等差数列测试题doc

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题

1.记n S 为等差数列{}n a 的前n 项和.若5620a a +=,11132S =,则{}n a 的公差为

( ) A .2

B .

43

C .4

D .4-

2.已知等差数列{}n a 的前n 项和为S n ,若S 2=8,38522a a a +=+,则a 1等于( ) A .1

B .2

C .3

D .4

3.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200

B .100

C .90

D .80

4.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=-,534a a =-,则7S =( ) A .7 B .12 C .14 D .21 5.在等差数列{a n }中,a 3+a 7=4,则必有( )

A .a 5=4

B .a 6=4

C .a 5=2

D .a 6=2

6.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231

n n a n b n =+,则2121S T 的值为( )

A .

13

15

B .

2335

C .

1117 D .

49

7.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为( ) A .4S

B .5S

C . 6S

D . 7S

8.已知等差数列{}n a ,其前n 项的和为n S ,3456720a a a a a ++++=,则9S =( ) A .24

B .36

C .48

D .64

9.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161

B .155

C .141

D .139

10.已知数列{}n a 的前n 项和为n S ,11

2

a =,2n ≥且*n ∈N ,满足120n n n a S S -+=,数列1n S ⎧⎫

⎬⎩⎭

的前n 项和为n T ,则下列说法中错误的是( ) A .21

4

a =-

B .

648

211S S S =+ C .数列{}12n n n S S S +++-的最大项为

712

D .1121

n n n n n

T T T n n +-=

++

11.设等差数列{}n a 的前n 项和为n S ,若7916+=a a ,则15S =( ) A .60

B .120

C .160

D .240

12.《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺”,则从第2天起每天比前一天多织( ) A .

1

2

尺布 B .

5

18

尺布 C .

16

31

尺布 D .

16

29

尺布 13.在等差数列{}n a 中,10a >,81335a a =,则n S 中最大的是( ) A .21S

B .20S

C .19S

D .18S

14.冬春季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列

{}n a ,已知11a =,2

2a

=,且满足()211+-=+-n

n n a a (n *∈N ),则该医院30天入

院治疗流感的共有( )人

A .225

B .255

C .365

D .465

15.在等差数列{}n a 的中,若131,5a a ==,则5a 等于( ) A .25

B .11

C .10

D .9

16.在等差数列{}n a 中,已知前21项和2163S =,则25820a a a a ++++的值为( )

A .7

B .9

C .21

D .42

17.设等差数列{}n a 的前n 和为n S ,若()*

111,m m a a a m m N +-<<->∈,则必有( )

A .0m S <且10m S +>

B .0m S >且10m S +>

C .0m S <且10m S +<

D .0m S >且10m S +<

18.已知等差数列{}n a 的前n 项和为n S ,且310179a a a ++=,则19S =( ) A .51

B .57

C .54

D .72

19.等差数列{}n a 中,若26a =,43a =,则5a =( ) A .

32

B .

92

C .2

D .9

20.已知数列{}n a 中,132a =

,且满足()*

1112,22

n n n a a n n N -=+≥∈,若对于任意*n N ∈,都有

n a n

λ

≥成立,则实数λ的最小值是( ) A .2

B .4

C .8

D .16

二、多选题

21.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}

F n ,则(){}

F n 的通项公式为( )

相关文档
最新文档