2017-2018学年九年级数学上册教案:视图

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章投影与视图.
5.2 视图;
第1课时视图;
;
1.探索基本几何体(圆柱、圆锥、球)与其三种视图(主视图、左视图、俯视图)之间的关系.(重点)
2.会判断简单物体的三视图,发展合情推理能力和数学表达能力.
阅读教材P134~136,完成下列内容:
(一)知识探究
1.用正投影的方法绘制的物体在投影面上的图形,称为物体的________.
2.在实际生活和工程中,人们常常从正面、左面和上面三个不同方向观察一个物体,分别得到这个物体的________.
3.我们把从正面得到的视图叫做________,从左面得到的视图叫做________,从上面得到的视图叫做________.
(二)自学反馈
下列四个几何体中,左视图为圆的是( )
活动1 小组讨论
例1 (1)下图中物体的形状分别可以看成什么样的几何体?
(2)你能在下列图形中找出上面几何体对应的主视图吗?
(3)你能想象出它们的左视图和俯视图吗?与同伴交流,请你试着画出来.
解:(1)圆柱、圆锥和球.
(2)圆柱的主视图是(1),圆锥的主视图是(5),球的主视图是(3).
(3)圆柱:
圆锥:
球:
画这些基本几何体的三视图时,要注意从三个方面观察它们.
例2 如图1是一个蒙古包的照片,小明认为这个蒙古包可以看成图2所示的几何体,你能帮小明画出这个几何体的三种视图吗?
解:该几何体的三视图如图所示:
对于由几种基本几何体组合而成的几何体,其各种视图可以分解为基本几何体的视图再组合,画三视图时要注意各几何体的上、下、前、后、左、右位置的关系.
活动2 跟踪训练
1.下列几何体中,俯视图相同的是( )
A.①② B.①③ C.②③ D.②④
2.如图是由四个相同的小正方体组成的立体图形,它的主视图是( )
3.如图,桌面上放着一个圆柱和一个正方体.请你说出右面的三幅图分别是哪种视图.
(1)________ (2)________ (3)________
4.画出如图所示半圆的三视图.
5.下图是“蒙牛”冰激凌模型图,请画出它的三视图.
活动3 课堂小结
学生试述:这节课你学到了些什么?
【预习导学】
(一)知识探究
1.视图 2.三视图 3.主视图左视图俯视图
(二)自学反馈
C
【合作探究】
活动2跟踪训练
1.C 2.A 3.(1)俯视图(2)主视图(3)左视图 4.图略.
5.略.
第2课时直棱柱的三视图的画法
1.让学生想象直三棱柱和直四棱柱的三种视图,经历由直三棱柱和直四棱柱到其三种视图的转化过程.(重点)
2.能根据棱柱的俯视图尝试画出它的主视图和左视图.(难点)
阅读教材P137~139,完成下列内容:
(一)知识探究
1.在三种视图中,主视图反应物体的________和________,俯视图反映物体的________和________,左视图反映物体的________和________.
2.画三种视图时,对应部分的长度要________,而且通常把俯视图画在主视图________面,把左视图画在主视图________面.
(二)自学反馈
1.如图所示的几何体的左视图是( )
2.下面四个几何体中,俯视图为四边形的是( )
活动1 小组讨论
例1绘制三棱柱的三视图.
解:三视图如图所示.
画几何体的三视图时,要注意从三个方面观察它们,具体画法:确定主视图的位置,画出主视图;在主视图下方画出俯视图,注意与主视图“长对正”;在主视图的正右方画出左视图,注意与主视图“高平齐”、与俯视图“宽相等”.
例2直四棱柱三种视图的画法.
解:三视图如图所示.
为全面地反映立体图形的形状,画图时规定,看得见的部分的轮廓线画成实线,因被其他部分遮挡而看不见的部分的轮廓线画成虚线.
例3两个三棱柱的底面均为等腰直角三角形,它们的俯视图分别如图所示,画出它们的主视图和左视图.
解:如图所示:
活动2 跟踪训练
1.画出如图所示几何体的三视图.
2.画出如图所示几何体的主视图、左视图和俯视图.
3.一个正五棱柱的俯视图如图所示,请你画出它的主视图与左视图.
活动3 课堂小结
学生试述:这节课你学到了什么?
【预习导学】
(一)知识探究
1.长高长宽高宽 2.相等下右
(二)自学反馈
1.D 2.D
【合作探究】
活动2跟踪训练
1.略. 2.略. 3.略.
第3课时由视图描述几何体
1.能由三视图想象出简单几何体的形状,并且能画出草图.(重点)
2.能画出除了圆柱、圆锥、正方体等几何体外,其他较复杂的几何体的三视图.(难点)
阅读教材P141~142,完成下列内容:
(一)知识探究
1.由三视图想象立体图形时,要分别根据主视图、俯视图、左视图想象立体图形________面、________面、________面,然后再结合起来考虑整体图形.
2.一个立体图形的俯视图是圆,则这个图形可能是________.
(二)自学反馈
1.下列几何体中,其主视图、左视图与俯视图均相同的是( )
A.正方体 B.三棱柱
C.圆柱 D.圆锥
2.如图所给的三视图表示的几何体是( )
A.长方体 B.圆柱
C.圆锥 D.圆台
像这类给出选项的选择题可以根据选项反推理,从而得出答案.
活动1 小组讨论
例1 观察图1的三种视图,你能在图2找到与之对应的几何体吗?
解:与图1对应的几何体是(4).
由于给出了供辨认的几何体,我们可以先分析图2中每个几何体的三视图,将之与图1相比较,从而得出答案.
易错提示:视图中的虚线是被遮挡的物体的轮廓线,要根据其在视图中的位置去想象它在对应的实物中的形状和位置.
例2根据如图所示的三视图,你能想象出相应几何体的形状吗?先独立思考,再与同伴交流.
解:长方体.
由三视图想象出几何体后,再回过头来考虑一下该几何体的三视图是否与题目给出的相符.
活动2 跟踪训练
1.由下列三视图想象出实物形状.
2.画出如图物体的三视图.
3.已知一个几何体的三视图如图所示,想象出这个几何体.
有些三视图反映的是两个或多个基本几何体,我们可以从三视图中分解出各个基本几何体的三视图,先想象出各个基本几何体,再根据它们三视图的位置关系确定这些基本几何体的组合关系.
活动3 课堂小结
学生试述:这节课你学到了些什么?
【预习导学】
(一)知识探究
1.前上侧 2.球体
(二)自学反馈
1.A 2.B
【合作探究】
活动2跟踪训练
1.A是四棱锥B是球体C是三棱柱
2.略.
3.根据三视图想象出的几何体是一个长方体上面正中部竖立一个小圆柱体,图略.。

相关文档
最新文档