On input selection with reversible jump Markov chain Monte Carlo sampling
feature envy重构方法
feature envy重构方法特性嫉妒(Feature Envy)是一种代码质量问题,指的是一个方法过于依赖于其他类的特性,而不是依赖于自己所在的类的特性。
这种情况下,一个方法对于其他类的特性的访问次数远远超过了对于自身类的特性的访问次数。
这种设计问题会导致代码的耦合性增加,降低代码的可维护性和可读性。
为了解决特性嫉妒问题,可以采用以下重构方法。
1. 将特性移动到适当的类中将特性从当前方法所在的类中移动到其所依赖的类中。
这样可以使方法更加直接地访问它所依赖的特性,避免过多的访问其他类的特性。
通过将特性移动到适当的类中,可以提高代码的内聚性,使得代码更加易于理解和维护。
2. 使用委托当一个方法过于依赖其他类的特性时,可以考虑使用委托的方式来间接访问这些特性。
通过将对其他类特性的访问委托给其他类,可以避免方法直接访问其他类的特性,降低代码的耦合性。
同时,使用委托还可以使代码更加灵活,易于扩展和修改。
3. 提取方法如果一个方法过于依赖其他类的特性,可以考虑将这些特性的访问逻辑提取到一个独立的方法中。
通过提取方法,可以将对其他类特性的访问逻辑封装起来,使得方法更加专注于自身类的特性。
提取方法也可以提高代码的可读性和可维护性。
4. 使用数据传输对象(DTO)如果一个方法过于依赖其他类的特性,可以考虑使用数据传输对象(DTO)来传递所需的特性。
通过将所需的特性封装到一个数据传输对象中,可以减少方法对其他类的依赖,提高代码的可维护性和可测试性。
使用数据传输对象还可以避免过多的方法调用,提高代码的性能。
5. 使用依赖注入如果一个方法过于依赖其他类的特性,可以考虑使用依赖注入的方式来解耦。
通过将其他类的特性注入到方法中,可以避免方法直接访问其他类的特性,降低代码的耦合性。
依赖注入还可以使代码更加灵活,易于扩展和修改。
通过以上重构方法,可以有效解决特性嫉妒问题,提高代码的质量和可维护性。
在进行重构时,需要注意保持代码的一致性和完整性,避免引入新的问题。
SMC一触即开阀门配件说明书
Piping for the One-touch fitting•Insert the tube all the way into the fittingso that it cannot be pulled out.•Insertion with excessive force can cause damage.•Ensure there is no leakage after piping.•Use the product within the specified operating pressure and temperature range.TroubleshootingSpecifications / DimensionsRefer to the product catalogue or operation manual from SMC website(URL ) for more information about the product specifications anddimensions.Note: Specifications are subject to change without prior notice and any obligation on the part of the manufacturer.© 2011-2015 SMC Corporation All Rights ReservedAkihabara UDX 15F, 4-14-1, Sotokanda, Chiyoda-ku, Tokyo 101-0021, JAPANPhone: +81 3-5207-8249 Fax: +81 3-5298-5362URL Refer to the operation manual from SMC website (URL ) for moreinformation about troubleshooting.Function SettingPress the S buttonfor 2 secondsor longer.Press the S button once in measurement mode.[P_1] or [n_1] and [the current set value] are displayed in turn.in turnS∗: For models with switch outputs for both OUT1 and OUT2, [P_2] or [n_2] will be displayed too.Set as above.∗: If a mode other than Hysteresis Mode is selected, refer to the operation manual from SMC website(URL ) or contact SMC.∗: Note that the set value and hysteresis settings are limited by each other.<Operation>(The illustration shows PFMB7201, when not using the reversed display function.)Press the △or ▽button to change the set value.The △button is to increase and the ▽button is to decrease the set value.Press the△button continuouslyto keep increasing the set value.Press the S button to complete the setting.Return to measurement mode.S∗2: This setting is only available for models with switch outputs for both OUT1 and OUT2.∗3: This setting is only available for models with the external input.∗4: This setting is only available for models with the analogue output.Peak/Bottom value displayThe maximum (minimum) flow from when the power was supplied to this moment isdetected and updated. In peak/bottom display mode, the maximum (minimum) flow isdisplayed•For peak display, when the △button is pressed for 1 second or longer,[the maximum flow] and [Hi] are displayed in turn.To release holding the display of the maximum flow, press the △button for 1 second orlonger again to return to measurement mode.•For bottom display, when the ▽button is pressed for 1 second or longer,[the minimum flow] and [Lo] are displayed in turn.To release holding the display of the minimum flow, press the ▽button for 1 second orlonger again to return to measurement mode.If the △and ▽buttons are pressed simultaneously for 1 second or longer while the flowvalue is being held, the peak (bottom) values are reset.Reset operationThe accumulated flow value can be reset, when displaying the accumlated flow.The reset the accumulated flow, press the △and ▽buttons simultaneously for1 second or longer.The peak/bottom value can be reset, when displaying the peak value (bottom value).To reset the peak/bottom value, press the △and ▽buttons simultaneously for 1 secondor longer.Key lock functionTo use each of these functions, refer to the operation manual from SMC website(URL ) or contact SMC.MaintenanceTo change setting, refer to the operation manual from SMC website(URL ) or contact SMC.12321Safety InstructionsMounting•Never mount the product in a place where it will be used as a mechanical support.•Mount the product so that the fluid flows in the direction indicated by the arrow on the sideof the body.Safety InstructionsMounting and InstallationThese safety instructions are intended to prevent hazardous situations and/orequipment damage.These instructions indicate the level of potential hazard with the labels of"Caution", "Warning" or "Danger". They are all important notes for safety and mustbe followed in addition to International standards (ISO/IEC) and other safetyregulations.InstallationPanel mounting (Only PFMB7201)•Refer to the diagram and table below for mounting details.•Refer to the dimension from SMC website (URL )for panelthickness and panel mount cut-out dimensions.OperatorBodyPFMB7201PFMB7501/7102/7202DisplayPFMB7201PFMB7501/7102/7202Bracket mounting•Refer to the diagram and table below for mounting details.•Refer to the dimension from SMC website (URL )for bracketthickness and mounting hole dimensions.Connecting/Disconnecting•When mounting the connector, insert it straight into the socket, holding the lever andconnector body, and push the connector until the lever hooks into the housing, and locks.+ 2 1-1234Power is supplied∗: The outputs will continue to operate during setting.∗: If a button operation is not performed for 30 seconds during the setting, the display will flash.(This is to prevent the setting from remaining incomplete if, for instance, an operator were to leave during setting)∗: 3 step setting mode and Function selection mode are reflected on each other.Flow Setting (set value only) of OUT1 · OUT2Flow[L/min][H_1]Switch ONSwitch OFFSet value[P_1]Outline of settingsDIN rail mounting (Only PFMB7201)•Refer to the diagram and table below formounting details.3 step setting modeIn this mode, only the set values can be input, in just 3 steps.∗: When the reversed display is used, the function of the△and▽buttons is reversed.Piping•Never mount the product upside down.•The straight piping length shall be 8 cm or longer.Otherwise, if a straight section of piping is not installed, the accuracy varies byapproximately ±2%F.S.•Avoid sudden changes in the piping size on the IN side of the product.•Do not release the OUT side piping port of the product directly to the atmospherewithout the piping connected.If the product is used with the piping port released to atmosphere, the accuracy may vary.Piping for the metal attachment•Tighten to the specified torque. Refer to the table below for the required torque values.•Use a suitable spanner for the appropriate torque. Do not use a spanner 40 cm orlonger.•If the tightening torque is exceeded, the product can be broken.If the tightening torque is insufficient, the fitting may become loose.•Avoid any sealing tape getting inside the flow path.•Ensure there is no leakage after piping.•When mounting the fitting, a spanner should be used on the metal part (attachment) ofthe fitting only.Holding other parts of the product with a spanner may damage the product.Specifically, make sure that the spanner does not damage the connector.Direct mounting•Refer to the diagram and table below for mounting details.•Refer to the dimension from SMC website (URL )for mountinghole size.Thank you for purchasing an SMC PFMB7 series Digital Flow Switch.Please read this manual carefully before operating the product and make sure youunderstand its capabilities and limitations. Please keep this manual handy forfuture reference.Before UseDigital Flow SwitchPFMB7201/7501/7102/7202Connector pin numbers (lead wire)Press the▽button continuouslyto keep decreasing the set value.PF※※-OMP0003-AHow to reset the product after a power cut or when the power has beenunexpectedly removedThe settings of the product are retained from before the power cut orde-energizing.The output condition also recovers to that before power cut or de-energizing, butmay change depending on the operating environment. Therefore, check the safetyof the whole installation before operating the product.settingsdefault settings are shown below.When the flow exceeds the set value [P_1], the switch will be turned ON.When the flow falls below the set value by the amount of hysteresis [H_1] or more, theswitch will turn OFF.If the operation shown in the diagram below is acceptable, then keep these settings.For more detailed settings, set each function in the function selection mode.Default settingsWiringConnection•Connections should only be made with the power supply turned off.•Use a separate route for the product wiring and any power or high voltage wiring.Otherwise, malfunction may result due to noise.•Ensure that the FG terminal is connected to ground when using a commerciallyavailable switch-mode power supply. When a switch-mode power supply is connectedto the product, switching noise will be superimposed and the product specification canno longer be met. This can be prevented by inserting a noise filter, such as a line noisefilter and ferrite core, between the switch-mode power supply and the product or byusing a series power supply instead of a switch-mode power supply.Error indicationNOTEThe direct current power supply used should be UL approved as follows.Circuit (class 2) of maximum 30 Vrms (42.4 V peak) or less, with UL 1310class 2 power supply unit or UL 1585 class 2 transformer.The product is a UL approved product only if it has a mark on the body.Function selection modeIn measurement mode, press the S button for 2 seconds or longer, to display [F 0].The [F] indicates the mode for changing each Function Setting.Press the S button for 2 seconds or longer in function selection mode to return tomeasurement mode.。
国际电子(National Instruments)USB-7845R OEM 多功能数字实时接口设
SPECIFICATIONSNI USB-7845R OEMR Series for USB Multifunction RIO with Kintex-7 70T FPGA Français Deutsch日本語한국어简体中文/manualsThis document contains the specifications for the National InstrumentsUSB-7845R OEM device. Specifications are typical at 25 °C unless otherwise noted.Caution Using the NI USB-7845R OEM device in a manner not described in thisdocument may impair the protection the NI USB-7845R OEM device provides. Analog InputNumber of channels8 ............................................................................Input modes DIFF, NRSE, RSE (software-selectable; ............................................................................selection applies to all channels)Type of ADC Successive approximation register (SAR) ............................................................................Resolution16 bits ............................................................................Conversion time 2 µs ............................................................................Maximum sampling rate500 kS/s (per channel) ............................................................................Input impedancePowered on 1.25 GΩ ║ 2 pF....................................................................Powered off/overload 4.0 kΩ min....................................................................Input signal range±1 V, ±2 V, ±5 V, ±10 V (software-selectable) ............................................................................Input bias current±5 nA ............................................................................ ............................................................................Input offset current±5 nAInput coupling DC ............................................................................Overvoltage protection....................................................................Powered on±42 V maxPowered off±35 V max....................................................................Table 1. AI Operating Voltage Ranges Over TemperatureAI Absolute AccuracyAbsolute accuracy at full scale numbers is valid immediately following internal calibration and assumes the device is operating within 10 °C of the last external calibration. Accuracies listed are valid for up to one year from the device external calibration.Absolute accuracy at full scale on the analog input channels is determined using the following assumptions:•TempChangeFromLastExternalCal = 10 °C •TempChangeFromLastInternalCal = 1 °C•number_of_readings = 10,000•CoverageFactor = 3 σ1The minimum measurement voltage range is the largest voltage the NI USB-7845R OEM device is guaranteed to accurately measure.2| | NI USB-7845R OEM SpecificationsTable 2. AI Absolute Accuracy (Calibrated) (Continued)Table 3. AI Absolute Accuracy (Uncalibrated)Calculating Absolute AccuracyAbsoluteAccuracy=Reading⋅(GainError)+Range*(OffsetError)+NoiseUncertaintyGainError=ResidualGainError+GainTempco*(TempChangeFromLastInternalCal)+ReferenceTempco*(TempChangeFromLastExternalCal)OffsetError=ResidualOffsetError+OffsetTempco*(TempChangeFromLastInternalCal)+INL_ErrorNoiseUncertainty=Refer to the following equation for an example of calculating absolute accuracy.NI USB-7845R OEM Specifications| © National Instruments| 3Absolute accuracy at full scale on the analog input channels is determined using the following assumptions:•TempChangeFromLastExternalCal = 10 °C •TempChangeFromLastInternalCal = 1 °C•number_of_readings = 10,000•CoverageFactor = 3 σGainError=104.4ppm+20ppm*1+4ppm*10GainError=164.4ppmOffsetError=16.4ppm+4.18ppm*1+42.52ppmOffsetError=63.1ppmNoiseUncetainty=NoiseUncertainty=7.89µVAbsoluteAccuracy=10V*(GainError)+10V*(OffsetError)+NoiseUncertaintyAbsoluteAccuracy=2,283µVDC Transfer Characteristics ............................................................................INL Refer to the AI Accuracy TableDNL±0.4 LSB typ, ±0.9 LSB max ............................................................................No missing codes16 bits guaranteed ............................................................................CMRR, DC to 60 Hz-100 dB ............................................................................Dynamic CharacteristicsBandwidthSmall signal 1 MHz........................................................................................................................................Large signal500 kHz4| | NI USB-7845R OEM Specifications............................................................................Crosstalk-80 dB, DC to 100 kHzAnalog Output ............................................................................Output type Single-ended, voltage output ............................................................................Number of channels8 ............................................................................Resolution16 bits ............................................................................Update time 1.0 µs ............................................................................Maximum update rate 1 MS/sType of DAC Enhanced R-2R ............................................................................ ............................................................................Range±10 V ............................................................................Output coupling DCOutput impedance0.5 Ω............................................................................NI USB-7845R OEM Specifications| © National Instruments| 5............................................................................Minimum current drive±2.5 mAProtection Short circuit to ground ............................................................................Overvoltage protectionPowered on±15 V max....................................................................Powered off±10 V max....................................................................Power-on state User-configurable ............................................................................Power-on glitch-1 V for 1 µs ............................................................................Table 4. AO Operating Voltage Ranges for Over TemperatureAO Absolute AccuracyAbsolute accuracy at full scale numbers is valid immediately following internal calibration and assumes the device is operating within 10 °C of the last external calibration. Accuracies listed are valid for up to one year from the device external calibration.Absolute accuracy at full scale on the analog output channels is determined using the following assumptions:•TempChangeFromLastExternalCal = 10 °C •TempChangeFromLastInternalCal = 1 °C2The minimum measurement voltage range is the largest voltage the NI USB-7845R OEM device is guaranteed to accurately measure.6| | NI USB-7845R OEM SpecificationsTable 5. AO Absolute Accuracy (Calibrated) (Continued)Calculating Absolute AccuracyAbsoluteAccuracy=OutputValue*(GainError)+Range*(OffsetError)GainError=ResidualGainError+GainTempco*(TempChangeFromLastInternalCal)+ReferenceTempco*(TempChangeFromLastExternalCal)OffsetError=ResidualOffsetError+AOOffsetTempco*(TempChangeFromLastInternalCal)+INL_Error Refer to the following equation for an example of calculating absolute accuracy.Absolute accuracy at full scale on the analog output channels is determined using thefollowing assumptions:•TempChangeFromLastExternalCal = 10 °C•TempChangeFromLastInternalCal = 1 °CGainError=87.3ppm+12.6ppm*1+4ppm*10GainError=139.9ppmNI USB-7845R OEM Specifications| © National Instruments| 7OffsetError=41.1ppm+7.8ppm*1+61ppmOffsetError=109.9ppmAbsoluteAccuracy=10V*(GainError)+10V*(OffsetError)AbsoluteAccuracy=2,498µVDC Transfer CharacteristicsINL Refer to the AO Accuracy Table ............................................................................DNL±0.5 LSB typ, ±1 LSB max ............................................................................Monotonicity16 bits, guaranteed ............................................................................Dynamic CharacteristicsSlew rate-10 V/µs ............................................................................Noise250 µV rms, DC to 1 MHz ............................................................................Glitch energy at midscale transition±10 mV for 3 µs ............................................................................5V OutputOutput voltage 4.75 V to 5.1 V ............................................................................Output current0.5 A max ............................................................................Overvoltage protection±30 V ............................................................................ ............................................................................Overcurrent protection650 mA8| | NI USB-7845R OEM SpecificationsDigital I/OCompatibility LVTTL ............................................................................Logic family User-selectable ............................................................................Default software setting 3.3 V ............................................................................Maximum input 3.6 V ............................................................................NI USB-7845R OEM Specifications| © National Instruments| 9Table 10. Digital Output Logic Levels (Continued)Output currentSource 4.0 mA....................................................................Sink 4.0 mA....................................................................Input leakage current±15 µA max ............................................................................Input impedance50 kΩ typ, pull-down ............................................................................Power-on state Programmable, by line ............................................................................Protection±20 V, single line ............................................................................Digital I/O voltage switching time 2 ms max ............................................................................Note Refer to NI RIO Software Help for more information about switching times.Reconfigurable FPGAFPGA type Kintex-7 70T ............................................................................Number of flip-flops82,000 ............................................................................Number of LUTs41,000 ............................................................................Embedded block RAM4,860 kbits ............................................................................Number of DSP48 slices240 ............................................................................Timebase40, 80, 120, 160, or 200 MHz ............................................................................Timebase accuracy, onboard clock±100 ppm ............................................................................Calibration ............................................................................Recommended warm-up time15 minutesCalibration interval 1 year ............................................................................10| | NI USB-7845R OEM SpecificationsOnboard calibration referenceDC level3 5.000 V (±2 mV)....................................................................Temperature coefficient±4 ppm/°C max....................................................................Long-term stability±25 ppm/1,000 h....................................................................Note Refer to Calibration Certifications at /calibration to generate acalibration certificate for the NI USB-7845R OEM deviceBus Interface ............................................................................USB compatibility USB 2.0 Hi-Speed or Full-Speed4Data transfers DMA, interrupts, programmed I/O ............................................................................Number of DMA channels3 ............................................................................Power RequirementInput voltage9 V to 30 V ............................................................................Max power20 W ............................................................................ ............................................................................Overvoltage protection40 VNote You must use a UL Listed ITE power supply marked LPS with theNI USB-7845R OEM device.PhysicalNote If you need to clean the device, wipe it with a dry, clean towel.Dimensions (PCB)17.5 cm × 16.3 cm (6.9 in. × 6.4 in.) ............................................................................Weight183 g (6.45 oz) ............................................................................I/O connectors Analog- 1 × 50 pin box header, ............................................................................Digital- 3 × 34 pin box header3Actual value stored in Flash memory4Operating on a full-speed bus will result in lower performance and you might not be able to achieve maximum sampling/update rates.NI USB-7845R OEM Specifications| © National Instruments| 11Maximum Working VoltageMaximum working voltage refers to the signal voltage plus the common-mode voltage. Channel-to-earth±12 V, Measurement Category I ............................................................................Channel-to-channel±24 V, Measurement Category I ............................................................................Measurement Category I is for measurements performed on circuits not directly connected to the electrical distribution system referred to as MAINS voltage. MAINS is a hazardous live electrical supply system that powers equipment. This category is for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated low-voltage sources, and electronics.Caution Do not use the NI USB-7845R OEM device for connection to signals inMeasurement Categories II, III, or IV.Note Measurement Categories CAT I and CAT O (Other) are equivalent. Thesetest and measurement circuits are not intended for direct connection to the MAINSbuilding installations of Measurement Categories CAT II, CAT III, or CAT IV. Environmental-40 °C to 70 °COperating temperature ............................................................................(IEC 60068-2-1, IEC 60068-2-2)Storage temperature-40 °C to 85 °C ............................................................................(IEC 60068-2-1, IEC 60068-2-2)10% to 90% RH, noncondensingOperating humidity ............................................................................(IEC 60068-2-56)Storage humidity (IEC 60068-2-56)5% to 95% RH, noncondensing ............................................................................ ............................................................................Pollution Degree2Maximum altitude2,000 m ............................................................................Indoor use only.Online Product CertificationTo obtain product certifications and the DoC for this product, visit /certification, search by model number or product line, and click the appropriate link in the Certification column.12| | NI USB-7845R OEM SpecificationsEnvironmental ManagementNI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.For additional environmental information, refer to the Minimize Our Environmental Impact web page at /environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.Waste Electrical and Electronic Equipment (WEEE)EU Customers At the end of the product life cycle, all products must be sent to aWEEE recycling center. For more information about WEEE recycling centers,National Instruments WEEE initiatives, and compliance withWEEE Directive 2002/96/EC on Waste Electrical and Electronic Equipment, visit/environment/weee.电子信息产品污染控制管理办法(中国RoHS)中国客户National Instruments符合中国电子信息产品中限制使用某些有害物质指令(RoHS)。
打印机EZPL指令
SMC 压力开关说明书
Other SettingsSummary of Product partsSimple Setting ModeTroubleshootingNote: Specifications are subject to change without prior notice and any obligation on the part of the manufacturer.© 2017 SMC Corporation All Rights ReservedAkihabara UDX 15F, 4-14-1, Sotokanda, Chiyoda-ku, Tokyo 101-0021, JAPANPhone: +81 3-5207-8249 Fax: +81 3-5298-5362URL Specifications/Outline with Dimensions (in mm)Refer to the product catalog or SMC website (URL ) for moreinformation about the product specifications and outline dimensions.PS※※-OMU0004 InstallationMountingMount the optional bracket and panel mount adapter to the pressure switch.When the pressure switch is to be mounted in a place where water and dustsplashes occur, insert a tube into the air-relieving port of the pressure switch.(Refer to "Tube attachment")Mounting with bracketMount the bracket to the body with mounting screws (Self tapping screws:Nominal size 3 x 8L (2 pcs)), then set the body to the specified position.∗: Tighten the bracket mounting screws to a torque of 0.5±0.05 Nm.Self tapping screws are used, and should not be re-used several times.∗: The panel mount adaptercan be rotated through 90degrees for mounting.•Bracket A (Part No.: ZS-46-A1)•Bracket B (Part No.: ZS-46-A2)Mounting with panel mount adapterMount part (a) to the front of the body and fix it. Then insert the body with (a) intothe panel until (a) comes into contact with the panel front surface. Next, mountpanel for fixing.•Panel mount adapter(Part No.: ZS-46-B)Panel mount adapter +Front protective cover(Part No.: ZS-46-D)WiringWiring connectionsUse a separate route for the product wiring and any power or high voltage wiring.Otherwise, malfunction may result due to noise.If a commercially available switching power supply is used, be sure to ground theframe ground (FG) terminal. If the switching power supply is connected for use,switching noise will be superimposed and it will not be able to meet the productspecifications. In that case, insert a noise filter such as a line noise filter/ferritebetween the switching power supplies or change the switching power supply tothe series power supply.How to use connectorConnector attachment/detachmentWhen connecting the connector, insert itstraight onto the pins, holding the lever andconnector body, and lock the connector bypushing the lever hook into the concavegroove on the housing.To detach the connector, remove the hookfrom the groove by pressing the leverdownward, and pull the connector straight out.DC(+)OUT1OUT2FUNCDC(-)BrownBlackWhiteGrayBluePipingTightening the connection threadFor connecting to the body (piping specification: -M5)After hand tightening, apply a spanner of the correct size tothe spanner flats of the piping body, and tighten with a 1/6 to1/4 rotation.As a reference, the tightening torque is 1 to 1.5 Nm.(When replacing the piping adapter ZS-46-N∗, tighten it usingthe same method.)Piping specification: -01, -N01After hand tightening, hold the hexagonal spanner flats of thepressure port with a spanner, and tighten with 2 to 3 rotations.As a reference, the tightening torque is 3 to 5 Nm.When tightening, do not hold the pressure switch body with aDefault settingsWhen the pressure exceeds the setvalue, the switch will be turned on.When the pressure falls below theset value by the amount ofhysteresis or more, the switch willbe turned off. The default setting isto turn on the pressure switch whenthe pressure reaches the centre ofthe atmospheric pressure and upper limit of the rated pressure range. If this condition,shown to the right, is acceptable, then keep these settings.Error indication functionThis function is to display error location and content when a problem or error has occurred.above are displayed, please contact SMC.Refer to the SMC website (URL ) for more information abouttroubleshooting.Power is supplied.button between1 and 3 sec.∗:The outputs will continue to operate during setting.∗:If a button operation is not performed for 3 seconds during the setting, the display will flash.(This is to prevent the setting from remaining incomplete if, for instance, an operator were to leave duringsetting.)∗:3 step setting mode, simple setting mode and function selection mode settings are reflected each other.[3 step setting mode (hysteresis mode)]orcan be changed in the same way.button once when the item to beThe set value on the sub display (right) will startflashing.orbutton.buttons are pressed and held simultaneously for 1 second orlonger, the set value is displayed as [- - -], and the set value will be the same as thecurrent pressure value automatically (snap shot function).Afterwards, it is possible to adjust the value by pressing button.button to complete the setting.The pressure switch turns on within a set pressure range (from P1L to P1H) duringwindow comparator mode.Set P1L, the lower limit of the switch operation, and P1H, the upper limit of the switchoperation and WH1 (hysteresis) following the instructions given above.(When reversed output is selected, the sub display (left) shows [n1L] and [n1H].)∗:Set OUT2 in the same way. (ex. P_2, H_2)∗:Setting of the normal/reverse output switching and hysteresis/window comparator mode switchingare performed with the function selection mode [F 1] OUT1 setting and [F 2] OUT2 setting.value[F 0] Units selection functionPeak/bottom value indicationbutton inmeasurement mode.Snap shot functionbuttons for 1 secondor longer simultaneously. Then, the set value of the sub display (right) shows [- - -], andthe values corresponding to the current pressure values are automatically displayed.Zero-clear functionbuttons are pressed for 1 second orlonger simultaneously, the main display shows [- - -], and the reset to zero.The display returns to measurement mode automatically.Key-lock functionTo set each of these functions, refer to the SMC website(URL ) for more detailed information, or contact SMC.button between 1 and 3 seconds in measurementmode. [SEt] is displayed on the main display. When the button is releasedwhile in the [SEt] display, the current pressure value is displayed on themain display, [P_1] or [n_1] is displayed on the sub display (left), and theset value is displayed on the sub display (right) (Flashing).or button to(The snap shot function can be used.)or button to set the(The snap shot function can be used.)or button, the delay time of the switch output can be selected.button for 2 seconds or longer to complete the setting.∗:If the button is pressed for less than 2 seconds, the setting will moves to the OUT2 setting.In the window comparator mode, set P1L, the lower limit of the switch operation, andP1H, the upper limit of the switch operation, WH1 (hysteresis) and dt1 (delay time)following the instructions given above.(When reversed output is selected, the sub display (left) shows [n1L] and [n1H].)∗:Set OUT2 in the same way.Function selection modebuttonbetween 3 and 5 seconds, to display [F 0].Select to display the function to be changed[F button for 2seconds or longer in function selection modeto return to measurement mode.∗:Some products do not have all the functions. If no functionis available or selected due to configuration of otherfunctions, [- - -] is displayed on the sub display (right).Names of individual partsRefer to the product catalog or SMC website (URL ) for moreinformation about panel cut-out and mounting hole dimensions.Pressure Setting3 Step Setting Mode(URL ) for more detailed information, or contact SMC.MaintenanceHow to reset the product after a power cut or forcible de-energizingThe setting of the product will be retained as it was before a power cut or de-energizing.The output condition is also basically recovered to that before a power cut or de-energizing, but may change depending on the operating environment. Therefore, checkthe safety of the whole installation before operating the product. If the installation is usingaccurate control, wait until the product has warmed up (approximately 10 to 15 minutes). Safety InstructionsBefore UseDigital Pressure SwitchZSE20B(F)/ISE20BThank you for purchasing an SMC ZSE20B(F)/ISE20B Series Digital Pressure Switch.Please read this manual carefully before operating the product and make sure youunderstand its capabilities and limitations. Please keep this manual handy for futurereference.Safety InstructionsThese safety instructions are intended to prevent hazardous situations and/orequipment damage.These instructions indicate the level of potential hazard with the labels of "Caution","Warning" or "Danger". They are all important notes for safety and must be followed inaddition to International standards (ISO/IEC) and other safety regulations.OperatorSwitch ONAt normal output Switch OFFSet valueP_1HysteresisH_1TimePressureDefault settingThe default setting is as follows.If no problem is caused by this setting,keep these settings.Connector pin numbers[F 2] Setting of OUT2Same setting as [F 1] OUT1.NOTE•The direct current power supply to be used should be UL approved as follows:Circuit (of Class 2) which is of maximum 30 Vrms (42.4 V peak), with UL1310 Class2 power supply unit or UL1585 Class 2 transformer.•The product is a UL approved product only if it has a mark on the body.Tube attachmentWhen this pressure switch is used in a place wherewater and dust splashes may occur, insert a tube in theair-relieving port, and bring piping of the opposite sideup to the safe position to keep it from water and dust.(See the right figure.)∗: The tube should be inserted to the end of the air-relieving port.∗: SMC TU0425 (polyurethane, O.D ø4, I.D ø2.5) is a suitable tubing.。
IBM Cognos Transformer V11.0 用户指南说明书
selection-method的英文单词
selection-method的英文单词Selection-methodSelection-method指的是选择的方法或者选拔程序。
在人力资源管理中,selection-method指的是招聘过程中用来筛选、评估和选拔应聘者的不同方法和程序。
例句:1. The company uses a rigorous selection-method to ensure that only the most qualified candidates are hired.公司采用严格的选拔程序,以确保只有最合格的应聘者被录用。
2. The selection-method for this job involves a series of interviews, aptitude tests, and reference checks.这个职位的选拔程序包括一系列面试、能力测试和背景调查。
3. The selection-method employed by this organization has been recognized as one of the best in the industry.这个组织采用的选拔程序被认为是业内最好的之一。
4. The selection-method for this position is designed to identify candidates who possess leadership skills and have a proven track record of success.这个职位的选拔程序旨在找出具有领导能力和成功经验的应聘者。
5. The selection-method used by this department involvesa panel interview, skills assessment, and a test on job knowledge.这个部门采用的选拔程序包括面试、技能评估和职业知识测试。
selection.shaperange.increment的意思
selection.shaperange.increment的意思一、背景介绍Selection.shaperange 是 Android 系统中的一个重要的属性,它用于控制应用的选择范围和填充范围。
在 Android 开发中,我们经常需要使用这个属性来控制应用的行为和界面展示。
二、属性含义Selection.shaperange.increment 表示在选择范围中增加一个增量值。
这个属性通常用于调整选择范围的大小,以便更好地满足用户的需求。
具体来说,当用户在应用中进行选择操作时,系统会根据Selection.shaperange 属性的值来调整选择范围的大小,以便更好地展示用户的选择结果。
三、属性应用场景Selection.shaperange.increment 属性的应用场景非常广泛,常见于各种输入框、文本编辑器等场景中。
例如,当用户在输入框中输入文字时,系统会自动调整选择范围的大小,以便更好地展示用户的输入内容。
此外,当用户在文本编辑器中进行编辑操作时,系统也会根据 Selection.shaperange.increment 属性的值来调整选择范围的大小,以便更好地展示编辑结果。
四、增量值的计算Selection.shaperange.increment 属性的增量值通常根据输入框或文本编辑器的具体需求进行计算。
常见的计算方式包括根据用户的输入长度、编辑器的最大容量等参数进行计算。
此外,增量值的计算还可能受到其他因素的影响,如系统的性能和稳定性等。
五、注意事项1. 确保应用中的所有输入框和文本编辑器都支持该属性,并正确配置相关参数。
2. 在增量值的计算过程中,需要考虑系统的性能和稳定性,避免因计算过于频繁或计算量过大而导致系统崩溃或卡顿。
3. 在应用中提供适当的提示信息,告知用户该属性的作用和使用方法。
4. 确保应用中的选择范围大小符合用户的需求和期望,避免因选择范围过大或过小而导致用户体验不佳。
selectionpreview变量
在编程中,selectionpreview变量是一个非常有用的工具。
它可以帮助开发者在代码中轻松地预览和选择不同的选项,从而提高代码的灵活性和可读性。
在本篇文章中,我将深入探讨selectionpreview变量的作用、用法和潜在的应用场景,以便读者能够更全面地理解这一概念。
1. selectionpreview变量的作用selectionpreview变量通常用于编程语言中,用于显示和选择不同的选项。
它可以在代码编辑器中实时展示不同选项的预览效果,让开发者能够更直观地理解和选择适合的选项。
这一特性极大地提高了开发效率,同时也让代码更易于维护和扩展。
2. selectionpreview变量的用法在实际应用中,开发者可以通过在代码中定义selectionpreview变量,然后在不同的选项之间进行切换和预览。
这样一来,他们可以直观地比较不同选项的效果,并及时做出调整。
这种实时的预览和选择方式非常直观,让开发者可以更快速地找到最佳的解决方案。
3. selectionpreview变量的应用场景selectionpreview变量在各种编程语言和评台上都有广泛的应用。
在Web开发中,开发者可以使用它来预览不同的样式和布局效果;在游戏开发中,可以用它来展示不同的关卡和角色设计;在数据分析领域,可以用它来比较不同的数据处理方法等。
只要涉及到多选一的情况,selectionpreview变量都可以发挥作用。
总结回顾通过本文的介绍,我们可以看到selectionpreview变量在编程中的重要性和应用价值。
它不仅可以帮助开发者更直观地预览和选择不同的选项,还可以提高代码的灵活性和可读性。
在实际编程中,我们可以通过灵活运用selectionpreview变量,让代码更加优雅和高效。
个人观点作为一名编程爱好者,我深刻体会到selectionpreview变量在实际开发中的重要性。
它不仅简化了选择和预览的过程,还让代码更加易于理解和维护。
ondeactivated 还原值
OnDeactivated 是WinForms 应用程序中的一个事件,它发生在窗体不再激活之前。
这通常发生在窗体关闭或隐藏之前。
如果你想要在OnDeactivated 事件中处理一些逻辑,例如保存窗体的状态或值,你可以这样做:
csharp
private void Form1_Deactivate(object sender, EventArgs e)
{
// 你可以在这里保存窗体的状态或值
// 例如,保存一个文本框的文本到变量中
string textValue = textBox1.Text;
// ... 其他逻辑
}
如果你想要在OnActivated 事件中还原这些值,你可以这样做:
csharp
private void Form1_Activated(object sender, EventArgs e)
{
// 你可以在这里还原之前保存的状态或值
// 例如,将文本框的文本设置为之前保存的值
textBox1.Text = textValue;
// ... 其他逻辑
}
注意:这只是一个简单的例子。
在实际应用中,你可能需要更复杂的逻辑来处理状态保存和还原。
edittextpreference 展示对话框原理
edittextpreference 展示对话框原理摘要:一、edittextpreference 对话框概述1.edittextpreference 对话框定义2.edittextpreference 对话框的作用二、edittextpreference 对话框的原理1.edittextpreference 对话框的布局2.edittextpreference 对话框的控件3.edittextpreference 对话框的事件处理三、edittextpreference 对话框的应用1.在Android 开发中的使用2.edittextpreference 对话框的优缺点正文:一、edittextpreference 对话框概述edittextpreference 对话框是一种常见的弹出式对话框,主要用于在用户编辑文本时提供便利。
它通常包含一个编辑框和一些按钮,用户可以在其中输入或修改文本,然后通过按钮保存或取消更改。
二、edittextpreference 对话框的原理edittextpreference 对话框的布局通常包括一个标题栏、一个编辑框和一个按钮栏。
标题栏通常包含一个标题文本,用于描述对话框的功能;编辑框是用户输入或修改文本的地方;按钮栏则包含“确定”和“取消”等按钮,用于处理用户的事件。
edittextpreference 对话框的控件主要是编辑框和按钮。
编辑框通常是一个EditText 控件,用于显示和编辑文本;按钮则可以包括“确定”、“取消”等,用于处理用户的事件。
edittextpreference 对话框的事件处理主要是处理用户在编辑框和按钮上的操作。
当用户在编辑框上输入或修改文本时,可以通过监听器来获取变化,并做出相应的处理;当用户点击按钮时,可以处理用户的选择,如保存更改或取消更改。
三、edittextpreference 对话框的应用在Android 开发中,edittextpreference 对话框通常用于用户编辑文本信息,如用户名、密码等。
setcursel函数用法
setcursel函数用法setcursel函数是Windows API中的一个函数,它用于设置指定控件中当前选取的项。
该函数针对不同类型的控件,有着不同的参数设置方式。
本文将详细介绍setcursel函数的用法。
```int SetCurSel(HWND hwndCtl,int index);```该函数有两个参数:- hwndCtl:指向包含要进行操作的控件的窗口的句柄。
- index:为使用setcursel函数的控件选取的项的索引值。
setcursel函数返回值为整型。
如果函数执行成功,则返回值为被选中项的索引值。
如果函数执行失败,则返回值为LB_ERR或CB_ERR。
1.列表框(Listbox)2.组合框(Combobox)1.在列表框中选定第一项在列表框中,如果想要默认选中第一项,可以使用如下代码:```hListbox = GetDlgItem(hWndDlg, IDC_LISTBOX);//获取列表框句柄SendMessage(hListbox, LB_SETCURSEL, 0, 0);//选定第一项```在列表框中,如果要选定指定的一个或多个项,需要先获取列表框的句柄,然后使用setcursel函数进行设置。
代码示例如下:4.取消列表框中的选中项1.执行失败,返回LB_ERR或CB_ERR可能出现这种错误的原因,比如:无法获取控件的句柄,指定的索引值超出了选项的范围等。
setcursel函数只能在列表框或组合框中使用。
如果在其他类型的控件中,如单选按钮或多选框中使用该函数,系统会报错。
qstyleditemdelegate可选文本
主题:QStyledItemDelegate可选文本控件的使用与优化随着移动互联网的迅猛发展和智能手机用户数量的不断增加,移动应用程序的开发和设计变得越来越重要。
而在移动应用程序中,列表和表格控件是非常常见的界面元素,它们可以用来展示大量的数据,并且可以实现用户与数据的交互。
在Qt框架中,QStyledItemDelegate是一个非常重要的控件,它可以用来定制列表和表格控件中每个项的外观和交互方式。
1. QStyledItemDelegate的概述QStyledItemDelegate是Qt框架中用来定制列表和表格控件中项的外观和交互方式的控件。
它可以用来定制每个项的显示样式、编辑方式、选择方式等,从而实现更加个性化的界面效果和交互方式。
2. QStyledItemDelegate的常见用途QStyledItemDelegate可以用于定制列表控件(QListWidget、QTreeView等)和表格控件(QTableWidget、QTreeView等)中每个项的外观和交互方式。
它可以实现以下常见的需求:- 定制项的显示样式,比如设置项的背景色、前景色、字体样式等。
- 定制项的编辑方式,比如设置项的编辑器类型、输入限制等。
- 定制项的选择方式,比如设置项的选择方式、选择模式等。
3. QStyledItemDelegate的高级用法除了常见用途外,QStyledItemDelegate还可以实现一些高级的定制需求,比如:- 实现可选文本的展示和交互:QStyledItemDelegate可以实现在列表和表格控件中展示可选文本,并且可以对可选文本进行交互操作,比如选择、取消选择等。
- 实现复杂的交互操作:QStyledItemDelegate可以实现一些复杂的交互操作,比如拖拽、复制粘贴、多选操作等。
- 实现动态的外观定制:QStyledItemDelegate可以根据数据的变化动态改变项的外观,比如根据数据的数值大小显示不同的颜色、根据数据的类型显示不同的图标等。
repositoryitemsearchlookupedit 默认值 -回复
repositoryitemsearchlookupedit 默认值-回复默认值是指在某种情况下,如果没有给定特定的值,系统或程序会使用的预设值。
在软件开发中,为了提高用户体验和方便操作,往往会设置一些默认值,其中包括RepositoryItemSearchLookUpEdit 控件的默认值。
在本篇文章中,我们将详细讨论什么是RepositoryItemSearchLookUpEdit 控件以及它的默认值是如何影响程序和用户的。
首先,我们要了解RepositoryItemSearchLookUpEdit 控件是什么。
RepositoryItemSearchLookUpEdit 控件是一个能够在用户输入时实时检索匹配选项的下拉列表控件。
它与普通的下拉列表控件相比,有着更强大的搜索功能和更好的用户体验。
当用户在控件上进行输入时,控件会根据输入的内容自动过滤数据源,仅显示与输入内容匹配的选项。
这种实时搜索和过滤功能大大方便了用户的数据查找和选择,提升了用户的操作效率。
然而,在创建RepositoryItemSearchLookUpEdit 控件时,并不是所有的属性和值都需要手动进行设置。
其中一些属性拥有默认值,这些默认值将在未显式设置属性值的情况下被使用。
这样做的目的是为了简化开发流程,并提供一致的用户体验。
首先,我们来看一下RepositoryItemSearchLookUpEdit 控件的一些常见属性和它们的默认值。
其中,常见的属性包括DataSource、DisplayMember、ValueMember、NullText、AutoSearchDelay、PopupFormSize、与PopupFormMinSize 等等。
在默认情况下,DataSource 属性和DisplayMember 属性的值为null,ValueMember 属性的值为string.Empty。
这意味着如果我们没有显式地为这些属性赋值,控件将无法正确地显示数据源的内容。
Petrel官方地震解释培训M3_Reconnaissance
1
2
3
Display multiple seismic views on the same screen
Options to tile horizontally or vertically
Interpretation is updated interactively between windows
2
Posting data in an Interpretation window
To post data in the Interpretation window, toggle on the appropriate boxes in the Input or Models tab: • Horizon interpretation • Faults • Wellbores (needs a time/depth relationship) • Logs • Well Tops • 3D grid data (properties, edges, etc.) Display of the objects is changed in the appropriate Settings dialog, under Style tab
To change lines
4
3. Check box in front of a different seismic line
4. LMB on triangle above seismic or drag to new position
12 3
Manipulating an Interpretation window
2. Open the Seismic color tables folder with all the predefined color palettes
selection = new selectionmodel()
`selection = new selectionmodel()` 这行代码是在创建一个名为`selection` `selection = new selectionmodel()` 这行代码是在创建一个名为`selection` 的`selectionmodel` 对象。
`selectionmodel` 是一个用于处理列表或表格中选定项的类,通常在图形用户界面(GUI)编程中使用。
以下是一个示例代码,演示如何使用`selectionmodel`:```python# 导入必要的库from PyQt5.QtWidgets import QApplication, QListWidget, QListWidgetItemfrom PyQt5.QtCore import Qt# 创建应用程序实例app = QApplication([])# 创建列表窗口小部件list_widget = QListWidget()# 添加一些项目到列表窗口小部件for i in range(10):item = QListWidgetItem(f"Item {i}")list_widget.addItem(item)# 创建选择模型并关联到列表窗口小部件selection_model = list_widget.selectionModel()# 设置选择模式为多选selection_model.setSelectionMode(QAbstractItemView.MultiSelection)# 显示列表窗口小部件list_widget.show()# 运行应用程序事件循环app.exec_()```上述代码使用了PyQt5 库来创建一个简单的图形用户界面,其中包含一个列表窗口小部件。
通过调用`selectionmodel()` 方法,我们创建了一个选择模型并将其关联到列表窗口小部件上。
然后,我们设置了选择模式为多选,允许用户选择多个项目。
element reserve-selection
元素保留选择(Element Reserve-Selection)元素保留选择是一种常见的科学实验方法,用于确定实验结果的可靠性和可重复性。
它通过从一组初始实验中选择一些特定的因素和条件,来确定后续实验中应予以保留的元素。
这种方法的目的是排除实验中可能存在的影响因素,降低误差,并确保实验结果的准确性和可靠性。
在执行元素保留选择之前,需要制定一个详细的实验方案。
该方案应包括实验的目标、所需的材料和设备,以及实验的步骤和参数设置。
在确定实验步骤和参数时,需要考虑实验设计的因素和条件,以及实验的可行性和可控性。
在执行元素保留选择时,需要根据实验目标和实验方案的要求,选择一组具有代表性的样本进行实验。
这些样本应包含一定的差异和变化,以便能够全面地了解实验中的因素和条件。
在实验过程中,需要记录和分析样本的各种数据和指标,以评估实验结果的可靠性和可重复性。
为了保证元素保留选择的准确性和有效性,需要将实验过程进行多次重复。
这样可以通过对多组实验结果的比较和统计分析,确定哪些因素和条件对实验结果的影响较大,应予以保留,而哪些因素和条件对实验结果的影响较小,可以予以剔除。
元素保留选择的结果应根据实验目标和实验方案进行解读和评估。
在对实验结果进行解读和评估时,需要考虑实验过程中可能存在的误差和不确定性,并结合相关的理论和知识,对结果进行合理的解释和说明。
同时,还应对实验过程中的限制和不足进行分析和讨论,以为后续实验的改进和优化提供依据和建议。
元素保留选择在科学研究和实验中具有重要的应用价值。
它可以帮助科学家和研究人员准确地确定影响实验结果的因素和条件,避免误导性的结论和推断。
同时,它还可以提高实验结果的可靠性和可重复性,增强研究的科学性和可信度。
因此,元素保留选择是进行科学实验和研究的基础和保障,应予以广泛应用和推广。
总而言之,元素保留选择是一种重要的科学实验方法,通过从初始实验中选择和保留一些特定的因素和条件,来确保实验结果的准确性和可靠性。
input_from_feature_columns 详解 -回复
input_from_feature_columns 详解-回复什么是[input_from_feature_columns]及其意义?在机器学习和深度学习中,[input_from_feature_columns]是一个重要的概念,它用于定义模型的输入特征,并为模型提供有效的训练数据。
它是模型构建过程中的一项关键工作,通过将原始数据转换为能够被模型有效处理的形式,提高了模型的准确性和性能。
在深度学习中,输入数据通常以张量的形式表示。
而[input_from_feature_columns]的主要作用就是将原始数据转化为张量,使得它们能够被模型接受和处理。
特征列(feature columns)是定义输入数据的一种方式,它描述了输入数据的结构和类型,并对其进行适当的预处理和转换。
特征列(feature columns)可以包括不同类型的特征,例如数值型、类别型、文本型等。
对于数值型特征,特征列可以直接将原始数值作为输入;对于类别型特征,特征列可以将其转化为离散的类别编码;对于文本型特征,特征列可以将其转化为向量表示。
通过特征列的组合,我们可以构建复杂的输入数据结构,以满足具体模型的需求。
具体而言,[input_from_feature_columns]包含以下几个步骤:1. 特征列定义:首先需要根据原始数据的类型和特征结构,定义相应的特征列。
例如,如果输入数据包含数值型、类别型和文本型特征,就需要定义数值列、类别列和文本列。
2. 特征预处理:对于每个特征列,需要进行适当的预处理操作。
例如,对于数值型特征,可以进行归一化处理;对于类别型特征,可以进行独热编码;对于文本型特征,可以进行词向量化等操作。
3. 特征组合:根据模型的需求,将不同类型的特征列组合成一个统一的特征列。
这样可以确保模型能够同时处理多个输入特征,提高模型的表达能力。
4. 特征转换:最后,需要将原始数据转化为张量形式,以便能够被模型接受和处理。
input_from_feature_columns 详解 -回复
input_from_feature_columns 详解-回复input_from_feature_columns是TF1和TF2中定义特征列的一个函数。
在深度学习中,特征列负责将原始数据转换为模型可用的格式。
该函数的作用是为Estimator模型准备好输入的特征列。
特征列是模型训练的关键组成部分,它主要负责将原始数据转换为TensorFlow模型能够处理的输入格式。
通过特征列,我们可以定义特征的数据类型和形状,以及对特征进行预处理和转换。
在实践中,特征列可用于处理各种类型的数据,如数值型特征、类别型特征、文本型特征和图像型特征等。
下面将逐步讲解input_from_feature_columns函数的使用方法和参数解释:1. 引入TensorFlow库和导入数据首先,我们需要导入TensorFlow库,以及导入需要进行训练和测试的数据。
通常的做法是将数据分为训练集和测试集,其中训练集用于训练模型,测试集用于评估模型的性能。
2. 定义特征列接下来,我们需要定义特征列。
特征列的定义可以根据不同的数据类型进行区分。
常用的特征列包括:- tf.feature_column.numeric_column:用于处理数值型特征,可以定义特征的数据类型和形状。
- tf.feature_column.bucketized_column:用于将数值型特征分桶处理,可以将连续型特征转换为离散型特征。
- tf.feature_column.categorical_column_with_vocabulary_list:用于处理类别型特征,可以将特征值映射为整数编码。
- tf.feature_column.embedding_column:用于处理文本型特征,可以将文本转换为高维向量。
等等。
3. 创建输入函数在使用特征列之前,我们需要先创建一个输入函数,用于将原始数据转换为特征列可用的输入格式。
输入函数通常包括对数据进行预处理和转换的步骤,例如对数值型特征进行归一化处理,对文本型特征进行分词等。
input_from_feature_columns 详解 -回复
input_from_feature_columns 详解-回复input_from_feature_columns 的详解在机器学习领域中,input_from_feature_columns 是一个重要的概念,它在模型训练过程中起到了关键的作用。
本文将逐步解释input_from_feature_columns 的含义、作用和使用方法,并探讨它在实际应用中的应用场景和方法。
首先,我们需要了解feature_columns 的概念。
在机器学习中,feature_columns 是一种数据结构,用于描述输入数据的特征。
它可以包含各种类型的数据,比如连续值、离散值等。
feature_columns 是TensorFlow 中的一个重要概念,它提供了一种灵活和通用的方式来构建和管理输入数据的特征。
input_from_feature_columns 是TensorFlow 中的一个函数,它可以将feature_columns 转换成模型的输入。
具体来说,在使用TensorFlow 进行模型训练时,我们通常需要将输入数据转换成一种可供模型使用的格式。
input_from_feature_columns 通过接收特征列作为参数,并将其转换为模型的输入。
这个函数是TensorFlow 提供的一个重要工具,用于简化和优化模型输入的处理过程。
input_from_feature_columns 一般用于构建输入管道,将数据集中的特征与对应的特征列进行匹配,并将其转换成可以输入到模型的格式。
在实际应用中,我们常常需要处理各种类型的特征数据,如连续值、离散值、文本、图像等。
input_from_feature_columns 可以灵活地处理各种类型的特征,适用于不同的情况和任务。
使用input_from_feature_columns 的一般步骤如下:步骤一:定义特征列首先,我们需要定义特征列。
特征列描述了输入数据的特征类型和属性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
Our approach is also \Bayesian": Relevance of inputs is measured by a probability distribution over all possible feature subsets. This probability measure is determined by the Bayesian evidence of the corresponding models. The general idea was already used in 7] for variable selection in linear regression models. Though our interest is di erent as we select inputs for a nonlinear classi cation model. We want an approximation of the true distribution over all di erent subsets. As the number of subsets grows exponentially with the total number of inputs, we can not calculate Bayesian model evidence directly. We need a method that samples e ciently across di erent dimensional parameter spaces. The most general method that can do this is the reversible jump Markov chain Monte Carlo sampler (reversible jump MC) recently proposed in 4]. The approach was successfully applied by 8] to determine a probability distribution in a mixture density model with variable number of kernels and in 5] to sample from the posterior of RBF regression networks with variable number of kernels. A Markov chain that switches between di erent input subsets is useful for two tasks: Counting how often a particular subset was visited gives us a relevance measure of the corresponding inputs; For classi cation, we approximate the integral over input sets and coe cients by summation over samples from the Markov chain. The next sections will show how to implement such a reversible jump MC and apply the proposed algorithm to classi cation and input evaluation using some public datasets. Though the approach could not improve the MLP-ARD scheme from 6] in terms of classi cation accuracy, we still think that it is interesting: We can assess the importance of di erent feature subsets which is di erent than importance of single features as estimated by ARD.
2 Methods
The classi er used in this paper is a RBF like model. Inference is performed within a Bayesian framework. When conditioning on one set of inputs, the posterior over model parameters is already multimodal. Therefore we resort to Markov chain Monte Carlo (MCMC) sampling techniques to approximate the desired posterior over both model coe cients and feature subsets. In the next subsections we will propose an appropriate architecture for the classi er and a hybrid sampler for model inference. This hybrid sampler consists of 2
peter@ai.univie.ac.at
In this paper we will treat input selection for a radial basis function (RBF) like classi er within a Bayesian framework. We approximate the a-posteriori distribution over both model coe cients and input subsets by samples drawn with Gibbs updates and reversible jump moves. Using some public datasets we compare the classi cation accuracy of the method with a conventional ARD scheme. These datasets are also used to infer the relevance of di erent input subsets.
On input selection with reversible jump Markov chain Monte Carlo sampling
Peter Sykacek Austrian Research Institute for Arti cial Intelligence (OFAI) Schottengasse 3, A-1010 Vienna, Austria
Abstract
1 Introduction
Methods that aim to determine relevance of inputs have always interested researchers in various communities. Classical feature subset selection techniques, as reviewed in 1], use search algorithms and evaluation criteria to determine one optimal subset. Although these approaches can improve classi cation accuracy, they do not explore di erent equally probable subsets. Automatic relevance determination (ARD) is another approach which determines relevance of inputs. ARD is due to 6] who uses Bayesian techniques, where hierarchical priors penalize irree Gibbs updates ( 2]) to sample when conditioning on a particular set of inputs and reversible jump moves that carry out dimension switching moves. In order to allow input relevance determination by Bayesian model selection, the classi er needs at least one coe cient that is associated with each input: Roughly speaking, the probability of each model is proportional to the likelihood of the most probable coe cients, weighted by their posterior width divided by their prior width. The rst factor always increases when using more coe cients (or input features). The second will decrease the more inputs we use and together this gives a peak for the most probable model. A classi er that satis es these constraints is the so called classi cation in the sampling paradigm. We model class conditional densities and together with class priors express posterior probabilities for classes. In neural network literature this approach was rst proposed in 10]. We use a model that allows for overlapping class conditional densities: D K X X p(xjk) = wkdp(xj d) , p(x) = Pk p(xjk) (1) Using Pk for the K class priors and p(xjk) for the class conditional densities, (1) expresses posterior probabilities for classes as P (kjx) = Pk p(xjk)=p(x). We choose the component densities, p(xj d ), to be Gaussian with restricted parametrisation: Each kernel is a multivariate Gaussian with equal variance for all kernels and dimensions. For all Gaussian kernels together, we get D I + 1 parameters, with I denoting the current input dimension and D denoting the number of kernels. Apart from kernel coe cients, d , (1) has D coe cients per class, wkd, indicating the prior kernel allocation probabilities and K class priors. Model (1) allows to treat labels of patterns as missing data and use labeled as well as unlabeled data for model inference. In this case training is carried out using the likelihood of observing inputs and targets: (2) p(T ; Xj ) = K=1 Nkk=1Pk pk (xnk j k ) M=1p(xm j ); n k m where T denotes labeled and X unlabeled training data. In (2) k are all coe cients the k-th class conditional density depends on. We further use 3