Linked Timelines
vue滑动时间轴案例
vue滑动时间轴案例Vue.js 是一个流行的 JavaScript 框架,用于构建用户界面和单页面应用。
在 Vue 中实现滑动时间轴可以通过使用一些插件或者自定义组件来实现。
下面我将介绍一种常见的实现方式,供你参考。
首先,你可以使用 Vue.js 结合一些第三方库来实现滑动时间轴。
一个常用的库是`vue-carousel`,它可以用来创建滑动的时间轴组件。
你可以通过 npm 安装这个库:bash.npm install vue-carousel.然后,在你的 Vue 组件中,你可以这样使用它:javascript.<template>。
<div>。
<carousel :per-page="1" :navigation-enabled="true">。
<slide v-for="(item, index) initems" :key="index">。
<!-这里放置时间轴上的内容 -->。
<div>{{ item.content }}</div>。
</slide>。
</carousel>。
</div>。
</template>。
<script>。
import { Carousel, Slide } from 'vue-carousel';export default {。
components: {。
Carousel,。
Slide,。
},。
data() {。
return {。
items: [。
{ content: '内容1' },。
{ content: '内容2' },。
{ content: '内容3' },。
// 更多内容...],。
linkedin databus用法
linkedin databus用法
LinkedIn Databus是一个实时数据同步服务,它提供了数据变更的捕获、
传输和消费等功能。
以下是LinkedIn Databus的主要用法:
1. 实时数据同步:LinkedIn Databus可以捕获源数据的变化,并将其传输
到订阅者,从而实现实时数据同步。
这对于构建实时应用、数据分析和监控等场景非常有用。
2. 数据变更捕获:LinkedIn Databus通过订阅源数据的更改来捕获数据变更。
一旦源数据发生更改(如插入、更新或删除操作),Databus就会捕获这些更改并将其传输给订阅者。
3. 事件分发:LinkedIn Databus将捕获的数据变更封装为事件,并将其分
发给订阅者。
订阅者可以根据自己的需求消费这些事件,并进行相应的处理。
4. 订阅与消费:LinkedIn Databus支持通过订阅API进行数据变更的订阅和消费。
开发者可以注册订阅,指定要监听的数据源和事件类型,然后根据需要处理接收到的数据变更事件。
5. 数据流处理:LinkedIn Databus可以与其他数据处理框架集成,如Apache Kafka、Apache Flink等。
通过将Databus作为数据流处理的上游,可以方便地捕获数据变更,并将其传递给数据处理框架进行进一步的处理和分析。
总的来说,LinkedIn Databus提供了一种灵活、可靠的实时数据同步服务,帮助开发者构建高效、实时的数据驱动应用。
习题及参考答案 ASPNET案例教程教辅资料 教学课件
第1章习题及参考答案一.单选题1.(C )技术是基于Java Servlet以及整个java体系的Web开发技术。
A.CGI B.ASP C.JSP D.PHP2.下面哪一个不是动态网页技术(D )。
A. B.ASP C.JSP D.HTML3.在客户端网页脚本语言中最为通用的是( A )。
A.JavaScript B.VB C.Perl D.ASP4.下列描述错误的是( B )。
A.DHTML是HTML基础上发展的一门语言B.HTML主要分为两大类:服务器端动态页面和客户端动态页面C.客户端的DHTML技术包括HTML4.0、CSS、DOM和脚本语言D.DHTML侧重于WEB内容的动态表现5.可以不用发布就能在本地计算机上浏览的页面编写语言是(B )。
A.ASP B.HTML C.PHP D.JSP6.一个HTML文档必须包含3个元素,它们是html、head和(B )。
A.script B.body C.title D.link7.下面(C )是换行符标签。
A.<body> B.<font> C.<br> D.<p>8.为了标识一个HTML文件,应该使用的HTML标记是( C )。
A.<p></p> B.<boby></body> C.<html></html> D.<table></table> 9.在静态网页中,必须使用(A )标记来完成超级链接。
A.<a>…</a>B.<p>…</p>C.<link>…</link>D.<li>…</li> 10.用HTML标记语言编写一个简单的网页,网页最基本的结构是(D )。
A.<html> <head>…</head> <frame>…</frame> </html>B.<html> <title>…</title> <body>…</body> </html>C.<html> <title>…</title> <frame>…</frame> </html>D.<html> <head>…</head> <body>…</body> </html>11.以下标记符中,用于设置页面标题的是(A )。
节点之间的同步技术
节点之间的同步技术如下:
1.集群启动时,会先进行领导者选举,确定哪个节点是Leader,
哪些节点是Follower和Observer。
2.Leader会和其他节点进行数据同步,采用发送快照和发送Diff
日志的方式。
3.集群在工作过程中,所有的写请求都会交给Leader节点来进行
处理,从节点只能处理读请求。
4.Leader节点收到一个写请求时,会通过两阶段机制来处理。
5.Leader节点会将该写请求对应的日志发送给其他Follower节点,
并等待Follower节点持久化日志成功。
6.Follower节点收到日志后会进行持久化,如果持久化成功则发
送一个Ack给Leader节点。
7.当Leader节点收到半数以上的Ack后,就会开始提交,先更新
Leader节点本地的内存数据。
8.然后发送commit命令给Follower节点,Follower节点收到。
交易系统中台架构与演进-QQ群分享版 (1)
交易易系统中台架构落地与演进美旅-住宿研发组:王尧喜-2018.01背书-技术梯度写代码技术设计技术架构技术规划视野⾏行行知闻技术感觉知识型领悟型通⽤用型⽬目录交易易业务1平台和中台23交易易系统中台架构4交易易中台的⽊木桶依赖5架构落地实施6中台架构演进1-交易易业务-售前、售中、履履约、售后售前:拿货售中:卖货履履约:给货售后:退换1-交易易业务-交易易业务是什什么交易易业务多阶段、多⻆角⾊色参与、多信息互通的商品/服务交换过程CMB下单系统上单履履约下单订单付单履履约退单记账出票配送上⻔门商品C留留房结算B M 信息系统2⽅方参与:动作+数据B M B M BM BM C C C CC流程型信息系统2⽅方参与:⼀一系列列动作+数据带状态电商四流信息流、订单流、资⾦金金流、物流拿卖给退数据状态2-交易易业务-状态机故宫⻔门票50块⼀一张,⼩小明要买2张,商品价值=100元订单价值= 100元优惠券(10)红包(5)折扣(9)积分(3)X码(2)⼩小明需付❌❌❌❌❌100元❌❌❌❌✅90元✅❌❌❌✅85元❌❌✅81元✅❌❌✅✅❌❌87元✅❌❌✅✅85元•100元都是谁出的•啥时候出的•出了了多少⼈人⺠民币账户券系统红包系统折扣系统积分系统码系统⼩小明平台商户实时收限时收⻆角⾊色收款形式账户系统(⽹网关)故宫⻔门票50块⼀一张,⼩小明要买2张,商品价值=100元订单价值=100元优惠券(10)红包(5)折扣(9)积分(3)X 码(2)⼩小明需付❌❌❌❌❌100元❌❌❌❌✅90元✅❌❌❌✅85元❌❌✅81元✅❌❌✅✅❌❌87元✅❌❌✅✅85元•100元都是谁出的•啥时候出的•出了了多少•100块买了了啥⼈人⺠民币账户券系统红包系统折扣系统积分系统码系统⼩小明平台商户实时收限时收⻆角⾊色收款形式账户系统(⽹网关)婴⼉儿免票⼉儿童半价不不享受优惠⽼老老年年9折不不享受优惠货币规则层订单账户总值货币构成货币的分配成本承担⽅方式1-交易易业务-资⾦金金&账务流程下单订单流转账务(应收付)下单成功购买端⽀支付付单处理理退单履履约C:customer P:platform S:supplier⼀一次“记账请求”⽣生成⼀一条总账务⼀一条总记账请求包含多个⼦子账务所有⼦子账务完成,表示总账务完成账务系统进⾏行行账务实收付收付分实时结算和限时结算应付账账期账务关系应付账账期账务关系应收账账期账务关系P to SC to P应付账账期账务关系应收账账期账务关系P to CP to S应收账账期账务关系S to P账务(实收付)货币⽹网关S to P订单账户总值货币构成货币的分配成本承担⽅方式2-平台和中台-架构是啥各种A(Architecture)各种D(Drvien)⼈人 VS 机器器2-平台和中台-架构是啥管理理确定性和不不确定性稳定+变化新的稳定+变化新的稳定+变化2-平台和中台-业务系统阶段⾥里里程平台是业务发展过程中,逐步沉淀的内聚服务、原⼦子服务,可⽀支撑多业务建设。
时光隧道读后感英文
时光隧道读后感英文Time Tunnel Retrospective。
In the realm of science fiction, where the boundariesof time and space are blurred, the concept of a time tunnel has ignited both fascination and trepidation. "The Time Tunnel," a groundbreaking television series that aired from 1966 to 1967, delved into this intriguing premise,exploring the unforeseen consequences of manipulating the fabric of time. As I embarked on a journey through the annals of "The Time Tunnel," I couldn't help but marvel at its enduring relevance and the profound questions it raised about the nature of history and our place within it.The premise of "The Time Tunnel" was deceptively simple: a team of scientists and explorers embarked on perilous missions to various historical epochs through a devicecalled the Time Tunnel. Each episode presented a unique blend of adventure, suspense, and historical accuracy, as the team encountered pivotal events and interacted withiconic figures from different eras. However, the series was not merely an episodic anthology of time-bending escapades. At its core, "The Time Tunnel" posed a fundamental question: how would our understanding of the past and our actions in the present affect the future?Through its diverse and thought-provoking episodes, the series explored the intricate interplay between time and history. In one episode, the team accidentally preventedthe assassination of Abraham Lincoln, altering the courseof American history and triggering a chain of unintended consequences. In another, they witnessed the horrors of the Holocaust, grappling with the ethical quandaries of intervention and the limits of their own influence. "The Time Tunnel" deftly illustrated how seemingly insignificant actions could have far-reaching implications, emphasizing the delicate balance between preserving historicalintegrity and the allure of manipulating events to our advantage.Beyond its historical adventures, "The Time Tunnel"also ventured into the realm of metaphysics. In one episode,the team encountered a parallel universe, where they discovered that the events they had witnessed in previous episodes had played out differently. This episode raised profound questions about the nature of reality and the existence of multiple timelines. It hinted at thepossibility that our choices may not be as fixed as we believe, and that the past is not an immutable force but rather a malleable entity that can be shaped by our actions.However, the series also recognized the inherentdangers of tampering with time. In several episodes, the team's attempts to correct historical mistakes resulted in unforeseen and often disastrous consequences. Theseepisodes served as cautionary tales about the hubris of believing that we can control the forces of time and that our understanding of history is complete. "The Time Tunnel" ultimately conveyed a message of humility and respect forthe past, reminding us that our actions have the potentialto shape the future in ways we may not fully comprehend.The production values of "The Time Tunnel" were groundbreaking for its time. The series employed innovativespecial effects and location shooting to bring itshistorical settings to life. The cast, led by James Darren and Robert Colbert, delivered compelling performances that added depth and emotion to the characters' time-bending adventures. The series' iconic opening theme music, composed by John Williams, perfectly captured the thrilling and enigmatic nature of the concept.In the years since its cancellation, "The Time Tunnel" has cemented its status as a cult classic. Its legacy can be seen in numerous science fiction films and television shows that have explored similar themes of time travel and its consequences. The series' enduring popularity is a testament to its imaginative premise, thought-provoking storylines, and the timeless allure of the question: what if we could travel through time?While the technology for actual time travel may still be beyond our grasp, "The Time Tunnel" serves as a powerful reminder that the past, present, and future areinextricably linked. It invites us to reflect on the choices we make and the impact they will have ongenerations to come. By immersing ourselves in the world of "The Time Tunnel," we gain a deeper appreciation for the fragility of history and the responsibility we have as stewards of our collective past.In the end, "The Time Tunnel" is more than just a television show. It is a timeless allegory that explores the complexities of time, history, and human nature. Its enduring relevance lies in its ability to spark our imaginations, challenge our assumptions, and inspire us to think critically about our place in the vast expanse of time and space.。
LinkedList的用法
LinkedList的⽤法简介:LinkedList是List接⼝的实现类【存储结构是链表,特点:每个元素分配的空间不必连续、插⼊和删除元素时速度⾮常快、但访问元素的速度较慢】ArrayList 也是List接⼝的实现类【存储结构是线性表】LinkedList 是⼀个双向链表,当数据量很⼤或者操作很频繁的情况下,添加和删除元素时具有⽐ArrayList更好的性能。
但在元素查询和修改⽅便要弱于ArrayList。
LinkedList类每个结点⽤内部类Node表⽰,LInkedList通过first和last引⽤分别只想链表的第⼀个和最后⼀个元素,当链表为空时,first和last都为NULL值。
LinkedList数据结构如下图所⽰://存储对象的结构Node,LinkedList的内部类private static class Node<E>{E item;Node<E> next;//指向下⼀个节点Node<E> prev;//指向上⼀个节点Node(Node<E> prev,E element,Node<E> next){this.item = element;this.next = next;this.prev = prev;}}Node节点⼀共有三个属性:item代表节点值,prev代表节点的前⼀个节点,next代表节点的后⼀个节点。
每个节点都有⼀个前驱和后继结点,并且在LinkedList中也定义了两个变量分别指向链表的第⼀个和最后⼀个节点。
transient Node<E> first;transient Node<E> last;1、添加元素到LinkedListLinkedList提供了多个添加元素的⽅法;Boolean add(E e) :在链表尾部添加⼀个元素,如果成功,返回true,否则返回false。
gsap中timeline用法 -回复
gsap中timeline用法-回复GSAP(GreenSock Animation Platform)是一个功能强大且灵活的JavaScript动画库,它提供了许多令人印象深刻的动画效果和功能。
其中一个GSAP的强大功能是Timeline(时间轴),用于创建复杂的、同步的动画序列。
在本文章中,我将详细介绍GSAP中Timeline的用法,并逐步解释其实现动画的过程。
一、了解Timeline的基本概念在使用GSAP的Timeline之前,我们首先需要了解Timeline的一些基本概念。
Timeline是一个容器,用于管理和组织动画序列。
简单来说,Timeline就是告诉GSAP在何时执行哪些动画,并且可以控制这些动画的播放顺序、延迟时间、重复次数等。
Timeline可以包含一个或多个动画,这些动画可以是使用TweenLite、TweenMax或其他GSAP插件创建的。
二、创建Timeline要创建一个Timeline,我们使用`gsap.timeline()`方法。
下面是一个简单的示例:var tl = gsap.timeline();上述代码将创建一个名为`tl`的Timeline对象。
一旦创建了Timeline,我们可以向其中添加动画。
三、添加动画到Timeline要将动画添加到Timeline,我们使用`add()`方法。
下面是一个例子:tl.add(gsap.to(element, { duration: 1, x: 100 }));上述代码将在`tl`的时间轴上添加一个持续1秒的动画,该动画会将元素的x坐标移动100个像素。
我们可以多次调用`add()`方法,以添加多个动画到Timeline中。
四、设置动画的顺序和延迟时间默认情况下,Timeline中的动画将按添加的顺序依次播放。
要更改动画的播放顺序,我们可以使用`to()`、`from()`、`fromTo()`等方法,并设置`position`参数。
element-ui timeline 时间线用法
element-ui timeline 时间线用法Element UI 是一个基于Vue.js 的组件库,其中之一的timeline(时间线)组件可用于展示时间流信息。
本文将详细介绍timeline 组件的用法,并提供一步一步的指导。
第一步:安装Element UI要使用timeline 组件,首先需要安装Element UI。
可以通过以下命令使用npm 进行安装:npm install element-ui save安装完成后,在项目的入口文件(一般为main.js)中引入Element UI:javascriptimport Vue from 'vue'import ElementUI from 'element-ui'import 'element-ui/lib/theme-chalk/index.css'e(ElementUI)这样就成功安装了Element UI 并引入了所需的样式。
第二步:使用timeline 组件在需要展示时间线的页面中,可以这样使用timeline 组件:html<template><el-timeline><el-timeline-item timestamp="2022-02-01">事件一</el-timeline-item><el-timeline-item timestamp="2022-02-03">事件二</el-timeline-item><el-timeline-item timestamp="2022-02-05">事件三</el-timeline-item></el-timeline></template>通过`<el-timeline>` 标签创建一个时间线容器,然后在其中使用`<el-timeline-item>` 标签添加时间线的每个事件。
奇闻异事用英语词组。
奇闻异事用英语词组。
Oddities and Unusual Phenomena.The world is a vast and mysterious place, filled with countless mysteries and surprises. Among these, odditiesand unusual phenomena stand out as particularly intriguing aspects of our existence. From the natural world to the realm of human experience, there are countless examples of things that defy explanation and captivate our imaginations.In the natural world, one of the most fascinating oddities is the phenomenon of bioluminescence. This is the ability of certain organisms to emit light, often in the dark. Firefly larvae, for instance, emit a warm, yellowglow as they float through the air, creating a magical display that has fascinated humans for centuries. Deepwithin the oceans, anglerfish lure prey with a bioluminescent lure attached to their heads, resembling a dangling light bulb. These examples demonstrate the remarkable adaptations found in nature and the incrediblediversity of life on Earth.Another oddity that piques curiosity is the occurrence of meteorites falling to Earth. These chunks of rock and metal, often originating from asteroids or comets, crash into our planet at high speeds, leaving behind craters and debris. The study of meteorites provides valuable insights into the origin and evolution of our solar system, making each fall a scientific treasure trove.In the realm of human experience, oddities range from the quirky to the profound. Consider the phenomenon of synchronicity, where two or more events occur simultaneously in an unexpected and meaningful way. This concept has been explored by Carl Jung and others, who suggest that such events may be linked to the collective unconscious or a deeper level of consciousness. Examples include meeting someone who shares a remarkable similarity to a person you knew in the past or experiencing a premonition that later comes to pass.Another intriguing oddity is the phenomenon of déjàvu, where a person experiences a strong sensation that they have already lived through a particular moment, despite knowing that it is impossible. This sensation can be profoundly disconcerting, yet also fascinating as it hintsat the mysteries of human memory and consciousness.In the realm of technology, oddities such as the Mandela Effect have gained popularity in recent years. This refers to a collective misremembering of events or details, often related to popular culture or historical figures. People swear that they remember things differently fromwhat is actually true, leading to speculation aboutalternate timelines or parallel universes. While the scientific explanation for this phenomenon is still debated, it nonetheless captures the public's imagination.The study of oddities and unusual phenomena is not just about entertainment or curiosity; it can also provide valuable insights into the workings of the universe and the human mind. By examining these mysteries, we can gain a deeper understanding of the natural world, the limits ofour knowledge, and the infinite possibilities that liebeyond our current understanding.In conclusion, the world is filled with oddities and unusual phenomena that captivate our imaginations and challenge our understanding. From the bioluminescence of fireflies to the crash of meteorites, and from the mysteries of human consciousness to the Mandela Effect, these oddities remind us of the vast and wonderful unknown that lies at the heart of our existence. As we continue to explore and question, we may just find that the most remarkable oddities lie within ourselves.。
vue3 timeline 节点样式
vue3 timeline 节点样式
"vue3 timeline 节点样式" 指的是在 Vue 3 中,对时间线(timeline)组件中的节点(node)进行样式的定制和设置。
时间线是一种常见的可视化工具,用于展示一系列按时间顺序排列的事件或数据点。
在 Vue 3 中,可以使用组件化的方式来构建时间线,并对其中的节点进行样式上的自定义。
以下是一些常见的时间线节点样式设置:
1.节点颜色:可以根据需求设置节点的背景颜色、边框颜色等。
2.节点大小:可以调整节点的大小,以适应不同的显示需求。
3.节点形状:可以设置节点的形状,例如圆形、方形等。
4.节点标签:可以在节点上添加文本标签,用于显示节点的相关信息。
5.节点动画:可以为节点添加动画效果,增强视觉效果和用户体验。
在 Vue 3 中,可以使用组件的属性和样式来定制时间线节点的外观。
例如,可以在组件的props中定义节点的颜色、大小等属性,然后在组件的style中定义具体的样式规则。
通过这种方式,可以灵活地定制时间线节点的样式,以满足不同的需求和设计要求。
总结:"vue3 timeline 节点样式" 指的是在 Vue 3 中对时间线组件中的节点进行样式的定制和设置。
这包括节点的颜色、大小、形状、标签和动画等属性。
通过组件化的方式,可以灵活地定制节点的外观,以满足不同的需求和设计要求。
JS同步异步延迟加载的方法
JS同步异步延迟加载的方法JavaScript是一种单线程的脚本语言,在执行任务时是按照顺序进行的,这就导致了一个问题,当我们执行一个耗时很长的任务时,会阻塞后续的代码执行,而且在等待这个任务完成的过程中用户界面也无法响应其他用户的操作。
为了解决这个问题,JavaScript中引入了同步、异步和延迟加载的概念。
1.同步同步指的是任务按照顺序依次执行,一个任务执行完毕后再执行下一个任务。
同步任务会阻塞后续代码的执行,直到当前任务执行完毕。
在JavaScript 中,大部分代码都是同步执行的,例如变量的赋值、函数的调用等。
同步任务的执行顺序是可控的,但是执行时间过长会导致页面假死。
2.异步异步是相对于同步而言的,异步任务不会阻塞后续代码的执行,在异步任务执行的同时,JavaScript可以继续执行后续的代码。
JavaScript中的异步任务主要是通过浏览器的Web API来实现的,比如定时器、Ajax请求、事件监听等。
当异步任务执行完成后,会将回调函数推入任务队列中等待执行。
由于异步任务的执行是由浏览器控制的,所以执行顺序是不确定的。
异步任务可以提高页面的响应速度,但是在处理复杂依赖关系时会带来一定的难度。
3.延迟加载延迟加载指的是将页面上的资源(如图片、脚本、样式等)推迟加载,直到用户需要使用到它们时再进行加载。
延迟加载可以减少页面的初始加载时间,提高页面的加载速度和用户体验。
延迟加载可以通过以下几种方法来实现:-懒加载:懒加载是一种图片延迟加载的技术,在用户滚动到指定位置时,再加载图片,可以减少页面的初始加载时间,提高页面的加载速度。
懒加载可以通过监听滚动事件,判断图片是否进入可视区域来实现。
- 异步加载:使用HTML5中的async和defer属性来异步加载JavaScript脚本。
async属性表示脚本的加载不会阻塞页面的其他内容加载和渲染,而defer属性表示脚本的加载会在HTML文档解析完毕后才执行,但是会在DOMContentLoaded事件之前执行。
TimeLine时间线编辑及保存方法
TimeLine时间线操作方法一、设置“TimeLine”的视窗。
如图:(1)、通过“Add Tab”新增一个看,空白表格,用于设置“TimeLine”视窗;(2)、打开“Workspace Tree”,然后把新的视窗设置为“TimeLine”-“0.Active”;(3)、在新的视窗中,点击“Graphic”标签,可看到当前“TimeLine”状态。
二、把已有Qlist加载到TimeLine中。
假设现在我们有一程序Qlist1存储于A/B交叉推杆中,我们需要把其加载到“TimeLine”上。
(1)、点击硬键“Shift+Time”,使编辑工具栏进入“Timeline”编辑状态;(2)、点击屏幕上编辑工具栏中的“Teach+Add New”软键;(3)、点击屏幕上编辑工具栏中的“Run”软键,可看到时间线在运行;(4)、时间线运行后,可点击A/B交叉推杆中的“Go”硬键,把cue步加载到时间线上;如下图:(5)、加载完成后,点击编辑工具栏中的“Stop”键,即可停止时间线运行;(6)、通过点击时间线上的“放大/放小镜”,即可放大缩小时间线,同时,可通过拖动时间线内的cue步位置,调整运行时间,达到理想效果;(7)、加载编辑完成后,点击硬键如:“Shift+TimeLine”-“1”-“Store”保存时间线;(8)、若对编辑不满意,可以点击硬键“Shift+TimeLine”,然后点击“Clear Events”-“Delete”软键,清空时间行,重新进行编辑。
三、同时要在同一时间线上加载多个Qlist。
我们可以同时在同一时间线上加载多个Qlist,如刚才我们已经加载了Qlist1在“Timeline1”上,我们现在同时把Qlist2(存储于10号重放推杆上)也加载到“TimeLine1”上。
(1)、点击硬键“Shift+TimeLine”,在屏幕编辑工具栏上点击“Restart”软键,使时间线归位于起始点;(2)、点击屏幕上编辑工具栏中的“Teach+Add New”软键;(3)、点击屏幕上编辑工具栏中的“Run”软键,可看到时间线在运行;(4)、时间线运行后,可点击10号重放推杆中的“Go”硬键,把cue步加载到时间线上;(5)、加载完成后,点击编辑工具栏中的“Stop”键,即可停止时间线运行;(6)、通过点击时间线上的“放大/放小镜”,即可放大缩小时间线,同时,可通过拖动时间线内的cue步位置,调整运行时间,达到理想效果;(7)、加载编辑完成后,点击硬键如:“Shift+TimeLine”-“1”-“Store”-“Overwrite”保存时间线;。
linkedlist常用方法
linkedlist常用方法Linkedlist是一种数据结构,其基本元素是一个节点,每个节点包含了一个指向下一个节点的指针。
Linkedlist常用方法包括:1. 插入节点( insert at end):将节点插入到Linkedlist的末尾,方法为:```void insert(int value);```2. 删除节点(remove at end):从Linkedlist的末尾删除一个节点,方法为:```int remove(int value);```3. 查找节点(find at end):从Linkedlist的末尾查找一个节点,如果找不到,返回-1。
方法为:```int find(int value);```4. 获取链表中第一个节点(get at beginning):返回Linkedlist 头部的第一个节点。
方法为:```int get(int index);```5. 设置链表中第一个节点为(set at beginning):将Linkedlist 头部的第一个节点的值设置为第一个节点。
方法为:```void set(int index, int value);```6. 设置链表中所有节点的值为(set all to same value):将Linkedlist的每个节点的值都设置为相同的值。
方法为:```void set(int index, int value);```7. 更新链表中最后一个节点的值(update last node's value):将Linkedlist的最后一个节点的值更新为下一个节点的值。
linkedblockingqueue的使用
linkedblockingqueue的使用摘要:一、LinkedBlockingQueue 的简介1.概念介绍2.主要特性二、LinkedBlockingQueue 的基本操作1.构造方法2.添加元素3.获取元素4.删除元素5.判断队列是否为空6.判断队列是否已满7.获取队列的大小三、LinkedBlockingQueue 的典型应用场景1.生产者消费者模式2.并发工具类的设计四、使用LinkedBlockingQueue 的注意事项1.避免内存泄漏2.合理设置队列的大小正文:一、LinkedBlockingQueue 的简介LinkedBlockingQueue 是一个基于链表的阻塞队列,它主要用于实现多线程之间的同步。
它继承了BlockingQueue 接口,具有阻塞的插入和获取元素的功能,可以确保在队列为满或者队列为空的情况下,线程会被阻塞,不会执行任何操作。
二、LinkedBlockingQueue 的基本操作1.构造方法:LinkedBlockingQueue 可以采用不同的构造方法,如无参构造方法、指定初始容量的构造方法以及带fairness 参数的构造方法。
2.添加元素:使用put 方法可以向队列中添加元素,如果队列为满,线程会被阻塞。
3.获取元素:使用take 方法可以从队列中获取元素,如果队列为空,线程会被阻塞。
4.删除元素:使用poll 方法可以从队列中删除并返回元素,如果队列为空,返回null。
5.判断队列是否为空:使用isEmpty 方法可以判断队列是否为空。
6.判断队列是否已满:使用isFull 方法可以判断队列是否已满。
7.获取队列的大小:使用size 方法可以获取队列的大小。
三、LinkedBlockingQueue 的典型应用场景1.生产者消费者模式:在这种模式下,生产者线程负责向队列中添加元素,消费者线程负责从队列中获取元素。
当队列为满时,生产者线程会被阻塞;当队列为空时,消费者线程会被阻塞。
[UE4]时间轴线TimeLine,Lerp插值
[UE4]时间轴线TimeLine,Lerp插值
⼀、TimeLine时间轴线
勾选“User Last Keyframe”表⽰使⽤时间轴最后⼀个关键帧所在时间点作为结束时间,⽽不是使⽤设置的
5秒作为结束时间点。
⼆、Lerp插值
Lerp插值⼀般与Timeline时间轴⼀起使⽤,Alpha取值范围是浮点数0到1,当Alpha为0的时候返回的数值为A设置的值,当Alpha为1的时候,返回的数值为B设置的值。
Alpha越靠近0返回值就越靠近A设置的值,Alpha越靠近1返回值就越靠近B设置的值。
注意:在User Widget中是⽆法使⽤Time Line时间轴的,可以把要设置变化UI封装成⼀个函数由⼀般蓝图来使⽤Time Line调⽤。
三、有多种类型的Lerp插值函数供使⽤
四、Time Line时间轴是可以倒着播放的,可以利⽤这个特性来解决状态恢复。
Direction是⼀个枚举变量,表⽰播放的⽅向。
五、凡是右上⾓带有时钟图标的函数都不能在⾃定义函数中使⽤,只能在关卡蓝图中使⽤。
linkedblockingqueue用法
linkedblockingqueue用法摘要:一、LinkedBlockingQueue 简介1.概念与特点2.发展历程二、LinkedBlockingQueue 的基本用法1.创建队列2.添加元素3.获取元素4.删除元素三、LinkedBlockingQueue 的高级特性1.公平性2.阻塞方法3.线程安全四、LinkedBlockingQueue 的应用场景1.生产者消费者模式2.消息队列3.异步任务处理正文:一、LinkedBlockingQueue 简介LinkedBlockingQueue 是一个基于链表的阻塞队列,它继承了BlockingQueue 接口,具有高效的插入和删除操作。
与ArrayBlockingQueue 相比,LinkedBlockingQueue 更适合于大量数据的缓存和处理。
它采用FIFO(先进先出)的原则,保证了队列中的元素顺序。
LinkedBlockingQueue 在JDK 1.5 中被引入,成为了Java 并发编程中的重要组件。
二、LinkedBlockingQueue 的基本用法1.创建队列创建LinkedBlockingQueue 实例时,可以指定队列的容量。
如果不指定,则使用默认的最大容量。
例如:```javaLinkedBlockingQueue<String> queue = new LinkedBlockingQueue<>(10);```2.添加元素使用`add`方法向队列中添加元素。
如果队列已满,该方法将阻塞,直到队列有空间。
例如:```javaqueue.add("element");```3.获取元素使用`take`方法从队列中获取元素。
如果队列为空,该方法将阻塞,直到队列有元素。
例如:```javaString element = queue.take();```4.删除元素使用`poll`方法从队列中删除元素。
linkedblockingqueue线程池的特点
`LinkedBlockingQueue` 是一个基于链表实现的阻塞队列,常用于线程池中。
以下是
`LinkedBlockingQueue` 线程池的一些特点:
1. 公平性:`LinkedBlockingQueue` 支持公平性选择。
在构造线程池时,可以选择是否
按照等待时间的先后顺序来执行任务。
如果选择公平性,则线程池会按照任务提交的
顺序来执行。
2. 阻塞队列:`LinkedBlockingQueue` 是一个阻塞队列,当线程池中的工作线程已满时,新的任务会被放入队列中等待执行。
当有空闲线程时,会从队列中取出任务进行执行。
3. 无界容量:`LinkedBlockingQueue` 的容量可以选择是有界还是无界。
如果选择无界,队列将永远不会满,可以不断接收新的任务。
如果选择有界,队列的容量是固定的,
当队列已满时,新的任务将无法加入队列中,直到有空闲线程取出任务。
4. 先进先出(FIFO):`LinkedBlockingQueue` 采用先进先出的策略来管理任务。
先加
入队列的任务将会先被执行。
5. 线程安全:`LinkedBlockingQueue` 是线程安全的,多个线程可以同时访问和操作队列,而不需要额外的同步措施。
总的来说,`LinkedBlockingQueue` 线程池具有公平性、阻塞队列、无界或有界容量、
先进先出和线程安全等特点。
它适用于需要按顺序执行任务、任务数量不确定或任务
提交速度高于执行速度的场景。
Jquery实现的几款漂亮的时间轴
Jquery实现的⼏款漂亮的时间轴引⾔最近项⽬中使⽤了很多前端的东西,对于我⼀个做后台开发的⼈员,这是⼀个很好的锻炼的机会。
经过这段时间的学习,感觉前端的东西太多了,太强⼤了,做出来的东西太炫酷了。
现在有很多开源的前端框架,做的都⾮常的漂亮,h5发展了这么多年了,改变了互联⽹⾏业啊!下⾯给⼤家介绍⼏款漂亮的时间轴,也许⼤家以后⼯作中会⽤到。
⼀、纵向折叠时间轴1、js⽂件(jQuery.js或者jQuery.min.js)2、CSS⽂件View Code3、HTML代码View Code4、运⾏效果:⼆、纵向⿏标滑动时间轴1、js⽂件(jquery.js和jquery.mousewheel.js,jquery.easing.js,⾃定义history.js)(1)jquery.mousewheel.js⽂件View Code(2)jquery.easing.js⽂件View Code(3)history.js⽂件View Code2、CSS⽂件View Code3、HTML代码View Code4、运⾏的效果:三、纵向可折叠时间轴1、js⽂件(jQuery.js和 main.js)(1)main.js⽂件View Code2、CSS⽂件View Code3、HTML代码View Code4、运⾏效果:四、横向时间轴1、js⽂件(jquery.js和jquery.timelinr-0.9.5.3.js)(1)jquery.timelinr-0.9.5.3.js⽂件View Code2、CSS⽂件View Code3、HTML代码View Code4、运⾏效果因为项⽬中需要,领导让我做了多个,他从中挑选⼀个,还有很多很多例⼦,就不⼀⼀列举出来了。
在这⾥⾯就简单列举⼏个简单⼤⽅的例⼦,有需要的⼩伙伴可以跟我要,⼤家⼀起学习。
此⽂转载。
vue 时间线 树结构
vue 时间线树结构Vue时间线树结构是一个典型的前端开发中常见的组件,它可以用于展示时间线或者是树状结构的数据。
对于前端开发而言,提供一个可视化的时间线或者树状结构的展示方式可以方便用户查看和理解相关数据。
Vue时间线树结构通常由多个组件组合而成,下面是一个可能的组合方式:1. Timeline组件:Timeline组件是时间线的整体容器,它包含了多个TimelineEvent组件。
2. TimelineEvent组件:TimelineEvent组件表示一个事件节点,它包含了事件的时间、标题和内容等信息。
TimelineEvent组件可以根据需要进行样式和布局的自定义。
3. Tree组件:Tree组件是树状结构的整体容器,它包含了多个TreeNode组件。
4. TreeNode组件:TreeNode组件表示一个树节点,它包含了节点的标题、子节点等信息。
TreeNode组件可以根据需要进行样式和布局的自定义。
对于Vue时间线树结构的使用,通常包含以下几个步骤:1. 安装依赖:使用Vue CLI或者手动安装Vue.js和其他相关依赖。
2. 创建Vue组件:创建Timeline和Tree的组件,并定义其内部的组件结构和逻辑。
3. 定义数据结构:根据实际需求,定义时间线或者树状结构的数据模型。
数据模型可以是一个数组,每个元素表示一个事件节点或者树节点,包含对应的属性和子节点等信息。
4. 传递数据:在Timeline和Tree组件中,通过props属性将数据传递给TimelineEvent和TreeNode组件。
5. 样式和布局:根据实际需求,使用CSS样式和布局来美化时间线和树状结构的展示效果。
6. 绑定事件:对于TimelineEvent和TreeNode组件,可以添加相应的事件处理函数,实现对节点的交互操作,比如展开/收起子节点、点击节点跳转等。
在实际开发过程中,还需要考虑以下几个方面的需求和功能:1. 数据加载:如果数据量较大,可以考虑使用分页加载或者懒加载的方式,提高页面的加载速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Linked Timelines:Temporal Representation and Management in Linked DataGianluca Correndo,Manuel Salvadores,Ian Millard,and Nigel Shadbolt Electronics and Computer Science,University of Southampton,Southampton,UK.{gc3,ms8,icm,nrs}@/Abstract.This paper addresses the issue of representing time entities(i.e.instants and intervals)as Linked Data,and how to exploit topolog-ical temporal relationships in order to increase the connectivity degreewithin Linked Data sets.Describing and efficiently managing temporalinformation in knowledge management systems is rma-tion is volatile,dependant on a number of contexts for its interpretation,among them“time”.Many data sets contain information that is validonly within a given time frame(e.g.roles fulfilled by different people atdifferent times),whereas others describe temporal events.In this paperwe present an approach to describe temporal entities as reusable URIsthat can be adopted by data publishers as a temporal context for theirinformation resources.The approach identifies a set of discrete tempo-ral entities as relevant for a certain domain(e.g.financial years for thepublic sector)while a RESTful API is provided to users to dynamicallycreate their own temporal entities.Once a dynamic temporal URI is re-solved,information is provided to situate such URI in reference to thedomain relevant entities.The URI resolution employs simple topologicaltemporal reasoning in order to exploit the qualitative relationships be-tween entities.We also provide a usage scenario of our approach basedon a backlinking service and using Public Sector Information publishedin Linked Data format within the EnAKTing project.Keywords:Linked Data,time,reasoning1IntroductionThe Linked Data initiative represents thefirst collaborative effort to create a Web of Data(WoD henceforth)at scale,providing a few,simple guidelines for publishing content using well established standards[5].Such guidelines and stan-dards are leading the way to a new paradigm of interaction between government and citizens in the UK and around the world.In order to pursue better access for citizens to information held by local as well as national public organisations, the UK government has launched a public initiative for publishing Public Sector Information(PSI),adopting Linked Data as recommended future best practice. Data sets recently delivered to the public include:government expenses,NHS2Gianluca Correndo et al.trusts’performances,public transportation,and a whole set of statistics about crime,mortality,census,environment,school and social indicators.Some of the data sets mentioned have been published already in a Linked Data format,oth-ers have been translated within the EnAKTing project1,and many others are waiting to be made available in the Linked Data cloud.The nature and validity of the information is often related to a time frame and is therefore not universal.For example,the definition of a constituency is temporary(e.g.Southampton Test constituency was established in1950,the date where the previous Southampton constituency ceased to exist).The rep-resentation of temporal entities within the Linked Data cloud is therefore an essential step in order to provide temporal context to other entities.A common trait of PSI,composed largely of national statistics,is its temporal validity(i.e.the time frame when the data was collected).Having a continuous collection of data helps policy analysts study trends,but it requires a coherent representation of time entities in the information ecosystem.In this paper,we present a pattern and a tool for representing time lines that support the temporal contextualization of linked data entities.Such a pattern allows us to describe qualitative relations among temporal entities as well as absolute time points and intervals that can then be queried and exploited in order to retrieve relevant resources.Allen’s temporal intervals algebra[2]is used to describe qualitative temporal relationships between entities.2BackgroundTime representation,querying and reasoning is a well known topic in computer science where many proposals have been produced;from formal systems,to on-tologies and query languages.Within the database community the representation and management of temporal information can be found for example in the tem-poral extension to SQL named TSQL2[12].The semantic web community took inspiration from the philosophical roots of TSQL2,based on Allen’s time inter-vals algebra[2],and encoded its semantics into a Time ontology[10].The use of a Time ontology in OWL allows users to create temporal information in RDF although its semantics exceeds the capabilities of normal RDF query languages like SPARQL.Allen provided a model of time based on intervals[2]whose semantics proved to be extended to represents time points too[3].Allen’s original time intervals’relationships depicted in Figure1are:before,equal,meets,overlaps,during, starts,andfinishes.These relationships,along with their inverses,fully express all the possible temporal relationships that can hold between two intervals.Such a formalization of time has been encoded,as reported above,in an OWL ontology[10]that introduces the concept of Time Entity that is composed of two disjointed subclasses,Time Instant and Time Interval.The Allen relation-ships are used in this time ontology for providing semantics to the properties 1Time Representation and Management in Linked Data3 X YX before YX equal YX meets YX overlaps YX during YX starts YX finishes YFig.1.Time interval relationshipsbetween Time Entity instances.Time Instants,although not present in the orig-inal Allen model,are treated as point form intervals whose starting and ending point coincide.Temporal validity of RDF statements was originally investigated by Gutier-rez et al.[9]where a system of temporal labelling for single RDF statements was devised.A temporal label is a natural number[t]that is used for labelling the temporal validity of a triple s,p,o .An RDF triple annotated with a temporal label is then called a temporal triple and is represented as s,p,o [t].Temporal triples can then be extended to intervals s,p,o [t1,t2]={ s,p,o [t]|t1≤t≤t2}. Temporal graphs are defined as a set of temporal triples so that the validity of the included statements can be effectively queried.The concept of temporal graphshas been recently implemented by exploiting RDF named graphs.The approachhas then been extended introducing additional support for the SPARQL lan-guage,calledτ-SPARQL[14],designed to handle statements temporal validity.A recent approach to RDF annotation[13]included the capability to reason, among other domains,over temporal information.Contextualization in the WoD relies on authoritative sources of URIs for naming entities.A typical example of this usage pattern can be seen by lookingat DBpedia[4],used as a common target reference when aligning data sets.More recently,ontologies like the Ordnance Survey(OS henceforth)Administrative Geography ontology[8],has been used to geographically contextualize Public Sector Information data sets[6].The process of information contextualization implies the reuse of authoritative URIs and their successive exploitation in orderto discover relevant resources.Such processes are facilitated by the adoption of URIs for naming things,but it is hampered by the very architecture of the Web.In fact,the Web does not handle back links that are the target relationships when exploiting hub data sets for information contextualization.Instead they need to be scraped and indexed separately in order to allow the discovery of relevant resources.Creation of URIs for describing reference time intervals has been proposedfirstly by Ian Davis with his site where he uses ISO8601 standard[1]to format instants and time intervals into dynamically resolvable URIs.This approach has been incorporated in some recent proposals for creating Linked Data for PSI2.In this paper we present a pattern for describing temporal information within Linked Data.This approach allows users to refer to reference time intervals sup-2/web/wiki/using-interval-set-uris-statistical-data accessed at17/05/20104Gianluca Correndo et al.plied by data providers(e.g.quarter offinancial years)as well as unanticipated temporal entities within a time line.The resolution of such dynamic URIs gives not only useful information about the time entity itself(like that provided by )but also temporal topological relationships in reference to the managed discrete time entities.Temporal reasoning adopted here is a proper subset of Allen’s classical time algebra,namely only topological temporal relationships are taken into account in order to retrieve relevant URIs.The use of backlinks,jointly with a lightweight temporal query support,allows us then to retrieve the contextualised resource. 3MotivationThe Linked Data principles[5]promote a WoD whose architecture is inherently decentralised,relying on the reuse of available data,by means of linking,in order to give semantics and context to new data.In a Linked Data perspective therefore,the process of data contextualization is tightly connected with the process of data linkage and data cloud connectivity.The RDF data model inherits XML schema(xsd henceforth)support for data types(i.e.xsd:date and xsd:dateTime).However,the sole use of xsd without the adoption of a linkable URI representation for relevant time entities, diminishes the level of connectivity of the overall data cloud,making the in-formation contextualization process more difficult.xsd time related data types provide in fact a uniform representation of the data semantics whose interpre-tation isflattened into a shared time line,regardless of the context of use of the time information.Moreover,thinking of the WoD as a hypermedia system browsable by means of software agents,the node connectivity is as important as the schema that provides nodes with semantics.For instance,let us consider the concept of afinancial year.Although it is present in many countries,its actual extension differs from country to country, but even if the extension of thefinancial year in the UK and in India is the same (both of them start in April),it would be quite unsettling asserting that they are the same thing.Considering the semantics offinancial year merely as a product of its extensional features(i.e.starting and ending date),this sentence would lead to no semantic clash at all.However,from an information retrieval point of view,binding UK relevant data to the Indianfinancial year,still seems quite inaccurate and misleading.In order to refer to different temporal entities we need to lift up from aflat representation of time and create distinct name spaces that restore contextual differences and identities.In the previous example,this would lead to the creation of different URIs for the UK and Indianfinancial year and then to the correct link between the UK relevant information and the UK temporal context.The concomitant creation of contextually equivalent name spaces for temporal entities only defers the creation of authoritative sources of URIs.Co-reference systems[7]in fact allow us to aggregate equivalent URIs enabling a later integration without inhibiting the publication of information.Another issue that presents itself when dealing with temporal dimensions in publishing and dealing in general with statistical data is the heterogeneous tem-Time Representation and Management in Linked Data5 poral definition used when collecting observations.Data observations are in fact provided(explicitly or not)for different timespans and with different granular-ity(by solar orfinancial year,quarter etc.).It is therefore necessary to provide reasoning services for reconciling when possible these differences facilitating a semantically enabled retrieval of information.As an example,consider two data sets from about NHS performance3and mortality4.These data sets have been translated into Linked Data entities but unfortunately,thefirst data was described by quarter offinancial year while the latter by wholefinancial years.Either at retrieval and at aggregation phase,the containment information between temporal entities must be explicitly represented and exploited in order to produce meaningful results.As an example,the knowledge that(i)financial years are composed by four quarters,that(ii)each of them is temporally contained by it,and that (iii)statistical observation can be summed up when aggregating to supersets of dimensions can be exploited for producing aggregate statistics that were not originally given.Furthermore,considering more broadly general Linked Data sets,if we are to represent time validity of entities linking them with temporal entities,we would be able to exploit temporal entity semantics.For an effective description of time that could help the above mentioned issues,the following high level requirements must be satisfied:explicit URI rep-resentation of temporal entities of general interest,and support for some form of temporal reasoning.In the rest of the paper we will describe a proposal for the description and management of temporal URIs for Linked Data entities.4Time Representation in Linked DataIn order to allow users to explicitly express temporal facets of their data reusing reference URIs we developed the concept of Linked Timelines,knowledge bases about general instants and intervals that expose resolvable URIs.Linked Time-lines adopt the OWL time ontology as the standard vocabulary for describing temporal entities.Temporal entities in a timeline contain RDF statements not only defining their starting andfinal instant,but also temporal relationships between other entities managed in the timeline creating a lattice of temporal entities.Such information will be used in order to infer temporal topological information as will be described in this section.The OWL Time ontology5has been extended with three datatype proper-ties:hasXSDStart,hasXSDEnd,and hasXSDDuration for describing with XML Schema datatype xsd:dateTime and xsd:duration the starting and ending in-stant of a time interval and its duration respectively.These extensions act as a short-cut for defining temporal intervals without creatingfirst the instances for the starting and ending instants.Intervals and not Instants themselves are in fact 345/2006/time#6Gianluca Correndo et al.the main objects represented within timelines.Therefore the start-end instants would either be anonymous nodes,which are to be avoided whenever possible when publishing linked data,or verbose second class instances that would clutter the knowledge base.Such short-cut has been provided in the OWL Time ontol-ogy for the Time Instants with the creation of the inXSDDateTime datatype property,but not for time intervals.We introduced the possibility of defining in-tervals reusing entirely XML schema datatypes in order to limit the creation of entities to the ones of actual interest.An example of a temporal entity described within a Linked Timeline can be seen in Figure2where the RDF description for the solar year2007is reported in Turtle syntax.Note that in Figure2there is no explicit usage of the property hasXSDEnd,but its value can be inferred by exploiting the semantics of time:intervalMeets property and knowing the starting instant of</id/2008>(i.e.the solar year2008).</id/2007>a timepsi:Year;rdfs:label"Solar year2007";timepsi:hasXSDStart"2007-01-01T00:00:00Z"^^xsd:dateTime;timepsi:hasXSDDuration"P1Y"^^xsd:duration;time:intervalContains</id/2007/08/Q1>, </id/2007/08/Q2>,</id/2007/08/Q3>;time:intervalStartedBy</id/2006/07/Q4>;time:intervalMeets</id/2008>;time:intervalMetBy</id/2006>.Fig.2.Turtle representation of the solar year2007The timeline contains relevant URIs for the UKfinancial year(other domains could describe different kinds of temporal entities),therefore alongside solar years wefindfinancial years and quarters of financial year.Other timelines can be set up in order to represent time entities relevant to other domains and applications.The RDF representation of the solar year2007in Figure2for example,additionally to the starting date and duration, contains the relations between the year2007and other relevant intervals such as the the solar year2006(that meets2007)and2008(met by the2007).The relevance criteria is determined by the data publisher and,in this example,the relevant entities are the quarters offinancial years contained in the year2007 (i.e.the fourth quarter of thefinancial year2006/07and thefirst three quarters of thefinancial year2007/08).In order to limit the size of the knowledge base we do not describe before and after relationships between every instance,which will cause a geometric explosion in the number of statements.Instead we limited the kind of relation-ships explicitly described to the topological ones(i.e.time:intervalContains and time:intervalDuring)and the ones useful to recreate the lattice of en-tities(i.e.time:intervalMeets,time:intervalMetBy,time:intervalStarts,Time Representation and Management in Linked Data7and time:intervalStartedBy).It is noteworthy that in Figure2we did not represent the overlapping relationships between the solar year2007and thefi-nancial year2007.In the UK in fact,thefinancial year starts thefirst of Aprilof the solar year,therefore every solar year overlaps itsfinancial year.The rational for limiting the kind of relationships to the topological ones is twofold:primarily if all the temporal relationships were to be reported,as stated before,there could be a potential problem of space complexity.Secondarily,a topological relationships’semantics is easier to model when dealing with data integration and aggregation.In fact,as argued by[2],during relationships arethe best candidates to define a hierarchy of intervals where properties can be inherited.For example,if a condition P holds during a time interval T and we know that a time interval t happens during T,then we can conclude that P holds also during t.4.1Dynamic temporal URI encodingThe space of discrete URIs described so far is complemented by a RESTful interface for defining dynamically time instants and intervals that happen in the same timeline.When resolving such dynamic URIs a document is returned that provides a description of the instant/interval.The format of the document is either decided via a content negotiation mechanism or by directly stating the desired format.Encoding time entities via URIs allows users to refer explicitlyto particular timelines(e.g.for UKfinancial periods)even if the actual URIsare not known or not yet existent,enabling therefore a future evolution of the timeline.The API interface for creating dynamic temporal URIs follows the http:// encoding6,and it is defined as follows:/{type}/{YYYY}-{MM}-{DD}T{hh}:{mm}:{ss}{TZ} P[{y}Y][{m}M][{d}D][T[{h}H][{n}M][{s}S]][/{format}]Where thefirst mandatory part is defined as follows:–type is either interval or instant–YYYY Four digits(from0001to9999)represent the year(only AD dates are valid).–MM Two digits(from01to12)represent the month of the year.–DD Two digits(from01to28,29,30or31depending on the month)represent the day of the month.–hh Two digits(from00to23)representing the hour of the day.–mm Two digits(from00to59)representing the minute of the hour.–ss Two digits(from00to59)representing the second of the minute.–TZ A string representing the timezone.This can be either a Z for UTC timezone or a string in the format:[+/-]hh:mm representing an offset of hhhours and mm minutes from the UTC timezone.68Gianluca Correndo et al.If type is interval,then a duration must be given and least one of the following parameters must be provided:–y A number of years in the interval–m A number of months in the interval–d A number of days in the interval–h A number of hours in the interval–n A number of minutes in the interval–s A number of seconds in the intervalThe last part is optional and defines the format of the returned document:–format,if present,can be one of:doc,rdf,or ttl and defines the format of the document returned(HTML,RDF/XML,or Turtle respectively).The content negotiation will return the same document if this parameter would be missing and the Accept:header in the HTTP request would be set to the wanted MIME type(e.g.application/x-turtle for the ttl format).As an example of usage of this API,if we consider the following instant URI: /instant/2007-01-10T10:00:00Z/ttl,it will return the following Turtle document:@PREFIX timepsi:</def/>.</instant/2007-01-10T10:00:00Z>a time:Instant;rdfs:comment"The instant10:00:00Z,of the tenth day of themonth of January in the year2007of theGregorian calendar.";timepsi:hasXSDStart"2007-01-1010:00:00+00:00"^^xsd:dateTime;rdfs:label"2007-01-10T10:00:00+00:00";time:inside</id/2007>,</id/2006/07>,</id/2006/07/Q4>.As per the previous example,for defining intervals,if we consider the fol-lowing URI:/interval/2007-01-01T12:00: 00ZP4M/ttl,it will return the Turtle document reported as follow:@PREFIX timepsi:</def/>.</interval/2007-01-01T00:00:00ZP4M>a time:ProperInterval;rdfs:comment"A time-interval of exactly4month(s),beginning at0:00:00Z,on the first dayof the month of January in year2007ofthe Gregorian calendar.";rdfs:label"2007-01-01T12:00:00+00:00P4M";timepsi:hasXSDStart"2007-01-0100:00:00+00:00"^^xsd:dateTime;timepsi:hasXSDDuration"P4M"^^xsd:duration;time:intervalDuring</id/2007>;time:intarvalContains</id/2006/07/Q4>.As illustrated in the two code examples above,the RDF documents describe the temporal entity resolved with a label and a description in natural language. Moreover,the documents describe the topological temporal relationships that hold between the resolved entity and the entities managed in the timeline.TheTime Representation and Management in Linked Data 9rationale for returning only the topological relationships has been discussed in a earlier part of this section.By default then,when resolving a dynamic URI in a Linked Timeline ,the following entities belonging to it are returned,depending on the kind of temporal entity (i.e.instant or interval):instant:all the temporal intervals that contain the instant encoded by theresolved URI (time:inside property is here used to state that an instant is contained within a temporal interval)interval:all the temporal intervals that contain or are contained by the intervalencoded by the resolved URI (time:intervalContains and time:interval During are used here respectively to state that an interval contains or is contained by another interval)/id/2007/id/2006/07/Q4time:IntervalDuring /interval/2007-01-01T12:00:00ZP4M time:intervalContains time:intervalDuringE n A K T i n g m a n a g e d U s e r c r e a t e d Fig.3.URI dynamic resolutionThe dynamic resolution of temporal entities,together with the temporal reasoning that puts it in context with the managed ones,allows the reuse of time URIs in foreign data ers can in fact create their URIs programmatically (User created in Figure 3)making reference to a Linked Timeline that will automatically contextualize them with reference to a managed set of temporal entities (EnAKTing managed in Figure 3).4.2EnAKTing Linked Timeline implementationWithin the EnAKTing project,we translated public sector information in Linked Data format,aligning the different dimensions whenever possible.Geographical dimensions were aligned to the Ordnance Survey administrative ontology but for temporal dimensions we had to create an ad hoc solution.The Linked Timeline instance created for PSI data is accessible at and it is composed by two sections.The first section (upper part of Figure 4)is a timeline widget 7that illustrates the discrete entities managed by the timeline.7For this we have used the Timeline widget from SIMILE project,/timeline/.10Gianluca Correndo et al.Fig.4.EnAKTing Linked TimelineThe second part of the interface(bottom part of Figure4)is composed by two calendars that allow to select the starting and ending day of a temporal interval. Alternatively,the user can check the Time Instant check box and the second calendar will be disabled.While the user chooses the temporal extent of its temporal entity the URI just above the two calendars will change accordingly, creating a URI that can be resolved immediately or copied and paste for later use.4.3Backlinks IntegrationThe PSI Backlinking service provides an access point to retrieve backlinks from Foreign URIs[11].Foreign URIs make data discovery difficult because it is not possible to navigate the RDF documents of the WoD bidirectionally.http:// provides an API to retrieve collections of back-links for a given URI.In order to improve the connectivity of our data sets we have aligned the temporal entities in a number of our data sets(the process is still ongoing)to our linked Timeline.Then we have collected the back links from the tempo-ral entities and extended our backlinking service in order to exploit the tem-poral reasoning.The data sets aligned for this evaluation are three:http:Time Representation and Management in Linked Data11 //)is an historical record of the UK parliamen-tary voting,MPs and their constituencies; is a temporal series of NHS performance statistics collected over the years(from 2005to2008);and is a directory of present and past educational institutions reporting ancillary information(e.g.address, number of pupils,opening and closing date).The Backlinking and the Linked Timeline services run as separate services and thefirst service performs HTTP requests to get the temporal entities from the latter that employ temporal containments(see Figure3)in order to retrieve all the relevant URIs.Entities returned by the temporal reasoner to the Backlink-ing service are created by a previous scraping of the data sets and are not usually returned to normal users that will be otherwise cluttered with non contextual-ized temporal entities.When the backlinking service recognizes a URI from the Linked Timeline namespace it gets the list of contained entities for the input URI and returns the backlinks connected to any URI contained in the temporal inter-val.For example,consider the URI used in Section4for defining temporal inter-vals:/interval/2007-01-01T00:00:00ZP4M. Calling the backlink service on this URI will return(as shown in Figure5) the following backlinks:3ministerial offices,299194NHS performance statistic items,and246divisions.Fig.5.Backlinks Service result5ConclusionsIn this paper we have presented a pattern for temporal URIs exposure and a tool based on Allen’s temporal algebra for creating such URIs within Linked Timelines that supports the contextualization task.The usage of HTTP resolv-able URIs and the decoupling of the information publishing and retrieval phase make this approach suitable for large scale data publishing e of external links for contextualization of local information instead of using lo-cal statements means that local data querying and retrieval can be eventually delegated to external services.There are many benefits to be realised by including or retrospectively adding Linked Timelines to data sets,not least of which are enhanced discovery and。