流式细胞术原理及功能介绍
流式细胞术的基本原理
流式细胞术的基本原理流式细胞术是一种广泛使用的细胞分析技术,可以用于分离、鉴定和计数单个细胞,同时可以对细胞的形态、大小、表面分子、细胞器和细胞活性等方面进行分析。
这项技术已经成为生物医学研究和临床诊断的重要工具之一。
流式细胞术的基本原理是将细胞悬浮液通过一根细长的玻璃管,使细胞单个地通过一束激光束,利用光学和电子学技术分析细胞的特性。
这个过程可以分为样本制备、细胞计数和细胞分析三个步骤。
样本制备在进行流式细胞术之前,需要对样品进行一系列的处理,以便得到单个、均匀分布的细胞悬浮液。
样品处理的方法包括细胞分离、细胞培养和细胞染色等。
通常使用的染色剂有荧光素、荧光素同工异构体、荧光素酯和荧光素类核酸探针等。
这些染色剂能够与细胞特定的分子结合,从而标记细胞并使其在流式细胞术中被检测到。
细胞计数细胞计数是流式细胞术的重要步骤之一。
在流式细胞术中,使用一种称为细胞计数器的设备,可以精确地计算细胞的数量。
细胞计数器通常由一个光源、一个流式细胞术仪和一个计算机组成。
在进行细胞计数时,将细胞悬浮液置于流式细胞术仪中,通过一束激光束照射细胞,从而产生荧光信号。
计算机会根据荧光信号的数量和强度来确定细胞的数量。
细胞分析在细胞计数后,可以对细胞进行分析。
流式细胞术中常用的分析方法包括细胞分类、细胞分选和细胞表面分析等。
细胞分类是将细胞根据其形态、大小和荧光特性分为不同的亚群。
细胞分选是将目标细胞从混合的细胞群中分离出来。
细胞表面分析是通过标记细胞表面分子,然后利用流式细胞术检测这些标记物,以确定细胞的特殊表面分子。
总结流式细胞术作为一种高效的细胞分析技术,已经广泛应用于生物医学研究和临床诊断。
其基本原理是利用激光束对单个细胞进行分析,以确定细胞的特殊特性。
在进行流式细胞术前需要进行样品制备和细胞计数,然后可以对细胞进行分类、分选和表面分析等分析方法。
流式细胞术的应用范围广泛,可以用于癌症诊断、药物筛选和免疫学研究等领域。
流式细胞术原理及应用
流式细胞术原理及应用
流式细胞术是通过一种名为流式细胞仪的仪器完成的,它能够以非常
高的精确度进行分析和检测。
流式细胞仪通过一根轴,从这个轴上有三根
弹性管,细胞进行注射,从而使细胞在管中行进,细胞同时也受到外界信
号的影响,这种信号可以来自磁场、电场或光场。
当细胞运行到仪器的另
一端时,它们会被照亮,通过一台摄像机可以拍摄到高清晰度的照片,然
后在计算机上进行分析处理。
流式细胞术广泛应用于早筛检、医学诊断、药物发现、药理学实验和
抗生素耐药性研究等方面,它能够更加精确、快速地进行细胞分析。
此外,流式细胞术也可以用于分析抗原抗体,免疫细胞介导的反应,以及细胞因
子如细胞因子和表面受体等的表达情况。
这种技术还可以用来监测血液中细胞水平的变化,如血小板、红细胞、白细胞等。
简述流式细胞术的原理与应用
简述流式细胞术的原理与应用一、流式细胞术的原理介绍流式细胞术(Flow cytometry)是一种利用流式细胞术仪(Flow cytometer)对单个活细胞进行多参数分析的技术。
它基于细胞的光学性质和生物化学特性,通过探针标记、荧光染料和细胞表面抗原的相互作用,对细胞进行高速连续检测和分离。
流式细胞术的原理如下:1.细胞悬浮和样本处理:将细胞样品作为悬浮液,通过离心等方法将细胞分散在液体中,去除细胞的团块和碎片,保证单个细胞的流式检测。
2.细胞标记:采用流式细胞术特定的探针和染料对细胞进行标记,以便后续检测和分析。
常用的标记方法包括荧光染料标记、抗体标记和细胞分子探针标记。
3.细胞分离和传送:将标记的细胞悬浮液通过流式细胞术仪,以流速每秒数千个细胞的速度单个分子传送到探测点。
4.光散射与荧光探测:细胞经过流式细胞术仪后,以激光束照射细胞,通过散射光和荧光信号的检测,对细胞进行空间分布和化学信息的获得。
5.数据采集与分析:通过计算机系统采集和记录细胞经过流式细胞术仪后所产生的光散射和荧光信号,在分析软件中对数据进行处理和解读,获得有关细胞的信息。
二、流式细胞术的应用流式细胞术是一种广泛应用于生物医学研究和临床诊断的技术,它在细胞学、免疫学、血液学、肿瘤学等领域有着重要的应用价值。
下面列举几个流式细胞术的应用示例:1.血液学研究:流式细胞术结合细胞表面标记和荧光染料标记,可以对血液中的不同细胞类型进行快速的鉴定和数量分析。
例如,通过流式细胞术可对血液中的淋巴细胞、单核细胞和粒细胞等进行分类和计数,从而判断患者的免疫状态和疾病进展。
2.癌症诊断与治疗:流式细胞术对肿瘤细胞的检测和分析有着重要的作用。
通过流式细胞术,可以检测和定量肿瘤细胞的表面抗原和细胞内信号分子,进一步了解肿瘤细胞的类型、分化程度和增殖状态,为癌症的诊断和治疗提供指导。
3.免疫学研究:流式细胞术能够对免疫系统中的各种细胞类型进行鉴定、计数和功能分析。
FCM(流式细胞术检测)原理及临床应用
流式细胞术(flow cytometry FCM)是利用流式细 胞仪对单个生物颗粒(红细胞、白细胞、各类组织细 胞、血小板、微生物等)以及人工合成微球的物理和 生物学特性进行多参数定量分析,并能对特定细胞 群体加以分选的分析技术。
FCM的工作原理
流式细胞仪组成:
1.液流系统 2.光学系统 3.数据处理系统
双标记或多标记分析:目前使用的流式细胞仪 能用一个激光束激发检测三色甚至四色荧光信 号。检测时需注意荧光补偿。
常用免疫荧光染料组合
荧光染料 FITC+PE
激发波长 (nm)
488
发射波长(nm) 525、575
颜色 绿色、橙色
FITC+PeCy5
488
525、675
绿色、红色
FITC+ECD
488
实体瘤以多倍体居多;
G0 期:DNA 合成静止期 G1 期:DNA 合成前期 S 期: DNA 合成期 G2 期:DNA 合成后期 M 期: 细胞分裂期
DNA 倍体 2N 2N
2N-4N 4N 4N
DNA非2倍体出现是鉴别良性与恶性肿瘤的特异性指 标:
良性肿瘤和正常组织良性增生不出现DNA非2倍体细 胞而恶性肿瘤常可出现异倍体细胞;
过去认为 FCM测定残存白血病细胞不可靠, 因为现用的 McAb不能鉴别正常血细胞与白血 病细胞。虽然至今尚未发现白血病细胞特异抗 原,但近来有人提出根据白血病细胞的以下特 征, FCM检测的敏感度可明显提高
白血病细胞的某些抗原表达量明显高于相应 的正常血细胞
如小儿ALL,其CDl0+细胞的荧光强度可 高达3-4个对数值,而其 CD45则为弱阳性或 阴性。
525、625
流式细胞术基本原理与实用技术
流式细胞术基本原理与实用技术流式细胞术(Flow Cytometry)是一种常用的细胞分析技术,它基于光学、电子和计算机技术,能够对单个细胞进行快速、准确的多参数分析。
本文将介绍流式细胞术的基本原理和实用技术。
一、基本原理流式细胞术的基本原理是利用细胞在液体中悬浮的特性,在流动状态下通过一个细胞计数器,同时对细胞进行多参数的检测和分析。
其主要包括以下几个步骤:1. 细胞样品的制备:将待检测的细胞样品进行预处理,如离心、洗涤等,以获得单细胞悬浮液。
2. 细胞的进样:将细胞悬浮液通过微细管道进入流式细胞仪的流动系统中,形成单细胞的液体流。
3. 细胞的定位和聚焦:利用激光束对细胞进行定位和聚焦,使其逐个通过探测区域。
4. 细胞的激发和发射:通过激光束的照射,激发细胞中的荧光染料或标记物,使其发射特定波长的荧光信号。
5. 光信号的收集和处理:收集细胞发射的荧光信号,并经过光学系统进行分光、分束、分光和聚焦,最后通过光电倍增管或光电二极管转换为电信号。
6. 数据的获取和分析:将电信号转化为数字信号,并通过计算机系统进行数据采集、存储和分析,得到细胞的各项参数及相关统计学分析。
二、实用技术1. 细胞标记技术:为了能够准确地检测和分析细胞的特定性质,常常需要对细胞进行特异性的染色或标记。
常用的标记方法包括荧光染料、抗体标记和基因表达标记等。
2. 多参数分析技术:流式细胞术可以同时检测多个参数,如细胞大小、形态、表面标记物的表达、细胞周期等。
通过合理选择和配置荧光染料和滤光片组合,可以实现多重标记和多参数分析。
3. 数据分析软件:流式细胞术产生的数据量庞大,需要借助计算机软件进行数据的分析和解读。
常用的数据分析软件有FlowJo、CellQuest、ModFit等,它们可以对细胞的分布、比例、相关性等进行统计学分析和图形展示。
4. 高通量流式技术:随着科学研究的深入和技术的发展,高通量流式技术逐渐兴起。
它通过提高仪器的样品处理速度和自动化程度,实现对大量样品的快速检测和分析,广泛应用于生物医学研究和临床诊断。
流式细胞术原理及功能介绍
流式细胞术详解一. 流式细胞术概述流式细胞术(Flow Cytometry, FCM)是七十年代发展起来的高科学技术 ,它集计算机技术、激光技术、流体力学、细胞化学、细胞免疫学于一体, 同时具有分析和分选细胞功能。
它不仅可测量细胞大小、内部颗粒的性状,还可检测细胞表面和细胞浆抗原、细胞内DNA、RNA含量等,可对群体细胞在单细胞水平上进行分析, 在短时间内检测分析大量细胞,并收集、储存和处理数据,进行多参数定量分析; 能够分类收集(分选)某一亚群细胞,分选纯度>95%。
在血液学、免疫学、肿瘤学、药物学、分子生物学等学科广泛应用。
国内使用的流式细胞仪主要由美国的两个厂家生产:BECKMAN- COULTER公司和Becton-Dickinson公司(简称B-D公司)。
流式细胞仪主要有两型:临床型(又称小型机、台式机)和综合型(又称大型机、分析型)。
BECKMAN-COULTER公司最新产品为EPICS ALTRA和EPICS XL/XL-MCL, B-D公司最新产品为FACS Vantage和FACS Calibur。
EPICS XL/XL-MCL和FACS Calibur是临床型;EPICS ALTRA和 FACS Vantage是综合型,除具备检测分析功能外,还具有细胞分选功能 ,多用于科学研究。
二.流式细胞仪主要技术指标1.流式细胞仪的分析速度:一般流式细胞仪每秒检测1000~ 5000个细胞,大型机可达每秒上万个细胞。
2.流式细胞仪的荧光检测灵敏度:一般能测出单个细胞上<600个荧光分子,两个细胞间的荧光差>5%即可区分。
3.前向角散射(FSC)光检测灵敏度:前向角散射(FSC)反映被测细胞的大小,一般流式细胞仪能够测量到0.2µm~0.5µm。
4.流式细胞仪的分辨率:通常用变异系数CV值来表示,,一般流式细胞仪能够达到<2.0%,这也是测量标本前用荧光微球调整仪器时要求必须达到的。
临床检验技师临检基础知识讲解:流式细胞术
流式细胞术(flowcytometry,FCM)是一种综合应用光学、机械学、流体力学、电子计算机、细胞生物学、分子免疫学等学科技术,使被测溶液流经测量区域,并逐一检测其中每一个细胞的物理和化学特性,从而对高速流动的细胞或亚细胞进行快速定量测定和分析的方法。
首先,待测细胞经处理或染色后被压人流动室,与此同时,不含细胞的缓冲液在高压下从鞘液管喷出,鞘液管人口方向与待测样品流成一定角度,这样鞘液就能被包绕着样品高速流动,组成一个圆形的流束,待测细胞在包绕下单行排列,依次通过检测区域。
在激光束的照射下产生散射光和激发荧光。
这两个光源信号分别反映了细胞体积的大小和内部的信息。
经光电倍增管接收后可转换为电信号,再通过模,数转换器。
将连续的电信号转换为可被计算机识别的数字信号,经计算机处理,可将分析结果显示在屏幕上。
为了保证细胞单个排列地逐一通过检测区域,鞘流技术在流式细胞术中被广泛应用。
根据层流理论,由于两种液体的流速和压力不同。
在一定条件下样品溶液与包裹它的鞘液在流动中可以保持相互分离并且同轴。
同时鞘液流可以加速样品溶液中颗粒的流动并迫使他们的流动轨迹保持在液流的中轴线上,使细胞单排列地逐一通过检测区域,这便是所谓的液流聚焦原理。
流式细胞仪工作原理与应用范围
流式细胞仪工作原理与应用范围2008-11-01 10:30流式细胞仪就是进行流式细胞分析的仪器,它集电子技术、计算机技术、激光技术、流体理论于一体,是一种非常先进的检测仪器,被誉为试验室的“CT”。
流式细胞术(Flow CytoMeter,FCM)是一种在功能水平上对单细胞或其他生物粒子进行定量分析和分选的检测手段,它可以高速分析上万个细胞,并能同时从一个细胞中测得多个参数,与传统的荧光镜检查相比,具有速度快、精度高、准确性好等优点,成为当代最先进的细胞定量分析技术。
工作原理将待测细胞染色后制成单细胞悬液。
用一定压力将待测样品压入流动室,不含细胞的磷酸缓冲液在高压下从鞘液管喷出,鞘液管入口方向与待测样品流成一定角度,这样,鞘液就能够包绕着样品高速流动,组成一个圆形的流束,待测细胞在鞘液的包被下单行排列,依次通过检测区域。
流式细胞仪通常以激光作为发光源。
经过聚焦整形后的光束,垂直照射在样品流上,被荧光染色的细胞在激光束的照射下,产生散射光和激发荧光。
这两种信号同时被前向光电二极管和90°方向的光电倍增管接收。
光散射信号在前向小角度进行检测,这种信号基本上反映了细胞体积的大小;荧光信号的接受方向与激光束垂直,经过一系列双色性反射镜和带通滤光片的分离,形成多个不同波长的荧光信号。
这些荧光信号的强度代表了所测细胞膜表面抗原的强度或其核内物质的浓度,经光电倍增管接收后可转换为电信号,再通过模/数转换器,将连续的电信号转换为可被计算机识别的数字信号。
计算机把所测量到的各种信号进行计算机处理,将分析结果显示在计算机屏幕上,液可以打印出来,还可以数据文件的形式存储在硬盘上以备日后的查询或进一步分析。
检测数据的显示视测量参数的不同由多种形式可供选择。
单参数数据以直方图的形式表达,其X轴为测量强度,Y轴为细胞数目。
一般来说,流式细胞仪坐标轴的分辨率有512或1024通道数,这视其模数转换器的分辨率而定。
细胞生物学技术:7流式细胞术---原理、操作及应用
(三)散射光的作用
• 实验中,常利用FSC和SSC这两种参数的组合,区分不同的 细胞群体,去除碎片、死细胞和粘连细胞的干扰。
红细胞、死细胞和碎片
粒细胞 单核细胞 淋巴细胞
• 通过FSC/SSC散点图,gate出目标细胞进行分析。
• Hoechst(343, 450)常见为Hoechst33342和Hoechst33258,非嵌入的 方式与DNA链上的A-T碱基对结合。能对活细胞染色,用于活细胞 DNA定量分析,如精子分选;还用于侧群细胞的分选。
• PY(派若宁 560, 573) RNA染料,能进入活细胞。
• AO(吖啶橙 509, 525) DNA、RNA染料,染色后DNA呈黄绿色荧光, RNA呈橙黄色荧光,可进行DNA/RNA双参数分析。
式细胞仪-FACS Ⅰ。 • 1975 Kohler和Milstein: 单克隆抗体技术(促进流式发展)。
BD公司分析型流式细胞仪
FACS Calibur 双激光四色, 市场覆盖率最高
LSR II 双激光六色,三激光八色, 四激光十色,分析型最高配
FACS Canto II 双激光六色, 三激光八色
• 流式细胞仪(Flow Cytometer )是集细胞与分子 生物学、流体力学、激光技术、光电子技术、计 算机技术、细胞荧光化学技术、单克隆抗体技术 为一体的一种新型高科技仪器。
流式细胞术的特点
• 检测对象:单细胞悬液或生物颗粒; • 检测参数:多参数; • 检测特点:单细胞水平分析; • 检测速度:高速,最高达上万个细胞/秒; • 检测结果:精度高、准确性好; • 可对目标细胞进行分选;
流式细胞术的原理
流式细胞术的原理
流式细胞术是一种用于分析和计数细胞的技术,它通过检测细胞中的荧光标记
物或细胞表面的抗原来对细胞进行鉴定和分类。
流式细胞术的原理是基于细胞在流动液体中单个通过激光束的原理,利用光散射和荧光信号来对细胞进行分析和分类。
首先,样本中的细胞被标记上荧光染料或特定的抗体。
这些标记物可以与细胞
内的特定蛋白或抗原结合,使得细胞在流式细胞仪中可以被检测到。
然后,样本被注入到流式细胞仪中,细胞在液体中单个通过激光束的同时,流式细胞仪会对细胞进行多参数分析。
当细胞通过激光束时,它们会散射出光线。
这些光线的散射模式可以提供关于
细胞大小、形状和结构的信息。
同时,如果细胞被标记上荧光染料,它们还会发出荧光信号。
流式细胞仪会同时记录细胞的散射光和荧光信号,通过这些信号来对细胞进行分析和分类。
流式细胞仪可以同时检测多种不同的荧光标记物,这使得它可以对细胞进行多
参数分析。
通过对细胞表面抗原的鉴定和分类,流式细胞术可以用于免疫细胞表型分析、白细胞分类和计数、肿瘤细胞检测等领域。
此外,流式细胞术还可以用于检测细胞凋亡、细胞周期分析和细胞内分子的定量分析。
总的来说,流式细胞术的原理是基于细胞在流动液体中单个通过激光束的原理,利用光散射和荧光信号来对细胞进行分析和分类。
它是一种高效、灵敏和多参数的细胞分析技术,广泛应用于生命科学研究和临床诊断领域。
通过对细胞的鉴定和分类,流式细胞术为科研人员和临床医生提供了重要的实验数据和诊断依据,对于研究细胞生物学和疾病诊断具有重要意义。
流式细胞术
• 凋亡: • 由于凋亡细胞核酸内切酶活化, DNA 降 解 , 细 胞 DNA 减 少 , 因 而 可 在 G0/G1 峰前出现一个亚二倍体峰,也就 是凋亡峰。检测调亡,可进行抗肿瘤药 物研究和某些因素对细胞的损伤机理的 研究。
2 细胞表型分析:
• 细胞表型的分析得益于单克隆抗体的 产生及发展,现在CD系统已有247种之多。 细胞用带有荧光的单克隆抗体标记后,用 流式细胞仪可对其进行检测分析,可分析 出荧光细胞的含量,也可分析出这种阳性 细胞的CD分子的相对含量。标记的方法一 般用直标法,也可用间标法。荧光探针多 为FITC、PE、PE-CY5、PerCP、CY5、 APC等。
四、 流式细胞术的应用
1 细胞DNA含量检测:
细胞固定后用PI染色,因为PI特 异性结合于细胞DNA,荧光强度与PI 的结合量呈良好的线性关系,根据这 个原理,并通过专用的DNA分析软件, 可测出细胞的DNA含量。用于细胞周 期、细胞倍体以及凋亡的检测。
• 肿瘤诊断: • DNA 异倍体的出现是癌变的一个重 要标志,细胞的增殖能力的大小也可反 映肿瘤的生物学特征。因此,临床上可 利用流式细胞仪进行细胞周期分析和 DNA 倍性分析,辅助肿瘤诊断,包括监 测癌前病变、肿瘤的早期诊断、交界性 肿瘤诊断和肿瘤细胞学诊断等各方面。
应用 血小板无力症诊断: CD41/CD61缺失或异常 巨大血小板综合征诊断: CD42a/CD42b缺失 免疫性血小板减少性紫癜诊断: PAIgG 血栓前状态与血栓性疾病诊断: 血小板活化异常
4 红细胞疾病诊断
网织红细胞计数与应用 • 网织红细胞是未完全成熟的红细胞,胞浆中 仍残留有不同含量的 RNA 。 RNA 含量越高,网织 红细胞越幼稚,反之,则接近于成熟红细胞。网 织红细胞是反映骨髓红系造血的指针。用荧光染 料噻唑橙(Thiazole Orange,TO)可使活体网织红 细胞中 RNA 染色,用 488nm 激光激发后发射绿色 荧光, FCM 分析其荧光强度的大小可测量网织红 细胞的数量和RNA含量。主要用于贫血筛查。 • 睡眠性血红蛋白尿症(PNH)的诊断 • 红细胞表面CD59缺失
流式细胞术的基本原理
流式细胞术的基本原理流式细胞术(Flow cytometry)是一种被广泛用于生物学和医学领域的细胞分析和排序技术。
该技术采用激光离子流和散射光学的原理,快速测定单个细胞的生物学和物理特性。
该技术不仅可以进行细胞计数、大小、形态特征、表面结构、细胞周期、代谢活性、细胞分化和生长状态等分析,还可以进行单细胞分选和纯化以及细胞染色体分析等研究。
基本原理流式细胞术的原理是通过射流将单个细胞迅速送入激光束中,该激光束激发细胞中的荧光染料和标记物或散射光学特性,进而检测细胞的光学信号,并进行信号转换和数字化处理,最终得到单个细胞的特异性指标。
流式细胞术的主要组成部分包括样品处理系统、流式细胞分析系统和数据分析系统。
样品处理系统:将细胞样品经过预处理、染色或标记,使其适用于流式细胞分析。
常用的样品预处理方法包括:细胞分离、染色、去除细胞碎片和去除红细胞等。
对于需要分选的细胞,还需要使用细胞排序技术分离目标细胞。
流式细胞分析系统:该系统包括激光、光电倍增管、光学透镜、光学滤波器、样品输送系统和电子系统等。
通过激光激发样品中的荧光染料或标记物,分析细胞的光学特性。
常用的荧光染料包括:FITC、PE、APC、PerCP、Cy5等。
常用的标记物包括:抗体、细胞因子、小分子荧光探针、DNA荧光探针等。
通过修改流式细胞分析仪的配置,可实现不同荧光染料和标记物的测定。
数据分析系统:流式细胞仪测定数据的处理和分析是采用计算机系统完成的。
数据分析的常用指标包括:细胞计数、细胞孔径(大小)、荧光强度(比例和强度)、散射特性等。
一般情况下,在细胞的某个特定荧光标记物上测定的强度与其他群体相比,该指标被用来区分并描述细胞。
流式细胞术的应用流式细胞术被广泛应用于生物医学研究和诊断中。
以下是一些常见的应用领域:1. 分析细胞表面和胞内蛋白表达:通过荧光共轭的抗体和标记物来测定单个细胞膜和胞内蛋白的表达量和分布,从而确定细胞分化状态和生理状态。
流式细胞术原理及应用
流式细胞术原理及应用流式细胞术(flow cytometry)是一种用于分析和计数细胞的技术方法,可以对数千到数百万个细胞进行高速的检测和测定。
其原理是通过光学方法将单个细胞等离子状悬浮于液态载体中,使其以流动的方式经过激光束,激光束通过细胞时会被吸收或散射,从而测定细胞的形态、大小、表面标志物、内部结构以及细胞计数等信息。
流式细胞术的主要原理包括:激光激发和荧光检测。
首先,通过使用不同波长的激光束对悬浮的细胞进行激发。
细胞中的染料或荧光标记物受到激光束的激发后,会发出荧光信号。
然后,通过使用一系列的荧光滤光镜和光学透镜,将荧光信号分离并传递到相应的光电倍增管或光电二极管中进行检测和测定。
最后,通过计算机分析和处理这些得到的数据,可以得到细胞的相关信息。
1.免疫学研究:流式细胞术可以用于研究免疫细胞的分布、表型、功能和亚群分析等。
通过检测特定免疫标记物,可以对不同免疫细胞的数量和活性进行定量分析。
2.药物筛选和疗效评估:流式细胞术可以用于筛选和评估药物的疗效。
通过检测细胞内的标志物或荧光染料,可以对药物对细胞生长、存活和细胞周期等进行评估。
3.癌症诊断和治疗:流式细胞术可以用于检测和识别癌细胞,并对肿瘤细胞的数量、种类和表型进行定量分析。
此外,流式细胞术还可以用于评估抗肿瘤治疗的疗效。
4.微生物学研究:流式细胞术可以用于检测和鉴定微生物的数量、生长状态和代谢活性。
通过使用特定的荧光探针,可以对微生物的功能和亚群进行分析。
5.干细胞研究:流式细胞术可以用于鉴定、分离和纯化干细胞。
通过检测干细胞表面的特定标志物,可以对干细胞的种类和活性进行定量分析。
6.遗传学研究:流式细胞术可以用于评估基因突变、染色体异常和基因表达水平等。
通过使用荧光标记的探针或染料,可以对细胞的遗传信息进行定量分析。
总结起来,流式细胞术是一种非常重要的细胞分析技术,其原理简单且灵敏,可以用于检测和分析各种不同类型的细胞。
在医学、生物学、药物研发等领域都有广泛的应用,对于细胞表型、功能和数量等方面的研究具有重要的意义。
流式细胞术原理
流式细胞术原理流式细胞术(flow cytometry)是一种常用的细胞分析和分选技术,通过对悬浮细胞进行连续的、高通量的单细胞多参数分析,能够准确地获得细胞的多种信息,如大小、形态、表面标记物、蛋白质表达水平、细胞周期等。
流式细胞术的原理基于光学系统和流式细胞仪的相互配合。
其基本原理如下:1. 细胞样品制备:将待分析的细胞样品进行预处理,如去除细胞碎片、异物、血细胞混杂等,使其成为适合流式细胞仪分析的单细胞悬浮液。
2. 光源和染料:流式仪器利用一束单色、高能、激光光源对悬浮细胞进行照射。
细胞内染料的选择取决于研究目的,如荧光染料可用于标记特定蛋白质、细胞器或细胞表面受体。
3. 光学系统:经过光源照射后,激光光线经过特定的滤光片进行滤波,以选择特定波长的荧光信号。
光线通过一个透镜经过流式细胞仪的进样通道瞬间击中正在流动的细胞。
击中细胞的激光光线会被散射,产生前向散射光和侧散射光。
4. 散射光检测:前向散射光(FSC)和侧向散射光(SSC)是流式细胞仪最基本的检测参数。
FSC反映细胞的大小和形态,SSC则反映细胞的复杂度和内部结构。
5. 荧光信号检测:流式细胞仪在经过细胞后会收集产生的荧光信号。
通过特定的荧光滤光片,选择出目标染料所发射的波长范围,并通过光电倍增管转化为电信号。
这些电信号被记录下来,并转化为数据。
6. 数据分析:流式细胞术生成的数据会在计算机中进行分析和解读。
通常会用分析软件对荧光信号进行解析,进一步分析细胞表型、蛋白质表达、细胞周期等信息。
通过上述原理,流式细胞术能够快速准确地进行细胞的高通量分析和分选,为生物学、医学等领域的研究提供了重要工具。
流式细胞术原理
流式细胞术原理流式细胞术原理概述:1.什么是流式细胞术:流式细胞术是将多种特定条件下的离体细胞(即细胞不在原生质上)置入一个流式细胞仪,并利用各种仪器和仪器注入液体,通过细胞之间物质交换,使其在有限时间内受到良好的刺激、富集和选择,从而在定量和质量上均匀地输出体外驯化后的细胞。
2.流式细胞术应用:(1)表型分析:基因表达分析、蛋白质表型分析、抗原检测以及多种分子诊断测试;(2)免疫学应用:免疫细胞排序(FACS)、免疫细胞鉴定、免疫细胞功能分析;(3)其他研究:血液细胞分离以及人类疾病细胞的示蹤。
3.Flow Cytometry的原理:首先,将活细胞置于流式细胞术仪中,然后,在仪器里运动,在仪器里的运动速度是一个恒定的流动;接着,激光会从另一边投射进去,在有特定滤波器的情况下,激光射线就会倒射,与细胞中存在的染料结合,以此来分析表达位点上的基因和蛋白的表达情况,并且在此过程中会记录下所有的数据;最后,细胞会流经检测仪的椭圆形游标,当单束仪检测到某个细胞时,就会发出一个电信号,这样就可以将其标记出来,最后可以将所有细胞记录下来,便于分析表达位点或者染料反应情况,从而分析细胞的类型及其分布情况。
4.Flow Cytometry技术优势:(1)快速:流式细胞术可以在几秒钟内完成大量细胞的分析;(2)灵敏:细胞可以通过可调的激光强度以及多样的滤波器在流式细胞术下被准确检测;(3)准确:使用低酵母可以对细胞表面抗原以及内在细胞特性有更加准确的测定;(4)方便:整个实验过程只需要较少的样本量即可完成,且可以重复性进行,从而可以进行大量的分析和比较。
综上所述,流式细胞术是目前用于研究表型分析、免疫细胞排序以及细胞表面抗原及细胞内特性检测等多个研究领域,功能强大,分析快速准确,整个实验过程便捷、经济等特点,极大地拓展了体外实验、单细胞研究和诊断测试领域,成为细胞及分子生物学研究的有力工具。
流式细胞术原理
流式细胞术原理流式细胞术工作原理是在细胞分子水平上通过单克隆抗体对单个细胞或其他生物粒子进行多参数、快速的定量分析。
操作步骤包括细胞表面标记的检测和细胞内细胞因子的检测。
流式细胞技术是利用流式细胞仪进行的一种单细胞定量分析和分选技术。
流式细胞术是单克隆抗体及免疫细胞化学技术、激光和电子计算机科学等高度发展及综合利用的高技术产物。
流式细胞仪由液流系统、光学系统和电子系统三部分形成。
流式细胞技术基本原则:1.并使各种液体和漂浮细胞样本新鲜,尽快顺利完成样本制取和检测;2.针对不同的细胞样本进行适当洗涤、酶消化或edta处理,以清除杂质,使粘附的细胞彼此分离而形成单细胞状态;3.对新鲜实体瘤非政府可以采用或单胺酶消化法,机械收编法和化学集中法去赢得足够多数量的单细胞悬液;4.对石蜡上皮组织非政府应先切开若干40-50um薄的蜡片,经二甲苯重熔至水后,再用前述方法制取单细胞悬液;5.单细胞悬液的细胞数不该多于个。
流式细胞的具体实验步骤基本是细胞表面标记的检测和细胞内细胞因子的检测两部分。
一、细胞表面标记的检测1.试剂平衡至室温。
准备:消毒台面;穿戴工作服,帽子,口罩和手套,放置棉签,草纸和有盖垃圾桶(内装有消毒剂);2.写编号纸并编号;3.每管加相应的抗体10l/每种和50l全血,震荡,室温避光20分钟。
加血前摇匀血样;4.加入溶血素1ml,震荡后室温避光10分钟;5.离心,转, 5分钟。
弃上清,震荡;6.加入pbs洗液2ml,震荡,离心,转, 5分钟。
弃上清,震荡;7.加入pbs l。
上机前4度保存;8.上机。
二、细胞内细胞因子的检测1.准备:消毒台面;穿戴工作服,帽子,口罩和手套,放置棉签,草纸和有盖垃圾桶(内装有消毒剂);2.写下编号纸并编号;3.取出pma(1∶),bfa(1∶10)和离子霉素(1∶10),使用无菌无叠氮钠pbs稀释储存液;4.提振:挑全血或pbmcs(细胞数在0.5-1 )50l/管,再重新加入50l rpmi展开吸收一倍,重新加入刺激剂pma,离子霉素和bfa,搅匀。
流式细胞术原理简介
Incident Light Source
Forward Light Detector Cell Surface Area
FSC
1-2.荧光信号
荧光素某些物质在特定波长范围内的光线照射下,可发出波长比照射光波长长 的光线-即荧光。而这些受激发后能产生荧光的物质称为荧光素。
激发光谱(Excitation,Ex) - 是指能特异性地激发某种荧光素的一定波长范围内的 光线,也称为吸收光谱。 -一般标注的是吸收波峰,也就是最大吸收波长:Ex-Max
……
在上述信息基础上的细胞分选
流式细胞仪的结构
液流系统
光学系统
电子系统
1.液流系统
液流系统将样本悬液聚焦在光源的中心处
Injector Tip
Sheath fluid
Fluorescence signals
Focused laser beam
鞘液(Sheath fluid)作用
1. 避免堵塞喷孔 2. 约束样本位于喷嘴中心、提高测量精度 3. 保持细胞活性
Excitation Emission
300 nm 400 nm
500 nm
Wavelength
600 nm
700 nm
400 nm
500 nm
600 nm
700 nm
y
it
s
n
e
t
n
I
e
iv
t
la
e
R
PI的激发与发射光谱
常用染料PI同样可被488nm激光激发,Em-Max:625nm,
所以配用不同的585/42接收通道
流式细胞术原理简介
流式基本概念 流式细胞仪的结构 流式细胞仪的工作原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流式细胞术详解一. 流式细胞术概述流式细胞术(Flow Cytometry, FCM)是七十年代发展起来的高科学技术 ,它集计算机技术、激光技术、流体力学、细胞化学、细胞免疫学于一体, 同时具有分析和分选细胞功能。
它不仅可测量细胞大小、内部颗粒的性状,还可检测细胞表面和细胞浆抗原、细胞内DNA、RNA含量等,可对群体细胞在单细胞水平上进行分析, 在短时间内检测分析大量细胞,并收集、储存和处理数据,进行多参数定量分析; 能够分类收集(分选)某一亚群细胞,分选纯度>95%。
在血液学、免疫学、肿瘤学、药物学、分子生物学等学科广泛应用。
国内使用的流式细胞仪主要由美国的两个厂家生产:BECKMAN- COULTER公司和Becton-Dickinson公司(简称B-D公司)。
流式细胞仪主要有两型:临床型(又称小型机、台式机)和综合型(又称大型机、分析型)。
BECKMAN-COULTER公司最新产品为EPICS ALTRA和EPICS XL/XL-MCL, B-D公司最新产品为FACS Vantage和FACS Calibur。
EPICS XL/XL-MCL和FACS Calibur是临床型;EPICS ALTRA和 FACS Vantage是综合型,除具备检测分析功能外,还具有细胞分选功能 ,多用于科学研究。
二.流式细胞仪主要技术指标1.流式细胞仪的分析速度:一般流式细胞仪每秒检测1000~ 5000个细胞,大型机可达每秒上万个细胞。
2.流式细胞仪的荧光检测灵敏度:一般能测出单个细胞上<600个荧光分子,两个细胞间的荧光差>5%即可区分。
3.前向角散射(FSC)光检测灵敏度:前向角散射(FSC)反映被测细胞的大小,一般流式细胞仪能够测量到0.2µm~0.5µm。
4.流式细胞仪的分辨率:通常用变异系数CV值来表示,,一般流式细胞仪能够达到<2.0%,这也是测量标本前用荧光微球调整仪器时要求必须达到的。
5.流式细胞仪的分选速度:一般流式细胞仪分选速度>1000个/秒,分选细胞纯度可达99%以上。
三.流式细胞仪主要构造和工作原理流动室及液流驱动系统流式细胞仪主要由以下五部分构成:①流动室及液流驱动系统②激光光源及光束形成系统③光学系统④信号检测与存储、显示、分析系统⑤细胞分选系统。
流动室(Flow Cell或Flow Chamber)是流式细胞仪的核心部件,流动室由石英玻璃制成,单细胞悬液在细胞流动室里被鞘流液包绕通过流动室内的一定孔径的孔,检测区在该孔的中心,细胞在此与激光垂直相交,在鞘流液约束下细胞成单行排列依次通过激光检测区。
流动室里的鞘液流是一种稳定流动,控制鞘液流的装置是在流体力学理论的指导下由一系列压力系统、压力感受器组成,只要调整好鞘液压力和标本管压力, 鞘液流包绕样品流并使样品流保持在液流的轴线方向,能够保证每个细胞通过激光照射区的时间相等,从而使激光激发的荧光信息准确无误。
见图12.1流动室示意图。
流动室孔径有60µm、100µm、150µm 、250µm等多种,供研究者选择。
小型仪器一般固定装置了一定孔径的流动室。
图12.1流动室示意图(采自Coulter Training Guide)四. 流式细胞仪主要构造和工作原理激光光源及光束形成系统流式细胞仪可配备一根或多根激光管,常用的激光管是氩离子气体激光管,它的发射光波长488ηm,此外可配备氦氖离子气体激光管(波长633ηm)和/或紫外激光管。
流式细胞仪的主要测定信号荧光是由激发光激发的,荧光信号的强弱与激发光的强度和照射时间相关,激光是一种相干光源,它能提供单波长、高强度、高稳定性的光照,正是能达到这一要求的理想的激发光光源。
在激光光源和流动室之间有两个圆柱形透镜,将激光光源发出的横截面为圆形的激光光束聚焦成横截面较小的椭圆形激光光束(22µm×66µm),在这种椭圆形激光光斑内激光能量成正态分布,使通过激光检测区的细胞受照强度一致。
五. 流式细胞仪主要构造和工作原理光学系统流式细胞仪的光学系统由若干组透镜、小孔、滤光片组成,大致可分为流动室前和流动室后两组。
流动室前的光学系统由透镜和小孔组成,透镜和小孔(一般为2片透镜、1个小孔)的主要作用是将激光光源发出的横截面为圆形的激光光束聚焦成横截面较小的椭圆形激光光束,使激光能量成正态分布,使通过激光检测区的细胞受照强度一致,最大限度的减少杂散光的干扰;流动室后的光学系统主要由多组滤光片组成,滤光片的主要作用是将不同波长的荧光信号送到不同的光电倍增管。
滤光片主要有三类:长通滤片(LP)--只允许特定波长以上的光线通过,短通滤片(SP)-- 只允许特定波长以下的光线通过,带通滤片(BP)-- 只允许特定波长的光线通过,不同组合的滤片可以将不同波长的荧光信号送到不同的光电倍增管(PMT),如接收绿色荧光(FITC)的PMT前面配置的滤光片是LP550和BP525, 接收色橙红色荧光(PE)的PMT前面配置的滤光片是LP600和BP575, 接收红色荧光(CY5)的PMT前面配置的滤光片是LP650和BP675。
见图12.2光学系统和信号检测系统示意图。
六. 流式细胞仪主要构造和工作原理信号检测系统当测定标本在鞘流液约束下细胞成单行排列依次通过激光检测区时产生散射光和荧光信号,散射光分为前向角散射(Forward Scatter, FS)和侧向角散射或900散射(Side Scatter, SS),散射光是细胞的物理参数与细胞样本的制备(如染色)无关;荧光信号也有两种,一种是细胞自发荧光它一般很微弱,一种是细胞样本经标有特异荧光素的单克隆抗体染色后经激光激发发出的荧光,它是我们要测定的荧光,荧光信号较强,这两种荧光信号的同时存在是我们测定时需要设定阴性对照的理由,以便从测出的荧光信号中减去细胞自发荧光和抗体非特异结合产生的荧光。
前向角散射(FS)反映被测细胞的大小,它由正对着流动室的光电二极管装置接收并转变为电信号;侧向角散射或900散射(SS)反映被测细胞的细胞膜、细胞质、核膜的折射率和细胞内颗粒的性状, 它由一个光电倍增管(PMT) 接收并转变为电信号,这些电信号存储在流式细胞仪的计算机硬盘或软盘内。
流式细胞仪测定常用的荧光染料有多种,他们分子结构不同,激发光谱和发射光谱也各异,选择荧光染料时必须依据流式细胞仪所配备的激光光源的发射光波长(如氩离子气体激光管,它的发射光波488ηm,氦氖离子气体激光管发射光波长633ηm)。
488ηm激光光源常用的荧光染料有FITC(异硫氰酸荧光素)、PE(藻红蛋白)、PI(碘化丙啶)、CY5(化青素)、preCP(叶绿素蛋白)、ECD(藻红蛋白-得克萨斯红)等。
他们的激发光和发射光波长分别是:激发光波长(ηm)发射光峰值(ηm)FITC 488 525(绿)PE 488 575(橙红)PI 488 630(橙红)ECD 488 610(红)CY5 488 675(深红)PreCP 488 675(深红)各种荧光信号由各自的光电倍增管(PMT) 接收并转变为电信号后存储在流式细胞仪的计算机硬盘或软盘内.见图12.2光学系统和信号检测系统示意图。
七. 流式细胞仪主要构造和工作原理信号存储、显示、分析系统(一) 信号存储存储在流式细胞仪的计算机硬盘或软盘内的数据一般是以List mode(列表排队)方式存入的,采用List mode 方式有两大优点:①节约内存和磁盘空间②易于加工处理分析。
(二)信号显示和分析由于List mode方式数据缺乏直观性,数据的显示和分析一般采用一维直方图(图12.3)、二维点阵图(图12.4,12.5)、等高线图(图12.8)和密度图(图12.7)。
1.单参数数据显示和分析细胞的每一个单参数测量数据用直方图来显示,图中横坐标表示散射光或荧光信号相对强度值,其单位是道数,可以是线性的,也可以是对数的;纵坐标表示细胞数。
见图12.3一维直方图,图中横坐标是FITC荧光信号相对强度值(对数),纵坐标表示细胞数;图中已根据阴性对照设定适当的“门”(直线门),仪器的计算机就会给出测定值(包括阳性细胞%和平均荧光强度)。
2.双参数数据显示和分析细胞的双参数测量数据和细胞数量的关系用一维直方图、二维点阵图、等高线图和密度图显示和分析。
如图12.4二维点阵图,是正常人外周血白细胞的前向散射光(FS)和侧向散射光(SS)组成的点阵图,横坐标和纵坐标均是线性的,图中淋巴细胞、单核细胞、粒细胞很明显地分为3群,可以很容易地圈“门”( Bitmap,无定型门),分析各亚群细胞的数据;图12.6假三维地形图(X轴: SSC ,Y轴:FSC Z轴:细胞数)更清楚地表明这一点。
图12.5二维点阵图是细胞的两种荧光(FITC和RD1)双参数数据显示,横坐标和纵坐标均是对数的,横坐标代表FITC,纵坐标代表PE,图中已设定适当的“门”(十字门),十字门的D1、D2、D3、D4门分别代表PE单阳性细胞、PE和FITC双阳性细胞、阴性细胞、FITC单阳性细胞。
仪器的计算机就会给出两种荧光测定值(包括阴性细胞%、两种荧光各自的阳性细胞%、两种荧光的双阳性细胞%、各群细胞的平均荧光强度)。
图12.7和图12.8分别是测定细胞的两种荧光双参数数据的密度图和等高线图,横坐标和纵坐标分别代表一种荧光参数,同理只要设定十字门就可得到两种荧光的各种测定值,密度图和等高线图较点阵图更直观。
3.三参数数据显示和分析细胞的三参数测量数据和细胞数量的关系每两个数据组成一对(三参数测量数据和细胞数量每两个数据可组成6对数据)用一维直方图、二维点阵图、等高线图和密度图显示和分析。
三个荧光数据关系用分光图(prism)表示,分光图可直接给出8个数据(如用ABC代表3种荧光,可有A+B+C+、A+B+C- 、A+B-C-、A-B+C+、 A-B+C-、 A-B-C+、 A+B-C+ 、A-B-C-)。
见图12.9 prism,图12.9为人外周血淋巴细胞亚群测定结果的分光图,图中给出CD3、CD4、CD8组合的各种结果,如T辅助细胞(CD3+CD4+CD8-)为42.0%,如T抑制细胞(CD3+CD4+CD8-)为17.4%。
图12.5两种荧光的二维点阵图(采自Coulter Operaters Guide)图12.7. 双参数数据的密度图(采自Coulter Operaters Guide)图12.6假三维地形图和二维点阵图(采自Coulter Operaters Guide)图12.8双参数数据的等高线图(采自Coulter Operaters Guide)图12.9 分光图(prism)八. 流式细胞仪主要构造和工作原理细胞分选系统如在细胞流动室上装有超声压电晶体,通电后超声压电晶体发生高频震动,可带动细胞流动室高频震动 ,使细胞流动室喷咀流出的液流束断成一连串均匀的液滴, 每秒钟形成液滴上万个。