复数讲义 绝对

合集下载

复数讲义——精选推荐

复数讲义——精选推荐

沈阳杰中杰教育—陈莉莉陈莉莉Ⅰ复习提问1、 复数的相关概念⑴复数的单位为i ,它的平方等于-1,即1i 2-=. ⑵复数及其相关概念:⑵复数及其相关概念: ① 复数—形如a + b i 的数(其中R b a Î,); ② 实数—当b = 0时的复数a + b i ,即a ;③ 虚数—当0¹b 时的复数a + b i ; ④ 纯虚数—当a = 0且0¹b 时的复数a + b i ,即b i. ⑤ 复数a + b i 的实部与虚部—a 叫做复数的实部,b 叫做虚部(注意a ,b 都是实数)都是实数) ⑥ 复数集C —全体复数的集合,一般用字母C 表示.请问z =3(1)a a i +-,z 的实部是(的实部是( ),虚部是(,虚部是( )。

当a =( )时,z 是实数;是实数; 当a =( )时,z 是虚数;当a =( )时,z 是纯虚数。

是纯虚数。

2、 复数的表示⑴(,)z a bi a b R =+Î,⑵点(,)Z a b ,⑶向量OZ3、三个充要条件 ㈠ ①z=a+bi z=a+bi∈∈RÛb=0b=0((a 、b ∈R ); ②z ∈R Ûz =z ; ③Z ∈RÛ22Z Z =㈡ ①z =a+bi 是纯虚数Ûa=0且b ≠0(a 、b ∈R ); ②z 是纯虚数或0ÛZ+z =0=0;③;③;③z z 是纯虚数Ûz 2<0。

㈢00==Û=+Î==Û+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且 4、两个复数在什么情况下可以比较大小? 判断正误:判断正误:①若21,z z 为复数,则1若021 z z +,则21z z - .( ) 2若21z z,则021 z z -.( )②若C c b a Î,,,则0)()()(222=-+-+-a c c b b a 是c b a ==的必要不充分条件( ) 5、复数的运算:设),,,(,21R d c b a di c z bi a z Î+=+=,则i d b c a z z )()(21±+±=±;i bc ad bd ac z z )()(21++-=×;i d c adbc d c bd ac z z 222221+-+++=6、绝对值不等式:设21z z ,是不等于零的复数,则是不等于零的复数,则 ①212121z z z z z z +£+£-..②212121z z z z z z +£-£-.7、共轭复数:设z=a+bi ,则z =( ),(a 、b ∈R ),实数的共轭复数是(,实数的共轭复数是() 性质zz = 、2121z z z z +=+ 、az z 2=+,i2b z z =-(=z a+ b i )、22||||z z z z ==×复数部分2121z z z z -=- 、2121z z z z ×=× 、2121z zz z =÷÷øöççèæ(02¹z ) 、 n nz z )(=判断:①两个共轭复数之差是纯虚数. ( )②11)(212142====i i () 8、常用结论 1,,1,,143424142=-=-==-=+++nn n n ii iii ii )(,0321Z n iii i n n n nÎ=++++++i i i i i i i i -=+-=-+±=±11,11,2)1(2若w 是1的立方虚数根,即i2321±-=w ,. 9、复数集中解一元二次方程: 在复数集内解关于x 的一元二次方程)0(02¹=++a c bx ax 时,应注意下述问题:时,应注意下述问题:①当R Rc c b b a a Î,,时,什么时候有二不等实数根?有二相等实数根?两个互为共轭的复数根?时,什么时候有二不等实数根?有二相等实数根?两个互为共轭的复数根? ②当c b a ,,不全为实数时,是否可以用D 判断方程根的情况?判断方程根的情况?③不论c b a ,,为何复数,是否都可用求根公式求根?韦达定理是否也成立?为何复数,是否都可用求根公式求根?韦达定理是否也成立?Ⅱ 题型与方法归纳1、题型与考点ìïïíïïî复数的概念,复数表示复数的计算复数相等,共轭复数复数与方程,函数,三角,向量复数与方程,函数,三角,向量,,不等式等的结合2、解题方法与步骤、解题方法与步骤1)复数的概念:例1. 当m 为何实数时,复数z =2223225m m m ---+(m 2+3m -10)i ; (1) 是实数;(2)是虚数;(3)是纯虚数.)是纯虚数.解题思路:z 是实数,虚部=0;z 是虚数,虚部¹0;z 是纯虚数,实部=0,虚部¹0.解:(1)z 为实数,则虚部m 2+3m -10=0,即223100250m m m ì+-=í-¹î, 解得m =2,∴,∴ m =2时,z 为实数。

复数讲义(含知识点和例题及解析)

复数讲义(含知识点和例题及解析)

数系的扩充与复数的引入1.复数的有关概念 (1)复数的概念:形如a +b i(a ,b ∈R )的数叫做复数,其中a ,b 分别是它的实部和虚部。

若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数。

(2)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R )。

(3)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R )。

(4)复平面:建立直角坐标系来表示复数的平面,叫做复平面。

x 轴叫做实轴,y 轴叫做虚轴。

实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数。

(5)复数的模:向量OZ →的模r 叫做复数z =a +b i(a ,b ∈R )的模,记作|z |或|a +b i|,即|z |=|a +b i|=a 2+b 2。

2.复数的几何意义 (1)复数z =a +b i――→一一对应复平面内的点Z (a ,b )(a ,b ∈R )。

(2)复数z =a +b i ――→一一对应平面向量OZ →(a ,b ∈R )。

3.复数的运算(1)复数的加、减、乘、除运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R )则: ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i 。

②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i 。

③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i 。

④除法:z 1z 2=a +b i c +d i =(ac +bd )+(bc -ad )i c 2+d 2(c +d i ≠0)。

(2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3)。

复数-解析版(一轮复习讲义)

复数-解析版(一轮复习讲义)

复数复数的概念和基本运算【知识精讲】 1 复数的定义1) 概念:设i 为方程21x =-的根,i 称为虚数单位,由i 与实数进行加、减、乘、除运算,便产生形如bi a +(,a b R ∈)的数叫做复数,全体复数所成的集合C 叫做复数集。

复数通常用字母z 表示,即bi a z +=(,a b R ∈),其中a 称作实部记作()Re z ,b 称为虚部记作()Im z ,bi a z +=(,a b R ∈)称为代数形式,它是由实部、虚部和虚数单位三部分组成. 2)虚数单位的性质i 叫做虚数单位,并规定:① i 可与实数进行四则运算;② 12-=i ;这样方程12-=x 就有解了,解为i x =或i x -=3)复数的定义要注意以下几点:○1bi a z +=(,a b R ∈)被称为复数的代数形式,其中bi 表示b 与虚数单位i 相乘○2数的实部和虚部都是实数,否则不是代数形式 4)复数相等复数a bi +与c di +(),,,a b c d R ∈相等,当且仅当a cb d=⎧⎨=⎩,记作a bi c di +=+.2 复数的分类对于复数a bi +(,a b R ∈),当且仅当0b =时,它是实数;当且仅当0a b ==时,它是实数0;当0b ≠时,它叫做虚数,当0a =且0b ≠时,它叫做纯虚数. 显然,实数集R ,是复数集C 的真子集,即C R ≠⊂.3 复数的几何意义复数bi a z +=与复平面内的点),(b a Z 及平面向量(,)OZ a b =),(R b a ∈是一一对应关系(复数的实质是有序实数对,有序实数对既可以表示一个点,也可以表示一个平面向量) 相等的向量表示同一个复数 4 复数的模向量→OZ 的模叫做复数bi a z +=的模,记作z 或bi a +,表示点),(b a 到原点的距离,即=z 22b a bi a +=+,z z =若bi a z +=1,di c z +=2,则21z z -表示),(b a 到),(d c 的距离,即2221)()(d b c a z z -+-=-5.复数的其他形式(1)复数的三角形式:设z 对应复平面内的点Z ,连接OZ ,设xOZ θ∠=,OZ r =,则cos ,sin a r b r θθ==,所以()cos sin z r i θθ=+,这种形式称为三角形式.则θ称为的辐角.若02θπ≤<,则θ称为z 的辐角主值,记作()arg z θ=,r 称为z 的模,也记作z ,由勾股定理可知z =(2)复数的指数形式:,0,i z e r R θθ=≥∈(3)复数的向量形式:()(),,z a b a b R =∈,复数的向量形式可以很好体现复数的几何意义. 6.共轭复数:若bi a z +=(,a b R ∈),则z a bi =-称为z 的共轭复数. 性质:(1)1212z z z z ±=± (2) 1212z z z z ⋅=⋅ (3)22z z z z ⋅==(4)1122z z z z ⎛⎫= ⎪⎝⎭(5)1212z z z z ⋅=⋅(6)1122z z z z = (7)121212z z z z z z -≤±≤+ (8)222212121222z z z z z z ++-=+(9)若1,z =则1z z=.7.复数的运算(1)加法运算:两个复数,a bi c di ++的和定义为()()()()a bi c di a c b d i +++=+++两个复数相加,实部和实部相加的结果为实部,虚部和虚部相加的结果为虚部. (2)乘法运算:两个复数,a bi c di ++的和定义为()()()()a bi c di ac bd ad bc i ++=-++两个复数相加乘,可以参照多项式乘法相乘,最后合并同类项.(3)减法运算:给定两个复数12,z z ,满足条件12z z z +=的复数z 叫做复数2z 减去1z 的差,记作21z z z =-.(4)除法运算:给定两个复数12,z z ,且10z ≠,满足条件12z z z =的复数z 叫做复数2z 除以去1z 的商,记作21z z z =. 设()12,,,,,z a bi z c di a b c d R =+=+∈,则()()()()()1222a bi c di ac bd bc ad iz a bi z z c di c di c di c d+-++-+====++-+ (5)开方运算:给定复数1z ,满足条件1nz z =的复数z 叫做复数1z 的n 次方根. 注解:一个不为0的复数z ,有n 个不同的n 次方根.任意一元n 次方程有n 个复数根.(6)按向量形式,加减法满足平行四边形和三角形法则.(7)按照三角形式,若()()11112222cos sin ,cos sin z r z r θθθθ=+=+,则()()12121212cos sin z z rr i θθθθ⋅=+++⎡⎤⎣⎦如20z ≠,则()()11121222cos sin z r i z r θθθθ=-+-⎡⎤⎣⎦ 8. 隶莫弗定理:()()cos sin cos sin nnr i rn i n θθθθ+=+⎡⎤⎣⎦9.开方:若()cos sin nz r i θθ=+,则22cos sin k k z i n n θπθπ++⎫=+⎪⎭,其中()0,1,2,,1k n =⋅⋅⋅-.10.实系数方程虚根成对定理:实系数一元n 次方程的虚根成对出现,即若z a bi =+是方程的一个根,则z a bi =-也是一个根.11.几个常用结论在复平面上的点1234,,,Z Z Z Z 对应的复数分别为1234,,,z z z z ,则 (1)()()1233212cos sin Z Z Z z z z z r i θθθ∠=⇔-=-⋅± (2)()43123421//z z Z Z Z Z k k R z z -⇔=∈-(3)()43123421z z Z Z Z Z ki k R z z -⊥⇔=∈-(4) 123,,Z Z Z 三点共线3121z z R z z -⇔∈- (5)123Z Z Z 的重心对应的复数为1233z z z ++ 12.复数表示的轨迹方程在复平面上的点12,Z Z 对应的复数分别为12,z z ,则 (1)1221Z Z z z =-表示复平面上12,Z Z 两点之间的距离; (2) 1z z r -=表示以1Z 为圆心,r 为半径的圆的方程; (3) ()1212+22z z z z a z z a --=-<表示椭圆; (4) ()1212+22z z z z a z z a --=-=表示线段; (5) ()121222z z z z a z z a ---=->表示双曲线; (6) ()121222z z z z a z z a ---=-=表示两条射线; (4) 12=z z z z --表示垂直平分线方程;13. 在复平面上的点123,,Z Z Z 对应的复数分别为123,,z z z ,则123Z Z Z 的面积为()1231223311Im 2Z Z Z Sz z z z z z =++ 【典型例题】 例1.已知复数i1iz =+,则它的共轭复数z =( ) A .1i2+ B .1i2- C .1i + D .1i -【答案】B【分析】利用复数的除法运算化简复数z ,再由共轭复数的定义即可求解.【解】因为i i(1i)1i =1i (1i)(1i)2z -+==++-,所以1i 2z -=,故选:B. 例2.已知复数z 满足()()2i 2i 1i z +=+-,则复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】D【分析】本题首先可根据复数的乘法运算得出33i z =-,然后根据复数z 在复平面内对应的点为()3,3-即可得出结果.【解】()()2i 2i 1i z +=+-,即()()22i 1i 2i 22i i i 2i 33i z =+-=-+-=---,则复数z 在复平面内对应的点为()3,3-,在第四象限,故选:D.例3.欧拉恒等式:π10i e +=被数学家们惊叹为“上帝创造的等式”.该等式将数学中几个重要的数:自然对数的底数e 、圆周率π、虚数单位i 、自然数1和0完美地结合在一起,它是在欧拉公式:()cos sin i e i R θθθθ=+∈中,令πθ=得到的.根据欧拉公式,4i e 复平面内对应的点在( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】C【分析】直接利用欧拉公式化简求解,结合三角函数值的符号,即可判定复数对应的点所在的象限,得到答案.【解】由题意,欧拉公式()cos sin i e i R θθθθ=+∈,可得4cos 4sin 4i e i =+,因为cos 40,sin 40<<,所以4i e 复平面内对应的点(cos 4,sin 4)在第三象限.故选:C.【变式3-1】(不定项选择题)欧拉公式i cos isin x e x x =+其中i 为虚数单位,)x R ∈是由瑞士著名数学家欧拉创立的,该公式将指数函数的定义域扩大到复数,建立了三角函数与指数函数的关联,在复变函数论里面占有非常重要的地位.依据欧拉公式,下列选项正确的是( )A .i422e π=- B .i2e π为纯虚数C .复数i x e 的模长等于1D .i3e π的共轭复数为12-i【答案】BCD【分析】由i cos isin x e x x =+,将所求复数化为()i ,z a b a R b R =+∈∈的形式,进而逐项判断可得其正误.【解】对A ,因为icos isin x e x x =+(其中i 为虚数单位,x ∈R ),所以i4e π=,故A 错;对B ,i 2i e π=为纯虚数,故B 正确;对C ,复数i x e 1=,故C 正确;对D ,i312e π=+其共轭复数为12-,故D 正确. 故选:BCD .【变式3-2】欧拉公式i cos isin x x x e =+(其中i 为虚数单位)是由著名数学家欧拉发现的,即当π3x =时,πi 3πcos isin 3π3e ⋅=+,根据欧拉公式,若将2021πi e ⋅所表示的复数记为z ,则将复数1iz+表示成三角形式为________.3π3πcos sin 44i ⎫+⎪⎝⎭【分析】根据欧拉公式i cos isin x x x e =+,先求出2021πi e ⋅,再进行复数的除法运算,最后再表示为三角形式.【解】因为2021πi e cos 2021πsin 2021π1i =+=-,所以13π3πcos sin 1+1244z i i i -⎫==+⎪+⎝⎭.故答案为:3π3πcos sin 244i ⎫+⎪⎝⎭【变式3-3】已知i cos isin x x x e =+,则2022i e 对应的点位于复平面的第________象限. 【答案】四【分析】根据题意得2022i cos 2022isin 2022e =+,结合2022是第四象限角,判断出cos 20220,sin 20220><,即可求出结果.【解】由题意得2022i cos 2022isin 2022e =+,因为2022是第四象限角,所以cos 20220,sin 20220><,而2022i cos 2022isin 2022e =+对应的点是()cos2022,sin 2022在第四象限,故答案为:四.例4.如图,在复平面内,复数12,z z 对应的向量分别是,OA OB ,则复数12z z -对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【分析】先根据图形求出,OA OB ,进而得到122i,i z z =--=,结合复数的减法运算即可求出12z z -,从而求得所对应的点所在的象限.【解】由图可知()()2,1,0,1OA OB =--=,所以122i,i z z =--=,因此122i i=22i z z -=-----,所以12z z -在复平面内所对应的点为()2,2--,在第三象限,故选:C.例5.已知z 是关于x 的方程20x x a ++=的根,且z =则实数a =( )A .B .5-C .5D 【答案】C【分析】根据共轭复数的性质得出25z z z ⋅==,结合根与系数的关系得出实数a 的值. 【解】实系数一元二次方程的虚根共轭成对出现,25z z z ⋅==,∴5a =.故选:C【变式5-1】若1i +是关于x 的实系数方程20x bx c ++=的一个复数根,则c =______. 【答案】2【分析】根据实系数方程的虚数根成对出现的性质得出另一根,然后由韦达定理得结论. 【解】因为1i +是关于x 的实系数方程20x bx c ++=的一个复数根,所以1i -也是方程的根,所以(1i)(1i)2c =+-=.故答案为:2.例6.若复数z 满足1i 3z -+=,则复数z 对应的点的轨迹围成图形的面积等于( ) A .3 B .9C .6πD .9π【答案】D【分析】利用复数的几何意义,即可判断轨迹图形,再求面积.【解】复数z 满足()13z i --=,表示复数z 对应的点的轨迹是以点()1,1-为圆心,半径为3的圆,所以围成图形的面积等于239S ππ=⨯=.故选:D【变式6-1】已知复数z 1,z 2满足|z 1|=1,|z 2|=5,则|z 1-z 2|的最小值是________. 【答案】4【分析】由题意画出图形,数形结合得答案. 【解】由1||1z =,2||5z =,可得1z ,2z 所对应点的轨迹分别为以原点为圆心,以1和5为半径的圆,12||z z -的几何意义为两圆上点的距离,由图可知,最小值为514-=.故答案为:4.【变式6-2】复数012i z =-,3z =,则0z z -的最大值是_____.【答案】【分析】设()i ,z a b a b R =+∈根据已知条件可得复数z 对应的点的轨迹,再利用复数模的几何意义即可求解.【解】设()i ,z a b a b R =+∈,则229a b +=,所以复数z 对应的点(),Z a b 的轨迹为以()0,0为圆心,3r =为半径的圆,即圆229x y +=,()()012i z z a b -=-++,0z z -=表示点(),a b 到点()1,2M -的距离,所以0z z -的最大值是33r OM +=+=+.故答案为:【变式6-3】18世纪末,挪威测量学家维塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如||||z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离.已知复数z 满足||1z =,i 为虚数单位,则|34i |z --的最小值为________. 【答案】4【分析】令i z x y =+且,x y R ∈,根据复数模的几何意义可知|34i |z --表示(3,4)与圆221x y +=上的点的距离,即可求其最小值.【解】若i z x y =+且,x y R ∈,由题意知:221x y +=即为圆心为(0,0)半径为1的圆, ∵|34i |z --的几何意义:圆221x y +=上的点到点(3,4)的距离, ∴|34i |z --的最小值为圆心(0,0)与(3,4)的距离减去半径1,∴min |34i |14z --==. 故答案为:4【变式6-4】若z C ∈且11z -=,则z 最大值是_______________. 【答案】3【分析】先分析出z 的轨迹可看成圆()(212:11O x y -+=,根据几何法可以得到z 表示圆上的点到原点的距离,即可求出z 最大值.【解】11z -=的几何意义为复平面动点到定点(距离为1的点的轨迹,可看成圆()(212:11O x y -+=,z 表示圆上的点到原点的距离,所以z 最大值为圆O 1到原点距离加上半径1,即 max 1=3z .故答案为:3.【变式6-5】若复数z 满足11z i +-≤,则z 的最大值是___________.1【分析】设z a bi =+,可求得其轨迹为以()1,1-为圆心,1为半径的圆及其内部,根据z 的几何意义可确定所求最大值为圆心到原点距离与半径之和.【解】设z a bi =+,则()1111z i a b i +-=++-=,()()22111a b ∴++-≤,z ∴对应点的轨迹为以()1,1-为圆心,1为半径的圆及其内部,z表示z 对应的点到原点的距离,max 11z ∴==.1.例7.已知i 是虚数单位,复数12iiz -=,则z =__________.【分析】本题首先可根据复数的除法运算得出2i z =--,然后根据共轭复数以及复数的模的相关性质即可得出结果.【解】()212i i 12i 2i2i i i 1z -⨯-+====---,则2i z =-+,z ==例8.已知复数()2236i z m m m m =-+-为纯虚数,则实数m =______. 【答案】3【分析】根据纯虚数满足的条件,得223060m m m m ⎧-=⎨-≠⎩,解方程即可求出结果.【解】因为复数()2236i z m m m m =-+-为纯虚数,所以223060m m m m ⎧-=⎨-≠⎩,解得3m =,故答案为:3例9.已知i 为虚数单位,复数z 满足()20212i i z -=,则复数z 的虚部为______.【答案】25【分析】根据复数的运算性质得到()2i i z -=,再结合复数的除法运算和复数的概念,即可求解.【解】由题意,复数z 满足()2021505412i ii i z ⨯+=-==,可得()()()i 2i i 12=i 2i 2i 2i 55z ⋅+==-+--+, 所以复数z 的虚部为25. 故答案为:25. 例10. 若复数1z 2cos isin33ππ⎛⎫=+ ⎪⎝⎭,21cos isin 244z ππ⎛⎫=+ ⎪⎝⎭,则12z z 的辐角的主值为______. 【答案】712π. 【分析】首先求出12z z ,然后根据复数三角形式下的几何意义即可求出辐角主值. 【解】1212cosisincos isin 33244z z ππππ⎛⎫⎛⎫+⨯+ ⎪ ⎪⎝⎭⎝⎭= cos isin cos isin 3344ππππ⎛⎫⎛⎫+⨯+ ⎪ ⎪⎝⎭⎝⎭=2coscosicossinisincosi sinsin34343434ππππππππ=+++cos cos sin sin cos sin sin cos i 34343434ππππππππ⎛⎫⎛⎫-++ ⎪ ⎭⎝=⎪⎝⎭1277cossin i 12ππ+=, 所以12z z 的辐角的主值为712π. 故答案为:712π. 例11.如果向量OZ 对应复数2i,OZ -绕原点O 按顺时针方向旋转4π后再把模变为原来的32倍得到向量1OZ ,则1OZ 对应的复数是___________.【答案】22-- 【分析】先求出复数2i -的三角形式,然后利用三角形式变换求解1OZ 对应的复数【解】因为332i 2cos isin 22ππ⎛⎫-=+ ⎪⎝⎭,所以由题意可得1OZ 对应的复数为3332cos isincos isin 22244ππππ⎡⎤⎛⎫⎛⎫⎛⎫+⋅-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦333cos isin 2424ππππ⎡⎤⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦553cos isin44ππ⎛⎫=+ ⎪⎝⎭322⎛⎫=⨯-- ⎪ ⎪⎝⎭22=--,故答案为:i 22--例12. 设1z 、2z C ∈,若121z z ==,则2212z z -的最大值为______. 【答案】2【分析】根据已知条件,结合不等式,即可求解.【解】12||||1z z ==,∴22221211||||||112z z z z -+=+=.故答案为:2.例13.已知复数1z ,2z 满足121z z ==,12z z +=,则12z z -=______.【分析】令1cos isin z A A =+,2cos isin z B B =+,由12||z z +=22(cos cos )(sin sin )2A B A B +++=,从而2cos cos 2sin sin 0A B A B +=,由此能求出12||z z -.【解】复数1z ,2z 满足12||||1z z ==,∴令1cos isin z A A =+,2cos isin z B B =+12||z z +=,22(cos cos )(sin sin )2A B A B ∴+++=,整理得2cos cos 2sin sin 0A B A B +=, 又22212||(cos cos )(sin sin )22cos cos 2sin sin 2z z A B A B A B A B -=-+-=--=,12||z z ∴-=例14.i 是虚数单位,则202111i 1i kk =-⎛⎫=⎪+⎝⎭∑______.【答案】i -【分析】利用复数的运算法则、复数的周期性、数列求和公式即可得出. 【解】21i (1i)2ii 1i (1i)(1i)2---===-++-,4(i)1-=,20214505(i)[(i)](i)i -=-⨯-=-, ∴()202120212021111i i [1(i)]i[1(i)]i i 1i 1(i)1(i)kk k k ==--⋅-----⎛⎫=-===- ⎪+----⎝⎭∑∑,故答案为:i -. 例15.已知复数()()2281543i,z m m m m m R =-++-+∈. (1)若z 是实数,求实数m 的值; (2)若z 是纯虚数,求实数m 的值:(3)若z 在复平面上对应的点位于直线y x =上,求实数m 的值. 【答案】(1)1m =或3;(2)5m =;(3)3m =.【分析】(1)结合z 是实数,得到2430m m -+=,解之即可求出结果;(2)结合z 是纯虚数,得到228150430m m m m ⎧-+=⎨-+≠⎩,解之即可求出结果;(3)先求出复数z 所对应的点为()22815,43m m m m -+-+,根据z 在复平面上对应的点位于直线y x =上,得到2281543m m m m -+=-+,解之即可求出结果. 【解】(1)因为z 是实数,所以2430m m -+=,解得1m =或3;(2)因为z 是纯虚数,所以228150430m m m m ⎧-+=⎨-+≠⎩,解得5m =;(3)复数z 所对应的点为()22815,43m m m m -+-+,又因为z 在复平面上对应的点位于直线y x =上,所以2281543m m m m -+=-+,解得3m =. 例16.已知复数32i23iz +=-. (1)求12i z --;(2)计算:234z z z z ++++……2021z +.【答案】(1(2)i .【分析】(1)根据复数除法法则化简z ,再由模的定义计算; (2)由i 的幂的性质分组计算得出结论.【解】化简 232i (32i)(23i)69i 4i 5i i 23i (23i)(23i)13z ++++++====--+(1)12i 1i z --=--,∴12i 1i z --=--=(2)计算22345i.i 1,i,1,i,z z z z z ===-=-==有44142431,,1,k k k k z z i z z i +++===-=-()k ∈Z ,且显然44142430k k k k z z z z ++++++=∴234z z z z ++++……20215050z z i +=⨯+=.43.已知复数22cossincos isin 9999z i ππππ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭. (1)求z 的共轭复数; (2)若复数0z =,求0z 在复平面内对应的点的坐标.【答案】(1)12-;(2)17⎛- ⎝⎭. 【分析】(1)利用复数的乘法运算法则及两角和正余弦公式得到结果; (2)利用复数的除法运算法则及几何意义得到结果. 【详解】(1)因为2222coscossin sin i sin cos cos sin 99999999z ππππππππ⎛⎫⎛⎫=-++ ⎪⎪⎝⎭⎝⎭.所以221cos isin i 999922z ππππ⎛⎫⎛⎫=+++=+⎪ ⎪⎝⎭⎝⎭,故z 的共轭复数为12;(2)因为017z ====-+,所以0z 在复平面内对应的点的坐标为17⎛- ⎝⎭.。

复数精品讲义

复数精品讲义

复数的引入<教师备案>(一)复数的诞生1545年,意大利数学家卡丹(或“卡丹诺”1501-1576)发表重要数学著作《伟大的艺术》,在书中提出了三次方根的求根公式.同时,提出了另一个问题,有没有两个数的和是10,乘积是40?在实数范围内,我们可以这么思考:这两个数必须都是正数,但两个正数的和一定时,积有最大值,和为10时,积的最大值为25,故这样两个数一定不存在.从另一个角度,由韦达定理知这样的两个数是一元二次方程210400x x -+=的两个根,这个方程的判别式小于零,故没有实数解.卡丹给出答案:515+-与515--,但并不清楚这有什么意义. 于是引发了一个重要问题,1-是什么? (二)复数与虚数.笛卡尔并不承认,并起名为“imaginary number”,于是大家称1-为“虚数i”.莱布尼兹说:“上帝在分析的奇观中找到了超凡的显示,这就是那个理想世界的端兆,介于存在与不存在之间”.欧拉说:“它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么,它们是纯属虚幻”. (三)复数的意义引入1-后,所有的二次方程都有根,由此可以得到所有的n 次方程都有根,且必有n 个根.(重根重复计算)一、复数的概念1.虚数单位i :2i 1i 1=-=-,; 2.复数:所有形如i()a b a b +∈R ,的数就称为复数(complex number ),复数通常用小写字母z 表示,即z 的实部,z 的虚部.<教师备案>注意虚部是一个实数.如34i +3,虚部为4;的虚部为4-. 3.复数的分类:i z a b =+(a b ∈R ,) z 为实数(real number );z 为虚数(imaginary number );0a =,0b ≠时,z 称为纯虚数.<4i +是一个虚数,但不是一个纯虚数;i -是一个纯虚数.可以举例:若(1)(1)i z m m =++-,问z 是实数、虚数、纯虚数时,m 分别为多少? z 是实数1m ⇔=;z 是虚数1m ⇔≠;z 是纯虚数1m ⇔=-.4.复数集:全体复数所构成的集合,也称复数系,常用C 表示,即{}|i z z a b a b ==+∈∈C R R ,,. <教师备案>常见数集的关系为:*N NZQRC .数系都用黑粗体的字母表示,区别于普通的集合C R ,等.手写时有时习惯多加一道竖线加上区别.5.复数相等与比较大小:6.1 数系扩充知识点睛⑴相等的复数:i i a b c d +=+⇔a c =且b d =;⑵比较大小:虚数不能比较大小,只有实数可以比较大小.<教师备案> 注意:如果题目中出现12z z >,则一定有12z z ∈R ,;如果出现0z >,则一定有z ∈R .复数能比较大小的说法是错误的,复数不能比较大小的说法也是错误的. 两个复数能比较大小当且仅当它们都是实数.例:21(3)i z n m =+-,2(2)(3)i z m n m =-+-,若12z z >,求m n ,的取值范围.只有实数比较大小,故3m =,2232n m n n >-=-,解得1n >或3n <-.讲完这些知识点可以先讲例1.6.对所有的实系数一元二次方程20ax bx c ++=(0)a ≠,若240b ac ∆=-<,则此方程没有实根,但有两个虚根,且两根24i 22b ac b x a a-=-±互为共轭复数,故实系数方程的虚根成对出现.(讲完这个知识点再讲例2)考点1:复数的概念【例1】 复数的概念⑴ x ∈R ,当x 取何值时,22(2)(32)i x x x x +-+-+是实数?虚数?纯虚数?⑵ 已知两个复数1()(4)i z x y xy =+-+()x y ∈R ,和2520i z =-+,当实数x y ,取何值时,1z 和2z 相等?【解析】 ⑴ 2320x x -+=时为实数1x ⇒=或者2x =;2320x x -+≠时为虚数1x ⇒≠且2x ≠;220x x +-=且2320x x -+≠时为纯虚数2x ⇒=-.⑵ 两个复数相等意味着实部和虚部都对应相等,所以: 5x y +=-,(4)20xy -+=解这个方程可得83x y =-⎧⎨=⎩或38x y =⎧⎨=-⎩.<教师备案>例2⑴是解实系数的一元二次方程;第⑵小题涉及到复系数的一元二次方程.易知实系数的一元二次方程与复系数的一元二次方程都有韦达定理成立,但实系数一元二次方程的判别式的相关结论对复系数的一元二次方程不正确.见易错门诊.解复系数的一元二次方程目前可以用的方法是设出解的形式,代入方程,利用复数相等得到两个等式,解得结果.这里先看一些最简单的情形,如例2⑵有实根存在的情形与易错门诊已知一根的情形.【例2】 解一元二次方程⑴ 在复数集内解方程:①2450x x ++=;②210x x ++=;③42230x x --=. ⑵ 若方程22i 1i x mx x m ++=--有实根,求出实数m 的值,并求出此实根.【解析】 ⑴ ①2(2)1x +=-,故2i x +=±,2i x =-±;②因为1430∆=-=-<,所以原方程没有实根,只有两复根:1211313i 2x -±∆-±-===-±,.③22(3)(1)0x x -+=,故23x =或21x =-,故此方程的根有3x =±与i x =±;经典精讲⑵方程有实根,x ∈R ,利用复数相等的定义有 22212112x mx x x x x m⎧+=-⇒-=-⇒=±⎨=-⎩;而22m x m =-⇒=, 即2m =-时,有实根1;2m =时,有实根1-.尖子班学案1【拓2】已知2i 0x kx +-=有一个根是i ,求另一个根及k 的值. 【解析】 因i 是其根,代入原方程为2i i i 0k +-=,由此得1i k =-,设0x 是另一根,则由根与系数的关系得0i i x =-,从而得01x =-.目标班学案1【拓3】解方程410x +=.【解析】 将方程变形得:4222120x x x ++-=,即222(1)(2)0x x +-=,因式分解得22(21)(21)0x x x x ++-+=,2210x x ++=无实根,两个虚根为22i2x -±=; 2210x x -+=无实根,两个虚根为22i2x ±=;故原方程的解有四个,为2(1i)2(1i)2(1i)2(1i)2222+--+--,,,.<教师备案>我们习惯用处理实系数一元二次方程的方法来处理复系数的一元二次方程,但复系数的一元二次方程有些结论是不成立的,比如判别式非负时有实根存在(见题2);并且我们在解方程时,会默认未知数为实数,从而导致一些比较明显的错误(见引入),这些都是在解决复数问题中经常遇到的.引入:解方程23i 0x x +=,求x . 【解析】 (3i)00x x x +=⇒=或3i x =-.关于x 的方程2(2i)i 10x a x a +--+=有实根,求实数a 的取值范围. 【解析】 误解:∵方程有实根,∴22(2i)4(1i)450a a a ∆=---=-≥.解得5a ≥或5a -≤. 分析:判别式只能用来判定实系数一元二次方程20(0)ax bx c a ++=≠根的情况,而该方程中2i a -与1i a -并非实数.正解:设0x 是其实根,代入原方程变形为200021()i 0x ax a x ++-+=,由复数相等的定义,得20002100x ax x a ⎧++=⎪⎨+=⎪⎩,解得1a =±.二、复数的几何意义知识点睛<教师备案> 如何引出复平面与复数的几何意义,下面提供一个参考:实数的几何意义:实数与数轴上的点一一对应.如1表示数轴上一个点,1-表示数轴上另一个点,它们关于0对称,也可以理解成1绕着原点O 逆时针旋转180︒,得到1-,如图.这相当于两次逆时针旋转90︒:1i i 1⨯⨯=-,故虚数i 就是1绕原点逆时针旋转90︒,故i 在如图所求的位置,它不在数轴上,在与数轴垂直的直线上.由此得到启发,可以建立一个平面直角坐标系来表示复数,这就是复平面.用平面来理解复数是高斯在1831年提出的,这对复数被承认起到了很大的推动作用,建立复平面后,复数从一个抽象的概念变得具体,并与平面向量建立起了联系. 这里的引入我们会在复数乘法的几何意义中进一步阐述,这个内容我们会放在同步讲解复数时,那时我们会进一步介绍复数的三角形式及乘除法的几何意义.1.复平面:建立了直角坐标系来表示复数的平面叫做复平面.在复平面内,x 轴叫做实轴,y 轴叫做虚轴.x 轴的单位是1,y 轴的单位是i .实轴与虚轴的交点叫做原点,原点(0,0)对应复数0.复数i z a b =+ ←−−→有序实数对()a b , ←−−→点()Z a b ,←−−→向量OZ . 2.复数的模:设i()OZ a b a b =+∈R ,,则向量OZ 的长度叫做复数i a b +的模(或绝对值),记作|i |a b +,22|i |a b a b +=+.【挑战五分钟】求下列复数的模①34i -=_____;②1i +=______;③13i 2--=_______;④26i +=_____. 答案:①5;②2;③1;④22.经典精讲考点2:复数的几何意义【例3】复数的几何意义⑴ 设(3)(21)i z m m =++-,若z 对应的点在第四象限,求m 的范围.⑵ 设i z a b =+∈C ,在复平面内,满足条件0a >,0b >,24z <<的复数z 对应的点的集合是什么图形?⑶ 在复平面内,点A ,点B 所对应的复数分别为2i -+,15i +,那么AB 的中点C 对应的复数为____________.【解析】 ⑴由题意知30210m m +>⎧⎨-<⎩,解得132m -<<.⑵ 0a >,0b >表示第一象限的点,24z <<表示以原点O 半径为2和4的两圆所夹的圆环,综合起来是如右图所示的阴影部分(不包括边界). ⑶ 13i 2-+;点A 的平面直角坐标是(21)-,,点B 的平面直角坐标是(15),,中点C 的坐标是132⎛⎫- ⎪⎝⎭,,所以C 所对应的复数为13i 2-+. 【点评】 学习复数加减法的几何意义之后,111()(2i 15i)3i 222C A B z z z =+=-+++=-+.提高班学案1【拓1】设22(253)(22)i z t t t t =+-+-+,t ∈R ,则下列命题中一定正确的是( )A .z 的对应点Z 在第一象限B .z 的对应点Z 在第四象限C .z 不是纯虚数D .z 是虚数【解析】 D ;2222(1)10t t t -+=-+≠.数系扩充的历史<教师备案> 考虑到复数的引入时间较长,所以数系的扩充可以讲完上面这些例题再讲.数系的扩充中有很多生动的例子与故事,下面的文字中会陈述其中的一部分供老师上课时参考.(一)正整数人类最早认识的是正整数.中国的《周易》中就有结绳记事的说法,而结绳计事不仅在中国,也在希腊、波斯等各地出现,从结绳计数(事)慢慢发展出各种不同的计数方法,其中最重要和最美妙的记数法是十进制位置制计数法.(除了十进制外还有很多其它进制,如计算机中的二进制,角度中的60进制(巴比伦人曾经就用60进制位置定位数系);除了位置制计数法也还其它计数方法,如古埃及的象形文字中有10进制非位置计数,罗马数字中的含加减运算的计数方法,也许这在法语中还在延续,在法语中79就是60109++,80就是420⨯,99用得上三则运算了,是420109⨯++,心算不好的千万别学法语!) (二)0的诞生0一开始是用空位表示的,后来用点⋅,再后来用句点,最后才成为0,是从印度诞生的,通过阿拉伯在13世纪引入欧洲(这是斐波那契的功劳,由于数字是从阿拉伯引入欧洲的,故被称为阿拉伯数字,虽然是由印度人发明的).0的书写方法正好对应中文的“零”.(汉字中很早就有零,在《孙子算经》中有除百零伍便得之.但汉字中的零原义是加法,并不是真正的零). (三)负数42y O x负数来源自减法运算,解出负数根.欧洲在16-17世纪普遍不承认负数的存在,包括帕斯卡、莱布尼兹、卡丹(认为仅仅是记号)、韦达、笛卡尔(负根叫做假根).最开始的负数被认为没有意义,仅可以作为一个符号出现,但不能在结果中出现.负数比分数出现的更晚. (四)分数欧洲15世纪形成分数的真正算法,中国在春秋时期(公元前770年-前476年)就有了分数运算的法则.《九章算术》章一:方田,分数加法“田以乘子,并以为实,田相乘为法,实如法而一”,“其田同有,直相从之”.其中田指分母,子指分子. 分数系对加、乘、除封闭,有了负数与分数,有理数系就形成了. (五)无理数无理数的发现与毕达哥拉斯学派以及第一次数学危机有关.毕达哥拉斯学派主张“万物皆数”,这个数最开始是最完美的整数,后来扩展成整数及整数之间的比,即分数.但毕达哥拉斯学派推出了著名的毕达哥拉斯定理,即中国的勾股定理,于是无理数的出现不可阻挡.比如边长为1的等腰直角三角形的斜边长无法表示成两个整数的比. 我们会在证明题三大方法中用反证法证明这个结论. 无理数的被承认也经过了很长的时间,毕达哥拉斯学派弟子希伯斯也因为发现或是传播无理数藏身大海,这也是“无理数”这个名字的由来.达芬奇(15世纪,意大利)称为“没有道理的数”、开普勒(17世纪,德国)说“不可名状的数”.在中国称无理数为算而不求其本质.有了无理数实数系就形成了. (六)复数系——完备的数系的形成复数系对加、减、乘、除是封闭的,对加法与乘法都满足交换律与结合律,加法与乘法之间满足分配律,满足这些性质的称为数系.到复数系,数系就完备了.想再将数系进行扩充,就会牺牲一些数系中的好的性质.三、复数的运算<教师备案>复数的运算是很自然的,但它是人为定义出来的,要求是与实数运算一定是相融的,不必深究这里的运算规律,直接按照常理运算即可.讲完运算可以接着做后面的练习.1.复数的加法定义:设1i z a b =+()a b ∈R ,,2i z c d =+()c d ∈R ,,定义12()()i z z a c b d +=+++.复数的加法运算满足交换律、结合律.几何意义:复数加法的几何意义就是向量加法的平行四边形法则. 2定义:12(i)(i)()()i z z a b c d a c b d -=+-+=-+-.几何意义:复数减法的几何意义就是向量减法的三角形法则. 3定义:(i)(i)()()i z z a b c d ac bd bc ad ⋅=+⋅+=-++ 4.共轭复数:如果两个复数的实部相等,而虚部互为相反数,则这两个复数叫做互为共轭复数.复数z i z a b =+时,i z a b =-.z z =.共轭的几何意义:在复平面内,表示两个共轭复数的点关于实轴对称,并且共轭复数的模相等.一个复数与其共轭复数的乘积等于这个复数模的平方.即2z z z ⋅=.<教师备案>“轭”字本意:拉犁的两头牛牛背上的架子称为轭,轭使两头牛同步行走.共轭即为按一定的规律相配的一对.通俗点说就是孪生.知识点睛有共轭双曲线的概念,22221x y a b -=与22221y x b a-=称为共轭双曲线,它们共渐近线.引出共轭复数后,就可以对复数进行实数化,即利用2z z z ⋅=.复数的除法就是上下同乘分母的共轭复数.<教师备案>讲完共轭复数,可以先讲下面的例子加深对共轭复数的理解.例:在下列命题中,正确命题的有______.①对任意复数z ,有z z -为纯虚数.②对任意复数z ,有z z +∈R .③z 是虚数的一个充要条件是z z +∈R ;④z ∈R 的一个充要条件是z z =.答案:②④;①错误,z z -可以为0;③错误,z 为实数时,也有z z +∈R .5.复数的除法22i (i)(i)(i)(i)i a b a b c d a b c d c d c d ++-+÷+==++, 22211i i i (i)(i)||a b a b z z a b a b a b a b z --====++-+,1z称为复数z (0z ≠)的倒数. <教师备案> 复数的乘法与除法也有几何意义,我们会在春季同步时进行介绍,春季还会介绍复数的三角形式与棣莫佛定理,i n 与k ω的性质及与此相关的较复杂的复数的计算.复数乘法可以看成旋转加上模长的伸缩,这时复数首先要用模长与角度表示出来,如1i +表示模长为2,角度为45︒(称为幅角)的向量,一个复数乘以1i +即表示这个复数逆时针旋转45︒,模长再伸长到原来的2倍,如 (34i)(1i)17i ++=-+,如下图.这样(1i)(1i)2i ++=就非常好理解了. 这些内容我们会在春季同步时稍微展开,可以在假期有同学发问时适当引导,但不建议假期时展开.【挑战十分钟】计算下列各小题:⑴(32i)2(1i)(5i 1)--+++;⑵2(1i)-;⑶(2i)(3i)+-;⑷(34i)(43i)+-;⑸1i i +;⑹1i 1i -+;⑺43i 43i43i 43i -+++-;⑻2(1i)3(1i)2i ++-+;⑼213i ⎛⎫- ⎪ ⎪⎝⎭. 【解析】 ⑴2i +;⑵2i -;⑶7i +;⑷247i +;⑸1i -;⑹i -;⑺1425;⑻2i 33i 3i (3i)(2i)55i 1i 2i 2i 55+-----====-++; ⑼213i 223i 13i 3i ⎛⎫-----===-+ ⎪ ⎪⎝⎭.经典精讲考点3:复数的运算【铺垫】⑴已知2(i)2i a -=,其中i 是虚数单位,那么实数a = .⑵已知复数z 满足1i 1zz-=+,则1z +等于______.【解析】 ⑴1-;注意a 是实数,复数为纯虚数,则实部为0,22(i)12i 2i a a a -=--=,则21a =且221a a =-⇒=-;⑵2;1i1i(1)i i i 1iz z z z --=+=+⇒==-+,故11i 2z +=-=.【例4】 复数的运算⑴ 设复数11i z =+,22i z x =+()x ∈R ,若12z z 为实数,则x 等于 .⑵ 若复数3i()12ia a +∈+R 为纯虚数,则实数a =_____.⑶如果复数2i12ib z -=+的实部与虚部互为相反数,则3zz z z ++=_______.【解析】⑴ 2-; 复数为实数,虚部为0,而()()()()121i 2i 22i z z x x x =++=-++,所以20x +=,2x =-.⑵6-;3i (3i)(12i)(6)(32)i12i 55a a a a ++-++-==+为纯虚数,故606a a +=⇒=-; ⑶4;2i 12i b -+(2i)(12i)(12i)(12i)b --=+-224i 55b b -+=-,又实部与虚部互为相反数,即22455b b -+=, 解得23b =-,故2(1i)3z =-,2(1i)3z =+,222233(1i)(1i)(1i)(1i)3333zz z z ++=⋅⋅-++-++84433=+=.提高班学案2【拓1】若复数1i z =+,求实数a b ,使22(2)az bz a z +=+.(其中z 为z 的共轭复数) 【解析】 由1i z =+,可知1i z =-,代入22(2)az bz a z +=+得:(1i)2(1i)a b ++-[]22(1i)a =++,即2(2)i a b a b ++-()22a =+44(2)i a -++则()222424(2)a b a a b a ⎧+=+-⎪⎨-=+⎪⎩,解得42a b =-⎧⎨=⎩或21a b =-⎧⎨=-⎩.尖子班学案2【拓2】已知221i 1z x x =++22()i z x a =+,对于任意x ∈R ,均有12z z >成立,试求实数a 的取值范围.【解析】 ∵12z z >,∴42221()x x x a ++>+,∴22(12)(1)0a x a -+->对x ∈R 恒成立.当120a -=,即12a =时,不等式恒成立;当120a -≠时,21201124(12)(1)0a a a a ->⎧⇒-<<⎨---<⎩. 综上,112a ⎛⎤∈- ⎥⎝⎦,.证明:分成直接证明与间接证明,直接证明的主要方法有综合法与分析法,间接证明主要是反证法. ⑴ 直接证明:①综合法:从已知条件和某些数学定义、公理、定理出发,经过逐步推理,最后达到待证结论.是从原因推导到结果的思维方法;②分析法:最后达到题设的已知条件或已被证明的事实.是一种从结果追溯到产生结果的原因的思维方法.<教师备案>在书写过程中用得比较多.比较复杂的问题往往需要同时从条件与结论入手,同时使用综合法与分析法得到结果.讲完直接证明可以先讲例题5及其拓展.⑵ 间接证明:常用的有反证法.反证法:先否定结论(假设原命题不成立),在否定结论的基础上,运用演绎推理,导出矛盾,说明假设错误,从而肯定结论的真实性.事实、原命题中的已知条件矛盾等.<教师备案>反证法是由p q ⇒转向证明:q r t ⌝⇒⇒⇒,t 与假设矛盾,或与某个真命题矛盾,从而判定q ⌝为假,推出为真的方法.它的本质是:结论不成立是不行的!基础的二元论——非真即假. 考虑使用反证法的情况有: ①条件太少;②一些典型的问题,包括否定性命题,唯一性命题,必然性命题,至少至多类命题,涉及无限结论的命题等.<教师备案>反证法首先需要正确的进行反设.例:用反证法证明命题“三角形的内角中至少有一个不大于60︒”时,反设正确的是( )A .假设三个内角都大于60︒B .假设三个内角都不大于60︒C .假设三个内角至多有一个大于60︒D .假设三个内角至多有两个大于60︒ 答案:A .<教师备案>反证法的小例子:①伽利略在比萨斜塔上扔铁球,推翻亚里士多德的理论(即物体下落速度和重量成比例的学说,据传说是在1589年,实际上是假的) ②线面平行的判定定理和性质定理的证明. (判定定理:a b a b a ααα⊄⊂⇒∥,,∥. 简单证明:如果a 与α不平行,则a A α=;a b ,确定平面β,则b α⊂,b β⊂,A A αβ⊂⊂,,于是A b ∈,从而a b A =,这与条件中a b ∥矛盾.性质定理的证明即假设线线不平行,则线线相交,从而线面相交,与已知矛盾,具体略去) ③证明质数有无限多个.(古希腊经典证明,欧几里得《几何原本》的命题20,原文“预先给定几个质数,那么有比它们更多的质数.”)简单证明:如果结论不成立,即质数只有有限多个,记为12n p p p ,,,,则121n N p p p =⋅⋅+不是质数,故它一定有质因子,即存在某个i p ,i N p M =⋅,即12i i 12i 1i 11()1n n p p p p M p M p p p p p -+⋅⋅+=⇒-⋅=,这不可能.6.2 证明题三大方法知识点睛故假设错误,即质数有无穷多个. ④证明2是无理数.简单证明:如果结论不成立,即2是有理数,则∃m n ∈Z ,,m n ,互素,使得2mn=, 故2m n =,两边平方得222m n =.从而2是m 的因子,从而4是2m 的因子,故2是2n 的因子,故m n ,有公因子2,它与m n ,互素矛盾.上面这些例子可以选讲,讲完这些例子后,可以接着讲后面的例6及拓展.考点4:分析法与综合法【例5】分析法与综合法 已知a b c ∈R ,,,0a b c ++=, ⑴求证:0ab bc ac ++≤.⑵若0abc >,求证:1110a b c++<.⑶若a b c >>,求证:0a >,且2ca>-;⑷若a b c >>,求证:23b ac-<.【解析】 ⑴由0a b c ++=得a b c =--;∴()()()ab bc ac a b c bc b c b c bc ++=++=--++22223024c b bc c b c ⎛⎫=---=-+- ⎪⎝⎭≤.⑵111bc ac ab a b c abc++++=, 由⑴知0ab bc ac ++≤,当且仅当002cc b =+=,,即0a b c ===时取等号,∵0abc >,故等号取不到,即0ab bc ac ++<,又∵0abc >,∴1110bc ac aba b c abc++++=<.⑶ ∵a b c >>,所以30a a b c >++=,即0a >; 又∵b a c =--,a b >,所以a a c >--,所以2a c >-,又0a >,所以2c a >-,所以2ca>-.⑷法一:分析法因为a b c >>,且0a b c ++=,所以0a >,0c <,要证明原不等式成立,只需证明23b ac a -<, 即证223b ac a -<,从而只需证明22()3a c ac a +-<, 即()(2)0a c a c -+>,因为0a c ->,20a c a c a a b +=++=->, 所以()(2)0a c a c -+>成立,故原不等式成立. 法二:综合法因为a b c >>,且0a b c ++=,所以0a >,0c <,22221324b ac a ac c c a -++⎛⎫==++ ⎪⎝⎭, 而1012c b c b a a a a ++=⇒=-->-,又0ca<, 经典精讲11故(20)c a ∈-,,故213324c a ⎛⎫++< ⎪⎝⎭提高班学案3【拓1】已知:00a b >>,【解析】 法一:综合法∵00a b >>,,=+法二:分析法∵00a b >>,,移项整理得即证明(0a b -≥,即证明20≥, 这显然成立,故原不等式得证.目标班学案2【拓3】求证:223)a b ab a b +++≥. 【解析】 法一:∵2222a b ab ab +≥≥,23a +≥≥,23b +≥≥,将此三式相加得222(3)2a b ab ++++≥∴223)a b ab a b +++≥. 法二:要证223)a b ab a b ++++≥,即证222[3)]0a b ab a b ++-+≥,左边可以写成:222()((0a b a b -++≥,此不等式显然成立,且在a b == 法三:把原式视作关于变量a的不等式,即证:(()2230a b a b -++≥;①那么该不等式恒成立等价于其判别式(()22430b b ∆=+-+≤恒成立;整理∆得(223930b b ∆=-+-=-≤恒成立,所以不等式①即原不等式成立.考点5:反证法【铺垫】已知a b c d ∈R ,,,,且1a b c d +=+=,1ac bd +>,求证:a b c d ,,,中至少有一个是负数.【解析】 假设a b c d ,,,都是非负数,∵1a b c d +=+=,∴()()1a b c d ++=.又∵()()1a b c d ac bd ad bc ac bd ++=++++>≥,即11>,矛盾; ∴a b c d ,,,中至少有一个是负数.12第6讲·提高-尖子-目标·教师版【例6】 反证法已知非零实数a b c ,,成等差数列,且公差0d ≠,求证:111a b c,,不可能是等差数列.【解析】 假设111a b c ,,是等差数列,则211b a c=+,又2b a c =+,两式联立消去b 得411a c a c =++,化简得:2()0a c -=,故a c =,这与0d ≠矛盾,故111a b c,,不可能是等差数列.【点评】 本题结论还可以推广:a b c ,,与111a b c,,均不可能构成等比数列.尖子班学案3【拓2】证明:238,,不可能是同一等差数列中的三项.【解析】 假设结论不成立,即存在一个等差数列{}n a ,公差为d ,使得238,,是其中三项,不妨记12(1)k a a k d ==+-,13(1)m a a m d ==+-,18(1)n a a n d ==+-. 于是32()m k a a m k d -=-=-,83()n m a a n m d -=-=-, 将这两个式子相除得83(223)(32)1632m k n m --==-+=+--, 由*m n k ∈N ,,知m kn m-∈-Q ,故16+∈Q ,这不可能,故假设错误,238,,不可能是同一等差数列中的三项.目标班学案3 【拓3】实数a b c ,,满足000a b c ab bc ac abc ++>++>>,,,求证:a b c ,,均大于零. 【解析】 假设结论不成立,即a b c ,,中存在不大于零的数,不妨设0a ≤,由0abc >知,0a <,且0bc <,不妨设00b c <>,, 由0a b c ++>知0c a b >-->,0a b +<.于是22()()()ab bc ac ab a b c ab a b a b a ab b ++=++<++--=---223024b a b ⎛⎫=-+-< ⎪⎝⎭,这与已知中0ab bc ac ++>矛盾,故假设不正确,即a b c ,,均大于零.【演练1】已知(32)(5)i 1910i a b a b ++-=+()a b ∈R ,,则a = ,b = . 【解析】 35,;32193510a b a a b +=⎧⇒=⎨-=⎩,5b =.【演练2】若3i z =-,则2z 的共轭复数是 .【解析】223i +; 22(3i)223i z =-=-,2223i z =+.实战演练13【演练3】实数m 分别取什么数值时?复数22(56)(215)i z m m m m =+++--⑴ 与复数212i -相等;⑵ 与复数1216i +互为共轭;⑶ 对应的点在x 轴上方.【解析】 ⑴ 根据复数相等的充要条件得2256221512m m m m ⎧++=⎪⎨--=-⎪⎩解得1m =-.⑵ 根据共轭复数的定义得22561221516m m m m ⎧++=⎪⎨--=-⎪⎩解得1m =.⑶ 根据复数z 对应点在x 轴上方可得22150m m -->,解之得3m <-或5m >. ∴(3)(5)m ∈-∞-+∞,,.【演练4】若复数3i1ia ++(a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为( ) A .2- B .4 C .3- D .6【解析】 C由3i (3i)(1i)3(3)i 33i 1i (1i)(1i)222a a a a a a ++-++-+-===+++-. 因为复数3i 1i a ++是纯虚数,所以302a +=且302a-≠.解得3a =-.【演练5】若1x <,1y <,证明:11x yxy-<-. 【解析】 用分析法证明:要证明11x yxy-<-,即证明1x y xy -<-,即证明2222212x y xy xy x y +-<-+, 不等式移项得即证明2222221(1)(1)0x y x y x y +--=-->. 由11x y <<,知,2211x y <<,,故此不等式成立,原命题得证.【演练6】已知非零实数a b c ,,成等差数列,且公差0d ≠,求证:a b c ,,不可能是等比数列. 【解析】 假设结论不成立,即a b c ,,构成等比数列,则2b ac =.又2b a c =+,故222a c b ac +⎛⎫== ⎪⎝⎭,整理得:2()0a c -=,故a c b ==,这与已知中的公差0d ≠矛盾,故假设不成立,所以a b c ,,不可能是等比数列.。

高中数学竞赛第十五章 复数【讲义】

高中数学竞赛第十五章  复数【讲义】

第十五章 复数 一、基础知识1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除等运算。

便产生形如a+bi (a,b ∈R )的数,称为复数。

所有复数构成的集合称复数集。

通常用C 来表示。

2.复数的几种形式。

对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。

因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。

因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。

若z=r(cos θ+isin θ),则θ称为z 的辐角。

若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=22b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ,称为复数的指数形式。

3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。

模与共轭的性质有:(1)2121z z z z ±=±;(2)2121z z z z ⋅=⋅;(3)2||z z z =⋅;(4)2121z z z z =⎪⎪⎭⎫⎝⎛;(5)||||||2121z z z z ⋅=⋅;(6)||||||2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则zz 1=。

复数知识点讲义范文

复数知识点讲义范文

复数知识点讲义范文复数是英语中名词的一种形式,用于表示多于一个的数量。

在复数形式中,名词通常会改变其拼写或者加上特定的后缀。

本文将介绍一些英语中的复数知识点。

1.一般规则大多数英语名词的复数形式是在末尾加上-s,比如book-books、cat-cats、dog-dogs等。

例外情况:- 如果名词以s、x、ch、sh、o结尾,复数形式则在末尾加上-es,比如bus-buses、box-boxes、watch-watches、dish-dishes、potato-potatoes等。

- 如果名词以辅音字母+y结尾,则应把y改成i,再加上-es,比如baby-babies、party-parties等。

- 如果名词以元音字母+y结尾,则直接加上-s,比如day-days、key-keys等。

2.不规则复数形式有一些名词的复数形式不按照一般规则进行变化,需要记住其特殊形式。

- 以-f或-fe 结尾的名词,复数形式中f或fe变为v再加上-es,比如wife-wives、leaf-leaves等。

- 以-us结尾的名词,复数形式中-us变为-i,比如bus-buses、focus-foci等。

- 有些名词的复数形式和单数形式相同,比如sheep-sheep、deer-deer等。

3.复数形式与动词一致在英语句子中,名词的复数形式与相应的动词一致。

主语是复数形式,谓语动词也需要用复数形式。

例如:- The cats are playing in the garden.- The students are studying for their exams.4.不可数名词一些名词是不可数名词,表示不可分割的事物或者抽象的概念,没有复数形式。

这些名词不可以用于不定冠词a/an和只用于不可数名词的量词如many、a few等。

例如:- water(水):We need some water.- information(信息): The information is useful.5.复数形式在固定搭配中的应用有一些英语短语或固定搭配中使用了特殊的复数形式。

高中数学复数讲义.教师版

高中数学复数讲义.教师版

知识内容一、复数的概念1.虚数单位i:(1)它的平方等于,即;1-21i =-(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.(3)i 与-1的关系:i 就是的一个平方根,即方程的一个根,方程的另一个根是-i .1-21x =-21x =-(4)i 的周期性:, , , .41n i i +=421n i +=-43n i i +=-41n i =2.数系的扩充:复数(0)i i(0)i(0)i(0)a b a b b a a b b a b a =⎧⎪+=⎧⎨+≠⎨⎪+≠⎩⎩实数纯虚数虚数非纯虚数3.复数的定义:形如的数叫复数,叫复数的实部,叫复数的虚部.全体复数所成的集合叫做i()a b a b +∈R ,a b 复数集,用字母表示C 4.复数的代数形式:通常用字母表示,即,把复数表示成的形式,叫做复数的代数形式.z ()z a bi a b R =+∈,a bi +5.复数与实数、虚数、纯虚数及的关系:0对于复数,当且仅当时,复数是实数;当时,复数()a bi a b R +∈,0b =()a bi a b R +∈,a 0b ≠叫做虚数;当且时,叫做纯虚数;当且仅当时,就是实数z a bi =+0a =0b ≠z bi =0a b ==z 0复数h i n6.复数集与其它数集之间的关系:N Z Q R C ÜÜÜÜ7.两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.这就是说,如果,a , ,,那么,a b d ,,c d ∈R i ia b c d +=+⇔a c =b d =二、复数的几何意义1.复平面、实轴、虚轴:复数与有序实数对是一一对应关系.建立一一对应的关系.点的横i()z a b a b =+∈R ,()a b ,Z 坐标是,纵坐标是,复数可用点表示,这个建立了直角坐标系来a b i()z a b a b =+∈R ,()Z a b ,表示复数的平面叫做复平面,也叫高斯平面,轴叫做实轴,轴叫做虚轴.实轴上的点都表x y 示实数.2..对于虚轴上的点要除原点外,因为原点对应的有序实数对为,它所确定的复数是()00,表示是实数.00i 0z =+=除了原点外,虚轴上的点都表示纯虚数.3.复数复平面内的点z a bi =+←−−−→一一对应()Z a b ,这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法.三、复数的四则运算1.复数与的和的定义:1z 2z 12z z +=()()i i a b c d +++=()()ia cb d +++2.复数与的差的定义:1z 2z 12z z -=()()i i a b c d +-+=()()ia cb d -+-3.复数的加法运算满足交换律:1221z z z z +=+4.复数的加法运算满足结合律:123123()()z z z z z z ++=++5.乘法运算规则:设,(、、、)是任意两个复数,1i z a b =+2i z c d =+a b c d ∈R 那么它们的积()()()()12i i izz a b c dac bd bc ad =++=-++其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把换成,并且把实部与2i 1-虚部分别合并.两个复数的积仍然是一个复数.6.乘法运算律:(1)()()123123z z z z z z =(2)123123()()z z z z z z ⋅⋅=⋅⋅(3)()1231213z z z z z z z +=+7.复数除法定义:满足的复数(、)叫复数除以复数的商,记为:()()()i i i c d x y a b ++=+x yi +x y ∈R a bi +c di +或者()()a bi c di +÷+a bi c di++8.除法运算规则:设复数 (、),除以 (,),其商为(、),i a b +a b ∈R i c d +c d ∈R i x y +x y ∈R 即∵()(i)i i a b c d x y +÷+=+()()()()x yi c di cx dy dx cy i ++=-++∴()()i icx dy dx cy a b -++=+由复数相等定义可知解这个方程组,得cx dy a dx cy b -=⎧⎨+=⎩,2222ac bd x c d bc ad y c d +⎧=⎪⎪+⎨-⎪=⎪+⎩,于是有: ()(i)i a b c d +÷+2222ac bd bc adic d c d +-=+++②利用于是将的分母有理化得:()()22i i c d c d c d +-=+iia b c d ++原式22i (i)(i)[i (i)]()ii (i)(i)a b a b c d ac b d bc ad c d c d c d c d ++-+⋅-+-===++-+.222222()()i i ac bd bc ad ac bd bc adc d c d c d++-+-==++++∴(()(i)i a b c d +÷+=2222iac bd bc adc d c d +-+++点评:①是常规方法,②是利用初中我们学习的化简无理分式时,都是采用的分母有理化思想方法,而复数与复数,它们之积i c d +i c d --为是有理数,而是正实数.所以可以分母实数化. 把这种方法叫做分1()()22c di c di c d +-=+母实数化法.9.共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数。

数学基础讲义-第九章复数

数学基础讲义-第九章复数

第九章复数复数是对实数域拓展得到的新的数域,然而复数其实并不算是全新的概念,它与已经学习的实数和向量都有直接联系。

根据实数的运算进一步推广即可得到复数的性质和运算规律;复数与向量在形式上具有诸多相同点并能建立起对应关系。

复数也具有显著的“数形结合”的特点,通过虚数单位i将“数”与“形”更加直接地结合了起来。

高中阶段对复数的学习和考察的内容较为基本,可以将学习本章当作对代数运算与向量知识的复习。

一、虚数与复数从用于计数的自然数开始,先根据加法和减法拓展到整数,再根据乘法和除法拓展到有理数,又根据乘方和开方拓展到实数,现在进一步拓展到复数。

1.1 实数与虚数解一元二次方程时,根据各项系数可以判断方程根的情况。

对于一元二次方程20ax bx c(0a )配方得:2224 (24b b ac xa a等式左边是完全平方数,恒大于等于0,由此可得:若240b ac,则方程有2个不同的实根。

若240b ac,则方程有2个相同的实根,或称只有1个实根。

若240b ac,则方程有没有实根。

为了令一元二次方程总是有解,现在规定根号内也可为负数,即:虚数。

现在只简单生硬地规定:对于虚数的具体含义,接下来将根据该规定,结合具体运算进行推导。

为方便地表示虚数,再引入一个新的单位:虚数单位,一般用符号i 表示。

其定义式为:i将实数的乘法运算作用于虚数单位i 。

任意虚数都可以用一个实数与虚数单位i 的乘积表示:5i根据虚数单位的定义i ,可得到关于i 的一系列运算规律:221i321i i i i i4242()(1)1i i即:对于任意k Z ,都有:41k i ,41k i i ,421k i ,43k i i 虚数的表示方式也适用于实数,只是通常被省略了。

若将“1”看作“实数单位”,即:1 。

“实数单位”“1”1 。

可以将实数和虚数看作分别属于两个不同“空间”的数,实数以1)为单位,在“实在”的空间内;i )为单位,在“虚拟”的空间内。

复数讲义绝对经典)

复数讲义绝对经典)

复数一、复数的概念1. 虚数单位i:(1)它的平方等于1-,即21i =-;(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立. (3)i 与-1的关系:i 就是1-的一个平方根,即方程21x =-的一个根,方程21x =-的另一个根是-i . (4)i 的周期性:41n i i +=, 421n i +=-,43n i i +=-, 41n i =.2. 数系的扩充:复数(0)i i(0)i(0)i(0)a b a b b a a b b a b a =⎧⎪+=⎧⎨+≠⎨⎪+≠⎩⎩实数纯虚数虚数非纯虚数 3. 复数的定义:形如i()a b a b +∈R ,的数叫复数,a 叫复数的实部,b 叫复数的虚部.全体复数所成的集合叫做复数集,用字母C 表示 4. 复数的代数形式:通常用字母z 表示,即()z a bi a b R =+∈,,把复数表示成a bi +的形式,叫做复数的代数形式.5. 复数与实数、虚数、纯虚数及0的关系:对于复数()a bi a b R +∈,,当且仅当0b =时,复数()a bi a b R +∈,是实数a ;当0b ≠时,复数z a bi =+叫做虚数;当0a =且0b ≠时,z bi =叫做纯虚数;当且仅当0a b ==时,z 就是实数06. 复数集与其它数集之间的关系:N Z Q R C 苘苘 7. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.这就是说,如果a ,a b d ,,, c ,d ∈R ,那么i i a b c d +=+⇔a c =,b d =二、复数的几何意义1. 复平面、实轴、虚轴:复数i()z a b a b =+∈R ,与有序实数对()a b ,是一一对应关系.建立一一对应的关系.点Z 的横坐标是a ,纵坐标是b ,复数i()z a b a b =+∈R ,可用点()Z a b ,表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴.实轴上的点都表示实数.2. .对于虚轴上的点要除原点外,因为原点对应的有序实数对为()00,,它所确定的复数是00i 0z =+=表示是实数. 除了原点外,虚轴上的点都表示纯虚数.这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法.三、复数的四则运算1. 复数1z 与2z 的和的定义: 2. 复数1z 与2z 的差的定义:3. 复数的加法运算满足交换律:1221z z z z +=+4. 复数的加法运算满足结合律:123123()()z z z z z z ++=++ 5. 乘法运算规则:设1i z a b =+,2i z c d =+(a 、b 、c 、d ∈R )是任意两个复数, 那么它们的积()()()()12i i i z z a b c d ac bd bc ad =++=-++其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把2i 换成1-,并且把实部与虚部分别合并.两个复数的积仍然是一个复数. 6. 乘法运算律:(1)()()123123z z z z z z =(2)123123()()z z z z z z ⋅⋅=⋅⋅ (3)()1231213z z z z z z z +=+ 7. 复数除法定义:满足()()()i i i c d x y a b ++=+的复数x yi +(x 、y ∈R )叫复数a bi +除以复数c di +的商,记为:()()a bi c di +÷+或者a bic di++ 8. 除法运算规则:设复数i a b + (a 、b ∈R ),除以i c d + (c ,d ∈R ),其商为i x y +(x 、y ∈R ), 即()(i)i i a b c d x y +÷+=+∵()()()()x yi c di cx dy dx cy i ++=-++ ∴()()i i cx dy dx cy a b -++=+由复数相等定义可知cx dy a dx cy b-=⎧⎨+=⎩,解这个方程组,得2222ac bd x c d bc ady c d +⎧=⎪⎪+⎨-⎪=⎪+⎩, 于是有: ()(i)i a b c d +÷+2222ac bd bc adi c dc d+-=+++ ②利用()()22i i c d c d c d +-=+于是将iia b c d ++的分母有理化得: 原式22i (i)(i)[i (i)]()ii (i)(i)a b a b c d ac b d bc ad c d c d c d c d ++-+⋅-+-===++-+222222()()i i ac bd bc ad ac bd bc adc d c d c d++-+-==++++. ∴(()(i)i a b c d +÷+=2222i ac bd bc adc dc d+-+++ 点评:①是常规方法,②是利用初中我们学习的化简无理分式时,都是采用的分母有理化思想方法,而复数i c d +与复数i c d -,相当于我们初中学习的-1是有理数,而()()22c di c di c d +-=+是正实数.所以可以分母实数化. 把这种方法叫做分母实数化法.9. 共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数。

2025届高考数学一轮复习——复数讲义

2025届高考数学一轮复习——复数讲义

2025届高考数学一轮复习——复数讲义【高考考情分析】复数是高考的必考内容,多出现在选择题中,近几年多选题、填空题形式也有考查,试题较为简单,属于送分题,主要考查复数的概念和复数的四则运算.【基础知识复习】1.复数的有关概念(1)复数相等:i i a b c d a c +=+⇔=且b d =(,,,)a b c d ∈R .(2)共轭复数:i a b +与i c d +共轭a c ⇔=且b d =-(,,,)a b c d ∈R .(3)复数的模:复数i(,)z a b a b =+∈R 对应的向量OZ 的模叫做z 的模,记作||z 或|i |a b +,即|||i |z a b =+=2.复数的几何意义(1)复数i(,)z a b a b −−−−→=+∈←−−−−R 一一对应复平面内的点(,)Z a b . (2)复数i(,)z a b a b −−−−→=+∈←−−−−R 一一对应平面向量((0,0),(,))OZ O Z a b . 3.复数的加、减、乘、除运算法则设12i,i(,,,)z a b z c d a b c d =+=+∈R ,则(1)加法:12(i)(i)()()i z z a b c d a c b d +=+++=+++;(2)减法:12(i)(i)()()i z z a b c d a c b d -=+-+=-+-;(3)乘法:12(i)(i)()()i z z a b c d ac bd bc ad ⋅=+⋅+=-++;(4)除法:122222i (i)(i)i(i 0)i (i)(i)z a b a b c d ac bd bc ad c d z c d c d c d c d c d++-+-===++≠++-++. 4.复数加法的运算律复数的加法满足交换律、结合律,即对任何123,,z z z ∈C ,有1221z z z z +=+,123123()()z z z z z z ++=++.5.复数加、减法的几何意义(1)复数加法的几何意义若复数12,z z 对应的向量12,OZ OZ 不共线,则复数12z z +是以12,OZ OZ 为两邻边的平行四边形的对角线OZ 所对应的复数.(2)复数减法的几何意义复数12z z -是1221OZ OZ Z Z -=所对应的复数.6.复数乘法的运算律:对于任意123z z z ∈C ,,,有交换律:1221z z z z =;结合律:123123()()z z z z z z =;乘法对加法的分配律:1231213()z z z z z z z +=+.【重点难点复习】1.复数的模的运算性质(1)1212z z z z ⋅=⋅;(2)()112220z z z z z =≠; (3)()11n n z z n *=∈N .2.共轭复数的相关运算(1)z z z =⇔为实数,0z z +=且0z z ≠⇔为纯虚数;(2)2222||||zz z z a b ===+;(3)2z z a +=,2i z z b -=;(4)1212z z z z ±=±,1212z z z z ⋅=⋅,()112220z z z z z ⎛⎫=≠ ⎪⎝⎭. 【基本方法与技能复习】求解复数相关问题的技巧(1)复数的分类、复数相等、复数的模、共轭复数的概念都与复数的实部和虚部有关,所以解答与复数概念有关的问题时,需先把所给复数化为i()a b a b +∈,R 的形式,再根据题意列方程(组)求解.(2)求复数的模时,直接根据复数的模的公式和性质进行计算.(3)复数问题实数化是解决复数问题最基本也是最重要的方法.(4)在复数的四则运算中,加、减、乘运算按多项式运算法则进行,把含有虚数单位i 的项看作一类同类项,不含i 的项看作另一类同类项;除法运算则需要分母实数化,解题中注意要把i 的幂化成最简形式.(5)由于复数、点、向量之间存在一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.【典型例题复习】1i =+,则z =( ) A.1i -- B.1i -+C.1i -D.1i + 2.【2024年新课标Ⅰ卷】已知1i z =--,则||z =( )3.【2023年新课标Ⅰ卷】已知1i 22i z -=+,则z z -=( ) A.i - B.i C.0 D.14.【2023年新课标Ⅰ卷】在复平面内,(13i)(3i)+-对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限5.【2022年新高考Ⅰ卷】若()i 11z -=,则z z +=( )A.-2B.-1C.1D.26.【2022年新高考Ⅰ卷】(22i)(12i)+-=( )A.24i -+B.24i --C.62i +D.62i - 答案以及解析1.答案:C1i =+,所以(1)(1i)z z =-+,即1i i z z z =-+-,即i 1i z =+,所以1i (1i)(i)1i i i(i)z ++-===--,故选C.1=+=11i 11i (1i)(1i)22z --==-+-11i 22=+=所以z =21i 1i=-+,故选C. 2.答案:C解析:|||1i |z =--==3.答案:A解析:因为1i(1i)(1i)2i1i22i2(1i)(1i)42z----====-++-,所以1i2z=,即iz z-=-.故选A.4.答案:A解析:(13i)(3i)3i9i368i+-=-++=+,在复平面内对应的点的坐标为(6,8),位于第一象限,故选A.5.答案:D解析:因为i(1)1z-=,所以111iiz=-=+,所以1iz=-,所以(1i)(1i)2z z+=++-=.故选D.6.答案:D解析:(22i)(12i)24i2i462i+-=-++=-,故选D.。

2.1复数的运算讲义

2.1复数的运算讲义

复数的运算讲义知识要点:一、复数z 1与z 2的和的定义:z 1+z 2=(a+bi)+(c+di)=(a+c)+(b+d)i. 二、复数z 1与z 2的差的定义:z 1-z 2=(a+bi)-(c+di)=(a-c)+(b-d)i. 三、复数的加法运算满足交换律、结合律:z 1+z 2=z 2+z 1. (z 1+z 2)+z 3=z 1+(z 2+z 3) 四、乘法运算规则:规定复数的乘法按照以下的法则进行:设z 1=a+bi ,z 2=c+di(a 、b 、c 、d ∈R )是任意两个复数,那么它们的积(a+bi)(c+di)=(ac -bd)+(bc+ad)i.其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把i 2换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数. 五、乘法运算律:1、z 1(z 2z 3)=(z 1z 2)z 3 ;2、z 1(z 2+z 3)=z 1z 2+z 1z 3;3、z 1(z 2+z 3)=z 1z 2+z 1z 3. 六、复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y ∈R)叫复数a+bi 除以复数c+di 的商,记为:(a+bi)÷(c+di)或者dic bia ++七、除法运算规则:设复数a+bi(a ,b ∈R ),除以c+di(c ,d ∈R ),其商为x+yi(x ,y ∈R ), 即(a+bi)÷(c+di)=x+yi22()()[()]()()()a bi a bi c di ac bi di bc ad ic di c di c di cd ++-+⋅-+-==++-+222222()()ac bd bc ad i ac bd bc adi c d c d c d ++-+-==++++. ∴(a+bi)÷(c+di)=i d c ad bc d c bd ac 2222+-+++. 八、共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数虚部不等于0的两个共轭复数也叫做共轭虚数 九、复数与平面向量的联系1.复平面内的点(,)Z a b ←−−−→一一对应平面向量OZ2. 复数z a bi =+←−−−→一一对应平面向量OZ 3.复数加法的几何意义:设复数z 1=a+bi ,z 2=c+di ,在复平面上所对应的向量为1OZ 、2OZ ,即1OZ 、2OZ 的坐标形式为1OZ =(a ,b),2OZ =(c ,d)以1OZ 、2OZ 为邻边作平行四边形OZ 1ZZ 2,则对角线OZ 对应的向量是OZ ,∴OZ = 1OZ +2OZ =(a ,b)+(c ,d)=(a+c ,b+d)=(a+c)+(b+d)i4. 复数减法的几何意义:复数减法是加法的逆运算,设z=(a -c)+(b -d)i ,所以z -z 1=z 2,z 2+z 1=z ,由复数加法几何意义,以OZ 为一条对角线,1OZ 为一条边画平行四边形,那么这个平行四边形的另一边OZ 2所表示的向量2OZ 就与复数z -z 1的差(a -c)+(b -d)i 21OZ Z Z =,所以,两个复数的差z -z 1与连接这两个向量终点并指向被减数的向量对应.题型讲解:例1 计算:(5-6i)+(-2-i)-(3+4i)解:(5-6i)+(-2-i)-(3+4i)=(5-2-3)+(-6-1-4) i=-11 i 例2 计算:(1-2i)+(-2+3i)+(3-4i)+(-4+5i)+…+(-2002+2003i)+(2003-2004i)解法一:原式=(1-2+3-4+…-2002+2003)+(-2+3-4+5+…+2003-2004i)=(2003-1001)+(1001-2004)i=1002-1003i.解法二:∵(1-2i)+(-2+3i)=-1+i , (3-4i)+(-4+5i)=-1+i ,……(2001-2002i)+(-2002+2003)i=-1+i. 相加得(共有1001个式子):原式=1001(-1+i)+(2003-2004i)=(2003-1001)+(1001-2004)i=1002-1003i 例3 计算(1-2i)(3+4i)(-2+i)解:(1-2i)(3+4i)(-2+i)=(11-2i) (-2+i)= -20+15i.例4 计算(12)(34i i +÷-解:(12)(34)i i +÷-1234i i +=-22(12)(34)386451012(34)(34)342555i i i i i i i i ++-++-+====-+-++ 例5 i43+解:ii i i 4342)1)(41(++++-22143247(7)(34)343434i i i i i i i +-++++-===+++ 21432825251.2525i i ii ++--===-例6 已知z 是虚数,且z+z 1是实数,求证:11+-z z 是纯虚数. 证明:设z=a+bi(a 、b ∈R 且b ≠0),于是 z+z 1=a+bi+bia +1=a+bi+ib a bb b a a a b a bi a )(222222+-+++=+-. ∵z+z1∈R ,∴b -22b a b +=0. ∵b ≠0,∴a 2+b 2=1.∴22)1(])1][()1[()1()1(11ba bi a bi a bi a bi a z z ++-++-=+++-=+-.11212012])1()1[(12222i a b a bi a b a i b a b a b a +=+++=+++--+++-= ∵b ≠0,a 、b ∈R ,∴i a b1+例7 已知复数z 1=2+i ,z 2=1+2i 在复平面内对应的点分别为A 、B ,求AB 对应的复数z ,z 在平面内所对应的点在第几象限?解:z=z 2-z 1=(1+2i)-(2+i)=-1+i ,∵z 的实部a=-1<0,虚部b=1>0, ∴复数z 在复平面内对应的点在第二象限内.点评:任何向量所对应的复数,总是这个向量的终点所对应的复数减去始点所对应的复数所得的差. 即所表示的复数是z B -z A. ,而所表示的复数是z A -z B ,故切不可把被减数尽管向量AB 的位置可以不同,只要它们的终点与始点所对应的复数的差相同,那么向量AB 所对应的复数是惟一的,因此我们将复平面上的向量称之自由向量,即它只与其方向 例8 复数z 1=1+2i ,z 2=-2+i ,z 3=-1-2i ,它们在复平面上的对应点是一个正方形的三个顶点,求这个正方形的第四个顶点对应的复数.分析一:利用BC AD =,求点D 的对应复数.解法一:设复数z 1、z 2、z 3所对应的点为A 、B 、C ,正方形的第四个顶点D 对应的复数为x+yi(x ,y ∈R ),是:OA OD AD -==(x+yi)-(1+2i)=(x -1)+(y -2)i; -==(-1-2i)-(-2+i)=1-3i.∵=,即(x -1)+(y -2)i=1-3i , ∴⎩⎨⎧-=-=-,32,11y x 解得⎩⎨⎧-==.1,2y x故点D 对应的复数为2-i.随堂演练:1.已知复数z 1=2+i,z 2=1+2i,则复数z=z 2-z 1在复平面内所表示的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.在复平面上复数-3-2i,-4+5i,2+i 所对应的点分别是A 、B 、C ,则平行四边形ABCD 的对角线BD 所对应的复数是( )A.5-9iB.-5-3iC.7-11iD.-7+11i3.已知复平面上△AOB 的顶点A 所对应的复数为1+2i,其重心G 所对应的复数为1+i,则以OA 、OB 为邻边的平行四边形的对角线长为( ) A.32B.22C.2D.54.复平面上三点A 、B 、C 分别对应复数1,2i,5+2i,则由A 、B 、C 所构成的三角形是 A.直角三角形 B.等腰三角形 C.锐角三角形 D.钝角三角形5.一个实数与一个虚数的差( )A.不可能是纯虚数B.可能是实数C.不可能是实数D.无法确定是实数还是虚数 6.设z=3+i,则z1等于( ) A.3+i B.3-i C.101103+i D.i 101103+ 7.aib bia aib bi a +-+-+的值是( ) A.0 B.i C.-iD.18.已知z 1=2-i,z 2=1+3i,则复数521z z i +的虚部为( ) A.1B.-1C.iD.-i9.计算(-])23()23[()23()32i i i ++---++=____. 10.计算:(2x+3yi)-(3x -2yi)+(y -2xi)-3xi=________(x 、y ∈R ).11.设iy i i x -+-=+1231 (x ∈R ,y ∈R ),则x=___________,y=___________. 12.已知复数z 1=a 2-3+(a+5)i,z 2=a -1+(a 2+2a -1)i(a ∈R )分别对应向量1OZ 、2OZ (O 为原点),若向量21Z Z 对应的复数为纯虚数,求a 的值.13.已知复平面上正方形的三个顶点是A (1,2)、B (-2,1)、C (-1,-2),求它的第四个顶点D 对应的复数.答案:1.B 2.C 3.A 4.A 5.C 6.D 7.A 8.A 9.-22i 10.(y -x)+5(y -x)i11.53 , -5912、解:21Z Z 对应的复数为z 2-z 1,则z 2-z 1=a -1+(a 2+2a -1)i -[a 2-3+(a+5)i ]=(a -a 2+2)+(a 2+a -6)i∵z 2-z 1是纯虚数 ∴⎪⎩⎪⎨⎧≠-+=+-060222a a a a 解得a=-1.13、解:设D (x,y), 则-=对应的复数为(x+yi)-(1+2i)=(x -1)+(y -2)iOB OC BC -=对应的复数为:(-1-2i)-(-2+i)=1-3i∵BC AD = ∴(x -1)+(y -2)i=1-3i ∴⎩⎨⎧-=-=-3211y x ,解得⎩⎨⎧-==12y x∴D 点对应的复数为2-i。

【高考备考】高考数学讲义及知识点讲解(复数-概率与统计)

【高考备考】高考数学讲义及知识点讲解(复数-概率与统计)

高考数学讲义及知识点讲解(名师指导精编版)一、第一节:复数复数问题在高考中年年必有,从近几年的高考试题来看,复数的概念及其代数形式的运算成为命题的热点,常考选择题和填空题,且属于中低档题.一是复数的概念,如纯虚数,两个复数相等;复数的模的计算,例如2z ⋅=设z 为复数,则z z二是复数代数形式的加、减、乘、除四则运算.复数可以在直角坐标系中表示。

以考查复数的有关概念,包括实部与虚部、虚数与纯虚数以及复数的代数形式的运算为重点.热点提示 1.复数的有关概念和复数的几何意义是高考命题的热点之一,常以选择题的形式出现,属容易题;2.复数的代数运算是高考的另一热点,以选择题、填空题的形式的出现,属容易题. 注意:复数一般不比较大小,如果比较大小两数应该都是实数。

基础篇 (10课标 2)已知复数()2313i iz -+=,z 是z 的共轭复数,则z z =( )A .14B .12C .1D .2考点:复数的共轭和复数运算规律方法:复数的共轭复数、复数的基本运算和模的计算 解析: 2z z z = ,∴()21423132==-+=i iz ,∴41=z z答案:A (10全国I 1)复数=-+ii3223 A .iB .i -C .12-13iD .12+13i考点:复数的基本运算,规律方法:分母实数化的转化技巧.解析:()()()()i i i i i i i i i =-++=+-++=-+136496323232233223. 答案:A(10全国II 1)复数=⎪⎭⎫⎝⎛+-213i iA .i 43--B .i 43+-C .i 43-D .i 43+考点:复数的基本运算.解析:分母实数化,()()()i i i i i i 432121313222--=-=⎥⎦⎤⎢⎣⎡--=⎪⎭⎫ ⎝⎛+-. 答案:A(10北京 9)在复平面内,复数ii-12对应的点的坐标为______ 考点:复数的几何意义规律方法:分母实数化,分母、分子同乘以分母的共轭。

(完整版)上海高中数学-复数讲义

(完整版)上海高中数学-复数讲义

复数一、知识点梳理: 1、i 的周期性:44n+14n+24n+34ni =1,所以,i =i, i =-1, i =-i, i =1 n Z4n 4n 1 4n 2 4n 3IIIiC a bi | a,b R 叫做复数集。

3、 复数相等:a bi cdi a c 且b=d ; a bi 0 a 0且b=0实数(b=0)4、 复数的分类:复数Za bi 七—一般虚数(b 0,a 0)虚数(b 0)纯虚数(b 0,a 0)虚数不能比较大小,只有等与不等。

即使是3 i,6 2i 也没有大小。

uu uu r ------- r5、 复数的模:若向量OZ 表示复数 乙则称OZ 的模r 为复数z 的模,z |a bi | ,a 2 b 2 ;积或商的模可利用模的性质(1) z 1 L z nZ 1 Z 2 L Z n ,(2)引Z 2Z 2Z 26、 复数的几何意义:复数z a bi a,b R一一对应复平面内的点Z(a,b)一一对应uu复数Z a bi a,b R平面向量OZ , 7y 轴叫做虚轴.,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数&复数代数形式的加减运算 复数 Z 1 与 Z 2 的和:z 1+z 2=(a +bi )+( c +di )=( a +c )+( b +d ) i . a, b, c, d R 复数 Z 1 与 Z 2 的差:z 1- z 2=( a +bi )-( c +di )=( a - c )+( b - d ) i . a, b, c, d R 复数的加法运算满足交换律和结合律数加法的几何意义: 复数乙=a +bi ,Z 2=c +di a,b,c,d R ; OZ = OZ 1 +OZ 2 =(a ,b )+( c ,d )=( a +c , b +d ) = (a +c )+( b +d ) iuu u uuur ujur复数减法的几何意义:复数Z 1-Z 2的差(a - c )+( b - d )i 对应•由于Z 2Z 1 OZ 1 OZ 2,两个复数的差Z — Z 1与连接这两个向量终点并指向被减数的向量对应 9.特别地,z ABz B —Z A , z AB AB z B z A 为两点间的距离。

复变函数第一章讲义全

复变函数第一章讲义全

引言复数理论的产生、发展经历了漫长而又艰难的岁月。

复数是16世纪人们在解代数方程时引入的。

1545年意大利数学物理学家H Cardan ⋅在所著《重要的艺术》一书中列出并解出将10分成两部分,使其积为40的问题,即求方程(10)40x x -=的根。

他求出形式的根为5525(15)40--=。

但由于这只是单纯从形式上推广而引进,并且人们原先就已断言负数开平方是没有意义的。

因而复数在历史上长期不能为人们所承受。

“虚数”这一名词就恰好反映了这一点。

直到十八世纪,J R D Alembert '⋅⋅,L Euler ⋅等人逐步说明了复数的几何意义与物理意义,建立了系统的复数理论,从而使人们缍承受并理解了复数。

复数函数和理论基础是在十九世纪奠定的,主要是围绕Cauchy 、Weierstrass 和Riemann 三人的工作进行的。

到本世纪,复数函数论是数学的重要分支之一,随着它的领域不断扩大而发展成庞大的一门学科,在自然科学其它学科与数学的其它分支中,复数函数论都有着重要应用。

第一章复数与复变函数教学重点:复变函数的极限和连续性 教学难点:复平面上点集的n 个概念教学基本要求:1、了解复数定义与其几何意义,熟练掌握复数运算 2、知道无穷远点邻域3、了解单连通区域与复连通区域4、理解复变函数、极限与连续§1复数 1、复数域形如z x iy =+或z x yi =+的数,称为复数,其中x 和y 均是实数,分别称为z 的实部和虚部,记作Re x z =,Im y z =;i =称为虚单位。

两个复数111z x iy =+,222z x iy =+,12z z =1212,x x y y⇔==. 虚部为零的复数可看作实数。

因此,全体实数是全体复数的一部分。

x iy +和x iy -称为互为共轭复数,记为x iy x iy +=-或x iy x iy -=+.复数四则运算规定为:121212()()z z x x i y y ±=+±+1212121221()()z z x x y y i x y x y =-++ 1121212122222222222(0)z x x y y y x x y i z z x y x y +-=+≠++易验证复数的四则运算满足与实数的四则运算相应的运算规律。

高中数学竞赛讲义第十五章 复数【讲义】

高中数学竞赛讲义第十五章  复数【讲义】

第十五章 复数 一、基础知识1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除等运算.便产生形如a+bi (a,b ∈R )的数,称为复数.所有复数构成的集合称复数集.通常用C 来表示. 2.复数的几种形式.对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射.因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量.因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z,见图15-1,连接OZ,设∠xOZ=θ,|OZ|=r,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式.若z=r(cos θ+isin θ),则θ称为z 的辐角.若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=22b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ,称为复数的指数形式.3.共轭与模,若z=a+bi,(a,b ∈R ),则=z a-bi 称为z 的共轭复数.模与共轭的性质有:(1)2121z z z z ±=±;(2)2121z z z z ⋅=⋅;(3)2||z z z =⋅;(4)2121z z zz =⎪⎪⎭⎫ ⎝⎛;(5)||||||2121z z z z ⋅=⋅;(6)||||||2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则zz 1=. 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1••z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若21212,0r r z z z =≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2ei(θ1+θ2),.)(212121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n=r n(cosn θ+isinn θ). 6.开方:若=n w r(cos θ+isin θ),则)2sin2(cosnk i nk r w n πθπθ+++=,k=0,1,2,…,n-1.7.单位根:若w n=1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=ni n ππ2sin 2cos +,则全部单位根可表示为1,1Z ,1121,,-n Z Z .单位根的基本性质有(这里记k k Z Z 1=,k=1,2,…,n-1):(1)对任意整数k,若k=nq+r,q ∈Z,0≤r ≤n-1,有Z nq+r =Z r ;(2)对任意整数m,当n ≥2时,有mn m m Z Z Z 1211-++++ =⎩⎨⎧,|,,|,0m n n m n 当当特别1+Z 1+Z 2+…+Z n-1=0;(3)x n-1+x n-2+…+x+1=(x-Z 1)(x-Z 2)…(x-Z n-1)=(x-Z 1)(x-21Z )…(x-11-n Z ).8.复数相等的充要条件:(1)两个复数实部和虚部分别对应相等;(2)两个复数的模和辐角主值分别相等.9.复数z 是实数的充要条件是z=z ;z 是纯虚数的充要条件是:z+z =0(且z ≠0). 10.代数基本定理:在复数范围内,一元n 次方程至少有一个根.11.实系数方程虚根成对定理:实系数一元n 次方程的虚根成对出现,即若z=a+bi(b ≠0)是方程的一个根,则z =a-bi 也是一个根.12.若a,b,c ∈R,a ≠0,则关于x 的方程ax 2+bx+c=0,当Δ=b 2-4ac<0时方程的根为.22,1aib x ∆-±-=二、方法与例题 1.模的应用.例1 求证:当n ∈N +时,方程(z+1)2n +(z-1)2n=0只有纯虚根.例2 设f(z)=z 2+az+b,a,b 为复数,对一切|z|=1,有|f(z)|=1,求a,b 的值.2.复数相等.例3 设λ∈R ,若二次方程(1-i)x 2+(λ+i)x+1+λi=0有两个虚根,求λ满足的充要条件.3.三角形式的应用.例4 设n ≤2000,n ∈N,且存在θ满足(sin θ+icos θ)n=sinn θ+icosn θ,那么这样的n 有多少个?4.二项式定理的应用.例5 计算:(1)100100410021000100C C C C +-+- ;(2)99100510031001100C C C C --+-5.复数乘法的几何意义.例6 以定长线段BC 为一边任作ΔABC,分别以AB,AC 为腰,B,C 为直角顶点向外作等腰直角ΔABM 、等腰直角ΔACN.求证:MN 的中点为定点.例7 设A,B,C,D 为平面上任意四点,求证:AB •AD+BC •AD ≥AC •BD.6.复数与轨迹.例8 ΔABC 的顶点A 表示的复数为3i,底边BC 在实轴上滑动,且|BC|=2,求ΔABC 的外心轨迹.7.复数与三角.例9 已知cos α+cos β+cos γ=sin α+sin β+sin γ=0,求证:cos2α+cos2β+cos2γ=0.例10 求和:S=cos200+2cos400+…+18cos18×200.8.复数与多项式.例11 已知f(z)=c 0z n +c 1z n-1+…+c n-1z+c n 是n 次复系数多项式(c 0≠0). 求证:一定存在一个复数z 0,|z 0|≤1,并且|f(z 0)|≥|c 0|+|c n |.9.单位根的应用.例12 证明:自⊙O 上任意一点p 到正多边形A 1A 2…A n 各个顶点的距离的平方和为定值.10.复数与几何.例13 如图15-2所示,在四边形ABCD 内存在一点P,使得ΔPAB,ΔPCD 都是以P 为直角顶点的等腰直角三角形.求证:必存在另一点Q,使得ΔQBC,ΔQDA 也都是以Q 为直角顶点的等腰直角三角形.例14 平面上给定ΔA 1A 2A 3及点p 0,定义A s =A s-3,s ≥4,构造点列p 0,p 1,p 2,…,使得p k+1为绕中心A k+1顺时针旋转1200时p k 所到达的位置,k=0,1,2,…,若p 1986=p 0.证明:ΔA 1A 2A 3为等边三角形.三、基础训练题1.满足(2x 2+5x+2)+(y 2-y-2)i=0的有序实数对(x,y)有__________组. 2.若z ∈C 且z2=8+6i,且z3-16z-z100=__________. 3.复数z 满足|z|=5,且(3+4i)•z 是纯虚数,则 z __________.4.已知iz 312+-=,则1+z+z 2+…+z1992=__________.5.设复数z 使得21++z z 的一个辐角的绝对值为6π,则z 辐角主值的取值范围是__________. 6.设z,w,λ∈C,|λ|≠1,则关于z 的方程z -Λz=w 的解为z=__________.7.设0<x<1,则2arctan=+-+-+2211arcsin 11x x x x __________. 8.若α,β是方程ax 2+bx+c=0(a,b,c ∈R )的两个虚根且R ∈βα2,则=βα__________. 9.若a,b,c ∈C,则a 2+b 2>c 2是a 2+b 2-c 2>0成立的__________条件.10.已知关于x 的实系数方程x 2-2x+2=0和x 2+2mx+1=0的四个不同的根在复平面上对应的点共圆,则m 取值的集合是__________.11.二次方程ax 2+x+1=0的两根的模都小于2,求实数a 的取值范围.12.复平面上定点Z 0,动点Z 1对应的复数分别为z 0,z 1,其中z 0≠0,且满足方程|z 1-z 0|=|z 1|,①另一个动点Z 对应的复数z 满足z 1•z=-1,②求点Z 的轨迹,并指出它在复平面上的形状和位置.13.N 个复数z 1,z 2,…,z n 成等比数列,其中|z 1|≠1,公比为q,|q|=1且q ≠±1,复数w 1,w 2,…,w n 满足条件:w k =z k +kz 1+h,其中k=1,2,…,n,h 为已知实数,求证:复平面内表示w 1,w 2,…,w n 的点p 1,p 2,…,p n 都在一个焦距为4的椭圆上. 四、高考水平训练题1.复数z 和cos θ+isin θ对应的点关于直线|iz+1|=|z+i|对称,则z=__________. 2.设复数z 满足z+|z|=2+i,那么z=__________.3.有一个人在草原上漫步,开始时从O 出发,向东行走,每走1千米后,便向左转6π角度,他走过n 千米后,首次回到原出发点,则n=__________.4.若12102)1()31()34(i i i z -+--=,则|z|=__________.5.若a k ≥0,k=1,2,…,n,并规定a n+1=a 1,使不等式∑∑==++≥+-nk k nk k k k k a aa a a 112112λ恒成立的实数λ的最大值为__________.6.已知点P 为椭圆15922=+y x 上任意一点,以OP 为边逆时针作正方形OPQR,则动点R 的轨迹方程为__________.7.已知P 为直线x-y+1=0上的动点,以OP 为边作正ΔOPQ(O,P,Q 按顺时针方向排列).则点Q 的轨迹方程为__________.8.已知z ∈C,则命题“z 是纯虚数”是命题“R zz ∈-221”的__________条件. 9.若n ∈N,且n ≥3,则方程z n+1+z n-1=0的模为1的虚根的个数为__________. 10.设(x2006+x2008+3)2007=a 0+a 1x+a 2x 2+…+a n x n,则2222543210a aa a a a --++-+…+a 3k -=++-++n k k a a a 222313__________. 11.设复数z 1,z 2满足z1•0212=++z A z A z ,其中A ≠0,A ∈C.证明: (1)|z 1+A|•|z 2+A|=|A|2; (2).2121Az Az A z A z ++=++12.若z ∈C,且|z|=1,u=z 4-z 3-3z 2i-z+1.求|u|的最大值和最小值,并求取得最大值、最小值时的复数z.13.给定实数a,b,c,已知复数z 1,z 2,z 3满足⎪⎩⎪⎨⎧=++===,1,1||||||133221321z z z z z zz z z 求|az 1+bz 2+cz 3|的值.三、联赛一试水平训练题1.已知复数z 满足.1|12|=+zz 则z 的辐角主值的取值范围是__________. 2.设复数z=cos θ+isin θ(0≤θ≤π),复数z,(1+i)z,2z 在复平面上对应的三个点分别是P,Q,R,当P,Q,R 不共线时,以PQ,PR 为两边的平行四边形第四个顶点为S,则S 到原点距离的最大值为__________.3.设复平面上单位圆内接正20边形的20个顶点所对应的复数依次为z 1,z 2,…,z 20,则复数1995201995219951,,,z z z 所对应的不同点的个数是__________.4.已知复数z 满足|z|=1,则|z+iz+1|的最小值为__________. 5.设i w 2321+-=,z 1=w-z,z 2=w+z,z 1,z 2对应复平面上的点A,B,点O 为原点,∠AOB=900,|AO|=|BO|,则ΔOAB 面积是__________. 6.设5sin5cosππi w +=,则(x-w)(x-w 3)(x-w 7)(x-w 9)的展开式为__________.7.已知(i +3)m =(1+i)n(m,n ∈N +),则mn 的最小值是__________.8.复平面上,非零复数z1,z2在以i 为圆心,1为半径的圆上,1z •z 2的实部为零,z 1的辐角主值为6π,则z 2=__________. 9.当n ∈N,且1≤n ≤100时,n i ]1)23[(7++的值中有实数__________个. 10.已知复数z 1,z 2满足2112z z z z =,且31π=Argz ,62π=Argz ,π873=Argz ,则321z z z Arg+的值是__________. 11.集合A={z|z 18=1},B={w|w 48=1},C={zw|z ∈A,w ∈B},问:集合C 中有多少个不同的元素? 12.证明:如果复数A 的模为1,那么方程A ixix n=-+)11(的所有根都是不相等的实根(n ∈N +). 13.对于适合|z|≤1的每一个复数z,要使0<|αz+β|<2总能成立,试问:复数α,β应满足什么条件?六、联赛二试水平训练题1.设非零复数a 1,a 2,a 3,a 4,a 5满足⎪⎪⎩⎪⎪⎨⎧=++++=++++===,)(41543215432145342312S a a a a a a a a a a a a a a a a a a 其中S 为实数且|S|≤2,求证:复数a 1,a 2,a 3,a 4,a 5在复平面上所对应的点位于同一圆周上. 2.求证:)2(2)1(sin 2sinsin1≥=-⋅⋅⋅-n nn n n nn πππ. 3.已知p(z)=z n+c 1z n-1+c 2z n-2+…+c n 是复变量z 的实系数多项式,且|p(i)|<1,求证:存在实数a,b,使得p(a+bi)=0且(a 2+b 2+1)2<4b 2+1.4.运用复数证明:任给8个非零实数a 1,a 2,…,a 8,证明六个数a 1a 3+a 2a 4, a 1a 5+a 2a 6, a 1a 7+a 2a 8, a 3a 5+a 4a 6, a 3a 7+a 4a 8,a 5a 7+a 6a 8中至少有一个是非负数.5.已知复数z 满足11z 10+10iz 9+10iz-11=0,求证:|z|=1. 6.设z 1,z 2,z 3为复数,求证:|z 1|+|z 2|+|z 3|+|z 1+z 2+z 3|≥|z 1+z 2|+|z 2+z 3|+|z 3+z 1|.。

复数法讲义

复数法讲义

高中平面几何(叶中豪)知识要点几何变换及相似理论位似及其应用复数与几何(1) 复数的意义及运算(2) 复数与复平面上的点一一对应 (3) 复数与向量 (4) 定比分点(5) 重心和加权重心,三角形的特殊点 (6) 面积(7) 90°旋转与正方形 (8) 相似与复数乘法的几何解释 (9) 三次单位根与正三角形例题和习题1.(Sylvester )已知P 是△ABC 所在平面上任一点。

求证:3PA PB PC PG ++=,其中G 是△ABC 的重心。

2.(Lami 定理)已知P 是△ABC 所在平面上任一点,P 点对于△ABC 的重心坐标为123::μμμ。

求证:1230PAPBPC 。

3.(Gergonne )(1)四边形的两组对边中点连线及两条对角的中点连线共点;(2)六边形相间的两组中点所构成的三角形的重心重合。

4.(von Aubel )以任意四边形的各边向形外作正方形,则相对两正方形的中心连线互相垂直。

5.以△ABC 的AB 、AC 两边为直角边,向两侧作等腰直角三角形ABD 和ACE ,使∠ABD=∠ACE =90°。

求证线段DE 的中点的位置与顶点A 的位置无关。

6.已知△ABC,在给定线段MN的同侧作三个彼此相似的三角形,使得△A′MN∽△NB′M∽△MN C′∽△ABC。

求证:△A′B′C′∽△ABC。

7.(1)如图,在已知△ABC 的周围作三个相似三角形:△DBC ∽△ECA ∽△FAB 。

求证:AFDE 是平行四边形。

EB(2)如图,在四边形ABCD 周围作四个相似三角形:△EAB ∽△FCB ∽△GCD ∽△HAD 。

求证:EFGH 是平行四边形。

G8.在△ABC 的外围作三个相似三角形:△DCB ∽△EAC ∽△FBA 。

求证:△DEF 的重心是定点。

9.若在四边形ABCD 内存在一点P ,使得△PAB 、△PBC 都是以P 为直角顶点的等腰直角三角形。

(完整版)复数知识点总结

(完整版)复数知识点总结

R) a 实部 ReZ ,其中i 2 1,i 叫做虚数单位.b ——虚部——Imz实数(b 0)R )虚数(b 0)(特别地,a 0时为纯虚数)a bi(a,b R)和z ?c di(c,d R)的实部与虚部分别相等,即a c 且b d ,那么这两个复数相等,记作 a bi c di .只有当两个复数都是实数时,才能比较大小;当两个复数不都是实数时,只有相等与不 相等两种关系,不能比较大小4、复平面一一建立了直角坐标系来表示复数的平面。

复平面中,虚轴。

表示实数的点都在实轴上,表示纯虚数的点都在虚轴上,原点表示实数 0。

5、复数的向量表示复数z a bi复平面上点Z(a,b) 向量OZ6、复数的模复数模(绝对值)的定义,几何意义:复数z=a+bi ( a,b € R )所对应的点 Z(a,b)到坐标原点的距离。

1复数的概念复数知识点小结2、复数的分类3、两个复数相等复数 z a bi (a, b复数z a bi (a,b定义:如果两个复数 z 1 |z|=|a+bi|= .a 2b 20.[说明]z 为实数时,|z|a 2 0 |a|, a=b=0 时, |z|=07、复数的四则运算性质: a, b,c,d R 1)、加法: (a bi) (c di) (a c) 2)、减法: (a bi) (c di)(ac) 3)、乘法:(a bi)(c di)(acbd) 所以实数绝对值是复数模的特殊情形。

当且仅当(b d)i (b d)i (ad bc)ix 轴叫做实轴,y 轴叫做4)、除法:a bi a; b db; a di(目的:分母实数化)c di c 2d 2c 2d 2[要点说明]①计算结果一律写成 a bi (a,b R )的代数形式;② 复数的加法满足交换律、结合律;③ 复数乘法满足交换律、结合律及乘法对加法的分配律;交换律: Z i Z 2Z 2 Z i结合律:(Z iZ 2)Z 3 Z i (Z 2Z 3)分配律:Z i (Z 2 Z 3) Z i Z 2Z i④实数范围内正整数指数幕的运算律在复数范围内仍然成立,即Z i ,Z 2, Z 3 C,m, nN *时:z m z nm nZm、n mn nn,(z ) z ,(Z i Z 2)Z i Z 28、i 的整数指数幕的周期性特征:若k 为非负实数,则()i i4k i4k 2i, i 1, ・4k 3i4k 4 /i, i i ;.4k 2.4k 3・4k 4(2)iiii9、丨Z i1 Z2 |的几何意义:设w a bi,z 2 c di (a,b, c, d R)则|Z iZ 2 | |(a bi) (c di)| |(a c) (b d)i |■ (a c)2 (b d)2几何意义:对应复平面上点 乙(a,b ), Z 2(c,d )两点间距离d ..(a c )2 (b d )2 10、共轭复数1)定义: 当两个复数的实部相等,虚部互为相反数时,这样的两个复数叫做互为共轭复 数,记为z a bi 问题:当zR 时,是否有共轭复数?两者关系如何?z R z z2)运算性质: 结论可推广到n 个⑶(Z~)(互)(Z 20)Z 2 Z 2(i)Z i Z 2Z i Z 2⑵乙Z 2 Z i Z 23)模的运算性质:①|Z | | |Z 2| |Z i Z 2 | | Z i | |Z 2| ;13、实系数一元二次方程根的情况1)实系数一元二次方程 ax 2 bx c 0(a0)在复数集内根的情况:①当 0时,有两个不相等的实根:② 当0时, 有两个相等的实根③ 当0时, 有两个共轭虚根.2) 当 0时, X 1 x 2 b2Re % —,X X 2 |X 1|2 |X 2i 2ca厂a3) 当 0 时,|X 1 X 2 | J 。

【人教A版】高中数学必修第二册:7.3复数的三角表示-同步讲义

【人教A版】高中数学必修第二册:7.3复数的三角表示-同步讲义

【人教A 版】 7.3 复数的三角表示 同步讲义1、复数bi a z +=化为三角形式)sin (cos i r z θθ+=, 式中22b a r +=,是复数的模(即绝对值),θ是以x 轴的正半轴为始边,射线OZ 为终边的角,叫做复数的辐角,辐角的主值为],(ππθ-∈,通常记为Z arg 这种形式便于作复数的乘、除、乘方、开方运算2、复数三角形式的乘法法则:模数相乘,幅角相加复数三角形式的乘方法则:模数乘方,幅角n 倍复数三角形式的除法法则:模数相除,幅角相减题型一 复数的代数形式与三角形式互化例 1 复数的代数形式与三角形式互化:(1)13i -+;(2)552cos sin 66i ππ⎛⎫+ ⎪⎝⎭. 【答案】(1)222cossin 33i ππ⎛⎫+ ⎪⎝⎭.(2)3i -+ 【分析】 (1)先求得模长,以及辐角主值,再写出三角形式即可;(2)将三角形式的复数进行化简整理即可.【详解】(1)()2132,arg 133r i i π=-+=-+=, 所以22132cos sin 33i i ππ⎛⎫-+=+ ⎪⎝⎭. (2)55312cos sin 236622i i i ππ⎛⎫⎛⎫+=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭知识梳理知识典例所以552cos sin 66i ππ⎛⎫+ ⎪⎝⎭=3i -+. 复数的代数形式与三角形式互化: (1)33i -;(2)553cos isin 44ππ⎛⎫+ ⎪⎝⎭. 【答案】(1)111133i 23cosisin 66ππ+⎛⎫-= ⎪⎝⎭(2)3232i 22-- 【分析】(1)先根据模公式22r a b =+ 求出模来,再根据其对应的点是()3,3-在第四象限,求出()11arg 33i 6π-=,最后写成三角形式.(2)分别求出55cos,sin 44ππ 再整理为a bi + 的形式.【详解】(1)()223323r =+-=.因为与33i -对应的点在第四象限,所以()11arg 33i 6π-=, 所以111133i 23cos isin 66ππ+⎛⎫-= ⎪⎝⎭. (2)55552232323cosisin 3cos 3sin i 33i i 44442222ππππ⎛⎫⎛⎫⎛⎫⎛⎫+=+=⨯-+⨯-=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭题型二 三角形式化简例 2 5(13)162cos sin 66i i +⎛- ⎪⎝⎭. 巩固练习【答案】6222i - 【分析】 利用复数的三角形式化简求解即可. 【详解】 原式=52cos sin 33162cos sin 66i i ππππ⎡⎤⎛⎫+ ⎪⎢⎥⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 555cos sin 3636162i ππππ⎡⎤⎛⎫⎛⎫=⨯+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦11112cos sin 66i ππ⎛⎫=+ ⎪⎝⎭3162222i i ⎛⎫=-=- ⎪ ⎪⎭已知i 为虚数单位,计算:132cos sin 2233i i ππ⎛⎫⎡⎤⎛⎫+÷-= ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎝⎭_________. 【答案】1344i -+ 【分析】先把132i +转化为cos sin 33i ππ+,再利用复数三角形式的除法运算法则即可求出答案. 【详解】解:原式cos sin 2cos sin 3333i i ππππ⎡⎤⎛⎫⎛⎫=+÷⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦cos sin 2cos 3333i isin ππππ⎡⎤⎛⎫⎛⎫⎛⎫=+÷-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1cos sin 23333i ππππ⎡⎤⎛⎫⎛⎫=+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦1344i =-+. 巩固练习故答案为:1344i -+. 题型三 辐角主值 例 3 复数2021111i z i +⎛⎫=-+ ⎪-⎝⎭的辐角主值为________. 【答案】34π 【分析】先化简2021111i z i +⎛⎫=-+ ⎪-⎝⎭再根据辐角主值的定义求解即可.【详解】 因为11i i i +=-,所以2021202111i i i i +⎛⎫== ⎪-⎝⎭所以3312cos sin 44z i i ππ⎛⎫=-+=+ ⎪⎝⎭,所以复数z 的辐角主值为34π. 故答案为:34π复数55sincos 1818z i ππ=-+的辐角主值为( ) A .518π B .169π C .29π D .79π 【答案】D【分析】化简55sincos 1818z i ππ=-+利用诱导公式化成标准形式再判断即可. 【详解】 5577sincos cos sin 181899z i i ππππ=-+=+,故复数z 的辐角主值为79π. 故选:D 巩固练习题型四 向量旋转例 4 将复数13i +对应的向量ON 绕原点按顺时针方向旋转2π,得到的向量为1ON ,那么1ON 对应的复数是( ) A .3i -B .3i +C .3i --D .3i -+ 【答案】A【分析】先将复数13i +写成三角形式,再根据三角形式的运算法则求解即可.【详解】复数13i +的三角形式是2cos sin 33i ππ⎛⎫+ ⎪⎝⎭,向量1ON 对应的复数是 2cos sin 332cos sin 366cos sin 22i i i ππππππ⎛⎫+ ⎪⎡⎤⎛⎫⎛⎫⎝⎭=-+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦+ 故选:A在复平面内,把与复数22i -+对应的向量绕原点O 按逆时针方向旋转75︒,求与所得向量对应的复数(用代数形式表示).【答案】62i --【分析】根据三角形式的复数乘法意义,应用乘法法则,计算即可.【详解】与所得向量对应的复数为()()22cos75sin75i i -+⨯︒+︒()()22cos135sin135cos75sin 75i i =︒+︒⨯︒+︒()()22cos 13575sin 13575i =︒+︒+︒+︒⎡⎤⎣⎦()22cos210sin 210i =︒+︒=312222i ⎛⎫-- ⎪ ⎪⎭巩固练习=.1、将复数1i+对应的向量OM绕原点按逆时针方向旋转4π,得到的向量为1OM,那么1OM对应的复数是()A.2i B C.22+D【答案】B【分析】根据复数的三角形式运算求解即可.【详解】复数1i+cos sin44iππ⎫+⎪⎭,向量1OM对应的复数cos sin cos sin4444iππππ⎫⎛⎫+⨯+⎪ ⎪⎭⎝⎭cos sin22iππ⎫=+=⎪⎭故选:B2、复数cos sin44z iππ=+的辐角主值是()A.34πB.4πC.34π-D.4π-【答案】B【解析】【分析】根据辐角主值的定义,结合题目,即可求得.【详解】由辐角主值的定义,知复数cos sin44z iππ=+的辐角主值是4π.故选:B.3、将复数4cos sin22iππ⎡⎤⎛⎫⎛⎫-+-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦化成代数形式,正确的是()巩固提升A .4B .-4C .4iD .4i -【答案】D【分析】 根据特殊角的三角函数值,化简即可.【详解】4cos sin 22i ππ⎡⎤⎛⎫⎛⎫-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ ()401i =+-⎡⎤⎣⎦4i =-故选:D .4、复数3z i =-+化成三角形式为________.【答案】552cos sin 66i ππ⎛⎫+ ⎪⎝⎭【分析】 利用复数的几何意义分析即可.【详解】如图,2r ,3cos θ=-,56πθ=,5532cos sin 66i i ππ⎛⎫-+=+ ⎪⎝⎭故答案为:552cos sin 66i ππ⎛⎫+ ⎪⎝⎭5、计算:()63cos135isin135÷︒+︒=______.【答案】22i -【分析】先将6转化三角形式()6cos0isin0︒+︒,再用复数的除法求解.()()()63cos135isin1356cos0isin03cos135isin135÷︒+︒=︒+︒÷︒+︒()()()()2cos 0135isin 01352cos 135isin 135=︒-︒+︒-︒=-︒+-︒⎡⎤⎡⎤⎣⎦⎣⎦=.故答案为:.6、复数3cossin 55z i ππ⎛⎫=+ ⎪⎝⎭的模是_____________. 【答案】3【分析】根据复数的三角形式的定义,即可得到复数的模.【详解】 复数3cossin 55z i ππ⎛⎫=+ ⎪⎝⎭是三角形式, 故z 的模是3.故答案为:3. 7、复数1cos sin 33i ππ+的代数形式是_____________.【答案】122- 【分析】根据复数的除法运算进行计算,即可化简为代数运算.【详解】11cos sin 3322cos isin 33i ππππ=-=-+.故答案为:122-. 8、计算:()82cos45sin 45i i ÷︒+︒=_______________.【答案】【分析】将8i 化为复数的三角形式,再利用除法法则,进行计算即可.()82cos45sin 45i i ÷︒+︒()()8cos90sin902cos45sin 45i i =︒+︒÷︒+︒()()4cos 9045sin 9045i =︒-︒+︒-︒⎡⎤⎣⎦()4cos45sin 45i =︒+︒=故答案为:.9、已知复数z 的模为2,求复数z 的代数形式和三角形式.【答案】z i =或z i =;2cos sin 66z i ππ⎛⎫=+ ⎪⎝⎭或2cos sin 66z i ππ⎡⎤⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.在复平面内,把与复数4+对应的向量绕原点O 按顺时针方向旋转15︒,求与所得向量对应的复数(用代数形式表示).【答案】【分析】根据复数除法的意义,进行计算即可.【详解】与所得向量对应的复数为()()4cos15sin15i +÷︒+︒ ()()8cos60sin60cos15sin15i i =︒+︒÷︒+︒()()8cos 6015sin 6015i =︒-︒+︒-︒⎡⎤⎣⎦()8cos45sin 45i =︒+︒822⎛⎫=+ ⎪ ⎪⎝⎭=.10、把复数1z 与2z 对应的向量OA ,OB 分别按逆时针方向旋转4π和53π后,与向量OM 重合且模相等,已知21z =-,求复数1z 的代数式和它的辐角主值.【答案】+,34π 【分析】 根据题意列出等式,再根据复数的三角形式运算求解即可.【详解】 由复数乘法的几何意义得1255cos sin cos sin 4433z i z i ππππ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,又24412cos sin 33z i ππ⎛⎫=--=+ ⎪⎝⎭ 144552cos sin cos sin 3333cos sin 44i i z i ππππππ⎛⎫⎛⎫+⋅+ ⎪ ⎪⎝⎭⎝⎭=+2cos 3sin 344i ππππ⎡⎤⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦= 1z 的辐角主值为34π。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复数一、复数的概念1. 虚数单位i:(1)它的平方等于1-,即21i =-;(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立. (3)i 与-1的关系:i 就是1-的一个平方根,即方程21x =-的一个根,方程21x =-的另一个根是-i . (4)i 的周期性:41n i i +=, 421n i +=-, 43n i i +=-, 41n i =.2. 数系的扩充:复数(0)i i(0)i(0)i(0)a b a b b a a b b a b a =⎧⎪+=⎧⎨+≠⎨⎪+≠⎩⎩实数纯虚数虚数非纯虚数 3. 复数的定义:形如i()a b a b +∈R ,的数叫复数,a 叫复数的实部,b 叫复数的虚部.全体复数所成的集合叫做复数集,用字母C 表示 4. 复数的代数形式:通常用字母z 表示,即()z a bi a b R =+∈,,把复数表示成a bi +的形式,叫做复数的代数形式. 5. 复数与实数、虚数、纯虚数及0的关系:对于复数()a bi a b R +∈,,当且仅当0b =时,复数()a bi a b R +∈,是实数a ;当0b ≠时,复数z a bi =+叫做虚数;当0a =且0b ≠时,z bi =叫做纯虚数;当且仅当0a b ==时,z 就是实数06. 复数集与其它数集之间的关系:N Z Q R C 苘苘7. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.这就是说,如果a ,a b d ,,,c ,d ∈R ,那么i i a b c d +=+⇔a c =,b d =二、复数的几何意义1. 复平面、实轴、虚轴:复数i()z a b a b =+∈R ,与有序实数对()a b ,是一一对应关系.建立一一对应的关系.点Z 的横坐标是a ,纵坐标是b ,复数i()z a b a b =+∈R ,可用点()Z a b ,表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴.实轴上的点都表示实数.2. .对于虚轴上的点要除原点外,因为原点对应的有序实数对为()00,,它所确定的复数是00i 0z =+=表示是实数.除了原点外,虚轴上的点都表示纯虚数.3.这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法.三、复数的四则运算1. 复数1z 与2z 的和的定义: 2. 复数1z 与2z 的差的定义:3. 复数的加法运算满足交换律:1221z z z z +=+4. 复数的加法运算满足结合律:123123()()z z z z z z ++=++ 5. 乘法运算规则:设1i z a b =+,2i z c d =+(a 、b 、c 、d ∈R )是任意两个复数, 那么它们的积()()()()12i i i z z a b c d ac bd bc ad =++=-++其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把2i 换成1-,并且把实部与虚部分别合并.两个复数的积仍然是一个复数. 6. 乘法运算律:(1)()()123123z z z z z z = (2)123123()()z z z z z z ⋅⋅=⋅⋅ (3)()1231213z z z z z z z +=+ 7. 复数除法定义:满足()()()i i i c d x y a b ++=+的复数x yi +(x 、y ∈R )叫复数a bi +除以复数c di +的商,记为:()()a bi c di +÷+或者a bic di++ 8. 除法运算规则:设复数i a b + (a 、b ∈R ),除以i c d + (c ,d ∈R ),其商为i x y +(x 、y ∈R ), 即()(i)i i a b c d x y +÷+=+∵()()()()x yi c di cx dy dx cy i ++=-++ ∴()()i i cx dy dx cy a b -++=+由复数相等定义可知cx dy a dx cy b -=⎧⎨+=⎩,解这个方程组,得2222ac bd x c d bc ady c d +⎧=⎪⎪+⎨-⎪=⎪+⎩, 于是有: ()(i)i a b c d +÷+2222ac bd bc adi c d c d +-=+++②利用()()22i i c d c d c d +-=+于是将iia b c d ++的分母有理化得: 原式22i (i)(i)[i (i)]()ii (i)(i)a b a b c d ac b d bc ad c d c d c d c d ++-+⋅-+-===++-+222222()()i i ac bd bc ad ac bd bc adc d c d c d ++-+-==++++.∴(()(i)i a b c d +÷+=2222i ac bd bc adc d c d +-+++点评:①是常规方法,②是利用初中我们学习的化简无理分式时,都是采用的分母有理化思想方法,而复数i c d +与复数i c d -+1是有理数,而()()22c di c di c d +-=+是正实数.所以可以分母实数化. 把这种方法叫做分母实数化法. 9. 共轭复数:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数。

虚部不等于0的两个共轭复数也叫做共轭虚数.1. 复数的概念【例1】 已知2(1a i bi i i -⎛⎫=-+ ⎪+⎝⎭为虚数单位),那么实数a ,b 的值分别为( ) A .2,5 B .-3,1 C .-1.1 D .2,32-【答案】D【例2】 计算:0!1!2!100!i +i +i ++i =L (i 表示虚数单位) 【答案】952i +【解析】 ∵4i 1=,而4|!k (4k ≥),故0!1!2!100!i +i +i ++i i i (1)(1)197952i =++-+-+⨯=+L 【例3】 设22(253)(22)i z t t t t =+-+-+,t ∈R ,则下列命题中一定正确的是( )A .z 的对应点Z 在第一象限B .z 的对应点Z 在第四象限C .z 不是纯虚数D .z 是虚数【答案】D【解析】2222(1)10t t t -+=-+≠. 【例4】 在下列命题中,正确命题的个数为( )①两个复数不能比较大小;②若22(1)(32)i x x x -+++是纯虚数,则实数1x =±; ③z 是虚数的一个充要条件是z z +∈R ;④若a b ,是两个相等的实数,则()()i a b a b -++是纯虚数; ⑤z ∈R 的一个充要条件是z z =. ⑥1z =的充要条件是1z z =. A .1B .2C .3D .4【答案】B【解析】 复数为实数时,可以比较大小,①错;1x =-时, 22(1)(32)0x x x i -+++=,②错;z 为实数时,也有z z +∈R ,③错;0a b ==时, ()()0a b a b i -++=,④错;⑤⑥正确.2. 复数的几何意义 【例5】 复数2i12im z -=+(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】A例题精讲【解析】 由已知2(2)(12)1[(4)2(1)]12(12)(12)5m i m i i z m m i i i i ---===--+++-在复平面对应点如果在第一象限,则4010m m ->⎧⎨+<⎩,而此不等式组无解.即在复平面上对应的点不可能位于第一象限. 【例6】 若35ππ44θ⎛⎫∈ ⎪⎝⎭,,复数(cos sin )(sin cos )i θθθθ++-在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】 结合正、余弦函数的图象知,当35ππ44θ⎛⎫∈ ⎪⎝⎭,时,cos sin 0sin cos 0θθθθ+<->,.【例7】 如果复数z 满足i i 2z z ++-=,那么i 1z ++的最小值是( )A .1BC .2 D【答案】A【解析】 设复数z 在复平面的对应点为Z ,因为i i 2z z ++-=,所以点Z 的集合是y 轴上以1(01)Z ,、2(01)Z -,为端点的线段.i 1z ++表示线段12Z Z 上的点到点(11)--,的距离.此距离的最小值为点2(01)Z -,到点(11)--,的距离,其距离为1.【例8】 满足1z =及1322z z +=-的复数z 的集合是( ) A.1122⎧⎫⎪⎪-+-⎨⎬⎪⎪⎩⎭, B .1111i i 2222⎧⎫+-⎨⎬⎩⎭, C.⎫⎪⎬⎪⎪⎩⎭ D.1122⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭, 【答案】D【解析】 复数z 表示的点在单位圆与直线12x =上(1322z z +=-表示z 到点102⎛⎫- ⎪⎝⎭,与点302⎛⎫⎪⎝⎭,的距离相等,故轨迹为直线12x =),故选D . 【例9】 已知复数(2)i()x y x y -+∈R ,yx的最大值为_______.【解析】2i x y -+=∵ 22(2)3x y -+=∴,故()x y ,在以(20)C ,yx表示圆上的点()x y ,与原点连线的斜率.如图,由平面几何知识,易知yx【例10】 复数z 满足条件:21i z z +=-,那么z 对应的点的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线【答案】A【解析】 A ;设i z x y =+,则有(21)2i (1)i x y x y ++=+-,2222(21)(2)(1)x y x y ⇒++=+-,化简得:22215339x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,故为圆. 【点评】①0z z -的几何意义为点z 到点0z 的距离;②0(0)z z r r -=>中z 所对应的点为以复数0z 所对应的点为圆心,半径为r 的圆上的点.【例11】 复数1z ,2z 满足120z z ≠,1212z z z z +=-,证明:21220z z <.【解析】 设复数1z ,2z 在复平面上对应的点为1Z ,2Z ,由1212z z z z +=-知,以1OZ u u u u r,2OZ u u u u r 为邻边的平行四边形为矩形,12OZ OZ ∴⊥u u u u r u u u u r ,故可设12(0)z ki k k z =∈≠R ,,所以2222122i 0z k k z ==-<.也可设12i i z a b z c d =+=+,,则由向量()a b ,与向量()c d ,垂直知0ac bd +=, 122222i ()()i i 0i z a b ac bd bc ad bc ad z c d c d c d +++--===≠+++,故22112220z z z z ⎛⎫=< ⎪⎝⎭. 【例12】 已知复数1z ,2z满足11z =,21z =,且124z z -=,求12z z 与12z z +的值.【答案】;4. 【解析】 设复数1z ,2z 在复平面上对应的点为1Z ,2Z,由于2221)1)4+=,故2221212z z z z +=-,故以1OZ u u u u r ,2OZ u u u u r 为邻边的平行四边形是矩形,从而12OZ OZ ⊥u u u u r u u u u r,则12z z ==;12124z z z z +=-=.【例13】 已知12z z ,∈C ,121z z ==,12z z +=12z z -. 【解析】 设复数12z z ,,12z z +在复平面上对应的点为123Z Z Z ,,,由121z z ==知,以1OZ u u u u r ,2OZ u u u ur 为邻边的平行四边形是菱形,记O 所对应的顶点为P ,由12z z += 1120PZ O ∠=︒(可由余弦定理得到),故1260Z OZ ∠=︒, 从而121z z -=.【例14】 已知复数z满足(2(23i)4z z -+-=,求d z =的最大值与最小值.【答案】max d =,min 1d = 【解析】设i z x y =+,则()x y ,满足方程22(2)14y x -+=.d = 又13x ≤≤,故当10x y ==,时,min 1d =;当83x y ==,时,有max d =. 3. 复数的四则运算【例15】 已知m ∈R ,若6(i)64i m m +=-,则m 等于( )A .2-B. C. D .4【答案】B【解析】66366(i)(2i)8i 64i 8m m m m m m +==-=-⇒=⇒= 【例16】 计12.【答案】511- 【解析】 原式12121269100121511(i)==+=-+=--. 【例17】 已知复数1cos i z θ=-,2sin i z θ=+,则12z z ⋅的最大值为( )A .32BCD .3【答案】A【解析】 12(cos i)(sin i)(cos sin 1)(cos sin )i z z θθθθθθ⋅=-+=++-==, 故当sin21θ=±时, 12z z ⋅32=. 【例18】 对任意一个非零复数z ,定义集合{|}n z M w w z n ==∈N ,. (1)设z 是方程10x x+=的一个根,试用列举法表示集合z M .若在z M 中任取两个数,求其和为零的概率P ;(2)若集合z M 中只有3个元素,试写出满足条件的一个z 值,并说明理由.【答案】(1)13;(2)12z =--.【解析】 (1)∵z 是方程210x +=的根,∴i z =或i z =-,不论i z =或i z =-,234{i i i i }{i 1i 1}z M ==--,,,,,,, 于是2421C 3P ==. (2)取12z =-,则212z =-及31z =.于是23{}z M z z z =,,或取12z =-.(说明:只需写出一个正确答案). 【例19】 解关于x 的方程256(2)i 0x x x -++-=. 【答案】123i 2x x =-=,.【解析】 错解:由复数相等的定义得2235602220x x x x x x x ⎧==⎧-+=⇒⇒=⎨⎨=-=⎩⎩或. 分析:“i i a b c d a c +=+⇔=,且b d =成立”的前提条件是a b c d ∈R ,,,,但本题并未告诉x 是否为实数.法一:原方程变形为2(5i)62i 0x x --+-=,22(5i)4(62i)2i (1i)∆=---=-=-.由一元二次方程求根公式得1(5i)(1i)3i 2x -+-==-,2(5i)(1i)22x ---==.∴原方程的解为13i x =-,22x =.法二:设i()x a b a b =+∈R ,,则有2(i)5(i)6(2)i 0a b a b a bi +-++++-=,22(56)(252)i 0a b a b ab b a ⇒---++-+-=225602520a b a b ab b a ⎧---+=⎪⇒⎨-+-=⎪⎩①②,由②得:5221b a b +=+,代入①中解得:31a b =⎧⎨=-⎩或20a b =⎧⎨=⎩,故方程的根为123i 2x x =-=,.【例20】 已知21z x =+,22()i z x a =+,对于任意x ∈R ,均有12z z >成立,试求实数a 的取值范围.【答案】112a ⎛⎤∈- ⎥⎝⎦,.【解析】12z z >∵,42221()x x x a ++>+∴, 22(12)(1)0a x a -+->∴对x ∈R 恒成立.当120a -=,即12a =时,不等式恒成立; 当120a -≠时,21201124(12)(1)0a a a a ->⎧⇒-<<⎨---<⎩. 综上,112a ⎛⎤∈- ⎥⎝⎦,.【例21】 关于x 的方程2(2)i 10x a i x a +--+=有实根,求实数a 的取值范围. 【答案】1a =±【解析】 误:∵方程有实根,22(2)4(1)450a i ai a ∴∆=---=-≥.解得aa ≤. 析:判别式只能用来判定实系数一元二次方程20(0)ax bx c a ++=≠根的情况,而该方程中2i a -与1i a -并非实数.正:设0x 是其实根,代入原方程变形为200021()i 0x ax a x ++-+=,由复数相等的定义,得20002100x ax x a ⎧++=⎪⎨+=⎪⎩,解得1a =±. 【例22】 设方程220x x k -+=的根分别为α,β,且αβ-=k 的值. 【答案】1k =-或3k =.【解析】 若α,β为实数,则440k ∆=-≥且2222()()444k αβαβαβαβ-=-=+-=-=,解得1k =-.若α,β为虚数,则440k ∆=-<且α,β共轭,2222()()444k αβαβαβαβ-=--=-++=-+=,解得3k =.综上,1k =-或3k =.【例23】 用数学归纳法证明:(cos isin )cos()isin()n n n n θθθθ++=+∈N ,. 并证明1(cos isin )cos isin θθθθ-+=-,从而(cos isin )cos()isin()n n n θθθθ-+=-.【解析】 1n =时,结论显然成立;若对n k =时,有结论成立,即(cos isin )cos()isin()k k k θθθθ+=+, 则对1n k =+,1(cos isin )(cos isin )(cos isin )k k θθθθθθ++=++ 由归纳假设知,上式(cos isin )[cos()isin()]k k θθθθ=++ cos[(1)]isin[(1)]k k θθ=+++,从而知对1n k =+,命题成立.综上知,对任意n +∈N ,有(cos isin )cos()isin()n n n n θθθθ++=+∈N ,. 易直接推导知:故有1(cos isin )cos isin θθθθ-+=-. cos()isin()cos()isin()n n n n θθθθ=-+-=-.【例24】 若cos isin αα+是方程121210n n n n n x a x a x a x a ---+++++=L (12n a a a ∈R L ,,,)的解, 求证:12sin sin 2sin 0n a a a n ααα+++=L .【解析】 将解代入原方程得:11(cos isin )(cos isin )0n n n a a αααα-+++++=L ,将此式两边同除以(cos isin )n αα+,则有:12121(cos isin )(cos isin )(cos isin )0n n a a a αααααα---+++++++=L ,即121(cos isin )(cos2isin 2)(cos isin )0n a a a n n αααααα+-+-++-=L , 1212(1cos cos2cos )i(sin sin 2sin )0n n a a a n a a a n αααααα++++-+++=L L ,由复数相等的定义得12sin sin 2sin 0n a a a n ααα+++=L .【例25】 设x 、y 为实数,且511213x y i i i+=---,则x y +=________. 【答案】4 【解析】 由511213x y i i i +=---知,5(1)(12)(13)2510x y i i i +++=+, 即(525)(5415)0x y x y i +-++-=,故525054150x y x y +-=⎧⎨+-=⎩,解得15x y =-⎧⎨=⎩,故4x y +=.【例26】 已知1zz -是纯虚数,求z 在复平面内对应点的轨迹. 【答案】以102⎛⎫⎪⎝⎭,为圆心,12为半径的圆,并去掉点(00),和点(10),.【解析】 法一:设i z x y =+(x y ∈R ,), 则222i (1)i11i (1)z x y x x y y z x y x y +-+-==--+-+是纯虚数, 故220(0)x y x y +-=≠,即z 的对应点的轨迹是以102⎛⎫⎪⎝⎭,为圆心,12为半径的圆,并去掉点(00),和点(10),.法二:∵1z z -是纯虚数,∴011z z z z ⎛⎫+= ⎪--⎝⎭(0z ≠且1z ≠) ∴011z z z z +=--,∴(1)(1)0z z z z -+-=,得到22z z z =+, 设z x yi =+(x y ∈R ,),则22x y x +=(0y ≠) ∴z 的对应点的轨迹以102⎛⎫⎪⎝⎭,为圆心,12为半径的圆,并去掉点(00),和点(10),.【例27】 设复数z 满足2z =,求24z z -+的最值.【解析】 由题意,24z z z =⋅=,则224(1)z z z z zz z z z -+=-+=-+.设i(2222)z a b a b =+--≤≤,≤≤,则242i 1i 221z z a b a b a -+=+-+-=-.∴当12a =时,2min 40z z -+=,此时12z =;当2a =-时,2min410z z -+=,此时2z =-.【例28】 若()23i f z z z =+-,()63i f z i +=-,试求()f z -. 【答案】64i --【解析】 ∵()23i f z z z =+-,∴(i)2(i)(i)3i 22i i 3i f z z z z z +=+++-=++--22i.z z =+- 又知(i)63i f z +=-,∴ 22i 63i z z +-=-设i z a b =+(a b ∈R ,),则i z a b =-,∴ 2(i)(i)6i a b a b -++=-,即3i 6i a b -=-, 由复数相等定义得361a b =⎧⎨-=-⎩,解得21a b ==,.∴2i z =+.故()(2i)2(2i)(2i)3i 64i f z f -=--=--+-+-=--.【点评】复数的共轭与模长的相关运算性质:①设i z x y =+(x y ∈R ,)的共轭复数为z ,则2z z x +=;2i z z y -=; ②z 为实数2220z z z z z ⇔=⇔>⇔=; ③z 为纯虚数200(0)z z z z ⇔<⇔+=≠;④对任意复数有z z =;1212z z z z ±=±;1212z z z z =⋅,特别地有22()z z =;1122z z z z ⎛⎫= ⎪⎝⎭;2z z z =⋅.⑤z z =,22z z zz ==.1212z z z z ⋅=⋅,1122z z z z =,121222z z z z z z -±+≤≤. 以上性质都可以通过复数的代数形式的具体计算进行证明.【例29】 已知虚数ω为1的一个立方根, 即满足31ω=,且ω对应的点在第二象限,证明2ωω=,并求23111ωωω++与211ωω++的值. 【答案】0;12-+【解析】 法一:321(1)(1)0x x x x -=-++=,解得:1x =或12x =-±.由题意知12ω=-,证明与计算略;法二:由题意知31ω=,故有22(1)(1)010ωωωωω-++=⇒++=.又实系数方程虚根成对出现,故210x x ++=的两根为ωω,. 由韦达定理有1ωω=321ωωωωω⇒===.22233111110ωωωωωωωω++++==++=.222111121ωωωωωωω++-====-++-+.【点评】利用12ω=-的性质:3313221()n n n n ωωωωω++===∈Z ,,,210ωω++=可以快速计算一 些ω相关的复数的幂的问题.【例30】 若232012320n n a a a a a ωωωω+++++=L(012212n n a a a a ω+∈∈=-N R L ,,,,,,), 求证:036147258a a a a a a a a a +++=+++=+++L L L【解析】23201232n n a a a a a ωωωω+++++L 设036147258A a a a B a a a C a a a =+++=+++=+++L L L ,,, 则有20A B C ωω++=,即11022A B C ⎛⎫⎛⎫+-++-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,202)0A B CB C --⎧=⎪⎪⇒-=,解得A B C ==,即036147258a a a a a a a a a +++=+++=+++L L L . 【例31】 设z 是虚数,1w z z=+是实数,且12w -<<.(1)求z 的值及z 的实部的取值范围; (2)设11zu z-=+,求证:u 为纯虚数; (3)求2w u -的最小值.【答案】(1)1z =;z 的实部的取值范围是112⎛⎫- ⎪⎝⎭,;(3)1. 【解析】 (1)设i z a b =+,a b ∈R ,,0b ≠则22221i i i a b w a b a b a b a b a b ⎛⎫⎛⎫=++=++- ⎪ ⎪+++⎝⎭⎝⎭, 因为w 是实数,0b ≠,所以221a b +=,即1z =.于是2w a =,122w a -<=<,112a -<<,所以z 的实部的取值范围是112⎛⎫- ⎪⎝⎭,.(2)222211i 12i i 11i (1)1z a b a b b bu z a b a b a ------====-++++++. 因为112a ⎛⎫∈- ⎪⎝⎭,,0b ≠,所以u 为纯虚数.(3)2222211222221(1)(1)11b a a w u a a a a a a a a ---=+=+=-=-+++++12(1)31a a ⎡⎤=++-⎢⎥+⎣⎦. 因为112a ⎛⎫∈- ⎪⎝⎭,,所以10a +>,故223431w u -⋅=-=≥. 当111a a +=+,即0a =时,2w u -取得最小值1. 【例32】 对任意一个非零复数z ,定义集合21{|}n z M w w z n -==∈N ,. (1)设σ是方程1x x+=的一个根,试用列举法表示集合M σ; (2)设复数z M ω∈,求证:z M M ω⊆.【答案】(1)i)i)i)i)M σ⎫⎪=+--+-⎬⎪⎪⎩⎭,,;(2)略 【解析】 (1)∵σ是方程1x x+=的根,∴1i)σ=+或2i)σ-,当1i)σ=+时,∵21i σ=,2211111()i n n n σσσσ-==. ∴11111i 1i 1M σσσσσ⎧⎫--=⎨⎬⎩⎭,,,i)i)i)i)⎫⎪=+--+-⎬⎪⎪⎩⎭,,,当2i)σ=-时,∵22i σ=-,∴2i)i)i)i)2222M σ⎫⎪=+---+-⎬⎪⎪⎩⎭,,,.∴i)i)i)i)M σ⎫⎪=+--+-⎬⎪⎪⎩⎭,,; (2)∵z M ω∈,∴存在m ∈N ,使得21m z ω-=.于是对任意n ∈N ,21(21)(21)n m n z ω---=.由于(21)(21)m n --是正奇数,21n z M ω-∈,∴z M M ω⊆.【例33】 已知复数01i(0)z m m =->,i z x y =+和i w x y ''=+,其中x y x y '',,,均为实数,i 为虚数单位,且对于任意复数z ,有0w z z =⋅,2w z =.(1)试求m 的值,并分别写出x '和y '用x y ,表示的关系式;(2)将()x y ,作为点P 的坐标,()x y '',作为点Q 的坐标,上述关系式可以看作是坐标平面上点的一个变换:它将平面上的点P 变到这一平面上的点Q .当点P 在直线1y x =+上移动时, 试求点P 经该变换后得到的点Q 的轨迹方程;(3)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由.【答案】(1)33x x yy x y⎧'=+⎪⎨'=-⎪⎩;(2)(23)232y x =--+;(3)这样的直线存在,其方程为3y x =或3y x =- 【解析】 (1)由题设,002w z z z z z =⋅==,∴02z =,于是由214m +=,且0m >,得3m =,因此由(13i)(i)3(3)i x y i x y x y x y ''+=-⋅+=++-,得关系式33x x yy x y ⎧'=+⎪⎨'=-⎪⎩.(2)设点()P x y ,在直线1y x =+上,则其经变换后的点()Q x y '',满足(13)3(31)1x x y x ⎧'=++⎪⎨'=--⎪⎩, 消去x ,得(23)232y x ''=--+,故点Q 的轨迹方程为(23)232y x =--+. (3)假设存在这样的直线,∵平行坐标轴的直线显然不满足条件,∴所求直线可设为(0)y kx b k =+≠.∵该直线上的任一点()P x y ,,其经变换后得到的点(33)Q x y x y +-,仍在该直线上, ∴3(3)x y k x y b -=++,即(31)(3)k y k x b -+=-+, 当0b ≠时,方程组(31)13k k k⎧-+=⎪⎨-=⎪⎩无解,故这样的直线不存在.当0b =,由(31)3k k -+-=,得23230k k +-=,解得3k =或3k =-. 故这样的直线存在,其方程为3y x =或3y x =-.【习题1】 已知02a <<,复数z 的实部为a ,虚部为1,则z 的取值范围是( )A .()15,B .()13,C .()15,D .()13,课后检测【答案】C【解析】z =02a <<,∴1z <<【习题2】 设A B ,为锐角三角形的两个内角,则复数(cot tan )(tan cot )z B A B A i =-+-对应的点位于复平面的( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】 sin sin cos cos cos()tan cot 0sin cos sin cos A B A B A B B A A B A B -+-==->,cos()cot tan 0sin cos A B B A B A +-=<.【习题3】4等于( )A.1B.1- C.1D.1-【解析】原式42522516(1i)1(2i)221211(2)22ωω+==-⋅===-+⎛⎫⎛⎫---+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭,选B . 【习题4】 已知复数12z z ,满足121z z ==,且12z z -=,求证:12z z +=.【解析】 设复数12z z ,在复平面上对应的点为1Z ,2Z ,由条件知1212z z -==,以1OZ u u u u r ,2OZ u u u ur 为邻边的平行四边形为正方形,而12z z +在复平面上对应的向量为正方形的一条对角线,所以12z z +=.【习题5】 设复数1z ,2z 满足12120z z A z A z ⋅+⋅+⋅=,其中A =,求12z A z A +⋅+的值. 【答案】5【解析】 121212z A z A z A z A z A z A +⋅+=+⋅+=+⋅+121212()()z A z A z z A z A z A A =++=⋅+⋅+⋅+⋅,把12120z z A z A z ⋅+⋅+⋅=代入上式,得2125z A z A A A A +⋅+=⋅==.。

相关文档
最新文档