 解得: 4.55x =,即折断处离地面4.55尺.故选:D .8.【解答】解:两船行驶的方向是东北方向和东南方向, 90BAC ∴∠=︒,两小时后,两艘船分别行驶了12224⨯=(海里),5210⨯=(海里), 22241026+=(海里).答:离开港口2小时后两船相距26海里,故选:D .9.【解答】解:如图,当吸管底部在地面圆心时吸管在罐内部分b 最短, 此时b 就是圆柱形的高,即12b cm =;16124()a cm ∴=-=,当吸管底部在饮料罐的壁底时吸管在罐内部分b 最长, 2212513()b cm =+=,∴此时3a =,所以34a .故选:B .10.【解答】解:连接QG .:1:3DG GE =,∴可以假设DG k =,3EG k =,GF EG =,90D ∠=︒,3FG k ∴=,2222DF FG DG k =-=, 43EF =,222EF DE DF =+,2248168k k ∴=+,2k ∴或2,4DF ∴=,111222EFG S EG DF EG QM GF QN ∆=⋅⋅=⋅⋅+⋅⋅, 4QM QN DF ∴+==,故选:C .二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:222AB BC AC =+,2AB =,2228AB BC AC ∴++=.故答案为:8.12.【解答】解:根据题意得PQ =故答案为:.13.【解答】解:设直角三角形两直角边长为a ,b ,该直角三角形的周长为24,其斜边长为10,24()10a b ∴-+=,即14a b +=,由勾股定理得:22210100a b +==,22()14a b +=,222196a b ab ∴++=,即1002196ab +=,48ab ∴=,∴直角三角形的面积1242ab ==, 故答案为:24.14.【解答】解:设子的底端在水平方向滑动了x 米,根据勾股定理得:2.4=; 又梯子下滑了2米,即梯子距离地面的高度为(2.40.4)2-=,根据勾股定理:2222.52(0.7)x=++,解得:0.8x=或 2.2-(舍去).即梯子的底端在水平方向滑动了0.8米,故答案为:0.8.15.【解答】解:由题意知:盒子底面对角长为226810()cm+=,盒子的对角线长:22102426()cm+=,细木棒长30cm,故细木棒露在盒外面的最短长度是:30264()cm-=.所以细木棒露在外面的最短长度是4厘米.当细木棒竖直放置时,细木棒露在盒外面的最长长度是30246()cm-=, 所以细木棒露在外面的最长长度是6厘米.所以h的取值范围是46h,故答案为:46h.16.【解答】解:1OP=,12OP=,23OP=,34OP=,20222023OP∴=.故答案为:2023.三.解答题(共9小题,满分66分)17.【解答】解:(1)在Rt ABC∆中,90C∠=︒,6BC a==,8AC b==, 22226810c AB a b∴==+=+=;(2)在Rt ABC∆中,90C∠=︒,8BC a==,17AB c==,222217815b ACc a∴==-=-=.18.【解答】解:连接AC,在Rt ACD∆中,12CD m=,16AD m=,由222AD CD AC +=,解得20AC m =,在ABC ∆中,52AB m =,20AC m =,222220482704AC CB +=+=,22522704AB ==,222AC CB AB ∴+=,ABC ∴∆为直角三角形,要求这块地的面积,求ABC ∆和ACD ∆的面积之差即可,ABC ACD S S S ∆∆=-1122AC BC CD AD =⨯-⨯ 112048121622=⨯⨯-⨯⨯ 48096=-2384m =,答:这块地的面积为2384m .19.【解答】解:设旗杆的高AB 为xm ,则绳子AC 的长为(1)x m + 在Rt ABC ∆中,222AB BC AC +=2225(1)x x ∴+=+解得12x =12AB ∴=∴旗杆的高12m .20.【解答】解:延长DC 交AB 的延长线于点E ,90B D ∠=∠=︒,60A ∠=︒,3AD =,2BC =,30E ∴∠=︒,26AE AD ∴==,24CE BC ==,BE ∴===6AB AE BE ∴=-=-21.【解答】解:(1)2222226810BD AD AB +=+==,ABD ∴∆是直角三角形,90ADB ∴∠=︒;(2)在Rt ACD ∆中,2215CD AC AD =-=,61521BC BD CD ∴=+=+=,答:BC 的长是21.22.【解答】解:90ACB ∠=︒∴由勾股定理可得:2222503040BC AB AC =--=,40米0.04=千米,2秒11800=小时. 10.0472701800÷=>. 所以超速了.23.【解答】解:(1)2222(22)122(6)+==⨯,ABC ∴∆是奇异三角形,(2)Rt ABC ∆中,90C ∠=︒,222a b c ∴+=,c b a >>,2222c b a ∴>+,2222a b c <+,Rt ABC ∆是奇异三角形,2222b a c ∴=+,22222b a a b ∴=++,222b a ∴=,2b a ∴=,222a b c +=,223c a ∴=,c ∴,::a b c ∴=24.【解答】解:(1)在Rt ABE ∆中,30BAE ∠=︒,118040()22BE AE m ∴==⨯=, ∴旋转木马E 处到出口B 处的距离为40m ;(2)30BAE ∠=︒,CED AEB ∠=∠,90C ABE ∠=∠=︒30D BAE ∴∠=∠=︒,280()DE CE m ∴==,8040120()DE BE m ∴+=+=,∴海洋球D 处到出口B 处的距离为:120m ;(3)在Rt CDE ∆与Rt ABE ∆中,由勾股定理得:)AB m ==,)CD m ==,AB CD ∴=,∴入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离相等.25.【解答】解:(1)当2t s =时,点Q 在边BC 上运动,则2AP cm =,24()BQ t cm ==,8AB cm =,826()BP AB AP cm ∴=-=-=,在Rt BPQ ∆中,由勾股定理可得)PQ cm =,PQ ∴的长为;(2)12ACQ S CQ AB ∆=⋅,12ABC S BC AB ∆=⋅,点Q 在边BC 上运动时,ACQ ∆的面积是ABC ∆面积的13,1162()33CQ BC cm ∴==⨯=,624()BQ BC CQ cm ∴=-=-=,422t ∴==,∴当点Q 在边BC 上运动时,t 为2时,ACQ ∆的面积是ABC ∆面积的13;(3)在Rt ABC ∆中,由勾股定理得:10()AC cm =, 当点P 达到点B 时,881t ==,当点Q 达到点A 时,610292 1.53t =+=,当其中一个点到达终点时,另一个点也随之停止, 08t ∴,AP t =cm ,(8)BP t cm ∴=-,点Q 在CA 上运动时,61.5()(1.5 4.5)()2CQ t t cm =⨯-=-,10(1.5 4.5)( 1.514.5)()AQ t t cm ∴=--=-+,86 1.5 4.5(0.59.5)()BP BC CQ t t t cm ∴++=-++-=+,( 1.514.5)(0.514.5)()AP AQ t t t cm +=+-+=-+, 分两种情况: ①2325BP BC CQAP AQ ++=+, 即0.59.5230.514.525t t +=-+,解得:4t =,经检验,4t =是原方程的解,4t ∴=; ②2523BP BC CQAP AQ ++=+, 即0.59.5250.514.523t t +=-+,解得:6t =,经检验,6t =是原方程的解,6t ∴=;综上所述,当点Q 在边CA 上运动时,t 为4或6时,PQ 将ABC ∆周长分为23:25两部分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
B
C
图2
第十七章 勾股定理测试题
一、选择题(本大题共l0小题,每小题3分.共30分)
1. 若直角三角形的两条直角边长分别为3cm 、4cm ,则斜边上的高为 ( ) A
25cm B 125cm C 5 cm D 5
12cm 2. 在△ABC 中,已知AB=12cm ,AC=9cm ,BC=15cm ,则△ABC 的面积等于( ) A 108cm 2
B 90cm
2
C 180cm
2
D 54cm 2
3. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( ) A 钝角三角形 B 锐角三角形 C 直角三角形 D 等腰三角形
4. 在直角坐标系中,点P (-2,3)到原点的距离是 ( )A 5 B 13 C 11 D 2
5. 如图2,分别以直角△ABC 的三边AB ,BC ,CA 为直径向外作半圆.设直线AB 左边阴影部分的面积为S 1,右边阴影部分的面积和为S 2,则( ) A S 1=S 2 B S 1<S 2
C S 1>S 2
D 无法确定
6. 如图3,四边形ABCD 是正方形,
AE 垂直于BE ,且AE =3,BE =4,则阴影部分的面积是:( ) A 16 B 18 C 19 D 21
7、已知a 、b 、c 是三角形的三边长,如果满足2(6)10
0a c --=,则三角形的形状是( )
A :底与边不相等的等腰三角形
B :等边三角形
C :钝角三角形
D :直角三角形
8. 在△ABC 中,若AB =15,AC =13,AD 为△ABC 边BC 的高,且AD =12,则△ABC 的周长是( ) A .42
B . 32
C .42或32
D .37或33
9. 已知一直角三角形的木版,三边的平方和为1800cm 2
,则斜边长为( )A 80cm B 30cm C 90cm D 120cm 10.直角三角形三边长为x ,3,4,则x 的值为( )A .5 B C .5D .二、填空题(本大题共5小题,每小题3分,共15分)
11.在正方形ABCD 中,对角线为22,则正方形边长为 。

12.三角形中两边的平方差恰好等于第三边的平方,则此三角形是 三角形。

13.飞机在空中水平飞行,某一时刻刚好飞到小刚头顶正上方4000米处,过了20秒,飞机距离小刚5000米,则飞机每小时飞行 千米。

14、如图,90,4,3,12C ABD AC BC BD ︒
∠=∠====,则AD= ;
C
B
D
E
A
图3
15题
15. 已知一个直角三角形的两边长分别是3和4,则第三边长为 。

15. 如图,数轴上有两个Rt △ABC 、Rt △ABC ,OA 、OC 是斜边,且OB=1,AB=1,CD=1,OD=2,分别以O 为圆心,OA 、OC 为半径画弧交x 轴于E 、F ,则E 、F 分别对应的数是 。

三、解答题
16.(7分)如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?
17.(8分)如图,小明在广场上先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米.求小明到达的终止点与原出发点的距离。

18.(8分)一游泳池长48m ,小方和小朱进行游泳比赛,从同一处出发,小方平均速度为3m/秒,小朱为3.1m/秒.但小朱一心想快,不看方向沿斜线游,而小方直游,俩人到达终点的位置相距14m.按各人的平均速度计算,谁先到达终点,为什么?
19.(8分)如图,铁路上A 、B 两点相距25km, C 、D 为两村庄,若DA=10km,CB=15km ,DA ⊥AB 于A ,CB ⊥AB 于B ,现要在AB 上建一个中转站E ,使得C 、D 两村到E 站的距离相等.
(1)求E 应建在距A 多远处?(2)DE 和EC 垂直吗?试说明理由
21.(8分)如图,在两面墙之间有一个底端在A 点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D 点.已知∠BAC=60°,∠DAE=45°,点D 到地面的垂直距离DE=23 m.求点B 到地面的垂直距离BC 。

小河
10
40
20
40
出发点 70
终止点。

相关文档
最新文档