函数与导数大题训练试题+答案

合集下载

函数与导数例高考题汇编(含答案)

函数与导数例高考题汇编(含答案)

函数与导数高考题1.(安徽理3)设f(x)是定义在R 上的奇函数,当x≤0时,f(x)=2x'-x,则f()=(A)-3 (B)- 1 (C)1 (D)3【答案】A【命题意图】本题考查函数的奇偶性,考查函数值的求法 .属容易题.【解析】f()= - f( - 1)= - 42( - 1)²- ( - 1)]= - 3 .故选A.2 . (安徽理10)函数f (x )=ax ”g 1- x )“在区 间〔0,1〕上的图像如图所示,则m ,n 的值可 能 是(A)m=1,n=1(B) m=1,n=2(C) m=2,n=1(D) m=3,n=1【答案】B 【命题意图】本题考查导数在研究 函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【 解 析 】 代 入 验 证 , 当m = 1 , n = 2 , f ( x ) = a x g ( 1 - x ) ² = n ( x ³ - 2 x ² + x ) ,则f ' ( x ) = a ( 3 x ² - 4 x + 1 ) , 由 ,结合图像可知函数应在递增,在 递减,即在, 知 a 存 在 . 故 选 B .3.(安徽文5)若点(a,b)在y=lgx 图像上,a≠1,则下列点也在此图像上的是(A)(,b) (B)(10a,1 b) (C)(,b+1) (D)(a2,2b)【答案】D 【命题意图】本题考查对数函数的基本运算,考查对数函数的图像与对应点的关系 .【 解 析 】 由 题 意b = 1 g a , 2 b = 2 1 l g a = 1 g a ² , 即( a ² , 2 b )也 在 函 数 y = l g x 图 像 上 .4 . (安徽文10) 函数f(x )=ax ”g (1 - . x )² 在区间(0,1)上的 图像如图所示,则n 可能是 (A)1 (B) 2取得最大值,由f'(x)=a(3x²-4x+1)=0可知,(C) 3 (D)4【答案】A【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大.【解析】代入验证,当7=1时,f(x)=axg(1-x)²=a(x³-2x²+x),则f(x)=a(3r²-4x+1)由f ( x ) = a ( 3 x ² 4 x + 1 ) = 0 可知,,结合图像可知函数应在递增,在递减,即在取得最大值,由, 知a 存在. 故选A .7 . (福建理5) 等于A.1B.e- 1C. CD.e+1【答案】C8 . (福建理9 )对于函数f ( x ) = a s i n x + b x + c (其中,a , b ∈R , c ∈Z ) ,选取a , b , C 的一组值计算f ( )和f ( - 1 )所得出的正确结果一定不可能是A . 4和6B . 3和1C . 2和4D . 1和2【答案】D9 . ( 福建理1 0 ) 已知函数f ( x ) = e⁴+ x , 对于曲线y = f ( x ) 上横坐标成等差数列的三个点A , B , c , 给出以下判断:①△ABC 一定是钝角三角形②△ABC可能是直角三角形③△ABC可能是等腰三角形④△ABC不可能是等腰三角形其中,正确的判断是A.①③B.①④C.②③D.②④【答案】B10.(福建文6)若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是A.(- 1,1)B.(-2,2)C.(-o,-2)U(2,+o)D.(-o,- 1)U(1,+c)【答案】C11. (福建文8)已知函数 ,若f(a)+f(1)=0,则实数a的值等于A. 3B. 1C. 1D. 3【答案】A12.(福建文10)若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于A.2B.3C. 6D. 9【答案】D13.(广东理4)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是A . f(x)+1g(x)是偶函数B . f(x) - 1g(x)是奇函数c.if(x)\+g(x)是偶函数 D . i f ( x ) - g ( x )是奇函数【答案】A【解析】因为g(x)是R 上的奇函数,所以lg(x)是R 上的偶函数,从而f(x)+1g(x)是偶函数,故选A.14 . (广东文4)函 的定义域是 ( )A.(-~,- 1)B.(1,+~) c.(- 1,1)U(1,+oo) D.(-0,+oo)【答案】C16.(湖北理6)已知定义在R 上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a¹-a ⁴+2(a>0,且a≠1),若g(2)=a,则f(2)=A.2B.C.D. a² 【答案】B【解析】由条件f(2)+g(2)=a²-a²+2,f(-2)+g(-2)=a²-a²+2, 即-f(2)+g(2)=a²-a²+2, 由此解得g(2)=2,f(2)=a²-a-所 以 a = 2 ,, 所 以 选 B18 . (湖南文7)曲线主点处的切线的斜率为( )A. B. 2 C. D. 【答案】B【解析】19.(湖南文8)已知函数f(x)=e¹-1,g(x)=-x²+4x -3.若有f(a)=g(b),则b 的取值范围为A.[2-√2,2+√2]B.(2-√2.2+√2)c.[1,3] p.(1,3)【答案】B【解析】由题可知f(x)=e ⁴- 1>- 1,g(x)=-x²+4x-3=-(x-2)²+1≤1,若有f(a)=g(b),则g(b) ∈(- 1,1), 即-b²+4b-3>- 1,解得2-√Z<b<2+√2., 所 以,y=020 . (湖南理6)由直线 与曲线y=COSX 所围成的封闭图形的面积为( )A.2B.1C.D.√3 【答案】D【解析】由定积分知识可得, 故 选 D 。

高中数学函数与导数练习题及参考答案

高中数学函数与导数练习题及参考答案

高中数学函数与导数练习题及参考答案一、选择题(每小题3分,共30分)1. 设函数f(x)=2x^3-3x^2+4x-1,则f'(x)的值为:A. 6x^2-6x+4B. 6x^2-3x+4C. 6x^2-6x-4D. 6x^2-3x-42. 已知函数f(x)=e^(2x)-x,下列说法正确的是:A. f(x)的定义域为RB. f(x)的值域为RC. 对任意x∈R,f(x)≥0D. f(x)在R上递增3. 函数f(x)=log(2x+1)的定义域为:A. x>1/2B. x≥1/2C. x>1D. x≥-1/24. 函数f(x)=(x-2)^2-1的图像对称于:A. x轴B. y轴C. 原点D. 直线x=25. 函数f(x)=x^3+3x^2-x+2的最小值为:A. -∞B. -4C. 1D. 66. 函数f(x)=log_a(x^2-4)的定义域为:A. x>2B. x<-2C. x>2或x<-2D. x>07. 设函数f(x)=(x+1)e^x,则f'(x)=:A. (x+2)e^xB. xe^xC. (x+1)e^x+e^xD. (x+1)e^x+18. 函数y=2^(x^2)的图像在y轴的左侧为:A. 上拋曲线B. 下落曲线C. 开口向上的曲线D. 开口向下的曲线9. 函数f(x)=√(x-1)的定义域为:A. x>1B. x≥1C. x>0D. x≥010. 设函数f(x)=x^3-3x^2+2,则f''(x)的值为:A. 6x-6B. 6x-2C. 6x-3D. 6x-4二、计算题(每小题5分,共40分)1. 计算函数f(x)=e^(2x)-3x在x=1处的导数f'(1)的值。

解答:f'(x)=2e^(2x)-3f'(1)=2e^2-32. 已知函数y=log_a(x^2-4),求f(x)在x=0处的导数f'(0)。

高二数学导数大题练习题及答案

高二数学导数大题练习题及答案

高二数学导数大题练习题及答案一、解答题1.已知函数()()e sin x f x rx r *=⋅∈N ,其中e 为自然对数的底数. (1)若1r =,求函数()y f x =的单调区间;(2)证明:对于任意的正实数M ,总存在大于M 的实数a ,b ,使得当[,]x a b ∈时,|()|1f x ≤.2.已知函数()ln f x x x =-,322()436ln 1g x x x x x =---. (1)若()1x f ax ≥+恒成立,求实数a 的取值范围;(2)若121322x x <<<,且()()120g x g x +=,试比较()1f x 与()2f x 的大小,并说明理由.3.已知函数()()2231ln 2f x x a a x a a x =-+-+. (1)若1a =,求()f x 在[]1,2上的值域; (2)若20a a -≠,讨论()f x 的单调性. 4.已知函数()e 1()x f x ax a =-+∈R . (1)讨论函数()f x 的单调性与极值;(2)若对任意0x >,2()f x x x ≥--恒成立,求实数a 的取值范围. 5.已知函数()()1ln f x x x =+ (1)求函数()f x 的单调区间和极值;(2)若m Z ∈,()()1m x f x -<对任意的()1,x ∈+∞恒成立,求m 的最大值. 6.已知函数()ln xf x x=, ()()1g x k x =-. (1)证明: R k ∀∈,直线y g x 都不是曲线()y f x =的切线;(2)若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立,求实数k 的取值范围.7.已知函数()12ln f x x x x=--. (1)判断函数()f x 的单调性;(2)设()()()28g x f x bf x =-,当1x >时,()0g x >,求实数b 的取值范围.8.已知函数()()e x f x x m =+⋅.(1)若()f x 在(],1-∞上是减函数,求实数m 的取值范围;(2)当0m =时,若对任意的0x ≥,不等式()2e x ax f x ⋅≤恒成立,求实数a 的取值范围.9.2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.”为了进一步了解普通大众对“碳中和”及相关举措的认识,某机构进行了一次问卷调查,部分结果如下:(1)根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)经调查后,有关部门决定加大力度宣传“碳中和”及相关措施以便让节能减排的想法深入人心.经过一段时间后,计划先随机从社会上选10人进行调查,再根据检验结果决定后续的相关举措.设宣传后不了解“碳中和”的人概率都为()01p p <<,每个被调查的人之间相互独立.①记10人中恰有3人不了解“碳中和”的概率为()f p ,求()f p 的最大值点0p ; ②现对以上的10人进行有奖答题,以①中确定的0p 作为答错的概率p 的值.已知回答正确给价值a 元的礼品,回答错误给价值b 元的礼品,要准备的礼品大致为多少元?(用a ,b 表示即可)10.已知函数()222(0)exmx x f x m +-=>. (1)判断()f x 的单调性;(2)若对[]12,1,2x x ∀∈,不等式()()1224ef x f x -≤恒成立,求实数m 的取值范围.【参考答案】一、解答题1.(1)增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 减区间为52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)证明过程见解析. 【解析】 【分析】(1)对函数求导,利用辅助角公式合并为同名三角函数,利用单调增减区间代入公式求解即可.(2)将绝对值不等式转化为11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭,移向构造新函数,利用导数判定单调性,借助零点定理和隐零点证明新构造函数恒正,再结合三角函数的特有的周期特点寻找M 即可. (1)()e (sin cos )sin 4x x f x x x x π⎛⎫'=+=+ ⎪⎝⎭令22242k x k πππππ-≤+≤+,得32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦令322242k x k ππππ+≤+≤π+,得24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦当32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦时, ()0f x '>,()f x 单调递增 当24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦时, ()0,()f x f x '< 单调递減 综上() f x 单调递增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦单调递减区间为 52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)要证|()|1f x ≤,即证e sin 1xrx ⋅≤,即证11sin =e e xx rx ⎛⎫≤ ⎪⎝⎭即证 11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭在[,]x a b ∈时成立即可,[,]x a b ∈时,1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩. 令1()sin e x h x rx ⎛⎫=- ⎪⎝⎭, 1()cos e xh x r rx ⎛⎫'=+ ⎪⎝⎭当222,k k x rr πππ⎛⎫+ ⎪∈⎪ ⎪⎝⎭时, cos 0,r rx > 所以1()cos 0,e xh x r rx ⎛⎫'=+> ⎪⎝⎭所以()h x 单调递增,2210,e k rk h rππ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭2221210(0)e k r k h k r ππππ+⎛⎫⎛⎫+ ⎪⎪=±>> ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭0(2)22,k k x rrπππ+∴∃∈ , 满足()00h x =由单调性可知02,k x x r π⎛⎫∈⎪⎝⎭, 满足()0()0h x h x <= 又因为当021,,sin 0,0,xk x x rx r e π⎛⎫⎛⎫∈>≥ ⎪ ⎪⎝⎭⎝⎭1sin 0xrx e ⎛⎫∴+≥ ⎪⎝⎭,所以1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩能够同时满足, 对于任意的正实数M ,总存在正整数k ,且满足2Mr k π>时, 使得 2k M r π>成立, 所以不妨取 02,,2k Mr a k b x rππ⎛⎫=>= ⎪⎝⎭则,a b M >且[,]x a b ∈时,1sin 01sin 0xxrx e rx e ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩, 故对于任意的正实数M ,总存在大于M 的实数,a b ,使得当[,]x a b ∈ 时,|()|1f x ≤. 2.(1)0a ≤(2)()()21f x f x <,理由见解析 【解析】 【分析】(1)分离参变量,得到ln 1,(0)x x a x x--≤>恒成立,构造函数,将问题转化为求函数的最值问题;(2)由(1)可得1ln x x -≥,从而判断()g x 的单调性,确定1213122x x <<<<,再通过构造函数,利用导数判断其单调性,最终推出122x x +<;再次构造函数1ln ()12t tF t t -=-+,判断其单调性,由此推出2211ln ln x x x x -<-,可得结论. (1)()1x f ax ≥+恒成立,即ln 1,(0)x x a x x--≤>恒成立, 令ln 1()x x h x x --=,2ln ()xh x x'=, 当(0,1)x ∈时,()0h x '<,函数()h x 递减; 当(1,)x ∈+∞时,()0h x '>,函数()h x 递增, 故min ()(1)0h x h ==, 所以0a ≤. (2)2()121212ln 12(1ln )g x x x x x x x x '=--=--,由(1)知1ln x x -≥,所以在13,22⎛⎫⎪⎝⎭上()0g x '≥,所以()g x 在13,22⎛⎫⎪⎝⎭上单调递增,且(1)0g =.所以1213122x x <<<<,设()12(1ln )m x x x x =--,()12(22ln )m x x x '=--, 设()12(22ln )n x x x =--,则12(21)()x n x x -'=,13,22x ⎛⎫∈ ⎪⎝⎭,()0n x '>, 所以()m x '在13,22⎛⎫⎪⎝⎭上单调递增,且(1)0m '=,所以()m x 在1,12⎛⎫ ⎪⎝⎭上单调递减,在31,2⎛⎫⎪⎝⎭上单调递增,令()()(2)H x g x g x =+-,()()(2)12[22ln (2)ln(2)]H x g x g x x x x x x '''=--=--+--, 令()()G x H x '=,()2()12ln 2G x x x '=--,31,2x ⎛⎫∈ ⎪⎝⎭,()0G x '>,所以()H x '在31,2⎛⎫⎪⎝⎭上单调递增,所以()(1)0H x H ''>=, 所以()H x 在31,2⎛⎫ ⎪⎝⎭上单调递增,所以()(1)0H x H >=, 所以()()()22220H x g x g x =+->,()()()2212g x g x g x ->-=,而()g x 在13,22⎛⎫⎪⎝⎭上单调递增,所以212x x ->,122x x +<;设1ln ()12t tF t t -=-+,()()()221021t F t t t '--=≤+, 所以()F t 单调递减,且(1)0F =,1t >,()0F t <,所以210x F x ⎛⎫< ⎪⎝⎭,即221121ln 121x x x x x x ⎛⎫- ⎪⎝⎭<+,即212121ln 2ln x x x x x x -<+-, 所以212121ln ln 12x x x x x x-+<-<, 所以2121ln ln x x x x -<-,即2211ln ln x x x x -<-. 所以()()21f x f x <. 【点睛】本题考查了利用导数解决不等式恒成立时求参数范围问题以及利用导数比较函数值大小问题,综合性较强,难度较大,解答的关键是要合理地构造函数,利用导数判断函数单调性以及确定极值或最值,其中要注意解答问题的思路要清晰明确.3.(1)5,3ln 22⎡⎤--+⎢⎥⎣⎦;(2)答案见解析. 【解析】 【分析】(1)代入a =1,求f (x )导数,根据导数判断f (x )在[1,2]上的单调性即可求其值域;(2)根据a 的范围,分类讨论f (x )导数的正负即可求f (x )的单调性. (1)a =1,则()2121ln ,02f x x x x x =--+>,()22121(1)20x x x f x x x x x-+-=-+='=,∴()f x 在()0,∞+单调递增,∴f (x )在[]1,2单调递增,∴()()()51,2,3ln 22f x f f ⎡⎤⎡⎤∈=--+⎣⎦⎢⎥⎣⎦,即f (x )在[1,2]上值域为5,3ln 22⎡⎤--+⎢⎥⎣⎦;(2)()()()()()223232,0x a a x a x a x a af x x a a x x x x'-++--=-++==>,()10f x x a '=⇒=,22x a =, 200a a a -≠⇒≠且1a ≠,①当1a >时,21a a >>,0x a <<或2x a >时,()0f x '>,()f x 单调递增,2a x a <<时,()0f x '<,()f x 单调递减;②当01a <<时,201a a <<<,20x a <<或x a >时,()0f x '>,()f x 单调递增,2a x a <<时,()0f x '<,()f x 单调递减;③当0a <时,20a a >>,20x a <<时,()0f x '<,()f x 单调递减,2x a >,()0f x '>,()f x 单调递增;综上,当0a <时,f (x )在()20,a 单调递减,在()2,a +∞单调递增;当01a <<时,f (x )在()20,a ,(),a +∞单调递增,在()2,a a 单调递减;当1a >时,f (x )在()0,a ,()2,a +∞单调递增,在()2,a a 单调递减.4.(1)答案见解析 (2)(,e 3]-∞+ 【解析】 【分析】(1)求导得到()x f x e a '=-,讨论0a 和0a >两种情况,分别计算得到答案. (2)0x >时,2e 1x x x a x +++≤,令2e 1()(0)x x x g x x x+++=>,求函数的最小值,得到答案. (1)()e 1x f x ax =-+,()e x f x a '∴=-.①当0a ≤时,()e 0x f x a '=->恒成立,()f x ∴在R 上单调递增,无极大值也无极小值;②当0a >,(,ln )x a ∈-∞时,()0f x '<,(ln ,)x a ∈+∞时,()0f x '>,()f x ∴在(,ln )a -∞上单调递减,在(ln ,)a +∞单调递增.∴函数()f x 有极小值为ln (ln )e ln 1ln 1a f a a a a a a =-+=-+,无极大值.(2)若对任意0x >,2()f x x x ≥--恒成立,则2e 1x x x a x +++≤恒成立,即2min e 1(0)x x x a x x ⎛⎫+++≤>⎪⎝⎭. 设2e 1()(0)x x x g x x x +++=>,则()2(1)e 1()x x x g x x -++'=,令()2(1)e1()0x x x g x x-++'==,解得1x =,当(0,1)x ∈时,()0g x '<,当(1,)x ∈+∞时,()0g x '>,()g x ∴在(0,1)上为减函数,在(1,)+∞上为增函数,()(1)g x g ∴≥,min ()(1)e 3g x g ∴==+,∴当e 3a ≤+时满足对任意0x >,2()f x x x ≥--恒成立,∴实数a 的取值范围为(,e 3]-∞+.5.(1)递增区间为2(e ,)-+∞,递减区间为2(0,e )-,极小值为2e --,没有极大值 (2)3 【解析】 【分析】(1)由导数分析单调性后求解 (2)参变分离后,转化为最值问题求解 (1)函数()()1ln f x x x =+的定义域为(0,)+∞, 由()=ln 2f x x '+,令()=0f x '可得2e x -=,当2(0,)e x -∈时,()0f x '<,函数()()1ln f x x x =+在2(0,e )-上单调递减, 当2(e ,)x -∈+∞时,()0f x '>,函数()()1ln f x x x =+在2(e ,)-+∞上单调递增, ∴ 函数()()1ln f x x x =+的递增区间为2(e ,)-+∞,递减区间为2(0,e )-,函数()()1ln f x x x =+在2e x -=时取极小值,极小值为2e --,函数()()1ln f x x x =+没有极大值 (2)当()1,x ∈+∞时,不等式()()1m x f x -<可化为ln 1x x xm x +<-, 设ln ()1x x xg x x +=-,由已知可得[]min ()g x m <, 又()()()22ln 2(1)ln 2'ln 11()x x x x g x x x x x x +---==----, 令()ln 2(1)h x x x x =-->,则1'()10h x x=->,∴ ()ln 2h x x x =--在()1,+∞上为增函数,又(3)1ln30h =-<,(4)2ln 40h =->, ∴ 存在0(3,4)x ∈,使得0()0h x =,即002ln x x -= 当()01,x x ∈时,()0g x '<,函数ln ()1x x xg x x +=-在0(1,)x 上单调递减, 当0(,)x x ∈+∞时,()0g x '>,函数ln ()1x x xg x x +=-在0(,)x +∞上单调递增, ∴ []20000000min 00ln ()=()==11x x x x x g x g x x x x +-=--, ∴ 0m x <, ∴ m 的最大值为3. 6.(1)证明见解析 (2)e ,e 1⎡⎫+∞⎪⎢-⎣⎭【解析】 【分析】(1)求出()f x 的导数,设出切点,可得切线的斜率,根据斜率相等,进而构造函数()=ln 1h x x x +-,求出导数和单调区间,即可证明;(2)由2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-2e,e x ⎡⎤∈⎣⎦,再 利用导数法求出()()n 1l xx x x ϕ-=在2e,e ⎡⎤⎣⎦的最大值即可求解.(1)由题意可知,()f x 的定义域为()()0,11,+∞, 由()ln xf x x=,得()()2ln 1ln x f x x -'=,直线y g x 过定点()1,0, 若直线yg x 与曲线()y f x =相切于点()00000,01ln x x x x x ⎛⎫>≠ ⎪⎝⎭且,则()002000ln 1ln 1ln x x x k x x --==-,即00ln 10x x +-=① 设()()=ln 1,0h x x x x +-∈+∞,则()1=10h x x'+>, 所以()h x 在()0+∞上单调递增,又()1ln1110h =+-=, 从而当且仅当01x =时,①成立,这与01x ≠矛盾. 所以,R k ∀∈,直线y g x 都不是曲线()y f x =的切线. (2)由()()f x g x ≤,得()1ln xxk x ≤-, 22e e ,0e 11e 1x x ∴≤≤∴<-≤-≤-,()l 1n xk x x -∴≥若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-,2e,e x ⎡⎤∈⎣⎦即可. 令()()n 1l x x x x ϕ-=,2e,e x ⎡⎤∈⎣⎦,则()()2ln 1ln 1x x x x x ϕ---+'=⎡⎤⎣⎦,令()ln 1t x x x =--+,2e,e x ⎡⎤∈⎣⎦,则()110t x x'=--<, 所以()t x 在2e,e ⎡⎤⎣⎦上是单调递减;所以()()e lne e 1e<0t x t ≤=--+=-,故()0ϕ'<x()ϕx 在2e,e ⎡⎤⎣⎦上是单调递减;当e x =时,()ϕx 取得最大值为()()e e e e 1ln e e 1ϕ==--,即e e 1k ≥-. 所以实数k 的取值范围为e ,e 1⎡⎫+∞⎪⎢-⎣⎭【点睛】解决此题的关键利用导数的几何意义及两点求斜率,再根据同一切线斜率相等即可证明,对于恒成立问题通常采用分离常数法,进而转化为求函数的最值问题,利用导数法即可求解.7.(1)在(0,)+∞单调递增;(2)1b ≤【解析】【分析】(1)对函数()f x 通过求导,判断出导数恒大于等于0,得到()f x 在(0,)+∞单调递增.(2)将()g x 化简整理并求导,得到222(1)1()(24)-'=++-x g x x b x x,讨论b 的取值可确定()g x 在(1,)+∞单调性,即可得到取值范围.(1)因为()f x 的定义域为(0,)+∞,对函数()f x 求导,则222221221(1)()10x x x f x x x x x '-+-=+-==≥,∴函数()f x 在(0,)+∞单调递增. (2)因为()()()28g x f x bf x =-,所以22211()2ln 8(2ln )0=----->g x x x b x x x x对1x ∀>恒成立, 322412()28(1)'=+--+-g x x b x x x x 4232312248(2)⎡⎤=+--+-⎣⎦x x b x x x x 222322(1)2(1)1(1)4(24)--⎡⎤=+-=++-⎣⎦x x x bx x b x x x当1x >时,124++>x x ,当44≤b ,即1b ≤时,()0g x '>对1x ∀>恒成立,∴()g x 在(1,)+∞单调递增,()(1)g x g >=0符合题意. 当1b >时,存在01x >使得当0(1,)x x ∈时,()0,()g x g x '<单调递减;此时()(1)0g x g <=这与()0>g x 恒成立矛盾.综上:1b ≤.【点睛】本题考查函数恒成立条件下求解参数范围问题,属于难题.对函数()g x 求导,有222(1)1()(24)-'=++-x g x x b x x,再利用()1=0g 的特点,可分类讨论b 的取值范围,在1b ≤时,()g x 在(1,)+∞单调递增,原式成立,此时满足要求;当1b >时,()g x 在(1,)+∞先出现递减区间,必有()0g x <出现,与已知矛盾,即可确定b 的范围.8.(1)(],2-∞- (2)2e ,4⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)求出导函数,得到11m --≥,即可求出m 的取值范围;(2)把题意转化为2x ax e ≤,分类讨论:当0x =时,求出R a ∈;当0x >时,转化为2xe a x≤,令2()x e g x x =,利用导数求出min ()g x ,即可求出实数a 的取值范围. (1)因为()()e x f x x m =+⋅,所以()(1)e x f x x m '=++⋅,令()0f x '≤,得1x m ≤--,则()f x 的单调递减区间为(,1]m -∞--,因为()f x 在(,1]-∞上是减函数,所以11m --≥,即2m ≤-,故m 的取值范围是(],2-∞-;(2)由题知:()e x f x x =⋅,则22e 0,e x x x ax ∀≥⋅≤,即2e x ax ≤,当0x =时,01≤恒成立,则a R ∈,当0x >时,2e x a x≤,令2(e )x g x x =,则2432e e e (2)()x x x x x x g x x x ⋅-⋅⋅-'==, 则当02x <<时,()0g x '<,()g x 递减;当2x >时,()0g x '>,()g x 递增, 故2min e ()(2)4g x g ==,则2e 4a ≤, 综上所述,实数a 的取值范围是2e ,4⎛⎤-∞ ⎥⎝⎦. 9.(1)列联表见解析,没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关; (2)①0310p =;②()73a b + 【解析】【分析】(1)对满足条件的数据统计加和即可,然后根据给定的2K 计算公式,将计算结果与195%0.05-=所对应的k 值比较大小即可;(2)①利用独立重复试验与二项分布的特点,写出10人中恰有3人不了解“碳中和”的概率为()f p ,再利用导数求出最值点;②利用独立重复试验的期望公式代入可求出答案.(1)由题中表格数据完成22⨯列联表如下:()22800125250150275800 3.463 3.841275525400400231K ⨯⨯-⨯==≈<⨯⨯⨯. 故没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关.(2)①由题得,()()733101f p C p p =-,()0,1p ∈, ∴()()()()()763236321010C 3171C 1310f p p p p p p p p ⎡⎤'=---=--⎣⎦. 令()0f p '=,得310p =,当30,10p ⎛⎫∈ ⎪⎝⎭时,()0f p '>; 当3,110p ⎛⎫∈ ⎪⎝⎭时,()0f p '<, ∴当30,10p ⎛⎫∈ ⎪⎝⎭时,()f p '单调选增;当3,110p ⎛⎫∈ ⎪⎝⎭时,()f p '单调递减, ∴()f p 的最大值点0310p =. ②本题求要准备的礼品大致为多少元,即求10个人礼品价值X 的数学期望. 由①知答错的概率为310, 则()33101731010E X a b a b ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦, 故要准备的礼品大致为73a b +元.10.(1)单调增区间为2,2m ⎛⎫-⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+ ⎥⎝⎦ (2)20,4e ⎛⎤ ⎥-⎝⎦ 【解析】【分析】(1)先对函数求导,然后由导数的正负可求出函数的单调区间, (2)由函数()f x 在[]1,2上为增函数,求出函数的最值,则()()max min 24e 2()()e m g m f x f x -+=-=,然后将问题转化为()224e 24e e m -+≥,从而可求出实数m 的取值范围.(1)()()()()221422(0)e e x x mx m x mx x f x m -+-+-+-=>'=令()0f x '=,解得2x m =-或2x =,且22m-< 当2,x m ∞⎛⎤∈-- ⎥⎝⎦时,()0f x '≤,当2,2x m ⎛⎫∈- ⎪⎝⎭时,()0f x '>, 当[)2,x ∞∈+时,()0f x '≤即()f x 的单调增区间为2,2m ⎛⎫-⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+ ⎥⎝⎦ (2)由(1)知,当[]0,1,2m x >∈时,()0f x '>恒成立 所以()f x 在[]1,2上为增函数,即()()max min 242()2,()1e e m m f x f f x f +====. ()()12f x f x -的最大值为()()max min 24e 2()()e m g m f x f x -+=-=()()1224e f x f x ⎡⎤≥-⎣⎦恒成立 ()224e 24e e m -+∴≥ 即24e m ≤-, 又0m > 20,4e m ⎛⎤∴∈ ⎥-⎝⎦故m 的取值范围20,4e ⎛⎤ ⎥-⎝⎦。

高考数学专题:导数大题专练含答案

高考数学专题:导数大题专练含答案

高考数学专题:导数大题专练含答案一、解答题1.已知函数()ln f x ax x =+ (1)讨论()f x 的单调区间;(2)设()2xg x =,若对任意的[]11,100x ∈,存在[]20,1x ∈,使()()12f x g x <成立,求实数a 的取值范围. 2.已知函数()ln f x x =.(1)当()()sin 1g x x =-,求函数()()()T x f x g x =+在()0,1的单调性; (2)()()12h x f x b x=+-有两个零点1x ,2x ,且12x x <,求证:121x x +>. 3.已知函数()21si cos n 2f x x x a x x =-++.(1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围.4.已知a R ∈,函数()22e 2xax f x =+. (1)求曲线()y f x =在0x =处的切线方程 (2)若函数()f x 有两个极值点12,x x ,且1201x x ,(ⅰ)求a 的取值范围;(ⅱ)当9a <-时,证明:21x x <-<. (注: 2.71828e =…是自然对数的底数) 5.求下列函数的导数: (1)2cos x xy x -=; (2)()e 1cos 2x x y x =+-; (3)()3log 51y x =-.6.已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围.7.已知函数()323f x x ax x =-+.(1)若3x =是()f x 的极值点,求()f x 在[]1,a 上的最大值和最小值;(2)若()f x 在[)1,+∞上是单调递增的,求实数a 的取值范围.8.2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.”为了进一步了解普通大众对“碳中和”及相关举措的认识,某机构进行了一次问卷调查,部分结果如下:(1)根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)经调查后,有关部门决定加大力度宣传“碳中和”及相关措施以便让节能减排的想法深入人心.经过一段时间后,计划先随机从社会上选10人进行调查,再根据检验结果决定后续的相关举措.设宣传后不了解“碳中和”的人概率都为()01p p <<,每个被调查的人之间相互独立.①记10人中恰有3人不了解“碳中和”的概率为()f p ,求()f p 的最大值点0p ; ②现对以上的10人进行有奖答题,以①中确定的0p 作为答错的概率p 的值.已知回答正确给价值a 元的礼品,回答错误给价值b 元的礼品,要准备的礼品大致为多少元?(用a ,b 表示即可)9.已知函数()ln 2f x x x ax =++在点()()1,1f 处的切线与直线220x y 相互垂直.(1)求实数a 的值;(2)求()f x 的单调区间和极值.10.已知函数()222(0)e xmx x f x m +-=>. (1)判断()f x 的单调性;(2)若对[]12,1,2x x ∀∈,不等式()()1224e f x f x -≤恒成立,求实数m 的取值范围.【参考答案】一、解答题1.(1)答案见解析 (2)31a e ≤-【解析】 【分析】(1)由()()110ax f x a x xx+=+=>',按0a ≥,0a <进行分类讨论求解; (2)由已知,转化为()()max max f x g x <,由已知得()()max 12g x g ==,由此能求出实数a 的取值范围. (1)()(]110ax f x a x x x+'=+=>, ①当0a ≥时,由于0x >,故10ax +>,()0f x '>, 所以()f x 的单调递增区间为()0,∞+;②当0a <时,由()0f x '=,得1x a=-,在区间10,a ⎛⎫- ⎪⎝⎭上()0f x '>,在区间1,a∞⎛⎫-+ ⎪⎝⎭上()0f x '<,所以,函数()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,单调递减区间为1,a∞⎛⎫-+ ⎪⎝⎭;(2)由题目知,只需要()()max max f x g x <即可又因为()()max 12g x g ==,所以只需要()max 2f x <即可()max 2f x <即等价于()2f x <恒成立,由变量分离可知2ln xa x-<,[]1,100x ∈, 令()2ln xh x x -=,下面求()h x 的最小值, 令()23ln xh x x-+'=,所以()0h x '=得3x e =, 所以()h x 在31,e ⎡⎤⎣⎦为减函数,3,100e ⎡⎤⎣⎦为增函数,所以()()33min 1h x h e e -==,所以31a e ≤-. 2.(1)单调递增 (2)证明见解析 【解析】 【分析】(1)直接求导,判断出导数大于0,即可得到单调性;(2)直接由1x ,2x 是函数()1ln 2h x x b x =+-的两个零点得到1212122ln x xx x x x -=,分别解出1211212ln x xx x x -=,2121212ln xx x x x -=,再换元令12x t x =构造函数()12ln l t t t t=--,求导确定单调性即可求解. (1)由题意,函数()()sin 1ln T x x x =-+,则()()1cos 1T x x x'=--+,又∵()0,1x ∈,∴11x>,()()10,1,cos 11x x -∈-<,∴()0T x '>,∴()T x 在(0,1)上单调递增. (2)根据题意,()()1ln 02h x x b x x =+->, ∵1x ,2x 是函数()1ln 2h x x b x=+-的两个零点,∴111ln 02x b x +-=,221ln 02x b x +-=. 两式相减,可得122111ln22x x x x =-,即112221ln 2x x x x x x -=, ∴1212122ln x x x x x x -=,则1211212ln x x x x x -=,2121212ln xx x x x -=. 令12x t x =,()0,1t ∈,则1211112ln 2ln 2ln t t t t x x t t t---+=+=.记()12ln l t t t t =--,()0,1t ∈,则()()221t l t t-'=. 又∵()0,1t ∈,∴()0l t '>恒成立,∴()l t 在()0,1上单调递增,故()()1l t l <,即12ln 0t t t --<,即12ln t t t-<.因为ln 0t <,可得112ln t t t->,∴121x x +>.【点睛】本题关键点在于对双变量的处理,通过对111ln 02x b x +-=,221ln 02x b x +-=作差,化简得到1212122ln x x x x xx -=, 分别得到12,x x 后,换元令12x t x =,这样就转换为1个变量,再求导确定单调性即可求解. 3.(1)10y +=; (2)[)1,+∞. 【解析】 【分析】(1)将1a =-代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件可以将问题转化为恒成立问题,进而转化为求函数的最值问题,利用导数法求函数的最值即可求解. (1)当1a =-时,()2cos 1sin 2f x x x x x =--+()2cos 10000sin 012f =⨯--+=-,所以切点为0,1,()1sin cos x f x x x '=-++,∴(0)01sin 0cos00f '=-++=,所以曲线()y f x =在点()()0,0f 处的切线的斜率为(0)0k f '==, 所以曲线()y f x =在点0,1处的切线的斜率切线方程为()()100y x --=⨯-,即10y +=.(2)由()21si cos n 2f x x x a x x =-++,得()s 1co i s n f x x a x x '=--+因为函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,可得()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 设()()1c s os in g x f x x a x x '==--+,则()cos 1sin g x a x x '=--. 因为si (n 0)001cos00g a =--+=, 所以使()0f x '≤对任意3π0,4x ⎡⎤∈⎢⎥⎣⎦恒成立, 则至少满足()00g '≤,即10a -≤,解得1a ≥. 下证明当1a ≥时,()0f x '≤恒成立,因为3π0,4x ⎡⎤∈⎢⎥⎣⎦,所以sin 0x ≥, 因为1a ≥,所以()sin 1cos f x x x x '≤--+.记s ()cos n 1i h x x x x =--+,则π()1sin 14cos h x x x x ⎛⎫'=-=+ ⎝-⎪⎭.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当π3π,24x ⎛⎫∈ ⎪⎝⎭时,()0h x '>. 所以函数()h x 在π0,2⎡⎫⎪⎢⎣⎭上单调递减,在π3π,24⎛⎤⎥⎝⎦上单调递增.因为ππ(),h h ⎛⎫==- ⎪⎝⎭33001044, 所以()h x 在3π0,4⎡⎤⎢⎥⎣⎦上的最大值为(0)0h =. 即()()1sin cos 0f x h x x x x '≤=--+≤在3π0,4⎡⎤⎢⎥⎣⎦上恒成立.所以a 的取值范围为[)1,+∞.4.(1)(21y x =-+(2)(ⅰ)22e ,-;(ⅱ)证明见解析【解析】 【分析】(1)由导数的几何意义即可求解;(2)(ⅰ)原问题等价于12,x xa =-的两根,且1201x x ,从而构造函数())0g x x =>,将问题转化为直线y a =-与函数()g x 的图象有两个交点,且交点的横坐标大于0小于1即可求解;(ⅱ)由1e x x +≤,利用放缩法可得()()1112210x ax f x '++-=,即1x 2114x <<,从而可证21x x -<()21e 011x x x x +<<<-,然后利用放缩法可得()()1201,21i i i ix ax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,最后构造二次函数()(222m x ax a x =-++++21x x ->而得证原不等式. (1)解:因为()22e x f x ax '=+所以()02f '=()01f =,所以曲线()y f x =在0x =处的切线方程为(21y x =-+; (2)解:(ⅰ)因为函数()f x 有两个极值点12,x x ,所以12,x x 是关于x 的方程()22e 0x f x ax =+'的两根,也是关于x的方程a =-的两正根, 设())0g x x =>,则()g x '=, 令())224e 2e 0x x h x x x =->,则()28e xh x x '=,当0x >时,()0h x '>,所以()h x 在()0,∞+上单调递增,又104h ⎛⎫= ⎪⎝⎭,所以,当104x <<时,()0h x <,()0g x '<;当14x >时,()0h x >,()0g x '>,所以函数()g x 在10,4⎛⎫⎪⎝⎭上单调递减,在1,4⎛⎫+∞ ⎪⎝⎭上单调递增,又因为1201x x ,所以()114g a g ⎛⎫<-<⎪⎝⎭,即22e a <-<- 所以a的取值范围是22e ,-;22e 9a <<-, 因为1e x x +≤,所以()()1112210x ax f x '++-=,所以()142a x +-,所以1x 2114x <<,所以211x x -<= 下面先证明不等式()21e 011x xx x+<<<-, 设()()2101e 1xx r x x x -=⋅<<+,则()()2222e 1x x r x x '=-+, 所以,当01x <<时,()0r x '<,()r x '在()0,1上单调递减, 所以,()()01r x r <=,所以不等式()21e 011x xx x+<<<-成立, 因为12,x x ,()1201x x <<<是()22e 0x f x ax '=+=的两个根,所以()()01,2i f x i '==,又()21e 011x xx x+<<<-,所以()()1201,21ii i ixax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,设函数()(222m x ax a x =-++++x t ==因为((()2224261620a a a ∆=+++-=+-+->,且()00m >,()10m >,102t <<, 所以函数()m x 有两个不同的零点,记为α,()βαβ<,且01t αβ<<<<,因为()22616212e 201ta tf t at at t+++'=+-⋅+-=<-,且()00f '>,()10f '>,所以1201x x ,因为()m x 在()0,t 上单调递减,且()()10m x m α>=,所以10x t α<<<; 因为()m x 在(),1t 上单调递增,且()()20m x m β>=,所以21t x β<<<; 所以1201x x αβ<<<<<,所以21x x βα->-,因为βα-=又()109a-<<<-,所以βα-> 所以21x x->综上,21x x <-< 【点睛】关键点点睛:本题(2)问(ii)小题证明的关键是,利用1e x x +≤,进行放缩可得1x 21x x -<;再利用()21e 011x xx x +<<<-,进行放缩可得()()1201,21ii i ixax f x i x +'⋅+->==-,从而构造二次函数()(222m x ax ax =-++++21x x ->5.(1)'y ()31sin 2cos x x xx --=;(2)'y ()e 1cos sin 2ln 2x xx x =+--;(3)'y ()551ln 3x =-⋅.【解析】 【分析】根据导数的运算法则,对(1)(2)(3)逐个求导,即可求得结果. (1)因为2cos x x y x -=,故'y ()()()243sin 12cos 1sin 2cos x x x x x x x x x x------==. (2)因为()e 1cos 2x x y x =+-,故'y ()e 1cos sin 2ln 2x xx x =+--.(3)因为()3log 51y x =-,故'y ()()155?51ln 351ln 3x x =⨯=--⋅. 6.(1)()3232f x x x =+-(2)()2,2- 【解析】 【分析】(1)由已知可得()()2013f f ⎧-=⎪⎨-=-''⎪⎩,可得出关于实数a 、b 的方程组,解出这两个未知数的值,即可得出函数()f x 的解析式;(2)分析可知,直线y λ=与函数()f x 的图象有3个交点,利用导数分析函数()f x 的单调性与极值,数形结合可得出实数λ的取值范围.(1)解:因为()322f x x ax bx =++-,则()232f x x ax b '=++,由题意可得()()212401323f a b f a b ⎧-=-+=⎪⎨-=-+=-''⎪⎩,解得30a b =⎧⎨=⎩,所以,()3232f x x x =+-.当3a =,0b =时,()236f x x x '=+,经检验可知,函数()f x 在2x =-处取得极值. 因此,()3232f x x x =+-.(2)解:问题等价于()f x λ=有三个不等的实数根,求λ的范围.由()2360f x x x '=+>,得2x <-或0x >,由()2360f x x x '=+<,得20x -<<,所以()f x 在(),2-∞-、()0,∞+上单调递增,在()2,0-上单调递减, 则函数()f x 的极大值为()22f -=,极小值为()02f =-,如下图所示:由图可知,当22λ-<<时,直线y λ=与函数()f x 的图象有3个交点, 因此,实数λ的取值范围是()2,2-. 7.(1)最大值为15,最小值为9- (2)3a ≤ 【解析】 【分析】(1)由()30f '=可求得实数a 的值,再利用函数的最值与导数的关系可求得函数()f x 在[]1,a 上的最大值和最小值;(2)分析可知()23230f x x ax '=-+≥对任意的1≥x 恒成立,利用参变量分离法结合基本不等式可求得实数a 的取值范围. (1)解:因为()323f x x ax x =-+,则()2323f x x ax =-+',则()33060f a '=-=,解得5a =,所以,()3253f x x x x =-+,则()()()23103313f x x x x x '=-+=--,列表如下:所以,min 39f x f ==-,因为11f =-,515f =,则max 515f x f ==. (2)解:由题意可得()23230f x x ax '=-+≥对任意的1≥x 恒成立,即312a x x⎛⎫≤+ ⎪⎝⎭,由基本不等式可得313322x x ⎛⎫+≥⨯ ⎪⎝⎭,当且仅当1x =时,等号成立,故3a ≤.8.(1)列联表见解析,没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关; (2)①0310p =;②()73a b + 【解析】 【分析】(1)对满足条件的数据统计加和即可,然后根据给定的2K 计算公式,将计算结果与195%0.05-=所对应的k 值比较大小即可;(2)①利用独立重复试验与二项分布的特点,写出10人中恰有3人不了解“碳中和”的概率为()f p ,再利用导数求出最值点; ②利用独立重复试验的期望公式代入可求出答案. (1)由题中表格数据完成22⨯列联表如下:()22800125250150275800 3.463 3.841275525400400231K ⨯⨯-⨯==≈<⨯⨯⨯.故没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关. (2)①由题得,()()733101f p C p p =-,()0,1p ∈, ∴()()()()()763236321010C 3171C 1310f p p p p p p p p ⎡⎤'=---=--⎣⎦. 令()0f p '=,得310p =,当30,10p ⎛⎫∈ ⎪⎝⎭时,()0f p '>; 当3,110p ⎛⎫∈⎪⎝⎭时,()0f p '<, ∴当30,10p ⎛⎫∈ ⎪⎝⎭时,()f p '单调选增;当3,110p ⎛⎫∈ ⎪⎝⎭时,()f p '单调递减, ∴()f p 的最大值点0310p =. ②本题求要准备的礼品大致为多少元,即求10个人礼品价值X 的数学期望. 由①知答错的概率为310, 则()33101731010E X a b a b ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦, 故要准备的礼品大致为73a b +元. 9.(1)3a =-;(2)增区间为()2e ,+∞,减区间为()20,e ,极小值22e -,无极大值.【解析】 【分析】(1)根据()1112f '⨯=-,代值计算即可求得参数值;(2)根据(1)中所求参数值,求得()f x ',利用导数的正负即可判断函数单调性和极值. (1)因为()ln 1f x x a '=++,在点()()1,1f 处的切线斜率为()11k f a '==+, 又()f x 在点()()1,1f 处的切线与直线220x y 相互垂直, 所以()1112f '⨯=-,解得3a =-. (2)由(1)得,()ln 2f x x '=-,()0,x ∈+∞,令()0f x '>,得2e x >,令()0f x '<,得20e x <<,即()f x 的增区间为()2e ,+∞,减区间为()20,e . 又()22222e e ln e 3e 22ef =-+=-,所以()f x 在2e x =处取得极小值22e -,无极大值. 【点睛】本题考查导数的几何意义,以及利用导数研究函数的单调性和极值,属综合中档题.10.(1)单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+⎥⎝⎦ (2)20,4e ⎛⎤ ⎥-⎝⎦【解析】 【分析】(1)先对函数求导,然后由导数的正负可求出函数的单调区间, (2)由函数()f x 在[]1,2上为增函数,求出函数的最值,则()()max min 24e 2()()e m g m f x f x -+=-=,然后将问题转化为()224e 24e e m -+≥,从而可求出实数m 的取值范围. (1)()()()()221422(0)e e xxmx m x mx x f x m -+-+-+-=>'=令()0f x '=,解得2x m =-或2x =,且22m-< 当2,x m ∞⎛⎤∈-- ⎥⎝⎦时,()0f x '≤,当2,2x m ⎛⎫∈- ⎪⎝⎭时,()0f x '>,当[)2,x ∞∈+时,()0f x '≤即()f x 的单调增区间为2,2m ⎛⎫- ⎪⎝⎭,单调减区间为[)2,,2,m ∞∞⎛⎤--+⎥⎝⎦(2)由(1)知,当[]0,1,2m x >∈时,()0f x '>恒成立 所以()f x 在[]1,2上为增函数, 即()()max min242()2,()1e em mf x f f x f +====. ()()12f x f x -的最大值为()()max min 24e 2()()e m g m f x f x -+=-=()()1224e f x f x ⎡⎤≥-⎣⎦恒成立()224e 24e e m -+∴≥ 即24em ≤-, 又0m > 20,4e m ⎛⎤∴∈ ⎥-⎝⎦ 故m 的取值范围20,4e ⎛⎤ ⎥-⎝⎦。

导数复习导数大题练习(含详解答案)

导数复习导数大题练习(含详解答案)

1、函数f(*)=(2*2―k*+k)·e -*(Ⅰ)当k 为何值时,)(x f 无极值;(Ⅱ)试确定实数k 的值,使)(x f 的极小值为0 2、函数()ln f x ax x =+()a ∈R .(Ⅰ)假设2a =,求曲线()y f x =在1x =处切线的斜率;(Ⅱ)求()f x 的单调区间;〔Ⅲ〕设2()22g x x x =-+,假设对任意1(0,)x ∈+∞,均存在[]20,1x ∈,使得12()()f x g x <,求a 的取值围. 3、设函数()1x f x x ae -=-。

〔I 〕求函数()f x 单调区间; 〔II 〕假设()0R f x x ≤∈对恒成立,求a 的取值围;〔III 〕对任意n 的个正整数1212,,nn a a a a a a A n++⋅⋅⋅⋅⋅⋅=记〔1〕求证:()11,2,i a iAa e i n A-≤=⋅⋅⋅〔2〕求证:A ≥4、函数b x x a x a x f +++-=23213)(,其中,a b ∈R . 〔Ⅰ〕假设曲线)(x f y =在点))2(,2(f P 处的切线方程为45-=x y ,求函数)(x f 的解析式; 〔Ⅱ〕当0>a 时,讨论函数)(x f 的单调性. 5、函数2()(21)(R x f x ax x e a -=-+⋅∈,e 为自然对数的底数).(I)当时,求函数()f x 的极值;(Ⅱ)假设函数()f x 在[-1,1]上单调递减,求a 的取值围. 6、函数2()(33)x f x x x e =-+⋅,设2t >-,(2),()f m f t n -==.〔Ⅰ〕试确定t 的取值围,使得函数()f x 在[]2,t -上为单调函数;〔Ⅱ〕试判断,m n 的大小并说明理由;〔Ⅲ〕求证:对于任意的2t >-,总存在0(2,)x t ∈-,满足0'20()2(1)3x f x t e =-,并确定这样的0x 的个数.7、函数2()ln (2)f x x ax a x =-+-.〔Ⅰ〕假设()f x 在1x =处取得极值,求a 的值;〔Ⅱ〕求函数()y f x =在2[,]a a 上的最大值. 8、函数221()()ln 2f x ax x x ax x =--+.()a ∈R . 〔I 〕当0a =时,求曲线()y f x =在(e,(e))f 处的切线方程〔e 2.718...=〕; 〔II 〕求函数()f x 的单调区间.9、函数()(1)e (0)xa f x x x=->,其中e 为自然对数的底数.〔Ⅰ〕当2a =时,求曲线()y f x =在(1,(1))f 处的切线与坐标轴围成的面积;〔Ⅱ〕假设函数()f x 存在一个极大值点和一个极小值点,且极大值与极小值的积为5e ,求a 的值.10、函数36)2(23)(23-++-=x x a ax x f . 〔1〕当1=a 时,求函数)(x f 的极小值;〔2〕试讨论曲线)(x f y =与x 轴的公共点的个数。

完整版)导数测试题(含答案)

完整版)导数测试题(含答案)

完整版)导数测试题(含答案)1.已知函数y=f(x)=x^2+1,则在x=2,Δx=0.1时,Δy的值为0.41.2.函数f(x)=2x^2-1在区间(1,1+Δx)上的平均变化率为4+4Δx。

3.设f′(x)存在,则曲线y=f(x)在点(x,f(x))处的切线与x 轴相交但不垂直。

4.曲线y=-1/x在点(1,-1)处的切线方程为y=x-2.5.在曲线y=x^2上,且在该点处的切线倾斜角为π/4的点为(2,4)。

6.已知函数f(x)=1/x,则f′(-3)=-1/9.7.函数f(x)=(x-3)ex的单调递增区间是(2,∞)。

8.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的充要条件。

9.函数f(x)在开区间(a,b)内的极小值点有2个。

10.函数f(x)=-x^2+4x+7,在x∈[3,5]上的最大值和最小值分别是f(3)和f(5)。

11.函数f(x)=x^3-3x^2-9x+k在区间[-4,4]上的最小值为-71.12.速度为零的时刻是0,1,4秒末。

13.已知函数 $y=f(x)=ax^2+2x$,且 $f'(1)=4$,则 $a=3$。

14.已知函数 $y=ax^2+b$ 在点 $(1,3)$ 处的切线斜率为 $2$,则 $b=a+1$。

15.函数 $y=x e^x$ 的最小值为 $-1/e$。

16.有一长为 $16$ m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是 $64$ $m^2$。

17.(1) $y'=6x+\cos x$;(2) $y'=\dfrac{1}{(1+x)^2}$;(3)$y'=\dfrac{1}{x}-e^x$。

18.(1) 解方程 $x^2+4=x+10$ 得 $x=3$ 或 $x=-2$,故交点为 $(3,13)$ 或 $(-2,0)$;(2) 在交点 $(3,13)$ 处,抛物线的斜率为 $6$,故该点处的切线方程为 $y=6x-5$。

函数与导数练习题(含解析)

函数与导数练习题(含解析)

函数与导数一、单选题1.(2020·甘肃城关·兰州一中月考(文))函数21()log f x x x=-的零点所在区间( ) A .(1,2)B .(2,3)C .1(0,)2D .1(2,1)2.(2020·甘肃城关·兰州一中月考(文))已知函数()f x 的图象关于原点对称,且满足()0(3)1f x f x ++-=,且当)4(2x ∈,时,12()log (1)f x x m =--+,若(2021)1(1)2f f -=-,则m =( )A .43B .34C .43-D .34-3.(2020·云南昆明一中高三月考(文))已知函数()f x 是奇函数,当0x >时()22xf x x =+,则()()12f f +-=( )A .8-B .4-C .5-D .114.(2020·甘肃城关·兰州一中月考(文))下列函数中,既是奇函数又在()0,∞+单调递减的函数是( ) A .22x x y -=-B .tan y x x =C .sin y x x =-D .12y x x=- 5.(2020·甘肃城关·兰州一中月考(文))函数()sin ln f x x x x =-的图象大致是( )A .B .C .D .6.(2020·甘肃城关·兰州一中月考(文))函数()f x 的定义域为R ,对任意的[)()1212,1,x x x x ∈+∞≠,有()()21210f x f x x x -<-,且函数()1f x +为偶函数,则( )A .()()()123f f f <-<B .()()()321f f f <-<C .()()()231f f f -<<D .()()()213f f f -<<7.(2020·甘肃城关·兰州一中月考(文))若函数2()ln 2f x x ax =+-在区间1,22⎛⎫⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是( )A .(,2]-∞-B .1,8⎛⎫-+∞ ⎪⎝⎭C .12,8⎛⎫-- ⎪⎝⎭D .(2,)-+∞8.(2020·云南昆明一中高三月考(文))已知函数()ln f x x x =,若直线l 过点()0,e -,且与曲线()y f x =相切,则直线l 的斜率为( ) A .2- B .2 C .e -D .e9.(2020·吉林高三其他(文))已知函数2()2f x x x =-,若8log 27a =,5log 11b =,0.25log 8c =-,则( )A .f (b )f <(c )f <(a )B .f (b )f <(a )f <(c )C .f (c )f <(a )f <(b )D .f (c )f <(b )f <(a )10.(2020·四川其他(文))已知函数()sin f x x x =-,则下列关系不正确的是( ) A .函数()f x 是奇函数B .函数()f x 在R 上单调递减C .0x =是函数()f x 的唯一零点D .函数()f x 是周期函数11.(2020·四川其他(文))已知函数ln(1),0()0,0x x f x x +≥⎧=⎨<⎩,若(4)(23)f x f x -<-,则实数x 的取值范围是( )A .[2,)+∞B .[2,)+∞C .3,2⎛⎫+∞⎪⎝⎭D .[4,)+∞12.(2020·黑龙江道里·哈尔滨三中高三月考(文))若定义域1,2⎡⎫+∞⎪⎢⎣⎭的函数()f x 满足()()xef x f x x'-=且()1f e =-,若13f e m ⎛⎫-≤- ⎪⎝⎭恒成立,则m 的取值范围为( ) A .1,12⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .20,5⎛⎤ ⎥⎝⎦D .21,52⎡⎤⎢⎥⎣⎦13.(2020·安徽庐阳·合肥一中高三月考(文))已知()13,03,0x x e x f x x x x +⎧⋅≤=⎨->⎩,若关于x 的方程()()210f x a f x -⋅-=有5个不同的实根,则实数a 的取值范围为( )A .30,2⎧⎫⎨⎬⎩⎭B .30,2⎛⎫ ⎪⎝⎭C .30,2⎡⎤⎢⎥⎣⎦D .30,2⎛⎤ ⎥⎝⎦14.(2020·广西南宁二中月考(文))已知定义在R 上的偶函数()f x 在[0,)+∞上递减,若不等式(ln 1)(ln 1)2(1)f ax x f ax x f -+++--≥对[]1,3x ∈恒成立,则实数a 的取值范围为( )A .(2,)eB .1[,)e+∞C .1,e e⎡⎤⎢⎥⎣⎦D .12ln 3,3e +⎡⎤⎢⎥⎣⎦15.(2020·甘肃城关·兰州一中月考(文))已知定义在R 上的函数()f x 满足()()2f x x =+,且当11x -≤≤时,()2xf x =,函数()g x x =,实数a ,b 满足3b a >>.若[]1,x a b ∀∈,2x ⎡⎤∃∈⎣⎦,使得()()12f x g x =成立,则b a -的最大值为( )A .12B .1CD .2二、填空题16.(2020·甘肃城关·兰州一中月考(文))设曲线()ln 1y ax x =-+在点()0,0处的切线方程为20x y -=,则a =________.17.(2020·云南昆明一中高三月考(文))函数()[]()()sin ,0,212,2,2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩.若关于x 的方程()()0f x m m =< 有且只有两个不相等的实根1x ,2x ,则12x x +的值是_________.18.(2020·河南洛阳·高三月考(文))已知函数(),0,ln ,0,x e x f x x x -⎧≤⎪=⎨>⎪⎩若关于x 的方程()()102f x a f x a ⎡⎤-⋅--=⎡⎤⎣⎦⎢⎥⎣⎦恰有5个不相等的实数根,则实a 的取值范围是______. 19.(2020·甘肃城关·兰州一中月考(文))函数()212log 2y x x =-的单调递增区间是_________.20.(2020·甘肃城关·兰州一中月考(文))已知()f x 是定义域为R 的奇函数,()'f x 是()f x 的导函数,(1)0f -=,当0x >时,()3()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是________.21.(2020·甘肃城关·兰州一中月考(文))已知1240x x a ++⋅>对一切(],1x ∞∈-上恒成立,则实数a 的取值范围是______.三、解答题22.(2020·云南昆明一中高三月考(文))已知函数()xf x e ax =-,()1lng x x x =+.(1)讨论函数()f x 的单调性;(2)若当0x >时,方程()()f x g x =有实数解,求实数a 的取值范围.23.(2020·甘肃城关·兰州一中月考(文))已知函数()()ln f x x x a =-,()12x g x e =-(e为自然对数的底).(1)讨论()f x 的极值;(2)当1a =时,若存在(]00,x m ∈,使得()()00f x g m -≤,求实数m 取值范围. 24.(2020·陕西西安·月考(文))已知函数()ln 1,f x x ax a R =-+∈. (1)求函数()f x 的单调区间;(2)若不等式()0f x ≤恒成立,求实数a 的取值范围;(3)当*n N ∈时,求证:111111ln(1)123123+++<+<+++++n n n. 25.(2020·广西南宁二中月考(文))已知函数3211()(1)132f x ax a x x =-+++(1a ≥). (I )若3a =,求曲线()y f x =在点(1,(1))f 处的切线方程; (II )若()f x 在R 上无极值点,求a 的值;(III )当(0,2)x ∈时,讨论函数()f x 的零点个数,并说明理由.26.(2020·四川其他(文))已知曲线()(3)(2ln )xf x x e a x x =-+-(其中e 为自然对数的底数)在1x =处切线方程为(1) y e x b =-+.(Ⅰ)求a ,b 值;(Ⅱ)证明:()f x 存在唯一的极大值点0x ,且()0215e f x --<<-. 27.(2020·河南洛阳·高三月考(文))已知函数()()2122xf x x e x x =-+-. (1)求函数()f x 的单调区间;(2)若不等式()()21442a af x x a x ⎛⎫≥+-++⎪⎝⎭对任意()2,x ∈+∞恒成立,求实数a 的取值范围. 28.(2020·广东天河·华南师大附中高三月考(文))设2()g x lnx x x =+-.(1)求()g x 的单调区间;(2)当0a >时,2()0xxe a x a g x --≥恒成立,求实数a 的取值范围.29.(2020·湖北宜昌·高三期末(文))已知函数22()ln f x x a x ax =--.(1)当1a =时,求()f x 的单调区间;(2)若对于定义域内任意的x ,()0f x ≥恒成立,求a 的取值范围;(3)记()()g x f x a x =+,若()g x 在区间1[,]e e 内有两个零点,求a 的取值范围.30.(2020·吉林高三其他(文))已知函数()32ln f x ax bx x =--.(1)当0b =时,讨论()f x 的单调性;(2)若1a b ==,且()f x m ≥恒成立,求m 的取值范围.一、单选题1.(2020·甘肃城关·兰州一中月考(文))函数21()log f x x x=-的零点所在区间( ) A .(1,2) B .(2,3)C .1(0,)2D .1(2,1)【答案】A 【解析】函数()f x 的定义域为(0,)+∞,且函数()f x 单调递增,f (1)2log 1110=-=-<,f (2)2111log 210222=-=-=>, ∴在(1,2)内函数()f x 存在零点,故选:A .2.(2020·甘肃城关·兰州一中月考(文))已知函数()f x 的图象关于原点对称,且满足()0(3)1f x f x ++-=,且当)4(2x ∈,时,12()log (1)f x x m =--+,若(2021)1(1)2f f -=-,则m =( )A .43B .34C .43-D .34-【答案】C【解析】因为函数()f x 的图象关于原点对称,所以()f x 为奇函数, 因为()()()133f x f x f x +=--=-, 故函数()f x 的周期为4,则()()20211f f =;而()()11f f -=-,所以由(2021)1(1)2f f -=-可得1(1)3f =;而121(1)(3)log (31)3f f m =-=--=, 解得43m =-. 故选:C .3.(2020·云南昆明一中高三月考(文))已知函数()f x 是奇函数,当0x >时()22xf x x =+,则()()12f f +-=( )A .8-B .4-C .5-D .11【答案】C【解析】:因为0x >时,()22x f x x =+,所以12(1)213f =+=;又因为()f x 是奇函数,所以()()()22448f f -=-=-+=-, 即()()51238f f +-=-=-, 故选:C.4.(2020·甘肃城关·兰州一中月考(文))下列函数中,既是奇函数又在()0,∞+单调递减的函数是( ) A .22x x y -=-B .tan y x x =C .sin y x x =-D .12y x x=- 【答案】D【解析】对A ,函数22xxy -=-在()0,∞+单调递增,故A 不符合;对B ,函数tan y x x =为偶函数,故B 不符合;对C ,函数'1cos 0y x =-≥在()0,∞+恒成立,所以在()0,∞+单调递增,故C 不符合; 对D ,函数既是奇函数又在()0,∞+单调递减,故D 符合; 故选:D5.(2020·甘肃城关·兰州一中月考(文))函数()sin ln f x x x x =-的图象大致是( )A .B .C .D .【答案】B【解析】()sin()ln sin ln ()f x x x x x x x f x -=----=-=,()f x ∴为偶函数,排除A ,C 选项;当(0,1)x ∈时,sin 0,ln 0x x x ><,()0f x ∴>,排除D 选项,故选B .故选B6.(2020·甘肃城关·兰州一中月考(文))函数()f x 的定义域为R ,对任意的[)()1212,1,x x x x ∈+∞≠,有()()21210f x f x x x -<-,且函数()1f x +为偶函数,则( )A .()()()123f f f <-<B .()()()321f f f <-<C .()()()231f f f -<<D .()()()213f f f -<<【答案】C【解析】因为对任意的[)()1212,1,x x x x ∈+∞≠,有2121()()0f x f x x x -<-,所以对任意的[)()1212,1,x x x x ∈+∞≠,21x x -与21()()f x f x -均为异号, 所以()f x 在[1,)+∞上单调递减,又函数()1f x +为偶函数,即(1)(1)f x f x +=-,所以(2)(4)f f -=,所以()()()2(4)31f f f f -=<<. 故选:C.7.(2020·甘肃城关·兰州一中月考(文))若函数2()ln 2f x x ax =+-在区间1,22⎛⎫⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是( )A .(,2]-∞-B .1,8⎛⎫-+∞ ⎪⎝⎭C .12,8⎛⎫-- ⎪⎝⎭D .(2,)-+∞【答案】D【解析】因为2()ln 2f x x ax =+-在区间1,22⎛⎫⎪⎝⎭内存在单调递增区间, 所以1()20f x ax x '=+>在区间1,22⎛⎫⎪⎝⎭上成立, 即212a x >-在区间1,22⎛⎫⎪⎝⎭上有解,因此,只需212412a >-=-⎛⎫ ⎪⎝⎭,解得2a >-.故选D8.(2020·云南昆明一中高三月考(文))已知函数()ln f x x x =,若直线l 过点()0,e -,且与曲线()y f x =相切,则直线l 的斜率为( ) A .2- B .2 C .e - D .e【答案】B【解析】设切点坐标为(),ln t t t ,()ln f x x x =,()ln 1f x x '=+,直线l 的斜率为()ln 1f t t '=+,所以,直线l 的方程为()()ln ln 1y t t t x t -=+-,将点()0,e -的坐标代入直线l 的方程得()ln ln 1e t t t t --=-+,解得t e =, 因此,直线l 的斜率为()2f e '=. 故选:B.9.(2020·吉林高三其他(文))已知函数2()2f x x x =-,若8log 27a =,5log 11b =,0.25log 8c =-,则( )A .f (b )f <(c )f <(a )B .f (b )f <(a )f <(c )C .f (c )f <(a )f <(b )D .f (c )f <(b )f <(a )【答案】A【解析】27982443log log 3log log 82a ===>=,5553log 11log log 2b ==<=,0.2543log 8log 82c =-==,又55log 11log 51b =>=,1b c a ∴<<<,又2()2f x x x =-在[1,)+∞上单调递增,f ∴(b )f <(c )f <(a ).故选:A .10.(2020·四川其他(文))已知函数()sin f x x x =-,则下列关系不正确的是( ) A .函数()f x 是奇函数B .函数()f x 在R 上单调递减C .0x =是函数()f x 的唯一零点D .函数()f x 是周期函数【答案】D【解析】因为()sin f x x x =-的定义域为R ,()sin()()sin ()f x x x x x f x -=---=-+=-,所以函数为奇函数,故A 正确;因为()cos 10f x x '=-≤,所以()sin f x x x =-在R 上为减函数,故B 正确;因为(0)sin 000f =-=,且()sin f x x x =-在R 上为减函数,所以函数()f x 的唯一零点是0,故C 正确;因为()sin f x x x =-,不存在0T ≠,使得()sin()()f x T x T x T f x +=+--=,故D 错误. 故选:D11.(2020·四川其他(文))已知函数ln(1),0()0,0x x f x x +≥⎧=⎨<⎩,若(4)(23)f x f x -<-,则实数x 的取值范围是( )A .[2,)+∞B .[2,)+∞C .3,2⎛⎫+∞⎪⎝⎭D .[4,)+∞【答案】C【解析】:因为ln(1),0()0,0x x f x x +≥⎧=⎨<⎩,当0x ≥时,()()ln 1f x x =+在定义域上单调递增,且()00f =,当0x <时()00f =,要使(4)(23)f x f x -<-,则423230x x x -<-⎧⎨->⎩解得32x >,即3,2x ⎛⎫∈+∞⎪⎝⎭故选:C12.(2020·黑龙江道里·哈尔滨三中高三月考(文))若定义域1,2⎡⎫+∞⎪⎢⎣⎭的函数()f x 满足()()xef x f x x'-=且()1f e =-,若13f e m ⎛⎫-≤- ⎪⎝⎭恒成立,则m 的取值范围为( ) A .1,12⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .20,5⎛⎤ ⎥⎝⎦D .21,52⎡⎤⎢⎥⎣⎦【答案】D【解析】函数()f x 满足()()x e f x f x x '-=,()(1)x f x f x e x '-∴=,则()1x f x e x'⎛⎫= ⎪⎝⎭, 可设()ln xf x x c e=+,c 为常数,故()()ln x f x x c e =+,()11f c e e ∴=⋅=-, 1c ∴=-,故()()ln 1xf x x e =-,1()ln 1x f x e x x ⎛⎫'=+- ⎪⎝⎭,1,2x ⎡⎫∈+∞⎪⎢⎣⎭,令1()ln 1g x x x =+- ,1,2x ⎡⎫∈+∞⎪⎢⎣⎭,则22111()x g x x x x -'=-=, 1,12x ⎡⎫∈⎪⎢⎣⎭时,()0g x '<,故()g x 单调递减;()1,∈+∞x 时,()0g x '>,故()g x 单调递增,()g x ∴在1x =时取得最小值(1)0g =,()0g x ∴≥恒成立,1()ln 10x f x e x x ⎛⎫'=+-≥ ⎪⎝⎭在1,2x ⎡⎫∈+∞⎪⎢⎣⎭成立,故()f x 在1,2⎡⎫+∞⎪⎢⎣⎭上递增,又()1f e =-,所以不等式13f e m ⎛⎫-≤- ⎪⎝⎭即13(1)f f m ⎛⎫-≤ ⎪⎝⎭,根据单调性得11312m ≤-≤,解得2152m ≤≤. 故选:D.13.(2020·安徽庐阳·合肥一中高三月考(文))已知()13,03,0x x e x f x x x x +⎧⋅≤=⎨->⎩,若关于x 的方程()()210f x a f x -⋅-=有5个不同的实根,则实数a 的取值范围为( )A .30,2⎧⎫⎨⎬⎩⎭B .30,2⎛⎫ ⎪⎝⎭C .30,2⎡⎤⎢⎥⎣⎦D .30,2⎛⎤ ⎥⎝⎦【答案】B【解析】设()t f x =,则方程为210t at --=,解得t =,且10t =>,20t =<,当0x ≤时,()1x f x xe+=,则()()11x f x x e+'=+,当(),1x ∈-∞-时,()0f x '<,()f x 单调递减,当()1,0x ∈-时,()0f x '>,()f x 单调递增, 可知()f x 在1x =-处取得极小值()11f -=-;当0x >时,()33=-f x x x ,则()()()233311f x x x x '=-=-+,当()0,1x ∈时,()0f x '>,()f x 单调递增, 当()1,x ∈+∞时,()0f x '<,()f x 单调递减, 可知()f x 在1x =处取得极大值()12f =, 如图作出函数()f x 的图象,要使关于x 的方程()()210fx a f x -⋅-=有5个不同的实根,有1221t t <⎧⎨>-⎩,解得302a <<.故选:B.14.(2020·广西南宁二中月考(文))已知定义在R 上的偶函数()f x 在[0,)+∞上递减,若不等式(ln 1)(ln 1)2(1)f ax x f ax x f -+++--≥对[]1,3x ∈恒成立,则实数a 的取值范围为( )A .(2,)eB .1[,)e+∞C .1,e e⎡⎤⎢⎥⎣⎦D .12ln 3,3e +⎡⎤⎢⎥⎣⎦【答案】D 【解析】由于定义在R 上的偶函数()f x 在[)0,+∞上递减,则()f x 在(,0)-∞上递增,又ln 1(ln 1)ax x ax x --=--++,则(ln 1)(ln 1)2(1)f ax x f ax x f -+++--≥ 可华化为: 2(ln 1)2(1)f ax x f --≥,即(ln 1)(1)f ax x f --≥对[]1,3x ∈恒成立,则1ln 11ax x -≤--≤,所以:ln x a x ≥且ln 2x a x+≤ 对[1,3]x ∈同时恒成立. 设ln ()xg x x =,21ln ()x g x x -'=,则()g x 在[1,e)上递增,在(,3]e 上递减,max1()()g x g e e ∴==. 设ln 2()x h x x+=,21ln ()0x h x x --'=< ,()h x 在[1,3] 上递减,min2ln 3()(3)3h x h +== . 综上得:a 的取值范围是12ln 3[,]3e +.15.(2020·甘肃城关·兰州一中月考(文))已知定义在R 上的函数()f x 满足()()2f x x =+,且当11x -≤≤时,()2xf x =,函数()g x x =,实数a ,b 满足3b a >>.若[]1,x a b ∀∈,2x ⎡⎤∃∈⎣⎦,使得()()12f x g x =成立,则b a -的最大值为( )A .12B .1CD .2【答案】B【解析】当)x ⎡∈⎣时,()(g x ∈,令2x =12x =±.∵()()2f x f x =+,∴()f x 的周期为2,所以()f x 在[-1,5]的图象所示:结合题意,当17422a =-+=,19422b =+=时,b a -取得最大值.最大值为1. 故选:B.二、填空题16.(2020·甘肃城关·兰州一中月考(文))设曲线()ln 1y ax x =-+在点()0,0处的切线方程为20x y -=,则a =________. 【答案】3 【解析】()ln 1y ax x =-+,11y a x '∴=-+. 由题意可知,当0x =时,12y a '=-=,解得3a =. 故答案为:3.17.(2020·云南昆明一中高三月考(文))函数()[]()()sin ,0,212,2,2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩.若关于x 的方程()()0f x m m =< 有且只有两个不相等的实根1x ,2x ,则12x x +的值是_________.【答案】3【解析】画出()[]()()sin ,0,212,2,2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩的图像如下,因为()(0)f x m m =<有且只有两个不等实根, 即函数()y f x =与y m =有两个不同交点,由图像可得,112m -<<-, 所以1x ,2x ,关于直线32x =对称, 则123232x x +=⨯=. 故答案为:3.18.(2020·河南洛阳·高三月考(文))已知函数(),0,ln ,0,x e x f x x x -⎧≤⎪=⎨>⎪⎩若关于x 的方程()()102f x a f x a ⎡⎤-⋅--=⎡⎤⎣⎦⎢⎥⎣⎦恰有5个不相等的实数根,则实a 的取值范围是______. 【答案】1,12⎡⎫⎪⎢⎣⎭【解析】作出函数()f x 的大致图象如图所示,由已知关于x 的方程()f x a =或()12f x a =+恰有5个不相等的实数根,则01,11,2a a <<⎧⎪⎨+≥⎪⎩解得1,12a ⎡⎫∈⎪⎢⎣⎭.故答案为:1,12⎡⎫⎪⎢⎣⎭19.(2020·甘肃城关·兰州一中月考(文))函数()212log 2y x x =-的单调递增区间是_________.【答案】(),0-∞【解析】由220x x ->, 可得2x >或0x <, 所以函数的定义域为()(),02,-∞+∞又()211t x =--在区间(),0-∞的单调递减,13log y t =单调递减,∴函数()212log 2y x x =-的单调递增区间是(),0-∞, 故答案为(),0-∞.20.(2020·甘肃城关·兰州一中月考(文))已知()f x 是定义域为R 的奇函数,()'f x 是()f x 的导函数,(1)0f -=,当0x >时,()3()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是________.【答案】(,1)(0,1)-∞-【解析】 令3()()f x g x x =,0x >, 因为当0x >时,()3()0xf x f x '-<,则当0x >时,4()3()()0xf x f x g x x'-'=<,即()g x 在(0,)+∞上单调递减, 又因为()f x 为奇函数,即()()f x f x -=-,则33()()()()()f x f x g x g x x x--===-, 故()g x 为偶函数且在(,0)-∞上单调递增, 因为()10f -=,故()()110g g -==,由()0f x >可得3()0x g x >,所以0()0x g x >⎧⎨>⎩或0()0x g x <⎧⎨<⎩,所以001x x >⎧⎨<<⎩或01x x <⎧⎨<-⎩. 解可得,1x <-或01x <<. 故答案为:()(),10,1-∞-⋃.21.(2020·甘肃城关·兰州一中月考(文))已知1240x x a ++⋅>对一切(],1x ∞∈-上恒成立,则实数a 的取值范围是______.【答案】3,4∞⎛⎫-+ ⎪⎝⎭【解析】1240xxa ++⋅>可化为212224xx x xa --+>-=--, 令2x t -=,由(],1x ∈-∞,得1,2t ⎡⎫∈+∞⎪⎢⎣⎭, 则2a t t >--,2213()24t t t --=-++在1,2⎡⎫+∞⎪⎢⎣⎭上递减,当12t =时2t t --取得最大值为34-,所以34a >-. 故答案为3,4⎛⎫-+∞ ⎪⎝⎭.三、解答题22.(2020·云南昆明一中高三月考(文))已知函数()xf x e ax =-,()1lng x x x =+.(1)讨论函数()f x 的单调性;(2)若当0x >时,方程()()f x g x =有实数解,求实数a 的取值范围.【答案】(1)答案见解析;(2)[e 1,)-+∞.【解析】 【分析】(1)先对函数求导,分0a ≤和0a >两种情况讨论,可求解函数的单调性;(2)由已知得e 1ln x a x x x=--有实数解,构造函数,利用函数的单调性及函数的性质求得a 的范围.【详解】解:(1)函数()f x 的定义域为R ,()e '=-xf x a当0a ≤时,()0f x '>,则()f x 在(,)-∞+∞上单调递增;当0a >时,令()xf x e a '=-,得ln x a =,则()f x 在(,ln )a -∞上单调递减,在(ln ,)a +∞上单调递增.(2)由()()f x g x =,得e ln 1xax x x =--,因为0x >,所以e 1ln x a x x x=--.令e 1()ln x h x x x x=--,0x >,则()22e 1(1)e e 1()x x x x x x h x x x----+'==. 令()0h x '=,得1x =.当(0,1)x ∈时,()0h x '<,()h x 为减函数;当(1,)x ∈+∞时,()0h x '>,()h x 为增函数.所以min ()(1)e 1h x h ==-.又因为e 1e 1()ln ln x x h x x x x x x -=--=-,因为0x >,e 1x>,所以e 10x x->,所以当0x →时,()h x →+∞. 所以函数()h x 的值域为[e 1,)-+∞,因此实数a 的取值范围为[e 1,)-+∞.23.(2020·甘肃城关·兰州一中月考(文))已知函数()()ln f x x x a =-,()12x g x e =-(e为自然对数的底).(1)讨论()f x 的极值;(2)当1a =时,若存在(]00,x m ∈,使得()()00f x g m -≤,求实数m 取值范围.【答案】(1)1a f e -=-极小值,()f x 无极大值;(2)0ln3m <≤.【解析】 【分析】(1)对函数进行求导得()ln 1f x x a '=-+,令()10a f x x e -'=⇒=,再列表,从而求得函数的极值;(2)利用导数研究函数的最值,对m 分两种情况讨论,即01m <≤和1m ,即可得答案; 【详解】(1)依题()ln 1f x x a '=-+,()10a f x x e-'=⇒=,x ,()f x ',()f x 的变化如下:列表分析可知,()11a a f f ee --==-极小值,()f x 无极大值. (2)对于()()ln 1f x x x =-,可得()ln f x x '=.因此,当()0,1x ∈时,()f x 单调递减;当()1,x ∈+∞时,()f x 单调递增. (1)当01m <≤时,()()()min ln 1ln f x f m m m m m m ==-=-. 依题意可知()()()02ln 210mf mg m m m e m -≤⇒+--≤.构造函数:()21mm e m ϕ=--(01m <≤),则有()2mm e ϕ'=-.由此可得;当()0,ln 2m ∈时,()0m ϕ'<;当()ln 2,1m ∈时,()0m ϕ'>, 即()m ϕ在()0,ln 2m ∈时单调递减,()ln 2,1m ∈单调递增. 注意到:()00ϕ=,()13e ϕ=-,因此()0m ϕ<.同时注意到2ln 0m m ≤,故有()2ln 210mm m e m +--≤. (2)当1m 时,()()min 11f x f ==-.依据题意可知()()101031ln 322m me f m g m e m ⎛⎫-≤⇒---≤⇒≤⇒<≤ ⎪⎝⎭.综上(1)、(2)所述,所求实数m 取值范围为0ln3m <≤.24.(2020·陕西西安·月考(文))已知函数()ln 1,f x x ax a R =-+∈. (1)求函数()f x 的单调区间;(2)若不等式()0f x ≤恒成立,求实数a 的取值范围;(3)当*n N ∈时,求证:111111ln(1)123123+++<+<+++++n n n. 【答案】(1)答案见解析;(2)1a ≥;(3)证明见解析. 【解析】 【分析】(1)对函数求导,然后分0a ≤,0a >两种情况,由导函数的正负可求得其单调区; (2)利用导数求()f x 的最大值小于零即可,或()ln 10f x x ax =-+≤恒成立,等价于ln 1x a x+≥,0x >,然后构造函数ln 1()x g x x+=,利用导数求其最大值即可; (3)由(2)知,当1a =时,()0f x ≤恒成立,即ln 1≤-x x (仅当1x =时等号成立).当*1,k x k N k+=∈时,有11lnk k k +<,然后利用累加法可得111ln(1)123n n +<+++…+,当*,1kx k N k =∈+时,有11ln 1k k k +>+,再利用累加法可得1111ln(1)2341n n +>+++…+,从而可证得结论【详解】(1)()ln 1,0f x x ax x =-+>,1()f x a x'=- .当0a ≤时,()0f x '≥,所以()f x 在(0,)+∞上递增;.当0a >时,令()0f x '=,则1x a=, 当10x a <<时,()0f x '>;当1x a>时,()0f x '<, 所以()f x 在区间1(0,)a上递增,在1(,)a+∞上递减.(2)方法1:构造函数()ln 1,0f x x ax x =-+>,1()f x a x'=- .当0a ≤时,由(1)()f x 在(0,)+∞上递增,又(1)10f a =->,不符合题意,舍;.当0a >时,由(1)知()f x 在区间1(0,)a 上递增,在1(,)a+∞上递减;所以max 11()()ln()0f x f a a==≤,解得:1a ≥. 综上:1a ≥ 方法2:分离参数()ln 10f x x ax =-+≤恒成立,等价于ln 1x a x+≥,0x >设ln 1()x g x x+=,0x >,2ln ()xg x x -'=,令()0g x '=,1x =,则 当01x <<时,()0g x '>;当1x >时,()0g x '<,所以()g x 在区间(0,1)上递增,在(1,)+∞上递减;所以max ()(1)1g x g ==,所以:1a ≥(3)由(2)知,当1a =时,()0f x ≤恒成立,即ln 1≤-x x (仅当1x =时等号成立).当*1,k x k N k +=∈时,11ln 1k k k k ++<-,即11ln k k k +<; 所以,2ln11<,31ln 22<,41ln 33<,……,11ln n n n +<; 上述不等式相加可得:2341111lnln ln ln112323n n n+++++<+++…+, 即:2341111ln112323n n n +⋅⋅<+++…+, 即:111ln(1)123n n+<+++…+,*n N ∈; .当*,1k x k N k =∈+时,ln 111k k k k <-++,即111ln 1k k k -+⎛⎫<- ⎪+⎝⎭,即11ln 1k k k +>+ 所以,21ln12>,31ln 23>,41ln 34>,……,11ln 1n n n +>+;上述不等式相加可得:23411111lnln ln ln1232341n n n +++++>+++…+, 即:23411111ln1232341n n n +⋅⋅>+++…+, 即:1111ln(1)2341n n +>+++…+,*n N ∈; 综上:当*n N ∈时,111111ln(1)123123+++<+<+++++n n n.25.(2020·广西南宁二中月考(文))已知函数3211()(1)132f x ax a x x =-+++(1a ≥). (I )若3a =,求曲线()y f x =在点(1,(1))f 处的切线方程; (II )若()f x 在R 上无极值点,求a 的值;(III )当(0,2)x ∈时,讨论函数()f x 的零点个数,并说明理由.【答案】(1)1y =; (2)19a ≤<时函数()f x 在(0,2)上无零点;当9a =时,函数()f x 在(0,2)上有一个零点;当9a >时,函数()f x 在(0,2)上有两个零点. 【解析】(I )当3a =时,()3221f x x x x =-++,()2'341f x x x =-+,()'10f =,()11f =,所以曲线()y f x =在点()()1,1f 处的切线方程为1y =.(II )()()2'11f x ax a x =-++,1a >,依题意有()'0f x ≥,即0∆≤,()2140a a +-≤,解得1a =.(III)(1)1a =时,函数()f x 在R 上恒为增函数且()01f =,函数()f x 在()0,2上无零点. (2)1a >时:当10,x a ⎛⎫∈ ⎪⎝⎭,()'0f x >,函数()f x 为增函数;当1,1x a ⎛⎫∈⎪⎝⎭,()'0f x <,函数()f x 为减函数; 当()1,2x ∈,()'0f x >,函数()f x 为增函数. 由于()22103f a =+>,此时只需判定()3162a f =-+的符号:当19a <<时,函数()f x 在()0,2上无零点; 当9a =时,函数()f x 在()0,2上有一个零点; 当9a >时,函数()f x 在()0,2上有两个零点. 综上,19a ≤<时函数()f x 在()0,2上无零点; 当9a =时,函数()f x 在()0,2上有一个零点; 当9a >时,函数()f x 在()0,2上有两个零点.26.(2020·四川其他(文))已知曲线()(3)(2ln )xf x x e a x x =-+-(其中e 为自然对数的底数)在1x =处切线方程为(1) y e x b =-+. (Ⅰ)求a ,b 值;(Ⅱ)证明:()f x 存在唯一的极大值点0x ,且()0215e f x --<<-. 【答案】(1)1a =,2b e =--;(2)证明见详解【解析】(1) ()f x 在1x =处切线方程为(1)y e x b =-+,而2()(2)(1)xf x x e a x'=-+-∴(1)1f e a e '=-+=-,即1a =而(1)21f e =--,故切点为(1,21)e -- ∴121e b e -+=--,即2b e =-- 故有:1a =,2b e =--(2)由(1)知:()(3)2ln x f x x e x x =-+-且定义域(0,)x ∈+∞∴(2)2(1)(2)()x x x x e x xe x f x x x--+--'==,若()(2)(1)xg x x xe =-- 令()1x h x xe =-,即()(1)x h x x e '=+在(0,)x ∈+∞有()0h x '>恒成立∴()h x 单调增,又(0)10h =-<,(1)10h e =->:即()h x 的零点1x 在(0,1)内 ∴1(0,)x 上()0h x <,1(,)x +∞上()0h x > 故在()g x 中1(0,1)x ∈,(0,)x ∈+∞上有当10x x <<时,()0>g x ,即()0f x '>,()f x 单调增 当12x x <<时,()0<g x ,即()0f x '<,()f x 单调减 当2x >时,()0>g x ,即()0f x '>,()f x 单调增 ∴()f x 存在唯一的极大值点0x =1(0,1)x ∈又有01()()(1)21f x f x f e =>=--而001xx e =,000000003()32ln 13x x f x x e e x x x x =-+-=--且0(0,1)x ∈ ∴0()5f x <-(利用均值不等式,但等号不成立,因为0x 无法取1)综上,得证:021()5e f x --<<-27.(2020·河南洛阳·高三月考(文))已知函数()()2122xf x x e x x =-+-. (1)求函数()f x 的单调区间;(2)若不等式()()21442a af x x a x ⎛⎫≥+-++⎪⎝⎭对任意()2,x ∈+∞恒成立,求实数a 的取值范围.【答案】(1)单调递减区间为(),1-∞,单调递增区间为()1,+∞;(2)31,e ⎡⎫+∞⎪⎢⎣⎭. 【解析】(1)依题意()()()()()1111xx f x ex x x e '=-+-=-+,当(),1x ∈-∞时,()0f x '<,()f x 单调递减; 当()1,x ∈+∞时,()0f x '>,()f x 单调递增,所以()f x 的单调递减区间为(),1-∞,单调递增区间为()1,+∞.(2)当2x >时,()()21442a af x x a x ⎛⎫≥+-++⎪⎝⎭恒成立, 即()()222e 14422xa a a x x ax x a x ⎛⎫-+-≥+-++ ⎪⎝⎭, 即()()222e 442x a x x x x --+=-≥,即2e xx a -≥恒成立,即max 2e x x a -⎛⎫≥ ⎪⎝⎭.令()()22e x x h x x -=>,则()()123e exx x x h x ---'==, 易知()h x 在区间()2,3内单调递增,在区间()3,+∞内单调递减, 所以()()3max 13e h x h ==,所以31e a ≥. 所以实数a 的取值范围是31,e ⎡⎫+∞⎪⎢⎣⎭. 28.(2020·广东天河·华南师大附中高三月考(文))设2()g x lnx x x =+-.(1)求()g x 的单调区间;(2)当0a >时,2()0x xe a x a g x --≥恒成立,求实数a 的取值范围.【答案】(1)单调递增区间为()0,1,单调递减区间为()1,+∞;(2)(]0e ,. 【解析】(1)函数的定义域为()0,+∞,()()()211112x x g x x x x-+-=+-=', 令()0g x '>即()()2110x x +-<,解得112x -<<, 当()0,1x ∈时,()0g x '>,()g x 单调递增, 当()1,x ∈+∞时,()0g x '<,()g x 单调递减, 故()g x 的单调递增区间为()0,1,单调递减区间为()1,+∞. (2)依题意得()222()ln ln x x x xe a x a g x xe a x a x ax ax xe a x ax --=--+-=--设()()ln 0xh x xe a x ax x =--∈∞,,+,则()()()()+111xx a x a h x x e x e x x ⎛⎫=+-=+- ⎝'⎪⎭, 0a >,∴设()0h x '=的根为0x ,即有00xae x =,可得00x lna lnx =-, 当()00,x x ∈时,()0h x '<,()h x 单调递减, 当()0,x x ∈+∞时,()0h x '>,()h x 单调递增,∴()()()00000000min 0ln ln xah x h x x e a x ax x a x a ax x ==--=+--⋅ln 0a a a =-≥解得a e ≤,∴实数a 的取值范围是(]0e ,. 29.(2020·湖北宜昌·高三期末(文))已知函数22()ln f x x a x ax =--.(1)当1a =时,求()f x 的单调区间;(2)若对于定义域内任意的x ,()0f x ≥恒成立,求a 的取值范围;(3)记()()g x f x a x =+,若()g x 在区间1[,]e e内有两个零点,求a 的取值范围.【答案】(1)在(0,1)上单调递减,在(1,)+∞上单调递减;(2)342,1a e ⎡⎤∈-⎢⎥⎣⎦;(3)[,]a e e ∈-⋃.【解析】(1)()f x 的定义域为(0,)+∞,1(21)(1)()21x x f x x x x+-'=--= 令()0f x '>,得1x >;令()0f x '<,得01x <<,所以()f x 的单调减区间(0,1),单调递增区间为(1,)+∞.(2) ()f x 的定义域为(0,)+∞,2222(2)()()2a x ax a x a x a f x x a x x x--+-'=--==, 当0a =时,2()0f x x =≥恒成立;当0a >时,(0,)x a ∈时,()0f x '<;(,)x a ∈+∞时,()0f x '>,所以()f x 在(0,)a 上单调递减,(,)a +∞上单调递增,所以2min ()()ln 0f x f a a a ==-≥,解得01a <≤;当0a <时,()f x 在(0,)2a -上单调递减,(,)2a-+∞上单调递增, 所以222min()()ln()02422a a a af x f a =-=+--≥,解得3420-≤<e a ;综上,a 的取值范围34[2,1]e -. (3)法一:显然,1x =不是()g x 的零点,所以1x ≠由()0g x =,得22ln x a x =,令2()ln x h x x=,2(2ln 1)()(ln )x x h x x '-=,令()0h x '=得12x e =, 当121[,1)(1,]x e e∈时,()0f x '<;当12(,]e x e ∈时,()0f x '>,所以()h x 在1[,1)e和12(1,]e 单调递减,12(,]e e 单调递增,又1[,1)x e ∈时,()0h x <,22ln x a x=不成立,所以只需12222()2()a h e e a h e e⎧⎪>=⎨⎪≤=⎩,故a 的取值范围[,]e e -⋃.法二:22222()ln ,()x a g x x a x g x x-'=-=,当0a =时,不合题意,舍去;当0a >时,()g x在上单调递减,)+∞上单调递增,要使()g x 在区间1[,]e e内有两个零点,则需满足1(,)01()0()0e e g g e g e ⎪<⎪⎨⎪⎪≥⎪⎪≥⎩,即222222ln 0211ln 0ln 0a e a a a e e e a e ⎧<<⎪⎪⎪-<⎪⎨⎪⎪-≥⎪⎪-≥⎩,解得]a e ∈; 当0a <时,()g x在(0,上单调递减,()+∞上单调递增,要使()g x 在区间1[,]e e内有两个零点,则需满足1(,)(01()0()0e e g g e g e ⎧⎪⎪⎪<⎪⎨⎪⎪≥⎪⎪≥⎩,即222222ln(0211ln 0ln 0a a a a e e e a e ⎧<<⎪⎪⎪-<⎪⎨⎪⎪-≥⎪⎪-≥⎩,解得[,a e ∈-; 综上,a的取值范围[,]e e -⋃.30.(2020·吉林高三其他(文))已知函数()32ln f x ax bx x =--.(1)当0b =时,讨论()f x 的单调性;(2)若1a b ==,且()f x m ≥恒成立,求m 的取值范围. 【答案】(1)分类讨论,答案见解析;(2)(],0-∞.【解析】(1)当0b =时,函数()3ln f x ax x =-,可得()f x 的定义域为()0,∞+,则()321313ax f x ax x x-'=-=,①当0a ≤时,()0f x '<,()f x 在()0,∞+上单调递减.②当0a >时,由()0f x '>,得x >()f x 在⎫+∞⎪⎭上单调递增;由()0f x '<,得0x <<,则()f x 在⎛ ⎝上单调递减. (2)由1a b ==,知()32ln f x x x x =--,可得()322132132x x f x x x x x--'=--=,又由()()()()()32322223213313111131x x x x x xx x x x x x --=-+-=-+-+=-++,当01x <<时,()0f x '<,()f x 单调递减; 当1x >时,()0f x '>,()f x 单调递增,所以()()min 10f x f ==,则0m ≤,故m 的取值范围为(],0-∞.。

导数测试题(含答案)

导数测试题(含答案)

导数测试题姓名 班别 座号 分数一、选择题答题卡:二.填空题答题卡13. 14.15. 16.1.曲线x y e =在点A (0,1)处的切线斜率为( )A.1B.2C.eD.1e2.设x x x x f ln 42)(2--=,则0)('>x f 的解集为( )A. ),0(+∞B. ),2()0,1(+∞-C. ),2(+∞D.)0,1(- 3.已知曲线()421-128=y x ax a a =+++在点,处切线的斜率为,( )A .9B .6C .-9D .-64. 设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .35.函数y=12x 2-㏑x 的单调递减区间为( )(A )(-1,1] (B )(0,1] (C.)[1,+∞) (D )(0,+∞)6.设函数f (x )=2x +lnx 则 ( ) A .x=12为f(x)的极大值点 B .x=12为f(x)的极小值点C .x=2为 f(x)的极大值点D .x=2为 f(x)的极小值点 7.曲线3ln 2y x x =++在点0P 处的切线方程为410x y --=,则点0P 的坐标是 ( )A .(0,1)B .(1,1)-C .(1,3)D .(1,0)8.设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是( )9.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为0,4π⎡⎤⎢⎥⎣⎦,则点P 横坐标的取值范围为 ( ) A .11,2⎡⎤--⎢⎥⎣⎦ B .[]1,0- C .[]0,1 D .1,12⎡⎤⎢⎥⎣⎦10.已知函数()f x 在R 上满足2()2(2)88f x f x x x =--+-,则曲线()y f x =在点(1,(1))f 处的切线方程是 ( )(A )21y x =- (B )y x = (C )32y x =- (D )23y x =-+11.设函数2()()f x g x x =+,曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,则曲线()y f x =在点(1,(1))f 处切线的斜率为 ( )A .4B .14-C .2D .12- 12.设曲线1*()n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则12n x x x ⋅⋅⋅的值为 ( ) (A) 1n (B) 11n + (C) 1n n + (D) 1 二.填空题13.曲线y=x 3-x+3在点(1,3)处的切线方程为 .14.若曲线2ln y ax x =-在点(1,)a 处的切线平行于x 轴,则a =____________. 15.若函数2()1x a f x x +=+在1x =处取极值,则a =16.已知函数32()42f x x ax x =-+-=在处取得极值,若,[1,1],()()m n f m f n '∈-+则的最小值是_______.三.解答题17.函数()2ln 2x f x k x =-,0k >. (I )求()f x 的单调区间和极值;(II )证明:若()f x 存在零点,则()f x 在区间(上仅有一个零点.。

高考数学专题:导数大题专练含答案

高考数学专题:导数大题专练含答案

高考数学专题:导数大题专练含答案一、解答题1.已知函数()ln ex f x x =,()2ln 1g x a x x =-+,e 是自然对数的底数.(1)求函数()f x 的最小值;(2)若()0g x ≤在()0,∞+上恒成立,求实数a 的值;(3)求证:2022202320232023e 20222022⎛⎫⎛⎫<< ⎪⎪⎝⎭⎝⎭.2.已知函数()()e sin x f x rx r *=⋅∈N ,其中e 为自然对数的底数.(1)若1r =,求函数()y f x =的单调区间;(2)证明:对于任意的正实数M ,总存在大于M 的实数a ,b ,使得当[,]x a b ∈时,|()|1f x ≤.3.已知:()e xf x mx =+.(1)当1m =时,求曲线()y f x =的斜率为2的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-成立,求实数m 的范围4.设函数()1e ln 1xa f x a x -=--,其中0a > (1)当1a =时,讨论()f x 单调性;(2)证明:()f x 有唯一极值点0x ,且()00f x ≥.5.已知函数()ln 1f x x ax =++,R a ∈,函数()()21e ln 2xg x x x x x x =-++-,)2e ,x -∈+∞⎡⎣.(1)试讨论函数()f x 的单调性;(2)若0x 是函数()g x 的最小值点,且函数()()h x xf x =在0x x =处的切线斜率为2,试求a 的值.6.已知函数()()32131.3f x x a x x =-++ (1)若1a =,求函数()f x 的单调区间; (2)证明:函数()2y f x a =-至多有一个零点. 7.已知函数()ln xf x x =, ()()1g x k x =-. (1)证明: R k ∀∈,直线y g x 都不是曲线()y f x =的切线;(2)若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立,求实数k 的取值范围.8.2020年9月22日,中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.”为了进一步了解普通大众对“碳中和”及相关举措的认识,某机构进行了一次问卷调查,部分结果如下:(1)根据所给数据,完成下面的22⨯列联表,并根据列联表,判断是否有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关?附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.(2)经调查后,有关部门决定加大力度宣传“碳中和”及相关措施以便让节能减排的想法深入人心.经过一段时间后,计划先随机从社会上选10人进行调查,再根据检验结果决定后续的相关举措.设宣传后不了解“碳中和”的人概率都为()01p p <<,每个被调查的人之间相互独立.①记10人中恰有3人不了解“碳中和”的概率为()f p ,求()f p 的最大值点0p ; ②现对以上的10人进行有奖答题,以①中确定的0p 作为答错的概率p 的值.已知回答正确给价值a 元的礼品,回答错误给价值b 元的礼品,要准备的礼品大致为多少元?(用a ,b 表示即可)9.已知函数()321623f x x ax x =+-+在2x =处取得极值.(1)求()f x 的单调区间;(2)求()f x 在[]4,3-上的最小值和最大值.10.已知函数()ln 2f x x x ax =++在点()()1,1f 处的切线与直线220x y 相互垂直.(1)求实数a 的值;(2)求()f x 的单调区间和极值.【参考答案】一、解答题 1.(1)1- (2)2(3)证明见解析 【解析】 【分析】(1)根据导数判断函数()f x 的单调性,进而可得最值;(2)将不等式恒成立转化为求函数()g x 的最大值问题,可得参数取值范围; (3)根据函数()f x 与()g x 的单调性直接可证不等式. (1)函数()ln ln ex f x x x x x ==-的定义域为()0,∞+,()ln f x x '=,当()0,1x ∈时,()0f x '<,()1,x ∈+∞时,()0f x '>, 故()f x 在()0,1上单调递减,在()1,+∞上单调递增, 所以()()min 11f x f ==-. (2)函数()2ln 1g x a x x =-+,0x >,则()()2220a a x g x x x x x-'=-=>,当0a ≤时,()0g x '<,()g x 在()0,∞+上单调递减, 此时存在()00,1x ∈,使得()()010g x g >=,与题设矛盾,当0a >时,x ⎛∈ ⎝时,()0g x '>,x ⎫∈+∞⎪⎪⎭时,()0g x '<,故()g x 在⎛ ⎝上单调递增,在⎫+∞⎪⎪⎭上单调递减,所以()max 1ln 12222a a a ag x g a ==+=-+,要使()0g x ≤在()0,∞+恒成立, 则()max 0g x ≤,即ln 10222aa a -+≤,又由(1)知()ln 1f x x x x =-≥-即ln 10x x x -+≥,(当且仅当1x =时,等号成立).令2a x =有ln 10222a a a -+≥,故ln 1022a a -+=且12a =, 所以2a =. (3)由(1)知()l n 1l n x f x x x x ex ==-≥-(当且仅当1x =时等号成立).令()10t x t t +=>,则1x >,故111ln 1t t t t t t +++->-,即11ln 1tt t ++⎛⎫> ⎪⎝⎭,所以11e tt t ++⎛⎫> ⎪⎝⎭令2022t =,则20232023e 2022⎛⎫> ⎪⎝⎭;由(2)知22ln 1x x ≤-在()0,∞+上恒成立, 所以22ln 1x x ≤-(当且仅当1x =时等号成立).令()210m x m m +=>,则21x >,故11ln 1m m m m ++<-,即1ln 1mm m +⎛⎫< ⎪⎝⎭, 所以1e mm m +⎛⎫< ⎪⎝⎭.令2022m =,则20222023e 2022⎛⎫< ⎪⎝⎭综上,2022202320232023e 20222022⎛⎫⎛⎫<< ⎪⎪⎝⎭⎝⎭.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.2.(1)增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 减区间为52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)证明过程见解析. 【解析】 【分析】(1)对函数求导,利用辅助角公式合并为同名三角函数,利用单调增减区间代入公式求解即可.(2)将绝对值不等式转化为11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭,移向构造新函数,利用导数判定单调性,借助零点定理和隐零点证明新构造函数恒正,再结合三角函数的特有的周期特点寻找M 即可. (1)()e (sin cos )sin 4x x f x x x x π⎛⎫'=+=+ ⎪⎝⎭令22242k x k πππππ-≤+≤+,得32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦令322242k x k ππππ+≤+≤π+,得24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦当32,244x k k ππππ⎡⎤∈-+⎢⎥⎣⎦时, ()0f x '>,()f x 单调递增 当24x k ππ⎡∈+⎢⎣,524k ππ⎤+⎥⎦时, ()0,()f x f x '< 单调递減 综上() f x 单调递增区间为32,2,44k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦单调递减区间为 52,2,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)要证|()|1f x ≤,即证e sin 1xrx ⋅≤,即证11sin =e e xx rx ⎛⎫≤ ⎪⎝⎭即证 11sin e e xxrx ⎛⎫⎛⎫-≤≤ ⎪ ⎪⎝⎭⎝⎭在[,]x a b ∈时成立即可,[,]x a b ∈时,1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩. 令1()sin e x h x rx ⎛⎫=- ⎪⎝⎭, 1()cos e xh x r rx ⎛⎫'=+ ⎪⎝⎭当222,k k x rr πππ⎛⎫+ ⎪∈⎪ ⎪⎝⎭时, cos 0,r rx > 所以1()cos 0,e xh x r rx ⎛⎫'=+> ⎪⎝⎭所以()h x 单调递增,2210,e k rk h rππ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭2221210(0)e k r k h k r ππππ+⎛⎫⎛⎫+ ⎪⎪=±>> ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭0(2)22,k k x rrπππ+∴∃∈ , 满足()00h x =由单调性可知02,k x x r π⎛⎫∈ ⎪⎝⎭, 满足()0()0h x h x <= 又因为当021,,sin 0,0,xk x x rx r e π⎛⎫⎛⎫∈>≥ ⎪ ⎪⎝⎭⎝⎭ 1sin 0xrx e ⎛⎫∴+≥ ⎪⎝⎭,所以1sin 0e 1sin 0e xxrx rx ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩能够同时满足, 对于任意的正实数M ,总存在正整数k ,且满足2Mr k π>时, 使得 2k M r π>成立, 所以不妨取 02,,2k Mr a k b x rππ⎛⎫=>= ⎪⎝⎭ 则,a b M >且[,]x a b ∈时,1sin 01sin 0xxrx e rx e ⎧⎛⎫-≤⎪ ⎪⎪⎝⎭⎨⎛⎫⎪+≥ ⎪⎪⎝⎭⎩, 故对于任意的正实数M ,总存在大于M 的实数,a b ,使得当[,]x a b ∈ 时,|()|1f x ≤. 3.(1)21y x =+(2)ln 3m ⎡∈-⎣【解析】 【分析】(1)利用导数的几何意义直接可得切线方程;(2)()2213222m f x x ≥+-恒成立,可转化为()22130222xm g x e mx x =+--+≥恒成立,利用导数判断函数()g x 的单调性与最值情况. (1)当1m =时,()e xf x x =+, 则()e 1xf x '=+,设切点为()()00,x f x ,故()00e 12xk f x '==+=,解得00x =,故()000e e 01x f x x =+=+=,即切点坐标为()0,1,所以切线方程()120y x -=-,即21y x =+; (2)当0x ≥时,()2213222m f x x ≥+-成立,即2213e 0222xm mx x +--+≥恒成立,设()2213e 222xm g x mx x =+--+,()e x g x x m '=-+, ()e 1x g x ''=-,因为0x ≥,故()e 10xg x ''=-≥恒成立, 则()e xg x x m '=-+在()0,∞+上单调递增,所以()()01g x g m ''≥=+,当1m ≥-时,()()010g x g m ''≥=+≥恒成立, 故()g x 在()0,∞+上单调递增,即()()2235012222m m g x g ≥=-+=-,所以25022m -≥,解得m ≤≤故1m -≤≤当1m <-时,()010g m '=+<,()e 2m g m m -'-=+,设()e 2mh m m -=+,1m <-,()e 20m h m -'=-+<恒成立,则()h m 在(),1-∞-上单调递减,所以()()120h m h e >-=->,即()e 20mg m m -'-=+>,所以存在()00,x m ∈-,使()00g x '=,即000xe x m -+=,所以()g x 在()00,x 上单调递减,在()0,x +∞上单调递增, 故()()02200013e 222x m g x g x mx x ≥=+--+()()00000222000011313e e e e e 022222x x x x x x x x x =+----+=-++≥,解得0ln 3x ≤,即00ln 3x ≤≤, 设()e xx m x ϕ==-,0ln3x ≤≤,()1e 0x x ϕ'=-≤恒成立,故()x ϕ在()0,3上单调递减, 故()()3ln33x ϕϕ≥=-, 即ln33m ≥-, 所以ln331m -≤<-,综上所述,ln 3m ⎡∈-⎣.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.4.(1)()f x 在0,1上单调递减,在()1,+∞上单调递增; (2)证明见解析. 【解析】 【分析】(1)首先确定()f x 定义域,再应用二阶导数的符号判断f x 的单调性,进而分区间判断f x 的符号,即可确定()f x 的单调性.(2)求()f x 的二阶导,根据其符号知f x 在()0,+∞上单调递增,令0f x 得到ln 1x x a+=,构造()ln 1x h x x a=+-结合其单调性,注意利用导数研究()ln 1x x x ϕ=-+的符号,再用放缩法判断1a h a ⎛⎫⎪+⎝⎭、()1ea h +的符号,即可判断零点0x 的唯一性,进而得到00011ln ln x x a x -==-,结合基本不等式求证()00f x ≥. (1)当1a =时,()1e ln 1xf x x -=--,定义域为()0,+∞,则()11e x f x x -'=-,()121e 0xf x x -+'=>', 所以f x 在()0,+∞上单调递增,又()10f '=, 当01x <<时,0f x ,所以()f x 在区间0,1上单调递减; 当1x >时,0f x,所以()f x 在区间()1,+∞上单调递增.综上,()f x 在0,1上单调递减,在()1,+∞上单调递增. (2)由题意,()11ex af x x -='-,()1211e 0x af x a x-=⋅+'>',则f x 在()0,+∞上单调递增,至多有一个零点,令()ln 1x x x ϕ=-+,其中1x >,则()111xx x xϕ-'=-=, 当()0,1x ∈时,()0ϕ'>x ,()ϕx 单调递增. 当()1,x ∈+∞时,()0ϕ'<x ,()ϕx 单调递减,所以()()10x ϕϕ≤=,即ln 10x x -+≤,于是ln 1≤-x x , 令0f x,则e e x a x ⋅=,两边取自然对数可得ln 1xx a+=,令()ln 1x h x x a=+-,则()h x 在()0,+∞上单调递增. 故11ln 1111011111a a a h a a a a a ⎛⎫=+-≤-+-=-<⎪+++++⎝⎭,又()11111e eln ee 10a a a a h a a a++++=+⋅-=+>, 所以()h x 在()0,+∞上有唯一零点0x ,则f x 有唯一零点0x ,即()f x 有唯一极值点0x .下证()00f x ≥: 因为()01001e0x af x x -'=-=,所以0101e x a x -=,可得00011ln ln x x a x -==-,所以()010000e ln 11120x ax a f x a x x a -=--=+--≥=,当且仅当0x a =时等号成立,综上,()f x 有唯一极值点0x 且()00f x ≥,得证. 【点睛】关键点点睛:第二问,利用二阶导数研究一阶导数的单调性,根据零点所得的等量关系构造()ln 1x h x x a=+-,结合单调性、零点存在性定理判断f x 零点的唯一性,进而利用基本不等式证明不等式. 5.(1)答案见解析; (2)12a =. 【解析】 【分析】(1)由题可得()11ax f x a xx+'=+=,讨论0a ≥,0a <即得; (2)由题可得()g x '是一个单调递增的函数,利用零点存在定理可得()2e ,1t -∃∈,使得()0g t '=,进而可得()0000111ln e e 1ln x x x x ⎛⎫+=+ ⎪⎝⎭,利用导数可得001e x x =,结合条件可得00ln 20x ax +=,即求. (1)()11ax f x a x x+'=+=,0x >, 当0a ≥时,函数()f x 在定义域()0,∞+上单调递增; 当0a <时,函数的单调性如表格所示:由题可得()()()22121e 1ln 2e ln 1x xg x x x x x x x x '=-++-++-=++-,0x >,则()g x '是一个单调递增的函数, 当2e x -=时,()()2242e e e e e 30g ----'=+-<,当1x =时,()12e 10g '=->,故()2e ,1t -∃∈,使得()0g t '=,且所以0x t =,00000e ln 10g x x x x '=++-=,整理该式有()02000e 1ln x xx x +=-,()000001111e ln xx x x x +=+, ∴()000111ln ee1ln x x x x ⎛⎫+=+ ⎪⎝⎭令()()21ln ,e m x x x x -=+>,则()2ln 0m x x '=+>,所以函数在()2e ,-+∞上单调递增,故()000111ln ee1ln x x x x ⎛⎫+=+ ⎪⎝⎭的解满足001e xx =;又()2ln h x x x ax x =++,()1ln 21h x x ax '=+++,()0002ln 22h x x ax '=++=,所以00ln 20x ax +=,由01e xx =知,0020x ax -+=,故12a =.6.(1)()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减 (2)证明见解析 【解析】 【分析】(1)直接求导后判断单调性即可;(2)先变形得到323033x a x x -=++,构造函数,求导后说明单调性即可证明.(1)当1a =时,()()321313f x x x x =-++,2()23f x x x '=--. 令()0f x '=,解得1x =-或3x =,当()(),13,x ∞∞∈--⋃+时,()0f x '>;当(1,3)x ∈-时,()0f x '<, 故()f x 在(,1)-∞-,(3,)+∞上单调递增,在(1,3)-上单调递减.(2)()321()2333y f x a x a x x =-=-++,由于2330x x ++>,所以()20f x a -=等价于3230.33x a x x -=++设()32333x g x a x x =-++, 则()g x '()()222269033x x x xx ++=++,当且仅当0x =或3x =-时,()0g x '=,所以()g x 在(,)-∞+∞上单调递增,故()g x 至多有一个零点,从而()2y f x a =-至多有一个零点. 7.(1)证明见解析 (2)e ,e 1⎡⎫+∞⎪⎢-⎣⎭【解析】 【分析】(1)求出()f x 的导数,设出切点,可得切线的斜率,根据斜率相等,进而构造函数()=ln 1h x x x +-,求出导数和单调区间,即可证明;(2)由2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-2e,e x ⎡⎤∈⎣⎦,再 利用导数法求出()()n 1l xx x x ϕ-=在2e,e ⎡⎤⎣⎦的最大值即可求解.(1)由题意可知,()f x 的定义域为()()0,11,+∞,由()ln x f x x=,得()()2ln 1ln x f x x -'=, 直线y g x 过定点()1,0, 若直线yg x 与曲线()y f x =相切于点()00000,01ln x x x x x ⎛⎫>≠ ⎪⎝⎭且,则()002000ln 1ln 1ln x x x k x x --==-,即00ln 10x x +-=① 设()()=ln 1,0h x x x x +-∈+∞,则()1=10h x x'+>, 所以()h x 在()0+∞上单调递增,又()1ln1110h =+-=, 从而当且仅当01x =时,①成立,这与01x ≠矛盾. 所以,R k ∀∈,直线y g x 都不是曲线()y f x =的切线. (2)由()()f x g x ≤,得()1ln xxk x ≤-, 22e e ,0e 11e 1x x ∴≤≤∴<-≤-≤-,()l 1n xk x x -∴≥若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1xk x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-,2e,e x ⎡⎤∈⎣⎦即可. 令()()n 1l x x x x ϕ-=,2e,e x ⎡⎤∈⎣⎦,则()()2ln 1ln 1x x x x x ϕ---+'=⎡⎤⎣⎦,令()ln 1t x x x =--+,2e,e x ⎡⎤∈⎣⎦,则()110t x x'=--<, 所以()t x 在2e,e ⎡⎤⎣⎦上是单调递减;所以()()e lne e 1e<0t x t ≤=--+=-,故()0ϕ'<x()ϕx 在2e,e ⎡⎤⎣⎦上是单调递减;当e x =时,()ϕx 取得最大值为()()e ee e 1ln e e 1ϕ==--,即ee 1k ≥-. 所以实数k 的取值范围为e ,e 1⎡⎫+∞⎪⎢-⎣⎭【点睛】解决此题的关键利用导数的几何意义及两点求斜率,再根据同一切线斜率相等即可证明,对于恒成立问题通常采用分离常数法,进而转化为求函数的最值问题,利用导数法即可求解.8.(1)列联表见解析,没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关; (2)①0310p =;②()73a b + 【解析】(1)对满足条件的数据统计加和即可,然后根据给定的2K 计算公式,将计算结果与195%0.05-=所对应的k 值比较大小即可;(2)①利用独立重复试验与二项分布的特点,写出10人中恰有3人不了解“碳中和”的概率为()f p ,再利用导数求出最值点; ②利用独立重复试验的期望公式代入可求出答案. (1)由题中表格数据完成22⨯列联表如下:()22800125250150275800 3.463 3.841275525400400231K ⨯⨯-⨯==≈<⨯⨯⨯.故没有95%的把握认为“是否了解‘碳中和’及相关措施”与“学生”身份有关. (2)①由题得,()()733101f p C p p =-,()0,1p ∈, ∴()()()()()763236321010C 3171C 1310f p p p p p p p p ⎡⎤'=---=--⎣⎦. 令()0f p '=,得310p =,当30,10p ⎛⎫∈ ⎪⎝⎭时,()0f p '>; 当3,110p ⎛⎫∈⎪⎝⎭时,()0f p '<, ∴当30,10p ⎛⎫∈ ⎪⎝⎭时,()f p '单调选增;当3,110p ⎛⎫∈ ⎪⎝⎭时,()f p '单调递减, ∴()f p 的最大值点0310p =. ②本题求要准备的礼品大致为多少元,即求10个人礼品价值X 的数学期望. 由①知答错的概率为310, 则()33101731010E X a b a b ⎡⎤⎛⎫=-+=+ ⎪⎢⎥⎝⎭⎣⎦, 故要准备的礼品大致为73a b +元.9.(1)增区间为(),3-∞-,()2,+∞,减区间为()3,2- (2)()max 312f x =,()min 163f x =-【分析】(1)根据题意得()20f '=,进而得12a =,再根据导数与单调性的关系求解即可;(2)由(1)知[]4,3x ∈-时,()f x 的增区间为[)4,3--,(]2,3,减区间为()3,2-,进而求解()4f -,()3f -,()2f ,()3f 的值即可得答案. (1)解:(1)()226f x x ax '=+-,因为()f x 在2x =处取得极值,所以()24460f a '=+-=,解得12a =. 检验得12a =时,()f x 在2x =处取得极小值,满足条件.所以()26f x x x '=+-,令()0f x '>,解得3x <-或2x >,令()0f x '<,解得32x -<<, 所以()f x 的增区间为(),3-∞-,()2,+∞,减区间为()3,2-; (2)解:令()260f x x x '=+-=,解得3x =-或2x =,由(1)知()f x 的增区间为(),3-∞-,()2,+∞,减区间为()3,2-; 当[]4,3x ∈-时,()f x 的增区间为[)4,3--,(]2,3,减区间为()3,2- 又()()()()321138444642323f -=⨯-+⨯--⨯-+=, ()()()()321131333632322f -=⨯-+⨯--⨯-+=,()321116222622323f =⨯+⨯-⨯+=-,()32115333632322f =⨯+⨯-⨯+=-,所以()max 312f x =,()min 163f x =-. 10.(1)3a =-;(2)增区间为()2e ,+∞,减区间为()20,e ,极小值22e -,无极大值.【解析】 【分析】(1)根据()1112f '⨯=-,代值计算即可求得参数值;(2)根据(1)中所求参数值,求得()f x ',利用导数的正负即可判断函数单调(1)因为()ln 1f x x a '=++,在点()()1,1f 处的切线斜率为()11k f a '==+, 又()f x 在点()()1,1f 处的切线与直线220x y 相互垂直, 所以()1112f '⨯=-,解得3a =-. (2)由(1)得,()ln 2f x x '=-,()0,x ∈+∞, 令()0f x '>,得2e x >,令()0f x '<,得20e x <<,即()f x 的增区间为()2e ,+∞,减区间为()20,e .又()22222e e ln e 3e 22ef =-+=-,所以()f x 在2e x =处取得极小值22e -,无极大值. 【点睛】本题考查导数的几何意义,以及利用导数研究函数的单调性和极值,属综合中档题.。

2020年高考数学 大题专项练习 导数与函数 五(15题含答案解析)

2020年高考数学 大题专项练习 导数与函数 五(15题含答案解析)

2020年高考数学 大题专项练习导数与函数 五1.已知函数f(x)=lnx -x ,g(x)=ax 2+2x(a<0).(1)求函数f(x)在区间⎣⎢⎡⎦⎥⎤1e ,e 上的最值; (2)求函数h(x)=f(x)+g(x)的极值点. 2.已知函数f(x)=x 3-3x 2+2x ,g(x)=tx ,.(1)求函数的单调增区间;(2)令h(x)=f(x)-g(x),且函数h(x)有三个彼此不相等的零点0,m,n ,其中m<n . ①若n=2m ,求函数h(x)在x=m 处的切线方程; ②若对,恒成立,求实数t 的取值范围.3.已知函数f(x)=xlnx.(1)若函数,求g(x)的极值;(2)证明:f(x)+1<e x-x 2. (参考数据:,,,)4.已知函数f(x)=(x -1)e x+1,x ∈[0,1].(1)证明:f(x)≥0;(2)若a<e x-1x<b 对任意的x ∈(0,1)恒成立,求b -a 的最小值.5.已知函数f(x)=e x (x -ae x).(1)当a=0时,求f(x)的极值;(2)若f(x)有两个不同的极值点,求a 的取值范围. 6.已知函数,.(1)当m<1时,讨论函数f(x)的单调性; (2)若函数f(x)有两个极值点x 1,x 2,且x 1<x 2.求证.7.已知(1)求函数的单调区间; (2)求函数在上的最小值;(3)对一切的,恒成立,求实数的取值范围.8.已知函数f(x)=ln x,g(x)=21ax+b. (1)若曲线f(x)与g(x)在x=1处相切,求g(x)的表达式; (2)若φ(x)=1)1(+-x x m -f(x)在[1,+∞)上是减函数,求实数m 的取值范围.9.设函数f(x)=(1-x 2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求实数a 的取值范围.10.已知函数,(为自然对数的底数).(1)求函数的最小值;(2)若对任意的恒成立,求实数的值;(3)在(2)的条件下,证明:.11.已知函数f(x)=xlnx+ax+1-a.(1)求证:对任意实数a,都有[f(x)]min≤1;(2)若a=2,是否存在整数k,使得在x∈(2,+∞)上,恒有f(x)>(k+1)x-2k-1成立?若存在,请求出k的最大值;若不存在,请说明理由.(e=2.71828)12.已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处有公共切线,求a,b的值;(2)当a=3,b=﹣9时,函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围.13.已知函数f(x)=x +ax+b(x≠0),其中a ,b ∈R.(1)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x +1,求函数f(x)的解析式; (2)讨论函数f(x)的单调性;(3)若对于任意的a ∈⎣⎢⎡⎦⎥⎤12,2,不等式f(x)≤10在⎣⎢⎡⎦⎥⎤14,1上恒成立,求b 的取值范围. 14.已知函数(1)求函数的极值;(2)设函数,其中k ∈R ,求函数在区间[1,e]上的最大值.15.已知函数f (x )=a x +x 2﹣xlna (a >0,a ≠1).(Ⅰ)当a >1时,求证:函数f (x )在(0,+∞)上单调递增; (Ⅱ)若函数y=|f (x )﹣t|﹣1有三个零点,求t 的值.答案解析1.解:(1)依题意,f′(x)=1x -1,令1x-1=0,解得x=1.因为f(1)=-1,f ⎝ ⎛⎭⎪⎫1e =-1-1e ,f(e)=1-e ,且1-e<-1-1e <-1, 故函数f(x)在区间⎣⎢⎡⎦⎥⎤1e ,e 上的最大值为-1,最小值为1-e. (2)依题意,h(x)=f(x)+g(x)=lnx +ax 2+x(x>0),h′(x)=1x +2ax +1=2ax 2+x +1x,当a<0时,令h′(x)=0,则2ax 2+x +1=0. 因为Δ=1-8a>0,所以h′(x)=2ax 2+x +1x =2a (x -x 1)(x -x 2)x ,其中x 1=-1-1-8a 4a ,x 2=-1+1-8a4a.因为a<0,所以x 1<0,x 2>0,所以当0<x<x 2时,h′(x)>0; 当x>x 2时,h′(x)<0,所以函数h(x)在区间(0,x 2)内是增函数,在区间(x 2,+∞)内是减函数,故x 2=-1+1-8a4a为函数h(x)的极大值点,无极小值点.2.解:(1),所以,令 得到,所以的单调增区间是.(2)由方程得是方程的两实根,故,且由判别式得, ①若,得,故,得,因此,故函数在处的切线方程为. ②若对任意的,都有成立,所以,因为,所以, 当时,对有,所以,解得,又因为,得,则有;当时,,则存在的极大值点,且,由题意得,将代入得,进而得到,得,又因为,得,综上可知t的取值范围是或.3.解:(1),,当,,当,,在上递增,在上递减,在取得极大值,极大值为,无极大值.(2)要证f(x)+1<e x﹣x2.即证e x﹣x2﹣xlnx﹣1>0,先证明lnx≤x﹣1,取h(x)=lnx﹣x+1,则h′(x)=,易知h(x)在(0,1)递增,在(1,+∞)递减,故h(x)≤h(1)=0,即lnx≤x﹣1,当且仅当x=1时取“=”,故xlnx≤x(x﹣1),e x﹣x2﹣xlnx≥e x﹣2x2+x﹣1,故只需证明当x>0时,e x﹣2x2+x﹣1>0恒成立,令k(x)=e x﹣2x2+x﹣1,(x≥0),则k′(x)=e x﹣4x+1,令F(x)=k′(x),则F′(x)=e x﹣4,令F′(x)=0,解得:x=2ln2,∵F′(x)递增,故x∈(0,2ln2]时,F′(x)≤0,F(x)递减,即k′(x)递减,x∈(2ln2,+∞)时,F′(x)>0,F(x)递增,即k′(x)递增,且k′(2ln2)=5﹣8ln2<0,k′(0)=2>0,k′(2)=e2﹣8+1>0,由零点存在定理,可知∃x1∈(0,2ln2),∃x2∈(2ln2,2),使得k′(x1)=k′(x2)=0,故0<x <x 1或x >x 2时,k ′(x )>0,k (x )递增,当x 1<x <x 2时,k ′(x )<0,k (x )递减,故k (x )的最小值是k (0)=0或k (x 2),由k ′(x 2)=0,得=4x 2﹣1, k (x 2)=﹣2+x 2﹣1=﹣(x 2﹣2)(2x 2﹣1),∵x 2∈(2ln2,2),∴k (x 2)>0,故x >0时,k (x )>0,原不等式成立. 4.解:(1)证明:因为f ′(x)=xe x≥0,即f(x)在[0,1]上单调递增, 所以f(x)≥f(0)=0,即结论成立.(2)令g(x)=e x -1x ,则g ′(x)=x -1e x +1x2>0,x ∈(0,1), 所以当x ∈(0,1)时,g(x)<g(1)=e -1,要使e x-1x <b ,只需b≥e-1.要使e x-1x >a 成立,只需e x-ax -1>0在x ∈(0,1)恒成立,令h(x)=e x -ax -1,x ∈(0,1),则h ′(x)=e x-a.由x ∈(0,1),得e x∈(1,e). ①当a≤1时,h ′(x)>0,此时x ∈(0,1),有h(x)>h(0)=0成立,所以a≤1满足条件; ②当a≥e 时,h′(x)<0,此时x ∈(0,1),有h(x)<h(0)=0,不符合题意,舍去; ③当1<a<e 时,令h′(x)=0,得x=ln a . 当x ∈(0,ln a)时,h′(x)<0,即x ∈(0,ln a)时,h(x)<h(0)=0,不符合题意,舍去. 综上,a≤1.又b≥e-1,所以b -a 的最小值为e -2. 5.解:(1)当a=0时,f(x)=xe x ,f′(x)=(x +1)e x,令f′(x)>0,可得x>-1,故f(x)在(-1,+∞)上单调递增, 同理可得f(x)在(-∞,-1)上单调递减,故f(x)在x=-1处有极小值f(-1)=-1e .(2)依题意,可得f′(x)=(x +1-2ae x )e x=0有两个不同的实根.设g(x)=x +1-2ae x ,则g(x)=0有两个不同的实根x 1,x 2,g′(x)=1-2ae x,若a≤0,则g′(x)≥1,此时g(x)为增函数,故g(x)=0至多有1个实根,不符合要求;若a>0,则当x<ln 12a 时,g′(x)>0,当x>ln 12a时,g′(x)<0,故此时g(x)在-∞,ln 12a 上单调递增,在ln 12a ,+∞上单调递减,g(x)的最大值为gln 12a =ln 12a -1+1=ln 12a,又当x→-∞时,g(x)→-∞,当x→+∞时,g(x)→-∞,故要使g(x)=0有两个不同实根,则gln 12a =ln 12a>0,得0<a<12或作图象知要使g(x)=0有两个不同实根,则gln 12a =ln 12a>0.设g(x)=0的两个不同实根为x 1,x 2(x 1<x 2), 当x<x 1时,g(x)<0,此时f′(x)<0; 当x 1<x<x 2时,g(x)>0,此时f′(x)>0; 当x>x 2时,g(x)<0,此时f′(x)<0.故x 1为f(x)的极小值点,x 2为f(x)的极大值点,0<a<12符合要求.综上所述,a 的取值范围为(0,0.5). 6.解:, ,令,,, 令则, 当,即时, 令则;令则.此时函数在上单调递减;在上单调递增.当,即时, 令,则; 令则, 此时函数在上单调递减; 在和上单调递增. 由知,若有两个极值点, 则且,又,是的两个根,则, ,令,则, 令,则,令,则,所以在上单调递减;在上单调递增.,,,得证.7.8.解析:9.解:(1)f′(x)=(1-2x-x2)e x,令f′(x)=0,得x=-1±2,当x∈(-∞,-1-2)时,f′(x)<0;当x∈(-1-2,-1+2)时,f′(x)>0;当x∈(-1+2,+∞)时,f′(x)<0.所以f(x)在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增.(2)令g(x)=f(x)-ax-1=(1-x2)e x-(ax+1),令x=0,可得g(0)=0.g′(x)=(1-x2-2x)e x-a,令h(x)=(1-x2-2x)e x-a,则h′(x)=-(x2+4x+1)e x,当x≥0时,h′(x)<0,h(x)在[0,+∞)上单调递减,故h(x)≤h(0)=1-a,即g′(x)≤1-a,要使f(x)-ax-1≤0在x≥0时恒成立,需要1-a≤0,即a≥1,此时g(x)≤g(0)=0,故a≥1.综上所述,实数a的取值范围是[1,+∞).10.(1);(2);(3)证明见解析.11.解:(1)证明:由已知易得,所以令得:显然,时,<0,函数f(x)单调递减;时,>0,函数f(x)单调递增,所以,令,则由得,时,>0,函数t()单调递增;时,<0,函数t()单调递减,所以,即结论成立.(2)由题设化简可得,令,所以 由=0得①若,即时,在上,有,故函数单调递增所以 ②若,即时, 在上,有,故函数在上单调递减, 在上,有.故函数在上单调递增, 所以,在上,故欲使,只需即可令, 由得所以,时,,即单调递减又,故12.解:(1)f(x)=ax 2+1(a >0),则f ′(x)=2ax ,k 1=2a ,g(x)=x 3+bx ,则g ′(x)=3x 2+b ,k 2=3+b , 由(1,c)为公共切点,可得:2a=3+b ①又f(1)=a+1,g(1)=1+b ,∴a+1=1+b ,即a=b ,代入①式,可得:a=3,b=3. (2)当a=3,b=﹣9时,设h(x)=f(x)+g(x)=x 3+3x 2﹣9x+1则h ′(x)=3x 2+6x ﹣9, 令h'(x)=0,解得:x 1=﹣3,x 2=1;∴k ≤﹣3时,函数h(x)在(﹣∞,﹣3)上单调增,在(﹣3,1]上单调减,(1,2)上单调增,所以在区间[k ,2]上的最大值为h(﹣3)=28﹣3<k <2时,函数h(x)在区间[k ,2]上的最大值小于28 所以k 的取值范围是(﹣∞,﹣3] 13.解:(1)f′(x)=1-ax2(x≠0),由已知及导数的几何意义得f′(2)=3,则a=-8.由切点P(2,f(2))在直线y=3x +1上可得-2+b=7,解得b=9,所以函数f(x)的解析式为f(x)=x -8x+9.(2)由(1)知f′(x)=1-ax2(x≠0).当a≤0时,显然f′(x)>0,这时f(x)在(-∞,0),(0,+∞)上是增函数. 当a>0时,令f′(x)=0,解得x=±a ,当x 变化时,f′(x),f(x)的变化情况如下表:所以当a>0时,f(x)在(-∞,-a),(a ,+∞)上是增函数, 在(-a ,0),(0,a)上是减函数.(3)由(2)知,对于任意的a ∈⎣⎢⎡⎦⎥⎤12,2,不等式f(x)≤10在⎣⎢⎡⎦⎥⎤14,1上恒成立等价于 ⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫14≤10,f 1≤10,即⎩⎪⎨⎪⎧b ≤394-4a ,b≤9-a对于任意的a ∈⎣⎢⎡⎦⎥⎤12,2成立,从而得b≤74,所以满足条件的b 的取值范围是⎝⎛⎦⎥⎤-∞,74.14.15.。

有关函数的极值与导数的测试题及答案

有关函数的极值与导数的测试题及答案

有关函数的极值与导数的测试题及答案一、选择题1.已知函数fx在点x0处连续,下列命题中,正确的是A.导数为零的点一定是极值点B.如果在点x0附近的左侧fx0,右侧fx0,那么fx0是极小值C.如果在点x0附近的左侧fx0,右侧fx0,那么fx0是极大值D.如果在点x0附近的左侧fx0,右侧fx0,那么fx0是极大值[答案] C[解析] 导数为0的点不一定是极值点,例如fx=x3,fx=3x2,f0=0,但x=0不是fx的极值点,故A错;由极值的定义可知C正确,故应选C.2.函数y=1+3x-x3有A.极小值-2,极大值2B.极小值-2,极大值3C.极小值-1,极大值1D.极小值-1,极大值3[答案] D[解析] y=3-3x2=31-x1+x令y=0,解得x1=-1,x2=1当x-1时,y0,函数y=1+3x-x3是减函数,当-11时,y0,函数y=1+3x-x3是增函数,当x1时,y0,函数y=1+3x-x3是减函数,当x=-1时,函数有极小值,y极小=-1.当x=1时,函数有极大值,y极大=3.3.设x0为fx的极值点,则下列说法正确的是A.必有fx0=0B.fx0不存在C.fx0=0或fx0不存在D.fx0存在但可能不为0[答案] C[解析] 如:y=|x|,在x=0时取得极小值,但f0不存在.4.对于可导函数,有一点两侧的导数值异号是这一点为极值的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] C[解析] 只有这一点导数值为0,且两侧导数值异号才是充要条件.5.对于函数fx=x3-3x2,给出命题:①fx是增函数,无极值;②fx是减函数,无极值;③fx的’递增区间为-,0,2,+,递减区间为0,2;④f0=0是极大值,f2=-4是极小值.其中正确的命题有A.1个 B.2个C.3个 D.4个[答案] B[解析] fx=3x2-6x=3xx-2,令fx0,得x2或x0,令fx0,得02,①②错误. 6.函数fx=x+1x的极值情况是A.当x=1时,极小值为2,但无极大值B.当x=-1时,极大值为-2,但无极小值C.当x=-1时,极小值为-2;当x=1时,极大值为2D.当x=-1时,极大值为-2;当x=1时,极小值为2[答案] D[解析] fx=1-1x2,令fx=0,得x=1,函数fx在区间-,-1和1,+上单调递增,在-1,0和0,1上单调递减,当x=-1时,取极大值-2,当x=1时,取极小值2.7.函数fx的定义域为开区间a,b,导函数fx在a,b内的图象如图所示,则函数fx在开区间a,b内有极小值点A.1个 B.2个C.3个 D.4个[答案] A[解析] 由fx的图象可知,函数fx在区间a,b内,先增,再减,再增,最后再减,故函数fx在区间a,b内只有一个极小值点.8.已知函数y=x-ln1+x2,则函数y的极值情况是A.有极小值B.有极大值C.既有极大值又有极小值D.无极值[答案] D[解析] ∵y=1-11+x2x2+1=1-2xx2+1=x-12x2+1令y=0得x=1,当x1时,y0,当x1时,y0,函数无极值,故应选D.9.已知函数fx=x3-px2-qx的图象与x轴切于1,0点,则函数fx的极值是 A.极大值为427,极小值为0B.极大值为0,极小值为427C.极大值为0,极小值为-427D.极大值为-427,极小值为0[答案] A[解析] 由题意得,f1=0,p+q=1①f1=0,2p+q=3②由①②得p=2,q=-1.fx=x3-2x2+x,fx=3x2-4x+1=3x-1x-1,令fx=0,得x=13或x=1,极大值f13=427,极小值f1=0.10.下列函数中,x=0是极值点的是A.y=-x3 B.y=cos2xC.y=tanx-x D.y=1x[答案] B[解析] y=cos2x=1+cos2x2,y=-sin2x,x=0是y=0的根且在x=0附近,y左正右负,x=0是函数的极大值点.二、填空题11.函数y=2xx2+1的极大值为______,极小值为______.[答案] 1-1[解析] y=21+x1-xx2+12,令y0得-11,令y0得x1或x-1,当x=-1时,取极小值-1,当x=1时,取极大值1.12.函数y=x3-6x+a的极大值为____________,极小值为____________.[答案] a+42 a-42[解析] y=3x2-6=3x+2x-2,令y0,得x2或x-2,令y0,得-22,当x=-2时取极大值a+42,当x=2时取极小值a-42.13.已知函数y=x3+ax2+bx+27在x=-1处有极大值,在x=3处有极小值,则a =______,b=________.[答案] -3-9[解析] y=3x2+2ax+b,方程y=0有根-1及3,由韦达定理应有14.已知函数fx=x3-3x的图象与直线y=a有相异三个公共点,则a的取值范围是________.[答案] -2,2[解析] 令fx=3x2-3=0得x=1,可得极大值为f-1=2,极小值为f1=-2,y=fx的大致图象如图观察图象得-22时恰有三个不同的公共点.三、解答题15.已知函数fx=x3-3x2-9x+11.1写出函数fx的递减区间;2讨论函数fx的极大值或极小值,如有试写出极值.[解析] fx=3x2-6x-9=3x+1x-3,令fx=0,得x1=-1,x2=3.x变化时,fx的符号变化情况及fx的增减性如下表所示:x -,-1 -1 -1,3 3 3,+fx + 0 - 0 +fx 增极大值f-1 减极小值f3 增1由表可得函数的递减区间为-1,3;2由表可得,当x=-1时,函数有极大值为f-1=16;当x=3时,函数有极小值为f3=-16.16.设函数fx=ax3+bx2+cx,在x=1和x=-1处有极值,且f1=-1,求a、b、c的值,并求出相应的极值.[解析] fx=3ax2+2bx+c.∵x=1是函数的极值点,-1、1是方程fx=0的根,即有又f1=-1,则有a+b+c=-1,此时函数的表达式为fx=12x3-32x.fx=32x2-32.令fx=0,得x=1.当x变化时,fx,fx变化情况如下表:x -,-1 -1 -1,1 1 1,+fx + 0 - 0 +fx ? 极大值1 ? 极小值-1 ?由上表可以看出,当x=-1时,函数有极大值1;当x=1时,函数有极小值-1.17.已知函数fx=ax3+bx2-3x在x=1处取得极值.1讨论f1和f-1是函数fx的极大值还是极小值;2过点A0,16作曲线y=fx的切线,求此切线方程.[解析] 1fx=3ax2+2bx-3,依题意,f1=f-1=0,即解得a=1,b=0.fx=x3-3x,fx=3x2-3=3x-1x+1.令fx=0,得x1=-1,x2=1.若x-,-11,+,则fx>0,故fx在-,-1上是增函数,fx在1,+上是增函数.若x-1,1,则fx<0,故fx在-1,1上是减函数.f-1=2是极大值;f1=-2是极小值.2曲线方程为y=x3-3x.点A0,16不在曲线上.设切点为Mx0,y0,则点M的坐标满足y0=x30-3x0.∵fx0=3x20-1,故切线的方程为y-y0=3x20-1x-x0.注意到点A0,16在切线上,有16-x30-3x0=3x20-10-x0.化简得x30=-8,解得x0=-2.切点为M-2,-2,切线方程为9x-y+16=0.18.2021北京文,18设函数fx=a3x3+bx2+cx+da0,且方程fx-9x=0的两个根分别为1,4.1当a=3且曲线y=fx过原点时,求fx的解析式;2若fx在-,+内无极值点,求a的取值范围.[解析] 本题考查了函数与导函数的综合应用.由fx=a3x3+bx2+cx+d得fx=ax2+2bx+c∵fx-9x=ax2+2bx+c-9x=0的两根为1,4.1当a=3时,由*式得,解得b=-3,c=12.又∵曲线y=fx过原点,d=0.故fx=x3-3x2+12x.2由于a0,所以“fx=a3x3+bx2+cx+d在-,+内无极值点”等价于“fx=ax2+2bx+c0在-,+内恒成立”由*式得2b=9-5a,c=4a.又∵=2b2-4ac=9a-1a-9解得a[1,9],即a的取值范围[1,9].感谢您的阅读,祝您生活愉快。

高中数学函数的单调性与导数测试题(附答案)

高中数学函数的单调性与导数测试题(附答案)

高中数学函数的单一性与导数测试题(附答案)选修 2-21.3.1 函数的单一性与导数一、选择题1.设 f(x) =ax3+ bx2+ cx+d(a0),则 f(x) 为 R 上增函数的充要条件是 ()A .b2- 4ac0 B.b0, c0C.b=0,c D . b2- 3ac0[答案] D[ 分析 ]∵a0,f(x)为增函数,f(x) =3ax2+ 2bx+ c0 恒建立,=(2b)2- 43ac= 4b2- 12ac0, b2-3ac0.2.(2009 广东文, 8)函数 f(x) = (x- 3)ex 的单一递加区间是() A .(-, 2) B. (0,3)C.(1,4) D . (2,+ )[答案] D[ 分析 ]考察导数的简单应用.f(x) =(x- 3)ex+ (x- 3)(ex) = (x- 2)ex,令 f(x)0 ,解得 x2,应选 D.3.已知函数y= f(x)(xR) 上任一点 (x0, f(x0)) 处的切线斜率k =(x0 -2)(x0 + 1)2,则该函数的单一递减区间为 ()A .[-1,+ ) B.(-, 2]C.(-,- 1)和 (1,2) D . [2,+ )[答案]B[ 分析 ]令k0得x02,由导数的几何意义可知,函数的单一减区间为 (-, 2] .4.已知函数y=xf(x) 的图象如图 (1)所示 (此中 f(x) 是函数 f(x)的导函数 ),下边四个图象中,y= f(x) 的图象大概是 ()[答案] C[ 分析 ]当01时xf(x)0f(x)0 ,故 y=f(x) 在 (0,1)上为减函数当 x1 时 xf(x)0 ,f(x)0 ,故 y= f(x) 在(1,+ )上为增函数,所以否认 A、B、D 应选 C.5.函数 y=xsinx + cosx, x(-)的单一增区间是()A. -,- 2 和 0,2B.- 2, 0 和 0,2C.-,- 2,D.- 2,0 和[答案]A[ 分析 ] y=xcosx,当- x2 时,cosx0, y=xcosx0 ,当 02 时, cosx0,y= xcosx0.6.以下命题建立的是 ()A .若 f(x) 在 (a,b)内是增函数,则对任何 x(a,b),都有 f(x)0B.若在 (a, b)内对任何x 都有 f(x)0 ,则 f(x) 在 (a, b)上是增函数C.若 f(x) 在 (a, b)内是单一函数,则f(x) 必存在D .若 f(x) 在 (a, b)上都存在,则f(x) 必为单一函数[答案]B[ 分析 ]若f(x)在(a,b)内是增函数,则f(x)0 ,故 A 错; f(x)在(a,b)内是单一函数与 f(x) 能否存在无必定联系,故 C 错;f(x) =2 在 (a, b)上的导数为f(x) = 0 存在,但f(x) 无单一性,故D错.7. (2019 福建理, 11)已知对随意实数 x ,有 f( - x) =- f(x) ,g(-x) = g(x) ,且 x0 时, f(x)0 ,g(x)0 ,则 x0 时 () A .f(x)0 ,g(x) B . f(x)0 , g(x)0C.f(x)0 ,g(x) D . f(x)0 , g(x)0[答案 ]B[分析 ]f(x) 为奇函数, g(x) 为偶函数,奇 (偶 )函数在对于原点对称的两个区间上单一性同样(反 ),x0 时, f(x)0 ,g(x)0. 8. f(x) 是定义在 (0,+ )上的非负可导函数,且知足xf(x) +f(x)0 ,对随意正数 a、 b,若 ab,则必有 ()A .af(a)f(b)B . bf(b)f(a)C.af(b)bf(a) D .bf(a)af(b)[答案 ]C[分析 ]∵xf(x) + f(x)0 ,且 x0 ,f(x)0 ,f(x) -f(x)x ,即 f(x) 在(0,+ )上是减函数,又 0< a< b, af(b)bf(a) .9.对于 R 上可导的随意函数f(x) ,若知足 (x -1)f(x)0 ,则必有()A .f(0) + f(2)2f(1)B . f(0) + f(2)2f(1)C.f(0) + f(2)2f(1) D . f(0) + f(2)2f(1)[答案] C[ 分析 ]由(x-1)f(x)0得f(x)在[1,+)上单一递加,在(-,1] 上单一递减或f(x) 恒为常数,故 f(0) + f(2)2f(1) .故应选 C.10.(2019 江西理, 12)如图,一个正五角星薄片( 其对称轴与水面垂直 )匀速地升出水面,记t时辰五角星露出水面部分的图形面积为S(t)(S(0) =0),则导函数y= S(t)的图像大概为[答案]A[ 分析 ]由图象知,五角星露出水面的面积的变化率是增减增减,此中恰露出一个角时变化不连续,应选 A.二、填空题11.已知 y =13x3 + bx2+ (b+ 2)x+ 3 在 R 上不是单一增函数,则 b 的范围为 ________.[ 答案 ] b-1 或 b2[ 分析 ]若y=x2+2bx+b+20恒建立,则=4b2-4(b+2)0,-12,由题意 b<- 1 或 b>2.12.已知函数f(x) =ax- lnx ,若 f(x) > 1 在区间 (1,+ )内恒建立,实数 a 的取值范围为 ________.[ 答案 ] a1[ 分析 ]由已知a>1+lnxx在区间(1,+)内恒建立.设 g(x) = 1+ lnxx ,则 g(x) =- lnxx2 < 0(x> 1),g(x) = 1+ lnxx 在区间 (1,+ )内单一递减,g(x) < g(1),∵g(1)= 1,1+ lnxx < 1 在区间 (1,+ )内恒建立,a1.13.函数 y=ln(x2 - x-2)的单一递减区间为__________.[答案 ] (-,- 1)[ 分析 ]函数y=ln(x2-x-2)的定义域为(2,+)(-,-1),令 f(x) = x2-x - 2, f(x) = 2x-10,得 x12 ,函数 y= ln(x2 -x- 2)的单一减区间为 (-,- 1).14.若函数y= x3 - ax2+ 4 在 (0,2)内单一递减,则实数 a 的取值范围是 ____________ .[答案 ] [3,+ )[ 分析 ] y=3x2 - 2ax,由题意知3x2- 2ax0 在区间 (0,2) 内恒建立,即 a32x 在区间 (0,2)上恒建立, a3.三、解答题15.设函数 f(x) =x3- 3ax2+ 3bx 的图象与直线12x +y- 1=0 相切于点 (1,- 11).(1)求 a、 b 的值;(2)议论函数f(x) 的单一性.[ 分析 ] (1)求导得 f(x) = 3x2-6ax+3b.因为 f(x) 的图象与直线12x+y - 1=0 相切于点 (1,- 11),所以 f(1) =- 11,f(1) =- 12,即 1- 3a+3b=- 113-6a+3b=- 12,解得 a= 1,b=- 3.(2)由 a= 1, b=- 3 得f(x) =3x2- 6ax+3b= 3(x2- 2x- 3)=3(x +1)(x - 3).令 f(x)0 ,解得 x -1 或 x3;又令 f(x)0 ,解得- 13.所以当 x(-,- 1)时, f(x) 是增函数;当x(3 ,+)时,f(x) 也是增函数;当 x( - 1,3)时, f(x) 是减函数.16.求证:方程x- 12sinx= 0 只有一个根x= 0.[ 证明 ]设f(x)=x-12sinx,x(-,+),则 f(x) = 1-12cosx> 0,f(x) 在(-,+ )上是单一递加函数.而当 x= 0 时, f(x) = 0,方程 x- 12sinx =0 有独一的根x= 0.17.已知函数y= ax 与 y=- bx 在(0,+ )上都是减函数,试确立函数 y=ax3+ bx2+ 5 的单一区间.[ 剖析 ] 可先由函数 y=ax 与 y=- bx 的单一性确立 a、b 的取值范围,再依据 a、 b 的取值范围去确立 y= ax3+ bx2+ 5 的单一区间.[ 分析 ]∵函数y=ax与y=-bx在(0,+)上都是减函数,a <0,b<0.由 y= ax3+bx2+ 5 得 y= 3ax2+ 2bx.令 y> 0,得 3ax2+ 2bx>0,- 2b3a< x< 0.当 x- 2b3a, 0 时,函数为增函数.令 y< 0,即 3ax2+ 2bx<0,x<- 2b3a,或 x> 0.在-,- 2b3a,(0,+ )上时,函数为减函数.18. (2019 新课标全国文,21)设函数 f(x) =x(ex - 1)- ax2.(1)若 a= 12,求 f(x) 的单一区间;(2)若当 x0 时 f(x)0 ,求 a 的取值范围.[ 分析 ] (1)a=12 时, f(x) =x(ex - 1)-12x2,f(x) =ex- 1+ xex- x= (ex- 1)(x + 1).当 x( -,- 1)时, f(x)0 ;当 x(- 1,0)时, f(x)0 ;当 x(0 ,+ )时, f(x)0.故 f(x) 在 (-,- 1], [0,+ )上单一递加,在[ -1,0] 上单一递减.(2)f(x) = x(ex - 1- ax).令 g(x) = ex- 1- ax,则 g(x) =ex- a.若 a1,则当 x(0,+ )时, g(x)0 , g(x) 为增函数,而 g(0)= 0,进而当 x0 时 g(x)0 ,即 f(x)0.教师范读的是阅读教课中不行缺乏的部分,我常采纳范读,让少儿学习、模拟。

高中数学 导数大题突破训练30道(精选提高题) 含答案

高中数学 导数大题突破训练30道(精选提高题) 含答案

高二导数大题突破训练30道一.解答题(共30小题)1.已知函数f(x)=,其中a为正实数,x=是f(x)的一个极值点.(Ⅰ)求a的值;(Ⅱ)当b>时,求函数f(x)在[b,+∞)上的最小值.2.已知x=4是函数f(x)=alnx+x2﹣12x+b的一个极值点,(a,b∈R).(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若函数y=f(x)有3个不同的零点,求b的取值范围.3.已知函数.当x=2时,函数f(x)取得极值.(I)求实数a的值;(II)若1≤x≤3时,方程f(x)+m=0有两个根,求实数m的取值范围.4.已知函数f(x)=x3+ax2+bx+c,且知当x=﹣1时取得极大值7,当x=3取得极小值,试求f(x)的极小值,并求a、b、c的值.5.已知函数f(x)=x3+ax2+bx+c在与x=1时都取得极值;(1)求a,b的值及f(x)的极大值与极小值;(2)若方程x3+ax2+bx+c=1有三个互异的实根,求c的取值范围;(3)若对x∈[1,2],不等式f(x)<c2恒成立,求c的取值范围.6.已知函数f(x)=x2﹣(a+2)x+alnx其中常数a>0(1)当a>2时,求函数f(x)在x∈(0,a)上的极大值和极小值;(2)设定义在D上的函数y=h(x)在点P(x0,h(x0))处的切线方程为l:y=g(x),当x≠x0时,若在D内恒成立,则称P为函数y=h (x)的“类对称点”,当a=4时,试问y=f(x)是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标,若不存在,说明理由.7.设x1,x2(x1≠x2)是函数f(x)=ax3+bx2﹣a2x(a>0)的两个极值点.(1)若x1=﹣1,x2=2,求函f(x)的解析式;(2)若|x1|+|x2|=2,求b的最大值.8.已知函数f(x)=x2﹣(a+2)x+alnx.(Ⅰ)当a=1时,求函数f(x)的极小值;(Ⅱ)当a=﹣1时,过坐标原点O作曲线y=f(x)的切线,设切点为P(m,n),求实数m的值;(Ⅲ)设定义在D上的函数y=g(x)在点P(x0,y0)处的切线方程为l:y =h(x),当x≠x0时,若>0在D内恒成立,则称P为函数y=g (x)的“转点”.当a=8时,试问函数y=f(x)是否存在“转点”.若存在,请求出“转点”的横坐标,若不存在,请说明理由.9.已知函数,g(x)=x+lnx,其中a>0.(Ⅰ)若x=1是函数h(x)=f(x)+g(x)的极值点,求实数a的值;(Ⅱ)是否存在正实数a,使对任意的x1,x2∈[1,e](e为自然对数的底数)都有f(x1)≥g(x2)成立,若存在,求出实数a的取值范围;若不存在,说明理由.10.已知函数f(x)=x3+bx2+4cx(x∈R)是奇函数,函数f(x)的图象在点(1,f(1))处切线的斜率为﹣6,且当x=2时,函数f(x)有极值.(1)求b的值;(2)求f(x)的解析式;(3)求f(x)的单调区间.11.已知函数f(x)=2x3﹣3ax2+1.(1)若x=1为函数f(x)的一个极值点,试确定实数a的值,并求此时函数f(x)的极值;(2)求函数f(x)的单调区间.12.已知函数f(x)=ax3+x2﹣(2+2a)x+b(a∈R)(Ⅰ)若y=f(x)在点P(1,f(1))处的切线方程为y=,求y=f(x)的解析式及单调递减区间;(Ⅱ)若y=f(x)在[﹣2,0]上存在极值点,求实数a的取值范围.13.设定义在R上的函数f(x)=ax3+cx满足:①函数f(x)在x1、x2处取得极值,且|x1﹣x2|=2;②函数f(x)的图象过点(1,﹣2).(1)求f(x)的表达式;(2)求过点P(1,﹣2)与函数f(x)的图象相切的直线方程;(3)设f(x)在[t,t+2]上最大值M与最小值m之差M﹣m为g(t),求g(t)的表达式.14.已知函数在x=a处取得极值.(Ⅰ)求;(Ⅱ)设函数g(x)=2x3﹣3af′(x)﹣6a3,如果g(x)在开区间(0,1)上存在极小值,求实数a的取值范围.15.设函数f(x)=x3+ax2+x+1,a∈R.(1)若x=1时,函数f(x)取得极值,求函数f(x)的图象在x=﹣1处的切线方程;(2)若函数f(x)在区间内不单调,求实数a的取值范围.16.已知:函数f(x)=x3﹣6x2+3x+t,t∈R.(1)求函数f(x)的单调区间;(2)设函数g(x)=e x f(x)有三个不同的极值点,求t的取值范围.17.已知函数f(x)=x2﹣alnx﹣1,(a∈R).(1)求f(x)的极值点;(2)若函数f(x)在区间(0,1)内无零点,求a的取值范围.18.已知f(x)=4x+ax2(x∈R),且f(x)在区间[﹣1,1]上是增函数.(1)求实数a的值组成的集合A;(2)设函数f(x)的两个极值点为x1、x2,试问:是否存在实数m,使得不等式m2+tm+1≥|3x1﹣x2|对任意a∈A及t∈[﹣1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.19.已知f(x)=e﹣x(e为自然对数的底数),g(x)=ax(a∈R).(Ⅰ)当a=1时,求函数h(x)=f(x)+g(x)的极小值;(Ⅱ)当t≥0时,关于t的方程f(﹣t﹣1)+ln(t+1)﹣e=g(t)有且只有一个实数解,求实数a的取值范围.20.已知函数f(x)=e x+﹣x(m∈R,m≠0).(1)求函数f(x)的单调区间和f(x)的极值;(2)对于任意的a∈[﹣1,1],b∈[﹣1,1],都有|f(a)﹣f(b)|≤e,求实数m的取值范围.21.已知函数f(x)=[ax2﹣(2a+1)x+(a﹣1)]lnx+2x.(1)当a=﹣1时,求函数f(x)的图象在点T(1,f(1))处的切线方程;(2)当a=1时,函数f(x)是否具有极值,如果有,求出极值;如果没有,请说明理由.22.已知函数f(x)=.(a∈R,a≠0)(1)当a=1时,求函数f(x)的极值;(2)求函数f(x)的单调递增区间;(3)当x∈(0,+∞)时,f(x)≥x+1恒成立,求实数a的取值范围.23.已知f(x)=x3+3ax2+bx+a2(a,b∈R).(Ⅰ)若f(x)在x=﹣1时有极值0,求a,b的值;(Ⅱ)若g(x)=[f′(x)﹣b+6a]•e x,求g(x)的单调区间.24.已知函数f(x)=x2﹣2x+2alnx,若函数f(x)在定义域上有两个极值点x1,x2,且x1<x2.(1)求实数a的取值范围;(2)证明:.25.已知函数f(x)=x3+ax2+bx(a,b∈R)的图象过点P(1,2)且在x=处取得极值点.(1)求a、b的值(2)求函数f(x)的单调区间.(3)求函数f(x)在[﹣1,1]上的最值.26.已知函数f(x)=xe x﹣1﹣ax+1,其中a∈R.(1)当a=0时,证明:f(x)>0;(2)当a>0吋,讨论f(x)的零点个数.27.函数f(x)=alnx+x2﹣4x(a∈R).(1)当a=﹣6时,求函数f(x)的极值;(2)若a>0,设g(x)=2alnx+x2﹣5x﹣,若存在x0∈[1,e],使得f(x0)<g(x0)成立,求实数a的取值范围.28.已知函数.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,求证:.29.已知函数f(x)=aln(x+1)﹣(a∈R)(1)若f(1)是f(x)的极值,求a的值,并求f(x)的单调区间.(2)若x>0时,f(x)>0,求实数a的取值范围.30.设函数f(x)=x3+4x2+4x+c.(1)求曲线y=f(x)在点(0,f(0))处的切线方程.(2)若函数f(x)有三个不同的零点,求c的取值范围.高二导数大题突破训练30道答案一.解答题(共30小题)1.已知函数f(x)=,其中a为正实数,x=是f(x)的一个极值点.(Ⅰ)求a的值;(Ⅱ)当b>时,求函数f(x)在[b,+∞)上的最小值.解:f′(x)=,(Ⅰ)因为x=是函数y=f(x)的一个极值点,所以f′()=0,因此,a﹣a+1=0,解得a=,经检验,当a=时,x=是y=f(x)的一个极值点,故所求a的值为.(Ⅱ)由(Ⅰ)可知,f′(x)=,令f′(x)=0,得x1=,x2=,f(x)与f′(x)的变化情况如下:x(﹣∞,)(,)(,+∞)f′(x)+ 0 ﹣0 +f(x)所以,f(x)的单调递增区间是(﹣∞,),(,+∞).单调递减区间是(,).当<b<时,f(x)在[b,)上单调递减,在(,+∞)上单调递增,所以f(x)在[b,+∞)上的最小值为f()=,当b≥时,f(x)在[b,+∞)上单调递增,所以f(x)在[b,+∞)上的最小值为f(b)==.2.已知x=4是函数f(x)=alnx+x2﹣12x+b的一个极值点,(a,b∈R).(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若函数y=f(x)有3个不同的零点,求b的取值范围.解:(Ⅰ),(x>0),…2’由已知f'(4)=0得,,解得a=16.…4’(Ⅱ)由(Ⅰ)知,f(x)=16lnx+x2﹣12x+b,x∈(0,+∞),令=0,解得x=2或x=4.当x∈(0,2)时,f′(x)>0;当x∈(2,4)时,f′(x)<0;x∈(4,+∞)时,f′(x)>0.所以f(x)的单调增区间是(0,2),(4,+∞);f(x)的单调减区间是(2,4).…8’(Ⅲ)由(Ⅱ)知,f(x)在(0,2)内单调递增,在(2,4)内单调递减,在(4,+∞)上单调递增,且当x=2或x=4时,f′(x)=0.所以f(x)的极大值为f(2)=16ln2﹣20+b,极小值为f(4)=32ln2﹣32+b.…10’当且仅当f(4)<0<f(2),y=f(x)有三个零点.…12’由 32ln2﹣32+b<0<16ln2﹣20+b,解得 20﹣16ln2<b<32﹣32ln2,所以,b的取值范围为(20﹣16ln2,32﹣32ln2).…14’3.已知函数.当x=2时,函数f(x)取得极值.(I)求实数a的值;(II)若1≤x≤3时,方程f(x)+m=0有两个根,求实数m的取值范围.解:(I)由,则f'(x)=x2+2ax+6因在x=2时,f(x)取到极值所以f'(2)=0⇒4+4a+6=0解得,(II)由(I)得且1≤x≤3则f'(x)=x2﹣5x+6=(x﹣2)(x﹣3)由f'(x)=0,解得x=2或x=3;f'(x)>0,解得x>3或x<2;f'(x)<0,解得2<x<3∴f(x)的递增区间为:(﹣∞,2)和(3,+∞);f(x)递减区间为:(2,3)又要f(x)+m=0有两个根,则f(x)=﹣m有两解,分别画出函数y=f(x)与y=﹣m的图象,如图所示.由图知,实数m的取值范围:.4.已知函数f(x)=x3+ax2+bx+c,且知当x=﹣1时取得极大值7,当x=3取得极小值,试求f(x)的极小值,并求a、b、c的值.解:∵f(x)=x3+ax2+bx+c,∴f'(x)=3x2+2ax+b.∵当x=﹣1时,函数取得极大值,x=3时,函数取得极小值.∴﹣1,3是方程f'(x)=0的根,即﹣1,3为方程3x2+2ax+b=0的两根.∴∴,∴f(x)=x3﹣3x2﹣9x+c.∵当x=﹣1时取得极大值7,∴(﹣1)3﹣3(﹣1)2﹣9(﹣1)+c=7,∴c=2.∴函数f(x)的极小值为f(3)=33﹣3×32﹣9×3+2=﹣25.5.已知函数f(x)=x3+ax2+bx+c在与x=1时都取得极值;(1)求a,b的值及f(x)的极大值与极小值;(2)若方程x3+ax2+bx+c=1有三个互异的实根,求c 的取值范围;(3)若对x∈[1,2],不等式f(x)<c2恒成立,求c的取值范围.解:(1)∵f'(x)=3x2+2ax+b由已知有,解得∴f'(x)=3x2﹣x﹣2,由f'(x)>0得x>1或,由f'(x)<0得﹣﹣﹣(5分)列表如下x 1 (1,+∞)f'(x)+ 0 ﹣0 +f(x)递增递减递增所以,当时,f(x)有极大值,当x=1时,f(x)有极小值(2)由于方程x3+ax2+bx+c=1有三个互异的实根,故曲线与y=1有三个不同交点由(1)可知此时有,解得;(3)由(1)知,f(x)在x∈[1,2]上递增,此时f(x)max=f(2)=c+2﹣﹣(14分)要满足题意,只须c+2<c2解得c>2或c<﹣16.已知函数f(x)=x2﹣(a+2)x+alnx其中常数a>0(1)当a>2时,求函数f(x)在x∈(0,a)上的极大值和极小值;(2)设定义在D上的函数y=h(x)在点P(x0,h(x0))处的切线方程为l:y=g(x),当x≠x0时,若在D内恒成立,则称P为函数y=h(x)的“类对称点”,当a=4时,试问y=f(x)是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标,若不存在,说明理由.解:(1)由函数f(x)=x2﹣(a+2)x+alnx(常数a>2)可知:其定义域为(0,+∞).∴==,令f′(x)=0,解得,∵a>2,∴.列表如图:由表格可知:当x=1时,函数f(x)取得极大值,且f(1)=﹣a﹣1;当x=时,函数f(x)取得极小值,且.(2)当a=4时,函数f(x)=x2﹣6x+4lnx存在“类对称点”,为点P.当a=4时,f(x)=x2﹣6x+4lnx,∴f′(x)=2x﹣6,设切点P(m,f(m)),则切线的斜率为f′(m)=,则切线的方程为y﹣f(m)=f′(m)(x﹣m),由在(0,+∞)上恒成立⇔在(0,+∞)恒成立.(*)其中为过点(x,f(x))、(m,f(m))的割线的斜率,而f′(m)为过切点P(m,f(m))的切线的斜率.要使(*)式恒成立,f′(x)必取得最小值.∵[f′(x)]′=2=,令f″(x)=0,解得x=.由表格可知:当且仅当x=时,f′(x)取得极小值,也是最小值.即当x=时,在(0,+∞)上恒成立.故是函数f(x)的一个“类对称点”.7.设x1,x2(x1≠x2)是函数f(x)=ax3+bx2﹣a2x(a>0)的两个极值点.(1)若x1=﹣1,x2=2,求函f(x)的解析式;(2)若|x1|+|x2|=2,求b的最大值.解:(1)f'(x)=3ax2+2bx﹣a2(a>0).∵x1=﹣1,x2=2是函数f(x)的两个极值点,∴f'(﹣1)=0,f'(2)=0.∴3a﹣2b﹣a2=0,12a+4b﹣a2=0,解得a=6,b=﹣9.∴f(x)=6x3﹣9x2﹣36x…(4分)(2)∵x1,x2是函数f(x)的两个极值点,∴f'(x1)=f'(x2)=0.∴x1,x2是方程3ax2+2bx﹣a2=0的两根.∴,,∵△=4b2+12a3,∴△>0对一切a>0,b∈R恒成立.∵a>0,∴x1•x2<0.∴.由得,∴b2=3a2(6﹣a).∵b2≥0,∴3a2(6﹣a)≥0,∴0<a≤6…(8分)令h(a)=3a2(6﹣a),则h'(a)=﹣9a2+36a.当0<a<4时,h′(a)>0,∴h(a)在(0,4)内是增函数;当4<a<6时,h′(a)<0,∴h(a)在(4,6)内是减函数.∴当a=4时,h(a)有极大值为96,∴h(a)在(0,6]上的最大值是96,∴b的最大值是…(12分)8.已知函数f(x)=x2﹣(a+2)x+alnx.(Ⅰ)当a=1时,求函数f(x)的极小值;(Ⅱ)当a=﹣1时,过坐标原点O作曲线y=f(x)的切线,设切点为P(m,n),求实数m的值;(Ⅲ)设定义在D上的函数y=g(x)在点P(x0,y0)处的切线方程为l:y=h(x),当x≠x0时,若>0在D内恒成立,则称P为函数y=g(x)的“转点”.当a=8时,试问函数y=f(x)是否存在“转点”.若存在,请求出“转点”的横坐标,若不存在,请说明理由.解:(Ⅰ)当a=1时,f′(x)=2x﹣3+==,当0<x时,f′(x)>0;当<x<1时,f′(x)<0;当x>1时,f′(x)>0.所以当x=1时,函数f(x)取极小值f(1)=﹣2,…5分;(Ⅱ)当a=﹣1时,f′(x)=2x﹣1﹣(x>0),所以切线的斜率k=2m﹣1﹣===,整理可得m2+lnm﹣1=0,显然m=1是方程的解,又因为函数y=x2+lnx﹣1在(0,+∞)上是增函数,所以方程有唯一的实数解,即m=1,…10分;(Ⅲ)当a=8时,函数y=f(x)在其图象上一点P(x0,y0)处的切线方程为:h(x)=,设F(x)=f(x)﹣h(x),则F(x0)=0,F′(x)=f′(x)﹣h′(x)=()﹣()=(x﹣x0)(x﹣)若0<x0<2,F(x)在(x0,)上单调递减,所以当x∈(x0,)时,F(x)<F(x0)=0,此时<0,若x0>2,F(x)在(,x0)上单调递减,所以当x∈(,x0)时,F(x)>F(x0)=0,此时<0,所以y=f(x)在(0,2)和(2,+∞)上不存在“转点”,若x0=2时,F′(x)=,即F(x)在(0,+∞)上是增函数,当x>x0时,F(x)>F(x0)=0,当x<x0时,F(x)<F(x0)=0,故点P(x0,f(x0))为“转点”,故函数y=f(x)存在“转点”,且2是“转点”的横坐标,…15分9.已知函数,g(x)=x+lnx,其中a>0.(Ⅰ)若x=1是函数h(x)=f(x)+g(x)的极值点,求实数a的值;(Ⅱ)是否存在正实数a,使对任意的x1,x2∈[1,e](e为自然对数的底数)都有f(x1)≥g(x2)成立,若存在,求出实数a的取值范围;若不存在,说明理由.(1)解:∵,其定义域为(0,+∞),∴.∵x=1是函数h(x)的极值点,∴h'(1)=0,即3﹣a2=0,∵a>0,∴.经检验,当时,x=1是函数h(x)的极值点,∴.(2)解:假设存在实数a,对任意的x1,x2∈[1,e]都有f(x1)≥g(x2)成立,等价于对任意的x1,x2∈[1,e]时,都有[f(x)]min≥[g(x)]max,当x∈[1,e]时,.∴函数g(x)=x+lnx在[1,e]上是增函数.∴[g(x)]max=g(e)=e+1.∵,且x∈[1,e],a>0,①当0<a<1且x∈[1,e]时,,∴函数在[1,e]上是增函数.∴[f(x)]min=f(1)=1+a2.由1+a2≥e+1,得a≥,又0<a<1,∴a不合题意.②当1≤a≤e时,若1≤x<a,则,若a<x≤e,则.∴函数在[1,a)上是减,在(a,e]上是增∴[f(x)]min =f(a)=2a.2a≥e+1,得a≥,1≤a≤e,∴≤a≤e.③当a>e且x∈[1,e]时,,∴函数在[1,e]上是减函数.∴.由≥e+1,得a≥,又a>e,∴a>e.综上所述,存在正实数a的取值范围为.10.已知函数f(x)=x3+bx2+4cx(x∈R)是奇函数,函数f(x)的图象在点(1,f(1))处切线的斜率为﹣6,且当x=2时,函数f(x)有极值.(1)求b的值;(2)求f(x)的解析式;(3)求f(x)的单调区间.解:(1)由函数f(x)是奇函数,∴f(﹣x)=﹣f(x),∴b=0(2)由,有f'(x)=ax2+4c且f'(1)=﹣6,f'(2)=0∴解得故(3)∵∴f'(x)=2x2﹣8=2(x+2)(x﹣2)令f'(x)>0得x<﹣2或x>2,令f'(x)<0得﹣2<x<2∴函数f(x)的单调增区间为(﹣∞,﹣2],[2,+∞);单调减区间为[﹣2,2]11.已知函数f(x)=2x3﹣3ax2+1.(1)若x=1为函数f(x)的一个极值点,试确定实数a的值,并求此时函数f(x)的极值;(2)求函数f(x)的单调区间.解:(1)∵f(x)=2x3﹣3ax2+1,∴f'(x)=6x2﹣6ax.依题意得f'(1)=6﹣6a=0,解得a=1.所以f(x)=2x3﹣3x2+1,f'(x)=6x(x﹣1).令f′(x)=0,解得x=0或x=1.列表如下:x(﹣∞,0)0 (0,1) 1 (1,+∞)f′(x)+ 0 ﹣0 +f(x)↗极大值↘极小值↗当x=0时,函数f(x)取得极大f(0)=1;当x=1时,函数f(x)取得极小值f(1)=0.(2)∵f′(x)=6x2﹣6ax=6x(x﹣a),∴①当a=0时,f′(x)=6x2≥0,函数f(x)在(﹣∞,+∞)上单调递增;②当a>0时,f′(x)=6x(x﹣a),f′(x)、f(x)随x的变化情况如下表:x(﹣∞,0)0 (0,a)a(a,+∞)f′(x)+ 0 ﹣0 +f(x)↗极大值↘极小值↗由上表可知,函数f(x)在(﹣∞,0)上单调递增,在(0,a)上单调递减,在(a,+∞)上单调递增;③同理可得,当a<0时,函数f(x)在(﹣∞,a)上单调递增,在(a,0)上单调递减,在(0,+∞)上单调递增.综上所述,当a=0时,函数f(x)的单调递增区间是(﹣∞,+∞);当a>0时,函数f(x)的单增区间是(﹣∞,0)和(a,+∞),单调递减区间是(0,a);当a<0时,函数f(x)的单增区间是(﹣∞,a)和(0,+∞),单调递减区间是(a,0).12.已知函数f(x)=ax3+x2﹣(2+2a)x+b(a∈R)(Ⅰ)若y=f(x)在点P(1,f(1))处的切线方程为y=,求y=f(x)的解析式及单调递减区间;(Ⅱ)若y=f(x)在[﹣2,0]上存在极值点,求实数a的取值范围.解:f′(x)=ax2+x﹣(2+2a)(Ⅰ)由已知可得此时f′(x)=﹣x2+x,由f′(x)=﹣x2+x<0 得y=f(x)的单调递减区间为(﹣∞,0),(1,+∞);(Ⅱ)由已知可得y=f′(x)在[﹣2,0]上存在零点,且在零点两侧y=f′(x)值异号(1)a=0 时,f′(x)=0⇒x=2∉[﹣2,0],不满足条件;(2)a≠0 时,可得在[﹣2,0]上有解且△>0设①当g(﹣2)g(0)≤0 时,满足g(x)=0在[﹣2,0]上有解或a≤﹣1 此时满足△>0②当g(﹣2)g(0)>0时,即g(x)=0 在[﹣2,0]上有两个不同的实根则a无解综上可得实数a的取值范围为(﹣∞﹣1]∪(2,+∞).13.设定义在R上的函数f(x)=ax3+cx满足:①函数f(x)在x1、x2处取得极值,且|x1﹣x2|=2;②函数f(x)的图象过点(1,﹣2).(1)求f(x)的表达式;(2)求过点P(1,﹣2)与函数f(x)的图象相切的直线方程;(3)设f(x)在[t,t+2]上最大值M与最小值m之差M﹣m为g(t),求g(t)的表达式.解:(1)f′(x)=3ax2+c,令f′(x)=0得∴∴c=﹣3a①∵函数f(x)的图象过点(1,﹣2),∴﹣2=a+c②∴由①②解得a=1,c=﹣3∴f(x)=x3﹣3x…(4分)(2)∵f'(x)=3x2﹣3设切点坐标为∴切线方程为∵切线过P(1,﹣2)∴解之得∴过点P(1,﹣2)与函数f(x)的图象相切的切线方程为:y=﹣2或9x+4y﹣1=0.…(3)f'(x)=3x2﹣3,令f'(x)=0,x=±1,x(﹣∞,﹣1)﹣1 (﹣1,1) 1 (1,+∞)f'(x)+ 0 ﹣0 +f(x) 2 ﹣2所以,f(x)极大=2,f(x)极小=f(1)=﹣2.…(10分)若f(x)在[t,t+2]上是增函数,必须有t+2≤﹣1或t≥1,当t≤﹣3时,m=f(t),M=f(t+2),g(t)=M﹣m=6t2+12t+2,令f(t+2)=f(t),6t2+12t+2=0,,当时,m=f(t),M=2,g(t)=﹣t3+3t+2,当时,m=f(t+2),M=2,g(t)=﹣t3﹣6t2﹣9t,当,m=﹣2,M=f(t),g(t)=t3﹣3t+2,当时,m=﹣2,M=f(t+2),g(t)=t3+6t2+9t+4,当t>1时,m=f(t),M=f(t+2),g(t)=6t2+12t+2.∴…(16分)14.已知函数在x=a处取得极值.(Ⅰ)求;(Ⅱ)设函数g(x)=2x3﹣3af′(x)﹣6a3,如果g(x)在开区间(0,1)上存在极小值,求实数a的取值范围.解(1)f'(x)=﹣x2+2bx﹣3a2由题意知f'(a)=﹣a2+2ba﹣3a2=0则b=2a∴(2)由已知可得g(x)=2x3+3ax2﹣12a2x+3a3则g'(x)=6x2+6ax﹣12a2=6(x﹣a)(x+2a)令g'(x)=0,得x=a或x=﹣2a若a>0,当x<﹣2a或x>a时,g'(x)>0;当﹣2a<x<a时,g'(x)<0所以当x=a时,g(x)有极小值,∴0<a<1若a<0,当x<a或x>﹣2a时,g'(x)>0;当a<x<﹣2a时,g'(x)<0所以当x=﹣2a时,g(x)有极小值,∴0<﹣2a<1即所以当或0<a<1时,g(x)在开区间(0,1)上存在极小值.15.设函数f(x)=x3+ax2+x+1,a∈R.(1)若x=1时,函数f(x)取得极值,求函数f(x)的图象在x =﹣1处的切线方程;(2)若函数f(x)在区间内不单调,求实数a的取值范围.解:(1)f'(x)=3x2+2ax+1由f'(1)=0得a=﹣2∴f(x)=x3﹣2x2+x+1当x=﹣1时,y=﹣3即切点(﹣1,﹣3)k=f'(x0)=3x02﹣4x0+1令x0=﹣1得k=8∴切线方程为8x﹣y+5=0(2)f(x)在区间内不单调即f′(x)=0在有解∴3x2+2ax+1=0在有解∴令h(x)=∴令解得令解得知h(x)在单调递减,在单调递增∴即h(x)∴即而当时,∴舍去综上16.已知:函数f(x)=x3﹣6x2+3x+t,t∈R.(1)求函数f(x)的单调区间;(2)设函数g(x)=e x f(x)有三个不同的极值点,求t的取值范围.解:(1)令f′(x)=3x2﹣12x+3=0,解得:x=2±,故f(x)在(﹣∞,2﹣),(2+,+∞)递增,在(2﹣,2+)递减;(2)g′(x)=(3x2﹣12x+3)e x+(x3﹣6x2+3x+t)e x=(x3﹣3x2﹣9x+t+3)e x∵g(x)有三个不同的极值点∴x3﹣3x2﹣9x+t+3=0有三个不等根;令h(x)=x3﹣3x2﹣9x+t+3,则h′(x)=3x2﹣6x﹣9=3(x+1)(x﹣3),∴h(x)在(﹣∞,﹣1),(3,+∞)上递增,在(﹣1,3)上递减,∵h(x)有三个零点,∴h(﹣1)>0,h(3)<0,∴t+8>0,t﹣24<0,∴﹣8<t<24.17.已知函数f(x)=x2﹣alnx﹣1,(a∈R).(1)求f(x)的极值点;(2)若函数f(x)在区间(0,1)内无零点,求a的取值范围.解:(1)f′(x)=(x>0),当a≤0时,f′(x)>0,f(x)在(0,+∞)递增,当a>0时,令f′(x)=0,解得:x=,故f(x)在(0,)递减,在(,+∞)递增,故x=是极小值点,无极大值点;(2)f′(x)=(0<x<1),∵0<x<1,∴0<2x2<2,当a≤0时,f′(x)>0,f(x)在(0,1)递增,故f(x)<f(1)=0,函数无零点,符合题意;当a≥2时,f′(x)<0,f(x)在(0,1)递减,故f(x)>f(1)=0,函数无零点,符合题意;当0<a<2时,存在x0=∈(0,1),使得f′(x0)=0,故f(x)在(0,)递减,在(,1)递增,又0<<1,f()=>0,f()<0,故f(x)在(0,1)有零点,不合题意;综上,若函数f(x)在区间(0,1)内无零点,则a≥2或a≤0.18.已知f(x)=4x+ax2(x∈R),且f(x)在区间[﹣1,1]上是增函数.(1)求实数a的值组成的集合A;(2)设函数f(x)的两个极值点为x1、x2,试问:是否存在实数m,使得不等式m2+tm+1≥|3x1﹣x2|对任意a∈A及t∈[﹣1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.解:(1)∵f(x)在区间[﹣1,1]上是增函数.∴f′(x)=4+2ax﹣2x2≥0,在区间[﹣1,1]上恒成立.∴f′(﹣1)=4﹣2a﹣2≥0,f′(1)=4+2a﹣2≥0,解得﹣1≤a≤1.∴A=[﹣1,1].(2)函数f(x)的两个极值点为x1、x2,∴x1+x2=a,x1x2=﹣2.∴|3x1﹣x2|=|2(x1﹣x2)+(x1+x2)|≤2|(x1﹣x2|+(x1+x2)=2+|a|,∵a∈A,设h(a)=2+|a|,a∈[﹣1,1],则h(a)是偶函数,且在[0,1]上单调递增.∴|3x1﹣x2|的最大值为h(1)=7.设g(t)=m2+tm+1=tm+(m2+1),t∈[﹣1,1],g(t)≥|3x1﹣x2|对任意a∈A及t∈[﹣1,1]恒成立,则,解得m≤﹣3或m≥3.∴存在实数m≤﹣3或m ≥3,使得不等式m2+tm+1≥|3x1﹣x2|对任意a∈A及t∈[﹣1,1]恒成立.19.已知f(x)=e﹣x(e为自然对数的底数),g(x)=ax(a∈R).(Ⅰ)当a=1时,求函数h(x)=f(x)+g(x)的极小值;(Ⅱ)当t≥0时,关于t的方程f(﹣t ﹣1)+ln(t+1)﹣e=g(t)有且只有一个实数解,求实数a的取值范围.解:(Ⅰ)当a=1时,h(x)=f(x)+g(x)=e﹣x+x,h′(x)=﹣e﹣x+1,令h′(x)=0,解得:x=0,x,h′(x),h(x)的变化如下:x(﹣∞,0)0 (0,+∞)h′(x)﹣0 +h(x)递减极小值递增∴h(x)极小值=h(0)=1;(Ⅱ)设φ(t)=f(﹣t﹣1)+ln(t+1)﹣e﹣g(t)=e t+1﹣at+ln(t+1)﹣e,令t+1=x(x≥1),F(x)=e x﹣ax+lnx﹣e+a,x≥1,F′(x)=e x﹣a+,设t(x)=F′(x)=e x﹣a+,t′(x)=e x﹣,由x≥1得,x2≥1,∴0<≤1,∵e x≥e,t′(x)=e x﹣>0,t(x)在(1,+∞)单调递增,即F′(x)在(1,+∞)单调递增,F′(1)=e+1﹣a,①当e+1﹣a≥0,即a≤e+1时,x∈(1,+∞)时,F′(x)>F′(1)≥0,F(x)在(1,+∞)单调递增,又F(1)=0,故当x≥1时,关于x的方程e x﹣ax+lnx﹣e+a=0有且只有一个实数解,②当e+1﹣a<0,即a>e+1时,F′(1)<0,F′(lna)=a﹣a+>a﹣a=0,又lna>ln(e+1)>1,故∃x0∈(1,lna),F′(x0)=0,当x∈(1,x0)时,F′(x)<0,F(x)单调递减,又F(1)=0,故当x∈(1,x0]时,F(x)<0,在[1,x0)内,关于x的方程e x﹣ax+lnx﹣e+a=0有一个实数解x=1,又x∈(x0,+∞)时,F′(x)>0,F(x)单调递增,且F(a)=e a+lna﹣a2+a﹣e>e a﹣a2+1,令k(x)=e x﹣x2+1(x≥1),s(x)=k′(x)=e x﹣2x,s′(x)=e x﹣2>e﹣2>0,故k′(x)在(1,+∞)单调递增,又k′(1)>0,故k(x)在(1,+∞)单调递增,故k(a)>k(1)>0,故F(a)>0,又a>>x0,由零点存在定理可知,∃x1∈(x0,a),F(x1)=0,故在(x0,a)内,关于x的方程e x﹣ax+lnx﹣e+a=0有一个实数解x1,此时方程有两个解.综上,a≤e+1.20.已知函数f(x)=e x+﹣x(m∈R,m≠0).(1)求函数f(x)的单调区间和f(x)的极值;(2)对于任意的a∈[﹣1,1],b∈[﹣1,1],都有|f(a)﹣f(b)|≤e,求实数m的取值范围.解:(1)f′(x)=e x+x﹣1,f″(x)=e x+,显然f″(x)>0,故f′(x)递增,而f′(0)=0,故f(x)在(﹣∞,0)递减,在(0,+∞)递增,当x=0时,f(x)取极小值1,无极大值;(2)由题意,只需f(x)max﹣f(x)min≤e,由(1)知,f(x)在[﹣1,0)递减,在(0,1]递增,故f(x)在[﹣1,1]上的最小值是f(0)=1,最大值是f(1)和f(﹣1)的较大者,而f(1)﹣f (﹣1)=(e+﹣1)﹣(++1)=e﹣﹣2>0,故f(1)>f(﹣1),故f(x)在[﹣1,1]上的最大值是e+﹣1,故e+﹣1﹣1≤e,解得:m ≥或m≤﹣,故实数m的范围是(﹣∞,﹣]∪[,+∞).21.已知函数f(x)=[ax2﹣(2a+1)x+(a﹣1)]lnx+2x.(1)当a=﹣1时,求函数f(x)的图象在点T(1,f(1))处的切线方程;(2)当a=1时,函数f (x)是否具有极值,如果有,求出极值;如果没有,请说明理由.解:(1)函数的定义域为(0,+∞),当a=﹣1时,f(x)=(﹣x2+x﹣2)lnx+2x,f(1)=2,点T的坐标为(1,2),f′(x)=(﹣2x+1)lnx﹣,f′(1)=0,所以a=1时,函数f(x)的图象在点T(1,2)处的切线方程是y=2.(2)a=1时,f(x)=(x2﹣3x)lnx+2x,f′(x)=(2x﹣3)lnx+x﹣1,f′(1)=0,设h(x)=f′(x),h′(x)=2lnx﹣+3,h′(1)=0,设p(x)=h′(x),p′(x)=,在定义域(0,+∞)内,x2>0,2x+3>0,p′(x)>0,p(x)即h′(x)在(0,+∞)上递增,当0<x<1时,h′(x)<0,当x>1时,h′(x)>0,h(x)在(0,1)上递减,在(1,+∞)上递增,对∀x∈(0,+∞)都有f′(x)=h(x)≥h(1)=0,f(x)在(0,+∞)递增,所以a=1时,函数f(x)没有极值.22.已知函数f(x)=.(a∈R,a≠0)(1)当a=1时,求函数f(x)的极值;(2)求函数f(x)的单调递增区间;(3)当x∈(0,+∞)时,f(x)≥x+1恒成立,求实数a的取值范围.解:(1)a=1时,f(x)=,f′(x)=,令f′(x)>0,解得:x>2或x<0,令f′(x)<0,解得:0<x<2,故f(x)在(﹣∞,0)递增,在(0,2)递减,在(2,+∞)递增,而f(x)在x=0处无定义,故f(x)的极小值是f(2)=,无极大值;(2)f′(x)=>0,当a>0时,解得:x>2或x<0,故函数在(﹣∞,0),(2,+∞)递增,当a<0时,解得:0<x<2,故函数在(0,2)递增;(3)∵≥x+1,∴a≥,令g(x)=,则g′(x)==,∵x∈(0,+∞),令g′(x)>0,解得:1﹣<x<1+,∴g(x)在(0,1+)递增,在(1+,+∞)递减,即g(x)max=g(1+)=,故a≥.23.已知f(x)=x3+3ax2+bx+a2(a,b∈R).(Ⅰ)若f(x)在x=﹣1时有极值0,求a,b的值;(Ⅱ)若g(x)=[f′(x)﹣b+6a]•e x,求g(x)的单调区间.解:(Ⅰ)由题意得f′(x)=3x2+6ax+b,则,解得:或,经检验当a=1,b=3时,函数f(x)在x=﹣1处无极值,而a=2,b=9满足题意,故a=2,b=9;(Ⅱ)g(x)=[f′(x)﹣b+6a]•e x=3(x2+2ax+2a)•e x,故g′(x)=3(x+2)(x+2a)•e x,故a=1时,g′(x)≥0,函数g(x)在R上递增,当a>1时,在(﹣∞,﹣2a)递增,在(﹣2a,﹣2)递减,在(﹣2,+∞)递增,当a<1时,在(﹣∞,﹣2)递增,在(﹣2,﹣2a)递减,在(﹣2a,+∞)递增.24.已知函数f(x)=x2﹣2x+2alnx,若函数f(x)在定义域上有两个极值点x1,x2,且x1<x2.(1)求实数a的取值范围;(2)证明:.(1)解:因为函数f(x)在定义域(0,+∞)上有两个极值点x1,x2,且x1<x2,所以在(0,+∞)上有两个根x1,x2,且x1<x2,即x2﹣x+a=0在(0,+∞)上有两个不相等的根x1,x2.所以解得.(2)证明:由题可知x1,x2(0<x1<x2)是方程x2﹣x+a=0的两个不等的实根,所以其中.故=(x1+x2)2﹣2x1x2﹣2(x1+x2)+2aln (x1x2)=2alna﹣2a﹣1,令g(a)=2alna﹣2a﹣1,其中.故g'(a)=21na<0,所以g(a)在上单调递减,则,即.25.已知函数f(x)=x3+ax2+bx(a,b∈R)的图象过点P(1,2)且在x=处取得极值点.(1)求a、b的值(2)求函数f(x)的单调区间.(3)求函数f(x)在[﹣1,1]上的最值.解:(1)∵函数f(x)=x3+ax2+bx(a,b∈R)的图象过点P(1,2)∴f(1)=2,∴a+b=1,又函数f(x)在x=处取得极值点,∴f'()=0 因f'(x)=3x2+2 ax+b∴2a+3b=﹣1 解得a=4,b=﹣3,经检验x=是f(x)极值点…(6分)(2)由(1)得f'(x)=3x2+8x﹣3,令f'(x)>0,得x<﹣3或x>,令f'(x)<0,得﹣3<x<,函数f(x)的单调增区间为(﹣∞,﹣3),(,+∞),函数f(x)的单调减区间为(﹣3,)(3)由(2)知,又函数f(x)在x=处取得极小值点f()=f(﹣1)=6,f(1)=2 函数f(x)在[﹣1,1]上的最大值为6,最小值为…(12分)26.已知函数f(x)=xe x﹣1﹣ax+1,其中a∈R.(1)当a=0时,证明:f(x)>0;(2)当a>0吋,讨论f(x)的零点个数.(1)证明:当a=0时,f(x)=xe x﹣1+1,f′(x)=(x+1)e x﹣1.∴x∈(﹣∞,﹣1)时,f′(x)>0,函数f(x)单调递增;x∈(﹣1,+∞)时,f′(x)<0,函数f(x)单调递减.∴x=﹣1时,函数f(x)取得极小值,∴f(x)≥f(﹣1)=1﹣>0.∴当a=0时,f(x)>0.(2)解:由(1)可得:xe x﹣1+1>0.∴当a>0时,∀x∈(﹣∞,0]时,f(x)>0,即函数f(x)在x∈(﹣∞,0]时,f(x)无零点.故只需要研究函数f(x)在[0,+∞)上零点的情况.由xe x﹣1﹣ax+1=0,变形为:a=e x﹣1+,(x>0).令g(x)=e x﹣1+,(x>0),y=a.g′(x)=e x﹣1﹣,在(0,+∞)上单调递增,且g′(1)=0.∴函数g(x)在(0,1)上单调递减,在(1,+∞)上单调递增.∴g(x)≥g(1)=2.分类讨论:0<a<2时,y=a与函数g(x)的图象在(0,+∞)上无交点,即函数f(x)无零点.a=2时,y=a与函数g(x)的图象在(0,+∞)上有唯一交点,函数f(x)有唯一零点.a>2时,lna+1,g(1)=2,g()=+a>a,g(lna+1)=a+.y=a与函数g(x)的图象在(0,+∞)上有两个交点,即函数f(x)有两个零点.综上可得:0<a<2时,函数f(x)无零点.a=2时,函数f(x)有唯一零点.a>2时,函数f(x)有两个零点.27.函数f(x)=alnx+x2﹣4x(a∈R).(1)当a=﹣6时,求函数f(x)的极值;(2)若a>0,设g(x)=2alnx+x2﹣5x﹣,若存在x0∈[1,e],使得f(x0)<g(x0)成立,求实数a的取值范围.解:(1)当a=﹣6时,f(x)=﹣6lnx+x2﹣4x,定义域为(0,+∞),,令f′(x)=0,得x=3,x=﹣1(舍),当0<x<3时,f′(x)<0;当x>3时,f′(x)>0,∴当x=3时,f(x)由极小值f(3)=﹣3﹣6ln3,无极大值;(2)令h(x)=f(x)﹣g(x),在[1,e]上存在x0,使得f(x0)<g(x0)成立,即在[1,e]上存在x0,使得h(x0)<0,∴h(x)=x+﹣alnx在[1,e]上的最小值小于0.又h′(x)=1﹣=,当1+a≥e,即a≥e﹣1时,h(x)在[1,e]上递减,h(x)的最小值为h(e),由h(e)=e﹣可得a,∵,∴;当1+a≤1,即a≤0时,h(x)在[1,e]上递增,此时h(x)最小值为h(1),由h(1)=1+1+a<0可得a<﹣2;当1<1+a<e,即0<a<e﹣1时,可得h(x)的最小值为h(1+a)=2+a﹣aln(1+a),∵0<ln(1+a)<1,∴0<aln(1+a)<a,此时,h(1+a)=2+a﹣aln(1+a)>2,∴不存在x0,使得h(x0)<0成立.综上,a的范围为:a<﹣2,或a.28.已知函数.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,求证:.解:(1),①若,所以f(x)在(0,+∞)上单调递增;②若,解x2﹣x+a>0,得,或,解x2﹣x+a<0,得,此时f(x)在上单调递减.在上单调递增,在上单调递增.综上,当时,f(x)在(0,+∞)上单调递增,当时,f(x)在上单调递减,在上单调递增,在上单调递增.(2)由(1)知时,f(x)存在两个极值点x1,x2,且x1,x2是方程x2﹣x+a=0的两根,所以x1+x2=1,x1•x2=a,所以=,令,所以g(x)在上单调递减,所以,所以29.已知函数f(x)=aln(x+1)﹣(a∈R)(1)若f(1)是f(x)的极值,求a的值,并求f(x)的单调区间.(2)若x>0时,f(x)>0,求实数a的取值范围.解:(1)函数的定义域为(﹣1,+∞),函数的导数f′(x)=﹣,若f(1)是f(x)的极值,则f′(1)=0,即f′(1)=﹣==0得a=0,此时f′(x)=﹣,由f′(x)=0得x=1,当x>﹣1时,f′(x),f(x)的取值变化为x(﹣1,1) 1 (1,+∞)f′(x)﹣ 0 +f(x)单调递减极小值单调递增则f(x)的单调递减区间为(﹣1,1),递增区间为(1,+∞).(2)因为f(0)=0,f′(x)=﹣=,记h(x)=ae x+x2﹣1,则h(0)=a﹣1,且h′(x)=ae x+2x,当h(0)=a﹣1≥0,即a≥1时,h′(x)=ae x+2x>0,(x>0),h(x)=ae x+x2﹣1,在(0,+∞)上单调递增,故x>0时,h(x)>h(0)=a﹣1≥0,则f′(x)>0,则f(x)在(0,+∞)上单调递增,故f(x)≥f(0)=0,符合.当h(0)=a﹣1<0,即a<1时,则存在m>0使得x∈(0,m)时,h(x)<0,此时f′(x)<0,f(x)在(0,m)上单调递减,当0<x<m时,f(x)<f(0)=0,不符合,综上实数a的取值范围是[1,+∞).30.设函数f(x)=x3+4x2+4x+c.(1)求曲线y=f(x)在点(0,f(0))处的切线方程.(2)若函数f(x)有三个不同的零点,求c的取值范围.解:f′(x)=3x2+8x+4.(1)因为f(0)=c,f′(0)=4,所以曲线y=f(x)在点(0,f(0))处的切线方程为:y=4x+c.(2)令f′(x)=0,得:3x2+8x+4=0,解得:x=﹣2或,f(x)与f′(x)在区间(﹣∞,+∞)上的情况如下:x(﹣∞,﹣2)﹣2f′(x)+ 0 ﹣0 +f(x)↗c↘↗所以,当c>0且时,存在x1∈(﹣4,﹣2),,,使得f(x1)=f(x2)=f(x3)=0.由f(x)的单调性知,当且仅当时,函数f(x)=x3+4x2+4x+c有三个不同的零点。

高三数学函数与导数试题答案及解析

高三数学函数与导数试题答案及解析

高三数学函数与导数试题答案及解析1.已知定义域为的函数,若对任意的,有,则称函数为“定义域上的函数”,以下五个函数:①;②;③;④;⑤,其中是“定义上的函数”的有A.2个B.3个C.4个D.5个【答案】C【解析】对于①,,满足条件;对于②,,当x1x2>0时,不满足,故②不是“定义域上的函数”;对于③,,因为,所以,故,③满足条件;对于④,,故④满足条件;对于⑤,,因为,所以,可得,故⑤满足条件.是“定义域上的函数”有①③④⑤,共4个.【考点】1.新定义问题;2.函数性质的应用.2.设函数,,其中,且,则.【答案】【解析】根据题意有.【考点】函数值求和.3.幂函数过点,则= .【答案】【解析】根据题意可知,解得或,又因为,解得,故.【考点】幂函数解析式的求解.4.若实数满足,且,则的最小值为.【答案】4【解析】由已知,,又,所以(当且仅当时取等号),所以最小值为4.【考点】基本不等式.5.设函数,其中.(Ⅰ)当时,求曲线在原点处的切线方程;(Ⅱ)试讨论函数极值点的个数;(Ⅲ)求证:对任意的,不等式恒成立.【答案】(Ⅰ)切线方程为;(Ⅱ)当时,无极值点;当时,有2个极值点;当时,有1个极值点;(Ⅲ)证明过程详见解析.【解析】(Ⅰ)求出导函数,并求出x=0时的导数即切线的斜率,然后由直线的点斜式求出切线方程;(Ⅱ)求出导函数,并讨论其等号函数,从三种情况讨论,并在当时,导函数等于零时的根于区间端点-1的大小为分类标准进行讨论求解;(Ⅲ)构造函数函数,利用导数法证明即恒成立.取即可证明.试题解析:(Ⅰ)当时,,则,曲线在原点处的切线方程为(Ⅱ),令当时,,所以0,则0,所以在上为增函数,所以无极值点;当时,,所以0,则0,所以在上为增函数,所以无极值点;当时,,令0,则,当时,,,此时有2个极值点;当时,,,此时有1个极值点;综上:当时,无极值点;当时,有2个极值点;当时,有1个极值点; 8(Ⅲ)对于函数,令函数则,,所以函数在上单调递增,又时,恒有即恒成立.取,则有恒成立,即不等式恒成立.【考点】①求切线方程;②讨论函数的极值点个数;ƒ证明不等式.【方法点睛】利用导数证明不等式:构造辅助函数,把不等式的证明转化为利用导函数研究函数的单调性或最值,从而证明不等式,而构造函数是用导数证明不等式的关键.构造辅助函数的一般方法及解题程序如下:1.移项(有时需要作简单的横等变形),使不等式的一端为零,另一端即为所构造的函数;2.求,并验证在指定区间上的单调性;3.求出区间端点的函数值(最值),作比较即得所证.6.甲、乙两地相距千米,汽车从甲地匀速行驶到乙地,速度不得超过千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度(千米/时)的平方成正比,比例系数为,固定部分为元,(1)把全程运输成本(元)表示为速度(千米/时)的函数,指出定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?全程运输成本最小是多少?【答案】(1)(2)为使全程运输成本y最小,当时,行驶速度为100,此时运输成本为1200元,当c<100时,行驶速度为c,此时运输成本为【解析】(1)依题意知汽车从甲地匀速行驶到乙地所用时间为,全程运输成本为(2)由(1)知,全程运输成本关于速度的函数表达式中出现了积为定值的情形,由于等号成立的条件有可能不成立,故求最值的方法不确定,对速度的范围进行分类讨论,如等号成立时速度值不超过,则可以用基本不等式求求出全程运输成本的最小值,若等号成立时速度值大于最高限速,可以判断出函数在上的单调性,用单调性求出全程运输成本的最小值.试题解析:(1)全程运输成本为(2)依题意,有,当且仅当即时上式中等号成立而所以当取最小值,所以也即当=100时,全程运输成本最小达到1200元当时综上,为使全程运输成本最小,当时,行驶速度为100,此时运输成本为1200元,当时,行驶速度为,此时运输成本为【考点】基本不等式在实际应用问题的应用【名师】本题主要考查建立函数关系、不等式性质、最大值、最小值等基础知识,考查综合应用所学数学知识、思想和方法解决实际问题的能力.属中档题.特别注意在解第(2)问时由(1)知,全程运输成本关于速度的函数表达式中出现了积为定值的情形,由于等号成立的条件有可能不成立,故求最值的方法不确定,对速度的范围进行分类讨论,如等号成立时速度值不超过,则可以用基本不等式求求出全程运输成本的最小值,若等号成立时速度值大于最高限速,可以判断出函数在上的单调性,用单调性求出全程运输成本的最小值.7.设是定义在上的函数,其导函数为,若+,,则不等式(其中为自然对数的底数)的解集为()A.B.C.D.【答案】D【解析】构造函数,因此,故函数在上是减函数,所以,即,因此的解集,故答案为D.【考点】1、构造辅助函数;2、导数在函数单调性中的应用.【思路点睛】本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键,根据题意构造辅助函数,,研究的单调性,结合原函数的性质和函数值即可求解.8.已知,函数,若关于的方程有6个解,则的取值范围为()A.B.C.D.【答案】D【解析】函数在上递减,在和上递增,的图象如图所示,由于方程最多只有两解,因此由题意有三解,所以且三解满足,,,,所以有两解,,,所以,故选D.【考点】函数的零点,方程根的分布.【名师点晴】本题考查方程根的分布,难度很大.它是一个与复合函数有关的问题,解题方法与我们常规方法不一样,常规方法是求出函数的表达式,解方程或作出函数的图象,由数形结合方法得出结论,但本题的表达式很复杂,由于含有参数,几乎不能求出正确结果,因此我们从复合函数的角度来考虑,以简化方法.方程可以这样解,求出方程的解为,再解方程即得,这样得到题中解法.9.设函数.(1)若函数是定义域上的单调函数,求实数的取值范围;(2)若,试比较当时,与的大小;(3)证明:对任意的正整数,不等式成立.【答案】(1);(2);(3)见解析.【解析】(1)依题意,函数是定义域上的单调函数,其导数恒大于等于零或者恒小于等于零,求导之后利用分离常数法来解决.(2)构造新函数,注意到,利用导数判断的单调性即可解决.(3)利用(2)得出结论,,对进行赋值,令,,即有所以(),进而华健不等式的左边每一项,最后求和就可以证明.试题解析:(1)∵又函数在定义域上是单调函数.∴或在上恒成立若在上恒成立,即函数是定义域上的单调地增函数,则在上恒成立,由此可得;若在上恒成立,则在上恒成立.即在上恒成立.∵在上没有最小值∴不存在实数使在上恒成立.综上所述,实数的取值范围是.(2)当时,函数.令则显然,当时,,所以函数在上单调递减又,所以,当时,恒有,即恒成立.故当时,有(3)法1:证明:由(2)知即令,,即有所以()因此故对任意的正整数,不等式成立.法2:数学归纳法证明:1、当时,左边=,右边=,原不等式成立.2、设当时,原不等式成立,即则当时,左边=只需证明即证,即证由(2)知即令,即有所以当时成立由1、2知,原不等式成立【考点】1、导数的运算;2、利用导数判断函数的单调性;3、利用导数求函数的极值和最值;4、恒成立问题.【思路点睛】本题第一问考查分离常数法解不等式问题,分离常数法是解不等式恒成立问题可以首先采用的方法.第二问是利用导数证明不等式,基本的思路是先直接作差构造一个函数,然后利用导数作为工具,求出函数的单调区间,结合特殊点就可以求解出结论.第三问是在第二问的基础上,对自变量进行赋值,转化为数列的问题来求解.三个问题,考查三个基本方法,是一个不错的题目.10.函数的定义域是()A.B.C.D.【答案】B【解析】由题意,得,解得,所以函数的定义域为,故选B.【考点】1、函数的定义域;2、不等式的解法.【方法点睛】求函数的定义域的依据就是要使函数的解析式有意义的自变量的取值范围,其求解根据一般有:(1)分式中,分母不为零;(2)偶次根式中,被开方数非负;(3)对数的真数大于0;(4)实际问题还需要考虑使题目本身有意义.11.已知函数在上是增函数,,若,则的取值范围是()A.B.C.D.【答案】B【解析】因为函数在上是增函数,所以在上是减函数,且是偶函数,所以在上是减函数,在上是增函数,由,得,即,解得;故选B.【考点】1.函数的图象变换;2.函数的单调性;3.对数不等式.12.已知函数若,则的取值范围是_______.【答案】或【解析】当时,由,得;当时,由,得,所以的取值范围是或.【考点】1、分段函数;2、指数函数、对数函数的图象与性质.【方法点睛】对于分段函数的求值问题,一定要注意自变量的取值对应着哪一段区间,就使用哪一段解析式,体现考纲中要求了解简单的分段函数并能应用,解题中需要注意分段函数的分段区间及其对应区间上的解析式,千万别代错解析式.13.下列函数中,既不是奇函数,也不是偶函数的是()A.B.C.D.【答案】C【解析】A:既是奇函数,又是偶函数;B:是奇函数;C:的定义域为,不关于原点对称,既不是奇函数,又不是偶函数;D:其定义域为关于原点对称,且,故为偶函数,故选C.【考点】函数的奇偶性判定.14.()A.B.C.D.【答案】C【解析】,故选C.【考点】定积分15.函数的定义域是___________.【答案】【解析】由题意,得,解得,即函数的定义为.【考点】函数的定义域.【知识点睛】求函数的定义域的依据就是要使函数的解析式有意义的自变量的取值范围.其求解根据一般有:(1)分式中,分母不为零;(2)偶次根式中,被开方数非负;(3)对数的真数大于0;(4)实际问题还需要考虑使题目本身有意义.16.对于实数和,定义运算“*”:,设,且关于的方程为恰有三个互不相等的实数根,则的取值范围是.【答案】【解析】由所给的新定义的含义可得如图所示,要使方程恰有三个互不相等的实数根,需满足当时,是方程即的两个根,所以当时,是方程即的根,所以所以,令,令所以,则令,解得因为,所以在单调递减所以所以所以的取值范围为故答案为【考点】新定义的函数问题;分段函数;函数与方程.【方法定睛】本题是一道新定义题,通过这道题发现,新定义问题并不神秘,表面上是没有见过的问题,但是只要理解了新定义并紧扣新定义,抓住新定义本质特征或隐含的规律,或抓住新定义运算法则或顺序,就可将其转化为我们熟悉的问题.17.设为三角形三边长,,若,则三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定【答案】B【解析】∵,∴,即,∴,即,故三角形的形状为直角三角形,故选:B.【考点】三角形的形状判断.【思路点睛】本题考查的知识点是三角形形状判断,对数的运算性质,熟练掌握对数的换底公式是解决本题的关键,结合对数的运算性质,及换底公式的推论,可将已知化为:,再由勾股定理判断出三角形的形状.18. 已知函数,若的图像的一条切线经过点,则这条切线与直线及轴所围成的三角形面积为( ) A .B .1C .2D .【答案】C 【解析】设函数经过点的切线的切点为,则即切线的斜率为,由斜率公式得所以,所以斜率,切点为,切线方程为其与直线,及轴围成的三角形面积为,故选C .【考点】利用导数研究曲线上某点的切线.19. 已知x 0是函数的一个零点.若x 1∈(1,x 0),x 2∈(x 0,+∞),则( )A .f(x 1)<0,f(x 2)<0B .f(x 1)<0,f(x 2)>0C .f(x 1)>0,f(x 2)<0D .f(x 1)>0,f(x 2)>0【答案】 【解析】函数是单调递增函数,又因为,,所以,,故选B.【考点】1.函数的性质;2.函数的零点.20. 已知函数在定义域上表示的曲线过原点,且在处的切线斜率均为.有以下命题: ①是奇函数;②若在内递减,则的最大值为;③若的最大值为,最小值为,则;④若对,恒成立,则的最大值为.其中正确命题的个数为( ) A .个B .个C .个D .个【答案】B【解析】由题意得函数过原点,则.又.则必有,解得,所以.令得.则函数在上的最小值是负数.由此得函数图象大致如图:得出结论是:①③正确;②④错误.故选B .【考点】导数几何意义,函数图像与性质【思路点睛】(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.21.已知函数是定义域为的偶函数,当时,,若关于的方程,有且仅有个不同实数根,则实数的取值范围是()A.B.C.D.【答案】C【解析】,作函数的图象如右图,要使关于的方程,有且仅有个不同实数根,设,则当,方程,有个根,当,方程,有个根,当或,方程,有个根,当,方程,有个根,当,方程,有个根.则方程的两个根为;①若,则,故;②若,则,故.综上,实数的取值范围是.故选C.【考点】根的存在性及根的个数判断.【方法点睛】根据函数的奇偶性作出分段函数的图象,利用换元法判断函数的根的个数,再利用数形结合即可得到结论.本题主要考查分段函数的应用,根的存在性及根的个数判断,本题既考查了函数的性质的判断与应用,又考查了数形结合的思想的应用.利用换元法结合函数奇偶性的对称性,利用数形结合是解决本题的关键.综合性较强,属于压轴题.22.有一批货物需要用汽车从生产商所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.据调查统计,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频率分布如下表:假设汽车只能在约定日期(某月某日)的前11天出发,汽车只能在约定日期的前12天出发(将频率视为概率).(l)为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车和汽车应如何选择各自的路径;(2)若通过公路1、公路2的“一次性费用”分别为3.2万元、1.6万元(其他费用忽略不计),此项费用由生产商承担.如果生产商恰能在约定日期当天将货物送到,则销售商一次性支付给生产商40万元,若在约定日期前送到,每提前一天销售商将多支付给生产商2万元;若在约定日期后送到,每迟到一天,生产商将支付给销售商2万元.如果汽车按(1)中所选路径运输货物,试比较哪辆汽车为生产商获得的毛利润更大.【答案】(1)汽车选择公路,汽车选择公路;(2)汽车为生产商获得毛利润更大.【解析】(1)依据题设条件计算概率,通过比较分析求解;(2)借助题设条件运用数学期望的大小分析推证.试题解析:(1)频率分布表,如下:设分别表示汽车在约定日期前11天出发选择公路1、2将货物运往城市乙;、分别表示汽车在约定日期前12天出发选择公路1、2将货物运往城市乙;,,,,所以汽车选择公路1,汽车选择公路2.(Ⅱ)设表示汽车选择公路1时,销售商付给生产商的费用,则.的分布列如下:.∴表示汽车选择公路1时的毛利润为(万元).设表示汽车选择公路2时的毛利润,.则的分布列如下:∵,∴汽车为生产商获得毛利润更大.【考点】概率和随机变量的分布列与数学期望等有关知识的运用.23.已知函数若存在实数,使函数有两个零点,则实数的取值范围是()A.B.C.D.【答案】C【解析】画出函数的图象如下图所示,由图象可知在区间符合题意.【考点】1.分段函数;2.零点问题;3.不等式.【思路点晴】函数零点个数的判断方法:(1)直接求零点:令,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要求函数在区间上是连续不断的曲线,且·,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.函数零点个数的判断通常转化为两函数图象交点的个数,其步骤是:(1)令;(2)构造,;(3)作出图象;(4)由图象交点个数得出结论.24.已知函数.若,则实数的取值范围是()A.B.C.D.【答案】D【解析】因为令,则就是.画出函数的图象可知,,或,即或.由得,或.由.由得,或.再根据图象得到,故选D.【考点】1、分段函数的解析式;2、分段函数的图象和性质及数形结合思想.【方法点睛】本题主要考查分段函数的解析式、分段函数的图象和性质及数形结合思想,属于难题. 数学中常见的思想方法有:函数与方程的思想、分类讨论思想、转化与划归思想、数形结合思想、建模思想等等. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决选择题、填空题是发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将已知函数的性质研究透,这样才能快速找准突破点. 充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解,解答本题的关键是根据函数的图象,先由,求的范围,再根据图象求的范围.25.已知函数,则当时,函数的零点个数是A.B.C.D.【答案】D【解析】令,得.设,则.由图知,方程有两解,,且,.从而方程有两解,方程也有两解.所以方程有个解,选D.【考点】1、分段函数;2、函数的零点.26.已知,又若满足的有四个,则的取值范围为()A.B.C.D.【答案】B【解析】依题意,即,由于这个是对钩函数,可排除A,C,D.也可以画出函数图象如下图所示,要有四个交点,则选B.【考点】函数图象与性质.【思路点晴】先按题意,我们将其分类参数,也就是说,把含有的放一边,其它的方另外一边,得到,此时,可以利用基本不等式得到,由于这个是对钩函数,易排除A,C,D.当我们在研究两个函数有四个零点问题的时候,也可以先分离参数,将不含参数部分的图象画出来,根据图象来求参数的取值范围.27.已知函数,函数在处的切线与直线垂直.(Ⅰ)求实数的值;(Ⅱ)若函数存在单调递减区间,求实数的取值范围;(Ⅲ)设是函数的两个极值点,若,求的最小值.【答案】(Ⅰ)(Ⅱ)(Ⅲ)【解析】(Ⅰ)由导数几何意义得,求出导数,代入解得(Ⅱ)函数存在单调递减区间,等价于在上有解,求出导函数化简不等式得在上有解,最后根据二次方程实根分布得充要条件,解得b的取值范围是.(Ⅲ)先根据是函数的两个极值点,即是两个根,得,再化简,消参数b得,再令得,解得,由解出函数定义域:,可得,最后利用导数求函数最值试题解析:(Ⅰ)∵,∴.∵与直线垂直,∴,∴.(Ⅱ)由题知在上有解,设,则,所以只需故b的取值范围是.(Ⅲ)令得由题,则,所以令,又,所以,所以整理有,解得,所以在单调递减故的最小值是【考点】导数几何意义,利用导数研究函数单调性,利用导数求函数最值【思路点睛】利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.28.已知是R上的增函数,则实数a的取值范围()A.[4,8 )B.(4,8)C.(1,8)D.(1, +∞)【答案】A.【解析】由题意得,选A.【考点】分段函数单调性【方法点睛】已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间[a,b]上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.29.直线分别与曲线交于点,则的最小值为()A.2B.C.1D.【答案】A【解析】令,令,在上为增函数,即在区间成立,而的导数恒为,也就是说,从起,越来越陡,保持匀速递增,两个图象的水平距离越来越大,故当时,取得最小值为.【考点】函数导数与不等式,数形结合的数学思想.【思路点晴】本题考查函数导数与不等式,数形结合的数学思想方法.一开始,我们可以先利用导数画出两个函数的图象.对比这两个图象间的水平距离,会发现可以先求出函数的切线与平行的那条的方程,由此就可以求出两者水平距离的最小值.由于是匀速递增的,而在增加得越来越快,从图象上看出,两种水平距离越来越大.30.已知函数的定义在实数集上的奇函数,且当时,(其中是的导函数),若,,,则A.B.C.D.【答案】A【解析】因为是奇函数,则,则不等式为,即,设,则是偶函数,又,所以是上的减函数,是上的增函数,,,又,所以,即.故选A.【考点】函数的奇偶性,单调性.导数的应用.【名师】1.奇函数在和上的单调性相同,偶函数在和上的单调性相反,2.对于已知不等式中既有又有,一般不能直接确定的正负,即不能确定的单调性,这时要求我们构造一个新函数,以便利用已知不等式判断其导数的的正负,常见的构造新函数有,,,等等.31.函数且,则 .【答案】【解析】时,,此方程无解,当时,,所以.【考点】分段函数求值.32.已知为奇函数,则的值为()A.B.C.D.【答案】A【解析】因为函数为奇函数,则,故选A.【考点】函数的奇偶性.33.已知函数,若对,使得,则的取值范围是()A.B.C.D.【答案】C【解析】因为,使得等价于,又因为,(时等号成立),,所以,即,故选C.【考点】1、全称量词与存在量词的应用;2、对数函数的性质及配方法求最值.【方法点睛】本题主要考查函数的最值、全称量词与存在量词的应用,属于难题.解决这类问题的关键是理解题意、正确把问题转化为最值和解不等式问题,全称量词与存在量词的应用共分四种情况:(1)只需;(2),只需;(3),只需;(4),,.34.已知函数,恒过点,且.(1)求的解析式;(2)若对都成立,求实数的取值范围;(3)当时,证明:.【答案】(1);(2);(3)证明见解析.【解析】(1)由恒过点,∴,由得,进而;(2)对都成立等价于,只需利用导数求出最大值即可;(3)设,则可得∴在上单调递增,成立,即可证原式.试题解析:(1)由题意得恒过点,∴,又∵,∴,∴.(2),即,即,设,令,得,∴在上单调递增,在上单调递减,,∴.(3)设,则,由(2)得,当时,,所以>0,∴在上单调递增,又∵,∴,即,即,得证.【考点】1、利用导数函数的单调性及求最值;2、不等式恒成立问题及不等式证明问题.【方法点睛】本题主要考查利用导数研究函数的单调性、不等式恒成立及不等式的证明,属于难题.不等式证明问题是近年高考命题的热点,命题主要是和导数、绝对值不等式及柯西不等式相结合,导数部分一旦出该类型题往往难度较大,要准确解答首先观察不等式特点,结合已解答的问题把要证的不等式变形,并运用已证结论先行放缩,然后再化简,或者构造新函数进一步利用导数证明.本题(3)就是构造函数后利用单调性证明的.35.某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算该项目月处理成本(元)与月处理量(吨)之间的函数关系可以近似地表示为:,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将给予补贴.(1)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府。

《函数与导数》测试题(含标准答案)

《函数与导数》测试题(含标准答案)

《函数与导数》测试题一、选择题1.函数的单调递增区间是( )A. B.(0,3) C.(1,4) D 。

解析 ,令,解得,故选D2。

已知直线y=x+1与曲线相切,则α的值为 ( )A.1 B. 2 C 。

-1 D 。

-2 解:设切点,则,又。

故答案 选B 3。

已知函数在R 上满足,则曲线在点处的切线方程是( )A. B 。

C. D 。

解析 由得几何,即,∴∴,∴切线方程,即选A4。

存在过点的直线与曲线和都相切,则等于() A .或 B .或 C .或 D .或解析 设过的直线与相切于点,所以切线方程为即,又在切线上,则或,x e x x f )3()(-=)2,(-∞),2(+∞()()(3)(3)(2)x x x f x x e x e x e '''=-+-=-()0f x '>2x >y ln()x a =+00(,)P x y 0000ln 1,()y x a y x =+=+0'01|1x x y x a===+00010,12x a y x a ∴+=∴==-∴=()f x 2()2(2)88f x f x x x =--+-()y f x =(1,(1))f 21y x =-y x =32y x =-23y x =-+2()2(2)88f x f x x x =--+-2(2)2()(2)8(2)8f x f x x x -=--+--22()(2)44f x f x x x --=+-2()f x x =/()2f x x =12(1)y x -=-210x y --=(1,0)3y x =21594y ax x =+-a 1-25-641-21474-25-6474-7(1,0)3y x =300(,)x x 320003()y x x x x -=-230032y x x x =-(1,0)00x =032x =-当时,由与相切可得, 当时,由与相切可得,所以选. 5。

【高考冲刺】2020年高考数学(理数) 函数与导数 大题(含答案解析)

【高考冲刺】2020年高考数学(理数) 函数与导数 大题(含答案解析)

【高考复习】2020年高考数学(理数)函数与导数 大题1.已知函数f(x)=ln xx +a (a∈R),曲线y=f(x)在点(1,f(x))处的切线与直线x +y +1=0垂直.(1)试比较2 0172 018与2 0182 017的大小,并说明理由;(2)若函数g(x)=f(x)-k 有两个不同的零点x 1,x 2,证明:x 1x 2>e 2.2.已知函数f(x)=kx-ln x-1(k>0).(1)若函数f(x)有且只有一个零点,求实数k 的值;(2)证明:当n∈N *时,1+12+13+ (1)>ln(n +1).3.已知函数f(x)=ax-ln x ,F(x)=e x+ax ,其中x>0,a<0.(1)若f(x)和F(x)在区间(0,ln 3)上具有相同的单调性,求实数a 的取值范围;(2)若a∈⎝⎛⎦⎥⎤-∞,-1e 2,且函数g(x)=xe ax-1-2ax +f(x)的最小值为M ,求M 的最小值.4.已知函数f(x)=ln x +tx-s(s ,t∈R).(1)讨论f(x)的单调性及最值;(2)当t=2时,若函数f(x)恰有两个零点x 1,x 2(0<x 1<x 2),求证:x 1+x 2>4.5.已知函数f(x)=(2+x +ax 2)·ln(1+x)-2x.(1)若a=0,证明:当-1<x<0时,f(x)<0;当x>0时,f(x)>0; (2)若x=0是f(x)的极大值点,求a.6.已知函数f(x)=ln x +2ax +1(a∈R).(1)求函数f(x)的单调区间;(2)当a=1时,求证:f(x)≤x +12.7.已知函数f(x)=ln x-a(x +1),a∈R 的图象在(1,f(1))处的切线与x 轴平行.(1)求f(x)的单调区间;(2)若存在x 0>1,当x∈(1,x 0)时,恒有f(x)-x 22+2x +12>k(x-1)成立,求k 的取值范围.8.已知函数f(x)=xe x-a 3x 2-a 2x ,a≤e,其中e 为自然对数的底数.(1)当a=0,x>0时,证明:f(x)≥ex 2; (2)讨论函数f(x)极值点的个数.9.已知函数f(x)=x-1-alnx(其中a 为参数).(1) 求函数f(x)的单调区间;(2) 若对任意x ∈(0,+∞)都有f(x)≥0成立,求实数a 的取值集合;(3) 证明:⎝ ⎛⎭⎪⎫1+1n n <e<⎝ ⎛⎭⎪⎫1+1n n +1(其中n ∈N *,e 为自然对数的底数).10.已知函数f(x)=⎩⎪⎨⎪⎧-x 3+x 2,x<0,e x-ax ,x ≥0,其中常数a∈R .(1) 当a=2时,求函数f(x)的单调区间;(2) 若方程f(-x)+f(x)=e x-3在区间(0,+∞)上有实数解,求实数a 的取值范围; (3) 若存在实数m ,n ∈[0,2],且|m-n|≥1,使得f(m)=f(n),求证:1≤ae -1≤e.答案解析1.解:(1) 20172 018>2 0182 017.理由如下:依题意得,f′(x)=x +ax-ln x +2,因为函数f(x)在x=1处有意义,所以a≠-1.所以f′(1)=1+a +2=11+a, 又由过点(1,f(1))的切线与直线x +y +1=0垂直可得,f′(1)=1,即11+a=1,解得a=0.此时f(x)=ln x x ,f′(x)=1-ln xx2, 令f′(x)>0,即1-ln x>0,解得0<x<e ; 令f′(x)<0,即1-ln x<0,解得x>e.所以f(x)的单调递增区间为(0,e),单调递减区间为(e ,+∞).所以f(2 017)>f(2 018),即ln 2 0172 017>ln 2 0182 018,则2 018ln 2 017>2 017ln 2 018,所以2 0172 018>2 0182 017.(2)证明:不妨设x 1>x 2>0,因为g(x 1)=g(x 2)=0, 所以ln x 1-kx 1=0,ln x 2-kx 2=0.可得ln x 1+ln x 2=k(x 1+x 2),ln x 1-ln x 2=k(x 1-x 2),要证x 1x 2>e 2,即证ln x 1+ln x 2>2,也就是k(x 1+x 2)>2,因为k=ln x 1-ln x 2x 1-x 2,所以只需证ln x 1-ln x 2x 1-x 2>2x 1+x 2,即ln x 1x 2>1-x 2x 1+x 2,令x 1x 2=t ,则t>1,即证ln t>-t +1.令h(t)=ln t--t +1(t>1).由h′(t)=1t -4+2=-2+2>0得函数h(t)在(1,+∞)上是增函数,所以h(t)>h(1)=0,即ln t>-t +1.所以x 1x 2>e 2. 2.解:(1) f(x)=kx-ln x-1,f′(x)=k-1x =kx -1x(x>0,k>0),当x=1k 时,f′(x)=0;当0<x<1k 时,f′(x)<0;当x>1k时,f′(x)>0.∴f(x)在⎝ ⎛⎭⎪⎫0,1k 上单调递减,在⎝ ⎛⎭⎪⎫1k ,+∞上单调递增, ∴f(x)min =f ⎝ ⎛⎭⎪⎫1k =ln k , ∵f(x)有且只有一个零点, ∴ln k=0,∴k=1.(2)证明:由(1)知x-ln x-1≥0,即x-1≥ln x,当且仅当x=1时取等号,∵n∈N *,令x=n +1n ,得1n >ln n +1n,∴1+12+13+…+1n >ln 21+ln 32+…+ln n +1n =ln(n +1),故1+12+13+…+1n >ln(n +1).3.解:(1)由题意得f′(x)=a-1x =ax -1x,F′(x)=e x+a ,x>0,∵a<0,∴f′(x)<0在(0,+∞)上恒成立,即f(x)在(0,+∞)上单调递减, 当-1≤a<0时,F′(x)>0,即F(x)在(0,+∞)上单调递增,不合题意, 当a<-1时,由F′(x)>0,得x>ln(-a),由F′(x)<0,得0<x<ln(-a), ∴F(x)的单调递减区间为(0,ln(-a)),单调递增区间为(ln(-a),+∞). ∵f(x)和F(x)在区间(0,ln 3)上具有相同的单调性, ∴ln(-a)≥ln 3,解得a≤-3, 综上,a 的取值范围是(-∞,-3].(2)g′(x)=e ax-1+axe ax-1-a-1x =(ax +1)⎝⎛⎭⎪⎫e ax -1-1x ,由e ax-1-1x =0,解得a=1-ln x x ,设p(x)=1-ln x x ,则p′(x)=ln x -2x 2, 当x>e 2时,p′(x)>0,当0<x<e 2时,p′(x)<0,从而p(x)在(0,e 2)上单调递减,在(e 2,+∞)上单调递增,p(x)min =p(e 2)=-1e2,当a≤-1e 2时,a≤1-ln x x ,即e ax-1-1x≤0,当x∈⎝ ⎛⎭⎪⎫0,-1a 时,ax +1>0,g′(x)≤0,g(x)单调递减, 当x∈⎝ ⎛⎭⎪⎫-1a ,+∞时,ax +1<0,g′(x)≥0,g(x)单调递增,∴g(x)min =g ⎝ ⎛⎭⎪⎫-1a =M , 设t=-1a ∈(0,e 2],M=h(t)=t e2-ln t +1(0<t≤e 2),则h′(t)=1e 2-1t ≤0,h(t)在(0,e 2]上单调递减,∴h(t)≥h(e 2)=0,即M≥0, ∴M 的最小值为0. 4.解:(1)f′(x)=x -tx2(x>0),当t≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增,f(x)无最值; 当t>0时,由f′(x)<0,得x<t ,由f′(x)>0,得x>t , f(x)在(0,t)上单调递减,在(t ,+∞)上单调递增,故f(x)在x=t 处取得最小值,最小值为f(t)=ln t +1-s ,无最大值. (2)∵f(x)恰有两个零点x 1,x 2(0<x 1<x 2),∴f(x 1)=ln x 1+2x 1-s=0,f(x 2)=ln x 2+2x 2-s=0,得s=2x 1+ln x 1=2x 2+ln x 2,∴2-x 1x 1x 2=ln x 2x 1,设t=x 2x 1>1,则ln t=-tx 1,x 1=-tln t,故x 1+x 2=x 1(t +1)=2-tln t ,∴x 1+x 2-4=2⎝ ⎛⎭⎪⎫t 2-1t -2ln t ln t,记函数h(t)=t 2-1t-2ln t ,∵h′(t)=-2t2>0,∴h(t)在(1,+∞)上单调递增, ∵t>1,∴h(t)>h(1)=0,又t=x 2x 1>1,ln t>0,故x 1+x 2>4成立.5.解:(1)证明:当a=0时,f(x)=(2+x)ln(1+x)-2x ,f′(x)=ln(1+x)-x1+x. 设函数g(x)=ln(1+x)-x 1+x ,则g′(x)=x+2. 当-1<x<0时,g′(x)<0;当x>0时,g′(x)>0, 故当x>-1时,g(x)≥g(0)=0, 且仅当x=0时,g(x)=0,从而f′(x)≥0,且仅当x=0时,f′(x)=0. 所以f(x)在(-1,+∞)上单调递增. 又f(0)=0,故当-1<x<0时,f(x)<0;当x>0时,f(x)>0. (2)①若a≥0,由(1)知,当x>0时,f(x)≥(2+x)ln(1+x)-2x>0=f(0), 这与x=0是f(x)的极大值点矛盾. ②若a<0,设函数h(x)=2+x +ax 2=ln(1+x)-2x2+x +ax2.由于当|x|<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a|时,2+x +ax 2>0, 故h(x)与f(x)符号相同. 又h(0)=f(0)=0,故x=0是f(x)的极大值点,当且仅当x=0是h(x)的极大值点.h′(x)=11+x -+x +ax 2-++x +ax 22=x 22x 2+4ax +6a ++2+x +2.若6a +1>0,则当0<x<-6a +14a, 且|x|<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a|时,h′(x)>0, 故x=0不是h(x)的极大值点.若6a +1<0,则a 2x 2+4ax +6a +1=0存在根x 1<0,故当x∈(x 1,0),且|x|<min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1,1|a|时,h′(x)<0,所以x=0不是h(x)的极大值点.若6a +1=0,则h′(x)=x 3-+2-6x -2,则当x∈(-1,0)时,h′(x)>0; 当x∈(0,1)时,h′(x)<0. 所以x=0是h(x)的极大值点, 从而x=0是f(x)的极大值点.综上,a=-16.6.解:(1)f(x)的定义域为(0,+∞),f′(x)=x 2+-+1+2.考虑y=x 2+2(1-a)x +1,x>0.①当Δ≤0,即0≤a≤2时,f′(x)≥0,f(x)在(0,+∞)上单调递增. ②当Δ>0,即a>2或a<0时,由x 2+2(1-a)x +1=0,得x=a-1±a 2-2a.若a<0,则f′(x)>0恒成立,此时f(x)在(0,+∞)上单调递增;若a>2,则a-1+a 2-2a>a-1-a 2-2a>0,由f′(x)>0,得0<x<a-1-a 2-2a 或x>a-1+a 2-2a ,则f(x)在(0,a-1-a 2-2a)和(a-1+a 2-2a ,+∞)上单调递增.由f′(x)<0,得a-1-a 2-2a<x<a-1+a 2-2a ,则f(x)在(a-1-a 2-2a ,a-1+a 2-2a)上单调递减.综上,当a≤2时,函数f(x)的单调递增区间为(0,+∞),无单调递减区间;当a>2时,f(x)的单调递增区间为(0,a-1-a 2-2a),(a-1+a 2-2a ,+∞),单调递减区间为(a-1-a 2-2a ,a-1+a 2-2a).(2)证明:当a=1时,f(x)=ln x +2x +1.令g(x)=f(x)-x +12=ln x +2x +1-x +12(x>0), 则g′(x)=1x -2+2-12=2-x -x 3+2=--2+x ++2. 当x>1时,g′(x)<0,当0<x<1时,g′(x)>0,∴g(x)在(0,1)上单调递增,在(1,+∞)上单调递减, 即当x=1时,g(x)取得最大值,故g(x)≤g(1)=0,即f(x)≤x +12成立,得证.7.解:(1)由已知可得f(x)的定义域为(0,+∞).∵f′(x)=1x -a ,∴f′(1)=1-a=0,∴a=1,∴f′(x)=1x -1=1-xx,令f′(x)>0得0<x<1,令f′(x)<0得x>1,∴f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).(2)不等式f(x)-x 22+2x +12>k(x-1)可化为ln x-x 22+x-12>k(x-1),令g(x)=ln x-x 22+x-12-k(x-1),则g′(x)=1x -x +1-k=-x 2+-+1x,令h(x)=-x 2+(1-k)x +1,则h(x)的对称轴为直线x=1-k 2,①当1-k 2≤1,即k≥-1时,易知h(x)在(1,+∞)上单调递减,∴x∈(1,+∞)时,h(x)<h(1)=1-k , 若k≥1,则h(x)<0,∴g′(x)<0, ∴g(x)在(1,+∞)上单调递减, ∴g(x)<g(1)=0,不符合题意. 若-1≤k<1,则h(1)>0,∴存在x 0>1,使得x∈(1,x 0)时,h(x)>0,即g′(x)>0, ∴g(x)在(1,x 0)上单调递增,∴g(x)>g(1)=0恒成立,符合题意.②当1-k 2>1,即k<-1时,易知存在x 0>1,使得h(x)在(1,x 0)上单调递增,∴h(x)>h(1)=1-k>0, ∴g′(x)>0,∴g(x)在(1,x 0)上单调递增,∴g(x)>g(1)=0恒成立,符合题意. 综上,k 的取值范围是(-∞,1). 8.解:(1)证明:依题意,f(x)=xe x ,故原不等式可化为xe x ≥ex 2,因为x>0,所以只要证e x-ex≥0即可,记g(x)=e x-ex(x>0),则g′(x)=e x-e(x>0),当0<x<1时,g′(x)<0,g(x)单调递减; 当x>1时,g′(x)>0,g(x)单调递增,所以g(x)≥g(1)=0,即f(x)≥ex 2,原不等式成立.(2)f′(x)=e x -13ax 2-12ax +xe x -23ax -12a=(x +1)e x -ax(x +1)=(x +1)(e x-ax),记h(x)=e x -ax ,h′(x)=e x-a.(ⅰ)当a<0时,h′(x)=e x-a>0,h(x)在R 上单调递增,h(0)=1>0,h 1a =e 1a-1<0,所以存在唯一的x 0∈1a,0,使h(x 0)=0,且当x<x 0时,h(x)<0;当x>x 0,h(x)>0.①当x 0=-1,即a=-1e时,对任意x≠-1,f′(x)>0,此时f(x)在R 上单调递增,无极值点;②若x 0<-1,即-1e<a<0时,此时当x<x 0或x>-1时,f′(x)>0,即f(x)在(-∞,x 0),(-1,+∞)上单调递增;当x 0<x<-1时,f′(x)<0,即f(x)在(x 0,-1)上单调递减, 此时f(x)有一个极大值点x 0和一个极小值点-1.③若-1<x 0<0,即a<-1e时,此时当x<-1或x>x 0时,f′(x)>0,即f(x)在(-∞,-1),(x 0,+∞)上单调递增;当-1<x<x 0时,f′(x)<0,即f(x)在(-1,x 0)上单调递减,此时f(x)有一个极大值点-1和一个极小值点x 0.(ⅱ)当a=0时,f(x)=xe x ,所以f′(x)=(x +1)e x ,显然f(x)在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,此时f(x)有一个极小值点-1,无极大值点.(ⅲ)当0<a<e 时,由(1)可知,对任意x≥0,h(x)=e x -ax>e x -ex≥0,从而h(x)>0,而对任意x<0,h(x)=e x -ax>e x >0,所以对任意x ∈R ,h(x)>0,此时令f′(x)<0,得x<-1,令f′(x)>0,得x>-1,所以f(x)在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,此时f(x)有一个极小值点-1,无极大值点.(ⅳ)当a=e 时,由(1)可知,对任意x ∈R ,h(x)=e x -ax=e x -ex≥0(当且仅当x=1时,取等号),此时令f′(x)<0,得x<-1,令f′(x)≥0,得x≥-1,所以f(x)在(-∞,-1)上单调递减,在[-1,+∞)上单调递增,此时f(x)有一个极小值点-1,无极大值点.综上所述,①当a<-1e 或-1e<a<0时,f(x)有两个极值点; ②当a=-1e时,f(x)无极值点; ③当0≤a≤e 时,f(x)有一个极值点.9.解:(1) f ′(x)=1-a x =x -a x(x>0), 当a ≤0时,f ′(x)=1-a x =x -a x>0,所以f(x)在(0,+∞)上是增函数; 当a>0时,所以f(x)的增区间是(a ,+∞),减区间是(0,a).综上所述, 当a ≤0时,f(x)的单调递增区间是(0,+∞);当a>0时,f(x)的单调递增区间是(a ,+∞),单调递减区间是(0,a).(2) 由题意得f(x)min ≥0.当a ≤0时,由(1)知f(x)在(0,+∞)上是增函数,当x →0时,f(x)→-∞,故不合题意;(6分)当a>0时,由(1)知f(x)min =f(a)=a-1-alna ≥0.令g(a)=a-1-alna ,则由g ′(a)=-lna=0,得a=1,所以g(a)=a-1-alna ≤0,又f(x)min =f(a)=a-1-alna ≥0,所以a-1-alna=0,所以a=1,即实数a 的取值集合是{1}.(10分)(3) 要证不等式1+1n n <e<1+1nn +1, 两边取对数后,只要证nln1+1n <1<(n +1)ln1+1n ,即只要证1n +1<ln1+1n <1n,令x=1+1n ,则只要证1-1x<lnx<x-1(1<x ≤2). 由(1)知当a=1时,f(x)=x-1-lnx 在(1,2]上递增,因此f(x)>f(1),即x-1-lnx>0,所以lnx<x-1(1<x ≤2)令φ(x)=lnx +1x -1(1<x ≤2),则φ′(x)=x -1x 2>0, 所以φ(x)在(1,2]上递增,故φ(x)>φ(1),即lnx +1x -1>0,所以1-1x<lnx(1<x ≤2). 综上,原命题得证.10.解:(1) 当a=2时,f(x)=⎩⎪⎨⎪⎧-x 3+x 2,x<0,e x -2x ,x ≥0. ①当x<0时,f ′(x)=-3x 2+2x<0恒成立,所以f(x)在(-∞,0)上递减;②当x ≥0时,f ′(x)=e x -2,可得f(x)在[0,ln2]上递减,在[ln2,+∞)上递增.因为f(0)=1>0,所以f(x)的单调递减区间是(-∞,0)和[0,ln2],单调递增区间是[ln2,+∞).(2) 当x>0时,f(x)=e x -ax ,此时-x<0,f(-x)=-(-x)3+(-x)2=x 3+x 2.所以可化为a=x 2+x +3x在区间(0,+∞)上有实数解. 记g(x)=x 2+x +3x ,x ∈(0,+∞),则g ′(x)=2x +1-3x 2=(x -1)(2x 2+3x +3)x 2. 可得g(x)在(0,1]上递减,在[1,+∞)上递增,且g(1)=5,当x →+∞时,g(x)→+∞. 所以g(x)的值域是[5,+∞),即实数a 的取值范围是[5,+∞).(3) 当x ∈[0,2]时,f(x)=e x -ax ,有f ′(x)=e x -a.若a ≤1或a ≥e 2,则f(x)在[0,2]上是单调函数,不合题意.所以1<a<e 2,此时可得f(x)在[0,lna]上递减,在[lna ,2]上递增.不妨设0≤m<lna<n ≤2,则f(0)≥f(m)>f(lna),且f(lna)<f(n)≤f(2).由m ,n ∈[0,2],n-m ≥1,可得0≤m ≤1≤n ≤2.(12分)因为f(m)=f(n),所以⎩⎪⎨⎪⎧1<a<e 2,f (0)≥f (m )≥f (1),f (2)≥f (n )≥f (1),得⎩⎪⎨⎪⎧1<a<e 2,1≥e -a ,e 2-2a ≥e -a ,即e-1≤a ≤e 2-e ,所以1≤a e -1≤e.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数与导数大题训练1已知函数.23)32ln()(2x x x f -+= (I )求f (x )在[0,1]上的极值;(II )若对任意0]3)(ln[|ln |],31,61[>+'+-∈x x f x a x 不等式成立,求实数a 的取值范围;(III )若关于x 的方程b x x f +-=2)(在[0,1]上恰有两个不同的实根,求实数b 的取值范围.2. 设.2)(ln )()(2)(--==--=epqe e g x x f x f x q px x g ,且,其中(e 为自然对数的底数)(Ⅰ)求p 与q 的关系;(Ⅱ)若)(x g 在其定义域内为单调函数,求p 的取值范围; (Ⅲ)证明:①)1(,1)(->-≤x x x f②).2,()1(412ln 33ln 22ln 2222≥∈+--<+++n N n n n n nn Λ3.设函数a x x a x f +++-=1)(2,]1,0(∈x ,+∈R a . (1)若)(x f 在]1,0(上是增函数,求a 的取值范围; (2)求)(x f 在]1,0(上的最大值.答案1解:(I )23)13)(1(33323)(+-+-=-+='x x x x x x f , 令1310)(-==='x x x f 或得(舍去))(,0)(,310x f x f x >'<≤∴时当单调递增;当)(,0)(,131x f x f x <'≤<时单调递减. ……………………………………3分 ]1,0[)(613ln )31(在为函数x f f -=∴上的极大值 ……………………………4分(II )由0]3)(ln[|ln |>+'+-x x f x a 得xx a x x a 323lnln 323lnln ++<+->或, …………① ……………………5分 设332ln 323ln ln )(2x x x x x h +=+-=,xxx x x g 323ln323ln ln )(+=++=, 依题意知]31,61[)()(∈<>x x g a x h a 在或上恒成立,0)32(2)32(33)32(3332)(2>+=+⋅-+⋅+='x x x x x x x x g Θ, 03262)62(31323)(22>++=+⋅+='xx xx x x x h ,………………………………6分 ]31,61[)()(都在与x h x g ∴上单增,要使不等式①成立,当且仅当.51ln 31ln ),61()31(<><>a a g a h a 或即或 ………………………8分(III )由.0223)32ln(2)(2=-+-+⇒+-=b x x x b x x f令xx x x x b x x x x 329723323)(,223)32ln()(22+-=+-+='-+-+=ϕϕ则,当]37,0[)(,0)(,]37,0[在于是时x x x ϕϕ>'∈上递增;当]1,37[)(,0)(,]1,37[在于是时x x x ϕϕ<'∈上递减 ……………………10分 而)1()37(),0()37(ϕϕϕϕ>>, ]1,0[0)(2)(在即=+-=∴x b x x f ϕ恰有两个不同实根等价于⎪⎪⎪⎩⎪⎪⎪⎨⎧≤-+=>-+-+=≤-=0215ln )1(067267)72ln()37(02ln )0(b b b ϕϕϕ .37267)72ln(215ln +-+<≤+∴b …………… ……12分 2. 解:(I )由题意:,ln 2)(x x q px x g --= 又2)(--=eqpe e g 12 2 ()()011()()0 0,....... ........3q p pe qe p q e p q e e ep q e e p q e e∴--=--∴-+-=-+=+≠∴=而分(Ⅱ)由(I )知:,ln 2)(x xqpx x g --= 分恒成立或满足在只需为单调函数在要使令4..................................................................0)(0)(:),0()(,),0()(,2)(22)(2222'≤≥+∞+∞+-=+-=-+=x h x h x h x g p x px x h x px px x x p p x g ①当p=0时,h (x )=-2x'220 ()0,()0,()(0,), 0...... .. (5x)x h x g x x g x p >∴<∴=-<∴+∞∴=Q 在单调递减适合题意分②当p px p x px x h 1,2)(,02=+-=>其对称轴为图象为开口向上抛物线时∈(0,+∞)'min 11() 0,1 ()0,()0()(0,), 1................................................7h x p p p h x g x p pg x p ∴=--≥≥≥≥∴+∞∴≥只需即时在单调递增适合题意分③当p <0时,px p x px x h 1,2)(,2=+-=其对称轴为图象为开口向下抛物线时 ),0(+∞∉ 只需h (x )≤0,即p ≤0时h (x )≤0在(0,+∞)恒成立.0),0()(0)('适合题意单调递减在<∴+∞∴<∴p x g x g综上①②③可得,p ≥1或p ≤0(Ⅲ)证明:①即证)1(0)1ln(->≤-+x x x 设xxx k x x x k +-=-+=1)(,)1ln()('''(1,0)()0,() (0,)()0,()0(), ()(0)0x k x k x x k x k x x k x k x k ∴∈->∴∴∈+∞<∴∴=∴≤=时为单调递增函数时为单调递减函数为的极大值点 即x x x x ≤+∴≤-+)1ln(,0)1ln(…………………………………………11分 ②由①知,01,)1ln(>+≤+x x x 又 设1ln 0,1-≤∴>+=t t t x t 则22*2222222222222222ln 11ln 11,2, ln 1, 1, (1),2ln 2ln 3ln 1111...(11...1)2232311111111[(1)(...)][(1)...]222334(1)2311111[1(22334n n n n N n n n n n n n nn n nn n n n n n -∈≥∴≤-∴≤=-∴≤-∴+++≤-+-++-=--+++<--+++⨯⨯+=---+-Q 11...]1n n ++-+211121[1()]2214(1)n n n n n --=---=++∴结论成立…… ………14 分3.当]1,0(∈x 时,11)(2++-='x x ax f .(1)要使)(x f 在]1,0(∈x 上是增函数,11)(2++-='x x a x f 0≥在]1,0(上恒成立,即22111xx x a +=+≤在]1,0(上恒成立. 而211x+在]1,0(上的最小值为2,又+∈R a ,∴20≤<a . (2)ⅰ)20≤<a 时,)(x f 在]1,0(上是增函数,1)21()1()]([max +-==a f x f .ⅱ)2>a 时,0)(='x f ,得112-=a x ∈]1,0(. Θ当1102-<<a x 时,0)(>'x f ;当1112≤<-x a 时,0)(<'x f , ∴1)11()]([22max --=-=a a a f x f .1.已知()x f 定义在R 上的函数,对于任意的实数a ,b 都有()()()a bf b af ab f +=,且()12=f Ⅰ)求⎪⎭⎫ ⎝⎛21f 的值;(Ⅱ)求()n f -2的解析式(*∈N n )2.已知函数f (x )=ln (e x +a )(a 为常数)是实数R 上的奇函数,函数g (x )=λf(x)+sinx 是区间[-1,1]上的减函数。

(I ) 求a 的值(II )若g (x )≤t 2+λt+1对x ∈[-1,1]及λ所有可取的值恒成立,求t 的取值范围。

3. 已知2a <,函数2()()x f x x ax a e =++。

(1)当1a =时,求()f x 的单调递增区间;(2)若()f x 的极大值是26-⋅e ,求a 的值。

1.解:(1)令a=b=1 求得()01=f 2分又 ()()2212122121f f f f +⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⨯= ∴4121-=⎪⎭⎫⎝⎛f 5分(2) ()()()()1111112222222-------+=•=f f f f n n n n ∴ ()()11122222-----=n n n n f f令 ()n n n f b -=22 ∴112---=n n b b 9分 ∴ 数列 {}n b 是以公差d=21-212121-=⎪⎭⎫⎝⎛=f b 的等差数列 12分∴ ()⎪⎭⎫⎝⎛-•-+=2111n b b n ∴2n b n -=∴()122+--=n n n f 14分23. (1)当1a = 时,2()(1),xf x x x e =++ ∴2'()(32),xf x x x e =++ …………2分由'()0f x ≥ 得2(32)0x x x e ++≥ ,又0xe > ,∴2320x x ++≥ ,解得2x ≤- 或1x ≥-∴()f x 的增区间是(-∞,-2),[-1,+∞ ) …………6分(2)2'()[(2)2]xf x x a x a e =+++ ,由'()f x =0,得122,x x a =-=-.… …8分x ,'()f x ,()f x 变化情况列表如下:∴2x =- 时,()f x 取得极大值, 而2226)4(,)4()2(---⋅=⋅-∴⋅-=-e e a e a f ,∴2a =- . …………12分。

相关文档
最新文档