(完整版)一轮复习-直线、平面垂直的判定及其性质

合集下载

高三一轮复习第六章 第四节直线、平面垂直的判定及性质

高三一轮复习第六章 第四节直线、平面垂直的判定及性质

课时作业1.已知平面α⊥平面β,α∩β=l,点A∈α,A l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是( )A.AB∥m B.AC⊥mC.AB∥βD.AC⊥β【答案】 D2.(2022·大庆二模)若m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( )A.若α⊥β,m⊥β,则m∥αB.若m∥α,n⊥m,则n⊥αC.若m⊥α,n∥β,m⊥n,则α⊥βD.若m∥β,m α,α∩β=n,则m∥n【解析】 由m,n是两条不同的直线,α,β是两个不同的平面,知:在A中,若α⊥β,m⊥β,则m∥α或m α,故A错误;在B中,若m∥α,n⊥m,则n与α相交、平行或n α,故B错误;在C中,若m⊥α,n∥β,m⊥n,则α与β相交或平行,故C错误;在D中,若m∥β,m α,α∩β=n,则由线面平行的性质定理得m∥n,故D正确.【答案】 D3.(2022·天津滨海新区模拟)如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:①BD⊥AC;②△BAC是等边三角形;③三棱锥D ABC是正三棱锥;④平面ADC⊥平面ABC.其中正确的是( )A.①②④B.①②③C.②③④D.①③④【答案】 B4.如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.【答案】 ①②③5.(2022·福建四地六校月考)点P在正方体ABCD A1B1C1D1的面对角线BC1上运动,则下列四个命题:①三棱锥A D1PC的体积不变;②A1P∥平面ACD1;③DP⊥BC1;④平面PDB1⊥平面ACD1.其中正确的命题序号是________.【答案】 ①②④6.(2022·临沂三模)如图,圆锥的轴截面为三角形SAB,O为底面圆圆心,C为底面圆周上一点,D为BC的中点.(1)求证:平面SBC⊥平面SOD;(2)如果∠AOC=∠SDO=60°,BC=23,求该圆锥的侧面积.【解】 (1)证明:由题意知SO⊥平面OBC,又BC 平面OBC,∴SO⊥BC,在△OBC中,OB=OC,CD=BD,∴OD ⊥BC ,又SO ∩OD =O ,∴BC ⊥平面SOD , 又BC 平面SBC ,∴平面SBC ⊥平面SO D . (2)在△OBC 中,OB =OC ,CD =BD , ∵∠AOC =60°,∴∠COD =60°, ∵CD =12BC =3,∴OD =1,OC =2,在△SOD 中,∠SDO =60°,又SO ⊥OD ,∴SO =3, 在△SAO 中,OA =OC =2,∴SA =7, ∴该圆锥的侧面积为S 侧=π×OA ×SA =27π.7.(2022·铜川二模)如图,△ABC 为边长为2的正三角形,AE ∥CD ,且AE ⊥平面ABC ,2AE =CD =2.(1)求证:平面BDE ⊥平面BCD ; (2)求三棱锥D BCE 的高. 【解】 (1)如图所示:取BD 边的中点F ,BC 的中点为G ,连接AG ,FG ,EF ,由题意可知,FG 是△BCD 的中位线所以FG ∥AE 且FG =AE ,即四边形AEFG 为平行四边形, 所以AG ∥EF由AG ⊥平面BCD 可知,EF ⊥平面BCD ,又EF 面BDE , 故平面BDE ⊥平面BCD .(2)过B 做BK ⊥AC ,垂足为K ,因为AE ⊥平面ABC , 所以BK ⊥平面ACDE ,且BK =2×32=3所以V 四棱锥B ACDE =13×12(1+2)×2×3=3V 三棱锥E ABC =13×12×2×3×1=33所以V 三棱锥D BCE =V 四棱锥B ACDE -V 三棱锥E ABC =3-33=233因为AB =AC =2,AE =1,所以BE =CE =5,又BC =2 所以S △ECB =12×2×5-1=2设所求的高为h ,则由等体积法得13×2×h =233所以h =3.8.(2022·石家庄)如图,在四棱锥A EFCB 中,四边形EFCB 是梯形,EF ∥BC 且EF =34BC ,△ABC 是边长为2的正三角形,顶点F 在AC 上射影为点G ,且FG =3,CF =212,BF =52.(1)证明:平面FGB ⊥平面ABC ; (2)求三棱锥E GBC 的体积.【解】 (1)证明:由顶点F 在AC 上投影为点G ,可知,FG ⊥A C .取AC 的中点为O ,连结OB ,G B . 在Rt △FGC 中,FG =3,CF =212,所以CG =32. 在Rt △GBO 中,OB =3,OG =12,所以BG=13 2.∴BG2+GF2=FB2,即FG⊥BG.∵FG⊥AC,FG⊥GB,AC∩BG=G∴FG⊥面AB C.又FG 面FGB,∴面FGB⊥面AB C.(2)∵EF∥BC,EF 面ABC,BC 面ABC ∴EF∥面ABC.V E GBC=V F GBC∴三棱锥E GBC的体积V E GBC=V F GBC=13×S△GBC×h=13×334×3=34.9.(2022·保定二模)如图,在四棱锥P ABCD中,O是边长为4的正方形ABCD的中心,PO⊥平面ABCD,M,E分别为AB,BC的中点.(Ⅰ)求证:平面PAC⊥平面PBD;(Ⅱ)若PE=3,求点B到平面PEM的距离.【解】 (Ⅰ)因为四边形ABCD是正方形,所以AC⊥BD.因为PO⊥平面ABCD,AC 平面ABCD,所以AC⊥PO.因为OP 平面PBD,BD 平面PBD,且OP∩BD=O,所以AC⊥平面PBD.所以平面PAC⊥平面PBD.(Ⅱ)由(Ⅰ)知,OP为点P到平面BME的高.所以V B PEM=V P BEM=13S△BEM×OP.连接OE.因为PO⊥平面ABCD,OE 平面ABCD,所以PO⊥OE.因为OE=2,PE=3,所以OP=5.又因OA=OB=OC=OD,所以PA=PB=PC=PD.在△PEM中,PE=PM=3,ME=12AC=22,所以S△PEM=12×22×32-(2)2=14.设点B到平面PEM的距离为h,由V B PEM =13×S △PEM ×h =V P BEM =13S △BEM ×OP =13×12×2×2×5=253,得143h =253, 所以h =707.所以点B 到平面PEM 的距离为707. 10.(2022·郑州质检)如图,高为1的等腰梯形ABCD 中,AM =CD =13AB =1,M 为AB的三等分点.现将△AMD 沿MD 折起,使平面AMD ⊥平面MBCD ,连接AB ,AC .(1)在AB 边上是否存在点P ,使AD ∥平面MPC?(2)当点P 为AB 边的中点时,求点B 到平面MPC 的距离. 【解】 (1)当AP =13AB 时,有AD ∥平面MPC .理由如下:连接BD 交MC 于点N ,连接NP . 在梯形MBCD 中,DC ∥MB ,DN NB =DC MB =12, 因为△ADB 中,AP PB =12,所以AD ∥PN .因为AD 平面MPC ,PN 平面MPC , 所以AD ∥平面MPC .(2)因为平面AMD ⊥平面MBCD ,平面AMD ∩平面MBCD =DM , 平面AMD 中AM ⊥DM ,所以AM ⊥平面MBCD .所以V P MBC =13×S △MBC ×A M 2=13×12×2×1×12=16.在△MPC 中,MP =12AB =52,MC =2,又PC =(12)2+12=52,所以S △MPC =12×2×(52)2-(22)2=64. 所以点B 到平面MPC 的距离为d =3V P MBCS△MPC=3×1664=63.11.(2022·福建质检)在如图所示的多面体中,四边形ABCD 是平行四边形,四边形BDEF 是矩形.(1)求证:AE ∥平面BCF ;(2)若AD ⊥DE ,AD =DE =1,AB =2,∠BAD =60°,求三棱锥F AEC 的体积. 【解】 (1)证明:因为四边形ABCD 是平行四边形, 所以AD ∥BC .又AD 平面BCF ,BC 平面BCF ,所以AD ∥平面BCF ,因为四边形BDEF 是矩形,所以DE ∥BF .又DE 平面BCF ,BF 平面BCF ,所以DE ∥平面BCF .因为AD ∩DE =D ,AD 平面ADE ,DE 平面ADE , 所以平面ADE ∥平面BCF .因为AE 平面ADE ,所以AE ∥平面BCF .(2)设AC 与BD 交于点O ,则O 为AC 的中点.连接OE ,OF ,如图.故V F AEC =V C -AEF =2V O -AEF =2V A OEF .在△ABD 中,∠BAD =60°,AD =1,AB =2,由余弦定理得,BD 2=AB 2+AD 2-2AB ·AD ·cos ∠BAD ,所以BD =3,所以AB 2=AD 2+BD 2,所以AD ⊥BD .又DE ⊥AD ,BD ∩DE =D ,BD 平面BDEF ,DE平面BDEF ,所以AD ⊥平面BDEF ,故AD 的长为点A 到平面BDEF 的距离.因为DE=1,所以S△OEF=12S四边形BDEF=12BD·DE=32,所以V A OEF=13·S△OEF·AD=36,故V F AEC=2V A OEF=33,即三棱锥F AEC的体积为33.12.(2022·太原模拟)如图,在几何体ABCDFE中,四边形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.(1)证明:平面ACF⊥平面BEFD.(2)若cos∠BAD=15,求几何体ABCDFE的体积.【解】 (1)证明:因为四边形ABCD是菱形,所以AC⊥BD,因为BE⊥平面ABCD,所以BE⊥AC.所以AC⊥平面BEFD.所以平面ACF⊥平面BEFD.(2)设AC与BD的交点为O,AB=a(a>0),由(1)得AC⊥平面BEFD,因为BE⊥平面ABCD,所以BE⊥BD,因为DF∥BE,所以DF⊥BD,所以BD2=EF2-(DF-BE)2=8,所以BD=22,所以S四边形BEFD=12(BE+DF)·BD=32,因为cos∠BAD=15,所以BD2=AB2+AD2-2AB·AD·cos∠BAD=85a2=8,所以a=5,所以OA2=AB2-OB2=3,所以OA=3,所以V ABCDFE=2V A-BEFD=23S四边形BEFD·OA=26.13.(2022·四川省宜宾市二模)如图,在四棱锥P ABCD中,AB∥CD,AB⊥AD,AD⊥PD,AB=AD=1,CD=2,PD=3,E为线段PB的中点,且DE⊥BC.(1)求证:PD⊥平面ABCD;(2)若过三点C,D,E的平面将四棱锥P ABCD分成上,下两部分,求上面部分的体积V.【解】 (1)证明:连接BD,∵AB⊥AD,AB=AD=1,PD=2∵AB∥CD,∴∠BDC=∠ABD=45°,∵CD=2,∴BC2=(2)2+22-2×2×2cos 45°=2,∴BC2+BD2=BC2,∴BC⊥BD ∵BC⊥DE,DE∩DB=D,DE 平面PBD,∴BC⊥平面PBD,∴BC⊥PD,∵AD⊥PD,AD与BC相交,∴PD⊥平面ABCD.(2)作PA的中点F,连接EF,EC,DF∵E为PB的中点,∴EF綊12 AB.又∵AB綊12CD,∴EF綊14CD,∴EF与CD共面,∴平面CDFE为过三点C,D,E的截面∵V P CDE=V B-CDE=12V P BCD,PD⊥平面ABCD,∴V P CDE=12×13(12×2×2)×3=12∵V P DFE=14V P CDE,∴V P DFE=18∴V=18+12=58.14.(2022·安徽省安庆市二模)如图,在四棱锥P ABCD中,平面PBC⊥平面ABCD,∠PBC=90°,AD∥BC,∠ABC=90°,AB=AD=2,BC=22.(1)证明:CD⊥平面PBD;(2)若直线PD与底面ABCD所成的角为60°,求点B到平面PCD的距离.【解】 (1)∵AD∥BC,∠ABC=90°,∴AB⊥AD,∴BD=AD2+AB2=2;作DE⊥BC于E,则DE=CE=2,∴CD=DE2+CE2=2;在△BCD中,∵DC2+DB2=22+22=8=(22)2=BC2,∴∠CDB=90°,即CD⊥BD;∵平面PBC⊥平面ABCD,∠PBC=90°,平面PBC∩平面ABCD=BC,∴PB⊥平面ABCD,又CD 平面ABCD,∴PB⊥CD,∵PB,BD 平面PBD,PB∩BD=B,∴CD⊥平面PBD.(2)∵PB⊥平面ABCD,∴PD与底面ABCD所成的角是∠PDB=60°.在Rt△PBD中,DB=2,∠PDB=60°,∴PB=23,PD=4;设h为点B到平面PCD的距离,∵V B PDC=V P DBC,∴13×S△PDC×h=13×S△DBC×PB,∴h=S△DBC×PBS△PDC=12×2×2×2312×2×4=3,即点B到平面PCD的距离为3.。

2017高三一轮复习-直线、平面垂直的判定及性质

2017高三一轮复习-直线、平面垂直的判定及性质

第五节直线、平面垂直的判定及性质垂直的判定与性质(1)掌握直线与平面垂直的判定定理和性质定理.(2)掌握两个平面垂直的判定定理和性质定理.知识点一直线与平面垂直1.直线与平面垂直的判定定理(1)自然语言:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.(2)图形语言:如图1所示.(3)符号语言:a⊂α,b⊂α,a∩b=P,l⊥a,l⊥b⇒l⊥α.2.直线与平面垂直的性质定理自然语言:垂直于同一个平面的两条直线平行.图形语言:如图2所示.符号语言:a⊥α,b⊥α⇒a∥b.易误提醒斜线在平面上的射影是过斜足和垂足的一条直线,而不是线段.必记结论(1)直线与平面垂直的定义常常逆用,即a⊥α,b⊂α⇒a⊥b.(2)若平行直线中一条垂直于平面,则另一条也垂直于该平面.(3)垂直于同一条直线的两个平面平行.(4)过一点有且只有一条直线与已知平面垂直.(5)过一点有且只有一个平面与已知直线垂直.[自测练习]1.设a,b是平面α内两条不同的直线,l是平面α外的一条直线,则“l⊥a,且l⊥b”是“l⊥α”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:由线面垂直的判定定理知,充分性不成立,由线面垂直的性质定理知,必要性成立,故选C.答案:C2.已知直线a,b和平面α,且a⊥b,a⊥α,则b与α的位置关系为()A.b⊂αB.b∥αC.b⊂α或b∥αD.b与α相交解析:由a⊥b,a⊥α知b⊂α或b∥α,但直线b不与α相交.答案:C知识点二平面与平面垂直1.平面与平面垂直的判定(1)两个平面垂直的定义如果两个相交平面所成的二面角是直二面角,那么就说这两个平面互相垂直.平面α与β垂直,记作α⊥β.(2)两个平面垂直的判定定理自然语言:一个平面过另一个平面的垂线,则这两个平面垂直.图形语言:如图1所示.符号语言:AB⊥β,AB⊂α⇒α⊥β.图12.平面与平面垂直的性质自然语言:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.图形语言:如图2所示.图2符号语言:α⊥β,α∩β=CD,AB⊂α,AB⊥CD⇒AB⊥β.易误提醒平面和平面垂直的判定定理的两个条件:l⊂α,l⊥β,缺一不可.必记结论(1)两个平面互相垂直是两个平面相交的特殊情况,正方体中任意相邻的两个面都是互相垂直的;(2)由定理可知,要证明平面与平面垂线,可转化为从现有直线中寻找平面的垂线,即证明线面垂直;(3)面面垂直的判定定理提供了找出垂直于一个平面的另一个平面的依据.[自测练习]3.若m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是() A.若m⊂β,α⊥β,则m⊥αB.若α∩γ=m,β∩γ=n,m∥n,则α∥βC.若m⊥β,m∥α,则α⊥βD.若α⊥γ,α⊥β,则β⊥γ解析:利用相关定理逐个判断.A中m与α的位置关系不确定,故错误;B中α,β可能平行或相交,故错误;由面面垂直的判定定理可知C正确;D中β,γ平行或相交,故错误,选C.答案:C4.四棱锥P-ABCD中,底面ABCD是矩形,P A⊥底面ABCD,则这个四棱锥的五个面中两两垂直的共有________对.解析:因为AD⊥AB,AD⊥P A且P A∩AB=A,可得AD⊥平面P AB.同理可得BC⊥平面P AB、AB⊥平面P AD、CD⊥平面P AD,由面面垂直的判定定理可得,平面P AD⊥平面P AB,平面PBC⊥平面P AB,平面PCD⊥平面P AD,平面P AB⊥平面ABCD,平面P AD⊥平面ABCD,共有5对.答案:5考点一直线与平面垂直的判定与性质|1.在空间中,l,m,n,a,b表示直线,α表示平面,则下列命题正确的是()A.若l∥α,m⊥l,则m⊥αB.若l⊥m,m⊥n,则m∥nC.若a⊥α,a⊥b,则b∥αD.若l⊥α,l∥a,则a⊥α解析:易知选项A不正确;选项B,从m⊥n就可以看出结论是错误的;选项C中,若b⊂α,则C不正确;选项D是正确的.答案:D2.(2016·丽水一模)在四面体ABCD中,下列条件不能得出AB⊥CD的是()A.AB⊥BC且AB⊥BDB .AD ⊥BC 且AC ⊥BD C .AC =AD 且BC =BD D .AC ⊥BC 且AD ⊥BD解析:A.∵AB ⊥BD ,AB ⊥BC ,BD ∩BC =B ,∴AB ⊥平面BCD ,∵CD ⊂平面BCD ,∴AB ⊥CD .B.设A 在平面BCD 内的射影为O ,则AO ⊥平面BCD ,∵AD ⊥BC ,AC ⊥BD ,∴O 为△BCD 的垂心,连接BO ,则BO ⊥CD ,又AO ⊥CD ,AO ∩BO =O ,∴CD ⊥平面ABO ,∵AB ⊂平面ABO ,∴AB ⊥CD .C.取CD 中点G ,连接BG ,AG .∵AC =AD 且BC =BD ,∴CD ⊥BG ,CD ⊥AG , ∵BG ∩AG =G ,∴CD ⊥平面ABG ,∵AB ⊂平面ABG ,∴AB ⊥CD ,故选D. 答案:D3.(2015·高考重庆卷)如图,三棱锥P -ABC 中,平面P AC ⊥平面ABC ,∠ABC =π2,点D ,E 在线段AC 上,且AD =DE =EC =2,PD =PC =4,点F 在线段AB 上,且EF ∥BC .(1)证明:AB ⊥平面PFE ;(2)若四棱锥P -DFBC 的体积为7,求线段BC 的长.解:(1)证明:由DE =EC ,PD =PC 知,E 为等腰△PDC 中DC 边的中点,故PE ⊥AC . 又平面P AC ⊥平面ABC ,平面P AC ∩平面ABC =AC ,PE ⊂平面P AC ,所以PE ⊥平面ABC ,从而PE ⊥AB .因∠ABC =π2,EF ∥BC ,故AB ⊥EF .从而AB 与平面PFE 内两条相交直线PE ,EF 都垂直,所以AB ⊥平面PFE . (2)设BC =x ,则在Rt △ABC 中, AB =AC 2-BC 2=36-x 2, 从而S △ABC =12AB ·BC =12x 36-x 2.由EF ∥BC 知,AF AB =AE AC =23,得△AFE ∽△ABC ,故S △AFE S △ABC=⎝⎛⎭⎫232=49,即S △AFE =49S △ABC .由AD =12AE ,得S △AFD =12S △AFE =12·49S △ABC =29S △ABC =19x 36-x 2,从而四边形DFBC 的面积为S DFBC =S △ABC -S △AFD =12x 36-x 2-19x 36-x 2=718x 36-x 2.由(1)知,PE ⊥平面ABC ,所以PE 为四棱锥P -DFBC 的高. 在Rt △PEC 中,PE =PC 2-EC 2=42-22=2 3. V P -DFBC =13·S DFBC·PE =13·718x 36-x 2·23=7, 故得x 4-36x 2+243=0,解得x 2=9或x 2=27,由于x >0,可得x =3或x =3 3. 所以,BC =3或BC =3 3.证明直线和平面垂直的常用方法(1)利用判定定理.(2)利用平行线垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α). (3)利用面面平行的性质(a ⊥α,α∥β⇒a ⊥β). (4)利用面面垂直的性质.考点二 平面与平面垂直的判定与性质|(2015·高考全国卷Ⅰ)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E -ACD 的体积为63,求该三棱锥的侧面积. [解] (1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,所以AC ⊥BE .故AC ⊥平面BED . 又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(2)设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =32x ,GB =GD =x 2. 因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x . 由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x . 由已知得,三棱锥E -ACD 的体积V E -ACD =13×12AC ×GD ×BE =624x 3=63.故x=2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5.故三棱锥E-ACD的侧面积为3+2 5.证明面面垂直的主要方法①利用判定定理.在审题时要注意直观判断哪条直线可能是垂线,充分利用等腰三角形底边上的中线垂直于底边,勾股定理的逆定理等.②用定义证明.只需判定两平面所成二面角为直二面角.③客观题中,也可应用:两个平行平面中的一个垂直于第三个平面,则另一个也垂直于第三个平面.(2015·佛山一中期中考试)如图,在三棱锥P-ABC中,P A⊥底面ABC,∠BCA=90°,AP =AC,点D,E分别在棱PB,PC上,且BC∥平面ADE.(1)求证:DE⊥平面P AC;(2)当二面角A-DE-P为直二面角时,求A-BCED与P-AED的体积比.解:(1)证明:∵BC∥平面ADE,BC⊂平面PBC,平面PBC∩平面ADE=DE,∴BC ∥ED,∵P A⊥底面ABC,BC⊂底面ABC,∴P A⊥BC,又∠BCA=90°,∴AC⊥BC,∵P A与AC是平面P AC内的两条相交直线,∴BC⊥平面P AC,又BC∥ED,∴DE⊥平面P AC.(2)由(1)知,DE⊥平面P AC,∵AE⊂平面P AC,PE⊂平面P AC,∴DE⊥AE,DE⊥PE,∴∠AEP为二面角A-DE-P的平面角,∴∠AEP=90°,即AE⊥PC,∵AP =AC ,∴E 是PC 的中点, ∴ED 是△PBC 的中位线,DE ⊥AC , 又PC ∩DE =E ,∴AE ⊥平面PCD , ∴V A -BCEDV A -PDE=13S 四边形BCED ·AE 13S △PED ·AE =S 四边形BCED S △PED =3.考点三 平行与垂直的综合问题|空间线、面的平行与垂直的综合考查一直是高考必考热点,归纳起来常见的命题探究角度有:1.以多面体为载体考查平行与垂直的证明. 2.探索性问题中的平行与垂直问题. 3.折叠问题中的平行垂直问题. 探究一 平行与垂直关系的证明1.如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,P ,Q ,M ,N 分别是棱AB ,AD ,DD 1,BB 1,A 1B 1,A 1D 1的中点.求证:(1)直线BC 1∥平面EFPQ ; (2)直线AC 1⊥平面PQMN .证明:(1)连接AD 1,由ABCD -A 1B 1C 1D 1是正方体,知AD 1∥BC 1, 因为F ,P 分别是AD ,DD 1的中点,所以FP ∥AD 1. 从而BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ , 故直线BC 1∥平面EFPQ .(2)连接AC ,BD ,则AC ⊥BD.由CC 1⊥平面ABCD ,BD ⊂平面ABCD ,可得CC 1⊥BD . 又AC ∩CC 1=C ,所以BD ⊥平面ACC 1. 而AC 1⊂平面ACC 1,所以BD ⊥AC 1. 因为M ,N 分别是A 1B 1,A 1D 1的中点, 则易知MN ∥BD ,从而MN ⊥AC 1. 同理可证PN ⊥AC 1.又PN ∩MN =N , 所以直线AC 1⊥平面PQMN .探究二 探索性问题中的平行与垂直问题2.如图,直三棱柱ABC -A 1B 1C 1中,AC ⊥BC ,AC =BC =CC 1=2,M ,N 分别为AC ,B 1C 1的中点.(1)求线段MN 的长; (2)求证:MN ∥平面ABB 1A 1;(3)线段CC 1上是否存在点Q ,使A 1B ⊥平面MNQ ?说明理由. 解:(1)连接CN .因为ABC -A 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC , 所以AC ⊥CC 1. 因为AC ⊥BC , 所以AC ⊥平面BCC 1B 1.因为MC =1,CN =CC 21+C 1N 2=5,所以MN = 6.(2)证明:取AB 中点D ,连接DM ,DB 1.在△ABC 中,因为M 为AC 中点,所以DM ∥BC ,DM =12BC .在矩形B 1BCC 1中,因为N 为B 1C 1中点,所以B 1N ∥BC ,B 1N =12BC .所以DM ∥B 1N ,DM =B 1N .所以四边形MDB 1N 为平行四边形,所以MN ∥DB 1. 因为MN ⊄平面ABB 1A 1,DB 1⊂平面ABB 1A 1, 所以MN ∥平面ABB 1A 1.(3)线段CC 1上存在点Q ,且Q 为CC 1中点时,有A 1B ⊥平面MNQ . 证明如下:连接BC 1.在正方形BB 1C 1C 中易证QN ⊥BC 1.又A 1C 1⊥平面BB 1C 1C ,所以A 1C 1⊥QN ,从而NQ ⊥平面A 1BC 1. 所以A 1B ⊥QN .同理可得A1B⊥MQ,所以A1B⊥平面MNQ.故线段CC1上存在点Q,使得A1B⊥平面MNQ.探究三折叠问题中的平行与垂直关系3.(2015·高考四川卷)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系,并证明你的结论;(3)证明:直线DF⊥平面BEG.解:(1)点F,G,H的位置如图所示.(2)平面BEG∥平面ACH,证明如下:因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG,又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是四边形BCHE为平行四边形,所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH.同理BG∥平面ACH.又BE∩BG=B,所以平面BEG∥平面ACH.(3)证明:连接FH.因为ABCD-EFGH为正方体,所以DH⊥平面EFGH.因为EG⊂平面EFGH,所以DH⊥EG.又EG⊥FH,DH∩FH=H,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG.同理DF⊥BG.又EG∩BG=G,所以DF⊥平面BEG.平行与垂直的综合应用问题的处理策略(1)探索性问题一般是先根据条件猜测点的位置再给出证明,探索点存在问题,点多为中点或三等分点中某一个,也可以根据相似知识建点.(2)折叠问题中的平行与垂直关系的处理关键是结合图形弄清折叠前后变与不变的数量关系,尤其是隐含量的垂直关系.7.平行与垂直综合问题的答题模板【典例】(12分)(2015·高考山东卷)如图,三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.[思维点拨](1)法一:证明四边形DFCG为平行四边形,结合H为BC的中点可得HM ∥BD,进而得BD∥平面FGH;法二:利用四边形HBEF为平行四边形,证明平面ABED ∥平面FGH,进而得BD∥平面FGH.(2)先证明CB⊥平面ECH,进而得平面BCD⊥平面EGH.[规范解答](1)证明:法一:连接DG,CD,设CD∩GF=M,连接MH.在三棱台DEF-ABC 中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形,(3分)则M为CD的中点,又H为BC的中点,所以HM∥BD.又HM⊂平面FGH,BD⊄平面FGH,(4分)所以BD∥平面FGH.(5分)法二:在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形HBEF为平行四边形,可得BE∥HF.(2分)在△ABC中,G为AC的中点,H为BC的中点.所以GH∥AB.(3分)又GH∩HF=H,所以平面FGH∥平面ABED.(4分)因为BD⊂平面ABED,所以BD∥平面FGH.(5分)(2)连接HE,GE.因为G,H分别为AC,BC的中点,所以GH∥AB,由AB⊥BC,得GH⊥BC.(7分)又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形(9分)所以CF∥HE.又CF⊥BC,所以HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H,所以BC⊥平面EGH.(11分)又BC⊂平面BCD,所以平面BCD⊥平面EGH.(12分)[模板形成]由图形特征分析平行条件↓创设线面平行的条件↓利用判定定理或面面平行证明线面平行↓分析条件中平行与垂直的关系↓选定并证明线面垂直↓利用面面垂直的判定证明面面垂直A组考点能力演练1.已知直线m,l,平面α,β,且m⊥α,l⊂β,给出下列命题:①若α∥β,则m⊥l;②若α⊥β,则m∥l;③若m⊥l,则α⊥β;④若m∥l,则α⊥β,其中正确的命题的个数是()A.1B.2C.3 D.4解析:①中,α∥β,且m⊥α,则m⊥β,因为l⊂β,所以m⊥l,所以①正确;②中,α⊥β,且m⊥α,则m∥β或m⊂β,又l⊂β,则m与l可能平行,可能异面,可能相交,所以②不正确;③中,m⊥l,且m⊥α,l⊂β,则α与β可能平行,可能相交,所以③不正确;④中,m∥l,且m⊥α,则l⊥α,因为l⊂β,所以α⊥β,所以④正确,故选B.答案:B2.设α,β,γ为不同的平面,m、n、l为不同的直线,则m⊥β的一个充分条件为() A.α⊥β,α∩β=l,m⊥lB.α∩γ=m,α⊥γ,β⊥γC.α⊥γ,β⊥γ,m⊥αD.n⊥α,n⊥β,m⊥α解析:对于A,α⊥β,α∩β=l,m⊥l,根据面面垂直的性质定理可知,缺少条件m⊂α,故不正确;对于B,α∩γ=m,α⊥γ,β⊥γ,而α与β可能平行,也可能相交,则m与β不一定垂直,故不正确;对于C,α⊥γ,β⊥γ,m⊥α,而α与β可能平行,也可能相交,则m 与β不一定垂直,故不正确;对于D,n⊥α,n⊥β,则α∥β,又m⊥α,则m⊥β,故正确,故选D.答案:D3.如图,在三棱锥D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的是()A.平面ABC⊥平面ABDB.平面ABD⊥平面BCDC.平面ABC⊥平面BDE,且平面ACD⊥平面BDED.平面ABC⊥平面ACD,且平面ACD⊥平面BDE解析:因为AB=CB,且E是AC的中点,所以BE⊥AC,同理,DE⊥AC,由于DE∩BE =E,于是AC⊥平面BDE.因为AC⊂平面ABC,所以平面ABC⊥平面BDE.又AC⊂平面ACD,所以平面ACD⊥平面BDE.故选C.答案:C4.如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为H,则以下命题中,错误的是()A.点H是△A1BD的垂心B.AH垂直于平面CB1D1C.AH的延长线经过点C1D.直线AH和BB1所成角为45°解析:A中,△A1BD为等边三角形,∴其四心合一,∵AB=AA1=AD,∴H到△A1BD各顶点的距离相等,∴A正确;∵CD1∥BA1,CB1∥DA1,CD1∩CB1=C,BA1∩DA1=A1,∴平面CB1D1∥平面A1BD,∴AH⊥平面CB1D1,∴B正确;连接AC1,则AC1⊥B1D1,∵B1D1∥BD,∴AC1⊥BD,同理,AC1⊥BA1,∴AC1⊥平面A1BD,∴A、H、C1三点共线,∴C正确,故选D.答案:D5.如图所示,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC 上的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析:∵∠BAC=90°,∴AB⊥AC,又AC⊥BC1,BC1∩AB=B,∴AC⊥平面ABC1,又AC⊂平面ABC,∴平面ABC⊥平面ABC1.∵平面ABC1∩平面ABC=AB,∴点C1在平面ABC上的射影H必在两平面的交线AB上,故选A.答案:A6.四棱锥P-ABCD的顶点P在底面ABCD上的投影恰好是A,其三视图如图所示,其中正视图与侧视图都是腰长为a的等腰三角形,则在四棱锥P-ABCD的任意两个顶点的连线中,互相垂直的异面直线共有________对.解析:由题意可得P A ⊥BC ,P A ⊥CD ,AB ⊥PD ,BD ⊥P A ,BD ⊥PC ,AD ⊥PB ,即互相垂直的异面直线共有6对.答案:67.如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD .(只要填写一个你认为是正确的条件即可)解析:连接AC ,BD ,则AC ⊥BD ,∵P A ⊥底面ABCD ,∴P A ⊥BD .又P A ∩AC =A ,∴BD ⊥平面P AC , ∴BD ⊥PC .∴当DM ⊥PC (或BM ⊥PC )时,即有PC ⊥平面MBD . 而PC ⊂平面PCD , ∴平面MBD ⊥平面PCD . 答案:DM ⊥PC (或BM ⊥PC 等)8.已知△ABC 的三边长分别为AB =5,BC =4,AC =3,M 是AB 边上的点,P 是平面ABC 外一点.给出下列四个命题:①若P A ⊥平面ABC ,则三棱锥P -ABC 的四个面都是直角三角形; ②若PM ⊥平面ABC ,且M 是AB 边的中点,则有P A =PB =PC ; ③若PC =5,PC ⊥平面ABC ,则△PCM 面积的最小值为152;④若PC =5,P 在平面ABC 上的射影是△ABC 内切圆的圆心,则点P 到平面ABC 的距离为23.其中正确命题的序号是________.(把你认为正确命题的序号都填上)解:由题意知AC ⊥BC ,对于①,若P A ⊥平面ABC ,则P A ⊥BC ,又P A ∩AC =A ,∴BC ⊥平面P AC ,∴BC ⊥PC ,因此该三棱锥P -ABC 的四个面均为直角三角形,①正确;对于②,由已知得M 为△ABC 的外心,所以MA =MB =MC .∵PM ⊥平面ABC ,则PM ⊥MA ,PM ⊥MB ,PM ⊥MC ,由三角形全等可知P A =PB =PC ,故②正确;对于③,要使△PCM 的面积最小,只需CM 最短,在Rt △ABC 中,(CM )min =125,∴(S △PCM )min =12×125×5=6,故③错误;对于④,设P 点在平面ABC 内的射影为O ,且O 为△ABC 的内心,由平面几何知识得△ABC 的内切圆半径r =1,且OC =2,在Rt △POC 中,PO =PC 2-OC 2=23,∴点P 到平面ABC 的距离为23,故④正确.答案:①②④9.(2016·扬州中学模拟)如图1,在边长为4的菱形ABCD 中,∠DAB =60°,点E ,F 分别是边CD ,CB 的中点,AC ∩EF =O .沿EF 将△CEF 翻折到△PEF ,连接P A ,PB ,PD ,得到如图2的五棱锥P -ABFED ,且PB =10.(1)求证:BD ⊥平面POA ; (2)求四棱锥P -BFED 的体积.解:(1)证明:∵点E ,F 分别是边CD ,CB 的中点, ∴BD ∥EF .∵ABCD 是菱形,∴BD ⊥AC , ∴EF ⊥AC ,∴翻折后EF ⊥AO ,EF ⊥PO ,∵AO ⊂平面POA ,PO ⊂平面POA ,AO ∩PO =O , ∴EF ⊥平面POA , ∴BD ⊥平面POA .(2)设AO ∩BD =H ,连接BO ,∵ABCD 是菱形,∴AB =AD ,∵∠DAB =60°, ∴△ABD 为等边三角形,∴BD =4,BH =2,HA =23,HO =PO =3, 在Rt △BHO 中,BO =BH 2+HO 2=7, 在△PBO 中,BO 2+PO 2=10=PB 2, ∴PO ⊥BO ,∵PO ⊥EF ,EF ∩BO =O ,EF ⊂平面BFED ,BO ⊂平面BFED , ∴PO ⊥平面BFED ,又梯形BFED 的面积为S =12(EF +BD )·HO =33,∴四棱锥P -BFED 的体积V =13S ·PO =13×33×3=3.10.如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠ABC=45°,DC=1,AB=2,P A⊥平面ABCD,P A=1.(1)求证:AB∥平面PCD;(2)求证:BC⊥平面P AC;(3)若M是PC的中点,求三棱锥M-ACD的体积.解:(1)证明:∵AB∥CD,CD⊂平面PDC,AB⊄平面PDC,∴AB∥平面PDC.(2)证明:在直角梯形ABCD中,过点C作CE⊥AB于点E,则四边形ADCE为矩形,∴AE=DC=1,又AB=2,∴BE=1,在Rt△BEC中,∠EBC=45°,∴CE=BE=1,CB=2,在Rt△ACE中,AC=AE2+CE2=2,∴AC2+BC2=AB2,∴BC⊥AC.又P A⊥平面ABCD,BC⊂平面ABCD,∴BC⊥P A,而P A∩AC=A,∴BC⊥平面P AC.(3)∵M是PC的中点,∴M到平面ADC的距离是P到平面ADC的距离的一半.∴V M-ACD=13S△ACD×⎝⎛⎭⎫12P A=13×⎝⎛⎭⎫12×1×1×12=112.B组高考题型专练1.(2015·高考安徽卷)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行...,则在α内不存在...与β平行的直线D.若m,n不平行...,则m与n不可能...垂直于同一个平面解析:A中,垂直于同一个平面的两个平面可能相交也可能平行,故A错误;B中,平行于同一个平面的两条直线可能平行、相交或异面,故B错误;C中,若两个平面相交,则一个平面内与交线平行的直线一定和另一个平面平行,故C错误;D中,若两条直线垂直于同一个平面,则这两条直线平行,所以若两条直线不平行,则它们不可能垂直于同一个平面,故D 正确.答案:D2.(2014·高考广东卷)如图(1),四边形ABCD 为矩形,PD ⊥平面ABCD ,AB =1,BC =PC =2.按图(2)折叠:折痕EF ∥DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ; (2)求三棱锥M -CDE 的体积.解:(1)证明:PD ⊥平面ABCD ,PD ⊂平面PCD ,∴平面PCD ⊥平面ABCD , 平面PCD ∩平面ABCD =CD ,MD ⊂平面ABCD ,MD ⊥CD , ∴MD ⊥平面PCD ,CF ⊂平面PCD ,∴CF ⊥MD ,又CF ⊥MF ,MD ,MF ⊂平面MDF ,MD ∩MF =M ,∴CF ⊥平面MDF .(2)∵CF ⊥平面MDF ,∴CF ⊥DF ,又易知∠PCD =60°,∴∠CDF =30°,从而CF =12CD=12, ∵EF ∥DC ,∴DE DP =CF CP ,即DE 3=122,∴DE =34,∴PE =334,S △CDE =12CD ·DE =38,MD =ME 2-DE 2=PE 2-DE 2=⎝⎛⎭⎫3342-⎝⎛⎭⎫342=62,∴V M -CDE =13S △CDE ·MD =13·38·62=216. 3.(2015·高考陕西卷)如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC=12AD =a ,E 是AD 的中点,O是AC 与BE 的交点.将△ABE 沿BE 折起到图2中△A 1BE 的位置,得到四棱锥A 1-BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1-BCDE 的体积为362,求a 的值. 解:(1)证明:在图1中,因为AB =BC =12AD =a ,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在图2中,BE⊥A 1O ,BE ⊥OC ,从而BE ⊥平面A 1OC ,又CD ∥BE ,所以CD ⊥平面A 1OC . (2)由已知,平面A 1BE ⊥平面BCDE , 且平面A 1BE ∩平面BCDE =BE ,又由(1)可得A 1O ⊥BE ,所以A 1O ⊥平面BCDE , 即A 1O 是四棱锥A 1-BCDE 的高. 由图1知,A 1O =22AB =22a ,平行四边形BCDE 的面积S =BC ·AB =a 2. 从而四棱锥A 1-BCDE 的体积为V =13×S ×A 1O =13×a 2×22a =26a 3,由26a 3=362,得a =6.4.(2015·高考广东卷)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3.(1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.解:(1)证明:∵长方形ABCD 中,BC ∥AD , 又BC ⊄平面PDA ,AD ⊂平面PDA , ∴BC ∥平面PDA .(2)证明:取CD 的中点H ,连接PH , ∵PD =PC ,∴PH ⊥CD .又∵平面PDC ⊥平面ABCD ,平面PDC ∩平面ABCD =CD ,∴PH ⊥平面ABCD . 又∵BC ⊂平面ABCD ,∴PH ⊥BC . 又∵长方形ABCD 中,BC ⊥CD , PH ∩CD =H ,∴BC ⊥平面PDC . 又∵PD ⊂平面PDC ,∴BC ⊥PD . (3)连接AC .由(2)知PH 为三棱锥P -ADC 的高.∵PH =PD 2-⎝⎛⎭⎫12CD 2=42-32=7,S △ADC =12·AD ·CD =12×3×6=9,∴V P -ADC =13·S △ADC ·PH =13×9×7=37. 由(2)知BC ⊥PD , 又∵AD ∥BC , ∴AD ⊥PD ,∴S △PDA =12·PD ·AD =12×4×3=6.设点C 到平面PDA 的距离为h . ∵V C -PDA =V P -ADC , ∴13·S △PDA ·h =37, ∴h =3713·S △PDA =3713×6=372.。

《直线、平面垂直的判定及其性质》新课程高中数学高三一轮复习课件

《直线、平面垂直的判定及其性质》新课程高中数学高三一轮复习课件
∴OQ 平面PAE,∴OQ⊥BC.
连接BO并延长交AC于F.
∵PA⊥平面ABC,BF 平面ABC,
∴PA⊥BF.又∵O是△ABC的垂心,∴BF⊥AC, ∴BF⊥平面PAC.
∵PC 平面PAC,∴BF⊥PC.
连接BQ并延长交PC于M,连接MF. ∵Q为△PBC的垂心,∴PC⊥BM.∵BM∩BF=B,
∵AB 平面EAB,∴AB⊥CD.
学后反思 证明空间中两直线互相垂直,通常先观察两直线是否共面. 若两直线共面,则一般用平面几何知识即可证出,如勾股定理、等腰 三角形的性质等.若两直线异面,则转化为线面垂直进行证明.
举一反三
1. (2010·淮安模拟)如图,在三棱柱BCE-ADF中,四边形ABCD是正 方形,DF⊥平面ABCD,N是AC的中点,G是DF上的一点.求证: GN⊥AC.
第五节 直线、平面垂直的判定及其性质
基础梳理
1. 直线与平面垂直
(1)定义:如果直线 与l 平面α内的任意一条直线都垂直,我们就说直线 与平l
面α互相垂直.这条直线叫做平面的垂线,这个平面叫做直线的垂面,交点叫 做垂足.垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段, 垂线段的长度叫做点到平面的距离. (2)性质:如果一条直线垂直于一个平面,那么它就和平面内的任意一条直 线垂直. (3)判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与 这个平面垂直. (4)推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂 直于这个平面. (5)性质定理:如果两条直线垂直于同一个平面,那么这两条直线平行.
举一反三
2. 如图所示,P是△ABC所在平面外一点,且PA⊥平面 ABC,若O、Q分别是△ABC和△PBC的垂心,求 证:OQ⊥平面PBC.

直线、平面垂直的判定及其性质

直线、平面垂直的判定及其性质

2.如图所示,已知 AB 为圆 O 的直径,点 D 为线 段 AB 上一点,且 3AD=DB,点 C 为圆 O 上一 点,且 BC= 3AC,PD⊥平面 ABC,PD=DB. 求证:PA⊥CD. 证明:因为 AB 为圆 O 的直径,所以 AC⊥BC. 在 Rt△ABC 中,由 BC= 3AC,得∠ABC=30°. 设 AD=1,由 3AD=DB 得,DB=3,BC=2 3. 由余弦定理得 CD2=DB2+BC2-2DB·BCcos 30°=3, 所以 CD2+DB2=BC2,即 CD⊥AB. 因为 PD⊥平面 ABC,CD⊂平面 ABC,所以 PD⊥CD. 因为 PD∩AB=D,所以 CD⊥平面 PAB, 又 PA⊂平面 PAB,所以 PA⊥CD.
找 共 性
[过关训练] 1.如图所示,在四棱锥 P-ABCD 中,PA⊥底面
ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA =AB=BC,E 是 PC 的中点.求证: (1)CD⊥AE; (2)PD⊥平面 ABE.
证明:(1)∵PA⊥底面 ABCD,CD⊂平面 ABCD, ∴PA⊥CD.∵AC⊥CD,PA∩AC=A, ∴CD⊥平面 PAC.又 AE⊂平面 PAC,∴CD⊥AE. (2)由 PA=AB=BC,∠ABC=60°,可得 AC=PA. ∵E 是 PC 的中点,∴AE⊥PC. 由(1)知,AE⊥CD,且 PC∩CD=C,∴AE⊥平面 PCD. 又 PD⊂平面 PCD,∴AE⊥PD. ∵PA⊥底面 ABCD,∴PD 在底面 ABCD 内的射影是 AD, 又∵AB⊥AD,∴AB⊥PD.又 AB∩AE=A,∴PD⊥平面 ABE.
考点——在细解中明规律
题目千变总有根,梳干理枝究其本
考点一 线面垂直的判定与性质 [全析考法过关]

高考数学第一轮知识点总复习 第五节 直线、平面垂直的判定及其性质

高考数学第一轮知识点总复习 第五节   直线、平面垂直的判定及其性质
解 (1)当a=2时,ABCD为正方形,则BD⊥AC,………2′ 又∵PA⊥底面ABCD,BD 平面ABCD,∴BD⊥PA, 又∵PA∩AC=A,…………………………………….3′ ∴BD⊥平面PAC. 故当a=2时,BD⊥平面PAC……………………….4′
(2)证明:当a=4时,取BC边的中点M,AD边的中点N,连接AM、DM、 MN……..5′ ∵四边形ABMN和四边形DCMN都是正方形,…………………………………..6′ ∴∠AMD=∠AMN+∠DMN=45°+45°=90°,…………………………………..7′ 即DM⊥AM.又∵PA⊥底面ABCD, ∴PA⊥DM,∴DM⊥面PAM,得PM⊥DM,………………………………………..9′ 故(3当)设aM=4是时B,CBC边边上的符中合点题M设使的P点MM⊥, DM. ∵PA⊥底面ABCD,∴DM⊥AM………………………………………………11′ 因此,M点应是以AD为直径的圆和BC边的交点,则AD≥2AB,即a≥4为所 求…………….12′
ABD⊥平面ABC.在平面ABD内过点D作DK⊥AB,K为垂足.设AK=t,则t的
取值范围是
.
解析: 如图2,过K作KM⊥AF于M点,连接DM,
由平面ABD⊥平面ABC易得DM⊥AF,与折前的图
1对比,可知在折前的图形中D、M、K三点共线且
DK⊥AF,于是△DAK∽△FDA,
AK DA
AD , t DF 1
分析 (1)本题第(1)问是寻求BD⊥平面PAC的条件,即BD垂直于平面 PAC内两相交直线,易知BD⊥PA,问题归结为a为何值时,BD⊥AC,从而知 ABCD为正方形. (2)若PM⊥DM,易知DM⊥面PAM,得DM⊥AM,由AB=2,a=4知, M为BC的中点时得两个全等的正方形,满足DM⊥AM.

第一轮复习讲义知识点三十直线、平面垂直的判定及性质

第一轮复习讲义知识点三十直线、平面垂直的判定及性质

直线、平面垂直的判定及其性质考点知识梳理一、直线与平面垂直(一)、直线与平面垂直的定义条件:直线l与平面α内的______________都垂直结论:直线l与平面α垂直(二)、直线与平面垂直的判定:Array 1、判定定理:一条直线和一个平面内的__________________都垂直,则该直线和此平面垂直。

2、书写格式:________________________(三)、直线和平面垂直的性质(.1.)如果一条直线垂直于一个平面,则这条直线垂直于这个平面内的所有直线。

..................................(2)如果两条直线同垂直于一个平面,那么这两条直线平行。

(.3.)如果两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面。

.................................(4)如果一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

例1:给定空间中的直线l及平面α,条件“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的________条件。

(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一)【解析】:必要不充分变式练习1:设m、n是两条不同的直线,α、β是两个不同的平面,给出下列四个命题:①若m⊥n,m⊥α,n⊄α,则n∥α。

②若m∥α,α⊥β,则m⊥β。

③若m⊥β,α⊥β,则m∥α或m⊂α。

④若m⊥n,m⊥α,n⊥β,则α⊥β。

则其中正确命题的序号为________。

【解析】:①③④变式练习2:已知平面α、β、γ,直线l、m满足α⊥γ,γ∩α=m,γ∩β=l,l ⊥m,那么:①m⊥β;②l⊥α;③β⊥γ;④α⊥β。

由上述条件可推出的结论有________(填序号)。

【解析】:由条件知α⊥γ,γ∩α=m,l⊂γ,l⊥m,则根据面面垂直的性质定理有l⊥α,即②成立;又l⊂β,根据面面垂直的判定定理有α⊥β,即④成立.②④变式练习3:如图所示,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E、F分别是点A在PB、PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC。

高考数学一轮总复习课件:直线、平面垂直的判定及性质

高考数学一轮总复习课件:直线、平面垂直的判定及性质
∵A1C1⊥BB1,A1O⊥BB1,A1C1∩A1O=A1, ∴BB1⊥平面A1OC1, 又C1O⊂平面A1OC1,∴BB1⊥C1O. 由题可知A1B1=A1C1=B1C1=2 2, 在△A1OB1中,A1O⊥OB1,∠A1B1B=45°,A1B1=2 2, ∴A1O=B1O=2.
在△B1OC1中,∵C1O⊥OB1,B1O=2,B1C1=2 2, ∴C1O=2. ∴OC12+OA12=A1C12,∴OC1⊥OA1, ∵BB1⊥C1O,A1O⊥C1O,BB1∩A1O=O,∴C1O⊥平面 ABB1A1, 又C1O⊂平面BCC1B1,∴平面BCC1B1⊥平面ABB1A1. 【答案】 略
①证明:平面PBD⊥平面PBC; ②求点D到平面PBC的距离.
【解析】 ①证明:如图,因为PD⊥DC,AD⊥DC, 所以二面角P-DC-A的平面角为∠PDA=90°,则PD⊥平面 ABCD, 又BC⊂平面ABCD,所以PD⊥BC. 又在平面四边形ABCD中,BD= AB2+AD2 = 2 2, 过B作BE⊥CD,由题意得,E为CD中点,又D为PA中点, 所以PD=AD=CE=DE=2, 又DE=AB, 所以BE=AD=2,BC= CE2+BE2=2 2,所以BC2+BD2=DC2, 即BD⊥BC,而PD∩BD=D,BD⊂平面PBD,PD⊂平面PBD, 故BC⊥平面PBD,因为BC⊂平面PBC,所以平面PBD⊥平面PBC.
又因为F为AC的中点, 所以OF∥CC1且OF=12CC1. 因为E为BB1的中点,所以BE∥CC1且BE=12CC1. 所以BE∥OF且BE=OF.
所以四边形BEOF是平行四边形,所以BF∥OE. 因为AB=CB,F为AC的中点,所以BF⊥AC,所以 OE⊥AC. 因为AA1⊥底面ABC,所以AA1⊥BF,所以OE⊥AA1. 又AA1,AC⊂平面ACC1A1,且AA1∩AC=A, 所以OE⊥平面ACC1A1. 因为OE⊂平面A1EC,所以平面A1EC⊥平面ACC1A1.

数学课标通用(理科)一轮复习配套教师用书:第八章 立体几何 直线、平面垂直的判定与性质

数学课标通用(理科)一轮复习配套教师用书:第八章 立体几何  直线、平面垂直的判定与性质

§8.5 直线、平面垂直的判定与性质考纲展示►1.能以立体几何中的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质和判定定理.2.能运用公理、定理和已获得的结论证明一些有关空间图形的位置关系的简单命题.考点1 直线与平面垂直的判定与性质直线与平面垂直(1)直线和平面垂直的定义:直线l与平面α内的________直线都垂直,就说直线l与平面α互相垂直.(2)直线与平面垂直的判定定理及性质定理:答案:(1)任意一条(2)两条相交直线a,b⊂αa∩b=O l⊥al⊥b平行a⊥αb⊥α(1)[教材习题改编]下列命题中不正确的是()A.如果平面α⊥平面β,且直线l∥平面α,则直线l⊥平面βB.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ答案:A(2)[教材习题改编]如图,在三棱锥V-ABC中,∠VAB=∠VAC=∠ABC=90°,则构成三棱锥的四个三角形中直角三角形的个数为________.答案:4[典题1](1)[2017·上海六校联考]已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m⊥β的是()A.α⊥β且m⊂αB.α⊥β且m∥αC.m∥n且n⊥βD.m⊥n且α∥β[答案]C[解析]由线线平行性质的传递性和线面垂直的判定定理,可知C正确.(2)如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,AB ⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.求证:①CD⊥AE;②PD⊥平面ABE.[证明] ①在四棱锥P-ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴PA⊥CD.∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC。

而AE⊂平面PAC,∴CD⊥AE。

直线、平面垂直的判定及其性质

直线、平面垂直的判定及其性质

(2)直线与平面垂直的判定定理及性质定理:
文字语言 一条直线与一个平
图形语言
符号语言
两条相交直 判定 面内的__________
定理 线 __都垂直,则该直 线与此平面垂直 性质 垂直于同一个平面 定理 的两条直线平行 ____
a,b⊂α a∩b=O l⊥ α ⇒_____ l⊥ a l⊥ b
两个平面垂直
两个平面垂直,则
α⊥β l⊂ β ⇒ l⊥ α α∩β=a l⊥ a
性质 一个平面内垂直于 定理 交线 ____的直线与另一 个平面垂直
课 前 ·双 基 落 实 课 堂 ·考 点 突 破
课后· 三维演练
直线、平面垂直的判定及其性质
结束
[小题体验] 1.已知平面 α⊥平面 β,直线 l⊥平面 β,则直线 l 与平面 α
课 前 ·双 基 落 实
课 堂 ·考 点 突 破
课后· 三维演练
直线、平面垂直的判定及其性质
结束
角度二:利用线面垂直的性质证明线线垂直 2. (2015· 江苏高考)如图, 在直三棱柱 ABCA1B1C1 中, 已知 AC⊥BC, BC=CC1.设 AB1 的中点为 D,B1C∩BC1=E. 求证:(1)DE∥平面 AA1C1C; (2)BC1⊥AB1.
课 前 ·双 基 落 实 课 堂 ·考 点 突 破 课后· 三维演练
直线、平面垂直的判定及其性质
结束
1.证明线面垂直时,易忽视面内两条线为相交线这一条件. 2. 面面垂直的判定定理中, 直线在面内且垂直于另一平面易忽视. 3. 面面垂直的性质定理在使用时易忘面内一线垂直于交线而盲目 套用造成失误.

其中正确的命题是________(填写所有正确命题的序号).

高考数学一轮复习直线、平面垂直的判定及其性质

高考数学一轮复习直线、平面垂直的判定及其性质

第5节直线、平面垂直的判定及其性质最新考纲i.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.口归敦材,夯寳基础知识梳理1 .直线与平面垂直(1) 直线和平面垂直的定义如果一条直线I与平面a内的任意直线都垂直,就说直线I与平面a互相垂直.2.平面与平面垂直(1) 平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.[常用结论与微点提醒]1. 垂直关系的转化判定判定判定I线线曜頁普堰血匝巫器面画垂宜f 性踰性険性质2. 直线与平面垂直的五个结论(1) 若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线.(2) 若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(3) 垂直于同一条直线的两个平面平行.(4) 过一点有且只有一条直线与已知平面垂直.(5) 过一点有且只有一个平面与已知直线垂直.诊断自测1. 思考辨析(在括号内打“V”或“X”)(1) 直线I与平面a内的无数条直线都垂直,则1丄口()(2) 垂直于同一个平面的两平面平行.()(3) 若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面. ()(4) 若平面a内的一条直线垂直于平面B内的无数条直线,则a丄3( )解析(1)直线I与平面a内的无数条直线都垂直,则有I丄a或I与a斜交或I? a或I // a,故⑴错误.(2) 垂直于同一个平面的两个平面平行或相交,故(2)错误.(3) 若两个平面垂直,则其中一个平面内的直线可能垂直于另一平面,也可能与另一平面平行,也可能与另一平面相交,也可能在另一平面内,故(3)错误.(4)若平面a内的一条直线垂直于平面B内的所有直线,则aL B,故(4)错误. 答案(1)X ⑵X ⑶X ⑷X2. (必修2P56A组7T改编)下列命题中错误的是()A .如果平面a丄平面B,那么平面a内一定存在直线平行于平面BB. 如果平面a不垂直于平面B,那么平面a内一定不存在直线垂直于平面BC. 如果平面a丄平面Y平面肚平面Y aG A l,那么I丄平面丫D. 如果平面a丄平面B,那么平面a内所有直线都垂直于平面B解析对于D,若平面a丄平面B,则平面a内的直线可能不垂直于平面B,即与平面B的关系还可以是斜交、平行或在平面B内,其他选项易知均是正确的. 答案D3. (2016浙江卷)已知互相垂直的平面a, B交于直线I,若直线m , n满足m// a, n LB,则()A. m/ IB. m / nC. n丄I D . m丄n解析因为an片I,所以I? B ,又n丄B,所以n丄I,故选C.答案C4. (2017全国川卷)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则()A. A1E L DC1 B . A1E L BDC. A1E L BC1 D . A1E L AC解析如图,由题设知,A1B1丄平面BCC1B1且BC1?平面BCC1B1,从而A1B1L BC1,又B1C L BC1,且A1B1G BQ= B1,所以BC1 丄平面A1B1CD,又A1E? 平面A1B1CD,所以A1E L BC1.答案C5. (2017浙江名校协作体联考)已知矩形ABCD, AB= 1, BC= 2.将厶ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中,()A •存在某个位置,使得直线AC与直线BD垂直B. 存在某个位置,使得直线AB与直线CD垂直C. 存在某个位置,使得直线AD与直线BC垂直D. 对任意位置,三对直线“ AC与BD”,“AB与CD”,“AD与BC”均不垂直解析若AB丄CD,BC丄CD,则可得CD丄平面ACB,因此有CD丄AC.因为AB=1,BC= AD= 2,CD= 1,所以AC= 1,所以存在某个位置,使得AB丄CD. 答案B 6. (必修2P67练习2改编)在三棱锥P —ABC中,点P在平面ABC中的射影为点0,(1)若PA= PB= PC,则点0 是厶ABC 的________ 心.⑵若PA丄PB,PB丄PC,PC丄PA,则点0是厶ABC的______ 心.解析(1)如图1,连接OA, OB,OC,0P,在Rt A POA、Rt△ POB 和Rt△ POC 中,PA= PC= PB,所以OA= OB = OC,即卩O ABC的外心.(2)如图2,T PC丄PA,PB丄PC,PA A PB= P,••• PC丄平面FAB,AB?平面PAB,••• PC丄AB,又AB丄PO,PO A PC= P,••• AB 丄平面PGC,又CG?平面PGC,二AB丄CG,即CG ABC边AB的高.同理可证BD,AH分别为△ ABC边AC,BC上的高,即O ABC的垂心.答案(1)外⑵垂图1I考点突破丨分类讲练■、以例求试考点一线面垂直的判定与性质【例1】如图,在四棱锥P —ABCD中,FA丄底面ABCD,AB丄AD, AC 丄CD,/ ABC= 60° PA=AB= BC, E 是PC 的中点.证明:(1)CD 丄AE;(2)PD丄平面ABE.证明(1)在四棱锥P —ABCD中,v PA 丄底面ABCD , CD?平面ABCD,:PA 丄CD,又••• AC丄CD, 且FA P AC = A,••• CD丄平面PAC.而AE?平面PAC,••• CD 丄AE.(2)由PA=AB= BC ,Z ABC = 60° 可得AC = PA.v E是PC的中点,二AE丄PC.由(1)知AE丄CD , 且PC P CD = C,••• AE丄平面PCD.而PD?平面PCD,:AE 丄PD.v PA丄底面ABCD , AB?平面ABCD ,:PA丄AB.又v AB丄AD ,且PA P AD = A ,:AB丄平面PAD ,而PD?平面PAD ,:AB丄PD.又v AB P AE= A, : PD 丄平面ABE.规律方法(1)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传递性(a// b , a丄a b± a );③面面平行的性质(a丄a, all B ? a X p );④面面垂直的性质(a丄B, aA a, I丄a, I? B ?l丄a ).(2)证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.【训练1】如图所示,已知AB为圆0的直径,点D为线段AB上一点,且AD 1=3DB,点 C 为圆0 上一点,且BC= 3AC,PD 丄平面ABC, PD= DB.求证:PA X CD.证明因为AB为圆0的直径,所以AC X CB.在Rt A ABC 中,由3AC = BC 得,/ ABC= 30°设AD = 1,由3AD = DB 得,DB = 3,BC = 2 3.由余弦定理得CD2= DB2+ BC2—2DB BCcos 30= 3, 所以CD2+ DB2= BC2,即CD 丄AB.因为PD丄平面ABC, CD?平面ABC,所以PD丄CD,由PD A AB= D得,CD丄平面PAB,又PA?平面PAB,所以PA X CD.考点二面面垂直的判定与性质【例2】(2017江苏卷)如图,在三棱锥A—BCD中,AB X AD, BC丄BD,平面ABD X 平面BCD,点E, F(E与A, D不重合)分别在棱AD, BD上,且EF X AD.求证:(1)EF //平面ABC;(2)AD 丄AC.证明(1)在平面ABD内,AB X AD, EF丄AD , 贝U AB // EF.••• AB?平面ABC, EF?平面ABC,••• EF//平面ABC.(2)v BC丄BD,平面ABD G平面BCD = BD,平面ABD丄平面BCD, BC?平面BCD,二BC丄平面ABD.••• AD?平面ABD,二BC 丄AD.又AB丄AD,BC,AB?平面ABC,BC G AB= B,••• AD丄平面ABC,又因为AC?平面ABC,:AD丄AC.规律方法(1)证明平面和平面垂直的方法:①面面垂直的定义;②面面垂直的判定定理.(2)已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.【训练2】(2017 山东卷)由四棱柱ABCD-A1B1C1D1截去三棱锥C i-B1CD1后得到的几何体如图所示.四边形ABCD为正方形,0为AC与BD的交点,E为AD的中点,A1E丄平面ABCD.(1)证明:A1O //平面B1CD1;⑵设M是0D的中点,证明:平面A1EM丄平面B1CD1. 证明(1)取B1D1的中点01,连接CO1, A1O1,由于ABCD —A1B1C1D1是四棱柱,所以A1O1 // 0C,A1O1 = 0C,因此四边形A10C01为平行四边形,所以A1O// 01C,又01C?平面B1CD1,A10?平面B1CD1,所以A10 //平面B1CD1.(2)因为AC丄BD , E, M分别为AD和OD的中点,所以EM丄BD,又A I E丄平面ABCD, BD?平面ABCD,所以A i E丄BD,因为B i D i // BD,所以EM丄B i D i, A i E丄B i D i,又A I E, EM?平面A i EM , A i E A EM = E,所以B i D i丄平面A i EM ,又B i D i?平面B i CD i,所以平面A i EM丄平面B i CD i.考点三平行与垂直的综合问题(多维探究)命题角度i多面体中平行与垂直关系的证明【例3-U 如图,在直三棱柱ABC —A i B i C i中,D, E分别为AB, BC的中点, 点F 在侧棱B i B上,且B i D丄A i F, A i C i丄A i B i.求证:(1) 直线DE //平面A i C i F;⑵平面B i DE丄平面A i C i F.证明(i)在直三棱柱ABC—A i B i C i中,A i C i / AC.在厶ABC中,因为D, E分别为AB, BC的中点,所以DE // AC,于是DE// A i C i.又因为DE?平面A i C i F, A i C i?平面A i C i F,所以直线DE //平面A i C i F.(2) 在直三棱柱ABC—A i B i C i中,A i A丄平面A i B i C i.因为A i C i?平面A i B i C i,所以A i A丄A i C i.又因为A i C i丄A i B i, A i A?平面ABB i A i, A i B i?平面ABB i A i, A i A A A i B i= A i, 所以A i C i 丄平面ABB i A i.因为B i D?平面ABB i A i,所以A i C i丄B i D.又因为B i D 丄A i F, A1C1?平面A i C i F, A i F?平面A i C i F, A1C1 A A i F = A i,所以B i D丄平面A iC i F.因为直线B i D?平面B i DE,所以平面B i DE丄平面A i C i F.规律方法(i)三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化.(2)垂直与平行的结合问题,求解时应注意平行、垂直的性质及判定的综合应用. 命题角度2平行垂直中探索性问题【例3-2】如图所示,平面ABCD丄平面BCE,四边形ABCD为矩形,BC= CE,点F为CE的中点.(i)证明:AE//平面BDF.⑵点M为CD上任意一点,在线段AE上是否存在点P,使得PM丄BE?若存在, 确定点P的位置,并加以证明;若不存在,请说明理由.(i)证明图①连接AC交BD于0,连接0F,如图①.•••四边形ABCD是矩形,二0为AC的中点,又F为EC的中点, •••0F ACE的中位线,••• OF / AE, 又OF?平面BDF, AE?平面BDF ,••• AE//平面BDF.⑵解当P为AE中点时,有PM丄BE,证明如下:取BE 中点H , 中占I 八、、,••• PH // AB ,又 AB // CD ,二 PH // CD ,: P , H , •••平面 ABCD 丄平面 BCE ,平面 ABCD A 平面 CD 丄 BC.••• CD 丄平面 BCE , 又 BE?平面 BCE ,••• CD 丄 BE ,v BC = CE , H 为 BE 的中点,二 CH 丄BE ,又 CD A CH = C ,: BE 丄平面 DPHC ,又 PM?平面 DPHC , ••• BE 丄 PM ,即 PM 丄 BE.规律方法 (1)求条件探索性问题的主要途径:①先猜后证,即先观察与尝试给 出条件再证明;②先通过命题成立的必要条件探索出命题成立的条件, 再证明充分性.(2)涉及点的位置探索性问题一般是先根据条件猜测点的位置再给出证明,探索 点存在问题,点多为中点或三等分点中某一个,也可以根据相似知识建点.【训练3】(2018嘉兴七校联考)在如图所示的几何体中,面 CDEF 为正方形, 面 ABCD 为等腰梯形,AB // CD , AC = . 3, AB = 2BC = 2, AC 丄FB.⑴求证:AC 丄平面FBC.⑵求四面体FBCD 的体积.⑶线段AC 上是否存在点M ,使EA //平面FDM ?若存在,请说明其位置,并加 以证明;若不存在,请说明理由.⑴证明在厶ABC 中,因为 AC = 3, AB = 2, BC = 1,所以 AC 2 + BC 2= AB 2,••• P 为AE 的中点,H 为BE 的C ,D 四点共面.BCE = BC , CD?平面 ABCD ,所以AC丄BC.又因为AC丄FB, BC G FB = B,所以AC丄平面FBC.⑵解因为AC丄平面FBC , FC?平面FBC,所以AC丄FC. 因为CD丄FC, AC A CD = C,所以FC丄平面ABCD.在等腰梯形ABCD中可得CB= DC = 1,所以FC = 1.所以△ BCD的面积为S^43.1 U3所以四面体FBCD的体积为V F—BCD = 3S FC = 12.⑶解线段AC上存在点M,且点M为AC中点时,有EA//平面FDM.证明如下:连接CE,与DF交于点N,取AC的中点M,连接MN.因为四边形CDEF是正方形,所以点N为CE的中点.所以EA // MN.因为MN?平面FDM , EA?平面FDM ,所以EA//平面FDM.所以线段AC上存在点M,且M为AC的中点,使得EA//平面FDM成立.I课乍业分层训练■,提升能力基础巩固题组一、选择题1. (2018绍兴检测)已知平面辽平面B,且aA b, a? a ,贝a丄b”是“ a丄0'的()A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析平面a丄平面0且aA 0= b, a? a ,若a丄b,则a丄0充分性成立;平面a丄平面B,因为aA b,所以b? B,若a丄B,则a丄b,必要性成立,所以“a丄b”是“ a丄B的充要条件,故选C.答案C2. (2015浙江卷)设a, B是两个不同的平面,I, m是两条不同的直线,且I? a , m?B ()A .若I丄B,贝U aXB B .若a丄B,则I丄mC.若I // B,贝U all B D .若all B,则I // m解析由面面垂直的判定定理,可知A选项正确;B选项中,I与m可能平行;C选项中,a与B可能相交;D选项中,I与m可能异面.答案A3.若平面a, B满足a丄B, aA B= I ,P€ a , P?I,则下列命题中是假命题的为()A .过点P垂直于平面a的直线平行于平面BB. 过点P垂直于直线I的直线在平面a内C. 过点P垂直于平面B的直线在平面a内D. 过点P且在平面a内垂直于I的直线必垂直于平面B解析由于过点P垂直于平面a的直线必平行于平面B内垂直于交线的直线,因此也平行于平面B,因此A正确.过点P垂直于直线I的直线有可能垂直于平面a,不一定在平面a内,因此B不正确.根据面面垂直的性质定理知,选项C , D正确.答案B4. 如图,在正四面体P-ABC中,D , E , F分别是AB , BC , CA的中点,下面四个结论不成立的是()A. BC//平面PDFB. DF丄平面FAEC. 平面PDF丄平面PAED.平面PDE丄平面ABC 解析因为BC// DF, DF?平面PDF,BC?平面PDF,所以BC //平面PDF ,故选项A正确.在正四面体中,AE丄BC, PE丄BC, AE G PE= E,••• BC丄平面PAE, DF // BC,贝U DF丄平面PAE, 又DF?平面PDF,从而平面PDF丄平面PAE.因此选项B, C均正确.答案D5. (2017丽水调研)设l是直线,a, B是两个不同的平面,则下列说法正确的是()A .若I // a, I // B,贝u all PB .若I // a, I 丄B,贝U a丄B C.若a丄B, I丄a,则I // P D .若a丄P I // a,则I丄P解析A中,all P或a与P相交,不正确.B中,过直线I作平面Y设aG尸I ;贝U I'//1 ,由I丄B知I'丄B从而a丄B B正确.C中,I //p或I? p , C不正确.D 中,I与P的位置关系不确定.答案B6. 如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把厶ABD和厶ACD 折成互相垂直的两个平面后,某学生得出下列四个结论:①BD丄AC;②厶BAC是等边三角形;③三棱锥D —ABC是正三棱锥;④平面ADC丄平面ABC.其中正确的是()A. ①②④ B .①②③C.②③④ D .①③④解析由题意知,BD丄平面ADC ,且AC?平面ADC ,故BD丄AC ,①正确;AD 为等腰直角三角形斜边BC上的高,平面ABD丄平面ACD ,所以AB = AC= BC , △ BAC是等边三角形,②正确;易知DA = DB = DC ,又由②知③正确;由①知④错.答案B二、填空题7. _______________________________________________________________ 如图,已知PA丄平面ABC, BC丄AC,则图中直角三角形的个数为 _____________ .解析T PA丄平面ABC, AB, AC, BC?平面ABC,••• PA丄AB, PA丄AC, PA丄BC,则厶PAB, △ PAC为直角三角形.由BC丄AC, 且AC n PA= A, ••• BC丄平面PAC,从而BC丄PC,因此△ ABC, △ PBC也是直角三角形.答案48. (2018杭州质检)设a, B是两个不同的平面,m是一条直线,给出下列命题:①若m l a, m? B ,贝U a± B;②若m // a , a丄B,贝U m± B其中真命题是__________ 填序号).解析由面面垂直的判定定理可知①是真命题;若m// a, a丄B,则m, B的位置关系不确定,可能平行、相交或m? B,则②是假命题.答案①9. 如图所示,在四棱锥P- ABCD中,PA丄底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足___________ 寸,平面MBD丄平面PCD(只要填写一个你认为正确的条件即可).解析由题意可知,BD丄PC.•••当DM丄PC(或BM丄PC)时,有PC丄平面MBD.又PC?平面PCD, •平面MBD丄平面PCD.答案DM丄PC(或BM丄PC等)10. (2016全国U卷改编)a, B是两个平面,m, n是两条直线.⑴如果m l a, n// a,那么m, n的位置关系是 ____________ ;(2)如果m/ n, all B,那么m与a所成的角和n与B所成的角的大小关系是解析(1)由线面平行的性质定理知存在直线I? a , n// I, m l a,所以m l l, 所以m l n.⑵因为m// n,所以m与a所成的角和n与a所成的角相等.因为all B,所以n 与a所成的角和n与B所成的角相等,所以m与a所成的角和n与B所成的角相等.答案(1)垂直(2)相等三、解答题11. 如图,在三棱锥P —ABC中,平面FAB丄平面ABC, PA丄PB, M , N分别为AB, PA的中点.(1) 求证:PB//平面MNC;(2) 若AC= BC,求证:PA丄平面MNC.证明(1)因为M , N分别为AB, PA的中点,所以MN // PB.又因为MN?平面MNC, PB?平面MNC,所以PB//平面MNC.(2)因为FA X PB, MN // PB,所以FA X MN.因为AC= BC, AM = BM,所以CM X AB.因为平面PAB X平面ABC,CM?平面ABC,平面PAB A平面ABC = AB.所以CM丄平面PAB.因为PA?平面PAB,所以CM丄PA.又MN A CM = M,所以PA丄平面MNC.12. (2016北京卷)如图,在四棱锥P —ABCD中,PC X平面ABCD, AB// DC, DC 丄AC.⑴求证:DC 丄平面FAC ;(2)求证:平面FAB 丄平面PAC ;⑶设点E 为AB 的中点,在棱PB 上是否存在点F ,使得PA //平面CEF ?说明理由.(1)证明 因为PC 丄平面ABCD ,所以PC 丄DC.又因为AC 丄DC ,且PC n AC = C ,所以DC 丄平面PAC.(2)证明 因为AB / DC , DC 丄AC ,所以AB 丄AC.因为PC 丄平面ABCD ,所以PC 丄AB.又因为pe n AC = C ,所以AB 丄平面PAC.又AB?平面PAB ,所以平面PAB 丄平面PAC.⑶解 棱PB 上存在点F ,使得PA //平面CEF.理由如下:取PB 的中点F ,连接EF , CE , CF ,又因为E 为AB 的中点,所以 EF / PA.又因为PA?平面CEF ,且EF?平面CEF , 所以PA //平面CEF.能力提升题组13. (2018舟山调研)在三棱锥P - ABC 中,已知PA 丄底面ABC , AB 丄BC ,E, A. 当AE 丄PB 时,△ AEF 一定为直角三角形B. 当AF 丄PC 时,△ AEF 一定为直角三角形F 分别是线段PB , PC 上的动点,则下列说法错误的是(C •当EF //平面ABC 时,△ AEF —定为直角三角形D •当PC 丄平面AEF 时,△ AEF 一定为直角三角形解析 因为AP I 平面ABC , BC?平面ABC ,所以AP I BC ,又AB 丄BC ,且PA 和AB 是平面PAB 内两条相交直线,则 BC 丄平面PAB ,又AE?平面FAB ,所以 BC 丄AE ,当AE 丄PB 时,AE 丄平面PBC ,又EF?平面PBC ,贝U AE 丄EF , △ AEF 一定是直角三角形,A 正确;当EF //平面ABC 时,EF 在平面PBC 内,平面PBC 与平面ABC 相交于BC ,则EF // BC ,则EF 丄AE , △ AEF 一定是直角三角形, C 正确;当PC 丄平面AEF 时,AE 丄PC ,又AE 丄BC , J 则AE 丄平面PBC ,又EF?平面PBC ,所以AE 丄EF , △ AEF 一定是直角三角形,D 正确;B 中结论无法证 明. 答案 B14. (2017诸暨调研)如图,在正方形ABCD 中,E , F 分别是BC , CD 的中点, 沿AE , AF , EF 把正方形折成一个四面体,使 B , C , D 三点重合,重合后的点 记为P , P 点在△ AEF 内的射影为O ,则下列说法正确的是( )解析 由题意可知PA , PE , PF 两两垂直,所以PA 丄平面PEF ,从而PA 丄EF ,而PO 丄平面AEF ,贝U PO 丄EF ,因为POP PA = P ,所以EF 丄平面PAO ,••• EF 丄AO ,同理可知 AE 丄FO , AF 丄EO ,•••O AEF 的垂心.A . O 是厶AEF 的垂心 C. O 是厶AEF 的外心B . O 是厶AEF 的内心D . O 是厶AEF 的重心答案A15. 如图,已知六棱锥PABCDEF的底面是正六边形,PA丄平面ABC, PA= 2AB, 则下列结论中:①PB丄AE;②平面ABC丄平面PBC;③直线BC//平面PAE;④/ PDA=45°其中正确的有________ (把所有正确的序号都填上)•解析由PA丄平面ABC, AE?平面ABC, 得PA丄AE,又由正六边形的性质得AE丄AB, PA A AB = A,得AE丄平面FAB,又PB?平面FAB, A AE丄PB,①正确;又平面PAD丄平面ABC,二平面ABC丄平面PBC不成立,②错;由正六边形的性质得BC/ AD,又AD?平面PAD , BC?平面PAD , A BC//平面PAD , A直线BC//平面PAE也不成立,③错;在Rt △ PAD中,PA =AD= 2AB, A / PDA = 45° A④正确.答案①④16. 如图,在四棱锥P-ABCD 中,PA 丄CD , AD // BC,/ ADC=Z PAB= 90°BC = CD = 1AD.(1)在平面PAD内找一点M,使得直线CM //平面PAB,并说明理由.⑵证明:平面PAB丄平面PBD.(1)解取棱AD的中点M(M €平面PAD),点M即为所求的一个点,理由如下:因为AD // BC, BC= 2AD.所以BC / AM , 且BC= AM.所以四边形AMCB是平行四边形,从而CM // AB.又AB?平面PAB.CM?平面PAB.所以CM //平面PAB.(说明:取棱PD 的中点N ,则所找的点可以是直线 MN 上任意一点)(2)证明 由已知,PA 丄AB , FA X CD.因为 AD // BC , BC = 1A D ,所以直线AB 与CD 相交,所以PA 丄平面ABCD.又BD?平面ABCD ,从而PA X BD.1因为 AD // BC , BC = 2AD ,M 为AD 的中点,连接BM ,所以 BC / MD , 且 BC = MD.所以四边形BCDM 是平行四边形,1所以BM = CD = 2AD ,所以BD 丄AB.又AB A AP = A ,所以BD 丄平面PAB.又BD?平面PBD ,所以平面PAB X 平面PBD.17. 如图,三棱台DEF — ABC 中,AB = 2DE , G , H 分别为AC ,BC 的中点. (1)求证:BD //平面FGH ;证明 (1)连接DG , CD ,设CD A GF = M ,连接MH.(2)若 CF 丄BC , AB X BC ,求证:平面 BCD 丄平面EGH.在三棱台DEF-ABC 中,AB= 2DE, G 为AC 中点,可得DF // GC,且DF = GC, 则四边形DFCG 为平行四边形.从而M 为CD 的中点,又H为BC的中点,所以HM / BD, 又HM?平面FGH , BD?平面FGH, 故BD //平面FGH.(2)连接HE,因为G, H分别为AC, BC的中点,所以GH // AB.由AB丄BC,得GH丄BC.又H为BC的中点,所以EF // HC , EF = HC , 因此四边形EFCH 是平行四边形,所以CF // HE.又CF丄BC,所以HE丄BC. 又HE, GH?平面EGH , HE A GH = H , 所以BC丄平面EGH.又BC?平面BCD,所以平面BCD丄平面EGH.。

2023年高中数学基础知识梳理及基础题型归纳-立体几何模块-第四节 直线、平面垂直的判定及其性质

2023年高中数学基础知识梳理及基础题型归纳-立体几何模块-第四节 直线、平面垂直的判定及其性质

第四节直线、平面垂直的判定及其性质【知识点15】直线与平面垂直的判定1.直线与平面垂直的定义画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直2.直线和平面垂直的判定定理典型例题:【例1】(概念的理解)下列命题中,正确的序号是________.①若直线l与平面α内的无数条直线垂直,则l⊥α;②若直线l与平面α内的一条直线垂直,则l⊥α;③若直线l不垂直于平面α,则α内没有与l垂直的直线;④若直线l不垂直于平面α,则α内也可以有无数条直线与l垂直;⑤过一点和已知平面垂直的直线有且只有一条.【反思】(1)对于线面垂直的定义要注意“直线垂直于平面内的所有直线”说法与“直线垂直于平面内无数条直线”不是一回事,后者说法是不正确的,它可以使直线与平面斜交.(2)判定定理中要注意必须是平面内两相交直线.【变式1】(1)若三条直线OA,OB,OC两两垂直,则直线OA垂直于()A.平面OAB B.平面OACC.平面OBC D.平面ABC(2)如果一条直线垂直于一个平面内的:①三角形的两边;②梯形的两边;③圆的两条直径;④正五边形的两边.能保证该直线与平面垂直的是________.(填序号)【变式2】已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中,一定能推出m⊥β的是()A.α∥β,且m⊂αB.m∥n,且n⊥β C.m⊥n,且n⊂βD.m⊥n,且n∥β【变式3】下列说法中,正确的有()①如果一条直线垂直于平面内的两条直线,那么这条直线和这个平面垂直;②过直线l外一点P,有且仅有一个平面与l垂直;③如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面;④垂直于角的两边的直线必垂直角所在的平面;⑤过点A垂直于直线a的所有直线都在过点A垂直于a的平面内.A.2个B.3个C.4个D.5个例2(线面垂直的判定)如图,在三棱锥S-ABC中,∠ABC=90°,D是AC的中点,且SA=SB=SC.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.【反思】(1)利用线面垂直的判定定理证明线面垂直的步骤①在这个平面内找两条直线,使它们和这条直线垂直;②确定这个平面内的两条直线是相交的直线;③根据判定定理得出结论.(2)平行转化法(利用推论):①a∥b,a⊥α⇒b⊥α;②α∥β,a⊥α⇒a⊥β.【变式1】如图,正方体ABCD-A1B1C1D1的棱长为2.求证:AC⊥B1D;【变式2】如图所示,直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,∠ACB=90°,C点到AB1的距离为CE,D为AB的中点.求证:(1)CD⊥AA1;(2)AB1⊥平面CED.【练习3】如图,在四棱锥P-ABCD中,底面ABCD是矩形,P A⊥平面ABCD,AP=AB=2,BC=22,E,F分别是AD,PC的中点.证明:PC⊥平面BEF.知识点【能力提升思考】已知∠BAC在平面α内,P∠α,∠PAB=∠PAC.求证:点P在平面α内的射影在∠BAC的平分线上.【变式1】如图所示,在斜三棱柱ABC—A1B1C1中,∠BAC=90°,BC1⊥AC,C1H⊥AB,证明:点H是C1在平面ABC内的射影.【反思】(1)求直线和平面所成角的步骤①寻找过斜线上一点与平面垂直的直线;②连结垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角;③把该角归结在某个三角形中,通过解三角形,求出该角.(2)在上述步骤中,其中作角是关键,而确定斜线在平面内的射影是作角的关键,几何图形的特征是找射影的依据,图形中的特殊点是突破口.【知识点16】直线与平面所成的角典例讲解:【例1】(直线与平面所成的角)如图,在正方体ABCD-A1B1C1D1中,(1)求A1B与平面AA1D1D所成的角;(2)求A1B与平面BB1D1D所成的角.【反思】求直线与平面所成角的步骤:(1)寻找过斜线上一点与平面垂直的直线.(2)连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角.(3)把该角归结在某个三角形中,通过解三角形,求出该角.【变式1】如图所示,AB是圆柱的母线,BD是圆柱底面圆的直径,C是底面圆周上一点,且AB=BC=2,∠CBD=45°,求直线BD与平面ACD所成角的大小.【变式2】如图,已知∠BOC在平面α内,OA是平面α的斜线,且∠AOB=∠AOC=60°,OA=OB=OC=1,BC=2,求OA与平面α所成的角的大小.【思考1】把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点棱锥体积最大时,直线BD和平面ABC所成的角的大小为()A.90° B.60° C.45° D.30°【变式1】如图所示,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是()A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角【例4】(综合应用)如图,P A⊥矩形ABCD所在的平面,M,N分别是AB,PC的中点.(1)求证:MN∥平面P AD;(2)若PD与平面ABCD所成的角为45°,求证:MN⊥平面PCD.【方法小结】1.直线和平面垂直的判定方法:(1)利用线面垂直的定义.(2)利用线面垂直的判定定理.(3)利用下面两个结论:①若a∥b,a⊥α,则b⊥α;②若α∥β,a⊥α,则a⊥β.2.线线垂直的判定方法:(1)异面直线所成的角是90°.(2)线面垂直,则线线垂直.3.求线面角的常用方法:(1)直接法(一作(或找)二证(或说)三计算).(2)转移法(找过点与面平行的线或面).(3)等积法(三棱锥变换顶点,属间接求法).【知识点17】距离问题典型例题:【例1】如图,已知AB是圆O的直径,C为圆上一点,AB=2,AC=1,P为∠O所在平面外一点,且PA垂直于圆O所在平面,PB与平面ABC所成的角为45°.(1)求证:BC∠平面PAC;(2)求点A到平面PBC的距离.【变式1】已知△ABC 的三条边长分别是5,12,13,点P 到A ,B ,C 三点的距离都等于7,则点P 到平面ABC 的距离为____【例2】如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点.(1)证明:PB //平面AEC ; (2)设1AP =,3AD =,三棱锥P ABD -的体积34V =,求A 到平面PBC 的距离.【反思】 求点到平面距离的方法总结:PA BCD E(1)过已知点作出平面的垂线段是关键. 作垂线段通常要借助于垂面,然后利用面面垂直性质定理作出平面的垂线.(2)作出垂线段后,通常利用等面积法求得距离.【变式1】如图,直四棱柱1111ABCD A B C D -中,//AB CD ,AD AB ⊥,2AB =,2AD =,1=3AA ,E 为CD 上一点,1DE =,3EC =.(1)证明:BE ⊥平面11BB C C ; (2)求点1B 到平面11EA C 的距离.【反思】 求点到平面距离的方法总结:(1)当直接作出垂线段比较困难时,可以考虑利用等体积法求距离. (2)用等体积法求距离,一般用三棱锥体积相等来求解.(3)可以用线面平行关系,转化到一个更容易求解的三棱锥去求距离;也可以利用比例关系,化为其他点到平面的距离来求解.【例题3】如图,在长方体1111ABCD A B C D -中,2AB =,1AD =,11A A =.ABCD EA 1B 1C 1D 1(1)证明:直线1BC 平行于平面1D AC ; (2)求直线1BC 到平面1D AC 的距离.【反思】 求直线到平面距离的方法总结:(1)求线面距离,根据直线上的点到平面距离相等,所以可以转化为点面距离来求解. (2)在转化为点面距的时候,选择合适的点会对解题有促进作用.【变式1】在直三棱柱111ABC -A B C 中,90 ABC =∠︒,11,2AB =BC =BB =,求: (1)异面直线11B C 与1A C 所成角的余弦值; (2)直线11B C 到平面BC A 1的距离.【思考】已知在直三棱柱111ABC A B C -中,4AB =,3AC BC ==,D 为AB 的中点.求异面直线1CC 和AB 的距离;ABCD A 1B 1C 1D 1ACBA 1B 1C 1C1A1B1CA BD【感悟】求两条异面直线距离的方法总结:(1)利用图形关系作出两条异面直线的公垂线,是求两异面直线距离的基本方法,但难度较大.(2)过两条异面直线中的一条直线作另一条直线的平行线,构造线面平行,将异面直线距离化为线面距离,进而转化为点面距离,是求异面直线距离的常用方法.(3)如果两条异面直线分别在两个互相平行的平面内,可以转化为求两平行平面的距离,再化为点面距离.【知识点18】二面角的概念【例1】(概念的理解)有下列结论:①两个相交平面组成的图形叫作二面角;②异面直线a,b分别和一个二面角的两个面垂直,则a,b所成的角与这个二面角的平面角相等或互补;③二面角的平面角是从棱上一点出发,分别在两个面内作射线所成的角;④二面角的大小与其平面角的顶点在棱上的位置没有关系.其中正确的是()A.①③B.②④C.③④D.①②【例2】如图,已知Rt△ABC,斜边BC⊂α,点A∉α,AO⊥α,O为垂足,∠ABO=30°,∠ACO=45°,求二面角A-BC-O的大小.【反思】(1)定义法:在二面角的棱上找一点,在两个半平面内过该点分别作垂直于棱的射线.(2)垂面法:过棱上一点作与棱垂直的平面,该平面与二面角的两个半平面形成交线,这两条射线(交线)所成的角,即为二面角的平面角.(3)垂线法:利用线面垂直的性质来寻找二面角的平面角,这是最常用也是最有效的一种方法.(1)定义:从一条直线出发的两个半平面所组成的图形.(2)相关概念:①这条直线叫做二面角的棱,②两个半平面叫做二面角的面.(3)画法:(4)记法:二面角α-l-β或α-AB-β或P-l-Q或P-AB-Q.(5)二面角的平面角:若有①O∈l;②OA⊂α,OB⊂β;③OA⊥l,OB⊥l,则二面角α-l -β的平面角是∠AOB.【变式1】如图,AB 是⊙O 的直径,P A 垂直于⊙O 所在的平面,C 是圆周上的一点,且P A =AC ,求二面角P -BC -A 的大小.【变式2】在正方体ABCD -A 1B 1C 1D 1中,截面A 1BD 与底面ABCD 所成二面角A 1-BD -A 的正切值为( ) A.32 B.22C. 2D.3【思考1】已知在直三棱柱111ABC A B C -中,4AB =,3AC BC ==,D 为AB 的中点.(1)求异面直线1CC 和AB 的距离;(2)若11AB A C ⊥,求二面角11A CD B --的平面角的余弦值.C1A1B1CA BD【变式1】如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:D1E⊥A1D;(2)求AE为何值时,二面角D1-EC-D的大小为45°?【方法小结】1.求二面角大小的步骤简称为“一作二证三求”.【知识点19】平面与平面垂直(1)平面与平面垂直①定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.②画法:③记作:α⊥β.(2)判定定理文字语言一个平面过另一个平面的垂线,则这两个平面垂直图形语言符号语言l⊥α,l⊂β⇒α⊥β【例1】(概念理解)下列不能确定两个平面垂直的是()A.两个平面相交,所成二面角是直二面角B.一个平面垂直于另一个平面内的一条直线C.一个平面经过另一个平面的一条垂线D.平面α内的直线a垂直于平面β内的直线b【例2】已知直线m,n与平面α,β,给出下列三个结论:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则m⊥n;③若m⊥α,m∥β,则α⊥β.其中正确结论的个数是()A.0 B.1 C.2 D.3【变式1】过两点与一个已知平面垂直的平面()A.有且只有一个B.有无数个C .有且只有一个或无数个D .可能不存在【变式2】α,β是两个不同的平面,m ,n 是平面α及β之外的两条不同直线,给出四个论断:①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题_____.【例2】(证明面面垂直)如图,在四棱锥P -ABCD 中,P A ⊥CD ,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD .(1)在平面P AD 内找一点M ,使得直线CM ∥平面P AB ,并说明理由. (2)证明:平面P AB ⊥平面PBD .【延申变式1】如图,在四棱锥P -ABCD 中,P A 垂直于矩形ABCD 所在的平面,试证明:平面PCD ⊥平面P AD .【延申变式2】如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,PB =BC ,M 是PC 中点,试证明:平面MBD ⊥平面PCD .【反思】证明面面垂直常用的方法(1)定义法:即说明两个半平面所成的二面角是直二面角.(2)判定定理法:在其中一个平面内寻找一条直线与另一个平面垂直,即把问题转化为线面垂直.(3)性质法:两个平行平面中的一个垂直于第三个平面,则另一个也垂直于此平面. 【变式1】 如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,∠ACB =90°,AC =12AA 1,D 是棱AA 1的中点.证明:平面BDC 1⊥平面BDC .【变式2】如图,四棱锥P -ABCD 的底面ABCD 为正方形,P A ⊥底面ABCD ,AC ,BD 交于点E,F是PB的中点.求证:(1)EF∥平面PCD;(2)平面PBD⊥平面P AC.【思考3】如图所示,在正三棱柱ABC-A1B1C1中,E为BB1的中点,求证:截面A1CE⊥侧面ACC1A1.【方法小结】平面与平面垂直的判定定理的应用思路(1)本质:通过直线与平面垂直来证明平面与平面垂直,即线面垂直⇒面面垂直.(2)证题思路:处理面面垂直问题转化为处理线面垂直问题,进一步转化为处理线线垂直问题来解决.【能力提升】垂直问题难点突破专题【例1】(空间位置关系相关定理)如图,PA⊥平面ABCD,AD//BC,AD=2BC,AB⊥BC,点E为PD中点.(1)求证:AB⊥PD;(2)求证:CE//平面PAB.【变式1】如图,在三棱柱111ABC A B C -中,平面11A ACC ⊥平面ABC , AB =BC =2,∠ACB =30°AA 1=3, 11,BC A C E ⊥为AC 的中点.求证: 1A C ⊥平面1C EB ;求二面角1A AB C --的余弦值.【例2】(数量关系)如图,三棱锥P ABC -中,PB ⊥底面ABC ,2PB BC ==,1AC =,AB = E 为PC 的中点,点F 在PA 上,且2PF FA =.(1)求证:平面PAC ⊥平面BEF ;【变式2】已知多面体ABCDEF 中,四边形ABCD 为平行四边形, EF CE ⊥,且AC =, 1AE EC ==, 2BC EF =, //AD EF . (1)求证:平面ACE ⊥平面ADEF ;【例3】在三棱柱111ABC A B C -中,已知侧棱1CC ⊥底面,ABC M 为BC 的中点,13,2,AC AB BC CC ===.(1)证明: 1B C ⊥平面1AMC ;(2)求点1A 到平面1AMC 的距离.【变式3】.如图,直三棱柱(侧棱与底面垂直的棱柱)ABC ﹣A 1B 1C 1中,点G 是AC 的中点.(1)求证:B 1C ∥平面 A 1BG ;(2)若AB=BC , 1AC ,求证:AC 1⊥A 1B .【例4】(几何图形的特征).如图,在多面体ABCDFE中,四边形ADFE是正方形,在等腰梯形ABCD中,AD∥BC,AB=CD=AD=1,BC=2,G为BC中点,平面ADFE⊥平面ADCB.(1)证明:AC⊥BE;(2)求三棱锥A−GFC的体积.-中,PD⊥底面ABCD,底面ABCD为菱形,【变式4】已知四棱锥P ABCD=∠=,E为AB的中点.AD DAB2,60(1)证明:平面PAB⊥平面PED;(2)若PD=,求E到平面PBC的距离.-中,底面ABCD为矩形,PA⊥平面【例5】(存在性问题). 如图,四棱锥P ABCDABCD,PA=AD=1,AB=√3,点E为PD的中点,点F在棱DC上移动.(1)当点F为DC的中点时,试判断EF与平面PAC的位置关系,并说明理由;⊥.(2)求证:无论点F在DC的何处,都有PF AE。

(完整版)直线平面平行、垂直的判定及其性质知识点

(完整版)直线平面平行、垂直的判定及其性质知识点

一、直线、平面平行的判定及其性质知识点一、直线与平面平行的判定ⅰ.直线和平面的位置关系(一条直线和一个平面的位置关系有且只有以下三种)位置关系直线在平面内直线与平面相交直线与平面平行公共点有无数个公共点有且只有一个公共点没有公共点符号表示a⊂αa∩α=A a||α图形表示注:直线和平面相交或平行的情况统称为直线在平面外ⅱ.思考:如图,设直线b在平面α内,直线a在平面α外,猜想在什么条件下直线a与平面α平行.(a||b)判定文字描述直线和平面在空间平面永无交点,则直线和平面平行(定义)平面外的一条直线一次平面内的一条直线平行,则该直线与此平面平行图形条件a与α无交点结论a∥αb∥α※判定定理的证明知识点二、直线与平面平行的性质性质文字描述一条直线与一个平面平行,则这条直线与该平面无交点一条直线和一个平面平行,则过这条直线的任一平面与此平面相交,这条直线和交线平行.图形条件a∥αa∥αa⊂βα∩β=b结论a∩α=∅a∥b线面平行,则线线平行特别提示证明直线和平面的平行通常采用如下两种方法:①利用直线和平面平行的判定定理,通过“线线”平行,证得“线面”平行;②利用两平面平行的性质定理,通过“面面”平行,证得“线面”平行.判定文字描述如果两个平面无公共点,责成这两个平面平行一个平面内有两条相交直线与另一个平面平行,那么这两个平面平行.如果两个平面同时垂直于一条直线,那么这两个平面垂直。

图形条件α∩β=∅a,b⊂βa∩b=Pa∥αb∥αl⊥αl⊥β结论α∥βα∥βα∥β性质文字描述如果两个平行平面同时和第三平面相交,那么他们的交线平行如果两个平面平行,那么其中一个平面内的直线平行于另一个平面图形条件α∥ββ∩γ=bα∩γ=a α∥β a⊂β结论a∥b a∥α二、直线、平面垂直的判定及其性质知识点一、直线和平面垂直的定义与判定 定义 判定语言描述 如果直线l 和平面α内的任意一条直线都垂直,我们就说直线l 与平面互相垂直,记作l ⊥α一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直. 图形条件b 为平面α内的任一直线,而l 对这一直线总有l ⊥αl ⊥m ,l ⊥n ,m ∩n =B ,m ⊂α,n ⊂α 结论l ⊥α l ⊥α 要点诠释:定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”不同(线线垂直线面垂直)性质语言描述 一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线垂直于同一个平面的两条直线平行.图形条件结论知识点三、二面角Ⅰ.二面角::从一条直线出发的两个半平面所组成的图形叫二面角(dihedral angle ). 这条直线叫做二面角的棱,这两个半平面叫做二面角的面. 记作二面角AB αβ--. (简记P AB Q --)二面角的平面角的三个特征:ⅰ. 点在棱上ⅱ. 线在面内 ⅲ.与棱垂直Ⅱ.二面角的平面角:在二面角αβ-l -的棱l 上任取一点O ,以点O 为垂足,在半平面,αβ内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的AOB ∠叫做二面角的平面角. 作用:衡量二面角的大小;范围:00180θ<<.定义判定文字描述两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面垂直.一个平面过另一个平面的垂线,则这两个平面垂直图形结果α∩β=l α-l-β=90o α⊥β“任何”“随意”“无数”等字眼知识点五、平面和平面垂直的性质面面垂直线面垂直(如果两个平面垂直,那么一个平面内垂直于它们交线的直线与一个面平垂直)例题1.如图,若Ω是长方体ABCD-A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1 D1,则下列结论中不正确的是A. EH∥FGB.四边形EFGH是矩形C. Ω是棱柱D. Ω是棱台2能保证直线a与平面α平行的条件是( A )A.a⊄α,b⊂α,a∥b B .b⊂α,a∥bC. b⊂α,c∥α,a∥b,a∥cD. b⊂α,A∈a,B∈a,C∈b ,D∈b且AC=BD3下列命题正确的是( D F )A. 平行于同一平面的两条直线平行B. 若直线a∥α,则平面α内有且仅有一条直线与a平行C. 若直线a∥α,则平面α内任一条直线都与a平行D. 若直线a∥α,则平面α内有无数条直线与a平行E. 如果a、b是两条直线,且a∥b,那么a平行于经过b的任何平面F. 如果直线a、b和平面α满足a∥b,a∥α,b⊄α,那么b∥α4在空间,下列命题正确的是(A)平行直线的平行投影重合(B)平行于同一直线的两个平面平行(C)垂直于同一平面的两个平面平行(D )垂直于同一平面的两条直线平行5已知m 、n 为两条不同的直线,a 、β为两个不同的平面,则下列命题中正确的是A .,,m n αα⊂⊂m ∥β,n ∥β⇒a ∥βB .a ∥β,,m n αβ⊂⊂⇒m ∥nC .m ⊥a,m ⊥n ⇒n ∥aD .n ∥m,n ⊥a ⇒m ⊥a 6.下列命题中错误的是(A )如果平面α⊥平面β,那么平面α内一定直线平行于平面β(B )如果平面α垂直于平面β,那么平面α内一定不存在直线垂直于平面β (C )如果平面α⊥平面γ,平面β⊥平面γ,l αβ⋂=,那么l ⊥平面γ (D )如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β8.求证:空间四边形相邻两边中点的连线,平行于经过另外两边的平面. 已知:空间四边形ABCD 中,E 、F 分别是AB 、AD 的中点 求证:E F ‖平面BCD8题图 9题图9.如图,在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60 , ,PB=2, E,F 分别是BC,PC 的中点. (1) 证明:AD ⊥ 平面DEF;(2) 求二面角P-AD-B 的余弦值.课堂练习A 组3.m 、n 是空间两条不同的直线,α、β是两个不同的平面,下面四个命题中,真命题的序号是________.①m ⊥α,n ∥β,α∥β⇒m ⊥n ; ②m ⊥n ,α∥β,m ⊥α⇒n ∥β; ③m ⊥n ,α∥β,m ∥α⇒n ⊥β; ④m ⊥α,m ∥n ,α∥β⇒n ⊥β.4.如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2, AA 1=2,E 、E 1、F 分别是棱AD 、AA 1、AB 的中点。

直线、平面垂直的判定及其性质解析

直线、平面垂直的判定及其性质解析

直线、平面垂直的判定及其性质知识要点梳理知识点一、直线和平面垂直的定义与判定1.直线和平面垂直定义如果直线和平面内的任意一条直线都垂直,我们就说直线与平面互相垂直,记作.直线叫平面的垂线;平面叫直线的垂面;垂线和平面的交点叫垂足。

要点诠释:(1)定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”不同,注意区别。

(2)直线和平面垂直是直线和平面相交的一种特殊形式。

(3)若,则。

2.直线和平面垂直的判定定理判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

符号语言:特征:线线垂直线面垂直要点诠释:(1)判定定理的条件中:“平面内的两条相交直线”是关键性词语,不可忽视。

(2)要判定一条已知直线和一个平面是否垂直,取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,则无关紧要。

知识点二、斜线、射影、直线与平面所成的角一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线。

过斜线上斜足外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影。

平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角。

要点诠释:(1)直线与平面相交但不垂直,直线在平面的射影是一条直线。

(2)直线与平面垂直射影是点。

(3)斜线任一点在平面内的射影一定在斜线的射影上。

(4)一条直线垂直于平面,它们所成的角是直角;一条直线和平面平行或在平面内,它们所成的角是0°的角。

知识点三、二面角1.二面角定义平面内的一条直线把平面分成两部分,这两部分通常称为半平面.从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱,这两个半平面叫做二面角的面。

表示方法:棱为、面分别为的二面角记作二面角.有时为了方便,也可在内(棱以外的半平面部分)分别取点,将这个二面角记作二面角.如果棱记作,那么这个二面角记作二面角或。

2.3直线、平面垂直的判定及其性质

2.3直线、平面垂直的判定及其性质

互动课堂疏导引导一、直线与平面垂直的判定1.直线与平面垂直的定义如果直线l 和平面α内的任意一条直线都垂直,我们就说直线l 和平面α互相垂直.疑难疏引 (1)定义中的“任意一条直线”这一词组,它与“所有直线”是同义语,但与无数条直线不同,定义是说这条直线和平面内所有直线垂直.但不能说一条直线垂直于一个平面内的无数条直线,它就和这个平面垂直.(2)和平面垂直的直线是直线和平面相交的一种特殊形式.(3)虽然这样的定义给线面垂直的判定带来困难,但在直线和平面垂直时,却可以得到直线和平面内的任何一条直线都垂直,给判定两条直线垂直带来方便,如若a ⊥α,b ⊂α,则a ⊥b ,简述之,即“线面垂直,则线线垂直”,这是我们判定两条直线垂直时,经常使用的一种重要方法.画直线和水平平面垂直时,要把直线画成和表示平面的平行四边形的横边垂直.如果直线l 和平面α垂直,则记作l ⊥α.(4)在平面几何中,我们有命题:经过一点,有且只有一条直线与已知直线垂直,在本节,也有类似的命题.命题1:过一点有且只有一条直线和已知平面垂直.命题2:过一点有且只有一个平面和已知直线垂直.2.直线和平面垂直的判定定理如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线就垂直于这个平面.用符号表示为ααα⊥⇒⎪⎭⎪⎬⎫⊥⊥=⋂⊂⊂l n l m l B n m n m ,,.疑难疏引 关于定理的理解必须注意以下几点:(1)判定定理的条件中,“平面内的两条相交直线”是关键性词语,一定要抓牢.(2)命题1:如果一条直线垂直于平面内的两条直线,那么这条直线垂直于这个平面. 命题2:如果一条直线垂直于平面内的无数条直线,那么这条直线垂直于这个平面.以上两个命题都是错误的,因为对于这两个命题,都没有体现出两直线相交这一特性,无数条直线可以是一簇平行线,并不一定具备有两条相交直线和已知直线垂直,因此,也就不一定得出这一直线垂直于这个平面这一结论.(3)要判定一条已知直线和一个平面是否垂直.取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,这是无关紧要的.(4)直线与平面垂直的判定与证明方法:①用线面垂直定义:若一直线垂直于平面内任一直线,这条直线垂直于该平面.②用线面垂直判定定理:若一直线与平面内两相交直线都垂直,这条直线与平面垂直. ③用线面垂直性质:两平行线之一垂直平面,则另一条也必垂直这个平面.④用面面垂直性质定理:两平面垂直,在一个平面内垂直于交线的直线必垂直于另一平面. ⑤用面面平行性质:一直线垂直于两平行平面之一,则必垂直于另一平面.⑥用面面垂直性质:两相交平面同时垂直于第三个平面,那么两平面交线垂直于第三个平面. 这六条线面垂直的判定方法其实质仍是转化思想,它们是线线、线面、面面垂直的转化. 案例1 如图,正方体有8个顶点和12条棱,每条棱上均有一个中点,于是有棱的中点12个,顶点与中点合起来共有20个〔图(1)〕.过其中的两点可作一条直线;过其中不在同一直线上的三点可作一个平面.现在考虑这些直线与平面的垂直关系.(1)试举出一直线与一平面相互垂直的例子(不少于4例);(2)若一直线与一平面相互垂直,我们就说这条直线与这个平面构成了一个“垂直关系组”,两个“垂直关系组”当且仅当其中两条直线和两个平面不全同一时称为相异的(或不同的).试求与正方体的棱相关的“垂直关系组”的个数.【探究】在正方体中,所有的棱都和与它相交的面垂直,利用中点也可产生与棱垂直的面.(1)例如AB⊥平面BCKJ〔如图(1)〕;例如EF⊥平面MPON〔如图(1)〕;例如NF⊥平面ADKJ〔如图(2)〕;例如IC⊥平面AJL〔如图(3)〕.(2)正方体的棱有12条,而每一条棱都与3个平面垂直,如图(1)中棱IJ与平面ID、平面NP 与平面JC都垂直,所以与正方体的棱相关的“垂直关系组”的个数是12×3=36.【规律总结】挖掘正方体本身潜藏的特征,将每一条棱的情况分析清楚,做到不重不漏.案例2 如图,已知P是△ABC所在平面外一点,PA、PB、PC两两垂直,H是△ABC的垂心,求证:PH⊥平面ABC.【探究】根据判定定理,要证线面垂直,需证直线和平面内的两条相交直线垂直,根据H 是△ABC的垂心,可知BC⊥AH,又PA、PB、PC两两垂直,得PA⊥面PBC,于是PA⊥BC,由此可知BC垂直于平面PAH内的相交直线PA和AH,结论得证.证明:∵H是△ABC的垂心,∴AH⊥BC.①∵PA⊥PB,PA⊥PC,∴PA⊥平面PBC.又∵BC 平面PBC,PA⊥BC,②由①②知,BC⊥PH,同理,AB⊥PH,∴PH⊥平面ABC.【规律总结】根据所求证的结论,寻求所需的已知条件,看题目是否已经直接给出,或者从题目所给条件,经过推理能够得出,这是分析问题的重要方法,称为执果索因;也可从条件出发,将这一条件可能得出的结论一一列出,从中选出我们证题所需要的结论,这种分析问题的方法称为由因导果,发散性较强.二、平面与平面垂直的判定1.二面角从一条直线出发的两个半平面所组成的图形,叫二面角.以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.疑难疏引 (1)二面角的平面角,则是用来刻画二面角大小的一个概念.它和两条异面直线所成的角以与直线和平面所成的角一样,都化归为用平面内两条相交直线所成的角来表示.但必须注意二面角的平面角所在平面应垂直于二面角的棱,二面角的平面角的两条边分别在二面角的两个面内.而二面角的平面角的大小是由二面角的两个面的相互位置所确定的,与二面角的平面角的顶点在棱a 上的位置无关.(2)二面角的计算方法①用定义作二面角的平面角——在棱上取一点,分别在两个面内作棱的垂线,这两条射线组成二面角的平面角.利用定义作二面角的平面角,关键在于找棱与棱上的特殊点.学习时要特别注意平移和补形方法的灵活运用.②用垂面法作二面角的平面角——作垂直于二面角的棱或二面角的两个半平面的垂面,则该垂面与二面角的两个半平面交线所成的角就是二面角的平面角.③面积法:如果一个多边形在一个平面内的射影是一个多边形,且这两个多边形所在平面所成的二面角为θ,则cosθ=原多边形面积射影多边形面积S S .案例3 已知四边形PABC 为空间四边形,∠PCA=90°,△ABC 是边长为32的正三角形,PC=2,D 、E 分别是PA 、AC 的中点,BD=10.试判断直线AC 与平面BDE 的位置关系,并且求出二面角P-AC-B 的大小.解:∵D 、E 分别是PA 、AC 的中点,∴DE ∥PC 且DE=21PC=1. ∵∠PCA=90°,∴AC ⊥DE.∵△ABC 是边长为32的正三角形,并且E 是AC 的中点,∴AC ⊥BE ,并且BE=3.∵DE∩BE=E ,∴直线AC 与平面DEB 垂直.∴∠DEB 为二面角P-AC-B 的平面角.在△BDE 中,由DE=1,BE=3,BD=10得DE 2+BE 2=BD 2,∴∠DEB=90°.综上所述,直线AC 与平面BDE 垂直,二面角P-AC-B 的大小为90°.【规律总结】 与二面角的棱垂直的平面和二面角的两个面相交的两条射线构成的角就是这个二面角的平面角.利用作与棱垂直的平面得到二面角的方法称为“垂面法”.案例4 已知△ABC 是正三角形,PA ⊥平面ABC ,且PA=AB=a ,求二面角A-PC-B 的正切值.【探究】 要求二面角的正切值,首先要在图形中构造出二面角的平面角,利用其平面角度量二面角的大小,过棱上一点,分别在两个面内作或证棱的垂线,即可产生二面角的平面角,充分利用三角函数定义求得正切值.解:取AC 的中点M ,连结BM ,作MN ⊥PC 于N ,连结BN.∵PA ⊥平面ABC ,∴平面PAC ⊥平面ABC.易证BM ⊥AC ,AC=平面PAC∩平面ABC.∴BM ⊥平面PAC(面面垂直的性质).∵MN ⊥PC ,∴NB ⊥PC.∴∠MNB 是二面角A-PC-B 的平面角.易知MN=a 42,BM=a 23. ∴tan ∠MNB=64223==a a MN BM . ∴二面角的正切值为6【规律总结】 度量二面角的大小是通过其平面角进行,所以在图形中构造出二面角的平面角,就能将空间问题转化为平面问题,利用直角三角形中锐角三角函数定义,有些问题也可用斜三角形中的直角三角形加以处理.2.两个平面互相垂直的判定常用的判定方法有:(1)定义法,即说明这两个平面所成的二面角是直二面角;(2)判定定理,即一个平面经过另一个平面的一条垂线,则这两个平面互相垂直;(3)两个平行平面中的一个垂直于第三个平面,则另一个也垂直于第三个平面.疑难疏引 两平面垂直的判定定理的特征:线面垂直面面垂直.它说明了线面垂直与面面垂直的密切关系,用符号表示为:若l ⊥α,l β,则α⊥β.利用判定定理证明两个平面垂直,关键是在其中的一个平面内寻找另一平面的垂线.案例5 如图,过S 引三条长度相等但不共面的线段SA 、SB 、SC ,且∠ASB=∠ASC=60°,∠BSC=90°.求证:平面ABC ⊥平面BSC.【探究】 本题可以用两种方法来证明,一是作平面的垂线而后证明它在另一个平面内(证法一);二是在一个平面内找一条线段,证明它与另一个平面垂直(证法二).证法一:作AD ⊥平面BSC ,D 为垂足.∵∠ASB=∠ASC=60°,SA=SB=SC ,则AS=AB=AC ,∴D 为△BSC 的外心.又∠BSC=90°,∴D 为BC 的中点,即AD 在平面ABC 内.∴平面ABC ⊥平面BSC.证法二:取BC 的中点D ,连结AD 、SD ,易证AD ⊥BC.又△ABS 是正三角形,△BSC 为等腰直角三角形,∴BD=SD.∴AD 2+SD 2=AD 2+BD 2=AB 2=AS 2.由勾股定理的逆定理,知AD ⊥SD ,∴AD ⊥平面BSC.又AD ⊂平面ABC ,∴平面ABC ⊥平面BSC.【规律总结】 本题是证明面面垂直的典型例题,关键是将证明“面面垂直”的问题转化为证明“线面垂直”的问题.三、直线与平面垂直的性质直线与平面垂直的性质有:(1)一条直线垂直于一个平面,则这条直线垂直于该平面内的所有直线;(2)性质定理:垂直于同一平面的两条直线平行;(3)两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面;(4)垂直于同一直线的两个平面平行.对于性质定理,它提供了一种证明线线平行的方法,揭示了“平行”与“垂直”的内在联系. 案例6 如图,在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱AB 、BC 的中点,若点M 为棱B 1B 上的一点,当MBM B 1的值为多少时,能使D 1M ⊥平面EFB 1?并给出证明. 【探究】 本题属开放型问题,一般先猜后证.由于E 、F 为中点,所以猜想M 也是中点. 解:当11=MBM B 时,能使D 1M ⊥平面EFB 1,证明如下: 当M 为B 1B 中点时,在平面AA 1B 1B 内有△A 1MB 1≌△B 1EB ,∴∠B 1A 1M=∠BB 1E.而∠B 1MA 1+∠B 1A 1M=90°,∴∠B 1MA 1+∠BB 1E=90°.∴A 1M ⊥B 1E.∵D 1A 1⊥平面AA 1B 1B ,B 1E ⊂平面AA 1B 1B,∴D 1A 1⊥B 1E.由于A 1M∩D 1A 1=A 1,∴B 1E ⊥平面A 1MD 1.∵D 1M ⊂平面A 1MD 1,∴B 1E ⊥D 1M.同理,连结C 1M ,可证明B 1F ⊥D 1M.∵B 1E∩B 1F=B 1,∴D 1M ⊥平面EFB 1.【规律总结】 (1)猜想要和题目中的点的性质相联系.(2)平面内证两线垂直的方法可通过三角形中某两个角的和为直角来判断.四、两个平面垂直的性质两个平面垂直的性质有:(1)性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直;(2)两个平面垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内. 疑难疏引 性质定理(1)成立要有两个条件:一是线在面内,二是线垂直于交线,才能线面垂直,这一定理也可简述为“面面垂直,则线面垂直”,它反映了面面垂直与线面垂直的密切关系;对于第二条性质,只要在其中一个平面内通过一点作另一平面垂线,那么这条垂线必在这个平面内,对点的位置,它既可以在交线上,也可以不在交线上.(2)运用两个平面垂直的性质定理时,一般需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,这样把面面垂直转化为线面垂直或线线垂直.案例7 如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面. 已知α⊥γ,β⊥γ,α∩β=l.求证:l ⊥γ.【探究一】在γ内取一点P ,作PA 垂直α与γ的交线于A ,PB 垂直β与γ的交线于B ,则PA ⊥α,PB ⊥β.∵l=α∩β,∴l ⊥PA,l ⊥PB.∵α与β相交,∴PA 与PB 相交.又PA ⊂γ,PB ⊂γ,∴l ⊥γ.【探究二】在α内作直线m 垂直于α与γ的交线,在β内作直线n 垂直于β与γ的交线,∵α⊥γ,β⊥γ,∴m ⊥γ,n ⊥γ.∴m ∥n.又n ⊂β,∴m ∥β.∴m ∥l,∴l ⊥γ.【探究三】在l 上取一点P ,过点P 作γ的垂线l′,l l l l l P P P l l P '=⋂⇒⎭⎬⎫⎩⎨⎧⊂'⊂'⇒⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫=''∈⊥⊥⎩⎨⎧∈∈⇒⎭⎬⎫=⋂∈βαβαγγβγαβαβα. 但α∩β=l,∴l 与l′重合.∴l ⊥γ.【规律总结】 探究一、探究二都是利用“两平面垂直时,在一个平面内垂直于两平面的交线的直线垂直于另一个平面”这一性质,添加了在一个平面内垂直于交线的直线这样的辅助线.这是两种证法的关键.探究三是利用“如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内”这一性质,添加了l′这条辅助线,这是关键.通过此例,应仔细体会两平面垂直时,添加辅助线的方法.五、几种转化关系1.线线垂直、线面垂直、面面垂直的相互转化.线线垂直、线面垂直、面面垂直是立体几何中的核心内容之一.首先由线面垂直的定义可知,若线面垂直则线和面内任何直线都垂直;根据线面垂直判定定理,若线垂直于面内的两条相交直线,则线面垂直,然后根据面面垂直的判定定理,若一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直,我们可以简证为,线面垂直则面面垂直;同样根据面面垂直的性质定理,我们还可证得,若面面垂直则线面垂直.由上可得,利用线面垂直,可以证明线线垂直,也可以实现面面垂直的证明.因此,我们可以说线面垂直关系是线线垂直、面面垂直关系中的枢纽,通过线面垂直可以实现线线垂直和面面垂直关系的相互转化,即直线与直线垂直直线与平面垂直平面与平面垂直.2.空间直线、平面的平行与垂直的相互转化(1)线线、线面、面面平行与垂直位置关系的判定与证明是考查空间想象能力、逻辑推理能力的重点,这是我们作进一步的比较、串联、综合、力求达到巩固、提高的目的.(2)理解线线、线面、面面关系的转化.①不同层次的平行关系的转化.②不同层次的垂直关系的转化③平行与垂直的转化案例8 如图所示,已知PA⊥矩形ABCD所在平面,M,N分别是AB,PC的中点.(1)求证:MN∥平面PAD;(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.【探究】(1)要证明MN∥平面PAD,须证MN平行于平面PAD内某一条直线.注意到M,N分别为AB,PC的中点,可取PD的中点E,从而只须证明MN∥AE即可,证明如下:证明:取PD的中点E,连结AE 、EN.则EN 21CD 21AB AM , 故AMNE 为平行四边形,∴MN ∥AE.∵AE ⊂平面PAD ,MN ⊄平面PAD ,∴MN ∥平面PAD.(2)要证MN ⊥CD ,可证MN ⊥AB.由问(1)知,需证AE ⊥AB.∵PA ⊥平面ABCD.∴PA ⊥AB ,又AD ⊥AB ,∴AB ⊥平面PAD ,∴AB ⊥AE ,即AB ⊥MN.又CD ∥AB ,∴MN ⊥CD.(3)由问(2)知,MN ⊥CD ,即AE ⊥CD ,再证AE ⊥PD 即可.∵PA ⊥平面ABCD ,∴PA ⊥AD.又∠PDA=45°,E 为PD 的中点.∴AE ⊥PD,即MN ⊥PD.又MN ⊥CD.∴MN ⊥平面PCD.【规律总结】 本题是涉与线面垂直、线面平行、线线垂直诸知识点的一道综合题.题(1)的关键是选取PD 的中点E ,所作的辅助线使问题处理方向明朗化.线线垂直←线面垂直←线线垂直是转化规律.活学巧用1.判断题:正确的在括号内打“√”,不正确的打“×”.(1)一条直线和一个平面平行,它就和这个平面内的任何直线平行.()(2)如果一条直线垂直于平面内的无数条直线,那么这条直线和这个平面垂直.()(3)垂直于三角形两边的直线必垂直于第三边.()(4)过点A 垂直于直线a 的所有直线都在过点A 垂直于a 的平面内.()(5)如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.()解析:(1)直线与平面平行,则直线与平面内的直线的位置关系不外乎有两种①平行②异面,因此应打“×”.(2)该命题的关键是这无数条直线具有怎样的位置关系.若为平行,则该命题应打“×”;若为相交,则该命题应打“√”,正是因为这两种情况可能同时具备,因此,不说明面内这无数条直线的位置关系,则该命题应打“×”.(3)垂直于三角形两边的直线必垂直于三角形所在的平面,由线面垂直定义的逆用,则该直线必须垂直于三角形的第三边,∴该命题应打“√”.(4)前面介绍了两个命题,①过一点有且只有一个平面与已知直线垂直,②过一点有且只有一条直线与已知平面垂直,根据第一个命题知:过点A 垂直于直线a 的平面惟一,因此,过点A 且与直线a 垂直的直线都在过点A 且与直线a 垂直的平面内,∴该命题应打“√”.(5)三条共点直线两两垂直,设为a,b,c 有a,b,c 共点于O.∵a ⊥b,a ⊥c,b∩c=o,且b 、c 确定一平面,设为α,则a ⊥α.同理可知b 垂直于由a 、c 确定的平面,c 垂直于a 、b 确定的平面,∴该命题应打“√”.答案:(1)× (2)× (3)√ (4)√ (5)√2.直线l ⊥平面α,直线m ⊂α,则有()A.l 和m 异面B.l 和m 相交C.l ∥mD.l 不平行于m解析:直线l ⊥平面α,则l 和平面α有且只有一个交点即垂足P ,平面α内任一直线m 经过P 时,l 和m 相交,直线m 不经过P 时,由异面直线的判定定理知,l 和m 异面,故l 和m 不会平行.答案:D3.如图(1),在正方形SG 1G 2G 3中,E 、F 分别是边G 1G 2,G 2G 3的中点,D 是EF 的中点,现沿SE 、SF 与EF 把这个正方形折成一个几何体如图(2),使G 1、G 2、G 3三点重合于点G ,这样,下面结论成立的是( )A.SG ⊥平面EFGB.SD ⊥平面EFGC.GF ⊥平面SEFD.GD ⊥平面SEF解析:(1)(直接法)在图(1)中,SG 1⊥G 1E ,SG 3⊥G 3F ,右图(2)中,SG ⊥GE ,SG ⊥GF ,∴SG ⊥平面EFG.(2)(排除法)GF 即G 3F 不垂直于SF ,∴可以否定C ;在△GSD 中,GS=a(正方形边长),GD=a 42,SD=a 423, ∴SG 2≠SD 2+GD 2,∠SDG≠90°,从而否定B 和D.答案:A4.已知m 、n 为异面直线,m ∥平面α,n ∥α,直线l ⊥m,l ⊥n,则( )A.l ⊥αB.l 和α不垂直C.l 可能与α垂直D.以上都不对解析:在α内取一点P ,则m 和P 确定一个平面β,设β∩α=m′.∵m ∥α,∴m ∥m′.∵l ⊥m,∴l ⊥m′.n 和P 确定一个平面γ,设γ∩α=n′,∵n ∥α,∴n ∥n′. ∵l ⊥n,∴l ⊥n′.∵m 和n 是异面直线,∴m′和n′相交于P.∴l ⊥α.答案:A5.如图,BC 是Rt △ABC 的斜边,AP ⊥平面ABC ,连结PB 、PC ,作PD ⊥BC 于点D ,连结AD ,则图中共有直角三角形__________个.解析:Rt △PAB 、Rt △PAC 、Rt △ABC 、Rt △ADP.可证BC ⊥平面APD ,由BC ⊥AD ,BC ⊥PD可证Rt △PBD 、Rt △PDC 、Rt △ADB 、Rt △ADC 共8个.答案:86.如图,α∩β=CD,EA ⊥α,垂足A ,EB ⊥β,垂足B.求证:CD ⊥AB.解析:∵EA ⊥α,CD ⊆α,根据直线和平面垂直的定义,则有CD ⊥EA.同样∵EB ⊥β,CD ⊆β,则有EB ⊥CD.又EA∩EB=E ,根据直线和平面垂直判定定理,则有CD ⊥平面AEB.又∵AB ⊆平面AEB , ∴CD ⊥AB.7.在正方体ABCD-A 1B 1C 1D 1中,P 为DD 1的中点,O 为ABCD 的中心,求证:B 1O ⊥平面PAC.解析:使B 1O 垂直于平面PAC 中的两条相交直线.证明:连结AB 1、CB 1,设AB=1.因为AB 1=CB 1=2,AO=CO ,所以B 1O ⊥AC.连结PB 1.因为OB 12=OB 2+BB 12=23,PB 12=PD 12+B 1D 12=49,OP 2=PD 2+DO 2=43, 所以OB 12+OP 2=PB 12.所以B 1O ⊥PO.所以B 1O ⊥平面PAC.8.(1)二面角指的是( )A.两个平面相交所组成的角B.经过同一条直线的两个平面所组成的图形C.一条直线出发的两个半平面组成的图形D.两个平面所夹的不大于90°的角(2)下列说法错误的是( )A.过二面角的棱上某一特殊点,分别在两个半平面内引垂直于棱的射线,则这两条射线所成的角即为二面角的平面角B.和二面角的棱垂直的平面与二面角的两个半平面的交线所成的角即为二面角的平面角C.在二面角的一个面内引棱的垂线,该垂线与其在另一面内的射影所成的角是二面角的平面角D.二面角的平面角可以是一个锐角、一个直角或一个钝角解析:(1)根据二面角的定义讨论,故选C.(2)一一判断,可以发现应该选C.因为按C 中所给的方法,当二面角是一个锐角时,得到的确实是二面角的平面角;但当二面角是一个直二面角时,得到的是一个零度角;当二面角是一个钝角时,得到的是二面角平面角的一个补角.即C 中方法不具有普遍适用性.答案:(1)C (2)C9.如果一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,那么这两个二面角的大小关系是( )A.相等B.互补C.相等或互补D.大小关系不确定解析:如下图答案:C10.已知D 、E 分别是正三棱柱ABC —A 1B 1C 1的侧棱AA 1和BB 1上的点,且A 1D=2B 1E=B 1C 1.求过D 、E 、C 1的平面与棱柱的下底面A 1B 1C 1所成的二面角的大小.解析:如图,在平面AA 1B 1B 内延长DE 和A 1B 1交于点F ,则F 是面DEC 1与面A 1B 1C 1的公共点,C 1F 为这两个平面的交线,∴所求二面角就是D C 1F A 1的平面角.∵A 1D ∥B 1E ,且A 1D=2B 1E ,∴E 、B 1分别为DF 和A 1F 的中点.∵A 1B 1=B 1C 1=A 1C 1,∴FC 1⊥A 1C 1.又面AA 1C 1C ⊥A 1B 1C 1,FC 1⊂面A 1B 1C 1,∴FC 1⊥面AA 1C 1C ,而DC 1⊂面AA 1C 1C ,∴FC 1⊥DC 1.∴∠DC 1A 1是二面角D-FC 1-A 1的平面角,由已知A 1D=B 1C 1=A 1C 1,∴∠DC 1A 1=4π. 故所求二面角的大小为4π. 11.河堤斜面与水平面所成的二面角为60°,堤面上有一条直道CD ,它与堤脚的水平线AB 的夹角为30°,沿这条直道从堤脚向上行走1033 m 时人升高了_________米( ) B.5.5 C解析:取CD 上一点E ,设CE=103 m ,过点E 作直线AB 所在的水平面的垂线EG ,垂足为G ,则线段EG 的长就是所求的高度.作EF ⊥AB 于F ,则EG=EFsin60°=CE·sin30°sin60° =5.72152321310==⨯⨯ (m).答案:D12.如图,设P是正方形ABCD外一点,且PA⊥平面ABCD,则平面PAB与平面PBC、平面PAD的位置关系是( )A.平面PAB与平面PBC、平面PAD都垂直B.它们两两都垂直C.平面PAB与平面PBC垂直、与平面PAD不垂直D.平面PAB与平面PBC、平面PAD都不垂直解析:在平面PAB中,∵AD⊥AB,AD⊥PA且AB,PA⊂面PAB∴AD⊥面PAB∴面PAD⊥面PAB∵BC∥AD∴BC⊥面PAB∴面PBC⊥面PAB答案:A13.已知m、l是直线,a、β是平面,给出下列命题:(1)若l垂直于α内两条相交直线,则l⊥α;(2)若l平行于α,则l平行于α内的所有直线;(3)若m⊂α,l⊂β,且l⊥m,则α⊥β;(4)若l⊂β,且l⊥α,则α⊥β;(5)若m⊂α,l⊂β,且α∥β,则l∥m.其中正确的命题的序号是( )解析:本题考查线与线、线与面、面与面的位置关系.命题(1)是线面垂直的判定定理,所以正确;命题(2),l∥α,但l不能平行于α内所有直线;命题(3),l⊥m,不能保证l⊥α,即分别包含l与m的平面α、β可能平行也可能相交而不垂直;命题(4),为面面垂直的判定定理,所以正确;命题(5),α∥β,但分别在α、β内的直线l与m可能平行,也可能异面.答案:(1)、(4)14.在空间,下列哪些命题是正确的( )①平行于同一条直线的两条直线互相平行②垂直于同一条直线的两条直线互相平行③平行于同一个平面的两条直线互相平行④垂直于同一个平面的两条直线互相平行A.仅②不正确B.仅①④正确C.仅①正确D.四个命题都正确解析:①该命题就是平行公理,因此该命题是正确的.②如图(1),直线a⊥平面α,b⊆α,c⊆α,且b∩c=A,则a⊥b,a⊥c,即平面α内两条相交直线b,c都垂直于同一条直线a,但b,c的位置关系并不是平行,另外,b,c的位置关系也可以是异面,如果把直线b平移到平面α外,此时,与a的位置关系仍是垂直,但此时b,c的位置关系是异面.③如图(2),在正方体ABCD—A1B1C1D1中,易知A1B1平面ABCD,A1D1∥平面ABCD,但A1B1∩A1D1=A1,因此该命题是错误的,④该命题是线面垂直的性质定理,因此是正确的.综上可知①、④正确.(1) (2)答案:B15.课本在证明直线与平面垂直的性质定理时采用的方法是反证法.请思考在什么情况下我们要使用反证法,它的步骤是什么?答:反证法一般用于从正面入手很难考虑的时候,如题目中有“不可能”、“没有”、“至少”、“至多”等词语时,很难直接应用定理或公式,这时它们的反面往往只有一种情况,只要将这一种情况否定了,命题便得到证明.反证法的证题步骤是:(1)假设命题结论的反面成立;(2)从这个假设出发,一步步推导出与某个定理、公式或已知条件相矛盾的结论;(3)肯定原命题结论正确.16.判断下列命题的真假①两个平面垂直,过其中一个平面内一点作与它们交线垂直的直线,必垂直于另一个平面;②两个平面垂直,分别在这两个平面内且互相垂直的两直线,一定分别与另一平面垂直;③两平面垂直,分别在这两个平面内的两直线互相垂直.解析:①若该点在两个平面的交线上,则命题是错误的,如图(1),正方体AC1中,平面AC⊥平面AD1,平面AC∩平面AD1=AD,在AD上取点A,连结AB1,则AB1⊥AD,即过棱上一点A的直线AB1与棱垂直,但AB1与平面ABCD不垂直,其错误的原因是AB1没有保证在平面ADD1A1内.可以看出:线在面内这一条件的重要性.②该命题注意了直线在平面内,但不能保证这两条直线都与棱垂直,如图(2),在正方体AC1中,平面AD1⊥平面AC,AD1⊆平面ADD1A1,AB⊆平面ABCD,且AB⊥AD1,即AB与AD1相互垂直,但AD1与平面ABCD不垂直;③如图(2),正方体AC1中,平面ADD1A1⊥平面ABCD,AD1⊆平面ADD1A1,AC⊂平面ABCD,AD1与AC所成的角为60°,即AD1与AC不垂直.答案:①假②假③假17.在下列命题中,假命题是( )A.若平面α内的一条直线垂直于平面β内的任一直线,则α⊥βB.若平面α内任一直线平行于平面β,则α∥βC.若平面α⊥平面β,任取直线l⊂α,则必有l⊥βD.若平面α∥平面β,任取直线l⊂α,则必有l∥β解析:A中,直线l⊥β,l⊂α,所以α⊥β,A为真命题;B中,在α内取两相交直线,则此二直线平行于β,则α∥β,B为真命题;D为两平面平行的性质,为真命题;C为假命题,l。

《直线、平面垂直的判定及其性质》知识全解

《直线、平面垂直的判定及其性质》知识全解

《直线、平面垂直的判定及其性质》知识全解一、知识结构二、内容解析(一)基本概念1.直线与平面垂直:如果直线与平面内的任意一条直线都垂直,我们就说直线与平面垂直,记作.直线叫做平面的垂线,平面叫做直线的垂面.直线与平面的公共点叫做垂足.2.直线与平面所成的角:角的取值范围:.3.二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面.二面角的记法:二面角的取值范围:两个平面垂直:直二面角.(二)四个定理垂直的平有无数个)(三)定理之间的关系及其转化:两平面垂直问题常转化为直线与直线垂直,而直线与平面垂直又可转化为直线与直线垂直,所以在解题时应注意从“高维”到“低维”的转化,即“空间问题”到“平面问题”的转化.三、重点难点1.重点:通过直观感知、操作确认,概括出判断定理和性质.2.难点:性质定理的证明.四、教法导引“直线、平面垂直的判定及其性质”以垂直为主线,按照先判定再给出性质的顺序,依次安排直线与平面垂直的判定、平面与平面垂直的判定、直线与平面垂直的性质、平面与平面垂直的性质.通过直观感知、操作确认,归纳出以下判定定理:一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直.一个平面过另一个平面的垂线,则两个平面垂直.性质定理:垂直于同一个平面的两条直线平行.两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.空间中的平行关系和垂直关系在一定条件下互相转化,如垂直于同一个平面的两条直线平行等等.通过对图形的观察、实验和说理,进一步了解垂直关系的基本性质及判定方法.五、学法建议转化法是本学案中重要的数学方法,证线线垂直,则需转化为证线面垂直,而证线面垂直,则需转化为证线线垂直.。

高考一轮复习第7章立体几何第5讲直线平面垂直的判定与性质

高考一轮复习第7章立体几何第5讲直线平面垂直的判定与性质

第五讲 直线、平面垂直的判定与性质知识梳理·双基自测 知识梳理知识点一 直线与平面垂直 (1)直线与平面垂直①定义:若直线l 与平面α内的_任意__一条直线都垂直,则直线l 与平面α垂直.②判定定理:一条直线与一个平面内的两条_相交__直线都垂直,则该直线与此平面垂直(线线垂直⇒线面垂直).即:a ⊂α,_b ⊂α__,l ⊥a ,l ⊥b ,a∩b=P ⇒l ⊥α.③性质定理:垂直于同一个平面的两条直线_平行__.即:a ⊥α,b ⊥α⇒_a ∥b__. (2)直线与平面所成的角①定义:平面的一条斜线和它在平面上的射影所成的_锐角__,叫做这条斜线和这个平面所成的角. 若直线与平面平行或直线在平面内,直线与平面所成角为_0__,若直线与平面垂直,直线与平面所成角为_π2__.②线面角θ的范围:θ∈⎣⎢⎡⎦⎥⎤0,π2.知识点二 平面与平面垂直 (1)二面角的有关概念①二面角:从一条直线出发的_两个半平面__所组成的图形叫做二面角.②二面角的平面角:以二面角的棱上任意一点为端点,在两个半平面内分别作与棱_垂直__的射线,则两射线所成的角叫做二面角的平面角.③二面角θ的范围:θ∈[0,π]. (2)平面与平面垂直①定义:两个平面相交,如果它们所成的二面角是_直二面角__,就说这两个平面互相垂直. ②判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.即:a ⊂α,a ⊥β⇒_α⊥β__. ③性质定理:两个平面垂直,则一个平面内垂直于_交线__的直线与另一个平面垂直.即:α⊥β,a ⊂α,α∩β=b ,a ⊥b ⇒_a ⊥β__.重要结论1.若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.2.若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).3.垂直于同一条直线的两个平面平行.4.一条直线垂直于两平行平面中的一个,则这条直线与另一个平面也垂直.双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l与平面α内的无数条直线都垂直,则l⊥α.(×)(2)垂直于同一个平面的两平面平行.( ×)(3)若直线a⊥α,b⊥α,则a∥b.( √)(4)若α⊥β,a⊥β,则a∥α.(×)(5)若直线a⊥平面α,直线b∥α,则直线a与b垂直.( √)(6)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.(×)题组二走进教材2.(多选题)(必修2P73T1)下列命题中正确的是( ABC )A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β[解析] 对于D,若平面α⊥平面β,则平面α内的直线可能不垂直于平面β,即与平面β的关系还可以是斜交、平行或在平面β内,其他选项均是正确的.题组三走向高考3.(2017·课标全国Ⅲ)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则( C )A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC[解析] ∵A1B1⊥平面BCC1B1,BC1⊂平面BCC1B1,∴A1B1⊥BC1,又BC1⊥B1C,且B1C∩A1B1=B1,∴BC1⊥平面A1B1CD,又A1E⊂平面A1B1CD,∴BC1⊥A1E.故选C.4.(2019·北京)已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:_若l⊥α,l⊥m,则m∥α.(或若l⊥α,m∥α,则l⊥m)__.[解析] 由l,m是平面α外的两条不同直线,及线面平行的判定定理得:若l⊥α,l⊥m,则m∥α,若l⊥α,m∥α,则由线面垂直的性质和线面平行的性质得l⊥m,∴若l⊥α,m∥α,则l⊥m,故答案为:若l⊥α,l⊥m,则m∥α.(或若l⊥α,m∥α,则l⊥m).5.(2020·全国Ⅱ(节选))如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F.[证明] ∵M,N分别为BC,B1C1的中点,∴MN∥BB1又AA1∥BB1,∴MN∥AA1在等边△ABC中,M为BC中点,则BC⊥AM.又∵侧面BB1C1C为矩形,∴BC⊥BB1∵MN∥BB1,MN⊥BC由MN∩AM=M,MN,AM⊂平面A1AMN∴BC⊥平面A1AMN又∵B1C1∥BC,且B1C1⊄平面ABC,BC⊂平面ABC,∴B1C1∥平面ABC又∵B1C1⊂平面EB1C1F,且平面EB1C1F∩平面ABC=EF∴B1C1∥EF,∴EF∥BC又∵BC⊥平面A1AMN∴EF⊥平面A1AMN∵EF⊂平面EB1C1F∴平面EB1C1F⊥平面A1AMN.考点突破·互动探究考点一空间垂直关系的基本问题——自主练透例1 (1)(2021·河北保定七校联考)设m,n是两条不同的直线,α,β是两个不同的平面,p:m⊥n,若p是q的必要条件,则q可能是( B )A.q:m⊥α,n∥β,α⊥βB.q:m⊂α,n⊥β,α∥βC.q:m⊥α,n⊥β,α∥βD.q:m⊂α,n∥β,α⊥β(2)(2019·陕西汉中质检一)已知l ,m 表示两条不同的直线,α,β表示两个不同的平面,l ⊥α,m ⊂β,则有下面四个命题:①若α∥β,则l ⊥m ,②若α⊥β,则l ∥m ;③若l ∥m ,则α⊥β;④若l ⊥m ,则α∥β.其中所有正确的命题是( A )A .①③B .①④C .②③D .①②③④(3)(多选题)(2021·四川成都诊断改编)已知α,β是空间中两个不同的平面,m ,n 是空间中两条不同的直线,则下列说法错误的是( ABD )A .若m ∥α,n ∥β,且α∥β,则m ∥nB .若m ∥α,n ∥β,且α⊥β,则m ∥nC .若m ⊥α,n ∥β,且α∥β,则m ⊥nD .若m ⊥α,n ∥β,且α⊥β,则m ⊥n[解析] (1)由题知q 能推出p :m ⊥n.对A ,当m ∥n 时仍然可以有m ⊥α,n ∥β,α⊥β.故A 错误.对B ,n ⊥β,α∥β,则n ⊥α,又m ⊂α,则m ⊥n.故B 正确.对C ,m ⊥α,α∥β则m ⊥β,又n ⊥β,故m ∥n.故C 错误.对D ,当α⊥β且相交于m 时,若n ∥m ,也满足m ⊂α,n ∥β.故D 错误.⎭⎬⎫⎭⎪⎬⎪⎫2l ⊥α α∥β⇒l ⊥βm ⊂β⇒l ⊥m ,①对;⎭⎬⎫⎭⎪⎬⎪⎫l ∥m l ⊥α⇒m ⊥α m ⊂β⇒α⊥β,③对;由图可知②④错.故选A .(3)由m ∥α,n ∥β,且α∥β,得m ∥n 或m 与n 相交,或m 与n 异面,故A 错误;由m ∥α,n ∥β,且α⊥β,得m ∥n 或m 与n 相交或m 与n 异面,故B 错误;由m ⊥α,α∥β,得m ⊥β,又n ∥β,则m ⊥n ,故C 正确;由m ⊥α,n ∥β且α⊥β,得m ∥n 或m 与n 相交或m 与n 异面,故D 错误,故选A 、B 、D .名师点拨解决空间中线面、面面垂直的问题有以下三种方法:(1)依据相关定理得出结论.(2)结合符合题意的模型(如构造正方体、长方体)作出判断,或借助笔、纸、桌面进行演示,注意能平移或旋转的线,让其动动再判断.(3)否定命题时只需举一个反例即可.〔变式训练1〕(1)(2021·东北三省三校模拟)已知α,β是不重合的平面,m ,n 是不重合的直线,则m ⊥α的一个充分条件是( C )A .m ⊥n ,n ⊂αB .m ∥β,α⊥βC .n ⊥α,n ⊥β,m ⊥βD .α∩β=n ,α⊥β,m ⊥n(2)(2021·福建福州调研)已知两条直线m ,n 和两个平面α,β,下列命题正确的是( A ) A .若m ⊥α,n ⊥β,且m ⊥n ,则α⊥β B .若m ∥α,n ∥β,且m ∥n ,则α∥β C .若m ⊥α,n ∥β,且m ⊥n ,则α⊥β D .若m ⊥α,n ∥β,且m ∥n ,则α∥β[解析] (1)对于答案A :m ⊥n ,n ⊂α,得出m 与α是相交的或是垂直的,或m ⊂α,故A 错;答案B :m ∥β,α⊥β,得出m 与α是相交的、平行的都可,故B 错;答案C :n ⊥α,n ⊥β,得出α∥β,再m ⊥β得出m ⊥α,故C 正确.⎭⎪⎬⎪⎫2m ⊥αm ⊥n⇒n ⊂α或n ∥α.若n ⊂α,又n ⊥β,∴α⊥β;若n ∥α,则存在l ⊂α且l ∥n ,又n ⊥β,∴l ⊥β,∴α⊥β,故A 正确;事实上,在B 中条件下,α、β可能相交;在C 中条件下,α、β可能平行;在D 的条件下,α⊥β,故选A .考点二 直线与平面垂直的判定与性质——多维探究角度1 线、面垂直的判定例2 如图所示,已知PA ⊥矩形ABCD 所在平面,M ,N 分别是AB ,PC 的中点.(1)求证:MN ⊥CD ;(2)若∠PDA =45°,求证:MN ⊥平面PCD . [证明] 解法一:(1)连接AC ,AN ,BN ,∵PA ⊥平面ABCD ,∴PA ⊥AC ,在Rt △PAC 中,N 为PC 中点. ∴AN =12PC .∵PA ⊥平面ABCD ,∴PA ⊥BC . 又BC ⊥AB ,PA∩AB=A , ∴BC ⊥平面PAB ,∴BC ⊥PB .从而在Rt △PBC 中,BN 为斜边PC 上的中线, ∴BN =12PC .∴AN =BN ,∴△ABN 为等腰三角形. 又M 为底边AB 的中点,∴MN ⊥AB ,又AB ∥CD ,∴MN ⊥CD . (2)∵PA ⊥平面ABCD ,∴PA ⊥AD . 又∠PDA =45°,∴AP =AD .∵四边形ABCD 为矩形,∴AD =BC ,∴PA =BC . 连接PM ,CM ,又∵M 为AB 的中点,∴AM =BM. 而∠PAM =∠CBM =90°,∴Rt △PAM ≌Rt △CBM. ∴PM =CM ,又N 为PC 的中点,∴MN ⊥PC . 由①知MN ⊥CD ,PC∩CD=C ,∴MN ⊥平面PCD . 解法二:∵PA ⊥平面ABCD , ∴PA ⊥AD ,PA ⊥AB ,又AB ⊥AD ,∴PA 、AB 、AD 两两垂直,如图建立空间直角坐标系,不妨设C(a ,b,0),P(0,0,c),则D(0,b,0),M ⎝ ⎛⎭⎪⎫a 2,0,0,N ⎝ ⎛⎭⎪⎫a 2,b 2,c 2, (1)由MN →=⎝ ⎛⎭⎪⎫0,b 2,c 2,CD →=(-a,0,0),∴MN →·CD →=0,∴MN ⊥CD . (2)∵∠PDA =45°,∴b =c , 又PC →=(a ,b ,-b),∴MN →·PC →=⎝ ⎛⎭⎪⎫0,b 2,b 2·(a,b ,-b)=0,∴MN ⊥PC ,又MN ⊥CD , ∴MN ⊥平面PCD . 角度2 线、面垂直的性质例3 (2021·河北“五个一联盟”联考,节选)如图,在三棱柱ABC -A 1B 1C 1中,B 1C 1⊥平面AA 1C 1C ,D 是AA 1的中点,△ACD 是边长为1的等边三角形.证明:CD ⊥B 1D .[证明] ∵△ACD 是边长为1的等边三角形, ∴∠ADC =60°,∠DA 1C 1=120°. ∵D 是AA 1的中点,△ACD 的边长为1, ∴AD =A 1D =A 1C 1=1,即△A 1C 1D 是等腰三角形, ∴∠A 1DC 1=30°,从而∠CDC 1=90°,即CD ⊥C 1D . ∵B 1C 1⊥平面AA 1C 1C ,且CD ⊂平面AA 1C 1C , ∴B 1C 1⊥CD .∵B 1C 1∩C 1D =C 1,B 1C 1⊂平面B 1C 1D ,C 1D ⊂平面B 1C 1D , ∴CD ⊥平面B 1C 1D .∵B 1D ⊂平面B 1C 1D ,∴CD ⊥B 1D .名师点拨1.证明线线垂直的常用方法 (1)利用特殊图形中的垂直关系. (2)利用等腰三角形底边中线的性质. (3)利用勾股定理的逆定理. (4)利用直线与平面垂直的性质. (5)向量法:a ⊥b ⇔a·b=0. 2.证明线面垂直的常用方法(1)利用判定定理,它是最常用的思路.(2)利用线面垂直的性质:若两平行线之一垂直于平面,则另一条线必垂直于该平面. (3)利用面面垂直的性质:①两平面互相垂直,在一个平面内垂直于交线的直线垂直于另一平面.②若两相交平面都垂直于第三个平面,则它们的交线垂直于第三个平面. (4)向量法:证明直线的方向向量与平面的法向量平行. 〔变式训练2〕(1)(角度1)(2020·河南六市一模)在如图所示的几何体中,ABC -A 1B 1C 1为三棱柱,且AA 1⊥平面ABC ,四边形ABCD 为平行四边形,AD =2CD .∠ADC =60°,若AA 1=AC ,求证:AC 1⊥平面A 1B 1CD .(2)(角度2)(2021·湖南炎德英才大联考,节选)如图,圆柱OQ 的上,下底面圆的圆心分别为Q ,O ,四边形ABCD 是圆柱OQ 的轴截面,点P 在圆柱OQ 的下底面圆周上,G 是DP 的中点,圆柱OQ 的底面圆的直径AB =4,母线AD =AP =2 3.求证:AG ⊥BD .[证明] (1)证法1:∵AD =2CD ,∠ADC = 60°, ∴DC ⊥AC ,又AA 1⊥平面ABC ,∴AA 1⊥DC . ∴DC ⊥平面AA 1C 1C ,又AC 1⊂平面AA 1C 1C , ∴DC ⊥AC 1,∵AA 1=AC ,∴四边形AA 1C 1C 为菱形,∴AC 1⊥A 1C , 而DC∩A 1C =C ,∴AC 1⊥平面A 1B 1CD . 证法2:∵AD =2CD ,∠ADC =60°,∴∠ACD =90°,则CD ,CA ,CC 1两两垂直.如图,建立空间直角坐标系C -xyz.不妨设CD =1,则C(0,0,0),D(1,0,0),A(0,3,0),C 1(0,0,3),A 1(0,3,3). ∴AC 1→=(0,-3,3),CD →=(1,0,0),CA 1→=(0,3,3).易得AC 1→·CD →=0,AC 1→·CA 1→=0.∴AC 1⊥CD ,AC 1⊥CA 1,又∵CD∩CA 1=C , ∴AC 1⊥平面A 1B 1CD .(2)证法1:∵AD =AP ,又G 是DP 的中点, ∴AG ⊥DP.①∵AB 为圆O 的直径,∴AP ⊥BP ,易知DA ⊥底面ABP ,∴DA ⊥BP ,而AD∩AP=A , ∴BP ⊥平面ADP ,又AG ⊂平面ADP ,∴BP ⊥AG ,②∴由①②可知:AG ⊥平面BDP ,又BD ⊂平面BDP , ∴AG ⊥BD .证法2:∵AB 为⊙O 的直径,∴PA ⊥PB ,如图建立空间直角坐标系,由题意知P(0,0,0),A(0,23,0),B(2,0,0),D(0,23,23),G(0,3,3), ∴AG →=(0,-3,3),BD →=(-2,23,23), ∴AG →·BD →=0,即AG ⊥BD .考点三 两个平面垂直的判定与性质——师生共研例4 (2020·四川成都二诊)如图,在正三棱柱ABC -A 1B 1C 1中,AB =4,AA 1=6,E ,F 分别为BB 1,AC 的中点.(1)求证:平面A 1EC ⊥平面ACC 1A 1; (2)求几何体AA 1EBC 的体积.[解析] (1)证明:如图,连接AC 1交A 1C 于点O ,连接OE ,OF ,在正三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1为矩形,所以OA =OC 1.又因为F 为AC 的中点, 所以OF ∥CC 1且OF =12CC 1.因为E 为BB 1的中点,所以BE ∥CC 1且BE =12CC 1.所以BE ∥OF 且BE =OF.所以四边形BEOF 是平行四边形,所以BF ∥OE. 因为AB =CB ,F 为AC 的中点, 所以BF ⊥AC ,所以OE ⊥AC .因为AA 1⊥底面ABC ,所以AA 1⊥BF ,所以OE ⊥AA 1. 又AA 1,AC ⊂平面ACC 1A 1,且AA 1∩AC=A , 所以OE ⊥平面ACC 1A 1.因为OE ⊂平面A 1EC ,所以平面A 1EC ⊥平面ACC 1A 1. (2)四棱锥A 1-EB 1C 1C 的高为h =4sin 60°=23, 底面为直角梯形,面积为S =12×(3+6)×4=18,得VA 1-EB 1C 1C =13×23×18=123,故几何体AA 1EBC 的体积为VAA 1EBC =VABC -A 1B 1C 1-VA 1-EB 1C 1C =12×4×4×32×6-123=12 3.例5 (2021·黑龙江大庆市质检)在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA =PD =2,四边形ABCD 是边长为2的菱形,∠DAB =60°,E 是AD 的中点.(1)求证:BE ⊥平面PAD ; (2)求点E 到平面PAB 的距离.[解析] (1)连接BD ,在△PAD 中,PA =PD =2,E 是AD 的中点, ∴PE ⊥AD ,∵平面PAD ⊥平面ABCD ,平面PAD∩平面ABCD =AD , ∴PE ⊥平面ABCD ,∴PE ⊥BE ,又∵四边形ABCD 是边长为2的菱形,∠DAB =60°, ∴△ABD 为等边三角形, ∴BE ⊥AD ,又∵PE∩AD=E ,PE ⊂平面PAD ,AD ⊂平面PAD , ∴BE ⊥平面PAD .(2)在△PAB 中,PA =AB =2,PB =6,则S △PAB =152, 在△ABE 中,AB =2,AE =1,BE =3,则S △ABE =32, 由PE ⊥面ABCD ,PE =3,得 V P -ABE =13×3×12×1×3=12,由V P -ABE =V E -PAB ,设点E 到平面PAB 的距离为h , 则13×152×h=13×32×3,则h =155, 即点E 到平面PAB 的距离为155.名师点拨(1)判定面面垂直的方法①面面垂直的定义;②面面垂直的判定定理(a ⊥β,a ⊂α⇒α⊥β).(2)在已知面面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.(3)〔变式训练3〕(1)(2020·湖南娄底模拟)如图所示,在四棱锥P -ABCD 中,底面ABCD 是菱形,∠DAB =π3,侧面PAD是等边三角形,且平面PAD ⊥平面ABCD ,E 为棱PC 上一点,若平面EBD ⊥平面ABCD ,则PE EC =_12__.(2)(2021·云南玉海一中期中)已知三棱锥P -ABC(如图1)的展开图如图2,其中四边形ABCD 为边长等于2的正方形,△ABE 和△BCF 均为正三角形.证明:平面PAC ⊥平面ABC .[解析] (1)取AD 的中点O ,连接OC 交BD 于F 点,连接EF ,∵△PAD 是等边三角形,∴PO ⊥AD ,∵OD ∥BC ,BC =2OD ,∴FC =2OF. 又∵平面PAD ⊥平面ABCD ,PO ⊥AD , ∴PO ⊥平面ABCD ,又∵平面BDE ⊥平面ABCD ,∴PO ∥平面BDE. ∴OP ∥EF ,∴PE EC =OF FC =12.故答案为:12.(2)证明:如图取AC 的中点O ,连接BO ,PO.由题意可知PA =PB =PC =2,∴PO =1,AO=BO=CO=1,∵在△PAC中,PA=PC,O为AC的中点,∴PO⊥AC.∵在△POB中,PO=1,OB=1,PB=2,∴PO2+OB2=PB2,∴PO⊥OB.∵AC∩OB=O,AC,OB⊂平面ABC,∴PO⊥平面ABC,∵PO⊂平面PAC,∴平面PAC⊥平面ABC.名师讲坛·素养提升立体几何中的轨迹问题例6 (多选题)(2021·山东青岛模拟)在如图所示的棱长为1的正方体ABCD-A1B1C1D1中,点P 在侧面BCC1B1所在的平面上运动,则下列命题中正确的为( ABD )A.若点P总满足PA⊥BD1,则动点P的轨迹是一条直线B.若点P到点A的距离为2,则动点P的轨迹是一个周长为2π的圆C.若点P到直线AB的距离与到点C的距离之和为1,则动点P的轨迹是椭圆D.若点P到直线AD与直线CC1的距离相等,则动点P的轨迹是双曲线[解析] A.∵PA⊥BD1,∴P在过A且与BD1垂直的平面ACB1上,又P∈平面BCC1B,∴P的轨迹是平面ACB1与平面BCC1B1的交线B1C,故A正确;B.点P的轨迹是以A为球心,半径为2的球面与平面BCC1B1的交线,即点P的轨迹为小圆,设小圆的半径为r,球心A到平面BCC1B1的距离为1,则r=22-1=1,所以小圆周长l=2πr=2π,故B正确;C.点P到直线AB的距离就是点P到点B的距离,即平面BCC1B1内的点P满足|PB|+|PC|=1=|BC|,即满足条件的点P的轨迹就是线段BC,不是椭圆,故C不正确;D.如图,过P分别作PM⊥BC于点M,PE⊥CC1于点E,则PM⊥平面ABCD,所以PM⊥AD,过M作MN⊥AD,连接PN,PM∩MN=M,所以AD⊥平面PMN,所以PN⊥AD,如图建立平面直角坐标系,设P(x,y),PM=y,则PN2=1+y2,PE2=(1-x)2,即1+y2=(1-x)2,整理为:(x-1)2-y2=1,则动点P的轨迹是双曲线,故D正确.故选ABD.[引申](1)本例中,若点P到直线AB的距离与到直线CC1的距离相等,则点P的轨迹为_以B为焦点、CC1为准线的抛物线__.(2)本例中,若点P到直线AB的距离与到直线AD的距离相等,则点P的轨迹为_与BC距离为1的两条平行线__.名师点拨立体几何中的轨迹面是常转化为两面的交线,或在某面内建立坐标系通过求轨迹方程求解.〔变式训练4〕(2021·安徽蚌埠质检)平面α的一条斜线AP交平面α于P点,过定点A的直线l与AP垂直,且交平面α于M点,则M点的轨迹是( A )A.一条直线B.一个圆C.两条平行直线D.两个同心圆[解析] 由题意知M在过A且与PA垂直的平面β内,∴点M的轨迹为平面α与β的交线,故选A.。

直线、平面垂直的判定及其性质

直线、平面垂直的判定及其性质

直线、平面垂直的判定及其性质一、知识概述直线、平面垂直是直线、平面相交的一种特殊情况.本节内容的处理继续遵循“直观感知-操作确认-思辩论证-度量计算”的认识过程展开,直线与平面垂直、平面与平面垂直的判定定理通过具体实例,按照直观感知、操作确认的方式得出,并用精确语言表达;直线与平面垂直、平面与平面垂直的性质定理则在观察、操作的基础上作出猜想,然后通过推理论证,得出猜想的正确性.另外,还学习了直线与平面所成的角、二面角等概念,在了解的基础上,还要学会如何运用适当的方法进行求解.二、重难点知识归纳1.直线与平面垂直的判定(1)直线与平面垂直的定义如果一条直线和一个平面内的任意一条直线都垂直,我们就说这条直线和这个平面垂直,其中直线叫作平面的垂线,平面叫作直线的垂面.注意:①定义中的“任意一条直线”和“所有直线”是同义语,不能改成“无穷多条直线”.②如果或,那么直线l不可能与平面内的任意一条直线都垂直.由此可知,当时,直线l和一定相交,它们唯一的交点叫做垂足.(2)直线和平面垂直的判定定理如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直与这个平面.(3)关于垂直的存在唯一性命题1:过一点有且只有一条直线和已知平面垂直.命题2:过一点有且只有一个平面和已知直线垂直.2.平面与平面垂直的判定(1)平面与平面垂直的定义两个平面相交,如果所成的二面角是直二面角,则称这两个平面互相垂直.(2)两个平面垂直的判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.符号表示为:.3.直线与平面垂直的性质如果两条直线同垂直于一个平面,那么这两条直线平行.符号表示:.作用:可作线线平行的判定定理.4.平面与平面垂直的性质(1)两个平面垂直的性质定理如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.符号表示为:.(2)如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面.(3)三个两两垂直的平面的交线两两垂直.(4)如果两个平面垂直,那么经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内.5.直线与平面所成的角(1)直线与平面斜交时,直线与平面所成的角是指这条直线和它在平面上的射线所成的锐角.(2)直线与平面垂直时,直线与平面所成的角为.(3)直线与平面平行或在平面内时,直线与平面所成的角为.显然,直线与平面所成的角的范围为.6.二面角(1)二面角的定义一条直线出发的二个半平面所形成的图形称为二面角,这条直线称为二面角的棱,二个半平面称为二面角的面.(2)二面角的平面角的定义:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角,叫做二面角的平面角.注意:①二面角的平面角两边必须都与棱垂直.②二面角的平面角的大小是由二面角的两个面的位置关系所确定的,与定义中棱上任一点的选择无关,也就是二面角的平面角不只一个,但这些平面角的大小是相等的.③二面角的平面角的范围是,当两个半平面重合时,;相交时;共面时.平面角是直角的二面角叫做直二面角.(3)二面角的平面角的确定与求法①直接法这种方法的思路是:先作出二面角的平面角,然后通过解三角形,求出平面角的大小,即为所求的二面角的大小.②公式法射影面积公式,如果平面多边形的面积为S,它在平面内的射影面积为,平面多边形与平面所夹的锐二面角为,那么.三、典型例题剖析例1.P是外的一点,PA,PB,PC两两垂直,PA=1,PB=2,PC=3,则的面积为()A.B.C.D.分析:由题目的已知条件,欲求的面积,必须求出一个边上的高及这个边的长度,求出三角形面积.题中共有三个垂直的条件,因此可以考虑作出的高.解:如图所示,作于D,连接CD.,平面PAB,则.又,平面PCD,则.在中,PA=1,PB=2,则,.在中,PC=3,则..故选择B.例2.如图所示,在正方体中,E是的中点,O是底面正方形ABCD 的中心,求证:平面.证明:如图,连接AE、CE、,设正方体的棱长为a,易证AE=CE.又,.在正方体中易求出:,,.,.面,面.例3.如图所示,正方体中,求与平面所成的角.分析:求直线与平面所成的角,关键是找出这条直线在平面内的射影,要找到射影关键是过直线某点(特殊点)作平面的垂线,落实垂足.问题中只要连结交于O,即可找到.解:连交于O,则.又平面,平面,.平面,垂足为O,连,则即为在平面内射影,即为与平面所成的角,在中,..与平面所成角为.例4.如图,P是所在平面外一点,,PA=PB=PC,求证:平面PAC 平面ABC.分析:要证明平面PAC平面ABC,只要在平面PAC(或平面ABC)中找到一条平面ABC (或平面PAC)的垂线,这条垂线要根据图中条件来找.证明:,取AC中点O,连PO,OB,则,,O为AC中点,.和中,PO=PO,PC=PB,OC=OB,.,即.又,平面ABC.而PO平面PAC,平面PAC平面ABC.例5.如图,已知中,,平面ABC,,PB与平面ABC成角,求二面角A-PB-C的正弦值.解:平面ABC,.又平面PAC.平面PBC,平面PAC平面PBC.过A在平面PAC内作,则AD平面PBC.过A作于E,连接DE,则是二面角A-PB-C的平面角.在中,,.在中,,.在中,.在中,.即二面角A-PB-C的正弦值为.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与平面垂直的判定定理可简述为
“线线垂直,则线面垂直”
思想方法 通过直线间的垂直,推证直线与平面垂
直,即将直线与平面的垂直关系(空间问题) 转化为直线间的垂直关系(平面问题).
问题提出
前面讨论了直线与平面垂直的问题,那么直 线与平面不垂直时情况怎么样呢?
直线与平面所成的角
线面角相关概念
平面的斜线
求证:AC⊥BD'
D′
C′
A′
B′
D A
C B
证明:连接BD
因为正方体ABCD-A'B'C'D'
所以DD‘⊥平面ABCD
又因为 AC 平面ABCD 所以AC DD'
因为AC、BD 为对角线 所以AC⊥BD 因为DD'∩BD=D 所以AC⊥平面D'DB 所以AC⊥BD'
D′
A′
D A
C′ B′
C B
那么这条直线是否与这个平面垂直?
l
α
线面垂直的判定
判定定理 一条直线与一个平面内的两条 相交直线都垂直,则该直线与此平面垂直.
la
l b a
l
b
a b A
作用:
判定直线与平面垂直.
l
b
Aa
思想:
直线与平面垂直
直线与直线垂直
例2 已知:正方体中,AC是面对角线,BD'是 与AC 异面的体对角线.
CD 面ABC 面ABC 面ACD
B
D
C
直线与平面垂直的性质
复习
a
直线与平面垂直的定义是什么?
直线与平面垂直的判定定理是什么?
a
α
思考1
如图,长方体ABCD—A1B1C1D1中,棱AA1,BB1, CC1,DD1所在直线与底面ABCD的位置关系如何?它们 彼此之间具有什么位置关系?
C1 B1
三个平面两两垂直
α
l β
α
β
l γ
复习2 两个平面垂直的判定
判定定理:如果一个平面经过另一个平面的垂线, 那么这两个平面互相垂直.
α
l β
1.黑板所在平面与地面所在平面垂直,在黑板 上是否存在直线与地面垂直?若存在,怎样画线?
α
β
两个平面垂直的性质
性质定理:两个平面垂直,则一个平面内垂 直于交线的直线与另一个平面垂直.
直线、平面垂直的判定及其性质
复习1
直线和平面的位置关系
直线在平面内
直线与平面相交
直线与平面平行
大桥的桥柱与水面的位置关系 线面垂直
直线和平面垂直
思考1 旗杆与地面中的直线的位置关系如何?
思考2 将一本书打开直立在桌面上, 观察书脊
(想象成一条直线)与桌面的位置关系呈什么 状态?此时书脊与每页书和桌面的交线的位置 关系如何?
C1
D1
B1
A1
C B
D
O
A
小结二面角的平面角的作法:
1.定义法: 根据定义作出来.
A
l
o
B
2.作垂面: 作与棱垂直的平面与两半平面 的交线得到.
o
B
A
3.应用三垂线定理:
ll
A
应用三垂线定理或其逆定理作
出来.
o
B
l
第2课时
平面与平面垂直的判定
平面与平面垂直的判定
定义 一般地,两个平面相交,如果它们所成的二面
平面的垂线
斜足A
P
l
垂足B
αA B
斜线PA在平面内的射影
斜线PA与平面所成的角为PAB
1.斜线与平面所成的角是指斜线和它在平面上的
射影所成的角
(0,90 0 )
2.平面的垂线与平面所成的角为直角
3. 一条直线与平面平行或在平面内,则这 条直线与平面所成的角的00角
一条直线与平面所成的角的取值范围是 [0,90 0 ]
D1 A1
C
D
B
A
思考2
如果直线a,b都垂直于同一条直线l,那么直 线a,b的位置关系如何?
l
l
b
l
ab
相交
ab
平行
a
异面
思考3
如果直线a,b都垂直于平面α,那么a与b 一定平行吗?
a
b
直线与平面垂直的性质定理
垂直于同一个平面的两条直线平行
a
b
a b
a
//
b
平面与平面垂直的性质
复习1 两个平面相互垂直
A
O
B
证明: PA 面, BC 面 PA BC 又 AB为圆的直径 AC BC
PA BC AC BC
PA AC A
PA 面PAC AC 面PAC
BC 面PAC
BC 面PBC
面PAC
面PBC
例2 在四面体ABCD中,已知AC⊥BD,∠ BAC= ∠CAD=45°,∠BAD=60°,求证:平面ABC⊥平面 ACD.
l
AB
l
B
A
探究 如何用平面角来表示二面角的大小?
β
BO lA
二面角-l-
α
β B
l O
A
α
二面角的平面角
以二面角的棱上任意一点为顶点,在两个 面内分别作垂直于棱的两条射线,这两条射线 所成的角叫做二面角的平面角.
∠ A O B 即 为二面角α-AB-β的 平面角
注意:二面角的平面角必须满足:
例3 在三棱锥P-ABC中,PA⊥平面ABC, AB⊥BC,PA=AB,D为PB的中点,求证:AD⊥PC.
P
D
C
A
B
探究
如图,直四棱柱 ABCD ABCD(侧棱与底面垂
直的棱柱称为直棱柱)中,底面四边形 ABCD 满足
什么条件时,AC BD ?
A
D
B A
C D
B
C
答:底面四边形ABCD对角线相互垂直.
射线 射线
半平面 半平面
概念
A
从一点出发的两条射线,
构成平面角.
O
B
记作AOB
同样,从一条直线出发的 两个半平面所组成的图形叫 做二面角.这条直线叫做二面 角的棱,这两个半平面叫做 二面角的面.
m
记为:二面角-m-
二面角的图示
二面角的记号
(1)以直线 l 为棱,以, (2)以直线AB为棱,以 , 为半平面的二面角记为: 为半平面的二面角记为:
例1 在正方体ABCD-A1B1C1D1中. (1)求直线A1B和平面ABCD所成的角; (2)求直线A1B和平面A1B1CD所成的角.
D1 A1
C1 B1
D A
O C
B
例2 如图,AB为平面的一条斜线,B为斜足, AO⊥平面,垂足为O,直线BC在平面内,已知 ∠ABC=60°,OBC=45°,求斜线AB和平面α所 成的角.
β
a l
A α
a
l
a
a l
面面垂直线面垂直
结论
如果两个平面互相垂直,那么经过一个平面 内一点且垂直于另一个平面的直线,必在这个平 面内.
α
A
B β
例1.如图,已知α⊥β,a⊥β,a,试判 断直线l与平面α的位置关系,并说明理由.
α
b
a
l
β
A
例2 如图,四棱锥P-ABCD的底面是矩形,AB=2,
D
C
B
E
A
例3 如图,四棱锥P-ABCD的底面为矩形,PA⊥底
面ABCD,PA=AD,M为AB的中点,求证:平面PMC⊥平 面PCD.
P
F
E
D
C
A
M
B
探究: 已知AB 面BCD, BC CD
请问哪些平面互相垂直的,为什么?
AB 面BCD 面ABC 面BCD A AB 面BCD 面ABD 面BCD
思考3 一条直线与一平面垂直的特征是什么?
特征:直线垂直于平面内的任意一条直线.
A C C
B B
直线和平面垂直
定义
如果直线 l 与平面内的任意一条直线都 垂直,我们说直线 l 与平面 互相垂直.
记为l
垂足
平面 的垂线
l
直线 l 的垂面
P
平面内任意一 条直线
思考4 如果一条直线垂直于一个平面内的无数条直线,
A
B
O
D
α
C
思考1
如图,∠BAD为斜线AB与平面α所成的角,AC为 平面α内的一条直线,那么∠BAD与∠BAC的大小关 系如何?
B
解:作BOAD于O,
BEAC于E,
A
α
oD EC
则 BD<BE sinBAD<sinBAC
∠BAD 〈∠BAC
平面与平面垂直的判定
概念
直线上的一点将直线分割成两部分,每一部 分都叫做射线. 平面上的一条直线将平面分割成 两部分,每一部分叫半平面.
角是直二面角,就说这两个平面互相垂直.
记为
β
a
A
b
α
判定定理:如果一个平面经过另一个平面的 垂线,则这两个平面垂直.
β
a
a 面
a
A α
线线垂直
线面垂直
面面垂直
例1 如图,⊙O在平面α内,AB是⊙O的直径, PA⊥α,C为圆周上不同于A、B的任意一点,求证: 平面PAC⊥平面PBC.
P
C
(1)角的顶点在棱上. (2)角的两边分别在两个面内. (3)角的边都要垂直于二面角的棱.
0度角
二面角的取值范围
00,180 0 或 [0, ]
相关文档
最新文档