湖南师大附中2016届高三月考试卷(一)
湖南师范大学附属中学2016届高三月考(三)英语试题(含答案)
湖南师范大学附属中学2016届高三月考(三)英语试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共10页,时量120分钟。
满分150分。
第Ⅰ卷第一部分听力(共两节, 满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.What are the two speakers talking about?A. A weekend plan.B. RubbishC. Home-made cookies2. What will Kate probably do tomorrow?A. Go campingB. Go shoppingC. Watch a film3. When is Paul’s birthday?A. July 11thB. July 7thC. July 12th4.What does the woman like least?A. TeaB. JuiceC. Coffee5. What will the man get?A. A textbook on saleB. A textbook with a perfect coverC. A textbook for free第二节(共5小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各个小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
6. What is the probable relationship between the two speakers?A. ColleaguesB. Husband and wifeC. Driver and passenger7. Where is the woman going first today?A. Her homeB. The Walmart D. Her grandma’s听第7段材料,回答第8、9题。
湖南师大附中2016届高三月考试卷三
! "
+ ,
炎德 英才大联考理科数学 ! 附中版 " !! )
! 本小题满分 " " &! # 分" 是指大气中直径小于或等于 也称为 可 入 肺 颗 02 # ; ' #! ' 微米的颗粒物 % 粒物 ! 我国 02 即 02 # ; '标准 采 用 世 卫 组 织 设 定 的 最 宽 限 值% # ; '日均 值在 ) 在) ' 微 克/立 方 米 以 下 空 气 质 量 为 一 级 . ' 微 克/立 方 米 * '微 在* 克/立方米之间空气质 量 为 二 级 . ' 微 克/立 方 米 以 上 空 气 质 量 为 超 标! 某市环保局从市区今年 7 月每 天 的 02 按系统抽样 # ; '监测数 据 中% 方法抽取了某 % 天的数据作为样本 % 其监测值如下茎叶图所示 ! ! " 根据样本数据估计今年7月份该市区每天 " 02 # ; ' 的平均值和方差 . " 从所抽 样 的 % 天 中 任 意 抽 取 三 天 % 记 表 示 抽 ! # 求 的 分 取的三天中 空 气 质 量 为 二 级 的 天 数 % 布列和数学期望 !
" " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " " "
湖南省湖南师范大学附属中学2016届高三上学期第六次月考理数试题Word版含解析
湖南师大附中2016届高三月考试卷(六)数学(理科)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知复数221z i i=++,则下列结论中正确的是( ) A .z 的虚部为i B .2z = C .2z 为纯虚数 D .1z i =-+ 【答案】C考点:复数及其运算.2.已知条件:p ()()30x m x m --->;条件:q 2340x x +-<.若p 是q 的必要不充分条件,则实数m 的取值范围是( ) A .()(),71,-∞-+∞ B .(][),71,-∞-+∞ C .()7,1-D .[]7,1- 【答案】B 【解析】试题分析:设集合{}3x x m x m P =<>+或,{}Q 41x x =-<<.因为p 是q 的必要不充分条件,则Q 是P 的真子集,所以34m +≤-或1m ≥,即7m ≤-或1m ≥,选B . 考点:1、充要条件;2、二次不等式.3.已知sin cos 2αα+=,且()0,απ∈,则cos2α的值为( )A ..14- CD .14【答案】A 【解析】试题分析:由已知,()23sin cos 4αα+=,即31s i n 24α+=,则1s i n 24α=-.因为()0,απ∈,则sin 0α>,cos 0α<.因为()25cos sin 1sin 24ααα-=-=,则cos sin αα-=,所以()()cos 2cos sin cos sin ααααα=-+=,选A . 考点:1、同角三角函数的基本关系;2、二倍角公式.【方法点晴】本题主要考查同角三角函数的基本关系和二倍角公式,属于中等难题. 本题是考查正余弦和、差、积知一求二的常见题型,要求考生熟练掌握它们之间的互化,即sin cos sin cos sin cos αααααα+⇔⇔-,以正余弦的平方和等于1为工具,以sin cos αα为桥梁实现三者的互化,解决此类题型还应注意根的取舍.4.执行如图所示的程序框图,如果输入6n =,4m =,则输出的p 等于( )A .60B .240C .300D .360【答案】D考点:程序框图.5.用1,2,⋅⋅⋅,9这九个数字组成无重复数字的三位数,记为abc ,其中a ,b ,c 三个数字之积能被10整除的三位数共有( )A .96个B .132个C .168个D .180个 【答案】B 【解析】试题分析:据题意,三个数字中有一个数是5,另两个数至少有一个偶数.第一类,分别从1,3,7,9和2,4,6,8中各选一个数,连同5组成三位数,有113443C C 96A =个;第二类,从2,4,6,8中任选两个数,连同5组成三位数,有2343C 36A =个,所以符合条件的三位数共有9636132+=个,选B . 考点:排列组合.6.已知某三棱锥的三视图如图所示,则此三棱锥的外接球的体积为( )A .43πB CD .3π【答案】C考点:1、三视图;2、正方体的外接球.7.已知函数()()sin f x x ωϕ=A +(0A >,0ω>,2πϕ<)在一个周期内的图象如图所示, 则4f π⎛⎫=⎪⎝⎭( ) A .1 B .12C .1-D .12-【答案】A考点:函数sin()y A x ωϕ=+的图象.【易错点晴】本题主要考查函数sin()y A x ωϕ=+的图象,属于中等题型,本题可以采用直接法(即按,,A ωϕ顺序求解),但计算量稍大,速度较慢.本题可以采用排除法解题速度较快,即先由,T π=可排除A 、C ,再由()06f π-=可排除B ,即可得正确答案D. 故解决此类题型的常用方法有:1、采用直接法(即按,,A ωϕ顺序求解);2、排除法(抓住部分特征进行排除).8.某公司近六年投入某种产品的年宣传费x (单位:万元)和年销售量y (单位:万件)之间的样本数据如下表所示:则当年宣传费为15万元时,年销售量的预报值为( )A .45万件B .48万件C .50万件D .55万件参考公式:在回归直线方程ˆybx a =+中,1221ni ii nii x y n x yb xn x ==-⋅⋅=-⋅∑∑,a y bx =-.【答案】C考点:回归直线的方程. 9.已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,则当0k >时,函数()1y f f x =+⎡⎤⎣⎦的零点个数是( ) A .1 B .2 C .3 D .4 【答案】D 【解析】试题分析:令()10f f x +=⎡⎤⎣⎦,得()1f f x =-⎡⎤⎣⎦.设()f x t =,则()1f t =-.由图知,方程()1f t =-有两解1t ,2t ,且11t k=-,201t <<.从而方程()1f x t =有两解,方程()2f x t =也有两解.所以方程()10f f x +=⎡⎤⎣⎦有4个解,选D .考点:1、分段函数;2、函数的零点.10.如图,边长为2的正方形CD AB 的顶点A ,B 分别在两条互相垂直的射线OP ,Q O 上滑动,则C D O ⋅O 的最大值为( )A .2B .4C .6D .8【答案】D考点:1、向量及其运算;2、函数的最值.11.设双曲线22221x y a b-=(0a >,0b >)的两条渐近线分别为1l ,2l ,左焦点为F .若点F关于直线1l 的对称点P 在2l 上,在双曲线的离心率为( )A .2B .3 CD【答案】A 【解析】试题分析:不妨设1:l b y x a =-,2:l b y x a =,点()F ,0c -,00,b x x a ⎛⎫P ⎪⎝⎭.因为1F l P ⊥,则001bx b a x c a ⎛⎫-=- ⎪+⎝⎭,即()2200b x a x c =+.因为F P 的中点00,22x c bx a -⎛⎫M ⎪⎝⎭在1l 上,则0022bx x c b a a -=-⋅,即02c x =.所以2222c c b a c ⎛⎫⋅=+ ⎪⎝⎭,即223b a =.所以2e ==,选A .12.对于区间[],a b 上的函数()f x ,若存在[]0,x a b ∈,使得()()0baf x f x dx =⎰成立,则称0x 为函数()f x 在区间[],a b 上的一个“积分点”.那么函数()cos 26f x x π⎛⎫=+ ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的“积分 点”为( )A .6πB .4πC .3πD .512π【答案】B考点:1、定积分;2、三角函数的性质.【方法点晴】本题主要考查定积分、三角函数的性质,题型较新,属于较难题型.解决本题时,要求考生细读题干,弄清“积分点”这个概念,再计算220011cos 2sin 26262x dx x ππππ⎛⎫⎛⎫+=+=- ⎪ ⎪⎝⎭⎝⎭⎰,然后令()001cos 262f x x π⎛⎫=+=- ⎪⎝⎭,结合072,666x πππ⎡⎤+∈⎢⎥⎣⎦可得02263x ππ+=,即04x π=.解此类题型关键是紧扣新概念,作为解题的突破口.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分.)13. 在C ∆AB 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若sin 2sin A =B,且a b +=,则角C 的大小为 . 【答案】60考点:1、正弦定理;2、余弦定理.14.已知x ,y 满足约束条件1010220x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,若目标函数z ax by =+(0a >,0b >)的最大 值为1,则113a b+的最小值为 . 【答案】9 【解析】试题分析:作可行域,得当3x =,4y =时,目标函数z ax by =+取得最大值.由已知,341a b +=,则()11114334559333b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥+ ⎪ ⎪⎝⎭⎝⎭,当且仅当19a =,16b =时取等号,所以min1193a b ⎛⎫+=⎪⎝⎭.考点:1、线性规划;2、重要不等式.15.设直线:l 20x y m --=与椭圆C:2214x y +=相交于A ,B 两点,M 为椭圆C 的左顶点,若∆ABM 的重心在y 轴右侧,则m 的取值范围是 .【答案】(2,考点:直线与椭圆的位置关系.【方法点晴】本题主要考查直线与椭圆的位置关系,计算量大、综合性较强,属于较难题型.解决本题时可以采用消去未知数x 得到228440y my m ++-=,降低计算量,再由()22163240m m ∆=-->⇒ 28m <⇒m -<<122my y +=-⇒()121222x x y y m m +=++=.又由∆ABM 的重心在y 轴右侧⇒1220x x +->⇒2m >⇒m 的取值范围是(2,.16.如图,记棱长为1的正方体为1C ,以1C 各个面的中心为顶点的正八面体为2C ,以2C 各面的中心为顶点的正方体为3C ,以3C 各个面的中心为顶点的正八面体为4C ,⋅⋅⋅,以此类推.则正方体9C 的 棱长为 .【答案】18考点:1、空间几何体的结构特征;2、等比数列及其通项公式.【方法点晴】本题主要考查空间几何体的结构特征、等比数列及其通项公式,涉及合情推理思想,属于较难题型.先计算2122a a ==,在计算3222113233a a =⋅==,同理得46a =,519a =,⋅⋅⋅.由此猜想,数列1a ,3a ,5a ,⋅⋅⋅,21n a -是首项为1,公比为13的等比数列,所以4911381a ⎛⎫== ⎪⎝⎭,本题的关键是观察出奇次项数列的规律.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)设数列{}n x 的前n 项和为n S ,若存在非零常数p ,使对任意n *∈N 都有2nnS p S =成立,则称数列{}n x 为“和比数列”. (1)若数列{}n a 是首项为2,公比为4的等比数列,判断数列{}2log n a 是否为“和比数列”;(2)设数列{}n b 是首项为2,且各项互不相等的等差数列,若数列{}n b 是“和比数列”,求数列{}n b 的 通项公式.【答案】(1)是,证明见解析;(2)()24142n b n n =+-=-. 【解析】试题分析:(1)已知可得121242n n n a --=⋅= 2log 21n a n ⇒=- ()21212n n S n n +-⇒=⋅= 24nnS S ⇒=;(2)由已知可得前n 项和()122n n n n d -T =+()()()()222148*********n n n n n d n d p n n n d n d-++-T ⇒===-T +-+恒成立()()()4240p dn p d ⇒-+--=恒成立()()()40240p d p d -=⎧⎪⇒⎨--=⎪⎩4p ⇒=,4d = ()24142n b n n ⇒=+-=-.(2)设数列{}n b 的公差为d (0d ≠),前n 项和为n T ,则()122n n n n d -T =+, ()222142n n n n d -T =+,所以()()()()222148*********n n n n n d n d n n n d n d-++-T ==-T +-+.…………………(8分)因为{}n b 是“和比数列”,则存在非零常数p ,使()()822141n dp n d+-=+-恒成立.即()()822141n d p n d +-=+-⎡⎤⎣⎦,即()()()4240p dn p d -+--=恒成立.…………………(10分) 所以()()()40240p d p d -=⎧⎪⎨--=⎪⎩.因为0d ≠,则4p =,4d =.所以数列{}n b 的通项公式是()24142n b n n =+-=-.…………………(12分) 考点:1、数列的通项公式;2、数列的前n 项和公式;3、对数的基本运算. 18.(本小题满分12分)某工厂有120名工人,其年龄都在2060岁之间,各年龄段人数按[)20,30,[)30,40,[)40,50,[]50,60分成四组,其频率分布直方图如下图所示.工厂为了开发新产品,引进了新的生产设备,要求每个工人都要参加A 、B 两项培训,培训结束后进行结业考试.已知各年龄段两项培训结业考试成绩优秀的人数如下表所示.假设两项培训是相互独立的,结业考试也互不影响.(1)若用分层抽样法从全厂工人中抽取一个容量为40的样本,求四个年龄段应分别抽取的人数;(2)根据频率分布直方图,估计全厂工人的平均年龄;(3)随机从年龄段[)20,30和[)40,50中各抽取1人,设这两人中A 、B 两项培训结业考试成绩都优秀的人数为X ,求X 的分布列和数学期望.【答案】(1) 应抽取的人数分别为12,14,8,6;(2)均年龄约为37岁;(3)分布列见解析,期望()712E X =.试题解析:(1)由频率分布直方图可知,年龄段[)20,30,[)30,40,[)40,50,[]50,60的人数的频率分别为0.3,0.35,0.2,0.15.…………………(1分)因为400.312⨯=,400.3514⨯=,400.28⨯=,400.156⨯=,所以年龄段[)20,30,[)30,40,[)40,50,[]50,60应抽取的人数分别为12,14,8,6.…………………(3分) (2)因为各年龄组的中点值分别为25,35,45,55,对应的频率分别为0.3,0.35,0.2,0.15,则250.3350.35450.2550.1537x =⨯+⨯+⨯+⨯=.由此估计全厂工人的平均年龄约为37岁…………………(6分)由题设,X 的可能取值为0,1,2.其中()111011342⎛⎫⎛⎫P X ==-⨯-= ⎪ ⎪⎝⎭⎝⎭, ()11115111343412⎛⎫⎛⎫P X ==⨯-+-⨯= ⎪ ⎪⎝⎭⎝⎭,()11123412P X ==⨯=.…………………(10分)所以X 的分布列是…………………(11分) 期望()151701212121212E X =⨯+⨯+⨯=.…………………(12分) 考点:1、频率分布直方图;2、分布列;3、数学期望.19.(本小题满分12分)如图,在四棱柱1111CD C D AB -A B 中,1A A ⊥底面CD AB ,各侧棱长和底边长都为2,D 60∠BA =,E 为侧棱1BB 的延长线上一点,且11B E =. (1)求二面角1D C -A -E 的大小;(2)设点F 在线段1D E 上,若1F//A 面C A E ,求1D F :F E 的值.【答案】(1)45;(2)1D F :F 3:2E =.试题解析:(1)取C A 的中点O ,连结1D O ,OE .因为1D D D ⊥A ,1D D CD ⊥,D CD A =,则11D CD A =,所以1D C O ⊥A . 同理C OE ⊥A ,所以1D ∠OE 为二面角1D C -A -E 的平面角.…………………(2分) 由已知,D ∆AB 是边长为2的正三角形,则D 1OB =O =.在1Rt DD ∆O 中,1DD 2=,则1D O ==.…………………(3分)在Rt ∆OBE 中,3BE =,则OE ==4分)连结11D B ,在11Rt D ∆B E 中,11D 2B =,11B E =,则1D E ==……………(5分)显然,22211D D O +E =OE ,则1D ∆O E 为等腰直角三角形,所以1D 45∠OE =,故二面角1D C -A -E 的大小为45.…………………(6分)(2)分别以OA ,OB 为x 轴,y 轴,过点O 与平面CD AB 垂直的直线为z 轴建立空间直角坐标系,则()3,0,0OA =,()0,1,3OE =,()D 0,1,0O =-,()1D 0,1,2O =-.…………………(8分)设(),,n x y z =为平面C A E 的法向量,则00n n ⎧⋅OA =⎪⎨⋅OE =⎪⎩,即030y z =+=⎪⎩.取1z =,则()0,3,1n =-.…………………(9分)设11D F D λ=E ,则()()111111F D D F D D D D λλA =A +=A +E =O -OA +OE -O()()()1,00,2,11,λλλ=-+=-.…………………(10分)因为1F//A 面C A E ,则1F n A ⊥,即1F 0n A ⋅=,所以()3210λλ--+=,解得35λ=.………(11分)所以113D F D 5=E ,故1DF :F 3:2E =.…………………(12分)考点:1、二面角的平面角;2、线面平行.20.(本小题满分12分)如图1,已知抛物线E 的顶点O 在坐标原点,焦点在y 轴正半轴上,准线与y 轴的交点为T .过点T 作圆C:()2221x y +-=的两条切线,两切点分别为D ,G ,且DG 3=.(1)求抛物线E 的标准方程;(2)如图2,过抛物线E 的焦点F 任作两条互相垂直的直线1l ,2l ,分别交抛物线E 于P ,Q 两点和M ,N 两点,A ,B 分别为线段Q P 和MN 的中点,求∆AOB 面积的最小值.【答案】(1) 24x y =;(2)6.试题解析:(1)由对称性知,DG y ⊥轴,设DG 与y 轴的交点为H ,则D 3H =.连CD ,则R t C D ∆H 中, CD 1=,则1C 3H ==.…………………(1分) 因为D T 为圆C 的切线,则CD D ⊥T .由射影定理,得2C C CD H T =,则C 3T =.…………(3分)因为圆心C 的坐标为()0,2,则C 2O =,所以1OT =,即12p=,得2p =. 所以抛物线E 的标准方程为24x y =.…………………(5分)(2)设直线1l 的斜率为k ,因为1l 过焦点()F 0,1,则直线1l 的方程为1y kx =+.代入24x y =,得2440x kx --=.设点()11,x y P ,()22Q ,x y ,则124x x k +=.因为A 为线段Q P 的中点,则点()22,21k k A +…………………(7分)因为12l l ⊥,则直线2l 的方程为11y x k =-+.同理可得点222,1k k ⎛⎫B -+ ⎪⎝⎭.…………………(8分)直线AB 的方程为2222122222y k x k k k k k---=---,即13y k x k ⎛⎫=-+ ⎪⎝⎭,显然过定点()D 0,3.…………(10分)设∆AOB 的面积为S ,AB 与y 轴的交点为K ,则11332S S S x x k k ∆AOK ∆BOK A B =+=⨯⨯-=+36≥⨯=,当且仅当1k =±时取等号.所以∆AOB 的面积的最小值为6.…………………(12分考点:1、抛物线的标准方程;2、直线与圆;3、射影定理;4、直线与抛物线;5、三角形的面积;6、重要不等式.【方法点晴】本题主要考查抛物线的标准方程;、直线与圆、射影定理、直线与抛物线、三角形的面积与重要不等式,综合程度高,属于难题.本题最难点是利用重要不等式求最小值,使用该公式是一定要牢牢抓住一正、二定、三相等这三个条件,如果不符合条件则:非正化正、非定构定、不等作图(单调性).平时应熟练掌握双钩函数的图像,还应加强非定构定、不等作图这方面的训练,才能灵活应对这类题型.21.(本小题满分12分)已知函数()()22ln f x x a x a x =+--,其中a 为常数且0a >.(1)若曲线()y f x =与直线2ay =相切,求a 的值; (2)设1x ,2x 为两个不相等的正数,若()()12f x f x =,证明:12x x a +>.【答案】(1) 2a =;(2)证明见解析.(2)不妨设120x x <<,由()()12f x f x =⇒ ()2112x a x +-()21222ln 2ln a x x a x a x -=+--⇒ ()2222112211ln ln 22a x x x x x x x x +--=+--⇒ 222211221122ln ln x x x x a x x x x +--=+--,从而所证不等式化为22221112221122ln ln x x x x x x x x x x +--+>⇒+--()()22122212211ln 22x x x x x x x x x ++->+-- ()()()122121ln ln 2x x x x x x ⇒+->-⇒()2121122ln ln x x x x x x -->+ 21221121ln 1x x x x x x ⎛⎫- ⎪⎝⎭⇒>+.令21x t x =(1t >),则只要证()21ln 1t t t ->+,即证()21ln 01t t t -->+.设()()21ln 01t g t t t -=->⇒+()()()()22211411t g t t t t t -'=-=⇒++当1t >时,()0g t '>⇒()g t 在()1,+∞内单调递增()()10g t g ⇒>=⇒原不等式成立.试题解析:(1)()()()()2222122x a x a x a x a f x x a x x x+---+'=+--==(0x >).………(1分) 因为0a >,由()0f x '>,得2a x >.则()f x 在0,2a ⎛⎫ ⎪⎝⎭内单调递减,在,2a ⎛⎫+∞ ⎪⎝⎭内单调递增,所以2ax =为()f x 的唯一极值点.…………………(2分) 因为曲线()y f x =与直线2ay =相切,则22a af ⎛⎫= ⎪⎝⎭,即()22ln 4222a a a a a a -+-=.因为0a >,则1ln 0422a a-+=.…………………(3分) 设()1ln 422a a h a =-+,则()1104h a a'=+>,所以()h a 在()0,+∞内单调递增.因为()20h =,所以2a =.…………………(5分)因为()()22112121ln ln ln ln 0x x x x x x x x +--=-+->,则不等式再化为()()22122212211ln 22x x x x x x x x x ++->+--,即()()()122121ln ln 2x x x x x x +->-,即()2121122ln ln x x x x x x -->+,即21221121ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+.…………………(9分)令21x t x =(1t >),则只要证()21ln 1t t t ->+,即证()21ln 01t t t -->+.…………………(10分)设()()21ln 01t g t t t -=->+,则()()()()22211411t g t t t t t -'=-=++.当1t >时,()0g t '>, 则()g t 在()1,+∞内单调递增,所以()()10g t g >=,故原不等式成立.…………………(12分)考点:1、函数的极值;2、函数的最值;3、函数的单调性;4、导数的综合运用.【方法点晴】本题主要考查函数的极值、函数的最值、函数的单调性和导数的综合运用,综合程度高,属于难题. 第一小题要懂得利用22a af ⎛⎫=⎪⎝⎭建立方程进行求解;第二小题由()()12f x f x =⇒()2112x a x +-()21222ln 2ln a x x a x a x -=+--⇒222211221122ln ln x x x x a x x x x +--=+--,从而所证不等式化为21221121ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+.再用换元法进一步化为()21ln 1t t t ->+,再利用导数工具进行求解.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22.(本小题满分10分)选修4-1:几何证明选讲 如图,在O 的内接四边形CD AB 中,D C A =B ,过点C 作O 的切线,交AB 的延长线于点E .(1)证明:C C D ∠BE =∠A ;(2)若4AB =,C 3A =,CD 1=,求C E 的长.【答案】(1)证明见解析;(2)C E =试题解析:(1)因为D C A =B ,则劣弧D C A =B , 所以CD C ∠A =∠BA .因为C E 是O 的切线,则C C ∠B E =∠BA ,从而C CD ∠BE =∠A .…(3分)因为C ∠BE 是四边形CD AB 的一个外角,则C DC ∠BE =∠A . 所以()()C 180C C 180CD DC C D ∠BE =-∠B E+∠BE =-∠A +∠A =∠A .…………………(5分)(2)由(1)知,C CD ∠EA =∠A ,C C D ∠AE =∠A ,则C∆A E CD ∆A ,所以CC CDAE A =A . 因为C 3A =,CD 1=,则2C CD 9AE =A ÷=.…………………(8分)因为4AB =,则5B E =A E -A B =.由切割线定理,2C 45E =AE⨯BE =,所以C E = …………………(10分)考点:1、三角形的相似;2、切割线定理.23.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系x y O 中,曲线C的参数方程为2cos x y αα=⎧⎪⎨=⎪⎩(α为参数).以原点O 为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程; (2)若直线l的极坐标方程为cos 62πρθ⎛⎫+= ⎪⎝⎭,求直线l 被曲线C 所截得的线段长. 【答案】(1)22123sin ρθ=+;(2)165.【解析】试题分析:(1)由2cos x y αα=⎧⎪⎨=⎪⎩⇒得22143x y +=⇒2222cos sin 143ρθρθ+=,即22223cos 4sin 12ρθρθ+=⇒()223sin 12ρθ+=⇒22123sin ρθ=+;(2)由cos 6πρθ⎛⎫+= ⎪⎝⎭⇒cos sin θρθ-=⇒直线l的直角坐标方程为y -=⇒)1y x =-⇒其参数方程为12t x y ⎧=+⎪⎪⎨⎪=⎪⎩代入22143x y +=,得223141222t ⎛⎫⎛⎫++= ⎪ ⎪ ⎪⎝⎭⎝⎭⇒254120t t +-=⇒1245t t +=-,12125t t =-⇒12165t t -===.(2)由cos 6πρθ⎛⎫+= ⎪⎝⎭cos sin θρθ-=. 所以直线ly -=)1y x =-.…………………(6分)显然,直线l 过点()1,0,倾斜角为60,则其参数方程为12t x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).…………………(7分)代入22143x y +=,得22314122t ⎫⎛⎫++=⎪ ⎪⎪⎝⎭⎝⎭,即254120t t +-=.设方程的两根为1t ,2t ,则1245t t +=-,12125t t =-,12165t t -===. 故直线l 被曲线C 所截得的线段长为165.…………………(10分) 考点:1、参数方程;2、极坐标方程;3、弦长公式. 24.(本小题满分10分)选修4-5:不等式选讲已知函数()12f x x x m =-++-,其中m 为常数. (1)当7m =时,求不等式()0f x >的解集;(2)设实数a ,b ,c 满足a b c m ++=,若函数()f x 的最小值为2-,证明:222210a b c ++≥.【答案】(1)()(),43,-∞-+∞;(2)证明见解析. 【解析】试题分析:(1)由7m =⇒()26,11274,2128,2x x f x x x x x x -≥⎧⎪=-++-=--≤<⎨⎪--<-⎩.再由()0f x >⇒1260x x ≥⎧⎨->⎩或2280x x <-⎧⎨-->⎩⇒3x >或4x <-⇒解集为()(),43,-∞-+∞;(2)由()()12123x x x x -++≥--+=⇒当且仅当()()120x x -+≤,即21x -≤≤时取等号,⇒()min 3f x m =-⇒32m -=-,则5m =.解法一:由题设5a b c ++=⇒5a c b +=-⇒()()2222522a cb ac +-+≥=⇒()()222222255120251052210222b b b b a b c b --+-+++≥+==≥.解法二:由题设,5a b c ++=,⇒()()222212112a b c a b c ⎛⎫++++≥++ ⎪⎝⎭⇒即()22252252a b c ++≥,⇒222210a b c ++≥.试题解析:(1)当7m =时,()26,11274,2128,2x x f x x x x x x -≥⎧⎪=-++-=--≤<⎨⎪--<-⎩.…………………(3分) 由()0f x >,得1260x x ≥⎧⎨->⎩或2280x x <-⎧⎨-->⎩,即3x >或4x <-.所以不等式()0f x >的解集为()(),43,-∞-+∞.…………………(5分)考点:1、绝对值不等式;2、重要不等式;3、柯西不等式.。
湖南师大附中2016-2017学年高三(下)月考数学试卷(文科)(7)(解析版)
2016-2017学年湖南师大附中高三(下)月考数学试卷(文科)(7)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x||x|<1},N={y|y=2x,x∈M},则集合∁R(M∩N)等于()A.(﹣∞,]B.(,1)C.(﹣∞,]∪[1,+∞)D.[1,+∞)2.已知复数的实部为﹣1,则复数z﹣b在复平面上对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.下列说法中正确的是()A.若分类变量X和Y的随机变量K2的观测值k越大,则“X与Y相关”的可信程度越小B.对于自变量x和因变量y,当x取值一定时,y的取值具有一定的随机性,x,y间的这种非确定关系叫做函数关系C.相关系数r2越接近1,表明两个随机变量线性相关性越弱D.若分类变量X与Y的随机变量K2的观测值k越小,则两个分类变量有关系的把握性越小4.如图是某市举办青少年运动会上,7位裁判为某武术队员打出的分数的茎叶图,左边数字表示十位数字,右边数字表示个位数字,这些数据的中位数是(),去掉一个最低分和最高分所剩数据的平均数是()A.86.5,86.7 B.88,86.7 C.88,86.8 D.86,5,86.8 5.在如图所示的知识结构图中:“求简单函数的导数”的“上位”要素有()A.1个B.2个C.3个D.4个6.下面四个推理,不属于演绎推理的是()A.因为函数y=sinx(x∈R)的值域为[﹣1,1],2x﹣1∈R,所以y=sin(2x﹣1)(x∈R)的值域也为[﹣1,1]B.昆虫都是6条腿,竹节虫是昆虫,所以竹节虫有6条腿C.在平面中,对于三条不同的直线a,b,c,若a∥b,b∥c则a∥c,将此结论放到空间中也是如此D.如果一个人在墙上写字的位置与他的视线平行,那么,墙上字迹离地的高度大约是他的身高,凶手在墙上写字的位置与他的视线平行,福尔摩斯量得墙壁上的字迹距地面六尺多,于是,他得出了凶手身高六尺多的结论7.如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连接EC、ED则sin ∠CED=()A.B.C.D.8.已知f(x)满足对∀x∈R,f(﹣x)+f(x)=0,且x≥0时,f(x)=e x+m(m 为常数),则f(﹣ln5)的值为()A.4 B.﹣4 C.6 D.﹣69.若实数数列:﹣1,a1,a2,a3,﹣81成等比数列,则圆锥曲线x2+=1的离心率是()A.或B.或C.D.10.四棱锥P﹣ABCD的三视图如图所示,四棱锥P﹣ABCD的五个顶点都在一个球面上,E、F分别是棱AB、CD的中点,直线EF被球面所截得的线段长为,则该球表面积为()A.12πB.24πC.36πD.48π11.设正实数x,y,z满足x2﹣3xy+4y2﹣z=0.则当取得最大值时,的最大值为()A.0 B.1 C.D.312.已知a,b是实数,1和﹣1是函数f(x)=x3+ax2+bx的两个极值点.设h(x)=f(f(x))﹣c,其中c∈(﹣2,2),函数y=h(x)的零点个数()A.8 B.9 C.10 D.11二、填空题:本大题共4小题,每小题5分.13.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.14.已知△ABC的外接圆半径为8,且sinA:sinB:sinC=2:3:4,则△ABC的面积为.15.已知O为△ABC的外心,AB=2a,AC=,∠BAC=120°,若=x+y,则3x+6y的最小值为.16.设函数y=的图象上存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形(其中O为坐标原点),且斜边的中点恰好在y轴上,则实数a的取值范围是.三、解答题:本大题共70分.解答应写出文字说明,证明过程或演算步骤.17.在等比数列{a n}中,已知a4=8a1,且a1,a2+1,a3成等差数列.(I)求数列{a n}的通项公式;(Ⅱ)求数列{|a n﹣4|}的前n项和S n.18.已知二次函数f(x)=ax2﹣4bx+2.(Ⅰ)任取a∈{1,2,3},b∈{﹣1,1,2,3,4},记“f(x)在区间[1,+∞)上是增函数”为事件A,求A发生的概率;(Ⅱ)任取(a,b)∈{(a,b)|a+4b﹣6≤0,a>0,b>0},记“关于x的方程f(x)=0有一个大于1的根和一个小于1的根”为事件B,求B发生的概率.19.如图l,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,点G,R分别在线段DH,HB上,且=.将△AED,△CFD,△BEF分别沿DE,DF,EF折起,使点A,B,C重合于点P,如图2所示,(I)求证:GR⊥平面PEF;(Ⅱ)若正方形ABCD的边长为4,求三棱锥P﹣DEF的内切球的半径.20.如图,设双曲线C1:﹣=1(a>0,b>0)的上焦点为F,上顶点为A,点B为双曲线虚轴的左端点,已知C l的离心率为,且△ABF的面积S=1﹣.(Ⅰ)求双曲线C l的方程;(Ⅱ)设抛物线C2的顶点在坐标原点,焦点为F,动直线l与C2相切于点P,与C2的准线相交于点Q试推断以线段PQ为直径的圆是否恒经过y轴上的某个定点M?若是,求出定点M的坐标;若不是,请说明理由.21.已知f(x)=e x,g(x)=﹣x2+2x+a,a∈R.(Ⅰ)讨论函数h(x)=f(x)g(x)的单调性;(Ⅱ)记φ(x)=,设A(x1,φ(x1)),B(x2,φ(x2))为函数φ(x)图象上的两点,且x1<x2.(ⅰ)当x>0时,若φ(x)在A,B处的切线相互垂直,求证x2﹣x1≥1;(ⅱ)若在点A,B处的切线重合,求a的取值范围.[选修4-4:坐标系与参数方程]22.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=12,且曲线C的左焦点F在直线l上.(Ⅰ)若直线l与曲线C交于A、B两点.求|FA||FB|的值;(Ⅱ)设曲线C的内接矩形的周长为P,求P的最大值.[选修4-5:不等式选讲]23.设f(x)=|x﹣1|+|x+1|.(1)求f(x)≤x+2的解集;(2)若不等式f(x)≥对任意实数a≠0恒成立,求实数x的取值范围.2016-2017学年湖南师大附中高三(下)月考数学试卷(文科)(7)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x||x|<1},N={y|y=2x,x∈M},则集合∁R(M∩N)等于()A.(﹣∞,]B.(,1)C.(﹣∞,]∪[1,+∞)D.[1,+∞)【考点】交、并、补集的混合运算.【分析】先求出集合M,N,再根据集合的交集个补集计算即可【解答】解:∵集合M={x||x|<1},N={y|y=2x,x∈M},∴M=(﹣1,1),N=(﹣,2),∴M∩N=(﹣,1)∴∁R(M∩N)=(﹣∞,]∪[1,+∞)故选:C【点评】本题考查了集合的交集和补集的运算,属于基础题2.已知复数的实部为﹣1,则复数z﹣b在复平面上对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】利用复数代数形式的乘除运算化简,由题意求得b,进一步求得复数z﹣b在复平面上对应的点的坐标得答案.【解答】解:由的实部为﹣1,得,得b=6.∴z=﹣1+5i,则z﹣b=﹣7+5i,在复平面上对应的点的坐标为(﹣7,5),在第二象限.故选:B.【点评】本题考查复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.3.下列说法中正确的是()A.若分类变量X和Y的随机变量K2的观测值k越大,则“X与Y相关”的可信程度越小B.对于自变量x和因变量y,当x取值一定时,y的取值具有一定的随机性,x,y间的这种非确定关系叫做函数关系C.相关系数r2越接近1,表明两个随机变量线性相关性越弱D.若分类变量X与Y的随机变量K2的观测值k越小,则两个分类变量有关系的把握性越小【考点】相关系数.【分析】分别根据变量相关的定义和性质分别进行判断即可得到结论.【解答】解:A.若分类变量X和Y的随机变量K2的观测值k越大,则“X与Y相关”的可信程度越大,∴A错误.B.对于自变量x和因变量y,当x取值一定时,y的取值具有一定的随机性,x,y间的这种非确定关系叫做相关关系,∴B错误.C.相关系数r2越接近1,表明两个随机变量线性相关性越强,∴C错误.D.若分类变量X与Y的随机变量K2的观测值k越小,则两个分类变量有关系的把握性越小,∴D正确.故选:D.【点评】本题主要考查变量相关系数的性质,比较基础.4.如图是某市举办青少年运动会上,7位裁判为某武术队员打出的分数的茎叶图,左边数字表示十位数字,右边数字表示个位数字,这些数据的中位数是(),去掉一个最低分和最高分所剩数据的平均数是()A.86.5,86.7 B.88,86.7 C.88,86.8 D.86,5,86.8【考点】频率分布直方图.【分析】根据茎叶图中的数据,利用中位数和平均数的定义求出结果即可.【解答】解:由茎叶图知,这组数据共有7个,按从小到大的顺序排在中间的是88,所以中位数是88;去掉一个最高分94和一个最低分79后,所剩数据为84,85,88,88,89,它们的平均数为(84+85+88+89)=86.8.故选:C.【点评】本题考查了根据茎叶图中的数据,求中位数和平均数的应用问题,是基础题.5.在如图所示的知识结构图中:“求简单函数的导数”的“上位”要素有()A.1个B.2个C.3个D.4个【考点】结构图.【分析】先对所画结构的每一部分有一个深刻的理解,从头到尾抓住主要脉络进行分解;再将每一部分进行归纳与提炼,形成一个个知识点并逐一写在矩形框内;最后按其内在的逻辑顺序将它们排列起来并用线段相连,从而形成知识结构图.“求简单函数的导数”是建立在熟练掌握“基本求导公式”,“函数四则运算求导法则”和“复合函数求导法则”基础上的,故三者均为其上位.【解答】解:根据知识结构图得,“求简单函数的导数”是建立在熟练掌握“基本求导公式”,“函数四则运算求导法则”和“复合函数求导法则”基础上的,故“基本求导公式”,“函数四则运算求导法则”和“复合函数求导法则”均为“求简单函数的导数”的“上位”要素,共有3个.故选:C.【点评】本题主要考查了结构图的组成与应用问题,是基础题目.6.下面四个推理,不属于演绎推理的是()A.因为函数y=sinx(x∈R)的值域为[﹣1,1],2x﹣1∈R,所以y=sin(2x﹣1)(x∈R)的值域也为[﹣1,1]B.昆虫都是6条腿,竹节虫是昆虫,所以竹节虫有6条腿C.在平面中,对于三条不同的直线a,b,c,若a∥b,b∥c则a∥c,将此结论放到空间中也是如此D.如果一个人在墙上写字的位置与他的视线平行,那么,墙上字迹离地的高度大约是他的身高,凶手在墙上写字的位置与他的视线平行,福尔摩斯量得墙壁上的字迹距地面六尺多,于是,他得出了凶手身高六尺多的结论【考点】演绎推理的基本方法.【分析】演绎推理是由一般到特殊的推理,是一种必然性的推理,演绎推理得到的结论不一定是正确的,这要取决与前提是否真实和推理的形式是否正确,因此不有助于发现新结论.【解答】解:C中的推理属于合情推理中的类比推理,A,B,D中的推理都是演绎推理.故选C.【点评】本题考查演绎推理的意义,演绎推理是由一般性的结论推出特殊性命题的一种推理模式,演绎推理的前提与结论之间有一种蕴含关系.7.如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连接EC、ED则sin ∠CED=()A.B.C.D.【考点】两角和与差的正切函数;任意角的三角函数的定义.【分析】法一:用余弦定理在三角形CED中直接求角的余弦,再由同角三角关系求正弦;法二:在三角形CED中用正弦定理直接求正弦.【解答】解:法一:利用余弦定理在△CED中,根据图形可求得ED=,CE=,由余弦定理得cos∠CED=,∴sin∠CED==.故选B.法二:在△CED中,根据图形可求得ED=,CE=,∠CDE=135°,由正弦定理得,即.故选B.【点评】本题综合考查了正弦定理和余弦定理,属于基础题,题后要注意总结做题的规律.8.已知f(x)满足对∀x∈R,f(﹣x)+f(x)=0,且x≥0时,f(x)=e x+m(m 为常数),则f(﹣ln5)的值为()A.4 B.﹣4 C.6 D.﹣6【考点】抽象函数及其应用;函数的值.【分析】根据已知可得f(0)=0,进而求出m值,得到x≥0时,f(x)的解析式,先求出f(ln5),进而可得答案.【解答】解:∵f(x)满足对∀x∈R,f(﹣x)+f(x)=0,故f(﹣x)=﹣f(x),故f(0)=0∵x≥0时,f(x)=e x+m,∴f(0)=1+m=0,m=﹣1,即x≥0时,f(x)=e x﹣1,则f(ln5)=4f(﹣ln5)=﹣f(ln5)=﹣4,故选:B.【点评】本题考查的知识点是抽象函数及其应用,函数求值,难度中档.9.若实数数列:﹣1,a1,a2,a3,﹣81成等比数列,则圆锥曲线x2+=1的离心率是()A.或B.或C.D.【考点】双曲线的简单性质;等比数列的通项公式.【分析】利用等比数列求出a2,然后代入曲线方程,求解双曲线的离心率即可.【解答】解:因为﹣1,a1,a2,a3,﹣81成等比数列,所以a22=﹣1×(﹣81)=81,a2=﹣9(等比数列的奇数项同号),所以圆锥曲线的方程为x2﹣=1,其中a=1,b=3,c==,离心率为e==,故选:D.【点评】本题考查双曲线的简单性质的应用,等比数列的应用,考查计算能力.10.四棱锥P﹣ABCD的三视图如图所示,四棱锥P﹣ABCD的五个顶点都在一个球面上,E、F分别是棱AB、CD的中点,直线EF被球面所截得的线段长为,则该球表面积为()A.12πB.24πC.36πD.48π【考点】球内接多面体;由三视图还原实物图.【分析】将三视图还原为直观图,得四棱锥P﹣ABCD的五个顶点位于同一个正方体的顶点处,且与该正方体内接于同一个球.由此结合题意,可得正方体的棱长为2,算出外接球半径R,再结合球的表面积公式,即可得到该球表面积.【解答】解:将三视图还原为直观图如右图,可得四棱锥P﹣ABCD的五个顶点位于同一个正方体的顶点处,且与该正方体内接于同一个球.且该正方体的棱长为a设外接球的球心为O,则O也是正方体的中心,设EF中点为G,连接OG,OA,AG根据题意,直线EF被球面所截得的线段长为2,即正方体面对角线长也是2,∴得AG==a,所以正方体棱长a=2∴Rt△OGA中,OG=a=1,AO=,即外接球半径R=,得外接球表面积为4πR2=12π.故选A.【点评】本题主要考查了将三视图还原为直观图,并且求外接球的表面积,着重考查了正方体的性质、三视图和球内接多面体等知识,属于中档题.11.设正实数x,y,z满足x2﹣3xy+4y2﹣z=0.则当取得最大值时,的最大值为()A.0 B.1 C.D.3【考点】基本不等式.【分析】依题意,当取得最大值时x=2y,代入所求关系式f(y)=+﹣,利用配方法即可求得其最大值.【解答】解:∵x2﹣3xy+4y2﹣z=0,∴z=x2﹣3xy+4y2,又x,y,z均为正实数,∴==≤=1(当且仅当x=2y时取“=”),∴=1,此时,x=2y.∴z=x2﹣3xy+4y2=(2y)2﹣3×2y×y+4y2=2y2,∴+﹣=+﹣=﹣+1≤1,当且仅当y=1时取得“=”,满足题意.∴的最大值为1.故选B.【点评】本题考查基本不等式,由取得最大值时得到x=2y是关键,考查配方法求最值,属于中档题.12.已知a,b是实数,1和﹣1是函数f(x)=x3+ax2+bx的两个极值点.设h(x)=f(f(x))﹣c,其中c∈(﹣2,2),函数y=h(x)的零点个数()A.8 B.9 C.10 D.11【考点】利用导数研究函数的极值;函数零点的判定定理;根的存在性及根的个数判断.【分析】求出函数的导函数,根据1和﹣1是函数的两个极值点代入列方程组,求解a,b.令f(x)=t,则h(x)=f(t)﹣c.先讨论关于x的方程f(x)=d根的情况,d∈[﹣2,2],当|d|=2时,由(2 )可知,f(x)=﹣2的两个不同的根为1和一2,注意到f(x)是奇函数,f(x)=2的两个不同的根为﹣1和2.当|d|<2时,先分|d|=2和|d|<2讨论关于的方程f(x)=d的情况;再考虑函数y=h(x)的零点.【解答】解:(1)由f(x)=x3+ax2+bx,得f′(x)=3x2+2ax+b.∵1和﹣1是函数f(x)的两个极值点,∴f′(1)=3﹣2a+b=0,f′(﹣1)=3+2a+b=0,解得a=0,b=﹣3.得,f(x)=x3﹣3x,令f(x)=t,h(x)=f(f(x))﹣c,则h(x)=f(t)﹣c.c∈(﹣2,2),先讨论关于x的方程f(x)=d根的情况,d∈[﹣2,2]当|d|=2时,由(2 )可知,f(x)=﹣2的两个不同的根为1和一2,注意到f(x)是奇函数,∴f(x)=2的两个不同的根为﹣1和2.当|d|<2时,∵f(﹣1)﹣d=f(2)﹣d=2﹣d>0,f(1)﹣d=f(﹣2)﹣d=﹣2﹣d<0,∴一2,﹣1,1,2 都不是f(x)=d 的根.由(1)知,f′(x)=3(x+1)(x﹣1).①当x∈(2,+∞)时,f′(x)>0,于是f(x)是单调增函数,从而f(x)>f (2)=2.此时f(x)=d在(2,+∞)无实根.②当x∈(1,2)时,f′(x)>0,于是f(x)是单调增函数.又∵f(1)﹣d<0,f(2)﹣d>0,y=f(x)﹣d的图象不间断,∴f(x)=d在(1,2 )内有唯一实根.同理,在(一2,一1)内有唯一实根.③当x∈(﹣1,1)时,f′(x)<0,于是f(x)是单调减函数.又∵f(﹣1)﹣d>0,f(1)﹣d<0,y=f(x)﹣d的图象不间断,∴f(x)=d在(一1,1 )内有唯一实根.因此,当|d|=2 时,f(x)=d 有两个不同的根x1,x2,满足|x1|=1,|x2|=2;当|d|<2时,f(x)=d 有三个不同的根x3,x4,x5,满足|x i|<2,i=3,4,5.现考虑函数y=h(x)的零点:(i )当|c|=2时,f(t)=c有两个根t1,t2,满足|t1|=1,|t2|=2.而f(x)=t1有三个不同的根,f(x)=t2有两个不同的根,故y=h(x)有5 个零点.(i i )当|c|<2时,f(t)=c有三个不同的根t3,t4,t5,满足|t i|<2,i=3,4,5.而f(x)=t i有三个不同的根,故y=h(x)有9个零点.综上所述,当|c|=2时,函数y=h(x)有5个零点;当|c|<2时,函数y=h(x)有9 个零点.【点评】本题考查导数知识的运用,考查函数的极值,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,综合性强,难度大.二、填空题:本大题共4小题,每小题5分.13.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是1和3.【考点】进行简单的合情推理.【分析】可先根据丙的说法推出丙的卡片上写着1和2,或1和3,分别讨论这两种情况,根据甲和乙的说法可分别推出甲和乙卡片上的数字,这样便可判断出甲卡片上的数字是多少.【解答】解:根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;∴根据甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又甲说,“我与乙的卡片上相同的数字不是2”;∴甲的卡片上写的数字不是1和2,这与已知矛盾;∴甲的卡片上的数字是1和3.故答案为:1和3.【点评】考查进行简单的合情推理的能力,以及分类讨论得到解题思想,做这类题注意找出解题的突破口.14.已知△ABC的外接圆半径为8,且sinA:sinB:sinC=2:3:4,则△ABC的面积为.【考点】余弦定理;正弦定理.【分析】sinA:sinB:sinC=2:3:4,利用正弦定理可得a:b:c=2:3:4,利用余弦定理可得cosA,sinA=.再利用正弦定理可得=2×8,解得a,即可得出三角形面积.【解答】解:∵sinA:sinB:sinC=2:3:4,∴a:b:c=2:3:4,cosA==,sinA==.∴=2×8,解得a=16×=2.∴b=3,c=4.∴S=bcsinA=3×4×=.故答案为:.【点评】本题考查了三角形面积计算公式、正弦定理余弦定理、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.15.已知O为△ABC的外心,AB=2a,AC=,∠BAC=120°,若=x+y,则3x+6y的最小值为.【考点】平面向量的基本定理及其意义.【分析】根据几何图形求解出O点的坐标,先求出,的坐标,再由=x+y,运用向量的坐标相等求解出x,y的值,得出3x+6y=,运用基本不等式求解即可得出最小值.【解答】解:根据题意,建立坐标系如图,过O作AB的垂直平分线,垂足为E,则A(0,0),C(,0),B(﹣a,),E(,),O(,m),∵∠BAC=120°,∴,化简得,∴O(,),∴,,,∵=x+y,∴解得,,∴3x+6y=3()=≥+6=6+,故答案为:.【点评】本题考查了平面向量的坐标运算,结合基本不等式求解,属于中档题,关键是准确求解向量的坐标.16.设函数y=的图象上存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形(其中O为坐标原点),且斜边的中点恰好在y轴上,则实数a的取值范围是(0,] .【考点】分段函数的应用.【分析】曲线y=f(x)上存在两点P、Q满足题设要求,则点P、Q只能在y轴两侧.设P(t,f(t))(t>0),则Q(﹣t,t3+t2),运用向量垂直的条件:数量积为0,构造函数h(x)=(x+1)lnx(x≥e),运用导数判断单调性,求得最值,即可得到a的范围.【解答】解:假设曲线y=f(x)上存在两点P、Q满足题设要求,则点P、Q只能在y轴两侧.不妨设P(t,f(t))(t>0),则Q(﹣t,t3+t2),∵△POQ是以O为直角顶点的直角三角形,∴=0,即﹣t2+f(t)(t3+t2)=0(*)若方程(*)有解,存在满足题设要求的两点P、Q;若方程(*)无解,不存在满足题设要求的两点P、Q.若0<t<e,则f(t)=﹣t3+t2代入(*)式得:﹣t2+(﹣t3+t2)(t3+t2)=0即t4﹣t2+1=0,而此方程无解,因此t≥e,此时f(t)=alnt,代入(*)式得:﹣t2+(alnt)(t3+t2)=0,即=(t+1)lnt(**)令h(x)=(x+1)lnx(x≥e),则h′(x)=lnx+1+>0,∴h(x)在[e,+∞)上单调递增,∵t≥e∴h(t)≥h(e)=e+1,∴h(t)的取值范围是[e+1,+∞).∴对于0<a≤,方程(**)总有解,即方程(*)总有解.故答案为:(0,].【点评】本题考查分段函数的运用,注意向量垂直条件的运用和中点坐标公式,考查构造法和函数的单调性运用,属于中档题.三、解答题:本大题共70分.解答应写出文字说明,证明过程或演算步骤.17.在等比数列{a n}中,已知a4=8a1,且a1,a2+1,a3成等差数列.(I)求数列{a n}的通项公式;(Ⅱ)求数列{|a n﹣4|}的前n项和S n.【考点】数列的求和;数列递推式.【分析】(I)设等比数列{a n}的公比为q,a4=8a1,可得=8a1,解得q.又a1,a2+1,a3成等差数列,可得2(a2+1)=a1+a3,当然解得a1,利用等比数列的通项公式即可得出.(II)n=1时,a1﹣4=﹣2<0,可得S1=2.当n≥2时,a n﹣4≥0.数列{|a n﹣4|}的前n项和S n=2+(a2﹣4)+(a3﹣4)+…+(a n﹣4),再利用等比数列的求和公式即可得出.【解答】解:(I)设等比数列{a n}的公比为q,∵a4=8a1,∴=8a1,a1≠0,解得q=2.又a1,a2+1,a3成等差数列,∴2(a2+1)=a1+a3,∴2(2a1+1)=a1(1+22),解得a1=2.∴a n=2n.(II)n=1时,a1﹣4=﹣2<0,∴S1=2.当n≥2时,a n﹣4≥0.∴数列{|a n﹣4|}的前n项和S n=2+(a2﹣4)+(a3﹣4)+…+(a n﹣4)=2+22+23+…+2n﹣4(n﹣1)=﹣4(n﹣1)=2n+1﹣4n+2.∴S n=.【点评】本题考查了等差数列与等比数列的通项公式与求和公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.18.已知二次函数f(x)=ax2﹣4bx+2.(Ⅰ)任取a∈{1,2,3},b∈{﹣1,1,2,3,4},记“f(x)在区间[1,+∞)上是增函数”为事件A,求A发生的概率;(Ⅱ)任取(a,b)∈{(a,b)|a+4b﹣6≤0,a>0,b>0},记“关于x的方程f(x)=0有一个大于1的根和一个小于1的根”为事件B,求B发生的概率.【考点】列举法计算基本事件数及事件发生的概率;几何概型.【分析】(Ⅰ)因为a有3种取法,b有5种取法,则对应的函数有3×5=15个,函数f(x)的图象关于直线x=对称,若事件A发生,则a>0且≤1,由此利用列举法能求出A发生的概率.(Ⅱ)集合{(a,b)|a+4b﹣6≤0,a>0,b>0}对应的平面区域为Rt△AOB,由此利用几何概型能求出B 发生的概率.【解答】解:(Ⅰ)因为a有3种取法,b有5种取法,则对应的函数有3×5=15个.因为函数f(x)的图象关于直线x=对称,若事件A发生,则a>0且≤1.数对(a,b)的取值为(1,﹣1),(2,﹣1),(2,1),(3,﹣1),(3,1)共5种.所以P(A)==.(Ⅱ)集合{(a,b)|a+4b﹣6≤0,a>0,b>0}对应的平面区域为Rt△AOB,如图.其中点A(6,0),B(0,),则△AOB的面积为××6=.若事件B发生,则f(1)<0,即a﹣4b+2<0.所以事件B对应的平面区域为△BCD.由,得交点坐标为D(2,1).又C(0,),则△BCD的面积为×(﹣)×2=1.所以P(B)==.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法和几何概型的合理运用.19.如图l,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,点G,R分别在线段DH,HB上,且=.将△AED,△CFD,△BEF分别沿DE,DF,EF折起,使点A,B,C重合于点P,如图2所示,(I)求证:GR⊥平面PEF;(Ⅱ)若正方形ABCD的边长为4,求三棱锥P﹣DEF的内切球的半径.【考点】球的体积和表面积;直线与平面垂直的判定.【分析】(Ⅰ)推导出PD⊥平面PEF,RG∥PD,由此能证明GR⊥平面PEF.(Ⅱ)设三棱锥P﹣DEF的内切球半径为r,由三棱锥的体积V=,能求出棱锥P﹣DEF的内切球的半径.【解答】证明:(Ⅰ)在正方形ABCD中,∠A、∠B、∠C均为直角,∴在三棱锥P﹣DEF中,PE,PF,PD三条线段两两垂直,∴PD⊥平面PEF,∵=,即,∴在△PDH中,RG∥PD,∴GR⊥平面PEF.解:(Ⅱ)正方形ABCD边长为4,由题意PE=PF=2,PD=4,EF=2,DF=2,=2,S△DEF=S△DPE=4,∴S△PDF=6,设三棱锥P﹣DEF的内切球半径为r,则三棱锥的体积:=,解得r=,∴三棱锥P﹣DEF的内切球的半径为.【点评】本题考查线面垂直的证明,考查三棱锥的内切的半径的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.如图,设双曲线C1:﹣=1(a>0,b>0)的上焦点为F,上顶点为A,点B为双曲线虚轴的左端点,已知C l的离心率为,且△ABF的面积S=1﹣.(Ⅰ)求双曲线C l的方程;(Ⅱ)设抛物线C2的顶点在坐标原点,焦点为F,动直线l与C2相切于点P,与C2的准线相交于点Q试推断以线段PQ为直径的圆是否恒经过y轴上的某个定点M?若是,求出定点M的坐标;若不是,请说明理由.【考点】直线与圆锥曲线的综合问题.【分析】(Ⅰ)由已知得,由此能求出双曲线方程.(Ⅱ)由题设,抛物线C2的方程为x2=8y,准线方程为y=﹣2,由y=,得,设P(),则直线l的方程y=,联立y=﹣2,得Q(),假设存在定点M(0,m)满足题设条件,由已知条件求出m=2,故以PQ为直径的圆经过y轴上的定点M(0,2).【解答】解:(Ⅰ)∵双曲线C1:﹣=1(a>0,b>0)的上焦点为F,上顶点为A,点B为双曲线虚轴的左端点,C l的离心率为,且△ABF的面积S=1﹣,∴,解得a=,∴双曲线方程为﹣x2=1.(Ⅱ)由题设,抛物线C2的方程为x2=8y,准线方程为y=﹣2,由y=,得,设P(),则直线l的方程为y﹣=,即y=,联立y=﹣2,得Q(),假设存在定点M(0,m)满足题设条件,则对任意点P恒成立,∵,,则,即对任意实数x0恒成立,∴,解得m=2,故以PQ为直径的圆经过y轴上的定点M(0,2).【点评】本题考查双曲线方程的求法,考查满足条件的点的坐标是否存在的判断与求法,解题时要认真审题,注意函数与方程思想的合理运用.21.已知f(x)=e x,g(x)=﹣x2+2x+a,a∈R.(Ⅰ)讨论函数h(x)=f(x)g(x)的单调性;(Ⅱ)记φ(x)=,设A(x1,φ(x1)),B(x2,φ(x2))为函数φ(x)图象上的两点,且x1<x2.(ⅰ)当x>0时,若φ(x)在A,B处的切线相互垂直,求证x2﹣x1≥1;(ⅱ)若在点A,B处的切线重合,求a的取值范围.【考点】利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,通过讨论a的范围,判断函数的单调性即可;(Ⅱ)(i)法一:求出x2﹣x1的解析式,根据基本不等式的性质判断即可;法二:用x1表示x2,根据不等式的性质判断即可;(ii)求出A、B的坐标,分别求出曲线在A、B的切线方程,结合函数的单调性确定a的范围即可.【解答】解:(Ⅰ)h(x)=e x(﹣x2+2x+a),则h′(x)=﹣e x[x2﹣(a+2)]当a+2≤0即a≤﹣2时,h′(x)≤0,h(x)在R上单调递减;当a+2>0即a>﹣2时,h′(x)=﹣e x[x2﹣(a+2)]=﹣e x(x+)(x﹣),此时h(x)在(﹣∞,﹣)和(,+∞)上都是单调递减的,在(﹣,)上是单调递增的;(Ⅱ)(ⅰ)g′(x)=﹣2x+2,据题意有(﹣2x1+2)(﹣2x2+2)=﹣1,又0<x1<x2,则﹣2x1+2>0且﹣2x2+2<0,⇒(﹣2x1+2)(2x2﹣2)=1,法1:x2﹣x1= [(﹣2x1+2)+(2x2﹣2)]≥=1当且仅当(﹣2x1+2)=(2x2﹣2)=1即x1=,x2=时取等号法2:x2=1+,0<1﹣x1<1⇒x2﹣x1=1﹣x1+≥2=1当且仅当1﹣x1=⇒x1=时取等号(ⅱ)要在点A,B处的切线重合,首先需在点A,B处的切线的斜率相等,而x<0时,φ′(x)=f′(x)=e x∈(0,1),则必有x1<0<x2<1,即A(x1,ex1),B(x2,﹣ +2x2+a)A处的切线方程是:y﹣ex1=ex1(x﹣x1)⇒y=ex1x+ex1(1﹣x1),B处的切线方程是:y﹣(﹣+2x2+a)=(﹣2x2+2)(x﹣x2)即y=(﹣2x2+2)x++a,据题意则⇒4a+4=﹣ex1(ex1+4x1﹣8),x1∈(﹣∞,0)设p(x)=﹣e x(e x+4x﹣8),x<0,p′(x)=﹣2e x(e x+2x﹣2)设q(x)=e x+2x﹣2,x<0⇒q′(x)=e x+2>0在(﹣∞,0)上恒成立,则q(x)在(﹣∞,0)上单调递增⇒q(x)<q(0)=﹣1<0,则p′(x)=﹣2e x(e x+2x﹣2)>0,⇒p(x)在(﹣∞,0)上单调递增,则p(x)<p(0)=7,再设r(x)=e x+4x﹣8,x<0r′(x)=e x+4>0,⇒r(x)在(﹣∞,0)上单调递增,⇒r(x)<r(0)=﹣7<0则p(x)=﹣e x(e x+4x﹣8)>0在(﹣∞,0)恒成立即当x∈(﹣∞,0)时p(x)的值域是(0,7)故4a+4∈(0,7)⇒﹣1<a<,即为所求.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及切线方程问题,考查分类讨论思想、转化思想,是一道综合题.[选修4-4:坐标系与参数方程]22.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=12,且曲线C的左焦点F在直线l上.(Ⅰ)若直线l与曲线C交于A、B两点.求|FA||FB|的值;(Ⅱ)设曲线C的内接矩形的周长为P,求P的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(I)求出曲线C的普通方程和焦点坐标,将直线l的参数方程代入曲线C的普通方程利用根与系数的关系和参数的几何意义得出;(II)设矩形的顶点坐标为(x,y),则根据x,y的关系消元得出P关于x(或y)的函数,求出此函数的最大值.【解答】解:(I)曲线C的直角坐标方程为x2+3y2=12,即.∴曲线C的左焦点F的坐标为F(﹣2,0).∵F(﹣2,0)在直线l上,∴直线l的参数方程为(t为参数).将直线l的参数方程代入x2+3y2=12得:t2﹣2t﹣2=0,∴|FA||FB|=|t1t2|=2.(II)设曲线C的内接矩形的第一象限内的顶点为M(x,y)(0,0<y<2),则x2+3y2=12,∴x=.∴P=4x+4y=4+4y.令f(y)=4+4y,则f′(y)=.令f′(y)=0得y=1,当0<y<1时,f′(y)>0,当1<y<2时,f′(y)<0.∴当y=1时,f(y)取得最大值16.∴P的最大值为16.【点评】本题考查了参数方程,极坐标方程与普通方程的转化,函数的最值,参数方程的几何意义,属于中档题.[选修4-5:不等式选讲]23.(2017河南一模)设f(x)=|x﹣1|+|x+1|.(1)求f(x)≤x+2的解集;(2)若不等式f(x)≥对任意实数a≠0恒成立,求实数x的取值范围.【考点】函数恒成立问题;绝对值不等式的解法.【分析】(1)运用绝对值的含义,对x讨论,分x≥1,﹣1<x<1,x≤﹣1,去掉绝对值,得到不等式组,解出它们,再求并集即可得到解集;(2)运用绝对值不等式的性质,可得不等式右边的最大值为3,再由不等式恒成立思想可得f(x)≥3,再由去绝对值的方法,即可解得x的范围.【解答】解:(1)由f(x)≤x+2得:或或,即有1≤x≤2或0≤x<1或x∈∅,解得0≤x≤2,所以f(x)≤x+2的解集为[0,2];。
湖南师大附中2016届高三月考卷.doc
湖南师大附中2016届高三月考卷(四)命题:湖南师大附中高三物理备课组一、选择题(本题包含12个小题,每小题4分,共48分,其中1~8小题只有一个选项正确,9~12小题有多个选项正确,全部选对的得4分,选对但不全的得2分,错选或不选得0分,将答案填在答题卡上)1、我国古诗很多包含着丰富的物理知识,如北宋大词人辛弃疾(1140——1207)曾有一首别具一格的吟X 星球的名词,其中有“飞镜无根谁系?嫦娥不嫁谁留?”,那么以下关于前一句的回答正确的是( A )A .飞镜无根“(地球的)引力”系(月亮被地球的引力吸住)B .飞镜无根“(太阳的)引力”系 (地球被太阳的引力吸住)C .是描绘太阳绕地球运动的情景(古时候认为太阳绕地球转)D .是描绘飞来之镜(别人抛来的定情铜镜)好像被人用绳牵着一样而没做平抛运动。
2、有一只小虫重为G,不慎跌入一个碗中,如图所示.碗内壁为一半径为R 的球壳的一部分,其深度为 D.碗与小虫脚间的动摩擦因数为μ.,若小虫可以缓慢顺利地爬出碗口而不会滑入碗底.则D 的最大值为多少?(最大静摩擦力大小等于滑动摩擦力大小)( D ) A.2R B.R 211μ+ C.R )(2111μ++ D.R )(2111μ+-解析:要使小虫顺利爬出碗口,只须小虫能到达碗边沿A ,设碗边沿的半径与竖直方向夹角为φ,则(受力图如下)由平衡条件得:N=Gcosφ ① f=Gsinφ ②又f=μN 所以μ=tanφ由几何关系有D=R(1-cosφ) ③所以D=3、如右图,滑块以初速度v0沿表面粗糙且足够长的固定斜面,从顶端下滑,直至速度为零。
对于该运动过程,若用x 、a 、p E 、k E 、分别表示滑块下滑的位移的大小、加速度的大小、重力势能(以斜面底面所在平面为零势面)和动能,t 表示时间,则下列图像最能正确描述这一运动规律的是( D )解析:A 、B 在下滑过程中,物体的加速度μmgcos θ-mgsin θ=ma ,a= μgcos θ- gsin θ,加速度的大小保持不变,所以加速度图像应是与时间轴平行的直线.物体做匀减速直线运动,故位移随时间变化越越慢,位移-时间关系的图象是向右弯曲的线,故A 、B 错误;C 、物体做匀减速直线运动,下降的高度为h=ssin θ,也是向右弯曲的线,故C 错误;D 、下滑过程中速度大小关系为v=0v +at =0v +(gsin θ-μgcos θ)t ,动能221mv E k =,故动能变化越越慢,故D 正确,故选D 。
高三英语月考试题及答案-师大附中2016届高三上学期第一次月考
炎德·英才大联考湖南师大附中2016届高三月考试卷(一)英语命题人、审题人:湖南师大附中高三英语备课组得分本试题卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,共10页。
时量l20分钟。
满分150分。
第I卷第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上.第一节(共5小题;每小题l.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.What does the woman want to do?A.Buy a shirt.B.Change the shirt.C.Sell the shirt.2.How much was the bag?A.$100.B.$30.C.$70.3.Who does the woman like best?A.The leading actor.B.The leading actress.C.The theme song.4.、What will the man do this Friday night?A.Attend a meeting.B.Stay at home.C.Join in a party.5.What is the man’s opinion about the weather today?A.Quite warm.B.Cold.C.Too hot.第二节(共15小题;每小题l.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A,B,C三个答案中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前.你将有时间来阅读各个小题.每小题5秒钟;听完后将给出5秒钟的作答时间。
2024-2025学年湖南师范大学附属中学高三上学期月考(一)语文试题及答案
湖南师大附中2025届高三月考试卷(一)语文本试卷共四道大题,23道小题,满分150分。
时量150分钟。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成下面小题。
科学中的对称对称既然在人类历史上占有非常重要、非常基本的地位,哲学家和科学家很自然会想广泛地加以运用。
1595年的时候,天文学家开普勒就曾经想用一些几何的对称来解释太阳系各行星轨道的直径的比例。
他希望在一个球里面放一个内接的正方体,在这个正方体里面放一个内接的正三角体,希望用这些正多面体的大小比例来解释太阳系各行星轨道的大小比例。
我们知道许多早期用到科学上的对称原理,并没有很大的成果,可是它们说明了科学家很早就对对称发生兴趣了。
对称在科学界开始产生重要的影响始于19世纪。
发展到近代,我们已经知道这个观念是晶体学、分子学、原子学、原子核物理学、化学、粒子物理学等现代科学的中心观念。
近年来,对称更变成了决定物质间相互作用的中心思想。
(所谓相互作用,是物理学的一个术语,意思就是力量,质点跟质点之间的力量。
)20世纪物理学的作用。
我准备分下列几节来讨论:①、②、“群”与对称、守恒定律与对称、宇称守恒与左右对称、规范对称。
最后,我想跟大家谈一下未来的发展。
①1871年麦克斯韦发表了一篇题为《物理量的数学分类》的文章。
麦克斯韦以及比他更早的一个数学家兼物理学家哈密顿,了解到物理里面所讲的量不止一种,有的叫作标量,有的叫作向量。
标量没有方向,向量除了大小外,还有方向。
这篇文章非常有意思,因为今天物理学常用的一些观念,这篇文章已经非常清楚地用一些几何图像表示了出来。
比如麦克斯韦称为“内向”的观念,今天我们常把这个量叫作“散度”(即向外发散的程度),这是一个重要观念。
另一个重要的观念叫作“旋度”。
这些观念的引进都有赖哈密顿跟麦克斯韦的努力。
在另外一篇文章里,麦克斯韦把电学跟磁学的基本公式写了下来。
这是19世纪最重要的物理学工作,麦克斯韦写这篇文章的时候,对于向量的观念虽然已经非常了解,却没有引进向量的符号。
2024-2025学年湖南师范大学附属中学高三上学期月考(一)物理试题及答案
湖南师大附中2025届高三月考试卷(一)物理本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页。
时量75分钟,满分100分。
第Ⅰ卷一、单项选择题(本题共6小题,每小题4分,共24分。
每小题给出的四个选项中,只有一个选项是符合题目要求的)1.物理学的发展离不开物理学家的研究发现,在物理学的发展中出现了多位里程碑式的科学家,下列关于物理学史描述符合事实的是A.爱因斯坦提出光子的概念,成功解释光电效应现象B.牛顿总结得到了万有引力定律,并通过扭秤实验测出了引力常量C.伽利略被称为“运动学之父”,他认为重的物体比轻的物体下落得快D.卢瑟福通过α粒子散射实验研究,提出了原子具有“枣糕模型”2.如图所示,a、b、c、d为光滑斜面上的四个点。
一小滑块自a点由静止开始下滑,通过 ab、bc、cd各段所用时间均为T。
现让该滑块自. b点由静止开始下滑,则该滑块A.通过 bc、cd段的时间均等于TB.通过c、d点的速度之比为3:5C.通过 bc、cd段的时间之比为1 1:3D.通过c点的速度大于通过段的平均速度3 如图所示,轻质弹簧一端系在质量为m=1kg的小物块上,另一端固定在墙上。
物块在斜面上静止时,弹簧与竖直方向的夹角为37°,已知斜面倾角θ=37°,斜面与小物块间的动摩擦因数μ=0.5,斜面固定不动。
设物块与斜面间的最大静摩擦力与滑动摩擦力大小相等,已知sin37°=0.6,cos37°=0.8,g=10m/s²,下列说法正确的是A.弹簧一定处于压缩状态B.小物块可能只受三个力C.弹簧弹力大小可能等于 3 ND.斜面对物块支持力可能为零4.如图所示,阳光垂直照射到斜面草坪上,在斜面顶端把一高尔夫球水平击出让其在与斜面垂直的面内运动,小球刚好落在斜面底端。
B点是运动过程中距离斜面的最远处,A点是在阳光照射下小球经过B 点的投影点,不计空气阻力,则A.小球在斜面上的投影做匀速运动B. OA 与AC长度之比为1:3C.若斜面内D点在B 点的正下方,则OD与DC长度不等D.小球在B点的速度与整个段平均速度大小相等5.如图所示,半球形容器固定在地面上,容器内黝光滑;开始时,质量分布均匀的光滑球A 和同种材质构成的质量分布均匀的光滑球B 放在容器内处于平衡状态,位置关系如图中所示,已知容器、A、B半径之比为6:2:1。
2016届湖南师大附中高三(上)第四次月考数学试卷(文科)(解析版)
2015-2016学年湖南师大附中高三(上)第四次月考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“∀x∈R,x2﹣2x+4≤0”的否定为()A.∀x∈R,x2﹣2x+4≥0 B.∃x∈R,x2﹣2x+4>0C.∀x∉R,x2﹣2x+4≤0 D.∃x∉R,x2﹣2x+4>0【考点】全称命题;命题的否定.【专题】计算题.【分析】本题中的命题是一个全称命题,其否定是特称命题,依据全称命题的否定书写形式写出命题的否定即可.【解答】解:∵命题“∀x∈R,x2﹣2x+4≤0”,∴命题的否定是“∃x∈R,x2﹣2x+4>0”故选B.【点评】本题考查命题的否定,解题的关键是掌握并理解命题否定的书写方法规则,全称命题的否定是特称命题,特称命题的否定是全称命题,书写时注意量词的变化.2.雅礼中学教务处采用系统抽样方法,从学校高三年级全体1000名学生中抽50名学生做学习状况问卷调查.现将1000名学生从1到1000进行编号,求得间隔数k=20,即分50组每组20人.在第一组中随机抽取一个号,如果抽到的是17号,则第8组中应取的号码是()A.177 B.157 C.417 D.367【考点】系统抽样方法.【专题】计算题;方程思想;综合法;概率与统计.【分析】根据系统抽样的定义进行计算即可得到结论.【解答】解:根据系统抽样的定义可知抽取的号码构成以17为首项,公差d=20的等差数列{a n},∴a n=17+20(n﹣1)=20n﹣3,n=8,a8=157,故选:B.【点评】本题主要考查系统抽样的应用,根据系统抽样转化为等差数列是解决本题的关键,比较基础.3.下列函数中,既是偶函数又存在零点的是()A.y=lnx B.y=x2+1 C.y=sinx D.y=cosx【考点】函数的零点;函数奇偶性的判断.【专题】函数的性质及应用.【分析】利用函数奇偶性的判断一件零点的定义分别分析解答.【解答】解:对于A,y=lnx定义域为(0,+∞),所以是非奇非偶的函数;对于B,是偶函数,但是不存在零点;对于C,sin(﹣x)=﹣sinx,是奇函数;对于D,cos(﹣x)=cosx,是偶函数并且有无数个零点;故选:D【点评】本题考查了函数奇偶性的判断以及函数零点的判断;判断函数的奇偶性首先要判断函数的定义域,在定义域关于原点对称的前提下判断f(﹣x)与f(x)的关系.4.现有10个数,它们能构成一个以1为首项,﹣2为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是()A. B. C. D.【考点】古典概型及其概率计算公式.【专题】计算题;转化思想;综合法;概率与统计.【分析】由等比数列的性质列举出这10个数,并找出小8的数的个数,由此能求出结果.【解答】解:现有10个数,它们能构成一个以1为首项,﹣2为公比的等比数列,∴这10个数依次为1,﹣2,4,﹣8,16,﹣32,64,﹣128,256,﹣512,这10个数中小于8的有1,﹣2,4,﹣8,﹣32,﹣128,﹣512,共7个,∴从这10个数中随机抽取一个数,则它小于8的概率p=.故选:D.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.5.某商场在国庆黄金周的促销活动中,对10月2日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时到12时的销售额为()A.6万元B.8万元C.10万元D.12万元【考点】用样本的频率分布估计总体分布.【专题】计算题;图表型.【分析】设11时到12时的销售额为x万元,因为组距相等,所以对应的销售额之比等于之比,也可以说是频率之比,解等式即可求得11时到12时的销售额.【解答】解:设11时到12时的销售额为x万元,依题意有,故选C.【点评】本题考查频率分布直方图的应用问题.在频率分布直方图中,每一个小矩形的面积代表各组的频率.6.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【考点】由三视图求面积、体积.【专题】空间位置关系与距离.【分析】判断三视图对应的几何体的形状,利用三视图的数据,求解几何体的体积即可.【解答】解:由三视图可知,几何体是组合体,左侧是三棱锥,底面是等腰三角形,腰长为,高为1,一个侧面与底面垂直,并且垂直底面三角形的斜边,右侧是半圆柱,底面半径为1,高为2,所求几何体的体积为:=.故选:A.【点评】本题考查三视图与直观图的关系,组合体的体积的求法,判断几何体的形状是解题的关键.7.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个B.120个C.96个D.72个【考点】排列、组合及简单计数问题.【专题】应用题;排列组合.【分析】根据题意,符合条件的五位数首位数字必须是4、5其中1个,末位数字为0、2、4中其中1个;进而对首位数字分2种情况讨论,①首位数字为5时,②首位数字为4时,每种情况下分析首位、末位数字的情况,再安排剩余的三个位置,由分步计数原理可得其情况数目,进而由分类加法原理,计算可得答案.【解答】解:根据题意,符合条件的五位数首位数字必须是4、5其中1个,末位数字为0、2、4中其中1个;分两种情况讨论:①首位数字为5时,末位数字有3种情况,在剩余的4个数中任取3个,放在剩余的3个位置上,有A43=24种情况,此时有3×24=72个,②首位数字为4时,末位数字有2种情况,在剩余的4个数中任取3个,放在剩余的3个位置上,有A43=24种情况,此时有2×24=48个,共有72+48=120个.故选:B【点评】本题考查计数原理的运用,关键是根据题意,分析出满足题意的五位数的首位、末位数字的特征,进而可得其可选的情况.8.函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分图象如图所示,其中A,B两点之间的距离为5,则f(x)的递增区间是()A.[6k﹣1,6k+2](k∈z)B.[6k﹣4,6k﹣1](k∈z)C.[3k﹣1,3k+2](k∈z)D.[3k ﹣4,3k﹣1](k∈z)【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;复合三角函数的单调性.【专题】计算题;三角函数的图像与性质.【分析】由图象可求函数f(x)的周期,从而可求得ω,继而可求得φ,利用正弦函数的单调性即可求得f(x)的递增区间.【解答】解:|AB|=5,|y A﹣y B|=4,所以|x A﹣x B|=3,即=3,所以T==6,ω=;∵f(x)=2sin(x+φ)过点(2,﹣2),即2sin(+φ)=﹣2,∴sin(+φ)=﹣1,∵0≤φ≤π,∴+φ=,解得φ=,函数为f(x)=2sin(x+),由2kπ﹣≤x+≤2kπ+,得6k﹣4≤x≤6k﹣1,故函数单调递增区间为[6k﹣4,6k﹣1](k∈Z).故选B【点评】本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,考查复合三角函数的单调性,属于中档题.9.已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A.a1d>0,dS4>0 B.a1d<0,dS4<0 C.a1d>0,dS4<0 D.a1d<0,dS4>0 【考点】等差数列与等比数列的综合.【专题】等差数列与等比数列.【分析】由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.【解答】解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.【点评】本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题.10.设F1,F2是双曲线的两个焦点,P在双曲线上,若,(c为半焦距),则双曲线的离心率为()A.B.C.2 D.【考点】双曲线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】由,可得△PF1F2是直角三角形,由勾股定理得(2c)2=|PF1|2+|PF2|2=|PF1﹣PF2|2﹣2|PF1||PF2|=4a2﹣4ac,即可求出双曲线的离心率.【解答】解:由题意得,△PF1F2是直角三角形,由勾股定理得(2c)2=|PF1|2+|PF2|2=|PF1﹣PF2|2﹣2|PF1||PF2|=4a2﹣4ac,∴c2﹣ac﹣a2=0,∴e2﹣e﹣1=0,∵e>1,∴e=.故选:D.【点评】本题考查双曲线的离心率,考查勾股定理的运用,考查学生分析解决问题的能力,比较基础.11.一个二元码是由0和1组成的数字串x1x2…x n(n∈N*),其中x k(k=1,2,…,n)称为第k位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0)已知某种二元码x1x2…x7的码元满足如下校验方程组:,其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于()A.4 B.5 C.6 D.7【考点】流密码.【专题】计算题;转化思想;综合法;简易逻辑.【分析】根据二元码x1x2…x7的码元满足的方程组,及“⊕”的运算规则,将k的值从1至7逐个验证即可.【解答】解:依题意,二元码在通信过程中仅在第k位发生码元错误后变成了1101101,①若k=1,则x1=0,x2=1,x3=0,x4=1,x5=1,x6=0,x7=1,从而由校验方程组,得x4⊕x5⊕x6⊕x7=1,故k≠1;②若k=2,则x1=1,x2=0,x3=0,x4=1,x5=1,x6=0,x7=1,从而由校验方程组,得x2⊕x3⊕x6⊕x7=1,故k≠2;③若k=3,则x1=1,x2=1,x3=1,x4=1,x5=1,x6=0,x7=1,从而由校验方程组,得x2⊕x3⊕x6⊕x7=1,故k≠3;④若k=4,则x1=1,x2=1,x3=0,x4=0,x5=1,x6=0,x7=1,从而由校验方程组,得x1⊕x3⊕x5⊕x7=1,故k≠4;⑤若k=5,则x1=1,x2=1,x3=0,x4=1,x5=0,x6=0,x7=1,从而由校验方程组,得x4⊕x5⊕x6⊕x7=0,x2⊕x3⊕x6⊕x7=0,x1⊕x3⊕x5⊕x7=0,故k=5符合题意;⑥若k=6,则x1=1,x2=1,x3=0,x4=1,x5=1,x6=1,x7=1,从而由校验方程组,得x2⊕x3⊕x6⊕x7=1,故k≠6;⑦若k=7,则x1=1,x2=1,x3=0,x4=1,x5=1,x6=0,x7=0,从而由校验方程组,得x2⊕x3⊕x6⊕x7=1,故k≠7;综上,k等于5.故选:B.【点评】本题属新定义题,关键是弄懂新定义的含义或规则,事实上,本题中的运算符号“⊕”可看作是两个数差的绝对值运算,知道了这一点,验证就不是难事了.12.若定义在R上的函数f(x)满足f(0)=﹣1,其导函数f′(x)满足f′(x)>k>1,则下列结论中一定错误的是()A.B.C.D.【考点】函数的单调性与导数的关系.【专题】创新题型;导数的概念及应用.【分析】根据导数的概念得出>k>1,用x=代入可判断出f()>,即可判断答案.【解答】解;∵f′(x)=f′(x)>k>1,∴>k>1,即>k>1,当x=时,f()+1>×k=,即f()﹣1=故f()>,所以f()<,一定出错,故选:C.【点评】本题考查了导数的概念,不等式的化简运算,属于中档题,理解了变量的代换问题.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡中对应题号后的横线上.13.sin15°+cos15°=.【考点】两角和与差的正弦函数.【专题】三角函数的求值.【分析】原式提取,利用特殊角的三角函数值及两角和与差的正弦函数公式化简,即可得到结果.【解答】解:sin15°+cos15°=(sin15°+cos15°)=sin(15°+45°)=sin60°=.故答案为:【点评】此题考查了两角和与差的正弦函数公式,以及特殊角的三角函数值,熟练掌握公式是解本题的关键.14.在(1+x+)10的展开式中,x2项的系数为45(结果用数值表示).【考点】二项式系数的性质.【专题】二项式定理.【分析】先把原式前两项结合展开,分析可知仅有展开后的第一项含有x2项,然后写出第一项二项展开式的通项,由x的指数为2求得r值,则答案可求.【解答】解:∵(1+x+)10 =,∴仅在第一部分中出现x2项的系数.再由,令r=2,可得,x2项的系数为.故答案为:45.【点评】本题考查了二项式系数的性质,关键是对二项展开式通项的记忆与运用,是基础题.15.如图所示,,O为△ABC的内心,则的值为.【考点】平面向量数量积的运算.【专题】数形结合;数形结合法;平面向量及应用.【分析】利用内心的性质求出OA的长和∠OAC,代入数量积公式计算.【解答】解:设△ABC的内切圆为⊙O与AC,AB,BC的切点分别为D,E,F,连结OD,OE,OF,OA,∴OD⊥AC,∠OAD=∠BAC=60°,设AD=x,则AE=AD=x,OA=2AD=2x,∴CF=CD=1﹣x,BF=BE=2﹣x,∵BC==.∴1﹣x+2﹣x=,解得x=,∴OA=2x=3﹣,∴=OA•AC•cos∠OAD=(3﹣)•1•cos60°=.故答案为.【点评】本题考查了平面向量的数量积运算,利用内心的性质是关键.16.如图,将平面直角坐标系的格点(横、纵坐标均为整数的点)按如下规则标上数字标签:原点处标数字0,点(1,0)处标数字1,点(1,﹣1)处标数字2,点(0,﹣1)处标数字3,点(﹣1,﹣1)处标数字4,点(﹣1,0)处标数字5,点(﹣1,1)处标数字6,点(0,1)处标数字7,…以此类推,①标数字50的格点的坐标为(4,2).②记格点坐标为(m,n)的点(m、n均为正整数)处所标的数字为f(m,n),若n>m,则f(m,n)=(2n+1)2+m﹣n﹣1,(n>m).【考点】归纳推理.【专题】压轴题;规律型;归纳猜想型.【分析】由图形,格点的连线呈周期性过横轴,研究每一周的格点数及每一行每一列格点数的变化,得出规律即可【解答】解:从横轴上的点开始点开始计数,从1开始计数第一周共9个格点,除了四个顶点外每一行第一列各有一个格点,外加一个延伸点第二周从10开始计,除了四个顶点的四个格点外,每一行每一列有三个格点,外加一个延伸点共17个,拐弯向下到达横轴前的格点补开始点的上面以补足起始点所在列的个数,由此其规律是后一周是前一周的格点数加上8×(周数﹣1)令周数为t,各周的点数和为S t=9+8(t﹣1)=8t+1,每一行(或列)除了端点外的点数与周数的关系是b=2t﹣1由于S1=9,S2=17,S3=25,S4=33,①由于9+17+25=51,第50个格点应在第三周的倒数第二个点上,故其坐标为(4,2)②f(1,0)=12,f(2,1)=32,f(3,2)=52,…,f(n+1,n)=(2n+1)2.∵n>m,∴n≥m ﹣1,∴当n>m时,f(m,n)=(2n+1)2+m﹣n﹣1.故答案为(4,2),2n+1)2+m﹣n﹣1,(n>m)【点评】本题考查归纳推理,归纳推理是由特殊到一般的推理,求解本题的关键是从特殊数据下手,找出规律,总结出所要的表达式,如本题的第二个填空.归纳在现实生活在有着十分广泛的运用,应好好把握其推理模式.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,内角A,B,C的对边分别为a,b,c.已知.(1)求tanC的值;(2)若,求边c的长及△ABC的面积.【考点】正弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】(1)由已知及同角三角函数基本关系式可求sinA,利用两角和的正弦函数公式,三角形内角和定理化简已知即可求解tanC的值.(2)由(1)可求sinC,又由正弦定理可求c=的值,对角A运用余弦定理:,联立方程即可解得b,利用三角形面积公式即可得解.【解答】解:(1)∵,∴,…又.整理得:.…(2)由知:.又由正弦定理知:,故c===.①…对角A运用余弦定理:.②解①②得:或(舍去).…∴△ABC的面积为:.…【点评】本题主要考查了同角三角函数基本关系式,两角和的正弦函数公式,三角形内角和定理,正弦定理,余弦定理,三角形面积公式的综合应用,考查了计算能力和转化思想,属于中档题.18.某地区教研部门要对高三期中数学练习进行调研,考察试卷中某道填空题的得分情况.已知该题有两空,第一空答对得3分,答错或不答得0分;第二空答对得2分,答错或不答得0分.第一空答对与否与第二空答对与否是相互独立的.从所有试卷中随机抽取1000份试(Ⅱ)这个地区的一名高三学生因故未参加考试,如果这名学生参加考试,以样本中各种得分情况的频率(精确到0.1)作为该同学相应的各种得分情况的概率.试求该同学这道题第一空得分不低于第二空得分的概率.【考点】等可能事件的概率;众数、中位数、平均数.【专题】计算题;应用题.【分析】(I)根据表中所给的数据代入求平均值的公式,得到这组数据的平均数,估计这个地区高三学生该题的平均分.(II)依题意有第一空答对的概率为0.8,第二空答对的概率为0.3,若要第一空得分不低于第二空得分,包括两种情况,这两种情况是互斥的,得到概率.【解答】解:(Ⅰ)设样本试卷中该题的平均分为,则由表中数据可得:,据此可估计这个地区高三学生该题的平均分为3.01分.(Ⅱ)依题意有第一空答对的概率为0.8,第二空答对的概率为0.3,记“第一空答对”为事件A,“第二空答对”为事件B,则“第一空答错”为事件“第二空答错”为事件.若要第一空得分不低于第二空得分,则A发生或与同时发生,故有.答:该同学这道题第一空得分不低于第二空得分的概率为0.94.【点评】本题考查平均数的求法和互斥事件的概率,本题解题的关键是看清所要求的事件包括几部分,本题是一个基础题.19.如图,在三棱锥P﹣ABC中,∠PAB=∠PAC=∠ACB=90°.(1)求证:平面PBC⊥平面PAC;(2)若PA=1,AB=2,BC=,在直线AC上是否存在一点D,使得直线BD与平面PBC 所成角为30°?若存在,求出CD的长;若不存在,说明理由.【考点】直线与平面所成的角;平面与平面垂直的判定.【专题】证明题;转化思想;向量法;空间位置关系与距离;空间角.【分析】(1)推导出PA⊥平面ABC,从而BC⊥PA,又BC⊥CA,从而BC⊥平面PAC,由此能证明平面PBC⊥平面PAC.(2)以C为原点,CA为x轴,CB为y轴,过C垂直于平面ABC的直线为z轴,建立空间直角坐标系C﹣xyz,利用向量法能求出在直线AC上存在点,使得直线BD与平面PBC所成角为30°.【解答】证明:(1)∵∠PAB=∠PAC=90°,∴PA⊥AB,PA⊥AC.∵AB∩AC=A,∴PA⊥平面ABC.…∵BC⊂平面ABC,∴BC⊥PA.…∵∠ACB=90°,∴BC⊥CA.∵PA∩CA=A,∴BC⊥平面PAC.…∵BC⊂平面PBC,∴平面PBC⊥平面PAC.…6分解:(2)由已知及(1)所证可知,PA⊥平面ABC,BC⊥CA,∵PA=1,AB=2,BC=.∴以C为原点,CA为x轴,CB为y轴,过C垂直于平面ABC的直线为z轴,建立如图的空间直角坐标系C﹣xyz,则C(0,0,0),B(0,,0),P(),,设=(x,y,z)是平面PBC的法向量,则,则取x=1,得=(1,0,﹣),…设直线AC上的点D满足,则,∴,∵直线BD与平面PBC所成角为30°,∴,解得,…∴在直线AC上存在点,使得直线BD与平面PBC所成角为30°.…【点评】本题考查面面垂直的证明,考查满足条件的点是否存在的判断与求法,是中档题,解题时要认真审题,注意向量法的合理运用.20.已知中心在原点O,焦点在x轴上,离心率为的椭圆过点(,).(1)求椭圆的方程;(2)设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.【考点】直线与圆锥曲线的综合问题.【专题】计算题.【分析】(1)设出椭圆的方程,将已知点代入椭圆的方程及利用椭圆的离心率公式得到关于椭圆的三个参数的等式,解方程组求出a,b,c的值,代入椭圆方程即可.(2)设出直线的方程,将直线方程与椭圆方程联立,消去x得到关于y的二次方程,利用韦达定理得到关于两个交点的坐标的关系,将直线OP,PQ,OQ的斜率用坐标表示,据已知三个斜率成等比数列,列出方程,将韦达定理得到的等式代入,求出k的值,利用判别式大于0得到m的范围,将△OPQ面积用m表示,求出面积的范围.【解答】解:(1)由题意可设椭圆方程为(a>b>0),则则故所以,椭圆方程为.(2)由题意可知,直线l的斜率存在且不为0,故可设直线l的方程为y=kx+m(m≠0),P(x1,y1),Q(x2,y2),由消去y得(1+4k2)x2+8kmx+4(m2﹣1)=0,则△=64k2b2﹣16(1+4k2b2)(b2﹣1)=16(4k2﹣m2+1)>0,且,.故y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2.因为直线OP,PQ,OQ的斜率依次成等比数列,所以=k2,即+m2=0,又m≠0,所以k2=,即k=.由于直线OP,OQ的斜率存在,且△>0,得0<m2<2且m2≠1.设d为点O到直线l的距离,则S△OPQ=d|PQ|=|x1﹣x2||m|=,所以S△OPQ的取值范围为(0,1).【点评】求圆锥曲线的方程,一般利用待定系数法;解决直线与圆锥曲线的位置关系问题,一般设出直线方程,将直线方程与圆锥曲线方程联立,消去一个未知数,得到关于一个未知数的二次方程,利用韦达定理,找突破口.注意设直线方程时,一定要讨论直线的斜率是否存在.21.已知函数f(x)=(其中a为常数).(Ⅰ)当a=0时,求函数的单调区间;(Ⅱ)当0<a<1时,设函数f(x)的3个极值点为x1,x2,x3,且x1<x2<x3.证明:x1+x3>.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【专题】导数的综合应用.【分析】(Ⅰ)求导数,利用导数不等式求单调区间.(Ⅱ)利用导数结合函数f(x)的3个极值点为x1,x2,x3,构造函数,利用单调性去判断.【解答】解:(Ⅰ)f'x=0﹣(Ⅱ)由题,对于函数,有∴函数h(x)在上单调递减,在上单调递增∵函数f(x)有3个极值点x1<x2<x3,从而,所以,当0<a<1时,h(a)=2lna<0,h(1)=a﹣1<0,∴函数f(x)的递增区间有(x1,a)和(x3,+∞),递减区间有(0,x1),(a,1),(1,x3),此时,函数f(x)有3个极值点,且x2=a;∴当0<a<1时,x1,x3是函数的两个零点,﹣﹣﹣﹣即有,消去a有2x1lnx1﹣x1=2x3lnx3﹣x3令g(x)=2xlnx﹣x,g'(x)=2lnx+1有零点,且∴函数g(x)=2xlnx﹣x在上递减,在上递增要证明⇔⇔因为g(x1)=g(x3),所以即证构造函数,则只需要证明单调递减即可.而,,所F'(x)在上单调递增,所以.∴当0<a<1时,.﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查了利用导数研究函数的单调性以及函数的极值问题,综合性较强,运算量较大.四.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号.[选修4-1:几何证明选讲]22.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.【考点】圆的切线的判定定理的证明.【专题】直线与圆.【分析】(Ⅰ)连接AE和OE,由三角形和圆的知识易得∠OED=90°,可得DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由射影定理可得关于x的方程x2=,解方程可得x值,可得所求角度.【解答】解:(Ⅰ)连接AE,由已知得AE⊥BC,AC⊥AB,在RT△ABC中,由已知可得DE=DC,∴∠DEC=∠DCE,连接OE,则∠OBE=∠OEB,又∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由已知得AB=2,BE=,由射影定理可得AE2=CE•BE,∴x2=,即x4+x2﹣12=0,解方程可得x=∴∠ACB=60°【点评】本题考查圆的切线的判定,涉及射影定理和三角形的知识,属基础题.[选修4-4:坐标系与参数方程]23.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系.已知点A的极坐标为(,),直线的极坐标方程为ρcos(θ﹣)=a,且点A在直线上.(1)求a的值及直线的直角坐标方程;(2)圆C的参数方程为(α为参数),试判断直线与圆的位置关系.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【专题】直线与圆;坐标系和参数方程.【分析】(1)运用代入法,可得a的值;再由两角差的余弦公式和直角坐标和极坐标的关系,即可得到直角坐标方程;(2)求得圆的普通方程,求得圆的圆心和半径,由点到直线的距离公式计算即可判断直线和圆的位置关系.【解答】解:(1)由点A(,)在直线ρcos(θ﹣)=a上,可得a=cos0=,所以直线的方程可化为ρcosθ+ρsinθ=2,从而直线的直角坐标方程为x+y﹣2=0,(2)由已知得圆C的直角坐标方程为(x﹣1)2+y2=1,所以圆心为(1,0),半径r=1,∴圆心到直线的距离d==<1,所以直线与圆相交.【点评】本题考查参数方程和极坐标方程与普通方程的互化,同时考查直线和圆的位置关系的判断,属于中档题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+a|+|2x﹣1|(a∈R).(l)当a=1,求不等式f(x)≥2的解集;(2)若f(x)≤2x的解集包含[,1],求a的取值范围.【考点】绝对值不等式的解法.【专题】不等式.【分析】对第(1)问,利用零点分段法,令|x+1|=0,|2x﹣1|=0,获得分类讨论的标准,最后取各部分解集的并集即可;对第(2)问,不等式f(x)≤2x的解集包含[,1],等价于f(x)≤2x在[,1]内恒成立,由此去掉一个绝对值符号,再探究f(x)≤2x的解集与区间[,1]的关系.【解答】解:(1)当a=1时,由f(x)≥2,得|x+1|+|2x﹣1|≥2,①当x≥时,原不等式可化为(x+1)+(2x﹣1)≥2,得x≥,∴x≥;②当﹣1≤x<时,原不等式可化为(x+1)﹣(2x﹣1)≥2,得x≤0,∴﹣1≤x≤0;③当x<﹣1时,原不等式可化为﹣(x+1)﹣(2x﹣1)≥2,得x≤,∴x<﹣1.综上知,原不等式的解集为{x|x≤0,或}.(2)不等式f(x)≤2x的解集包含[,1],等价于f(x)≤2x在[,1]内恒成立,从而原不等式可化为|x+a|+(2x﹣1)≤2x,即|x+a|≤1,∴当x∈[,1]时,﹣a﹣1≤x≤﹣a+1恒成立,∴,解得,故a的取值范围是[﹣].【点评】1.本题考查了含两个绝对值不等式的解法,一般有零点分段法,函数图象法等.2.第(2)问的关键是将条件转换成不等式恒成立问题,这也是本题的难点所在.2016年3月7日。
湖南师大附中2016届高三月语文考试卷_一_
染染语染染文染 湖 师大 中高 语文备课组组稿染 染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染染得 染染染染染染染染染染染 染染染染本试题卷 第 导 卷进阅读题远和第Ⅱ卷进表 题远 部 , 古0 页,时 舟50 钟 满 古50 染 第 导 卷染染进阅读题染染染 70 远染 染染必考题染 一、现代文阅读(9 分,每小题 3 分) 阅读 面的文 , 舟~另 题 染 小说 绝影视改 召重 王彦重 重重重重自 飞苦若古 商州 ,到 食话飞凡 苦 生 世,食古 间贾 作 夙5 部长 篇小说 但 中被改 影视剧的 章 部,改 碑之作的更 乎 零 作 家,贾 似乎 时 小说改 影视剧 风的潮流格格 入 重 重重重重时 , 学者 , 今文学界紧缺的 是 逆流而行,让影视剧改 无 入手的纯 文学性小说 重 文学评论家徐 寿 例 食话飞食 中 作家 影响力排行榜 ,莫言 余华 苏 童 前 作家 身 之 , 忽视的因素是,每人背 都 部 小说改 的 电影 在 看来,莫言背 红高粱 ,余华 活着 ,苏童 大红 笼高高 它们既 就了 艺谋, 全了作家在 声 鹊起 重 重重重重 内书 样如 ,书店的畅销小说半数 都 触电 背 徐 寿说,影视 文学联姻,常常能让 些作家 更 读者 识, 更大的阅读 场,像莫言 王 余 华 恒 震云 麦家 歌苓等, 们的作 着影视剧的热播在小说热销榜 扶 直 重 重重重重影视对文学作 的 广作用 中 , 样 美 电影理论家乔治由 鲁 就在著作 小说到电影 中写道 大卫由 波菲尔 在克 的影 时, 借阅小说的人数 增, 地 书馆 在 周内添购 飞章食 啸山庄 被拍 电影 , 小说在 食 内的销 数 超 过去 苦食 的总和 重 重重重重 触电 让小说流 更深广, 乎 半个 世纪 来 复被 的真 重 重重重重但真 人爱恨交 ,徐 寿旋 锋 转 影视剧走红了,想 剧 的 轻人 起来,但 静写作的越来越少了 重 重重重重徐 寿的 身份是西 师范大学 媒学 长 直在留心 文学 赋的 轻 人,但学生们每每 在 ,徐教 清楚,剧 作接触到的是声 犬 的物质世界,而 真 的纯文学是孤独的精神构建, 惜 面前, 数人倾 物质 重 重重重重华 师大中文系教 杨扬 样用 生 逢时 来形容 时的文学 境, 食话 世纪是属 作家的 歌,文学 据绝对 力 而 食飞 世纪, 像在阅读中越来越 要 评论界忧 思的 状是, 轻人的 是文学作 的 箴言, 而 之的是影视剧的走 红 词 长 ,纯文学恐会 剧 式写作让 ,就如 诗歌 的式徽 样, 将是文 学 大的 难 重 重重重重 难 是 言耸 吗召王小波的 段 作注解, 在 文 盖茨的紧身衣 中 道 电影时 ,小说怎 写召托尔 泰在 战 和 中 十 洋洋洒洒的文 述, 银幕 需 电影让阅读 轻松,既然如 ,何 十 召 行足矣 重 重重重重永 要 怪读者 浅薄 而要想想,是 们 了文学门槛召重 重重重重仕选自 人民网 , 删改取重 古 各 中, 属于原文 说的 影视对文学作 的推广作用 的一 是染染染染进染染远染 致 触电 让小说流传更广, 震云 王朔 恒 麦家 童等作家的作 就 着影 视剧的热播而热销, 更多读者熟悉 染
2024-2025学年湖南师范大学附属中学高三上学期月考(一)数学试题及答案
大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}A x x xB x x =+-≤=-<∣∣,则A B = ( )A. {}32x x -≤≤∣ B. {32}xx -≤<∣C. {12}xx <≤∣ D. {12}xx <<∣2. 若复数z 满足()1i 3i z +=-+(i 是虚数单位),则z 等于( )A.B.54C.D.3. 已知平面向量()()5,0,2,1a b ==- ,则向量a b + 在向量b 上投影向量为( )A. ()6,3- B. ()4,2- C. ()2,1- D. ()5,04. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( )A. 21B. 19C. 12D. 425. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nμσ~,记()()p k P k X k μσμσ=-≤≤+,则()()0.750.547,10.683p p ≈≈.A 136人B. 272人C. 328人D. 820人6. 已知()π5,0,,cos ,tan tan 426αβαβαβ⎛⎫∈-=⋅= ⎪⎝⎭,则αβ+=( )A.π6 B.π4C.π3D.2π37. 已知12,F F 是双曲线22221(0)x y a b a b-=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条的.渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A. ⎛ ⎝B. ⎛ ⎝C. (D. (8. 已知函数()220log 0x a x f x x x ⎧⋅≤=⎨>⎩,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( )A. ()0,1 B. ()(),00,1-∞⋃ C. [)1,+∞ D. ()()0,11,+∞ 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D -中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN10. 已知函数()5π24f x x ⎛⎫=+ ⎪⎝⎭,则( )A. ()f x 的一个对称中心为3π,08⎛⎫ ⎪⎝⎭B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象C. ()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递增D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m ⎛⎤∈⎥⎝⎦11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++-=,则()A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =-=∑三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +-的展开式中2x y 的系数为______.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x '->,且()10f =,则不等式()0f x >的解集为__________.14. 已知点C 为扇形AOB 弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λμλμ=+∈,则λμ+的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=.(1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB ==CD 的长.16. 已知1ex =为函数()ln af x x x =的极值点.(1)求a 的值;(2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x -≥,求k 的取值范围.17. 已知四棱锥P ABCD -中,平面PAB ⊥底面,ABCD AD∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥====为AB 的中点,F 为棱PC 上异于,P C 的点.的(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C y px p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r -+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况.销售量千张经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t =======∑∑∑(1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()N n P n *∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε-<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛..参考公式:()()()1122211ˆˆ,n ni i i ii in ni ii ix x y y x y nx ya y bxx x x nx====---==---∑∑∑∑.大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}A x x xB x x =+-≤=-<∣∣,则A B = ( )A. {}32x x -≤≤∣ B. {32}xx -≤<∣C. {12}xx <≤∣ D. {12}xx <<∣【答案】D 【解析】【分析】通过解一元二次不等式和对数函数的定义域,求出集合,A B ,再求交集.【详解】集合{}()32,{lg 10}{12}A x x B x x x x =-≤≤=-<=<<∣∣∣,则{12}A B xx ⋂=<<∣,故选:D .2. 若复数z 满足()1i 3i z +=-+(i 是虚数单位),则z 等于( )A.B.54C.D.【答案】C 【解析】【分析】由复数的除法运算计算可得12i z =-+,再由模长公式即可得出结果.【详解】依题意()1i 3i z +=-+可得()()()()3i 1i 3i 24i12i 1i 1i 1i 2z -+--+-+====-+++-,所以z ==.故选:C3. 已知平面向量()()5,0,2,1a b ==- ,则向量a b +在向量b 上的投影向量为( )A. ()6,3- B. ()4,2- C. ()2,1- D. ()5,0【答案】A 【解析】【分析】根据投影向量的计算公式即可求解.【详解】()()7,1,15,a b a b b b +=-+⋅=== 所以向量a b +在向量b 上的投影向量为()()236,3||a b b b b b +⋅==- .故选:A4. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( )A. 21 B. 19C. 12D. 42【答案】A 【解析】【分析】根据等差数列的性质,即可求解公差和首项,进而由求和公式求解.【详解】{}n a 是等差数列,396214a a a ∴+==,即67a =,所以67769,a a a a ==故公差76162,53d a a a a d =-=∴=-=-,()767732212S ⨯∴=⨯-+⨯=,故选:A5. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nμσ~,记()()p k P k X k μσμσ=-≤≤+,则()()0.750.547,10.683p p ≈≈.A. 136人B. 272人C. 328人D. 820人【答案】B 【解析】【分析】首先求出平均数,即可得到学生的数学成绩2~(73.5,22)X N ,再根据所给条件求出(5790)P X ≤≤,即可求出(90)P X ≥,即可估计人数.【详解】由题得0.4915073.5,22μσ=⨯==,()()(),0.750.547p k P k X k p μσμσ=-≤≤+≈ ,()5790P X ∴≤≤()0.750.547p =≈,()()900.510.5470.2265P X ≥=⨯-=,∴该校及格人数为0.22651200272⨯≈(人),故选:B .6. 已知()π5,0,,cos ,tan tan 426αβαβαβ⎛⎫∈-=⋅= ⎪⎝⎭,则αβ+=( )A.π6 B.π4C.π3D.2π3【答案】D 【解析】【分析】利用两角差的余弦定理和同角三角函数的基本关系建立等式求解,再由两角和的余弦公式求解即可.【详解】由已知可得5cos cos sin sin 6sin sin 4cos cos αβαβαβαβ⎧⋅+⋅=⎪⎪⎨⋅⎪=⋅⎪⎩,解得1cos cos 62sin sin 3αβαβ⎧⋅=⎪⎪⎨⎪⋅=⎪⎩,,()1cos cos cos sin sin 2αβαβαβ∴+=⋅-⋅=-,π,0,2αβ⎛⎫∈ ⎪⎝⎭,()0,παβ∴+∈,2π,3αβ∴+=,故选:D .7. 已知12,F F 是双曲线22221(0)x y a b a b-=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A. ⎛ ⎝B. ⎛ ⎝C. (D. (【答案】B 【解析】【分析】根据双曲线以及圆的方程可求得弦长AB =,再根据不等式123AB F F >整理可得2259c a <,即可求得双曲线的离心率的取值范围.【详解】设以()2,0F c 为圆心,a 为半径的圆与双曲线的一条渐近线0bx ay -=交于,A B 两点,则2F 到渐近线0bx ay -=的距离d b ==,所以AB =,因为123AB F F >,所以32c ⨯>,可得2222299a b c a b ->=+,即22224555a b c a >=-,可得2259c a <,所以2295c a <,所以e <,又1e >,所以双曲线的离心率的取值范围是⎛ ⎝.故选:B8. 已知函数()220log 0x a x f x x x ⎧⋅≤=⎨>⎩,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( )A. ()0,1 B. ()(),00,1-∞⋃ C. [)1,+∞ D. ()()0,11,+∞ 【答案】C 【解析】【分析】利用换元法设()u f x =,则方程等价为()0f u =,根据指数函数和对数函数图象和性质求出1u =,利用数形结合进行求解即可.【详解】令()u f x =,则()0f u =.①当0a =时,若()0,0u f u ≤=;若0u >,由()2log 0f u u ==,得1u =.所以由()()0ff x =可得()0f x ≤或()1f x =.如图所示,满足()0f x ≤的x 有无数个,方程()1f x =只有一个解,不满足题意;②当0a ≠时,若0≤u ,则()20uf u a =⋅≠;若0u >,由()2log 0f u u ==,得1u =.所以由()()0ff x =可得()1f x =,当0x >时,由()2log 1f x x ==,可得2x =,因为关于x 的方程()()0f f x =有且仅有两个实数根,则方程()1f x =在(,0∞-]上有且仅有一个实数根,若0a >且()(]0,20,xx f x a a ≤=⋅∈,故1a ≥;若0a <且()0,20xx f x a ≤=⋅<,不满足题意.综上所述,实数a 的取值范围是[)1,+∞,故选:C .二、多选题:本题共36分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D -中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN【答案】BD 【解析】【分析】可得过,,E F M 三点的平面为一个正六边形,判断A ;分别连接,E F 和1,B C ,截面1C BEF 是等腰梯形,判断B ;分别取11,BB CC 的中点,G Q ,易证EF 显然不平行平面QGMN ,可判断C ;EM ⊥平面PMN ,可判断D.【详解】对于A :如图经过,,E F M 三点的平面为一个正六边形EFMHQK ,点P 在平面外,,,,E F M P ∴四点不共面,∴选项A 错误;对于B :分别连接,E F 和1,B C ,则平面PEF 即平面1C BEF ,截面1C BEF 是等腰梯形,∴选项B 正确;对于C :分别取11,BB CC 的中点,G Q ,则平面PMN 即为平面QGMN ,由正六边形EFMHQK ,可知HQ EF ,所以MQ 不平行于EF ,又,EF MQ ⊂平面EFMHQK ,所以EF MQ W = ,所以EF I 平面QGMN W =,所以EF 不平行于平面PMN ,故选项C 错误;对于D :因为,AEM BMG 是等腰三角形,45AME BMG ∴∠=∠=︒,90EMG ∴∠=︒,EMMG ∴⊥,,M N 是,AB CD 的中点,易证MN AD ∥,由正方体可得AD ⊥平面11ABB A ,MN ∴⊥平面11ABB A ,又ME ⊂平面11ABB A ,EM MN ∴⊥,,MG MN ⊂ 平面PMN ,EM ∴⊥平面GMN ,EM ⊂ 平面MEF ,∴平面MEF ⊥平面,PMN 故选项D 正确.故选:BD .10. 已知函数()5π24f x x ⎛⎫=+ ⎪⎝⎭,则( )A. ()f x 的一个对称中心为3π,08⎛⎫ ⎪⎝⎭B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象C. ()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递增D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m ⎛⎤∈ ⎥⎝⎦【答案】BD 【解析】【分析】代入即可验证A ,根据平移可得函数图象,即可由正弦型函数的奇偶性求解B ,利用整体法即可判断C ,由5πcos 24x ⎛⎫+= ⎪⎝⎭求解所以根,即可求解D.【详解】对于A ,由35π3π2π0848f ⎛⎫⎛⎫=+⨯=≠⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B ,()f x 的图象向右平移3π8个单位长度后得:3π3π5ππ228842y f x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,为奇函数,故B 正确;对于C ,当5π7π,88x ⎡⎤∈⎢⎥⎣⎦时,则5π5π2,3π42x ⎡⎤+∈⎢⎥⎣⎦,由余弦函数单调性知,()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递减,故C 错误;对于D ,由()1f x =,得5πcos 24x ⎛⎫+= ⎪⎝⎭ππ4x k =+或ππ,2k k +∈Z ,()y f x =在区间()0,m 上与1y =有且只有6个交点,其横坐标从小到大依次为:ππ5π3π9π5π,,,,,424242,而第7个交点的横坐标为13π4,5π13π24m ∴<≤,故D 正确.故选:BD11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++-=,则( )A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =-=∑【答案】ABC 【解析】【分析】根据函数奇偶性以及所满足的表达式构造方程组可得()()222f x f x ++-=,即可判断A 正确;利用对称中心表达式进行化简计算可得B 正确,可判断()g x 也是以8为周期的周期函数,即C 正确;根据周期性以及()()42f x f x ++=计算可得20241(42)2024k f k =-=∑,可得D 错误.【详解】由题意()()()(),f x f x g x g x -=-=-,且()()()00,21g f x g x =++-=,即()()21f x g x +-=①,用x -替换()()21f x g x ++-=中的x ,得()()21f x g x -+=②,由①+②得()()222f x f x ++-=所以()f x 的图象关于点(2,1)对称,且()21f =,故A 正确;由()()222f x f x ++-=,可得()()()()()42,422f x f x f x f x f x ++-=+=--=-,所以()()()()82422f x f x f x f x ⎡⎤+=-+=--=⎣⎦,所以()f x 是以8为周期的周期函数,故B 正确;由①知()()21g x f x =+-,则()()()()882121g x f x f x g x +=++-=+-=,故()()8g x g x +=,因此()g x 也是以8为周期的周期函数,所以()()202400g g ==,C 正确;又因为()()42f x f x ++-=,所以()()42f x f x ++=,令2x =,则有()()262f f +=,令10x =,则有()()10142,f f +=…,令8090x =,则有()()809080942f f +=,所以1012(2)(6)(10)(14)(8090)(8094)2222024f f f f f f ++++++=+++=个所以20241(42)(2)(6)(10)(14)(8090)(8094)2024k f k f f f f f f =-=++++++=∑ ,故D 错误.故选:ABC【点睛】方法点睛:求解函数奇偶性、对称性、周期性等函数性质综合问题时,经常利用其中两个性质推得第三个性质特征,再进行相关计算.三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +-的展开式中2x y 的系数为______.【答案】180-【解析】【分析】根据题意,由条件可得展开式中2x y 的系数为213643C C (1)⋅-,化简即可得到结果.【详解】在6(31)x y +-的展开式中,由()2213264C C 3(1)180x y x y ⋅⋅-=-,得2x y 的系数为180-.故答案为:180-.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x '->,且()10f =,则不等式()0f x >的解集为__________.【答案】()()1,01,-⋃+∞【解析】【分析】根据函数奇偶性并求导可得()()f x f x ''-=,因此可得()()2f x f x '>,可构造函数()()2xf x h x =e并求得其单调性即可得()f x 在()1,+∞上大于零,在()0,1上小于零,即可得出结论.【详解】因为()f x 为奇函数,定义域为R ,所以()()f x f x -=-,两边同时求导可得()()f x f x ''--=-,即()()f x f x ''-=且()00f =,又因为当0x >时,()()2f x f x '->,所以()()2f x f x '>.构造函数()()2x f x h x =e ,则()()()22xf x f x h x '-'=e,所以当0x >时,()()0,h x h x '>在()0,∞+上单调递增,又因为()10f =,所以()()10,h h x =在()1,+∞上大于零,在()0,1上小于零,又因为2e 0x >,所以()f x 在()1,+∞上大于零,在()0,1上小于零,因为()f x 为奇函数,所以()f x 在(),1∞--上小于零,在()1,0-上大于零,综上所述,()0f x >的解集为()()1,01,-⋃+∞.故答案为:()()1,01,-⋃+∞14. 已知点C 为扇形AOB 的弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λμλμ=+∈,则λμ+的取值范围是__________.【答案】⎡⎢⎣【解析】【分析】建系设点的坐标,再结合向量关系表示λμ+,最后应用三角恒等变换及三角函数值域求范围即可.【详解】方法一:设圆O 的半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,过O 点作x 轴垂线为y 轴建立直角坐标系,其中()()1,1,0,cos ,sin 2A B C θθ⎛ ⎝,其中π,0,3BOC θθ⎡⎤∠=∈⎢⎥⎣⎦,由(),R OC OA OB λμλμ=+∈,即()()1cos ,sin 1,02θθλμ⎛=+⎝,整理得1cos sin 2λμθθ+==,解得cos λμθ==,则ππcos cos ,0,33λμθθθθθ⎛⎫⎡⎤+==+=+∈ ⎪⎢⎥⎝⎭⎣⎦,ππ2ππ,,sin 3333θθ⎤⎡⎤⎛⎫+∈+∈⎥⎪⎢⎥⎣⎦⎝⎭⎦所以λμ⎡+∈⎢⎣.方法二:设k λμ+=,如图,当C 位于点A 或点B 时,,,A B C 三点共线,所以1k λμ=+=;当点C 运动到AB的中点时,k λμ=+==,所以λμ⎡+∈⎢⎣故答案为:⎡⎢⎣四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=.(1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB ==CD 的长.【答案】(1)2π3C = (2)3CD =【解析】【分析】(1)利用正弦定理及两角和的正弦定理整理得到()2cos 1sin 0C B +=,再利用三角形的内角及正弦函数的性质即可求解;(2)利用正弦定理得出3b a =,再由余弦定理求出4a =,12b =,再根据三角形的面积建立等式求解.【小问1详解】由22cos a b c B +=,根据正弦定理可得2sin sin 2sin cos A B C B +=,则()2sin sin 2sin cos B C B C B ++=,所以2sin cos 2cos sin sin 2sin cos B C B C B C B ++=,整理得()2cos 1sin 0C B +=,因为,B C 均为三角形内角,所以(),0,π,sin 0B C B ∈≠,因此1cos 2C =-,所以2π3C =.【小问2详解】因为CD 是角C的平分线,AD DB ==所以在ACD 和BCD △中,由正弦定理可得,,ππsin sin sin sin 33AD CD BD CDA B ==,因此sin 3sin B ADA BD==,即sin 3sin B A =,所以3b a =,又由余弦定理可得2222cos c a b ab C =+-,即222293a a a =++,解得4a =,所以12b =.又ABC ACD BCD S S S =+△△△,即111sin sin sin 222ab ACB b CD ACD a CD BCD ∠∠∠=⋅⋅+⋅⋅,即4816CD =,所以3CD =.16. 已知1ex =为函数()ln af x x x =的极值点.(1)求a 的值;(2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x -≥,求k 的取值范围.【答案】(1)1a = (2)(]()10,-∞-+∞ ,【解析】【分析】(1)直接根据极值点求出a 的值;(2)先由(1)求出()f x 的最小值,由题意可得是求()g x 的最小值,小于等于()f x 的最小值,对()g x 求导,判断由最小值时的k 的范围,再求出最小值与()f x 最小值的关系式,进而求出k 的范围.【小问1详解】()()111ln ln 1a a f x ax x x x a x xα--=='+⋅+,由1111ln 10e e e a f a -⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪⎪⎝⎭⎝⎭'⎭⎝,得1a =,当1a =时,()ln 1f x x ='+,函数()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e∞⎛⎫+ ⎪⎝⎭上单调递增,所以1ex =为函数()ln af x x x =的极小值点,所以1a =.【小问2详解】由(1)知min 11()e e f x f ⎛⎫==- ⎪⎝⎭.函数()g x 的导函数()()1exg x k x -=-'①若0k >,对()1210,,x x k ∞∀∈+∃=-,使得()()12111e 1e k g x g f x k ⎛⎫=-=-<-<-≤ ⎪⎝⎭,即()()120f x g x -≥,符合题意.②若()0,0k g x ==,取11ex =,对2x ∀∈R ,有()()120f x g x -<,不符合题意.③若0k <,当1x <时,()()0,g x g x '<在(),1∞-上单调递减;当1x >时,()()0,g x g x '>在(1,+∞)上单调递增,所以()min ()1ek g x g ==,若对()120,,x x ∞∀∈+∃∈R ,使得()()120f x g x -≥,只需min min ()()g x f x ≤,即1e ek ≤-,解得1k ≤-.综上所述,k 的取值范围为(](),10,∞∞--⋃+.17. 已知四棱锥P ABCD -中,平面PAB ⊥底面,ABCD AD ∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥====为AB 的中点,F 为棱PC 上异于,P C 的点.(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD【答案】(1)证明见解析(2)F 位于棱PC 靠近P 的三等分点【解析】【分析】(1)连接,,PE EC EC 交BD 于点G ,利用面面垂直的性质定理和三角形全等,即可得证;(2)取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立,利用线面角公式代入即可求解.小问1详解】如图,连接,,PE EC EC 交BD 于点G .因为E 为AB 的中点,PA PB =,所以PE AB ⊥.因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面,ABCD AB PE =⊂平面PAB ,所以PE ⊥平面ABCD ,因为BD ⊂平面ABCD ,所以BD ⊥.因为ABD BCE ≅ ,所以CEB BDA ∠∠=,所以90CEB ABD ∠∠+= ,所以BD EC ⊥,因为,,PE EC E PE EC ⋂=⊂平面PEC ,所以BD ⊥平面PEC .因为EF ⊂平面PEC ,所以BD EF ⊥.【小问2详解】如图,取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立空间直角坐标系,【设2AB =,则2,1,BC AD PA PB ====则()()()()0,0,1,1,2,0,1,1,0,0,0,0P C D E -,设(),,,(01)F x y z PF PC λλ=<<,所以()(),,11,2,1x y z λ-=-,所以,2,1x y z λλλ===-,即(),2,1F λλλ-.则()()()2,1,0,1,2,1,,2,1DC PC EF λλλ==-=-,设平面PCD 的法向量为(),,m a b c =,则00DC m PC m ⎧⋅=⎪⎨⋅=⎪⎩,,即2020a b a b c +=⎧⎨+-=⎩,,取()1,2,3m =--,设EF 与平面PCD 所成的角为θ,由cos θ=sin θ=.所以sin cos ,m EF m EF m EF θ⋅====整理得2620λλ-=,因为01λ<<,所以13λ=,即13PF PC = ,故当F 位于棱PC 靠近P 的三等分点时,EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C y px p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r -+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.【答案】(1(2)证明见解析【解析】【分析】(1)根据椭圆的短轴可得抛物线方程2y x =,进而根据两点斜率公式,结合三角形的三边关系,即可由二次函数的性质求解,(2)根据两点坐标可得直线,MN DM 的直线方程,由直线与圆相切可得,a b 是方程()()()2222124240r x r x r -+-+-=的两个解,即可利用韦达定理代入化简求解定点.【小问1详解】由题意得椭圆的方程:221116y x +=,所以短半轴14b =所以112242p b ==⨯=,所以抛物线1C 的方程是2y x =.设点()2,P t t ,则111222PQ PE ≥-=-=≥,所以当232ι=时,线段PQ.【小问2详解】()1,D t 是抛物线1C 上位于第一象限的点,21t ∴=,且()0,1,1t D >∴设()()22,,,M a a N b b ,则:直线()222:b a MN y a x a b a --=--,即()21y a x a a b-=-+,即()0x a b y ab -++=.直线()21:111a DM y x a --=--,即()10x a y a -++=.由直线DMr =,即()()()2222124240r a r a r -+-+-=..同理,由直线DN 与圆相切得()()()2222124240r b r b r -+-+-=.所以,a b 是方程()()()2222124240r x r x r -+-+-=的两个解,22224224,11r r a b ab r r --∴+==--代入方程()0x a b y ab -++=得()()222440x y r x y +++---=,220,440,x y x y ++=⎧∴⎨++=⎩解得0,1.x y =⎧⎨=-⎩∴直线MN 恒过定点()0,1-.【点睛】圆锥曲线中定点问题的两种解法(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.技巧:若直线方程为()00y y k x x -=-,则直线过定点()00,x y ;若直线方程为y kx b =+ (b 为定值),则直线过定点()0,.b 19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况.日期t 12345678910销售量千张 1.9 1.98 2.2 2.36 2.43259 2.682.76 2.70.4经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t =======∑∑∑.(1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;..(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()Nn P n *∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε-<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛.参考公式: ()()()1122211ˆˆ,n ni i i i i i n n ii i i x x y y x y nx y ay bx x x x nx ====---==---∑∑∑∑.【答案】(1)673220710001200y t =+ (2)433774n n P ⎛⎫=+⋅- ⎪⎝⎭(3)①最大值为1316,最小值为14;②证明见解析【解析】【分析】(1)计算出新数据的相关数值,代入公式求出 ,ab 的值,进而得到y 关于t 的回归方程;(2)由题意可知1213,(3)44n n n P P P n --=+≥,其中12113,416P P ==,构造等比数列,再利用等比数列的通项公式求解;(3)①分n 为偶数和n 为奇数两种情况讨论,结合指数函数的单调性求解;②利用数列收敛的定义,准确推理、运算,即可得证.【小问1详解】解:剔除第10天的数据,可得 2.2100.4 2.49y ⨯-==新,12345678959t ++++++++==新,则9922111119.73100.4114,73,38510285i i i i t y t ==⎛⎫⎛⎫=-⨯==-= ⎪ ⎪⎝⎭⎝⎭∑∑新新,所以912922119114,7395 2.4673ˆ2859560009i i i i t y t y b t t ==⎛⎫- ⎪-⨯⨯⎝⎭===-⨯⎛⎫- ⎪⎝⎭∑∑新新新新新,可得6732207ˆ 2.4560001200a =-⨯=,所以6732207ˆ60001200y t =+.【小问2详解】解:由题意知1213,(3)44n n n P P P n --=+≥,其中12111313,444416P P ==⨯+=,所以11233,(3)44n n n n P P P P n ---+=+≥,又由2131331141644P P +=+⨯=,所以134n n P P -⎧⎫+⎨⎬⎩⎭是首项为1的常数列,所以131,(2)4n n P P n -+=≥所以1434(2)747n n P P n --=--≥,又因为1414974728P -=-=-,所以数列47n P ⎧⎫-⎨⎬⎩⎭是首项为928-,公比为34-的等比数列,故143)74n n P --=-,所以1934433(()2847774n n n P -=--+=+-.【小问3详解】解:①当n 为偶数时,19344334()(28477747n n n P -=--+=+⋅>单调递减,最大值为21316P =;当n 为奇数时,19344334()(28477747n n n P -=--+=-⋅<单调递增,最小值为114P =,综上可得,数列{}n P 的最大值为1316,最小值为14.②证明:对任意0ε>总存在正整数0347[log ()]13N ε=+,其中 []x 表示取整函数,当 347[log ()]13n ε>+时,347log ()34333333()()()7747474n n n P εε-=⋅-=⋅<⋅=,所以数列{}n P 收敛.【点睛】知识方法点拨:与新定义有关的问题的求解策略:1、通过给出一个新的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;2、遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.方法点拨:与数列有关的问题的求解策略:3、若新定义与数列有关,可得利用数列的递推关系式,结合数列的相关知识进行求解,多通过构造的分法转化为等差、等比数列问题求解,求解过程灵活运用数列的性质,准确应用相关的数列知识.。
【Word版】湖南师大附中2016届高三上学期第一次月考试题数学(文)Word版含答案
炎德·英才大联考湖南师大附中2016届高三月考试卷(一)数 学(文科)命题:高三文科数学备课组本试题卷包括选择题、填空题和解答题三部分及选做题,共8页。
时量120分钟,满分150分。
得分一、选择题:本大题共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z 满12i z i =+,则复数z 对应的点位于复平面内A 、第一象限B 、第二象限C 、第三象限D 、第四象限2.设集合{|||1}A x x =<,2{|log 0}B x x =<,则命题p :“x A ∈”是命题q :“x ∈B”成立的A 、充分非必要条件B 、必要非充分条件C 、充要条件D 、非充分也非必要条件3.已知函数3log (0)()21(0)x x x f x x ->⎧=⎨+≤⎩,则21((1))(log )3f f f +的值是 A 、6 B 、5C 、72D 、534.已知命题p :“x ∀∈R ,不等式21x m >-恒成立,则m ≤1”;命题q :“函数()x f x e x=+有两个零点”,则A 、p 假,q 真B 、“p q ∧”真C 、“p q ∨”假D 、“p q ∧”假5.右边茎叶图表示的是甲、乙两人在5次综合测评中的成绩(成绩为整效),其中一个数字被污损,则乙的平均成绩不低于甲的平均成绩的概率为A 、25 B 、110C 、910D 、15 6.已知函数32()(1)(2)f x x a x a a x b =+--++ (a >0,b ∈R)的图象过原点,且在原点处的切线斜率为-3,则a +b 的值是A 、1B 、-3C 、-lD 、37.已知一个多面体内接于球,其正视图、侧视图、俯视图都是如图的图形,中央的四边形是边长为1的正方形,则该球的表面积是A B 、34π C 、3π D 、9π8.阅读如图所示的程序框图,运行相应的程序,若输入n 的值为8,则输出S 的值为A 、512B 、546C 、1067D 、10689.函数1x y a -=(a >0,a ≠1)的图象恒过定点M ,若点M 在直线1mx ny +=(m>0,n>0)上,则14m n+的 最小值为 A 、8 B 、9C 、10D 、1210.过点P(1-)的直线l 与圆221x y +=有公共点,则直线l 的倾斜角的取值范围是A 、[0,6π] B 、[0,3π] C 、(0,6π] D 、(0,3π]11.已知函数2()22sin 1f x x x =+-,则它的最小正周期和一个单调增区间分别为A 、2π, [6π-,3π]B 、2π,[3π,56π] C 、π,[6π-,3π] D 、π,[3π,56π] 12.x 为实数。
湖南师大附中2016届高三月考卷
湖南师大附中2016届高三月考卷(四) 命题:湖南师大附中高三物理备课组一、选择题(本题包含12个小题,每小题 4分,共48分,其中1~8小题只有一个选项正 确,9~12小题有多个选项正确, 全部选对的得4分,选对但不全的得2分,错选或不选得0 分,将答案填在答题卡上)1、 我国古诗很多包含着丰富的物理知识,如北宋大词人辛弃疾( 1140―― 1207 )曾有一首 别具一格的吟 X 星球的名词,其中有 飞镜无根谁系?嫦娥不嫁谁留 ? ”,那么以下关于前 一句的回答正确的是(A )A •飞镜无根“(地球的)引力”系(月亮被地球的引力吸住)B •飞镜无根“(太阳的)引力”系(地球被太阳的引力吸住)C •是描绘太阳绕地球运动的情景(古时候认为太阳绕地球转)D •是描绘飞来之镜(别人抛来的定情铜镜)好像被人用绳牵着一样而没做平抛运动。
2、 有一只小虫重为 G 不慎跌入一个碗中,如图所示•碗内壁为一半径为 R 的球壳的一部分,其 深度为D.碗与小虫脚间的动摩擦因数为 」•,若小虫可以缓慢顺利地爬出碗口而不会滑入碗底.则D 的最大值为多少?(最大静摩擦力大小等于滑动摩擦力大小 )(D )A.RB. ------------ R..1」2C.(1)RD.(1)R解析:要使小虫顺利爬岀碗口, 只须小虫能到达碗边沿 A ,设碗边沿的半径与竖直方向夹角为札则(受力图如下)由平衡条件得:N=Gcos $ ① f=Gsin $ ②又f=卩N所以卩=tan $由几何关系有D=R(1- cos$) ③3、如右图,滑块以初速度v0沿表面粗糙且足够长的固定斜面,从顶端下滑,直至速度为零。
对于该运动过程,若用x、a、E p、E k、分别表示滑块下滑的位移的大小、加速度的大小、重力势能(以斜面底面所在平面为零势面)和动能,t表示时间,则下列图像最能正确一运动规律的是(解析:A 、B 在下滑过程中,物体的加速度卩mgcos 0 -mgsin 0 =maa=卩geos 0 - gsin 0,加速度的大小保持不变,所以加速度图像应是与时间轴平行的直线•物1 2下滑过程中速度大小关系为v=v 0+at = v 0+ ( gsin 0 -卩geos 0 ) t ,动能E k mv ,故动能2变化越越慢,故 D 正确,故选Do4、物体在万有引力场中具有的势能叫做引力势能。
湖南省师范大学附属中学2016届高三上学期月考(六)(文)数学试题 含答案
湖南师大附中2016届高三考试卷(六)数学(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1。
在复平面内,复数65,23i i--+对应的点分别为A B、,若C为线段AB的中点,则点C对应的复数是()A.48i+B.82i+C.2i-D.4i+2。
设命题:66p m-≤≤,命题:q函数2()9()f x x mx m R=++∈没有零点,则p是q 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.点(,3)P a到直线4310x y-+=的距离等于4,且在230x y+-<表示的平面区域内,则a的值为( )A.3 B.7 C.—3 D.-74。
如图所示的程序框图运行的结果是()A.20142015B.20152016C.20142013D.201520145。
一个多面体的三视图分别是正方形、等腰三角形和矩形,其尺寸如图,则该多面体的体积为( )A .348cm B .324cm C .332cm D .328cm6。
已知函数()f x 是偶函数,当0x >时,13()f x x =,则在(2,0)-上,下列函数中与()f x 的单调性相同的是( ) A .21y x=-+ B .1y x =+ C .xy e =D .321,01,0x x y x x -≥⎧=⎨+<⎩7。
已知ABC ∆中,030A ∠=,,AB BC 32,32中项,则ABC ∆的面积等于( ) A 3B 3C 33D 338.从2010名学生中选取50名学生参加数学竞赛,若采用下面的方法选取:先用简单随机抽样从2010人中剔除10人,剩下的2000人再按系统抽样的方法抽取50人,则在2010人中,每人入选的概率( ) A .不全相等 B .均不相等 C .都相等,且为5201D .都相等,且为1409。
已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均与圆22:650C x y x +-+=相切,则该双曲线离心率等于( ) A 35 B 6C .32 D 510. (,1),(2,),(4,5)A a B b C 为坐标平面内三点,O 为坐标原点,若OA 与OB 在OC方向上的投影相同,则,a b 满足的关系式为( ) A .453a b -= B .543a b -= C .4514a b += D .5414a b += 11。
湖南师大附中2016届高三月考试卷(一)..
湖南师大附中2016届高三月考试卷(一)语文湖南师大附中高三语文备课组组稿得分:本试题卷分第I卷(阅读题)和第Ⅱ卷(表达题)两部分,共10页,时量l50分钟。
满分150分。
第I卷 (阅读题共70分)甲必考题一、现代文阅读(9分,每小题3分)阅读下面的文字,完成l~3题。
小说敢不敢拒绝影视改编?王彦自1987年出版《商州》,到2014年9月《老生》问世,27年间贾平凹共创作l5部长篇小说。
但其中被改编为影视剧的仅有3部,改编后成为口碑之作的更近乎为零。
作为一代名家,贾平凹似乎与时下小说改编影视剧成风的潮流格格不入。
时此,有学者提出,当今文学界紧缺的恰是敢于逆流而行,让影视剧改编无从入手的纯文学性小说。
文学评论家徐兆寿举例为证:2012年中国作家海外影响力排行榜上,莫言、余华、苏童分列前三。
‚作家本身功底之外,不可忽视的因素是,每人背后都有一部由小说改编的经典电影。
‛在他看来,莫言背后有《红高粱》,余华有《活着》,苏童则有《大红灯笼高高挂》。
它们既成就了张艺谋,也成全了作家在海外声名鹊起。
‚国内书市同样如此,书店的畅销小说半数以上都有‘触电’背景‛。
徐兆寿说,影视与文学联姻,常常能让一些作家为更多读者认识,具有更大的阅读市场,像莫言、王朔、余华、刘恒、刘震云、麦家、严歌苓等,他们的作品随着影视剧的热播在小说热销榜上扶摇直上。
影视对文学作品的推广作用不仅中国有,国外同样有。
美国当代电影理论家乔治〃布鲁斯东就在著作《从小说到电影》中写道:‚《大卫〃科波菲尔》在克里兰夫的影院公映时,借阅小说的人数陡增,当地图书馆不得不在一周内添购132册;《呼啸山庄》被拍成电影后,小说在2年内的销售数量超出过去92年的总和。
‛‚触电‛让小说流传更深广,这几乎成为半个多世纪以来反复被佐证的真命题。
但真命题却叫人爱恨交加,徐兆寿旋即话锋一转:‚影视剧走红了,想当编剧、当导演的年轻人多起来,但安静写作的越来越少了。
‛徐兆寿的另一重身份是西北师范大学传媒学院院长。
湖南师大附中2016届高三上学期月考试卷(四)英语试题(2021年整理)
湖南师大附中2016届高三上学期月考试卷(四)英语试题(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(湖南师大附中2016届高三上学期月考试卷(四)英语试题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为湖南师大附中2016届高三上学期月考试卷(四)英语试题(word版可编辑修改)的全部内容。
2016届高三月考试卷(四)英语第Ⅰ卷第一部分听力(共两节,满分30分)第一节 (共5小题;每小题1。
5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置.听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题.每段对话仅读一遍。
( )1.What does the woman want to do?A。
Have a cup of coffee. B。
Get up early。
C。
Go home.()2。
How much will the man pay for the tickets?A。
$22。
5。
B. $50。
C. $15.( )3.What's the probable relationship between the two speakers?A. They are good friends.B. They meet for the first time.C。
They work in the same department.( )4。
Why is the woman upset?A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南师大附中2016届高三月考试卷(一)语文湖南师大附中高三语文备课组组稿得分:本试题卷分第I卷(阅读题)和第Ⅱ卷(表达题)两部分,共10页,时量l50分钟。
满分150分。
第I卷 (阅读题共70分)甲必考题一、现代文阅读(9分,每小题3分)阅读下面的文字,完成l~3题。
小说敢不敢拒绝影视改编?王彦自1987年出版《商州》,到2014年9月《老生》问世,27年间贾平凹共创作l5部长篇小说。
但其中被改编为影视剧的仅有3部,改编后成为口碑之作的更近乎为零。
作为一代名家,贾平凹似乎与时下小说改编影视剧成风的潮流格格不入。
时此,有学者提出,当今文学界紧缺的恰是敢于逆流而行,让影视剧改编无从入手的纯文学性小说。
文学评论家徐兆寿举例为证:2012年中国作家海外影响力排行榜上,莫言、余华、苏童分列前三。
‚作家本身功底之外,不可忽视的因素是,每人背后都有一部由小说改编的经典电影。
‛在他看来,莫言背后有《红高粱》,余华有《活着》,苏童则有《大红灯笼高高挂》。
它们既成就了张艺谋,也成全了作家在海外声名鹊起。
‚国内书市同样如此,书店的畅销小说半数以上都有‘触电’背景‛。
徐兆寿说,影视与文学联姻,常常能让一些作家为更多读者认识,具有更大的阅读市场,像莫言、王朔、余华、刘恒、刘震云、麦家、严歌苓等,他们的作品随着影视剧的热播在小说热销榜上扶摇直上。
影视对文学作品的推广作用不仅中国有,国外同样有。
美国当代电影理论家乔治〃布鲁斯东就在著作《从小说到电影》中写道:‚《大卫〃科波菲尔》在克里兰夫的影院公映时,借阅小说的人数陡增,当地图书馆不得不在一周内添购132册;《呼啸山庄》被拍成电影后,小说在2年内的销售数量超出过去92年的总和。
‛‚触电‛让小说流传更深广,这几乎成为半个多世纪以来反复被佐证的真命题。
但真命题却叫人爱恨交加,徐兆寿旋即话锋一转:‚影视剧走红了,想当编剧、当导演的年轻人多起来,但安静写作的越来越少了。
‛徐兆寿的另一重身份是西北师范大学传媒学院院长。
他一直在留心具有文学天赋的年轻人,但学生们每每志不在此,徐教授很清楚,剧本创作接触到的是声色犬马的物质世界,而真正的纯文学是孤独的精神构建,‚百惜现实面前,多数人倾向于物质。
‛华东师大中文系教授杨扬同样用‚生不逢时‛来形容现时的文学环境,‚20世纪是属于作家的欢歌,文学占据绝对主力。
而21世纪,图像在阅读中越来越重要‛。
令评论界忧思的现状是,当代年轻人的座右铭不再是文学作品里的一句箴言,取而代之的是影视剧的走红台词。
长此以往,纯文学恐会为剧本式写作让位,就如同诗歌曾经的式徽那样,那将是文学天大的灾难。
‚灾难‛是危言耸听吗?王小波的一段话可作注解,他在杂文《盖茨的紧身衣》中问道:‚电影时代,小说怎么写?托尔斯泰在《战争与和平》中几十页洋洋洒洒的文字叙述,放进宽银幕后只需几秒。
电影让阅读变得轻松,既然如此,何须几十页纸?几页、几行足矣。
‛永远不要责怪读者变得浅薄。
而要想想,是谁帮他们放低了文学门槛?(选自《人民网》,有删改) 1.下列各项中,不属于原文所说的“影视对文学作品的推广作用”的一项是 ( )A、“触电”让小说流传更广,刘震云、王朔、刘恒、麦家、苏童等作家的作品就随着影视剧的热播而热销,为更多读者熟悉。
B、21世纪,图像在阅读中越来越重要,小说常被改编为影视作品,影视剧中的走红台词已成为当代中国许多年轻人的座右铭。
C、影视推动文学作品流传,《大卫·科波菲尔》在克利夫兰公映时,因借阅该小说的人数陡增,当地图书馆的藏书供不应求。
D、影视与文学联姻,文学作品的阅读市场更大,小说《呼啸山庄》改编成电影后,在2年内的销售量比过去92年的总和还多。
2.下列理解和分析,不符合原文意思的一项是 ( )A、著名作家贾平凹的作品改编成影视剧的很少,他的一些小说被认为是紧缺的逆流而行的纯文学性小说.B、现在随着影视剧的走红,想当编剧、导演的年轻人逐渐增多,而安静地从事纯文学写作的人越来越少了.C、文学虽然在20世纪占据着绝对主力的地位,但是到21世纪已经式徽,让位于日新兴起的剧本式写作.D、电影有自己的叙述特点,让阅读变得轻松。
文学作品中几十页的文字叙述,改编成电影后有时只需几秒.3.根据原文内容,下列理解和分析正确的一项是 ( )A、时下小说改编成影视作品已成为一种潮流,对此,有学者提出小说应拒绝影视改编,保持其纯文学性.B、徐兆寿认为,莫言、余华、苏童在海外声名鹊起,每人都有一部由小说改编的经典电影是原因之一.C、有人认为,如果以剧本式写作代替纯文学,将是文学的灾难。
王小波不认同这一危言耸听的“灾难论”。
D、真正的纯文学是孤独的精神构建,需要作家们耐得住寂寞,而当今的作家志不在此,没有这种精神.二、古代诗文阅读(36分)(一)文言文阅读(19分)阅读下面的文言文,完成4-7题.房乔,字.玄龄,齐州临淄人。
幼聪敏,博览经史,工草隶..,善属文。
年十八,本州举进士,授羽骑尉。
父病绵历十旬,玄龄尽心药膳,未尝解衣交睫。
太宗徇地渭北,玄龄杖策谒于军门,太宗一见,便如旧识,署渭北道行军记室参军。
玄龄既遇知己,罄竭心力,知无不为。
贼寇每平,众人竞求珍玩,玄龄独先收人物,致之幕府。
及有谋臣猛将,皆与之潜相申结,各尽其死力。
玄龄在秦府十余年,常典管记,每军书表奏,驻马立成,文约理赡,初无稿草。
高祖尝谓侍臣曰:‚此人深识机宜,足堪委任。
每为我儿陈事,必会人心,千里之外,犹对面语耳。
‛隐太子以玄龄、如晦为太宗所亲礼,甚恶之,谮之于高祖,由是与如晦并被驱斥。
隐太子将有变也,太宗令长孙无忌召玄龄及如晦,令衣道士服,潜引入阁计事。
及太宗入春宫,擢拜太子右庶子,赐绢五千匹。
贞观元年,为中书令。
论功行赏,以玄龄及长孙无忌、杜如晦、尉迟敬德、侯君集五人为第一,进爵邢国公,赐实封千三百户。
三年,拜太子少师,固让不受,摄太子詹事,兼礼部..尚书。
明年,代长孙无忌为尚书左仆射,改封魏国公,监修国史。
既任总百司,虔恭夙夜,尽心竭节,不欲一物失所。
闻人有善,若己有之。
明达吏事,饰以文学,审定法令,意在宽平。
不以求备取人,不以己长格物,随能收叙,无隔卑贱。
论者称为良相焉。
高宗居春宫,加玄龄太子太傅,仍知门下省事,监修国史如故。
寻以撰《高祖、太宗实录》成,降玺书褒美,赐物一千五百段。
其年,玄龄丁继母忧去职,特敕赐以昭陵葬地。
未几,起复本官。
太宗亲征辽东,命玄龄京城留守,手诏曰:‚公当萧何之任,朕无后顾之忧矣。
‛军戎器械,战士粮廪,并委令处分发遣。
玄龄屡上言敌不可轻,尤宜诫慎。
寻与中书侍郎褚遂良受诏重撰《晋书》。
二十三年,驾幸玉华宫,时玄龄旧疾发,诏令卧总留台。
及渐笃,追赴宫所,乘担舆入殿,将至御座乃下。
太宗对之流涕,玄龄亦感咽不能自胜。
敕遣名医救疗,尚食每日供御膳。
若微得减损太宗即喜见颜色如闻增剧便为改容凄怆后疾增剧遂凿苑墙开门累遣中使候问。
上又亲临,握手叙剐,悲不自胜。
皇太子亦就之与之诀。
寻薨.,年七十。
废朝三日。
(节选自《旧唐书〃房玄龄传》)4.下列对文中画波浪线部分的断句,正确的一项是(3分) ( )A、若微得减损/太宗即喜/见颜色/如闻增剧/便为改容/凄怆后/疾增剧/遂凿苑墙开门/累遣中使候问/B、若微得减损/太宗即喜/见颜色/如闻增剧/便为改容凄怆/后疾增剧/遂凿苑墙开门/累遣中使候问/C、若微得减损/太宗即喜见颜色/如闻增剧/便为改容/凄怆后/疾增剧/遂凿苑墙/开门累遣中使候问/D、若微得减损/太宗即喜见颜色/如闻增剧/便为改容凄怆/后疾增剧/遂凿苑墙开门/累遣中使候问/5.下列对文中加点词语的相关内容的解说,不正确的一项是(3分) ( )A、古代男子有名有字,名是出生后不久父亲起的,字是二十岁举行加冠仪式后才起的。
B、“草隶”指草书和隶书,隶书字形进一步简化,书写便捷,成为唐代通行的主要字体。
C、礼部为古代“六部”之一,掌礼仪、祭享、贡举等,是中央行政机构,长官为礼部尚书。
D、封建社会,不同阶层的人死亡有不同的称谓,称皇帝死为“崩”,诸侯或大官死为“薨”。
6.下列对原文有关内容的概括和分析,不正确的一项是(3分) ( )A、房玄龄自幼聪慧,博览经史,善写文章。
他在秦王府时,写军书奏章,不用打草稿,倚马可待,文约理丰。
B、房玄龄是位孝子,父亲生病,他尽心服侍,未曾解衣而眠;继母去世,他因忧伤过度,只得暂时离开职位.C、房玄龄十分重视人才,善用人才。
他用人不求全责备,不论地位高低贵贱,视其才能而用,被誉为良相。
D.太宗继位,房玄龄立下大功。
辅佐太宗,他尽心竭力。
太宗亲征辽东,命他留守京城,将他比作萧何.7.把文中画横线的句子翻译成现代汉语.(10分)(1)贼寇每平,众人竞求珍玩,玄龄独先收人物,致之幕府。
(5分)译文:(2)隐太子以玄龄、如晦为太宗所亲礼,甚恶之,谮之于高祖,由是与如晦并被驱斥。
(5分)译文:(二)古代诗歌阅读(11分)阅读下面这首宋诗,完成8--9题.行舟忆永和兄弟(宋) 周必大一挂吴帆不计程,几回系缆几回行。
天寒有日云犹冻,江阔无风浪自生。
数点家山常在眼,一声寒雁正关情。
长年【注】忽得南来鲤,恐有音书作急烹!【注】长年:船工。
8.请从情景关系的角度赏析这首诗的颔联.(5分)答:9.诗题中的“行舟”二字在诗中是如何体现的?请作简要分析.(6分)答:(三)名篇名句默写(6分)10.补写出下列句子中的空缺部分.(1)《离骚》中,屈原重申自己始终以“好修”为乐之后,用“,”两句来表明要坚持理想,即使遭受极刑也不改变的决心。
(2)庄子《逍遥游》,中的“,”两句,用比喻和夸张的手法来写鹏鸟之大。
(3)《陋室铭》中写陋室来往客人之高雅的诗句是:“,。
”乙选考题请考生在第三、四两大题中选定其中一大题作答。
注意,作答时必须用2B铅笔在答题卡上把所选大题题号后的方框涂黑。
只能做所选定大题内的小题,不得选做另一道大题内的小题。
如果多做,刚按所做的第一大题计分。
三、文学类文本阅读(25分)11.阅读下面的文字,完成(1)~(4)题。
我的昂贵的腿[德]海因里希•伯尔这下子我就业在望了。
他们寄了一张明信片给我,叫我到局里去一趟,我便遵命前往。
局里的人既亲切又和气。
他们拿出我的档案卡片,说了一声:‚呣。
‛我也回了声:‚呣。
‛‚哪一条腿?‛有一个官员问道。
‚右腿。
‛‚整条腿?‛‚整条。
‛‚呣,‛他又哼了一声,开始查阅各种各样的单子。
我总算可以坐下来了。
他终于翻出一张单子,看来正是他所要找的。
他说:‚我看这里有适合您干的事,一件美差。
您可以坐着干。
到共和广场上一个公共厕所里去擦皮鞋。
您看怎么样啊?‛‚我不会擦皮鞋,我一向因为皮鞋擦不亮,引得大家侧目相看。
‛‚您可以学嘛,‛他说。
‚什么事情都可以学会的。
天下事难不倒德国人。
您只要同意,可以免费上一期学习班。
‛‚呣!‛我哼了一声。