原子物理学教学大纲

合集下载

原子物理学教学大纲

原子物理学教学大纲

《原子物理学》教学大纲课程名称:中文名称:原子物理学;英文名称:Atom Physics课程编码:081029学分:4分总学时:64 学时,其中,理论学时:64学时适应专业:物理学类本科专业先修课程:力学、热学、光学、电磁学执笔人:韩立波审定人:程庆华一、课程的性质、目的与任务《原子物理学》属于学科基础课。

《原子物理学》涉及的内容为经典物理与近代物理之间的过渡。

本课程的教学目的是使学生初步了解微观世界的结构和运动规律,了解无限分割的物质世界的结构层次,逐步建立用量子化的思想、概念、语言及思维方法来研究微观世界,为继续学习量子力学、近代物理实验等后续课程打下基础。

二、教学的基本要求总体要求:理解原子物理学的基本概念,掌握微观系统遵从的基本规律和处理问题的基本方法,掌握对微观系统思维方法,提高学生应用基本规律解决实际问题的能力。

了解内容:原子物理学的研究对象;研究方法思维;相关内容的发展状况。

理解内容:原子物理学的基本概念,包括定态、能级、角动量、光谱、磁矩、自旋、衰变、核反应。

掌握内容:①原子物理学部分:玻尔理论及其应用、电子自旋与光谱的精细结构、塞曼效应、电子的耦合与原子的能级、泡利不相容原理、元素周期表、X的产生机制。

②原子核物理学部分:原子核的基本性质、放射性的基本规律及应用、核反应与原子能的应用。

三、教学内容与学时分配绪论第一章原子的位形:卢瑟福模型(4学时)本章的重点和难点:一、原子的行星模型;二、卢瑟福散射公式。

第一节背景知识第二节卢瑟福模型的提出第三节卢瑟福散射公式第四节卢瑟福公式的实验验证第二章原子的量子态:玻尔模型(12学时)本章的重点和难点: 一、氢原子的玻尔理论及应用;二、氢原子能级与光谱。

第一节背景知识第二节玻耳模型第三节氢原子光谱第四节夫兰克—赫芝实验第五节玻尔模型的推广第三章量子力学导论(6学时)本章的重点和难点:一、波粒二象性;二、不确定关系。

第一节波粒二象性第二节不确定关系第三节波函数及统计解释第四节薛定谔方程第四章原子的精细结构:电子的自旋(8学时)本章重点和难点:一、电子的轨道运动与轨道磁矩;二、电子的自旋运动与自旋磁矩;三、自旋与能级分裂。

《原子物理学》教学大纲

《原子物理学》教学大纲

《原子物理学》教学大纲课程类别:专业基础课,必修课先行课程:力学、电磁学、光学、高等数学后继课程:近代物理实验、量子力学主要教材:杨福家,原子物理学(第四版),北京:高等教育出版社,2008总学时:48理论学时:48学分: 3开课学院:物理电子工程学院实验学时:实验纳入《近代物理实验》课程适用专业:国家理科基地、光信息、应用物理考核方式:考试参考书1 禇圣麟,原子物理学,北京:高等教育出版社,1979, 2005 年1 月第30次印刷。

(注:本书在1987年国家教育委员会举办的全国优秀教材评选中获国家教委一等奖)2 C. J. Foot,Atomic Physics,伦敦:牛津大学出版社,20053 徐栋培、陈宏芳、石名俊,原子物理与量子力学,北京:科学出版,20084 崔宏滨,原子物理学(第二版),合肥:中国科学技术大学出版社,20125 徐克尊、陈向军、陈宏芳,近代物理学(第二版),合肥:中国科学技术大学出版社,2008一、课程的目标和任务原子物理学是研究物质微观结构和运动规律的重要基础课,是深入了解物质结构和特性的基础,是许多学科的基础,所以这门课将为学生从事相关学科的研究及其应用领域工作打下良好的基础。

本课程的主要目标和任务是:以原子结构为中心,以科学实验为依据,详细研究原子的结构、性质、及其运动和变化规律,揭示现象与规律的本质;讲述量子物理的基本概念、基本原理和物理图象;初步了解原子核的结构、组成、性质及其相互作用规律;介绍原子物理学的前沿科学研究进展,通过理论与科研实践的结合培养学生分析和解决问题的能力。

二、课程教学的基本要求通过本课程的学习,使学生熟练掌握原子物理学、原子核物理学的基本原理、基本概念和基本规律;掌握原子和原子核的结构、运动规律和研究方法;攻克重点难点问题的解决办法,理论联系科研实践,揭示问题的本质和关键,培养学生不怕困难、勇于探索发现的精神,提高分析和解决问题的能力,使学生具备良好的科研素养,为学生将来的创新性研究工作打好基础。

原子物理学教学大纲

原子物理学教学大纲

《原子物理学》教学大纲英文名称:Atomic Physics学分:2 参考学时:51一、课程目标原子物理学属普通物理范畴,是力学、电磁学和光学的后续课程,是物理专业的一门重要基础课。

本课程着重从物理实验规律出发,引进近代物理关于微观世界的重要概念和原理,探讨原子、分子、原子核及基本粒子的结构和运动规律,介绍在现代科学技术上的重大应用。

通过本课程的教学,使学生建立丰富的微观世界的物理图象和物理概念。

通过对重要实验现象以及理论体系逐步完善过程的分析,培养学生分析问题和解决问题的能力。

本课程是量子力学、固体物理学、原子核物理学、近代物理实验等课程的基础课。

二、基本要求(1)了解原子物理学、原子核物理学和粒子物理学发展的历程,培养科学研究的素质,加深对辩证唯物主义的理解。

(2)了解原子和原子核及粒子所研究的内容和前沿研究领域的概况,培养有现代意识、有远见的新一代大学生。

(3)掌握原子、原子核和粒子物理学的基本原理、基本概念和基本规律;掌握处理原子、原子核和粒子物理学现象及问题的手段和途径。

培养学生掌握科学研究的基本方法。

(4)使学生了解无限分割的物质世界中的依次深入的不同结构层次,理解原子核的结构和基本性质、基本运动规律,初步了解基本粒子的各种基本知识。

(5)结合一些物理学史介绍,使学生了解物理学家对物理结构的实验——理论——再实验——再理论的无限认识过程,了解微观物理学对现代科学技术重大影响和各种应用,并为以后继续学习量子力学和有关课程打下基础。

三、教学内容与学时分配建议绪论1学时(1)掌握原子物理学的研究内容和研究方法(2)了解原子物理学、原子核物理学、粒子物理学的发展简史。

第一章原子的位形:卢瑟福模型6学时1.1 原子的质量和大小1.2 原子的核式结构第二章原子的量子态:玻尔模型9学时2.1 光谱2.2 氢原子光谱的实验规律2.3 玻尔氢原子理论2.4 氢原子光谱的理论解释2.5 类氢体系的光谱2.6 夫兰克——赫兹实验与原子能级2.7 量子化通则,电子的椭圆轨道与氢原子能量的相对论效应2.8 原子的激发和辐射,激光原理2.9 对应原理和玻尔理论的地位第三章量子力学导论2学时3.1 物质波粒二象性3.2 测不准原理3.3 波函数及物理意义3.4 薛定谔方程3.5 氢原子的薛定谔方程第四章原子的精细结构:电子自旋9学时4.1 碱金属原子光谱实验规律4.2 原子量子化和轨道贯穿4.3 碱金属原子光谱的精细结构4.4 史特恩——盖拉赫实验与原子空间取向量子化4.5 碱金属原子光谱精细结构的理论解释4.6 电子自旋与轨道运动的相互作用单电子辐射跃迁的选择定则第五章多电子原子:泡利原理9学时5.1氦原子光谱和能级的实验规律5.2 具有两个价电子的原子态,泡利原理5.3复杂原子光谱的辐射跃迁的选择定则5.4 外磁场对原子的作用,塞曼效应5.5 史特恩——盖拉赫实验的结果5.6 元素性质周期性变化,原子的电子壳层结构5.7.原子基态及电子组态第六章X射线6学时6.1 X射线的产生及波长和强度的测量6.2 发射谱,与X射线相关的原子能级6.3 X射线的吸收*6.4康普顿效应第七章原子核的性质和结构3学时7.1原子核的质量和大小7.2 原子核的电荷及分布7.3 原子核的自旋和磁矩7.4原子核的组成和结合能7.5核力的基本性质7.6原子核结构模型第八章原子核衰变3学时8.1放射性衰变规律8.2 α衰变8.3 β衰变8.4 γ衰变8.5 放射系8.6 放射线探测与应用、防护第九章原子核反应3学时9.1核反应的一般规律9.2 原子核裂变9.3 原子核聚变9.4 原子能的利用及加速器四、教材及主要参考资料1.《原子物理学》(第3版),杨福家,高教出版社,2000;2.《原子物理学》,褚圣麟,高教出版社,1995;3.《近代物理学》,王正行,北京大学出版社,1995;4.《量子物理学》,史斌星,清华大学出版社,1982。

原子物理学教学大纲

原子物理学教学大纲

原子物理学教学大纲
一、课程简介
本课程是一门针对大学物理专业的高级选修课,主要介绍原子物理
学的基础知识,包括原子结构、原子能级、原子核模型、原子光谱学
等内容。

通过学习本课程能够掌握原子物理学的基本理论和实验方法,为后续相关课程的学习和科研工作打下坚实的基础。

二、课程目标
本课程的主要目标在于:
1.着重掌握原子结构、原子能级、原子核模型、原子光谱学
等基础概念;
2.简要介绍原子物理学的历史发展和现状;
3.探讨原子物理学理论与实验的关系;
4.培养学生分析和解决有关原子物理学问题的能力;
5.激发学生对原子物理学科研工作的兴趣,为今后做好科研
工作奠定基础。

三、教学内容与教学时长
本课程共分为四个章节,具体内容如下:
第一章原子结构
•真空管和阴极射线实验
•半经验模型。

原子物理学教学大纲

原子物理学教学大纲

原子物理学教学大纲原子物理学教学大纲引言:原子物理学是物理学的重要分支之一,研究原子及其组成部分的性质和行为。

在现代科学中,原子物理学扮演着关键的角色,为我们理解自然界的基本规律提供了重要的基础。

为了更好地进行原子物理学的教学,制定一份合理的教学大纲是必要的。

本文将探讨原子物理学教学大纲的内容和结构。

一、基本概念与原理1. 原子的基本结构:介绍原子的组成部分,包括质子、中子和电子,以及它们的相对质量和电荷。

2. 原子的量子性质:介绍原子的量子理论,包括波粒二象性、不确定性原理等,以及与原子性质相关的量子数和波函数。

3. 原子的能级结构:讲解原子的能级和轨道,以及原子的光谱现象,如吸收光谱、发射光谱和拉曼光谱等。

二、原子物理学实验技术1. 原子的探测与观测:介绍原子的探测技术,如原子力显微镜、透射电子显微镜等,以及原子的观测技术,如原子吸收光谱法、原子发射光谱法等。

2. 原子的激发与激光技术:讲解原子的激发过程和激发能级,以及激光技术在原子物理学中的应用,如激光冷却和激光激发等。

三、原子物理学的应用1. 原子核物理学:介绍原子核的结构和性质,以及核反应和核能的应用。

2. 量子力学的应用:讲解量子力学在原子物理学中的应用,如原子的波函数描述、原子的束缚态和散射态等。

3. 原子物理学在材料科学中的应用:探讨原子物理学在材料性质研究、纳米材料制备和表征等方面的应用。

四、实验与实践1. 实验设计与操作:介绍原子物理学实验的设计原理和操作技巧,培养学生的实验能力和科学思维。

2. 数据分析与结果解读:引导学生分析实验数据,理解实验结果,并提出合理的解释和结论。

结语:原子物理学教学大纲的制定旨在系统地介绍原子物理学的基本概念、原理和应用,并培养学生的实验能力和科学思维。

通过学习原子物理学,学生可以深入理解物质的微观结构和性质,为他们今后的学术研究和科学实践打下坚实的基础。

同时,教学大纲的内容和结构应不断更新,以适应科学研究的发展和教学需求的变化。

原子物理学教学大纲1

原子物理学教学大纲1

《原子物理学》教学大纲一、课程名称与编号课程名称:原子物理学编号:023305二、学时与学分本课程学时:68学时本课程学分:4 学分三、授课对象大学二年级第二学期四、先修课程《力学》、《热学》、《电磁学》、《光学》五、课程性质目的本课程是为物理教育专业开设的必修课程,在教学培养计划中被列为基础主干课。

原子物理学是普通物理学的最后一部分,为经典物理与近代物理之间的过渡课程,是物理教育专业的一门重要基础课程。

本课程的目的是:使学生初步了解微观世界的结构和运动规律,了解无限分割的物质世界的结构层次,逐步建立用量子化的思想、概念、语言及思维方法来研究微观世界,为继续学习量子力学、近代物理实验等后续课程打下基础。

六、主要内容、基本要求及学时分配第一章原子的卢瑟福模型主要内容:1、原子的质量和大小。

2、卢瑟福散射公式及实验验证,原子的核式模型。

基本要求:了解 粒子散射实验对认识原子结构的意义,了解测量原子大小方法,掌握原子和原子核半径的数量级。

学时数:4学时第二章玻尔理论与原子的能级和辐射主要内容:1、氢原子光谱及原子光谱的一般情况。

2、玻尔的氢原子理论。

3、类氢离子的光谱和能级。

4、夫兰克—赫芝实验。

5、索末菲量子化通则与电子的椭圆轨道及原子空间取向量子化。

6、对应原理和玻尔理论的地位。

基本要求:掌握玻尔理论及对氢原子光谱和能级的解释;理解微观粒子的量子化特征,掌握类氢离子的光谱和能级;了解量子化通则、电子的椭圆轨道;了解对应原理和玻尔理论的局限性。

学时数:10学时第三章量子力学主要内容:1、波粒二象性。

2、不确定关系。

3、波函数及其统计诠释。

4、氢原子的波动方程与量子数。

基本要求:了解微观粒子的波粒二象性特征,理解不确定关系是物质世界的客观规律;了解波函数及薛定锷方程;了解氢原子的波动方程;掌握氢原子的能量、角动量、角动量取向的量子化条件。

学时数:8学时第四章碱金属原子主要内容:1、碱金属原子的光谱及解释。

原子物理学教学大纲 Atomic Physics

原子物理学教学大纲 Atomic Physics

课程编号:0602106原子物理学教学大纲Atomic Physics总学时:64总学分:4课程性质:专业基础课开设学期及周学时分配:第四学期 总学时64适用专业及层次:应用物理本科相关课程:量子力学、高等数学、力学、电学、热学和光学教材:《原子物理学》,褚圣麟编著,高等教育出版社。

推荐参考书:1. 原子物理学杨福家编,高等教育出版社,2001年2. 近代物理 郑广垣编 复旦大学出版社 1991年3. 原子物理学陈宏芳编科学出版社 2005年4. 原子物理郑乐民编北京大学出版社 2000年5. 近代物理基础及其应用 P. A. Tipler著 上海科技出版社 1981年6. 近代原子物理学(上、下)[法] B.凯格纳克 J.裴贝 E.裴罗拉著 科学出版社 1982年7. 量子力学 曾谨言著科学出版社2000年8. 量子物理学[美] R.埃斯伯格,R.瑞斯尼克著 1987 年课程目的及要求原子物理学是普通物理学的后续课程,是应用物理专业的一门重要基础课,它是学生开始进入微观世界研究领域的入门课程。

本课程应用若干量子力学的结论,通过丰富的事例建立量子概念,通过众多的实验现象分析,揭示原子和原子核层次的结构、性质及其相互作用规律,本课程的重点放在原子物理,通过本课程的学习建立丰富的微观世界物理图象。

通过学习掌握原子的基本结构、原子的能级和光谱的基本规律、有关原子的基本概念(原子的量子态、电子自旋、泡利原理等)、原子的重要实验事实和原子核的性质以及核反应的基本规律,了解在原子领域中经典物理遇到的主要困难,为克服这些困难而引入的一些全新的分析方法和推理方法,一些与经典物理不同的新概念,为以后继续学习《量子力学》课程和应用物理其它专业课程奠定基础。

讲课中应注意对学生进行认识论和方法论的培养,通过本课程的学习,逐步培养学生分析问题和解决问题的能力。

一、课程内容及学时分配绪论第一章 原子的基本情况(4学时)1、原子的质量和大小2、a粒子散射实验和原子的核式结构3、同位素第二章 原子的能级和辐射(8学时)1、氢原子光谱的规律2、玻尔的氢原子理论3、类氢离子的光谱4、夫兰克—赫兹实验与原子能级5、量子化通则6、电子的椭圆轨道和氢原子能量的相对论效应7、史特恩—盖拉赫实验与原子空间取向的量子化8、原子的激发和辐射9、激光原理10、 对应原理和玻尔理论的地位第三章 量子力学初步(4学时)1、物质的二象性2、测不准原理3、波函数及其物理意义第四章 碱金属原子和电子自旋 (8学时)1、碱金属原子的光谱2、原子实的极化和轨道贯穿3、碱金属原子光谱的精细结构4、电子自旋同轨道运动的相互作用5、单电子辐射跃迁的选择定则6、氢原子光谱的精细结构与蓝姆移动第五章 多电子原子(8学时)1、氦及周期系第二族元素的光谱和能级2、具有两个价电子的原子态3、泡利原理与同科电子4、复杂原子光谱的一般规律5、辐射跃迁的普用选择定则6、原子的激发和辐射跃迁的一个实例——氦氖激光器第六章 在磁场中的原子(6学时)1、原子的磁矩2、外磁场对原子的作用3、史特恩—盖拉赫实验的结果4、顺磁共振5、塞曼效应6、抗磁性、顺磁性和铁磁性第七章 原子的壳层结构(4学时)1、元素性质的周期性变化2、原子的电子壳层结构3、原子基态的电子组态第八章 X射线(4学时)1、X射线的产生及其波长和强度的测量2、X射线的发射谱3、同X射线有关的原子能级4、X射线的吸收5、康普顿效应6、X射线在晶体中的衍射第十章 原子核(18学时)1、原子核的基本性质2、原子核的放射衰变3、射线同实物的相互作用和放射性应用4、核力5、原子核结构模型6、原子核反应7、原子裂变和原子能8、原子核的聚变和原子能利用的展望二、教学重点与难点绪论第一章 原子的基本情况1、了解a粒子散射实验对认识原子结构的作用,理解如何由实验得出原子核式结构的结构2、本章重点是第2节。

《原子物理学》教学大纲

《原子物理学》教学大纲

《原子物理学》课程教学大纲一、课程基本信息英文名称 Atomic Physics 课程代码 PHYS2030课程性质 大类基础课程 授课对象 物理学专业学 分 3 学 时 54主讲教师 修订日期 2021年9月指定教材 杨福家,原子物理学(第四版)[M], 北京:高等教育出版社,2008.二、课程目标(一)总体目标:使学生通过以原子结构为中心,以实验事实为线索,了解原子和原子核层次的物质结构及运动和变化规律,揭示宏观现象与规律的本质;学习相关问题所需要的量子力学基本概念,掌握物质微观结构三个层次的物理过程、研究方法,培养创新思维;对物质世界有更深入的认识,获得在本课程领域内分析和处理一些最基本问题的初步能力。

(二)课程目标:课程目标1:使学生初步了解并掌握原子的结构和运动规律,了解物质世界的原子特性,原子层次的基本相互作用,为今后继续学习量子力学、固体物理学、近代物理实验等课程打下坚实基础。

课程目标2:在学习原子物理学的过程中引导学生学会近代物理的研究方法,提高其分析问题和解决问题的能力。

课程目标3:使学生了解并适当涉及一些正在发展的原子物理学科前沿,扩大视野,引导学生勇于思考、乐于探索发现,培养其良好的科学素质。

课程目标4:通过重大科学发现过程的讲授和科学家生平事迹的介绍,培养学生树立辩证唯物主义世界观。

通过探究式教学,锻炼学生的科学探究和创新能力。

通过学习和了解人类对物质结构认识的发展史、教材中的重大科学事件和物理学家的传记等,体会物理学家的物理思想和科学精神,培养学生的爱国热情,探索未知、追求真理、永攀高峰的责任感和使命感。

(三)课程目标与毕业要求、课程内容的对应关系表1:课程目标与课程内容、毕业要求的对应关系表课程目标对应课程内容对应毕业要求课程目标1第一章第二章第三章第四章第五章第六章 掌握数学、物理相关的基础知识、基本物理实验方法和实验技能, 具有运用物理学理论和方法解决问题、解释或理解物理规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学大纲
(一)课时安排48学时
(二)教学目的与要求
通过本课程的学习,使学生能够熟练掌握原子物理学、原子核物理学和基本粒子物理学的基本原理、基本概念和基本规律,掌握原子和原子核的结构、运动规律和研究方法,培养学生分析问题和解决问题的能力,并为以后继续学习量子力学、固体物理学、近代物理实验等课程打下坚实的基础。

结合一些物理学史的介绍,使学生了解如何由分析物理实验结果出发、建立物理模型,进而建立物理理论体系的过程,了解微观物理学对现代科学技术重大影响和各种应用,了解并适当涉及正在发展的学科前沿,扩大视野,引导学生勇于思考、乐于探索发现,培养其良好的科学素质。

(三)教学内容与要求
1.卢瑟福的核式原子模型(6学时)
掌握:(1)原子的质量,大小的数量级
(2) 粒子散射实验
(3)卢瑟福的核式原子模型
(4)卢瑟福散射公式及其实验验证
(5)散射截面及其物理意义
(6)原子核大小的估计
理解:(1)库仑散射公式和卢瑟福散射公式的推导
(2)散射理论中的近似运用
(3)阿伏加德罗常数的物理意义
了解:(1)电子的发现过程及其性质
(2)汤姆逊模型及其困难
2.氢原子的玻尔理论(8学时)
掌握:(1)氢原子光谱的实验规律,光谱项,里兹并合原则
(2)玻尔理论的基本假设,玻尔理论的结论
(3)玻尔理论对氢光谱的解释
(4)类氢离子光谱,里德伯常数
(5)夫兰克—赫兹实验的原理、方法、实验结果的分析及结论。

(6)对应原理
(7)索末菲对玻尔理论的推广——量子化通则,椭圆轨道理论理解:(1)原子的空间量子化
(2)玻尔理论的相对论修正
了解:(1)玻尔理论的历史地位和缺陷
(2)玻尔理论与量子力学主要结论的对比
3.量子力学初步(7学时)
掌握:(1)微观粒子的波粒二象性,德布罗意假设
(2)不确定关系及其含义
(3)波函数的统计解释
(4)描述电子空间运动的三个量子数
理解:(1)薛定谔方程的建立过程及其在量子力学中的地位(2)量子力学对氢原子的处理
(3)量子力学处理问题的方法
(4)戴维孙—革末实验、双(单)缝干涉实验
(5)隧道效应
了解:(1)定态的概念,求解定态薛定谔方程(本征问题)的基本步骤(2)定态薛定谔方程求解氢原子问题的基本步骤
(3)态叠加原理
4.碱金属原子和电子自旋(6学时)
掌握:(1)碱金属原子光谱的实验规律和碱金属原子结构特点(2)碱金属原子的光谱项、能级、量子亏损、有效量子数
(3)电子自旋角动量与自旋磁矩
(4)碱金属光谱精细结构的解释
(5)单电子跃迁的选择定则
(6)碱金属原子状态的描述
(7)施特恩—盖拉赫实验与空间量子化、电子自旋的联系
理解:(1)原子实极化和轨道贯穿对碱金属原子能级、光谱的影响(2)电子自旋与轨道运动之间的相互作用
了解:(1)氢原子能谱的研究进展。

5.多电子原子(6学时)
掌握:(1)两个价电子原子光谱和能级的一般规律、
(2)角动量的L—S耦合,L—S耦合中的选择定则
(3)原子能级在外磁场中的分裂,原子的有效磁矩,g因子
(4)正常塞曼效应和反常塞曼效应
(5)泡利不相容原理和能量最小原理
(6)描述电子的量子数和原子态的方法
(7)原子的壳层结构
理解:(1)原子基态的确定方法
(2)元素性质的周期性与电子的壳层排布的关系
(3)激光原理
了解:(1)角动量的j—j耦合
(2)同科电子合成
(3)激光的特性与用途
6. X射线 (3学时)
掌握:(1)X射线的连续谱与标识谱的特征和产生的机制
(2)X射线的特性与应用
理解:(1)康普顿效应与粒子性的关系
7.原子核物理(8学时)
掌握:(1)原子核的基本性质
(2)平均结合能曲线的分布规律
(3)核力的基本性质
(4)放射性衰变的基本规律
(5)α衰变的条件、α衰变能谱和原子核的能级,β衰变的类型、β衰变能谱和中微子假设,放射性衰变规律在地质、考古上的应用
(6)核反应的一般规律,核反应中的能量,原子核裂变和聚变
理解:(1)α衰变的机制,β衰变的机制,内转换及其伴随效应,放射系(2)原子核反应的机制,原子核裂变和聚变的机制,链式反应
(3)液滴模型,壳层模型
了解:(1)原子核的集体运动模型,核力的介子理论
(2)放射性的发现过程,放射性活度与放射性强度,射线的探测方法,放射性的
应用与保护
(3)原子核裂变的发现过程、太阳能的来源、原子能的利用、加速器8.粒子物理(4学时)
掌握:(1) 基本粒子的分类及相互作用
(2) 标准模型及相互作用
(3)夸克模型
理解及了解:
(1)宇宙线和新粒子的不断发现
(2)守恒定律
(3)宇称不守恒及实验验证
(4)中微子探测实验。

相关文档
最新文档