初中数学具体知识点框架图
初中数学知识框架(北师大版)
第六章
反比例函数
反比例函数图像与性质
1、反比例函数的定义
2、反比例函数的图像与对称性
3、反比例函数的性质
4、系数k的几何意义
5、反比例函数图像上点的坐标特征
6、待定系数法求反比例函数解析式
7、反比例函数与一次函数交点问题
反比例函数的应用
反比例函数的应用
从统计图分析数据的几种趋势
3、扇形、条形、折线统计图及其选择
利用频率估计概率
等可能事件的概率
1、概率的意义、公式
2、几何概率
3、列表法与树状图法
八年级上册
第一章
勾股定理
探索勾股定理
勾股定理与证明
勾股定理逆定理
1、勾股定理逆定理
2、勾股数
勾股定理的应用
1、勾股定理的应用
2、平面展开--最短路劲问题
第二章
实数
无理数
无理数
平方根
1、平方根
2、算术平方根
3、非负数的性质
2、代数式
3、列代数式
4、代数式求值
整式
1、单项式与多项式
整式的加减
1、同类项与合并同类项
2、去口号与添括号
3、整式的加减与化简求值
探索与表达规律
数字的变化规律
第四章
基本平面图形
线段、射线、直线
1、线段、射线、直线
2、直线的性质:两点确定一条直线
比较线段的长短
1、线段的性质:两点之间线段最短
2、两点间的距离
2、二次函数的三种形式
二次函数的应用
1、二次函数的实际应用
二次函数与一元二次方程
1、抛物线与x轴的交点
2、图像法求一元二次方程的近似根
初中数学知识点及结构图(新人教版)
一.知识框架二.知识概念体验数学发展地一个重要原因是生活实际地需要.激发学生学习数学地,教师培养学生地观察,归纳与概括地能力,使学生建立正确地数感和解决实际问题地能力。
教师在讲授本章内容时,应该多创设情境,充分体现学生学习地主体性地位。
第二章整式地加减 一.知识框架 二.知识概念1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母地一类代数式叫单项式.2.单项式地系数与次数:单项式中不为零地数字因数,叫单项式地数字系数,称单项式地系数。
系数不为零时,单项式中所有字母指数地和,叫单项式地次数.3.多项式:几个单项式地和叫多项式.4.多项式地项数与次数:多项式中所含单项式地个数就是多项式地项数,每个单项式叫多项式地项。
多项式里,次数最高项地次数叫多项式地次数。
通过本章学习,应使学生达到以下学习目标:1. 理解并掌握单项式,多项式,整式等概念,弄清它们之间地区别与联系。
2. 理解同类项概念,掌握合并同类项地方式,掌握去括号时符号地变化规律,能正确地进行同类项地合并和去括号。
在准确判断,正确合并同类项地基础上,进行整式地加减运算。
3. 理解整式中地字母表示数,整式地加减运算建立在数地运算基础上。
理解合并同类项,去括号地依据是分配律。
理解数地运算律和运算性质在整式地加减运算中仍然成立。
4.能够思路实际问题中地数量关系,并用还有字母地式子表示出来。
在本章学习中,教师可以通过让学生小组讨论,合作学习等方式,经历概念地形成过程,初步培养学生观察,思路,抽象,概括等思维能力和应用意识。
第三章一圆一次方程七年级数学(下)知识点人教版七年级数学下册主要包括相交线与平行线,实数,平面直角坐标系,二圆一次方程组,不等式与不等式组,数据地收集,整理与表述六章内容。
第五章相交线与平行线一,知识框架二,知识概念1.邻补角:两款直线相交所构成地四个角中,有公共顶点且有一款公共边地两个角是邻补角。
初中知识框架
初中知识框架一、语文1. 语言文字表达能力•词语运用:词义辨析、词语搭配、固定搭配等;•句子结构:主谓宾结构、主谓表结构、并列句、复合句等;•篇章结构:开头、承接、过渡、结尾等。
2. 阅读理解能力•文章类型:记叙文、说明文、议论文等;•文章结构:文章段落的逻辑关系,中心思想的把握等;•阅读策略:快速浏览,精读细解,归纳总结等。
3. 写作能力•议论文写作:提出观点,论证观点,总结观点;•记叙文写作:描写人物,叙述事件,抒发情感;•说明文写作:介绍事物特点,阐述原理和方法。
二、数学1. 数与代数•整数运算:加减乘除及其应用;•分数与小数运算:加减乘除及其应用;•平方根与立方根:计算及简单应用。
2. 几何与图形•直线与角:直线的性质,角的性质及计算;•三角形与四边形:分类,性质及计算;•圆与圆周:圆的性质及计算。
3. 数据与概率•数据统计:数据收集、整理、分析和图表表示;•概率初步:可能性、事件发生次数的比较。
三、英语1. 听力•听力材料:听取日常对话、短文等;•听力技巧:听懂关键信息,推测上下文意思。
2. 口语•日常交流:问候、介绍自己、询问情况等;•简单对话:购物、订餐、问路等。
3. 阅读•阅读材料:阅读短文、文章等;•阅读技巧:理解主旨,推测词义和句意。
4. 写作•句型和表达:使用常见句型和表达方式;•写作题材:写人物、事件或观点。
四、科学1. 物理•力学基础知识:运动学,牛顿定律等;•声光电知识:声音传播,光的反射与折射等。
2. 化学•物质与反应:物质性质,化学反应等;•常见物质:金属、非金属及其氧化反应。
3. 生物•细胞结构与功能:细胞的组成,细胞器的功能等;•生态系统:生物之间的关系,环境保护等。
五、历史1. 古代史•夏商周时期:夏朝的建立、商朝的兴衰、周朝的分封制度;•秦汉时期:秦始皇统一六国,汉朝的政治制度和文化发展。
2. 近代史•清朝末年:鸦片战争,太平天国运动;•辛亥革命与新文化运动。
初中数学知识框架图
初中数学知识框架图,知识点归纳大全,word文档方便打印,值得收藏七年级数学(上)知识点第一章有理数一、知识框架二.知识概念1、有理数(1)凡能写成以下形式的数,如:q/p(p,q为整数且P≠0)都是有理数。
正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类:2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0,a+b=0 ,a、b互为相反数。
4、绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为或者:绝对值的问题经常讨论。
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么它的倒数是1/a;若ab=1,a、b互为倒数;若ab=-1,a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即a/0没有意义。
教师资格证初中数学专业知识与能力知识点
教师资格证初中数学专业知识与能力知识点一、初中数学课程概述1、初中数学课程性质:初中数学课程是一门重要的基础课程,旨在培养学生的数学素养和解决问题的能力。
它强调数学基础知识、基本技能和数学思想方法的掌握,注重培养学生的创新精神和实践能力。
2、初中数学课程目标:初中数学课程的目标是使学生通过学习数学,掌握基础知识和基本技能,培养数学思维能力和解决问题的能力,同时提高学生的数学素养和科学素养。
3、初中数学课程内容:初中数学课程内容包括数与代数、空间与图形、统计与概率等几个部分,每个部分都有具体的教学内容和要求。
4、初中数学课程实施建议:在实施初中数学课程时,建议教师注重学生主体性,引导学生主动探究和学习,学生的情感和态度,激发学生学习数学的兴趣和积极性。
二、初中数学教材教法1、初中数学教材分析:初中数学教材主要包括教科书、练习册、教学参考书等,其中教科书是核心教材。
教材中每个章节都有具体的教学内容、教学重点和难点,需要教师进行深入分析和理解。
2、初中数学教学过程设计:教学设计是教学的重要环节,需要教师根据教学内容和学生实际情况进行合理的设计。
教学设计中应注重学生的主体性,引导学生积极参与课堂活动,提高教学效果。
3、初中数学教学策略选择:教学策略是实现教学目标的重要手段,需要根据教学内容和学生实际情况进行选择。
常用的教学策略包括讲解、演示、探究、合作学习等。
4、初中数学教学评价设计:教学评价是检查教学效果的重要手段,需要教师根据教学目标和评价标准进行设计。
教学评价应注重全面性、客观性和激励性,以促进学生的学习进步和发展。
三、初中数学专业知识1、初中数学基础知识:初中数学基础知识包括数与代数、空间与图形、统计与概率等方面的知识,需要教师熟练掌握并能够灵活运用。
2、初中数学基本技能:初中数学基本技能包括运算技能、作图技能、数据处理技能等方面的技能,需要教师通过一定的训练和实践,使学生逐步掌握并能够熟练运用。
初中九年级数学知识点总结
九年级数学上知识点人教版九年级数学上册主要包括了二次根式、二元一次方程、旋转、圆和概率五个章节的内容;第二十一章二次根式一.知识框架二.知识概念二次根式:一般地,形如√āa≥0的代数式叫做二次根式;当a>0时,√a表示a的算数平方根,其中√0=0对于本章内容,教学中应达到以下几方面要求:1. 理解二次根式的概念,了解被开方数必须是非负数的理由;2. 了解最简二次根式的概念;3. 理解并掌握下列结论:1是非负数;2;3;4. 掌握二次根式的加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;5. 了解代数式的概念,进一步体会代数式在表示数量关系方面的作用;第二十二章一元二次根式一.知识框架二.知识概念一元二次方程:方程两边都是整式,只含有一个未知数一元,并且未知数的最高次数是2二次的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0a≠0.这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0a≠0后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.本章内容主要要求学生在理解一元二次方程的前提下,通过解方程来解决一些实际问题;1运用开平方法解形如x+m2=nn≥0的方程;领会降次──转化的数学思想.2配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为x+p2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.介绍配方法时,首先通过实际问题引出形如的方程;这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解;进而举例说明如何解形如的方程;然后举例说明一元二次方程可以化为形如的方程,引出配方法;最后安排运用配方法解一元二次方程的例题;在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程;对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解;3一元二次方程ax2+bx+c=0a≠0的根由方程的系数a、b、c而定,因此:解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,•将a、b、c代入式子,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性;这个式子叫做一元二次方程的求根公式.利用求根公式解一元二次方程的方法叫公式法.第二十三章旋转一.知识框架二.知识概念1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转;这个定点叫做旋转中心,转动的角度叫做旋转角;图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变;2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角旋转角小于0°,大于360°;3.中心对称图形与中心对称:中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形; 中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称;4.中心对称的性质:关于中心对称的两个图形是全等形;关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;关于中心对称的两个图形,对应线段平行或者在同一直线上且相等;本章内容通过让学生经历观察、操作等过程了解旋转的概念,探索旋转的性质,进一步发展空间观察,培养几何思维和审美意识,在实际问题中体验数学的快乐,激发对学习学习;第二十四章圆一.知识框架二.知识概念1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆;定点称为,定长称为;2.和:圆上任意两点间的部分叫做圆弧,简称弧;大于半圆的弧称为,小于半圆的弧称为;连接圆上任意两点的线段叫做弦;经过圆心的弦叫做;3.和:顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;4.和:过三角形的三个顶点的圆叫做的,其圆心叫做三角形的外心;和三角形三边都相切的圆叫做这个三角形的,其圆心称为内心;5.:在圆上,由两条半径和一段弧围成的图形叫做扇形;6.圆锥侧面展开图是一个扇形;这个扇形的半径称为的;7.圆和点的位置关系:以点P与圆O的为例设P是一点,则PO是点到圆心的距离,P在⊙O外,PO>r;P 在⊙O上,PO=r;P在⊙O内,PO<r; 8.直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点;9.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫;两圆圆心之间的距离叫做;两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r;10.切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线;11.切线的性质:1经过切点垂直于这条半径的直线是圆的切线;2经过切点垂直于切线的直线必经过圆心;3圆的切线垂直于经过切点的半径;12.垂径定理:平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧;13.有关定理:平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆或直径所对的圆周角是直角,90°的圆周角所对的弦是直径.14.圆的计算公式 1.圆的周长C=2πr=πd 2.圆的面积S=πr^2; 3.扇形弧长l=nπr/18015.扇形面积S=πR^2-r^2 5.圆锥侧面积S=πrl第二十五章概率知识框架本章内容要求学生了解事件的可能性,在探究交流中学习体验概率在生活中的乐趣和实用性,学会计算概率;九年级数学下知识点人教版九年级数学下册主要包括了二次函数、相似、锐角三角形、投影与视图四个章节的内容;第二十六章 二次函数一.知识框架 二..知识概念1.二次函数:一般地,自变量x 和y 之间存在如下关系:一般式:y=ax^2+bx+ca≠0,a、b 、c 为常数,则称y 为x 的二次函数;2.二次函数的解析式三种形式; 一般式 y=ax 2+bx+ca ≠0 顶点式 2()y a x h k =-+ 交点式 12()()y a x x x x =-- 3.二次函数图像与性质 2b x a=-对称轴:标:24(,)24b ac b a a-- 顶点坐与y 轴交点坐标0,c4.增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小 5.二次函数图像画法:勾画草图关键点:错误!开口方向 错误!对称轴 错误!顶点 错误!与x 轴交点 错误!与y 轴交点 6.图像平移步骤1配方 2()y a x h k =-+,确定顶点h,k 2对x 轴 左加右减;对y 轴 上加下减 7.二次函数的对称性二次函数是轴对称图形,有这样一个结论:当横坐标为x 1, x 2 其对应的纵坐标相等那么对称轴122x x x += 8.根据图像判断a,b,c 的符号 1a ——开口方向2b ——对称轴与a 左同右异 9.二次函数与一元二次方程的关系抛物线y=ax 2+bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2+bx+c=0a ≠0的根; 抛物线y=ax 2+bx+c,当y=0时,抛物线便转化为一元二次方程ax 2+bx+c=024b ac ->0时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点; 24b ac -=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点;24<0时,一元二次方程有不等的实根,二次函数图像与x轴没有交点b ac二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目;因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.教师在讲解本章内容时应注重培养学生数形结合的思想和独立思考问题的能力;第二十七章相似一.知识框架二.知识概念:1.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形;互为相似形的三角形叫做相似三角形2.相似三角形的判定方法:根据相似图形的特征来判断;对应边成比例,对应角相等错误!.平行于三角形一边的直线或两边的延长线和其他两边相交,所构成的三角形与原三角形相似;错误!.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;错误!如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;错误!如果两个三角形的三组对应边的比相等,那么这两个三角形相似;3.直角三角形相似判定定理:错误!.斜边与一条直角边对应成比例的两直角三角形相似;错误!.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似;4.相似三角形的性质:错误!.相似三角形的一切对应线段对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等的比等于相似比;错误!相似三角形周长的比等于相似比;错误!.相似三角形面积的比等于相似比的平方;本章内容通过对相似三角形的学习,培养学生认识和观察事物的能力和利用所学知识解决实际问题的能力;第二十八章锐角三角函数一.知识框架二.知识概念△ABC中1∠A的对边与斜边的比值是∠A的正弦,记作sinA=错误! 2∠A的邻边与斜边的比值是∠A的余弦,记作cosA=错误! 3∠A的对边与邻边的比值是∠A的正切,记作tanA=错误! 4∠A的邻边与对边的比值是∠A的余切,记作cota=错误!2.特殊值的三角函数:a sinacosatanacota30°45°1160°本章内容使学生了解在直角三角形中,锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的;通过实例认识正弦、余弦、正切、余切四个三角函数的定义;并能应用这些概念解决一些实际问题;第二十九章投影与视图知识框架本章内容要求学生经历实践探索,了解投影、投影面、平行投影和中心投影的概念;。
初中数学知识树
初中数学知识树初中数学是数学学习的一个重要阶段,它为我们奠定了后续学习的基础。
对于初中数学的知识,我们可以将其组织成一个知识树,以便更好地理解和掌握。
知识树的构建可以从最基础的数学知识开始,逐步扩展到更高级的数学概念。
对于初中数学而言,我们可以将其分为以下几个主要部分:基本几何知识:直线、射线、线段、角度、面积、体积等平面几何图形:三角形、四边形、圆形、椭圆等及其性质立体几何图形:长方体、正方体、圆柱体、圆锥体等及其性质空间位置关系:点、线、面的位置关系,平行与垂直等数据收集与整理:图表、统计表、平均数、中位数、众数等概率与随机事件:概率计算、随机事件、排列组合等化归思想:将复杂问题转化为简单问题,将未知问题转化为已知问题数形结合思想:将数量关系和几何图形结合起来解决问题函数思想:用函数关系描述变量之间的关系,预测变化趋势等以上是初中数学知识树的主要内容,这些知识点之间有着密切的和相互渗透。
在学习的过程中,我们需要不断地将这些知识点进行比较、归纳和总结,以便更好地掌握初中数学的知识体系。
在数学学习的世界中,小学阶段是基础知识积累的关键时期。
这个阶段的学习,就像一棵扎根于土壤的大树,不断地吸收营养,壮大自己,等待着日后的茁壮成长。
这棵“小学数学知识树”便是对小学数学学习内容的形象比喻。
这棵大树主要由三个主要的树干组成,分别是“数与运算”、“几何与空间”以及“统计与概率”。
这些树干分别代表了数学学习的三大领域,它们交织在一起,形成了小学数学的知识结构。
“数与运算”是这棵大树的主干,它包括数的认识、数的比较、数的运算和简易方程等部分。
数的认识从整数开始,逐渐引入分数、小数、百分数等,帮助学生建立数的概念。
数的比较教学生如何比较大小,数的运算则教学生如何进行加减乘除等基本运算,以及如何解决生活中的简单数学问题。
简易方程则是初步引入了代数思维,为日后的数学学习打下基础。
“几何与空间”是这棵大树的一个主要分支,它包括图形的认识、测量、图形与变换和图形与位置等部分。
2019年中考数学:数与式结构框架图
2019年中考数学:数与式结构框架图
可以分为五大专项:专项1数与式,专项2方程与不等式,专项3函数,专项4空间与几何,专项5概率与统计,本文整理了专项一数与式的知识结构图以及其各知识点的结构框架。
一:数与式知识结构图
二:下面是初中数学知识点详解文档部分截图。
1.有理数:主要包含有理数的相关概念及有理数运算两部分。
2.整式的加减
整式加减的知识框架:
〖运算法则〗一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
〖方法〗1、去括号法则:
如果括号外的因素是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
(完整版)初中数学知识点框架图
2.工程(效)问题:
3. 增长率问题:(增长率与负增长率)
8.分配与方案问题:
1.线段图示法:
常用方法2.列表法:
3.直观模型法:
解法:(借助数轴)
4.最佳方案问题
5.最后一个分配问题
第三部分《函数与图象》知识点
3平行于x轴,y轴的线段长度的求法(大坐标减小坐标)
4不共线的几点围成的多边形的面积求法(割补法)
完全平方公式:(a b)2a22ab b2
乘法运算
混合运算:
单项式
多项式
多项式;多项式多项式
单项式
括号优先
分式的定义:分母中含可变字母
分式分式有意义的条件:分母不为零
分式值为零的条件:分子为零,分母不为零 分式的性质:a冬卫;a2(通分与约分的根据)
b b m b b m
通分、约分,加、减、乘、除
分式的运算和“+治先化简再求值(整式与分式的通分、符号变化) 简求 整体代换求值
x
1区域性:k>0时,图像在一、三象限;k<0时,图像在二、四象限.
k>0在每个象限内,y随x的增大而减小;
2增减性
反比例函数 性质k<0在每个象限内,y随x的增大而减小.
3恒值性:(图形面积与k值有关)
4 对称性:既是轴对称图形,又是中心对称图形.
求交点:(联立函数表达式解方程组求交点坐标,还可由图像比较函数的大小)
定义与解:
元一次方程 解法步骤:去分母、去括号、移项、合并同类项、系数化为1.
应用:确定类型、找出关键量、数量关系
定义与解:
解法:代入消元法、加减消元法
简单的三元一次方程组:
简单的二元二次方程组:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学整体知识点总结构图第一部分《数与式》知识点2a a π⎧⎪⎧⎪⎨⎪⎩⎪⎪⎧⎨⎨⎪⎩⎪⎪⎧⎪⎪⎨⎪⎪⎩⎩定义:有理数和无理数统称实数.有理数:整数与分数分类无理数:常见类型(开方开不尽的数、与有关的数、无限不循环小数)法则:加、减、乘、除、乘方、开方实数实数运算运算定律:交换律、结合律、分配律数轴(比较大小)、相反数、倒数(负倒数)科学记数法相关概念:有效数字、平方根与算术平方根、立方根、非负式子(,单项式:系数与次数分类多项式整式数与式()01;;(),();();1;mm n m n m n m n m n mn m m m m p m p a a a a a a a a a a ab a b a a b b a +--⎧⎨⎩⎛⎫⋅=÷====== ⎪ ⎪⎝⎭⨯⨯⨯⎛⎫ ⎪÷÷⎝⎭:次数与项数加减法则:加减法、去括号(添括号)法则、合并同类项幂的运算:单项式单项式;单项式多项式;多项式多项式乘法运算:单项式单项式;多项式单项式混合运算:先乘方开方,再乘除,最后算加减;同级运算自左至右顺序计算;括号优先22222()()()2;(a b a b a b a b a ab b a a m a a m b b m b b m ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧+-=-⎪⎨⎪±=±+⎩⎩⎧⎪⎨⎪⎩⨯÷⎛⎫== ⎪⨯÷⎝⎭平方差公式:乘法公式完全平方公式:分式的定义:分母中含可变字母分式分式有意义的条件:分母不为零分式值为零的条件:分子为零,分母不为零分式分式的性质:通分与约分的根据)通分、约分,加、减、乘、除分式的运算先化简再求值(整式与分式化简求值20).0.(0)(0)a a a a a a ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎧⎨⎨⎪⎪⎩⎩⎩⎡≥⎤⎧=⎨⎢⎥-≤⎩⎣⎦⎧⎪⎨⎪⎩的通分、符号变化)整体代换求值≥叫二次根式二次根式的意义即被开方数大于等于二次根式的性质:最简二次根式(分解质因数法化简)二次根式二次根式的相关概念同类二次根式及合并同类二次根式分母有理化(“单项式与多项式”型)加减法:先化最简,再合并同类二次二次根式的运算222222()()2()()()()a b a b a b a ab b a b x a b x ab x a x b ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎧⎪⎪⎪⎨=⎪⎪⎩⎩⎧⎪⎧-=+-⎪⎪⎨±+=±⎨⎩⎪+++=++⎪⎩根式定义:(与整式乘法过程相反,分解要彻底)提取公因式法:(注意系数与相同字母,要提彻底)平方差公式:分解因式公式法方法完全平方公式:十字相乘法:分组分解法:(对称分组与不对称分组)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩第二部分《方程与不等式》知识点2⎧⎪⎨⎪⎩⎧⎪⎪⎨⎪⎪⎩⎧⎨⎩定义与解:一元一次方程解法步骤:去分母、去括号、移项、合并同类项、系数化为1.应用:确定类型、找出关键量、数量关系定义与解:解法:代入消元法、加减消元法二元一次方程(组)简单的三元一次方程组:方程简单的二元二次方程组:定义与判别式(△=b -4ac)一元二次方程解法:直接开平方法、配方法、求根公式法、因式分解法.定义与根(增根):分式方程解法:去分母化为整方程与不等式 1.2.3.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎩⎩⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎨⎪⎪⎪⎩⎧⎪⎨⎪⎩式方程,解整式方程,验根.1.行程问题:2.工程(效)问题:3.增长率问题:(增长率与负增长率)4.数字问题:(数位变化)类型5.图形问题:(周长与面积(等积变换))6.销售问题:(利润与利率)方程的应用7.储蓄问题:(利息、本息和、利息税)8.分配与方案问题:线段图示法:常用方法列表法:直观模型法:1.2.3.4.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎧⎪⎪⎨⎪⎩⎪⎪⎪⎪⎧⎪⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎩⎩⎪⎪⎪⎪⎩一般不等式解法一元一次不等式条件不等式解法解法:(借助数轴)不等式与不等式不等式(组)不等式与方程一元一次不等式组应用不等式与函数最佳方案问题5.最后一个分配问题O x x ⎧⎪⎧⎪⎨⎪⎩⎪⎪⎨⎪⎪⎧⎪⎪⎪⎨⎪⎪⎩⎩①各象限内点的特点:x 轴:纵坐标y=0;②坐标轴上点的特点y 轴:横坐标x=0.③平行于轴,y 轴的线段长度的求法(大坐标减小坐标)直角坐标系④不共线的几点围成的多边形的面积求法(割补法)关于轴对称(x 相同,y 相反)⑤对称点的坐标关于y 轴对称(x 相反,y 相同)关于原点对称(x ,y 都相反)正比例函数:y=kx(k ≠0)(一点求解析式)函数表达式一次函数函数11221212112212.,.1.k k b b k k ⎧⎧⎪⎨⎨⎩⎪⎩==-一、三象限角平分线:y=x 二、四象限角平分线:y=-x 一次函数:y=kx+b(k ≠0)(两点求解析式)增减性:y=kx 与y=kx+b 增减性一样,k >0时,x 增大y 增大;k <0,x 增大y 减小平移性:y=kx+b 可由y=kx 上下平移而来;若y=k x+b 与y=k x+b 平行,则≠垂直性: 若y=k x+b 与y=k x+b 垂直,则求交点:00(0)(00y y x x x k y k x k k k ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩=⎧⎨⎩(联立函数表达式解方程组)正负性:观察图像>与<时,的取值范围(图像在轴上方或下方时,的取值范围)表达式:≠一点求解析式)①区域性:>时,图像在一、三象限;<时,图像在二、四象限.k >0在每个象限内,y 随x 的增大而减小;②增减性反比例函数性质k <0在每个象限内,y 随x 的增大而减小.③恒值性:(图形面积与值有关)④对称性:既是221212,(0),(),(0),()(),(0)y ax bx c a y a x k h a y a x x x x a x x x ⎧⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎩⎧++≠⎪-+≠⎨⎪--≠⎩轴对称图形,又是中心对称图形.求交点:(联立函数表达式解方程组求交点坐标,还可由图像比较函数的大小)①一般式:=其中表达式②顶点式:=其中(k,h)为抛物线顶点坐标;③交点式:=其中,、是函数图象与轴交点的横坐标;性质二次函数2220042444242a a b a a x y x y a x y x y b ac b a a b ac b b ac b a a a ⎧⎨⎩---最小值最大值①开口方向与大小:a >0向上,a <0向下;越大,开口越小;越小,开口越小.②对称性:对称轴直线x=->,在对称轴左侧,增大减小;在对称轴右侧,增大增大;③增减性<,在对称轴左侧,增大增大;在对称轴右侧,增大减小;④顶点坐标:(-,)⑤最值:当a >0时,x=-,y =;a <0时,x=-,y =22.44c a x y a c b b ac a b a b c ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩-++-+示意图:画示意图五要素(开口方向、顶点、对称轴、与、交点坐标)与:开口方向确定a 的符号,抛物线与y 轴交点纵坐标确定c 的值;的符号:b 的符号由a 与对称轴位置有关:左同右异.符号判断Δ=:Δ>0与x 轴有两个交点;Δ=0与x 轴有两个交点;Δ<0与x 轴无交点:当x=1时,y=a+b+c 的值.:当x=-1时,y=a-b+c 的值..⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎪⎪⎪⎨⎪⎪⎪①求函数表达式:②求交点坐标:函数应用③求围成的图形的面积(巧设坐标):0160160⎧⎪⎨⎪⎩⎧⎪==⎪⎨⎪⎪⎩⎧⎨⎩”’”直线:两点确定一条直线线射线:线段:两点之间线段最短,(点到直线的距离,平行线间的距离)角的分类:锐角、直角、钝角、平角、周角.角的度量与比较:, ;角余角与补角的性质:同角的余角(补角)相等,等角的余角(补角)相等,角的位置关系:同位角、内错角、同旁内角、对顶角、邻补角对顶角:对顶角相等.相交线几何初步垂线:定义,垂直的判定,垂线段最短.平行⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎩⎩定义:在同一平面内,不相交的两条直线叫平行线线性质:两直线平行,同位角相等、内错角相等、同旁内角互补;同位角相等或内错角相等或同旁内角互补,两直线平行判定:平行于同一条直线的两条直线平行平面内,垂直于同一条直线的两直线平行000000000R 130cos30223cos454512210cos60,tan3022R .t ααααααα⎧⎪⎪⎪⎧===⎪⎪⎪⎪⎪⎪⎪⎨===⎨⎪⎪⎪⎪⎪===⎪⎪⎪⎩⎪⎪⎩的对边的邻边的对边定义:在tABC 中,sin =,cos =,tan =斜边斜边的邻边sin ,三角函数特殊三角函数值sin45;sin6应用:要构造△,才能使用三角函数1C S 20.⎧⎨⎩⎧⎪⎨⨯⎪⎩⎧⎪⎨⎪⎩按边分类:不等边三角形、等腰三角形、等边三角形分类按角分类:锐角三角形、直角三角形、钝角三角形三边关系:两边之和大于第三边,两边之差小于第三边;边面积与周长:=a+b=c ,=底高.三角形的内角和等于18度,外角和等于360度;角三角形的一个外角等于不相邻的两内角之和;三角形的一个外角大于任何一个不相邻的内角中线:一条中线平分三角形的面积一般三角形角线段三角形.⎧⎪⎨⎪⎩性质:角平分线上的点到角两边的距离相等;平分线判定:到角两边的距离相等的点在角的平分线上内心:三角形三条角平分线的交点,到三边距离相等.高:高的作法及高的位置(可以在三角形的内部、边上、外部)中位线:三角形的中位线平行于第三边且等于第三边的一半.性质:线段垂直平分线上的点到线段两端点的距离相等;中垂线判定:到线段两端点的距离相等的点在线段的垂直平分线上.外心:三角形三边垂直平分线的交点.60.6060⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎩⎧⎨⎩,到三个顶点的距离相等等腰三角形的两腰相等、两底角相等,具有三线合一性质,是轴对称图形性质等边三角形的三边上均有三线合一,三边相等,三角形等都为度有两边相等的三角形是等腰三角形;等腰三角形有两角相等的三角形是等腰三角形;判定有一个角为度的等腰三角形是等边三角形;有两个角是度的三角02220.30C 90.⎧⎪⎪⎪⎪⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎨⎧⎪⎨⎪=⎩形是等边三角形一个角是直角或两个锐角互余;直角三角形斜边上的中线等于斜边的一半;性质直角三角形中,的锐角所对的直角边等于斜边的一半;勾股定理:两直角边的平方和等于斜边的平方.直角三角形证一个角是直角或两个角互余;判定有一边上的中线等于这边的一半的三角形是直角三角形;勾股定理的逆定理:若a +b =c ,则∠.ASA SAS AAS SSS HL ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎧⎪⎨⎪⎨⎩⎪⎪⎪⎩⎩全等三角形的对应边相等,对应角相等,周长、面积也相等;性质全等三角形全等三角形对应线段(角平分线、中线、高、中位线等)相等判定:,,,,.00.⋅⎧⎪⎧⎪⎪⎪⎧⎪⎪⎪⎨⎪⎧⎨⎪⎪⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎩⎩⎩多边形:多边形的内角和为(n-2)180,外角和为360定义:一组对边平行而另一组对边不平行的四边形叫做梯形.直角梯形性质:两腰相等、对角线相等,同一底上的两角相等.梯形特殊梯形两腰相等的梯形是等腰梯形;等腰梯形判定对角线相等的梯形是等腰梯形;同一底上的两角相等的梯形是等腰梯形;两组对边分别平性质:平行四边形的平行四边形四边形...⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎨⎪⎪⎪⎪⎪⇒⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎧⎨⎪⎩⎪⎧⎨⎪⎨⎪⎩行且相等两组对角分别相等两条对角线互相平分两组对边分别平行一组对边平行且相等判定:两组对边分别相等的四边形是平行四边形.两组对角分别相等对角线互相平分共性:具有平行四边形的所有性质性质个性:对角线相等,四个角都是直角矩形先证平行四边形,再证有一个直角;判定先证平行四边形,再证对角线相等;三个角是直角的四边形是矩形....1S=2⎪⎪⎪⎪⎩⎧⎧⎨⎪⎩⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎩⎧⎪→→⎧⎨⎨⎪→→⎩⎩+共性:具有平行四边形的所有性质性质个性:对角线互相垂直且每条对角线平分一组对角,四条边相等菱形先证平行四边形,再证对角线互相垂直;判定先证平行四边形,再证一组邻边相等;四条边都相等的四边形是菱形性质:具有平行四边形、矩形、菱形的所有性质正方形证平行四边形矩形正方形判定证平行四边形菱形正方形梯形:(上底下底面积求法S=S S S ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⨯⨯⎪⎪⎪⎪⨯⎪⎪⎨=⨯⎪⎪⎪⎪⨯⎪⎪⎪=⨯⎩⎩)高=中位线高平行四边形:底高矩形:长宽菱形:=底高=对角线乘积的一半正方形:边长边长=对角线乘积的一半⎧⎪⎨⎪⎩⎧⎪⎧⎨⎨⎪⎩⎩点在圆外:d >r 点与圆的三种位置关系点在圆上:d =r 点在圆内:d <r 弓形计算:(弦、弦心距、半径、拱高)之间的关系圆的轴对称性定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧垂径定理推论:平分弦(不是直径)的直径垂直于弦,并且平分线所对的弧在同圆或等圆中,两条弧、两条弦、两个圆心角、两个圆周角、五组量的关系:两条弦心距中有一组量相等,则其余的各组两也分别圆的中心对称性圆009090AB CD P PA PA PC PD..⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪⎪⎨⎨⎪⎪⎩⎪⎪=⎪⎪⎩⎧⎪⎨⎪⎩相等.同弧所对的圆周角是它所对圆心角的一半;圆周角与圆心角半圆(或直径)所对的圆周角是;的圆周角所对的弦是直径,所对的弧是半圆.相交线定理:圆中两弦、相交于点,则圆中两条平行弦所夹的弧相等相离:d >r 直线和圆的三种位置关系相切:d =r(距离法)相交:d <r 性质:圆的切线垂直圆的切线直线和圆的位置关系2PA PB PO APB PA PC PD.⎧⎪⎪⎪⎪⎪⎧⎪⎨⎨⎩⎪⎪⎪⎪=⎪⎪⎩⎧⎪⎨⎪⎩于过切点的直径(或半径)判定:经过半径的外端且垂直于这条半径的直线是圆的切线.弦切角:弦切角等于它所夹的弧对的圆周角切线长定理:如图,=,平分∠切割线定理:如图,外心与内心:相离:外离(d >R+r ),内含(d <R-r )圆和圆的位置关系相切:外切(d=R+r ),内切(d=R-r )相交:R-r <d <R+r )圆的有关计算22n n 2360180n 1S 36021S 2(2S l r r r l r r l rl r l r rl πππππππ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪==⎪⎪⎪⎪⎪==⋅⋅⎪⎪⎨⎪⎪⎪=⋅⋅=⎪⎪⎪⎪⎪=+⎪⎩⎩弧长弧长侧全弧长公式:扇形面积公式:圆锥的侧面积:为底面圆的半径,为母线)圆锥的全面积:第五部分《图形的变化》知识点⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎨⎪⎩⎪⎪⎧⎪⎨⎪⎩⎩①轴对称指两个图形之间的关系,它们全等②对应点的连线段被对称轴垂直平分轴对称(折叠)③对应线段所在的直线相交于对称轴上一点(或平行)轴对称④图形折叠后常用勾股定理求线段长①指一个图形轴对称图形②轴对称图形被对称轴分成的两部分全等①平移前后两个图形全等②平移前后对应点的连线段相等且平行(或共线)平 移③平移前后的对应角相等,对应线段相等且平行(或图形的变化⎧⎪⎪⎨⎪⎪⎩⎧⎪⎪⎨⎪⎪⎩⎧⎨⎩共线)④平移的两个要素:平移方向、平移距离①旋转前后的两个图形全等②旋转前后对应点与旋转中心的连线段相等,且它们的夹角等于旋转角旋 转③旋转前后对应角相等,对应线段相等④旋转的三要素:旋转中心、旋转方向、旋转角①大小、比例要适中视图的画法②实线、虚线要画清平行投影:平行光线下的投影,物体平行影子平行或共线视图与投影中心投影:点光源射出的光线下的投影,影子不平投影2.........0)...AB C AC BC AC BC AC BC AB a c ad bc b d a c a b c d b d b d a c m a b m k k b d n b d n b d n ⎧⎪⎪⎪⎪⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎧=⇔=⎪⎪±±⎪=⇒=⎨⎪+++⎪====⇒=+++⎪+++⎩行视点、视线、盲区投影的计算:画好图形,相似三角形性质的应用基本性质:比例的性质合比性质:等比性质:,(条件≠黄金分割:线段被点分成、两线段(>),满足=, 相似形C AB ⎧⎨⎩⎧⎪⎨⎪⎩ 则点为的一个黄金分割点性质:相似多边形的对应边成比例、对应角相等相似多边形判定:全部的对应边成比例、对应角相等①对应角相等、对应边成比例性质②对应线段(中线、高、角平分线、周长)的比等于相似比③面积的比等于相似比的平方①有两个角相等的两个三角形相似相似图形②两边对应成比例且夹角相等的两个三角形相似相似三角形判定③三边对应成比例的两个三角形相似④有一条直角边与0222Rt ABC C 90CD AB AC AD AB BC BD AB CD AD BD ⎧⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪=⋅⎪⎪⎪⎪⋅⋅⎪⎪⎪⎪⎩⎩⎧⎨斜边对应成比例的两个直角三角形相似射影定理:在△中,∠,⊥,则=, =,=(如图)位似图形②位似图形对应点所确定的直线过位似中心③通过位似可以将图形放大或缩小⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩⎩第六部分《统计与概率》知识要点21(x x n →⎧⎨⎩→⎧⎪→⎨⎪→⎩⎧⎧⎪⎪⎨⎪⎪⎪⎪⎩⎨⎪⎪⎪⎪⎩=-普查:总体与个体(研究对象中心词)两查抽样调查:样本与容量(无单位的数量)折线图(发展趋势与波动性横纵轴坐标单位长度要统一)三图条形图(纵坐标起点为零高度之比等于频数或频率之比)扇形图(知道各量的百分比可用加权平均数求平均值)算术平均数平均数参照平均数加权平均数三数众数(可能不止一个)中位数(排序、定位)方差:s 统计与概率三差222122)()()(n x x x x n n n ⎧⎡⎤+-++-⎪⎣⎦⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎧⎨⎪⎨⎩⎪⎩一组数据整体被扩大倍,平均数扩大倍,方差扩大倍);(一组数据整体被增加m ,平均数增加m ,方差不变)标准差:方差的算术平方根s 极差:最大数与最小数之差(方差与标准差均衡量数据的波动性,方差越小波动越小)必然事件:(概率为1)确定事件事件不可能事件:(概率为0)不确定事件:(概率在0与1之间)频率:(两率⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎧⎪⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎩⎩试验值,多次试验后频率会接近理论概率)比例法(数量之比、面积之比等)概率:求法列表法(返回与不返回的两步实验求概率)树状图(返回与不返回的两步或两步以上的试验求概率)。